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Count responses with structural zeros are common in behavioral and social studies. There are consid-
erable research focusing on zero-inflated models such as zero-inflated Poisson (ZIP) and zero-inflated
Negative Binomial (ZINB) models for such zero-inflated count data. However, when such variables are
used as covariates or predictors, the difference between structural and random zeros is often ignored
and biased estimates may be resulted. One remedy is to include an indicator of the structural zero in
the model as a predictor if observed. However, structural zeros are often not observed in practice, in
which case no statistical method is available to address the biasing issue. This paper is aimed to fill
this methodological gap by developing parametric methods to model zero-inflated count data when
used as explanatory variables based on the maximum likelihood approach. The response variable
can be any type of data including continuous, binary, count or even zero-inflated count responses.
Simulation studies are performed to assess the numerical performance of this new approach when
sample size is small to moderate. A real data example is also used to demonstrate the application of
this method.
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1. Introduction

Count variables recording frequencies of some specific behaviors during a period of time,
such as days of alcohol consumption or number of unprotected sexual activities in the past
month, are common in behavioral and social studies. It is important, both conceptually
and methodologically, to pay close attention to structural zeros in such count variables.
Structural zeros refer to zero responses by those subjects whose count response will always
be zero, in contrast to random (or sampling) zeros that occur to subjects whose count
responses can be greater than zero, but appear to be zero due to sampling variability.
For example, in HIV-AIDS prevention research, the count of unprotected vaginal sex is
commonly used to measure the risk of HIV/AIDS. Subjects who are always, or become,
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continually abstinent from unprotected sex in a given time period form a non-risk group
as defined by structural zeros in their count outcomes, while the remaining subjects
constitute an at-risk group with their count outcomes consisting of random zeros or a
positive number of episodes of unprotected sex. Such a partition of the study population
is not only supported by the excess number of zeros observed in real studies, but is also
conceptually needed to serve as a basis for valid inference.

The main issue in modeling count data with structural zeros is that struc-
tural zeros are often not observed. In fact, structural zeros may be latent and
not observable, so the issue cannot be solved by refining the study design. For
example, in toxicological studies, long-term exposure to food-borne toxins is
often estimated using short-term food intake measures. Zeros in the mea-
sures may be structural or random simply due to the variability in their food
intake from day to day. It is typically impossible, from the survey, to separate
these two types of zeroes. In such cases, Appropriate statistical methods are
needed to address the issue. The issue has been acknowledged and dealt with when
the zero-inflated count data is treated as dependent, or a response variable in literature,
see for example, [2, 4–6, 8, 12–14, 18, 20]. Zero-inflated models such as zero-inflated
Poisson (ZIP) and zero-inflated negative binomial (ZINB) models have been
developped and also successfully applied to various fields in biomedical health
fields such as HIV-AIDS, cancer, nursing, and health care outcome research,
as well as non-health fields such as zoology, econometric, manufacturing and
traffic accident modeling [1, 3, 7, 9, 10, 15–17, 19, 21–24]. However, the statistical
problem and associated implications when such a count outcome is used as an explana-
tory variable has received far less attention in literature. In such cases, count variables
are typically treated as continuous predictors in regression models, with no effort to
distinguish structural zeros from their random counterparts. This practice is adopted
mainly for modeling convenience, which in many studies does not reflect the realistic as-
sociation of variables involved. For example, as illustrated in a study on alcohol research
[11], a structural zero in drinking outcomes represents an individual who abstains from
drinking, while a random zero corresponds to a drinker who happens not to drink during
a period of time. Thus, the structural and random zeros represent two distinct groups of
subjects with different psychosocial outcomes. Indeed, ignoring the differences between
structural and random zeros and simply using the count variable as a predictor may yield
biased inferences and uninterpretable findings [11].

To tease out the distinctive effects of structural and random zeros on the response of
interest, we can include an indicator of structural zeros in the model (in addition to the
count variable itself). This approach requires that the structural zeros are observed, such
as alcohol abstainers in alcohol research. However, as indicated above, structural
zeros are often latent and are not directly observable. This paper is aimed
at filling the methodological gap by developing a new approach to model
the distinctive effects of structural and random zeros as predictors in regres-
sion analysis, in the situations where the structural are not observed. Our
method relies on modeling structural zeros by zero-inflated models and may
be potentially applied to a broad range of fields as mentioned above.

2. Models for Count Predictors with Structural Zeros

2.1 Problems from Structural Zeros

Given a sample of n subjects, let yi denote the response of interest and xi a zero-inflated
count predictor from the ith subject (1 ≤ i ≤ n). Suppose that the structural zero in xi
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measures some personal trait and the random zero and positive count assesses the level
of activities of some behavior of interest such as alcohol use. Further, we assume there
are some other covariates, collectively denoted by zi = (zi1, . . . , zip)

>.
Let ri be an indicator of structural zero of xi, i.e., ri = 1 if xi is a structural zero and

ri = 0 otherwise. In studies where the structural zeros are observed, one may simply add
the indicator ri of structural zero as an additional predictor in the model to address the
differential effects between random and structural zeros. However, in many studies ri is
latent as it is only partially observed; for subjects with xi > 0, ri = 0, however, ri is
unknown for subjects with xi = 0.

The latent indicator ri partitions the study sample (population) into two distinctive
subgroups, with one consisting of all subjects corresponding to ri = 1 and the other
comprising of the remaining subjects with ri = 0. Since the trait in many studies is often
a risk factor, we refer to the first group as the non-risk subgroup, while the second as
the at-risk subgroup.

If we do not distinguish between structural and random zeros, we may apply the
generalized linear models (GLMs) to model the association between the explanatory
variables including the predictor of interest xi and the covariates zi, and the outcome,
as follows:

yi | xi, zi ∼ i.d. fi, µi = E (yi | xi, zi) = h(αxi + z>i β) (1)

where i.d. denotes independently distributed, f denotes some distribution such as Poisson
and h is the inverse of some link function such as the log function [21]. For example, if
yi is continuous, we may use the following linear model:

yi | xi, zi ∼ i.d. N
(
µi, σ

2
)
, µi = E (yi | xi, zi) = αxi + z>i β, 1 ≤ i ≤ n, (2)

where N
(
µ, σ2

)
denotes a normal distribution with mean µ and variance σ2. Note that zi

includes a covariate with the constant value 1 so the models above contain the intercept
term.

However, as mentioned in Section 1, when a count variable xi has structural zeros,
the conceptual difference between structural and random zeros carries quite a significant
implication for the interpretation of the coefficient α in (1) and (2). For example, if xi is a
drinking outcome such as days of heaving drinking, the difference between a subject with
ri = 1 and ri = 0 is substantial. If xi = 0 is a random zero, the coefficient of xi represents
the differential effect of drinking on the response yi within the drinker subgroup when
the drinking outcome changes from 0 to 1. If xi = 0 represents a structural zero, such
a difference speaks to the effect of the trait of drinking on the response yi. When only
including xi as in (1), the coefficient of xi has a dubious interpretation. Thus, the model
in (1) is flawed and must be revised to tease out such conceptually distinctive effects of
structural and random zeros.

Now consider the following GLM:

yi | xi, ri, zi ∼ i.d. f, E (yi | xi, ri, zi) = h(α1xi + α2ri + z>i β), 1 ≤ i ≤ n. (3)

The above is identical to (1), except for the additional indicator of structural zeros in the
set of explanatory variables. Under the refined model in (3), the effects of traits on the
response are explained by α2, while the effects of the level of activities of the behavior
are indicated by α1.

If ri is observed, (3) is a regular GLM and commonly used inference tools such as
maximum likelihood can be applied for inferences about the model parameters. When
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ri is unobserved as in most real studies, (3) cannot be estimated using such standard
methods. Next we discuss how to make inferences about (3) in the latter case.

2.2 A Mixture Model

We construct a model with a zero-inflated count predictor under the generalized linear
regression model framework. Our mixture model consists of two components, one for
modeling the outcome y and the other for modeling the zero-inflated count predictor.

Main Model: This component pertains to the model of primary interest. Given xi,
zi and ri, the outcome yi follows some parametric distribution indexed by parameter
vector α = (α1, α2, β):

yi | xi, ri, zi ∼ i.d. f, µi = E(yi | xi, zi, ri) = g(α1xi + α2ri + z>i β), 1 ≤ i ≤ n. (4)

The link function g(·) can be specified depending on the type of the outcome y. For
example, if yi is continuous and normally distributed, we can choose the identity link
function, then model (4) becomes

yi | xi, ri, zi ∼ i.d. N
(
µi, σ

2
)
, µi = α1xi + α2ri + z>i β, 1 ≤ i ≤ n. (5)

Inclusion of the indicator ri for the risk, as a predictor in the Main Model, enables
us to model the differential effects between structural and random zeros. There are two
effects associated with the trait in the Main model. One is for the difference between
structural zeros and random zeros, say the trait effect, measured by α2. The other is
the dosage effect of the count predictor for the at-risk subgroup, measured by α1. The
coefficient α1 measures the change in yi per unit increase in xi within the at-risk group,
which is the effect of the severity of the risk factor on the response for subjects who
have such risk factor. Without including ri, two effects are mixed together and hence
may potentially provide biased and misleading conclusions. Our model can tease apart
the two effects and hence can provide a more comprehensive relationship between the
outcome and the trait.

Auxiliary Zero-inflated Model: This component models the zero-inflated predictor
xi. Because of the inflation of zeros from the non-risk subgroup, we model the count
variable xi with some zero-inflated count response models. For example, we may assume
that xi follows a popular ZIP distribution with the probability of being structural zero ρi
and the Poisson mean µi, i.e., ZIP(ρi, µi). The Auxiliary ZIP model, ZIPx, models both
the structural zero and the Poisson count in xi. We assume that ui is a set of predictors
for both ρi and µi. Although ρi and µi may depend on different sets of predictors, for
notational brevity we assume a common set ui, which includes all the predictors for both
components, but with different coefficients γ1 and γ2, i.e.:

xi | ui ∼ i.d. ZIP(ρi, µi), ρi = h1(uTi γ1), µi = h2(uTi γ2), 1 ≤ i ≤ n, (6)

where h1(·) and h2(·) are the link functions for the structural zero component and the
Poisson component. The predictors ui may be different from or overlap with zi in the
Main Model (4). Other commonly used zero-inflated count response models such as zero-
inflated negative binomial (ZINB) may also be adopted for the Auxiliary zero-inflated
model.

The validity of the Main Model and the Auxiliary Model is given by the following
assumptions:
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Assumption A: Conditional Independence. Given ui, we assume that xi and ri are
independent of zi, i.e.,

(xi, ri) ⊥ zi | ui.

This assumption implies that xi and ri may depend on the covariates zi, but the de-
pendence is only through the predictors ui. This condition can be satisfied by including
additional predictors from zi in (4), as needed for the conditional independence, into ui
in (6) for the zero-inflated model of xi.

Assumption B: Comprehensiveness of the Main Model. Given the predictors xi, zi, ri,
yi is independent of ui, i.e.,

yi ⊥ ui | xi, zi, ri.

The assumption implies that yi may depend on ui, but the dependence is only through
xi, zi and ri. This condition can always be satisfied by including additional predictors
from ui in (6) into zi in (4).The comprehensiveness here means that all the information
about yi carried by or contained in ui is captured by xi, zi and ri through the Main
Model.

In practice, we may choose a set of covariates ui and zi based on the subject matter
of the study. As long as important predictors for the outcome yi and the count xi are
included, the two assumptions should approximately true.

The proposed mixture model can be applied to different types of responses in the
Main Model including continuous, categorical, count, and survival data and different
models such as ZIP and ZINB for zero-inflated count data xi in the Auxiliary Model.
We discussed the linear regression model for the continuous response in (5). Below we
illustrate the approach with some other common response variables for the Main Model.

2.2.1 Models for categorical responses

When yi is binary, we may consider modeling the response in the Main Model using the
following logistic regression:

yi | xi, ri, zi ∼ i.d. Bern (µi) , (7)

µi = E (yi | xi, zi, ri) = logit−1
(
α1xi + α2ri + z>i β

)
, 1 ≤ i ≤ n,

where Bern(µ) denotes a Bernoulli with mean µ and logit−1 (·) denotes the inverse of
the logit link. Alternatively, we may apply the probit, complementary log-log, or other
commonly used link functions for the binary response yi. Further, we can readily extend
(7) to nominal or ordinal responses using the cumulative logistic or generalized logit
models in [21].

2.2.2 Models for count responses

When yi is a count response, Poisson and negative binomial (NB) regression models may
be applied. For example, under a log-linear Poisson regression we may assume:

yi | xi, ri, zi ∼ i.d. Poisson (µi) , log(ui) = α1xi + α2ri + z>i β (8)

µi = E(yi | xi, zi, ri) = exp(α1xi + α2ri + z>i β), 1 ≤ i ≤ n,
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where Poisson(µ) denotes a Poisson with mean µ.

2.2.3 Models for zero-inflated count responses

If yi is a zero-inflated count response itself, we may apply ZIP or ZINB to model the
data and to account for structural zeros. For example, if using ZIP, we can apply a
logistic model for the structural zero and loglinear model for the Poisson component of
the response yi in (4) as:

yi | xi, zi, ri ∼ i.d. ZIP(ρi(vi; θ2), µi(vi; θ2)), 1 ≤ i ≤ n. (9)

ρi(vi; θ1) = logit−1
(
α1xi + α2ri + z>i β

)
, µi(vi; θ2) = exp

(
α′1xi + α′2ri + z>i β

′
)

θ1 =
(
α1, α2, β

>
)>

, θ2 =
(
α′1, α

′
2, β
′>
)>

.

Note that as in the case of xi, we assume a common set of explanatory variables vi =(
xi, ri, z

>
i

)>
, but different coefficients θ1 and θ2 for the logistic and Poisson components

of the ZIP.
In addition to the common types of response variables, this approach can be readily

adapted to other response variables.

3. Statistical Inference

3.1 Likelihood Function

Since the indicator variable ri is only partially observed, inferences cannot be made just
based on the Main Model (4). Under Assumptions A and B, we can apply maximum
likelihood for inference. For a subject with xi > 0, note that ri = 0, so the likelihood is:

L(xi>0) = f(yi, xi, zi,ui) = f(yi, xi, zi,ui, ri = 0)

= f(yi | xi, zi,ui, ri = 0) Pr(xi | zi,ui, ri = 0) Pr(ri = 0 | zi,ui)f(zi,ui)

= f(yi | xi, zi, ri = 0) Pr(xi | ui, ri = 0) Pr(ri = 0 | ui)f(zi,ui). (10)

Here we use f() as a generic notation for the (joint) likelihood for the variables in
the parenthesis. So it will be the density function for continuous variables and mass
probabilities for discrete and categorical variables.

For a subject with xi = 0, since ri is unknown, the likelihood can be expressed as:

L(xi=0) = f(yi, xi = 0, zi,ui) = f(yi, xi = 0, zi,ui, ri = 0) + f(yi, xi = 0, zi,ui, ri = 1)

= f(yi | xi = 0, zi,ui, ri = 0) Pr(xi = 0, ri = 0 | ui)f(zi,ui)

+ f(yi | zi,ui, ri = 1) Pr(xi = 0, ri = 1 | ui)f(zi,ui)

= f(zi,ui) {f(yi | xi = 0, zi, ri = 0) Pr(xi = 0 | ri = 0,ui) Pr(ri = 0 | ui)

+ f(yi | xi, zi, ri = 1) Pr(ri = 1 | ui)} . (11)

In the above likelihood, f(yi | xi, zi, ri) can be computed based on (4), while Pr(xi | ui, ri)
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and Pr(ri | ui) are provided by (6). For example, under (5) for a continuous yi, we have:

f(yi | xi, zi, ri) =
1√
2π

exp

{
−

[yi −
(
α1xi + α2ri + z>i β

)
]2

2σ2

}
.

Under (7) for a binary yi,

Pr(yi | xi, zi, ri) =

[
exp

(
α1xi + α2ri + z>i β

)
1 + exp

(
α1xi + α2ri + z>i β

)]yi [ exp
(
α1xi + α2ri + z>i β

)
1 + exp

(
α1xi + α2ri + z>i β

)]1−yi

Under (6), if we assume:

h1 = log it−1(uTi γ1), h2 = log−1(uTi γ2), 1 ≤ i ≤ n,

then we have

Pr(ri = 1 | ui) = ρi(uiγ1) =
exp (uiγ1)

1 + exp (uiγ1)
,

Pr(xi | ui, ri = 0) =
exp (− exp (uiγ2)) exp (xiuiγ2)

xi!
.

By substituting f(yi | xi, zi, ri), Pr(ri | ui) and Pr(xi | ui, ri = 0) into the likelihood
functions L(xi>0) and L(xi=0) in (10) and (11), we can apply maximum likelihood methods
for inferences about the parameters.

Note that as in standard regression analysis, the likelihood for each subject contains
the joint distribution of zi and ui. However, since f(zi,ui) contains no parameter of
primary interest, it provides no contribution to the score equations and thus can be
factored out from the likelihood function.

Because we are mainly interested in the differential effects of struc-
tural zeros in the main model, we naturally adopted the “pattern mix-
ture model” approach, which involves a formulation of f(yi, xi, ri, zi,ui) =
f(yi|xi, zi,ui, ri) Pr(xi|ri, zi,ui)f(ri, zi,ui). However, we can also formulate the
model following a “selection model” scheme. In the “selection model” scheme,
the model would involve a selecting distribution Pr(ri|xi, zi,ui), and the like-
lihood is factored as f(yi, xi, ri, zi,ui) = f(yi|xi, zi,ui, ri) Pr(ri|xi, zi,ui)f(xi, zi,ui).
Thus the likelihood for a subject with xi > 0 (hence, ri = 0) will be

f(yi, xi, zi,ui) = f(yi|xi, zi,ui, ri = 0) Pr(ri = 0|xi, zi,ui)f(xi, zi,ui),

and the likelihood for a subject with xi = 0 (hence, ri can be 0 or 1) will be

f(yi, xi, zi,ui) = [f(yi|xi, zi,ui, ri = 0) Pr(ri = 0|xi, zi,ui)

+f(yi|xi, zi,ui, ri = 1) Pr(ri = 1|xi, zi,ui)]f(xi, zi,ui).

Under this formulation, the distribution f(xi, zi,ui) does not need to be
specified if a model (say logistic) is specified for ri and ri is observed. However,
since the structural zeros are unobserved, a (logistic) model ri would not be
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identifiable. We may rely on the zero-inflated models to model the structural
zeros, i.e., use the auxiliary model to model ri, and the pattern mixture
approach we adopted above would be a natural choice in the situation.

3.2 Hypothesis Testing

As discussed above, there are two effects associated with the trait. One is for the trait
effect, the difference between structural and random zeros, measured by α2, and the
other is for the dosage effect of the count predictor on the outcome for the at-risk sub-
group, measured by α1, in the Main Model. We may test them separately using common
hypothesis testing techniques such as the Wald test and the likelihood ratio test. For an
overall testing of whether the trait is associated with the outcome, a linear composite
hypothesis of α1 = α2 = 0 needs to be tested.

3.3 Selection of Initial Values

Due to the complexity of the mixture model, we generally do not obtain closed-form
ML estimates (MLEs) of the parameters. Numerical optimization is needed to find the
MLEs, such as the popular Newton-Raphson (NR) method. In using the Newton-Raphson
method, it is important to start with good initial values in order for the iterations to
converge to the global maximum of the likelihood function. The following strategies
can be used for setting initial values to achieve this objective as well as to speed up
convergence for the Newton-Raphson method.

We first estimate the initial values of the parameters in (6) for the count predictor
xi, and then estimate the initial values for the parameters in (4). More specifically, we
follow a two-step procedure to obtain initial values:

Step 1. Initial values for the regression parameters γ1 and γ2 in the Auxiliary Model in
(6), as well as the marginal probability of structural zeros ρx and the marginal Poisson
mean µx, for the count predictor xi.

(a) Estimate the initial value of µx and ρx. We fit a ZIP model for xi with intercept
only. The estimated probability of structural zeros and the Poisson mean then serve as
the initial values of µx and ρx, denote as µxI

and ρxI
, respectively.

(b) Estimate the initial value of γ1 and γ2. We fit a ZIP model for xi with predictors ui.
The estimated coefficients from the logistic regression for the structural zeros are then
used as the initial value of γ1, denote as γ1I

, while the coefficients from the loglinear
model serve as the initial value of γ2, denoted as γ2I

.
Step 2. Initial values for the parameters for the Main Model of y in (4). The difficulties

of model estimation lie in the fact that structural zeros are not observed. However,
since subjects with positive values of xi are not structural zeros, i.e., ri = 0 for these
subjects. Thus we may apply regular regression methods to this subsample to obtain
initial estimates of all the parameters except for the coefficient of ri.

For example, if we have a regression model on y and

yi | xi, ri, zi ∼ i.d. N
(
µi, σ

2
)
, µi = c0 + cxxi + crri + czzi.

we can apply the model

yi | xi, zi ∼ i.d. N
(
µi, σ

2
)
, µi = c0 + cxxi + czzi, (12)

to the subjects with xi > 0 to obtain the initial values for c0I
, cxI

, czI and σI . We can
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then set the initial value of cr based on the following equations:

E(y | x = 0) = Pr(x is random zero)(c0I
+ cxI

E(x | x = 0))

+ Pr(x is structural zero) · (c0I
+ cr + cxI

E(x | x = 0))

= (c0I
+ cxI

E(x | x = 0)) + cr Pr(x is structural zero)

= (c0I
+ cxI

E(x | x = 0)) + cr
ρxI

ρxI
+ (1− ρxI

) · e−µxI

,

so the initial value of cr can be obtained by:

crI =
[E(yi | xi = 0)− c0I

] [ρxI
+ (1− ρxI

) · e−µxI ]

ρxI

. (13)

The initial value for cr is obtained by comparing the mean response outcome for all
the subjects with zero counts in x, including both structural and random zeros, to the
intercept estimated from the subjects with xi > 0 in (12). The choices of initial values
depend on the models we use, and we will give some examples in the simulation section.
Since ignoring the difference between structural and random zeros means the coefficient
involving r is zero, thus it is also reasonable to use 0 as initial values for cr.

4. Simulation Studies

4.1 Simulation Setup

We use simulation studies to examine the performance of the proposed method when
modeling zero-inflated outcomes as predictors in regression analysis. We assume that
the predictor x ∼ ZIP (ρx, µx), a ZIP with ρx denoting the probability of structural
zeros in the logistic component and µx denoting the mean of a count response in the
Poisson component of the ZIP. A larger ρx means more structural zeros, while a larger
µx indicates a smaller proportion of random zeros in the simulated data.

The predictor x is generated based on the following Auxiliary Model:

x ∼ i.d. ZIP(ρx, µx), z1 ∼ i.d. N
(
0, σ2

z1

)
, (14)

log it(ρx) = a0 + a1z1, log(µx) = b0 + b1z1.

The values of a0, a1, b0 and b1 control the amount of structural and random zeros in the
predictor. We consider four different types of response: continuous, binary, Poisson and
zero inflated Poisson y. To investigate the performance of the proposed method under
different conditions for each type of outcomes, we consider three scenarios: a) when the
structural zeros have effect on the outcome y, and the Main Model (4) correctly specifies
the effect; b) when the structural zeros do have an effect on y, but the Main Model
(4) is misspecified by not including the effect of structural zeros in the model, i.e., the
difference between structural zeros and random zeros is ignored; c) when the structural
zeros don’t have effect on y, but the Main Model does include an effect of the structural
zeros.

In all simulations, a Monte Carlo (MC) sample size of 1,000 is used for the models.
We summarize results of model estimates by reporting point and variance estimates
(both model-based obtained from the asymptotic theory and empirical estimates from
MC replications), as well as the coverage probability of confidence intervals (probability
whether the true value is covered by the confidence interval).
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4.2 Continuous Response Y

For a continuous y, the association of y with x, z and r based on (5) is specified as
follows:

y | x, r, z ∼ i.d. N
(
µ, σ2

y

)
, z ∼ i.d. N

(
0, σ2

z

)
,

µ = c0 + cxx+ crr + czz, (15)

and x is generated based on (14). For the simulation studies, we set σ2
y = σ2

z = σ2
z1 = 1,

c0 = −1, cx = cz = 1, a0 = b0 = 0.5, and a1 = b1 = 1. To see if the effect of structural
zeros on the response has any impact on the estimates of other parameters such as cx and
cz, we consider cr = 1 and cr = 0. When cr = 1, we consider both the true Main Model
(15) and a misspecified Main Model by excluding cr in the model fitting, i.e., we fit a
model on y as y = c0 + cxx+ czz. The sample sizes considered were 200, 500 and 1000.
As described above, we set the initial values of the parameters based on the discussion
in Section 3.3. By applying the model (12) to the subsample with x > 0, we obtained
the initial values for cx and cz, and the initial value cr is set based on (13).

*** Table 1 goes about here ***
Shown in Table 1 and tables S1-S2 (in the supporting web material) are the averages

of the estimates for both the Main and Auxiliary Model. In Table 1, the Main Model (15
) is correctly specified, while in Table S1, the Main Model is misspecified. The results
for cr = 0 are provided in Table S2 as the supporting web material. As shown in Table 1
and S2, the estimates for both the Main Model and the Auxiliary Model are very close to
the true values, the coverage probabilities are also very close to 95%, and the asymptotic
variances are very close to the empirical variances. Table 1 and Table S2 also show that
structural zeros do not have much impact on the estimates of other parameters such as
cx and cz, as long as the Main Model is correctly specified. But when the Main Model
is misspecified by not including the structural zeros in the model, as shown in Table S1,
the estimates of cx are quite biased, and the coverage probabilities are very low. The
misspecification of the Main Model does not have a big impact on the estimates of cz.
Therefore, when the structural zeros do have effect on the outcome y, a model failing
to include the structural zeros of the count variable x can’t capture the true association
between x and y, but the associations between the outcome y and other covariates z may
not be affected much by the misspecification. The estimate of the intercept c0 is biased.

4.3 Binary Response Y

For a binary outcome y, we simulate the data from a GLM for the Main Model with a
logit link as follows:

y | x, r, z ∼ i.d. Bern (p) , logit (p) = c0 + cxx+ crr + czz. (16)

The explanatory variables x and z are simulated the same way as in the continuous case.
The values of the parameters are set to be the same as in the continuous case. A MC
sample of 1000 replications is simulated for each of the sample sizes 200, 500 and 1000
using the same parameter values as in the case of a continuous y. The initial values for
a0, b0, a1 and b1 are again determined by Section 3.3. For the initial values of cx and cz,
we apply a logistic regression model to the subset of subjects with x > 0, i.e., cxI

and
czI are estimated based on:

E(y | x, z) = logit−1 (c0 + cxx+ czz) , x > 0. (17)
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After obtaining the initial values of cx and cz by applying Step 2 in Section 3.3, the
initial value of cr is estimated by:

crI = log
A

1−A
− c0I

− cxI
E(x | x = 0),

where

A =
Pr(y = 1 | x = 0)− (1− ρxI

)e−µxI log it−1 [c0I
− cxI

E(x | x = 0)]

ρxI

.

*** Table 2 goes about here ***
The simulation results are summarized in Table 2, S3 and S4. As shown in Table 2

and S4, when the Main Model (16) is correctly specified, all the estimates are very good,
even for a relatively small sample size. As the sample size increases from 200 to 1000, the
point estimates are closer to the true value. When the Main Model (16) is misspecified, as
shown in Table S3, the estimates of cx become quite biased, although other parameters
except for c0 are all estimated quite well.

4.4 Poisson Count Response Y

For a Poisson count variable y, we generate y from a GLM with a log function as follows:

y | x, r, z ∼ i.d. Poisson (µ) , µ = exp (c0 + cxx+ crr + czz) . (18)

With the same set of values of the parameters as in the continuous case, we simulate
1,000 MC samples from each of the three sample sizes considered.

The initial values of the estimates of µx and ρx are determined by the same algorithm
as in the previous cases. In order to obtain a proper initial value of c0, cx and cz, we fit
the following Poisson to the subsample with x > 0:

y | x, z ∼ i.d. Poisson (µ) , µ = exp (c0I
+ cxI

x+ czIz) , x > 0,

with the initial values µxI
, ρxI

, c0I
, cxI

and czI . We estimate an initial value of cr using
the following estimating equations:

E(y | x = 0) = Pr(x is random zero) · ec0I +czI ∗E(z|x=0)

+ Pr(x is structural zero) · ec0I +cr+czI ∗E(z|x=0),

cr = log

(
E(y | x = 0)− (1− ρxI

)e−µxI · ec0I +czI ∗E(z|x=0)

ρxI
· ec0I +czI ∗E(z|x=0)

)

The simulation results are summarized in Tables S5, S6 and S7 as the supporting web
material. Similar to the continuous and binary cases, all estimates are quite close to
the true values when the Main Model (18) is correctly specified. But when the Main
Model is misspecified, as shown in Table S6, the estimates are biased and the coverage
probabilities are very small as well. Again, misspecification of the Main Model does not
have much impact on the Auxiliary Model.

11
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4.5 Zero-inflated Poisson Response Y

Finally, we consider a zero-inflated count response y generated from the following ZIP
model:

y | v ∼ i.d. ZIP(ρ(v; θ2), µ(v; θ2)), (19)

ρ = logit−1 (c0 + cxx+ crr + czz) , µ = exp
(
c′0 + c′xx+ c′rr + c′zz

)
,

where v = (x, r, z)>. We set c′0 = c0 = −1 and c′x = cx = c′r = cr = c′z = cz = 1. Since the
latent nature of ZIP requires a larger sample size to obtain reliable estimates, especially
within the context of a latent x following another ZIP, we consider bigger sample sizes
500, 1000 and 1500 for each case.

Again, we determine the initial values for estimating µx and px as discussed in Section
3.3. For the initial values of c0, cx, cz of the logistic component and c′0, c′x, c′z of the
loglinear component of the ZIP for y, we apply the following models for the subsample
with x > 0 :

y | x, z ∼ i.d. ZIP(ρ(x, z; η1), µ(x, z; η2)),

ν = logit−1 (c0 + cxx+ czz) , log (µ) = c′0 + c′xx+ c′zz,

η1 = (c0, cx, cz)
> , η2 =

(
c′0, c

′
x, c
′
z

)>
.

Due to the complexity of the model, we set cr = c′r = 0 as the initial values for estimating
cr and c′r.

*** Table 3 goes about here ***
Shown in Tables 3, S8 and S9 are the simulation results. When the Main Model (19)

is correctly specified, as shown in Table 3 and S9, the estimates from both the log-linear
Poisson component and the logistic zero-inflated component of the Main Model are very
good. The point estimates are close to the true values and the coverage probabilities
are close to 95%. The asymptotic variances are also quite close to their corresponding
empirical counterparts. But when the Main Model is misspecified, as shown in Table S8,
the estimates from both components of the Main Model are biased, especially for the
estimates of cxp and cxb. This indicates that when the outcome follows a ZIP model and
has zero-inflated count predictor x, if the difference between the structural and random
zeros in the predictor is ignored, the Main Model can detect neither the true relationship
between y and x, nor the associations between y and other covariates. Comparing to the
two components of the Main Model, the estimates of czb in the zero-inflated component
are relatively better than the estimates of czp in the Poisson component. The misspecifi-
cation of the Main Model do not have much impact on the performance of the Auxiliary
Model.

5. Real Data Analysis

5.1 The Data

We now use the 2009-2010 National Health and Nutrition Examination Survey
(NHANES) study discussed in [11] as an illustrative example of a real study applica-
tion. The NHANES is a survey research program conducted by the National Center for
Health Statistics to assess the health and nutritional status of people in the United States.
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A brief introduction of the study and a more detailed description of the NHANES data
can be found in [11]. In NHANCE study, alcohol use is measured by the number of days
of alcohol consumption (DAD) in a week, while depressive symptoms are assessed by the
Patient Health Questionnaire (PHQ-9). As discussed in [11], both DAD and PHQ-9 have
excessive zeros in their distributions. By fitting a zero-inflated Poisson (ZIP) model, we
revealed that the DAD outcome has excessive zeros and the structural zeros in DAD
were as high as 30%. Note that for illustrative purpose, in all these analysis and the
following analysis, we ignore the complex survey study design of NHANES and did not
incorporate the sampling weight in the analysis.

We apply the proposed approach to examine potential differential rates of depression
between the at- and non-risk subgroups of alcohol use. In the proposed method, the
essential component is to tease apart the effect of alcohol use, a trait of an individual,
from the effect of amount of alcohol use, when modelling the relationship between alcohol
use and depression. One of the unique features of the NHANES is the inclusion of the
variable “NeverDrink”, which measures lifetime abstinence from alcohol. This variable
asks if a subject has ever used alcohol in his/her life. It is not a perfect indicator of
structural zero in our context, since subjects who have used alcohol but became abstinent
from it (structural zero) are not be counted as Never Drinkers. Nonetheless, the variable
“NeverDrink” may serve at least as a crude benchmark to examine the performance of
the proposed approach. Regarding the Main predictor DAD, we want to know if there
are any demographic information to predict DAD.

5.2 Statistical Model

We apply the approach to model the effect of alcohol use on PHQ-9 score. For the
PHQ-9 score, we applied a ZIP, with age, race, gender, education, and DAD as well as
the indicator of structural zeros of DAD as the explanatory variables. Since our initial
univariate analysis of DAD vs. PHQ-9 suggested a quadratic association between the two
variables, a square of DAD (DAD2) was also included as a predictor. We also consider a
ZIP model for the DAD variable by including age, race, gender, education as predictors
for both components of the DAD variable. So, our model (Model I) to study the effect
of alcohol use on depression is specified as follows:

PHQ-9i ∼ ZIP(ρi, µi), DAD ∼ ZIP(ρxi, µxi), (20)

ρi ∼ Structural zero of DAD +DAD+DAD2 +age+gender+race+education,

µi ∼ Structural zero of DAD +DAD+DAD2 +age+gender+race+education,

ρxi ∼ age+gender+race+education,

µxi ∼ age+gender+race+education,

where ρxi is the probability for structural zeros and µxi is the Poisson mean of the DAD
variable.

We apply the maximum likelihood method discussed in Section 2.2 to make inference
about the parameters for the model in (20). The coefficients of the structural zeros of
DAD indicate the effect of a trait of an individual for alcohol use on the depressive
symptoms, while those of DAD and DAD2 provide the effect of amount of drinking on
this response for subjects in the at-risk group of alcohol use. We also apply a ZIP model
to model the PHQ-9 score with exactly the same explanatory variables, except that the
indicator of structural zeros of DAD in (20) is replaced by the variable “NeverDrink”.
The second ZIP model (Model II) does not involve the latent variable of structural zeros

13
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of DAD, providing a benchmark to assess the performance of the proposed approach. We
used SAS 9.3 PROC GENMOD for the analyses with inference based on the maximum
likelihood approach. Unlike Model I, Model II do not include a ZIP Auxiliary Model for
the predictor of DAD.

5.3 Results

Due to some missing values, the actual sample size for the analysis is 5,261 (out of 5,283
subjects in the data). Shown in Table 4 are the parameter estimates for the logistic and
Poisson components of the ZIP Models I (Model II) for the PHQ9 score. Both models have
successfully identified significant associations between alcohol use and depression in both
components. In the logistic component which models the likelihood of non-depression
(structural zeros of PHQ-9 score), the non-drinkers are more likely of being non-risk for
depression, or less likely of being at-risk for depression (p-value 0.0142 for Model I and
<0.0001 for Model II). Among the at-risk subgroup for alcohol use, the coefficients for
DAD2 are significant in both models (p-value <0.0001 and 0.0006 for Model I and II,
respectively). The negative signs of these coefficients indicate that subjects with DAD at
the two ends, near 0 (few days of alcohol use) or near 7 (most days of alcohol use), are
at higher risk for depressive symptoms. Based on Model I (II), subjects with 2.70 (2.04)
days of any alcohol use per week are least likely to be depressed.

For the Poisson component, the non-drinkers have less depressive symptoms based on
both models (p-value <0.0001 for both models). Among the subjects who are at-risk
for alcohol use, the coefficients of DAD2 are again significant in both models (p-value
<0.0001 for both models). The positive signs of these coefficients indicate that subjects
with DAD at the two ends near 0 and 7 have higher PHQ-9 scores. Based on Model I
(II), subjects with 3.55 (2.82) days of alcohol use per week have lowest PHQ-9 scores.

The results for the Auxiliary Model of DAD are summarized in Table S10. Gender, age
and education are significant predictors for both the Poisson and logistic components,
older males with higher education are more likely to have more drinks and older females
with lower educations are more likely to be in the non-risk group for alcohol drinking;
Compared to people in other race, Mexican American and Non-Hispanic are more likely
to be at-risk and also have more drinking if they are at risk for drinking.

Regarding the relationship between the alcohol drinking and depression, both models
yield similar conclusions, although Model I models the latent trait of alcohol use, while
Model II uses the observed measure of this trait when examining the effects of alcohol use
on depression. Abstinence from alcohol or moderate alcohol consumption are protective
for depression. However, there is some discrepancy in the estimates between Model I and
Model II. Our estimated percentage of structural zeros (non-risk group) is 35.0%, while
the percent of structural zeros based on the NeverDrink variable is only 12.0%. Since
this NeverDrink variable asks if subjects have any drink in their lifetime, those who
don’t drink, but become abstinent from alcohol, are treated as structural zeros (non-
drinkers) in the proposed approach (Model I). In contrast, such individuals are regarded
as part of the at-risk subgroup in Model II. So the difference in the percent of structural
zeros between the two approaches likely reflects the different interpretations of lifetime
abstinence from alcohol.

6. Discussions

Zero-inflation, the observed amount of zeros is larger than that would be ex-
pected under a statistical model, is a common phenomenon in public health
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and medical research, and it is often associated with the existence of struc-
tural zeros. It is important both statistically and conceptually to distinguish
random and structural zeros. However, structural zeros are often latent and
information about whether a zero is structural or random is often not be
observed directly.

A comparatively rich literature has been focusing on statistical methodol-
ogy research and their applications in addressing the structural zero issue
when the count variable is treated as the response. Little attention is paid
when such count variables are treated as predictors. In such cases, simply
ignoring the differential effects of structural zeros in the data analyses may
yield biased estimates and uninterpretable findings [11]. In this paper, we
have developed statistical models to address the differential effect of struc-
tural zeros and random zeros in such explanatory variables.

The proposed approach fills a critical gap in literature to address the struc-
tural zero issues in predictors by jointly modeling the response of interest
(Main Model) and the zero-inflated count predictors (Auxiliary Model). To
tease out the effect of structural zeros from that of random zeros, an indicator
of structural zeros, which is partially latent, is included in the Main Model
to address the confounding effects of the two types of zeros. Validity of the
zero-inflated model for the count predictor is critical for the application of
the method.

We described four popular types of responses for the Main Model and two types of count
predictors for the Auxiliary Model in this paper. In the proposed approach, we assumed
conditional independence for both components, or equivalently, there is no confounder
in both the Main and Auxiliary Models. Such assumptions are standard in regression
analysis. The approach is easy to implement using popular statistical packages such as R
and SAS. Like any mixture models, initial values are important for finding the maximum
likelihood estimates. Based on our experience, the two-step procedure works quite well
for selecting satisfactory initial values for computing the estimates. Also, our simulations
and real data study examples have shown good performances of the approach.

Like any statistical method, the proposed approach also has some limitations. The
method discussed in this paper is only applicable to cross-sectional studies. Further re-
search is needed to extend the approach to longitudinal studies. Since it is premised
upon parametric distribution assumptions, the approach lacks robustness against depar-
tures from assumed parametric models. Semiparametric approaches are needed for both
cross-sectional and longitudinal studies to address such limitations.
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Appendix

See the Web-based Supplementary Materials.
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