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A mathematical model presented in Ref. 7 for the transmission dynamics of Ebola virus

is extended to incorporate vaccination and change of behavior for self-protection of sus-

ceptible individuals. In the new setting, it is shown that the disease-free equilibrium is
globally asymptotically stable when the basic reproduction number R0 is less than or

equal to unity and unstable when R0 > 1. In the latter case, the model system admits

at least one endemic equilibrium point, which is locally asymptotically stable. Using the
parameters relevant to the transmission dynamics of the Ebola virus disease, we give

sensitivity analysis of the model. We show that the number of infectious individuals is

much smaller than that obtained in the absence of any intervention. In the case of the
mass action formulation with vaccination and education, we establish that the number

of infectious individuals decreases as the intervention efforts increase. In the new formu-

lation, apart from supporting the theory, numerical simulations of a nonstandard finite
difference scheme that we have constructed suggests that the results on the decrease of

the number of infectious individuals is valid.

Keywords: Ebola virus disease; dynamical systems; behaviour change; sensitivity analy-
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1. Introduction

The Ebola virus disease (EVD) is named so after the Ebola River valley in Zaire

(now Democratic Republic of Congo) where it appeared for the first time in 1976

(Ref. 35). Since then, other outbreaks have been identified in parts of Central Africa,

see for example Refs. 1,7,8,13,35. The most devastating outbreak was observed re-

cently (2014) in some West African countries: Guinea, Liberia, Nigeria, Senegal and

Sierra Leone. In almost all the outbreaks, the initial infection is due to contacts with

infected animals (hunted for food), such as fruit bats and primates (ape, monkey,

chimpazee) (Refs. 7,22,23). This highlights the importance of considering the indi-

rect contacts with the surrounding environment as a transmission route of the virus.
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Of course, the direct transmission of EVD cannot be underestimated. Typically, the

direct transmission involves contact with blood or body fluid and with objects that

have been contaminated with Ebola viruses. A detailed literature review on direct

and indirect transmission of EVD is given in Ref. 7 and the references therein.

The model investigated in Ref. 7 enriched the few existing models by incorpo-

rating the indirect transmission route in the following specific manner:

(i) Infection through the contaminated environment resulting from African prac-

tices, hospitality and poor hygienic conditions;

(ii) Provision or recruitment source of Ebola virus linked to the consumption of

bats, hunted meat and fruits from the rain-forest.

The findings in Ref. 7 with regard to the control strategy of EVD included educating

the population against the practices contained in items (i) and (ii) above. In the

present paper, we broaden the education of the population in two additional ways

outlined below.

(iii) We add a vaccinated compartment. This addition is motivated by a recent study

that suggested a ring vaccination of all susceptible individuals in a prescribed

area around an outbreak of an EVD (Refs.14, 19). This is used, for example,

in the control strategy of Smallpox eradication program which could help also

to reduce Ebola transmission. As a matter of fact, in March 2015, the ministry

of Health in Guinea started a ring vaccination trial, and interim trial results

suggested that the vaccine could have a high level of efficacy in humans (Ref.

19). Other viable Ebola vaccine candidates are mentioned in Ref. 13.

(iv) We take into consideration the awareness of the population and their behavioral

change for self-protection by adding a compartment of trained individuals. Some

public health educational interventions, including the creation of Ebola response

teams in local communities and preparedness at household level to minimize the

transmission of EVD, are suggested in Ref. 1.

The model is carefully analysed to get insight on the impact of all these sets of

educational interventions. Under these interventions, we observe that the number

of infectious individuals is much smaller than that obtained in Ref. 7. It was al-

ready observed in Ref. 7 that the use of standard numerical methods could produce

unreasonable discrete solutions such as negative ones. On the contrary, the nonstan-

dard finite difference (NSFD) method has the potential to replicate the dynamics

of the continuous model (Refs. 4,5,27,28,31). Using the Mickens’ rules (Refs. 7,26),

we have constructed a NSFD scheme, which is dynamically consistent with EVD

model.

The rest of the paper is organized as follows. The model is formulated in Section

2. In Section 3, the quantitative and qualitative analysis of the model is given.

The sensitivity analysis of the model is presented in Section 4. In Section 5, we

propose a nonstandard finite difference scheme for the continuous model. Numerical

simulations and concluding remarks are given in Sections 6 and 7, respectively.



October 26, 2017 16:40

Ebola model with self-protection measures 3

2. Model formulation

In this section, we extend the model for the EVD in Ref. 7 by incorporating vacci-

nation and behavioral change of susceptible individuals. The following assumptions

are made. The population under consideration is grouped into disjoint classes or

compartments. Individuals who are susceptible to EVD are grouped in the S class.

Ebola infected individuals are placed in class I. The R class contains individuals

recovered from EVD. Individuals who receive public health training on how to pre-

vent themselves from contracting Ebola and vaccinated individuals are categorised

as the classes T and V , respectively. The class of EVD deceased individuals is rep-

resented by D, while P denotes the Ebola virus concentration in the environment

due to shedding by infectious and Ebola deceased individuals. The flow diagram of

the transmission dynamics of the EVD is given in Fig. 1.

The corresponding system of nonlinear differential equations is

dS

dt
= Π− (εe+ λ+ ν + µ)S,

dI

dt
= λS − (γ + δ + µ)I + (1− θ)λT,

dR

dt
= γI − µR,

dT

dt
= εeS − (1− θ)λT − µT,

dV

dt
= νS − µV,

dD

dt
= (δ + µ)I − bD,

dP

dt
= ξI + αD − ηP,

(2.1)

where

N(t) = S(t) + I(t) +R(t) + T (t) + V (t)

is the total population at time t ≥ 0. All parameters are nonnegative and they

are described in Table 1. The force of infection λ, the behavioral change function

e and the governing equation for the evolution of the virus concentration in the

environment deserve more specific descriptions and comments as outlined below.

Susceptible individuals S may acquire infection after effective contacts with infec-

tious individuals I, EVD deceased human bodies D and contaminated environment

P at the rates β1, β2 and β3, respectively. While the first source of infection of sus-

ceptible is typically formulated by standard incidence (Ref. 15), a couple of options

are available in the literature regarding the other two sources. For instance, in Ref.

36, indirect transmission through environment occurs in a saturated manner and

takes the form

β3SP

K + P
,
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Fig. 1. Schematic diagram of EVD transmission dynamics.

where K is the concentration of the disease pathogen in the environment which

increases 50% chance of triggering the disease transmission.

In the present work, we follow Ref. 32 and formulate the force of infection as

λ =
β1I

N
+ β2D + β3P, (2.3)

with mass action incidence for the last two terms. Thus, (2.3) extends the formu-

lation in Ref. 7 where the mass action principle is used for the three sources of

infection.

As noted in Ref. 18, human learning behavior does not keep on increasing for

ever. After a sharp increase, the rate of increase in the awareness function e slows

down and settles to some value asymptotically. Therefore, we define the awareness

function e(λ) by the Hill-type function in terms of the force of infection

e(λ) =
λn

λn0 + λn
, (2.4)

where λ0 is the value of the force of infection corresponding to the threshold infec-

tivity in which the individuals start reacting swiftly. At the beginning of an EVD

outbreak, individuals understand very little about it; there could be no reaction

and this can be related to the situation at the disease-free equilibrium such that
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Fig. 2. Change of behavior with respect to the force of infection for λ0 = 0.2.

e(λ) = e(0) = 0. However, as the risk of the disease increases, individuals start to

think of the type of measures to take in order to avoid all means of contracting the

disease. These protection measures, if perfect, account for an increase in the values

of e to unity. The order n of the function e(λ) is a Hill coefficient that portrays the

rate of reaction by the population. See Fig. 2 for the relation between e and the

force of infection λ.

It is possible to add in the last equation of (2.1) a recruitment rate function σ

of the disease pathogens in the environment. The recruitment σ could be a logistic

growth function, specifically in the case of free-living pathogens such as bacteria

(Refs. 5,6). It could also be a positive constant, implying then that the disease will

persist (Ref. 7). In this paper, we assume that σ = 0, resulting in the existence of

a disease-free equilibrium, the stability analysis of which will be considered in the

next section.

The system (2.1) is appended with the following nonnegative initial conditions:

S(0) = S0, I(0) = I0, R(0) = R0, T (0) = T0, V (0) = V0, D(0) = D0 and P (0) = P0.

3. Quantitative and qualitative analysis

We start with the well-posedness result which is stated as follows.

Theorem 3.1 The Ebola model (2.1) is a dynamical system on the biologically
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Parameter Description

Π Recruitment rate of susceptible individuals

γ Rate of recovery

µ Natural death rate

δ Ebola-induced death rate

ε Rate of dissemination of information about the disease in the population

ν Rate of vaccination
1
b Mean caring duration of Ebola deceased human individuals

α Shedding rate of Ebola deceased individuals to the environment

ξ Shedding rate of infectious individuals to the environment

θ Average effectiveness of existing self-preventive measures

η Decay rate of Ebola virus in the environment

β1 Contact rate to the I class

β2 Contact rate to the D class

β3 Contact rate to the P class

Table 1. Description of parameters of the model (2.1).

feasible region

Ω =
{

(S, I,R, T, V,D, P ) ∈ R7
+ : 0 ≤ S(t) + I(t) +R(t) + T (t) + V (t) = N(t) ≤ Π

µ
,

D(t) ≤ (µ+ δ)Π

bµ
and P (t) ≤ 1

η

(
ξΠ

µ
+
α(µ+ δ)Π

bµ

)}
.

The proof of Theorem 3.1, based on the method mentioned in Ref. 9 to show

positivity and Theorem 2.1.5 in Ref. 34, is given in Appendix A.

Next, we determine the equilibrium solutions of the system (2.1). We set the

right-hand side of (2.1) equal to zero:

Π− (εe+ λ+ ν + µ)S = 0,

λS − (γ + δ + µ)I + (1− θ)λT = 0,

γI − µR = 0,

εeS − (1− θ)λT − µT = 0,

νS − µV = 0,

(µ+ δ)I − bD = 0,

ξI + αD − ηP = 0.

(3.1)

Then, the disease-free equilibrium (DFE) is

E0 = (S, I,R, T, V,D, P ) =

(
Π

µ+ ν
, 0, 0, 0,

νΠ

µ(µ+ ν)
, 0, 0

)
. (3.2)

At the disease-free equilibrium, the behavioral change function e(λ) = e(0) = 0.
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The basic reproduction number, which is very important for the qualitative

analysis of the model, is determined by using the method of the next generation

matrix in Refs. 12,38.

For the model under consideration, using the notation X = (I,D, P ), we have

the vector functions

F(X) =

λS + (1− θ)λT
0

0

 and U(X) =

 (µ+ δ + γ)I

−(µ+ δ)I + bD

−ξI − αD + ηP


representing the rates at which disease compartments increase and decrease in size

due to the disease, respectively. The next generation matrix is given by

B = JFJ
−1
U , (3.3)

where

JF =


µβ1

µ+ ν

β2Π

µ+ ν

β3Π

(µ+ ν)
0 0 0

0 0 0

 and JU =

µ+ δ + γ 0 0

−(µ+ δ) b 0

−ξ −α η


are the Jacobian matrices of F and U at E0, respectively.

The basic reproduction number, denoted byR0, is defined as the average number

of secondary cases produced in a completely susceptible population by a typical

Ebola virus infected individual (i.e., alive or deceased but not buried) during its

entire period of being infectious (Ref. 38). Mathematically, R0 is the spectral radius

of B in (3.3), which is explicitly found to be

R0 =
µβ1

(ν + µ)(γ + δ + µ)
+

(δ + µ)β2Π

(ν + µ)b(γ + δ + µ)
+

(bξ + α(δ + µ))β3Π

bη(ν + µ)(γ + δ + µ)
. (3.5)

Remark 3.1 A few comments are in order with regard to (3.5). The basic repro-

duction number in (3.5) consists of the three contributions of the infectious class I,

the deceased class D and the Ebola virus concentration in the environment compart-

ment P , respectively. It is clear that increasing the vaccination rate ν, increasing

the decay rate η of Ebola in the environment and decreasing the shedding rates ξ

and α from the infectious and deceased compartments will decrease the value of R0.

In Ref. 7, where the mass action incidence formulation, i.e.,

λ = β1I + β2D + β3P

is used, the basic reproduction number is

RMA
0 =

β1Π

µ(γ + δ + µ)
+

(δ + µ)β2Π

bµ(γ + δ + µ)
+

(bξ + α(δ + µ))β3Π

bµη(γ + δ + µ)
.

By adding self-protection interventions (e.g vaccination) to the setting of Ref. 7, the

threshold quantity RMA
0 is improved to

RMAV
0 =

β1Π

(ν + µ)(γ + δ + µ)
+

(δ + µ)β2Π

(ν + µ)b(γ + δ + µ)
+

(bξ + α(δ + µ))β3Π

(ν + µ)bη(γ + δ + µ)
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in the sense that RMAV
0 ≤ RMA

0 . Furthermore, the advantage of self-protection

interventions is captured by the fact that the contribution of the deceased class D

and the Ebola virus class P to R0 in (3.5) is much less than their counterparts in

RMA
0 .

Theorem 3.2 The disease-free equilibrium point E0 given in (3.2) is locally asymp-

totically stable (LAS) if R0 < 1 and unstable when R0 > 1.

The proof of Theorem 3.2 is given in Appendix A. Furthermore, based on Kamgang-

Sallet Stability Theorem (Ref. 17), we have proved the next result which improves

Theorem 3.2.

Theorem 3.3 The disease-free equilibrium E0 is globally asymptotically stable

(GAS) if R0 ≤ 1.

To determine the endemic equilibria of (2.1), let

E∗ = (S∗, I∗, R∗, T ∗, V ∗, D∗, P ∗),

denote an equilibrium point. Then from (3.1), we obtain the relations

S∗ =
Π

εe∗ + λ∗ + ν + µ
, T ∗ =

εe∗

(1− θ)λ∗ + µ
S∗, V ∗ =

ν

µ
S∗,

I∗ =
λ∗

γ + δ + µ

(
1 +

(1− θ)εe∗

(1− θ)λ∗ + µ

)
Π

εe∗ + λ∗ + ν + µ
,

R∗ =
γI∗

µ
, D∗ =

µ+ δ

b
I∗, P ∗ =

1

bη
[bξ + α(µ+ δ)] I∗,

N∗ =
1

µ
[Π− δI∗] ,

(3.9)

where

e∗ =
(λ∗)n

λn0 + (λ∗)n
and λ∗ =

β1I
∗

N∗
+ β2D

∗ + β3P
∗. (3.10)

By incorporating (3.9) into (3.10) and doing some algebraic manipulations, we de-

rive the (2n+ 5) degree polynomial in λ∗

Q(λ∗) = Πλ∗H(λ∗), (3.11)

where

H(λ∗) = (λ∗)2n
[
A4(λ∗)4 +A3(λ∗)3 +A2(λ∗)2 +A1λ

∗ +A0

]
+ (λ∗)n

[
B4(λ∗)4 +B3(λ∗)3 +B2(λ∗)2 +B1λ

∗ +B0

]
+ (λ)2n

0

[
C4(λ∗)4 + C3(λ∗)3 + C2(λ∗)2 + C1λ

∗ + C0

]
,

(3.12)
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with coefficients

A4 = k5(1− θ)2(µ+ γ) > 0,

A3 = k5(1− θ) [((1− θ)(2ε+ k6) + 2µ) (µ+ γ) + k5k6(1− θ)(1−R0)] ,

+ δk3Π(1− θ)2,

A2 = 2δk3(1− θ) [µ+ (1− θ)ε] Π + k2
5

[
(1− θ)(ε+ k6) ((1− θ)(ε+ k6) + 4µ) + µ2

]
− k5 [(1− θ) (δ(µ+ (1− θ)ε)(ε+ k6) + µk4)]

− k5 [((1− θ)k4 + µδ) ((1− θ)(2ε+ k6) + µ)] ,

A1 = δk3Π ((1− θ)ε+ µ)2 + k2
5 [2µ(ε+ k6) ((1− θ)(ε+ k6) + µ)]

− k5 [(ε+ k6) ((1− θ)k4 + µδ) (µ+ (1− θ)ε) + µk4 ((1− θ)(2ε+ k6) + µ)] ,

A0 = k2
5µ(ε+ k6) [µ(ν + µ)(1−R0) + εµ− ε(1− θ)(ν + µ)R0] ,

B4 = 2k5λ
n
0 (1− θ)2(µ+ γ) > 0,

B3 = 2λn0 δk3Π(1− θ)2 + 2λn0 k5(1− θ) [(1− θ)(ε+ 2k6) + 2µ]

− 2λn0 k5(1− θ) [δ ((1− θ)(ε+ k6) + 2µ) + (1− θ)k4] ,

B2 = 2δk3(1− θ)λn0 Π[2µ+ (1− θ)ε] + 2λn0 k
2
5(1− θ) [k6(1− θ)(ε+ k6) + 2µ(ε+ 2k6)]

− k5λ
n
0 [(1− θ) [δ [µ(ε+ k6) + (µ+ (1− θ)ε)k6] + 2µk4]]

− k5λ
n
0 [2((1− θ)k4 + µδ)((1− θ)(ε+ k6) + µ)] ,

B1 = 2µδk3λ
n
0 Π (µ+ (1− θ)ε) + 2µk2

5λ
n
0 [2(1− θ)(ε+ k6)k6 + µ(ε+ 2k6)]

− k5λ
n
0 [((1− θ)k4 + µδ) (µ(ε+ k6) + (µ+ (1− θ)ε)k6) +]

− 2k5λ
n
0µk4 ((1− θ)(ε+ k6) + µ) ,

B0 = 2µ2k2
5k6λ

n
0 (ε+ k6)− µk4k5λ

n
0 [µ(ε+ k6) + (µ+ (1− θ)ε)k6] ,

C4 = k5(1− θ)2(µ+ γ) > 0,

C3 = δk3Π(1− θ)2 + 2k2
5(1− θ) [(1− θ)k6 + µ]

− k5(1− θ) [δ [(1− θ)k6 + µ] + [(1− θ)k4 + µδ]] ,

C2 = 2µδk3Π(1− θ) + k2
5

[
(1− θ)2k6 + µ2 + 4µ(1− θ)k6

]
− k5 [(1− θ)µ(k4 + δk6) + [(1− θ)k4 + µδ] [(1− θ)k4 + µ]] ,

C1 = δµ2k3Π + 2µk2
5k6 [(1− θ)k6 + µ]− µk5 [k6 [(1− θ)k4 + µδ] + k4 [(1− θ)k6 + µ]] ,

C0 = µ2k2
5k

2
6(1−R0),

and

k4 = k5k6R0, k5 = γ + δ + µ and k6 = ν + µ.

Thus, λ∗ is a non-negative real root of Q(λ∗) and λ∗ = 0 gives the disease-free

equilibrium. When R0 > 1, we have C0 < 0. Since H(λ∗) is a polynomial of even

degree (2n + 4) with leading (A4 > 0) and constant (C0 < 0) terms of opposite

signs, there is always an odd number of sign changes on its non-zero coefficients.

In line with Descartes’ rule of signs, the existence of at least one positive root is

guaranteed. Thus, the existence part of the following theorem, its stability part

being proved by the Center Manifold Theory (Ref. 10) in Appendix A.
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Theorem 3.4 When R0 > 1, the Ebola model (2.1) has at least one endemic

equilibrium point, which is locally asymptotically stable.

Theorem 3.3 already implies that there is no LAS endemic equilibria when R0 <

1 and we will use the Center Manifold Theory (Ref. 10) in Appendix A to confirm

the following result.

Theorem 3.5 The model (2.1) does not undergo a backward bifurcation at R0 = 1.

Let us now address the severity of the disease when R0 > 1.

Theorem 3.6 Let I∗(ν, ε) denote the infectious component of the endemic equilib-

rium point corresponding to the parameters ν and ε. Then I∗(ν, ε) < I∗(0, 0).

Proof. At the endemic equilibrium point E∗ = (S∗, I∗, R∗, T ∗, V ∗, D∗, P ∗), the

conservation law in Eq. (A.1) becomes

Π− µN∗ − δI∗ = 0 where N∗ = S∗ + I∗ +R∗ + T ∗ + V ∗.

Hence,

I∗(ν, ε) =
Π− µ(S∗ +R∗ + T ∗ + V ∗)

δ + µ
<

Π− µ(S∗ +R∗)

δ + µ
= I∗(0, 0).

This completes the proof.

4. Sensitivity analysis

The basic reproduction number R0 is an important quantity that depends on the

parameters involved in the system of differential equations (2.1). In this section, we

would like to know howR0 responds to the changes in the parameters. The change in

the value of R0 with respect to changes in the values of the parameters is measured

by the derivative of this quantity with respect to that parameter. Mathematically,

the sensitivity of R0 with respect to a parameter p is given by Ref. 25,

γR0
p =

∂R0

∂p
. (4.1)

A much more powerful tool is the normalized sensitivity index ofR0, which measures

the change in the value of R0 with respect to the change in the parameter p. It is

given by

ER0
p =

∂R0

∂p

p

R0
=
4R0%

4p%
. (4.2)

Hence, if p changes by y%, then R0 will change by ER0
p y%. The sensitivity index of

R0 with respect to the parameter p is positive if R0 is increasing with respect to

p and negative if R0 is decreasing with respect to p. The calculation of sensitivity

indices of R0 at the baseline parameter values of the model is given in Table 2.

By using the reproduction number R0 as the response function, Table 2 can

be used to propose effective control strategies to avoid direct and indirect contacts
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Parameter Baseline Value Sensitivity index Source

β1 0.6 0.0013 Ref. 11

β2 0.12 0.0099 Ref. 37

β3 0.01 0.9888 Assumed

α 0.04 0.5493 Assumed

ξ 0.04 0.4395 Assumed

Π 30 0.9987 Assumed

b 0.4 −0.5592 Ref. 21

η 0.003 −0.9888 Ref. 8

δ 0.48 −0.3203 Ref. 2

ν 0.005 −0.2000 Assumed

µ 0.02 −0.8021 Ref. 29

γ 0.06 −0.1071 Ref. 11

Table 2. Table for the sensitivity index of R0 with respect to each parameter in (3.5).

with the potential Ebola virus sources. It is evident, from Table 2, that η is the

most sensitive parameter in the control of EVD. This will be discussed further in

the numerical simulations.

5. NSFD scheme

Given the rich dynamics of the model (2.1) and the well-documented shortcomings of

standard numerical methods to correctly replicate these dynamics (Refs. 4,5,27,28,

31), we design in this section a NSFD scheme. This is done by using Mickens’ rules

on complex denominator function of discrete derivative and nonlocal approximation

of nonlinear terms (Refs. 4, 26).
Let Yk = (Sk, Ik, Rk, Tk, Vk, Dk, Pk) denote an approximation of Y (tk) at the

discrete time tk = k4t where k ∈ N and h = 4t > 0 is the step size. We propose
the NSFD scheme

Sk+1 − Sk
φ

= Π− (εek + λk + ν + µ)Sk+1,

Ik+1 − Ik
φ

= λkSk+1 − (γ + δ + µ)Ik+1 + (1− θ)λkTk+1,

Rk+1 −Rk
φ

= γIk+1 − µRk+1,

Tk+1 − Tk
φ

= εekSk+1 − ((1− θ)λk + µ)Tk+1,

Vk+1 − Vk
φ

= νSk+1 − µVk+1,

Dk+1 −Dk
φ

= (µ+ δ)Ik+1 − bDk+1,

Pk+1 − Pk
φ

= ξIk + αDk − ηPk+1,

(5.1)
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where the complex denominator function

φ = φ(h) =
1− e−(γ+δ+µ)h

γ + δ + µ
,

satisfies the asymptotic property

φ(h) = h+O(h2).

The nonlocal approximation of nonlinear terms is reinforced by observing that

λk =
β1Ik
Nk

+ β2Dk + β3Pk and ek = e(λk) =
λnk

λn0 + λnk
.

The NSFD scheme (5.1) is an extension of the one in Ref. 7, through the form of λk
and the presence of ek, Vk and Tk.

By rearranging (5.1), we obtain

Sk+1 =
Πφ+ Sk

1 + (εek + λk + ν + µ)φ
,

Ik+1 =
λkφ(Sk+1 + (1− θ)Tk+1) + Ik

1 + (γ + δ + µ)φ
,

Rk+1 =
γφIk+1 +Rk

1 + µφ
,

Tk+1 =
φεekSk+1 + Tk

1 + ((1− θ)λk + µ)φ
,

Vk+1 =
νφSk+1 + Vk

1 + µφ
,

Dk+1 =
(δ + µ)φIk+1 +Dk

1 + bφ
,

Pk+1 =
(ξIk + αDk)φ+ Pk

1 + ηφ
.

(5.5)

The equivalent form (5.5) has a Gauss-Seidel structure for the computation of the terms
one after the other.

By following the ideas in Refs. 4, 26, as it is done in Ref. 7, the following results can
be proved:

Theorem 5.1 Irrespective of the value of the step size 4t, the NSFD scheme (5.1) repli-
cates the dynamics of the model (2.1) as stated in Theorems 3.1-3.6.

6. Numerical simulations

In this section, numerical simulations for the proposed NSFD scheme (5.1) or (5.5) are
given. Parameter values to be used are in Table 2 while θ = 0.5, ε = 0.9 and , n = 2 .

The global and local asymptotic stability of the disease-free and endemic equilibrium
points guaranteed by Theorems 3.3-3.4 are illustrated in Fig. 3 forR0 = 0.68 andR0 = 8.7,
respectively. The numerical solutions of the proposed model under different protection
interventions are presented to highlight their contribution on the reduction of the severity
and the endemicity of the disease.

For instance, in Fig. 4 (a), it is observed how interventions reduce the number of
infectious individuals on the long run. In accordance with Theorem 3.6, the implementation
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of all interventions stabilises the trajectories at the endemic equilibrium I∗ = 14 whereas
in the absence of interventions I∗ = 17. This represents a 17.6% reduction in the number
of infectious individuals. Additional information about the contribution of education and
vaccination interventions on the reduction of infectious individuals is presented in Fig. 4
(b). These findings are made more precise in Fig. 5. Fig. 5(a) illustrates that the endemic
equilibrium I∗ decreases as the vaccination rate (ν) and decay rate of Ebola virus in the
environment (η) increase while Fig. 5(b) shows that the endemic equilibrium I∗ increases
as the contact rates (β1, β2 and β3) increase. In particular, the contact rate with the
environment (β3), contributes to a significant increase in I∗ compared to the other contact
rates. By considering the mass action principle with self protection interventions, the
endemic equilibrium I∗ is less than that of the mass action principle without interventions,
as illustrated in Fig. 6(a). This is in line with Remark 3.1. Finally, in Fig. 6(b), we observe
the inverse relationship between the number of infective individuals and the self-preventive
measure parameter θ.
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Fig. 3. a) GAS of the disease-free equilibrium. b) LAS of the endemic equilibrium point.
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Fig. 4. (a) Number of infectious with and without interventions (b) Number of infectious with
education and vaccination interventions.
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Fig. 5. (a): Sensitivity analysis with respect to ν and η. (b): Sensitivity analysis with respect to
β1, β2 and β3.
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Fig. 6. (a) Mass action with and without self protection interventions. (b) The relation between

I∗ and self-preventive measure θ.

7. Conclusion

The transmission dynamics of the Ebola outbreak in the Central and Western Africa has
been studied in Refs. 1, 2, 16, 21, 29 by using the mass action formulation but without
the environment class and the vital dynamics of the population. A mathematical model
proposed in Ref. 7 incorporated the vital dynamics and the contribution of the environment
in the transmission dynamics of the EVD. Here, we have enriched the work in Ref. 7 by
widening the educational interventions on the population and by combining the standard
incidence and the mass action principle in the formulation of the force of infection. This
resulted in the formulation of model (2.1). In the analysis of the model, we proved the global
asymptotic stability of the disease-free equilibrium point when R0 ≤ 1. The existence and
the local asymptotic stability of the endemic equilibrium point are guaranteed for R0 >
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1. The contribution of vaccination and training of susceptible individuals in the control
strategy of the EVD are shown analytically and illustrated graphically. More precisely,
applying both type of interventions is very important to have less number of infectious
individuals which minimize the severity of EVD in the population. Our findings in this
study strengthen the recommendations given in Ref. 7 to eradicate the EVD.

The sensitivity indexes of R0 with respect to the parameters involved in the model are
computed and the more influential parameters on R0 are identified. For instance, when the
contact rate β3 increases, the basic reproduction number R0 will increase correspondingly.
On the other hand, increasing b, η or ν decreases the value of R0. Hence, this study
recommends to the health policy makers to take into account the following points in their
policies in order to have less damage of Ebola virus outbreak in the population:

(i) avoiding contacts with Ebola virus infectious individuals, Ebola deceased bodies and
Ebola contaminated environment,

(ii) minimizing the mean caring duration of deceased human bodies due to EVD,

(iii) increasing the decay rate of Ebola virus in the environment and vaccination rate of
individuals who are living in Ebola outbreak areas.

These recommendations can be achieved by using successive training in the population.
From the numerical simulations point of view, our NSFD scheme helps to observe the

properties of the continuous model.
Although the above recommendations in (i)-(iii) (if strictly implemented) can be ef-

fective to eradicate the disease, it has been observed for the fast outbreaks that additional
control measures are needed. As a consequence, possible extension of this work includes:

(1) the incorporation of contact tracing as additional control measure (Refs. 24, 30),

(2) the multi-species setting to account for the extreme case where a region is attacked
by more than one Ebola virus species,

(3) the incorporation of patches to account for the circulation of the disease in many
countries,

(4) the use of the theory of optimal control to determine when and to what extent we can
control the most influential parameters in the transmission dynamics of the EVD,

(5) the investigation of the uniqueness of the endemic equilibrium and its global asymp-
totic stability.
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Appendix A.

Proof of Theorem 3.1. We want to show that for nonnegative initial data, the system
(2.1) possesses at all time t ≥ 0 a unique nonnegative solution which lies in region Ω. The
proof will follow two steps.

Following the approach in Ref. 9, it can be shown that any solution of (2.1) corre-
sponding to nonnegative initial conditions is nonnegative.

In a second step, we have that any solution satisfies some a prior estimates. By adding
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the first five equations of (2.1), we obtain

dN

dt
= Π− µN − δI. (A.1)

Thus

Π− (δ + µ)N ≤ dN

dt
= Π− µN − δI ≤ Π− µN, (A.2)

which by applying Gronwall inequality implies

0 ≤ N(t) ≤ Π

µ
for 0 ≤ N0 ≤

Π

µ
. (A.3)

Since the last two equations of (2.1) imply that

dD

dt
=≤ (δ + µ)

Π

µ
− bD and

dP

dt
≤ ξΠ

µ
+
α(δ + µ)Π

bµ
− ηP,

another application of Gronwall inequality leads to

0 ≤ D(t) ≤ (δ + µ)Π

bµ
for 0 ≤ D0 ≤

(δ + µ)Π

bµ

and

0 ≤ P (t) ≤ 1

η

(
ξΠ

µ
+
α(δ + µ)Π

bµ

)
for 0 ≤ P0 ≤

1

η

(
ξΠ

µ
+
α(δ + µ)Π

bµ

)
.

Combining the above two steps and using the well-known result (see Theorem 2.1.5 in
Ref. 34), we conclude that (2.1) defines a dynamical system on Ω.

Proof of Theorem 3.2. To show that E0 is locally asymptotically stable, we use the
Jacobian matrix of the functions at the right-hand side of (2.1) at E0. We exclude the
equation related to the variable R since the analysis is not affected by this equation. Thus

J6(E0) =



−(ν + µ) µβ1
ν+µ 0 0 − β2Π

ν+µ −
β3Π
ν+µ

0 µβ1
ν+µ − (γ + δ + µ) 0 0 β2Π

ν+µ
β3Π
ν+µ

0 0 −µ 0 0 0
ν 0 0 −µ 0 0
0 δ + µ 0 0 −b 0
0 ξ 0 0 α −η


.

Expanding the determinant in the characteristic equation |λI6 − J6| = 0 by the third and
fourth columns, where I6 is 6× 6 identity matrix, we obtain two eigenvalues λ1 = −µ and
λ2 = −µ. The remaining four eigenvalues are those of the matrix

J4 =


−(ν + µ) µβ1

ν+µ − β2Π
ν+µ −

β3Π
ν+µ

0 µβ1
ν+µ − (γ + δ + µ) β2Π

ν+µ
β3Π
ν+µ

0 δ + µ −b 0
0 ξ α −η

 .

The characteristic equation takes the form |λI4−J4| = 0 and the expansion along the first
column gives a third eigenvalue λ3 = −(ν + µ). Then the remaining eigenvalues are those
of the matrix
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J3 =

 µβ1
ν+µ − (γ + δ + µ) β2Π

ν+µ
β3Π
ν+µ

δ + µ −b 0
ξ α −η

.

The corresponding characteristic equation |λI3−J3| = 0 gives the following polynomial
in λ:

Q(λ) := λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = η + b+ (γ + δ + µ) [1−R0] +
β2(δ + µ)Π

(ν + µ)
+
β3Π [bξ + α(δ + µ)]

bη(ν + µ)
,

a2 = ηb+ (η + b)(γ + δ + µ)×1−R0 +
ηβ2(δ + µ)Π

b(η + b)(ν + µ)(γ + δ + µ)
+
β3Π

[
α(δ + µ)(η + b) + b2ξ

]
bη(η + b)(ν + µ)(γ + δ + µ)

 ,
a3 = −ηb(γ + δ + µ)(R0 − 1).

For R0 < 1, we have a1 > 0, a2 > 0 and a3 > 0. It is also direct to show that a1a2 > a3.
Hence, by the Routh-Hurwitz criterion, the real parts of the remaining three eigenvalues
are negative. Thus, the disease free equilibrium is locally asymptotically stable for R0 < 1.
When R0 > 1, the criterion is violated and thus the DFE is unstable.

Proof of Theorem 3.3. We use Kamgang-Sallet Stability Theorem in Ref. 17. Let X =
(X1, X2), X1 = (S,R, T, V ) ∈ R4 and X2 = (I,D, P ) ∈ R3. Then the system (2.1) can
be written as

Ẋ1 = A1(X)(X1 −X∗1 ) +A12(X)X2, (A.6)

Ẋ2 = A2(X)X2, (A.7)

where X∗1 =
(

Π
ν+µ , 0, 0,

νΠ
µ(ν+µ)

)
,

A1(X) =


−(ν + µ) 0 0 0

0 −µ 0 0
0 0 −µ 0
ν 0 0 −µ

,

A12(X) is
(
−1− ε λn−1

λn
0 +λn

)
β1S
N

(
−1− ε λn−1

λn
0 +λn

)
β2S

(
−1− ε λn−1

λn
0 +λn

)
β3S

γ 0 0(
ελn−1

λn
0 +λn S − (1− θ)T

)
β1

N

(
ελn−1

λn
0 +λn S − (1− θ)T

)
β2

(
ελn−1

λn
0 +λn S − (1− θ)T

)
β3

0 0 0

,

and A2(X) is β1

N [S + (1− θ)T ]− (γ + δ + µ) β2 [S + (1− θ)T ] β3 [S + (1− θ)T ]
µ+ δ −b 0
ξ α −η

.

We show that the five sufficient conditions of Kamgang-Sallet Theorem are satisfied as
follows.
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(1) The system (2.1) is a dynamical system on Ω. This is proved in Theorem 3.1.

(2) The equilibrium X∗1 is GAS for the subsystem Ẋ1 = A1(X1, 0)(X1 − X∗1 ). This is
obvious from the structure of the involved matrix.

(3) The matrix A2(X) is Metzler (i.e., all the off-diagonal elements are nonnegative) and
irreducible for any given X ∈ Ω. This is also obvious.

(4) There exists an upper-bound matrix Ā2 for the set

M = {A2(X) : X ∈ Ω} .

Indeed, since
S+(1−θ)T

N ≤ 1,

Ā2 =

β1 − (γ + δ + µ) β2
Πβ3
µ

µ+ δ −b 0
ξ α −η


is an upper-bound of M.

(5) For R0 ≤ 1 in (3.5)

α(Ā2) = max
{
Re(λ) : λ eigenvalue ofĀ2

}
≤ 0.

Hence, by the Kamgang-Sallet Stability Theorem, the disease-free equilibrium is glob-
ally asymptotically stable for R0 ≤ 1.

Proof of Theorem 3.5. We check the local stability of the endemic equilibrium of
the system (2.1) at R0 = 1. To this end, in the setting of Theorem 4.1 in Ref.
10 where the sign of the numbers a and b below are crucial. We introduce variables
x = (x1, x2, x3, x4, x5, x6, x7) where,

x1 =
Π

µ+ ν
− S, x2 = I, x3 = R, x4 = T, x5 = V − νΠ

µ(µ+ ν)
, x6 = D and x7 = P.

Let φ = bηµβ1 + bηΠ(µ+ δ)β2 + β3Π(bξ + α(µ+ δ)) be the bifurcation parameter so that

R0 = φ
bη(ν+µ)(γ+δ+µ)

. Thus R0 = 1 if and only if φ = φ∗ = bη(ν + µ)(γ + δ + µ) and

R0 < 1 if and only if φ < φ∗. Using the above variables, the system (2.1) becomes

dx1

dt
= (εe+ λ1)

(
Π

µ+ ν
− x1

)
− (ν + µ)x1 =: f1,

dx2

dt
= λ1

(
Π

µ+ ν
− x1

)
− (γ + δ + µ)x2 + (1− θ)λ1x4 =: f2,

dx3

dt
= γx2 − µx3 =: f3,

dx4

dt
= εe

(
Π

µ+ ν
− x1

)
− (1− θ)λ1x4 − µx4 =: f4,

dx5

dt
= −νx1 − µx5 =: f5,

dx6

dt
= (µ+ δ)x2 − bx6 =: f6,

dx7

dt
= ξx2 + αx6 − ηx7 =: f7,

(A.8)

where N = Π
µ − x1 + x2 + x3 + x4 + x5 and λ1 = β1x2

N + β2x6 + β3x7. The disease-

free equilibrium of (A.8) which corresponds to E0 is x∗ = (0, 0, 0, 0, 0, 0, 0). The Jacobian
matrix J of the right-side of the system (A.8) at x∗ denoted by J(x∗) is
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J(x∗) =



−(µ+ ν) β1µ
µ+ν 0 0 0 β2Π

µ+ν
β3Π
µ+ν

0 β1µ
µ+ν − (γ + δ + µ) 0 0 0 β2Π

µ+ν
β3Π
µ+ν

0 γ −µ 0 0 0 0
0 0 0 −µ 0 0 0
−ν 0 0 0 −µ 0 0
0 µ+ δ 0 0 0 −b 0
0 ξ 0 0 0 α −η


.

When R0 = 1, J(x∗) has a simple zero eigenvalue and all the other eigenvalues have
negative real part. This is the setting of Theorem 4.1 in Ref. 10. The right-eigenvector
w = (w1, w2, w3, w4, w5, w6, w7) and the left-eigenvector v = (v1, v2, v3, v4, v5, v6, v7) as-
sociated with the zero eigenvalue such that w · v = 1 are determined the systems

J(x∗)w = 0. and vJ(x∗) = 0. (A.9)

Simplification of (A.9) gives

w1 =
bβ1µ

(µ+ ν)(µ+ δ)
+

β2Π

µ+ ν
+

β3Π

(µ+ ν)η(µ+ δ)
(bξ + α(µ+ δ)),

w2 =
b(µ+ ν)

µ+ δ
, w3 =

bγ(µ+ ν)

µ(µ+ δ)
, w4 = 0,

w5 =
−ν
µ

[
bβ1µ

(µ+ ν)(µ+ δ)
+

β2Π

µ+ ν
+

β3Π

(µ+ ν)η(µ+ δ)
(bξ + α(µ+ δ)

]
,

w6 = µ+ ν and w7 =
(µ+ ν)(bξ + α(µ+ δ))

η(µ+ δ)
.

(v1, v2, v3, v4, v5, v6, v7) =

(
0,

1

q
, 0, 0, 0,

Π

bq(µ+ ν)

(
β2 +

αβ3

η

)
,

β3Π

η(µ+ ν)q

)
,

where q = (µ + ν)2
[
b(µ+ν)
µ+δ + β2

b + β3Π
η

(
α
b + α+ bξ

µ+δ

)]
. The bifurcation coefficients a

and b are

a =

7∑
k,i,j=1

vkwiwj
∂2fk(x∗, φ∗)
∂xi∂xj

=

7∑
i,j=1

[
v2wiwj

∂2f2(x∗, φ∗)
∂xi∂xj

+ v6wiwj
∂2f6(x∗, φ∗)
∂xi∂xj

+ v7wiwj
∂2f7(x∗, φ∗)
∂xi∂xj

]

= v2

7∑
i,j=1

wiwj
∂2f2(x∗, φ∗)
∂xi∂xj

, the other terms equal to zero

= −2w1v2(β1w2 + β2w6 + β3w7)

< 0

and

b =

7∑
k,j=1

vkwj
∂2fk
∂xj∂φ

(x∗, φ∗)

=

7∑
j=1

[
v2wj

∂2f2

∂xj∂φ
(x∗, φ∗) + v6wj

∂2f6

∂xj∂φ
(x∗, φ∗) + v7wj

∂2f7

∂xj∂φ
(x∗, φ∗)

]
.
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Further simplification yields

b =
v6

ηβ2 + αβ3
> 0.

Since a < 0 and b > 0, the following conclusion holds. When φ passes through the point
φ = φ∗ (or equivalently R0 crosses 1) from left to right, the stability of E0 changes from
globally asymptotic stable (see Theorem 3.2 and 3.3) to unstable and there exists at least
one endemic equilibrium which is locally asymptotically stable for R0 > 1.


