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Abstract. In a recent paper by Mnif [17], a solution to the portfolio optimization with
stochastic volatility and constraints problem has been proposed, in which most of the
model parameters are time-homogeneous. However, there are cases where time-dependent
parameters are needed, such as in the calibration of financial models. Therefore, the
purpose of this paper is to generalize the work of Mnif [17] to the time-inhomogeneous
case. We consider a time-dependent exponential utility function of which the objective is to
maximize the expected utility from the investor’s terminal wealth. The derived Hamilton-
Jacobi-Bellman(HJB) equation, is highly nonlinear and is reduced to a semilinear partial
differential equation (PDE) by a suitable transformation. The existence of a smooth
solution is proved and a verification theorem presented. A multi-asset stochastic volatility
model with jumps and endowed with time-dependent parameters is illustrated.
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1. Introduction

An optimal investment problem has occupied researchers for a long time especially af-
ter Merton’s article appeared in 1971, [16]. The problem is about the investor who seeks
to maximize his expected utility from the terminal wealth. Numerous extensions to this
optimization problem have been proposed since then, (see e.g., [2], [9], [10], [13], [19], [17],
and references there-in). For instance, Pham [19] considered a multi-dimensional prob-
lem with random volatilities which include the degenerate cases and correlation between
assets and the stochastic factors. Motivated by Pham, Mnif [17] considered convex con-
straints on the amount of the portfolio, and a jump-diffusion process in the n-dimensional
risky assets. These authors solved the optimal investment problem in a time-homogeneous
framework. In this paper, we solve the same problem in a framework where the parameters
are generalized to include time-dependent ones.

We consider a time-dependent exponential utility function, (see Karatzas [12] page 34, for
this concept), of which the objective is to maximize the expected utility from the investor’s
terminal wealth. We derive an HJB equation and reduce this highly nonlinear equation to
a semilinear PDE using an exponential transform. Various authors used different suitable
transformations which express value functions in terms of a linear or semilinear PDE (see
Benth and Kalsen [2], Kufakunesu [13], Hobson [10], and Heston [9], Zariphopoulou ([23],
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[24]), among others). One example is the logarithmic transform assuming some constant
relative risk aversion utility function introduced by Fleming [4].

During the review process, we became aware of a recent paper by Aktar and Taflin [1]
with the same philosophy as ours, of considering the time-inhomogeneous market model.
Aktar and Taflin [1] considered smooth solutions to a multi-dimensional diffusion model
with stochastic volatility but did not analyze a jump-diffusion risky-asset model as in our
case.

In this paper, we make a theoretical contribution to the time-inhomogeneous case of the
problem solved in [17]. The structure of the rest the paper is as follows. In Section 2,
we discuss the problem formulation and present various conditions fulfilled by the model
parameters. In Section 3, a highly nonlinear Hamilton-Jacobi-Bellman equation is trans-
formed to a semilinear PDE. A verification theorem relating the value function to the
solution of the semilinear PDE is stated and proved. In Section 4, the conditions for the
existence of a smooth solution to the semilinear PDE are presented; lemmas and the main
theorem are proved. Lastly, in Section 5, we discuss some important financial examples
where this framework may be applied and present an example to illustrate the theory from
the previous sections of the paper.

2. The Problem Formulation

Consider (Ω,F , P ) to be a complete probability space equipped with a filtration {Ft}t∈[0,T]
satisfying the usual conditions, where T <∞ is the time horizon (Protter [20]). Let a bond
S0 be given without loss of generality as

(2.1) S0 ≡ 1.

Let B be a d-dimensional and W be an m-dimensional standard Brownian motions, re-
spectively, which may be correlated and are independent of µ̄, a Poisson random measure
(see e.g., in Section 5). In our case, {Ft}B,Wt∈[0,T] represents the filtration generated by B

and W . On the other hand, {Ft}µt∈[0,T], is the filtration generated by µ. Hence, we have

Ft = FB,Wt ∨ Fµt , for all t ∈ [0,T]. The price of the n risky assets S are modelled as:

dSt = diag(St)[b(t, Yt)dt+ σ(t, Yt)dBt + β(t, Yt)dWt(2.2)

+

∫
R\{0}

γ(t, Yt, z)µ̄(dt, dz)) ] , S0 > 0,

where Yt, valued in Rd, is a stochastic volatility process which is given by the following:

(2.3) dYt = η(t, Yt)dt+ dBt , Y0 > 0 ,

µ̄(dt, dz) = µ(dt, dz) − q(dz)dt is the compensated Poisson random measure, and q(dz) is
a σ-finite Borel measure on R\{0} called the Lévy measure with the property:

(2.4)

∫
R\{0}

q(dz) <∞.

The continuous time-dependent parameter functions which are assumed in Equations (2.2)
and (2.3) are as follows. b : [0,∞)×Rn → Rn, σ : [0,∞)×Rn → R(n+1)×d, η : [0,∞)×Rd →
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Rd, and β : [0,∞) × Rn×d → R(n+1)×m. Here, diag(St) is the diagonal n × n matrix with
diagonal elements Sit , where Sit is the price of asset number i, with i = 1, · · · , n and
the [0,∞) × Rn-valued functions γ are assumed to be continuous. We suppose that µ is
right-continuous and assume the following Lipschitz condition on the Rd-valued function
η:

(2.5) (A1) ∃ C > 0 : |η(y∗)− η(z∗)| ≤ C|y − z|, ∀ y, z ∈ [0,∞)× Rd,

where y∗ = (t, y) and z∗ = (t, z). In (2.5), the linear growth condition is fulfilled, therefore,
by Gronwall’s lemma there exists a constant C [19] satisfying

|Yt| ≤ C

(
1 +

∫ t

0

|Wu|du+ |Wt|
)
, t ∈ [0,T] .

Hence, there exists some ε > 0 such that

(2.6) sup
t∈[0,T]

E[exp(ε|Yt|2)] <∞.

Since the process Y is continuous, the price process S is well defined[17]. Put

Σ(t, y) = (σ(t, y), β(t, y)),

as the (n + 1)× (d + m) matrix-valued volatility function of the risky assets. We assume

that for a.e y∗ ∈ [0,T]× Rd, Σ(t, y) is the full rank equal to n + 1 so that Σ(t, y)Σ(t, y)T

is a nonsingular (n+ 1)× (n+ 1) matrix. Here, the symbol T represents the transposition
operator. Therefore:

(2.7) α(t, y) = inf
π∈Rn,π 6=0

|Σ(y∗)Tπ|2

|π|2
, y∗ ∈ [0,T]× Rd,

is the smallest eigenvalue of Σ(t, y)Σ(t, y)T , which is then strictly positive a.e., y∗ ∈ [0,T]×
Rd. Another assumption is the following (see [19]): there exists some positive constant C
such that for a.e., y∗ ∈ [0,T]× Rd:

A2 (i) |µ(t, y)/
√
α(t, y) ≤ C(1 + |y∗|).

A2(ii) ||σ(t, y)||/
√
α(t, y) ≤ C.

The two conditions above are referred to as A2. If n = 1, we have

α(t, y) = ||Σ(t, y)||2 = ||σ(t, y)||2 + ||β(t, y)||2 ,

and its clear that Assumption A2(ii) is fulfilled. For a general n, α(t, y) is larger than the
smallest eigenvalue of σσT (t, y), that is:

α(t, y) ≥ inf
π∈Rn,π 6=0

|Σ(y∗)Tπ|2

|π|2
, y∗ ∈ [0,T]× Rd

and ||σ(t, y)||2 is bounded by the largest eigenvalue of σσT (t, y). Assumption A2(i) can be
seen as a condition on the growth of µ(t, y). As in [19], we consider an investor allocating
at any time t ∈ [0,T] the amount πt = (π1

t , · · · , πnt )T of the wealth in the risky asset S and
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1− πTt en in the bond. Due to the self-financing hypothesis the wealth process is given by
the following stochastic differential equation :

Xt = x+

∫ t

0

πTs diag(Ss−)−1dSs(2.8)

= x+

∫ t

0

πTs b(s, Ys)ds+ πTs σ(s, Ys)dBs + πTs β(s, Ys)dWs

+

∫ t

0

∫
R\{0}

πTs γ(s, Ys, z)µ̄(ds, dz)) .

Let K ∈ Rd be a fixed closed convex set which contains the origin. The portfolio control
π = (πt) is called admissible if it is an Ft - adapted stochastic process satisfying the
following condition:

(2.9) sup
t∈[0,T]

E[exp(ε|Σ(t, Yt)
Tπt|)] <∞ ,

for some ε > 0, and the constraint πt ∈ K, t ∈ [0,T] a.s. The set of admissible controls
is donated by A(K). In our case, we consider the Markov controls, and this means that
the investor will allocate the amount π ≡ π(t, x, y) ∈ A(K), for y ∈ Rd, into the risky
asset when the wealth Xt = x and volatility Yt = y (see e.g., [2],[13], [19]). We consider an
investor with a time-dependent exponential utility function U : [0,T]× R+ → R

U(t, x) = − exp(−δ(t)x), x ∈ R ,
for δ(t) > 0. The expected utility of terminal wealth, for the stochastic volatility Y and X
controlled by π, is given by:

J(t, x, y, π) = E [U(XT) |Xt = x , Yt = y] .

The objective of the investor is to find the value which is defined as

(2.10) v(t, x, y) = sup
π∈A(K)

J(t, x, y, π), (t, x, y) ∈ [0,T]× R+ × Rd .

In this paper, we need to characterize the value function v as a classical solution of a
semilinear partial differential equation taking into consideration the time-inhomogeneous
case of some parameters.

3. Derivation of the HJB Equation

The HJB equation associated with the control problem (2.10) is the following [17]:

∂v

∂t
+ rx

∂v

∂x
+ η(t, y)TDyv +

1

2
∆yv(3.1)

+ max
π∈K
{πTµ(t, y)x

∂v

∂x
+

1

2
|Σ(t, y)Tπ|2x2 ∂

2v

∂x2
+ πTσ(t, y)xD2

xyv

+

∫
R\{0}

(
v(t, x+ πTγ(t, y, z), y)− v(t, x, y)− πTγ(t, y, z)

∂v

∂x

)
q(dz)} = 0 .
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for (t, x, y) ∈ [0,T]×R+ ×Rd, where Dyv represents the gradient vector of v with respect
to y, ∆yv the Laplacian of v with respect to y and D2

xyv as the second order derivative
vector v with respect to (t, x, y) [19]. Furthermore, the terminal data is given as follows:

(3.2) v(T, x, y) = − exp(−δ(t)x) ,

where (t, x, y) ∈ [0,T]× R+ × Rd. To solve (3.1), we introduce the following candidate of
the HJB of the form

(3.3) v(t, x, y) = exp(−δ(t)x) exp(−φ(t, y)) .

Differentiating (3.7), we get:

∂v

∂t
=

[
∂φ

∂t
− xδ′(t)

]
v,

∂v

∂x
= −δ(t)v,

∂2v

∂x2
= δ2(t)v, Dyv = vDφ,

∆yv = [∆φ+DφTDφ]v, D2
xyv = −δ(t)vDφ.

Substituting these in (3.1)-(3.2) and obtain the following semilinear PDE:

(3.4) −φt −
1

2
∆φk + F (t, y,Dφk) = 0, (t, y) ∈ [0,T]× Rd ,

with terminal condition:

(3.5) φ(T, y) = 0, y ∈ Rd ,

and the nonlinear Hamiltonian function F is defined on [0,T)× Rd × Rd , is defined as

F (t, y, p) = −1

2
|p|2 − pTη(t, y)− xδ′(t)(3.6)

+ max
π∈K
{δ(t)πT (b(t, y) + σ(t, y)p)− δ(t)2

2
|Σ(t, y)Tπ|2

−
∫
R\{0}

(
exp(−δ(t)πTγ(t, y, z))− 1 + δ(t)πTγ(t, y, z)

)
q(dz)} .

For π ∈ A(K), we introduce the probability measure Qπ whose density process is given
by:

Zπ
1t = exp

(
−
∫ t

0

δ(t)πTs σ(t, Ys)dBs −
∫ t

0

δ(t)πTs β(t, Ys)dWs

−1

2

∫ t

0

|δ(t)Σ(t, Ys)
Tπs|2

)
, t ∈ [0,T].

This is well defined (see [17], [18]). The following verification result is somewhat similar to
Theorem 3.1 in [17] and relates a solution of the semilinear PDE equation to the stochastic
control problem (2.10) .
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Proposition 3.1. Assume that Equations (2.5), (2.6) given by Assumption A1 and As-
sumption A2 respectively hold. Suppose there exists a solution φ ∈ C1,2([0,T],Rd) ∩
([0,T],Rd) to the semilinear PDE (3.4) with terminal condition (3.5). Then the value
function of (2.10) is given by

(3.7) v(t, x, y) = − exp(−xδ(t)) exp(−φ(t, y)) (t, x, y) ∈ [0,T]× R+ × Rd .

Moreover, the Markov optimal control π∗ is given by

π∗(t, y) ∈ arg min
π∈K

[
δ(t)2

2
|Σ(t, y)Tπ|2 − δ(t)πT (b(t, y)− σ(t, y)Dφ(t, y))

+

∫
R\{0}

(
exp(−δ(t)πTγ(t, y, z))− 1 + δ(t)πTγ(t, y, z)

)
q(dz)] ,

for almost every (t, y) ∈ [0,T]× Rd .

Proof. The proof goes along the lines of (Mnif [17], Theorem 3.1). Let the following local
martingale be defined:

Zπ
2t = ε

(∫ t

0

∫
R\{0}

(
exp(−δ(t)πTγ(t, y, z))− 1

)
µ̄(ds, dz)

)
.

Using the generalized Itô formula, we obtain:

U(XT)(3.8)

= U(Xt)−
∫ T

t

δ(s)U(Xs−)πTs b(s, Ys)ds

−
∫ T

t

δ(s)U(Xs−)πTs σ(s, Ys)dBs + πTs β(s, Ys)dW̄s

+

∫ T

t

∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, Ys, z))− 1 + δ(s)πTγ(s, Ys, z)

)
q(dz)dt

+
δ(t)2

2

∫ T

t

U(Xs−) |
∑

(s, Ys)
Tπs|2ds

+

∫ T

t

∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, y, z))− 1

)
µ̄(ds, dz) .

The solution of (3.8) is given by the Doléans-Dade Exponential Formula

U(XT ) = U(Xt)
Zπ

1T
Zπ

1t

Zπ
2T
Zπ

2t

exp

(∫ T

t

h(s, Ys, πs)ds

)
,

where

h(t, y, π) = −δ(t)πT b(t, y)− δ(t)2

2
|
∑

(t, y)Tπ|2

+

∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, y, z))− 1 + δ(s)πTγ(s, y, z)

)
q(dz) .
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We obtain the following :

J(t, x, y, π) = U(x)Eπ
[
Zπ

2T
Zπ

2t

exp

(∫ T

t

h(s, Ys, πs)ds

)
|Xt = x , Yt = y

]
.

Applying the Itô’s formula to φ(t, Yt) under Qπ, we obtain

φ(t, YT) = φ(t, Yt) +

∫ T

t

(
∂φ

∂u
+ ηTDφ

)
(u, Yu)du

+

∫ T

t

(−δ(u)πTσDφ+
1

2
∆φ)(u, Yu)du+

∫ T

t

Dφ(u, Yu)
TdBπ

u

≥ φ(t, Yt)−
∫ T

t

h(u, Yu, πu)du+

∫ T

t

Dφ(u, Yu)
TdBπ

u

−1

2

∫ T

t

|Dφ(u, Yu)|2du .

The rest of the proof follows that of Theorem 3.1 in ([17]), by adjusting certain parameters
into time-dependent ones. �

4. Regularity of the Value function

In this section, we discuss the existence of a classical solution to the semilinear PDE
(3.4). We follow the idea in [19] and [17]. Firstly, we establish the smoothness of the value
function under at least one of the following general conditions

(G3):

(i) η, σT (ΣΣT )−1σ, σT (ΣΣT )−1µ are C1 and Lipschitz ,
(ii) σT (ΣΣT )−1µ is C1, bounded and Lipschitz ,

(iii) γ(t, y, z) = γ(t, z) ≤M for all (t, y, z) ∈ [0, T ]× Rd × Rn where M > 0 ,
(iv) K = Rn

+.

In our case, the Hamiltonian F is not Lipschitz in p. We prove a smooth solution for the
semilinear PDE (3.1). Since

−1

2
|p|2 − pTη(t, y) = min

ω∈Rd
[−ωTp+

1

2
|ω − η(t, y)|2] ,

for all (t, y, p) ∈ [0, T ]× Rd × Rd, as in [17], we make the following transformation on the
Hamiltonian F :

F (t, y, p) = min
ω∈Rd

[−ωTp+ L̄(t, y, ω)] ,

where

L̄(t, y, ω) = max
π∈K

[L̄(t, y, ω, π)] ,

and

L̄(t, y, ω, π) =
1

2
|ω − η(t, y)|2 + δ(t)πT b(t, y)− δ(t)2

2
|
∑

(t, y)Tπ|2



8 RODWELL KUFAKUNESU

−
∫
R\{0}

(
exp(−δ(s)πTγ(s, z))− 1 + δ(s)πTγ(s, z)

)
q(dz) .

Consider compact sets Bk := {ω ∈ Rd : |ω| ≤ k}, k > 0 and Ak(K) := {π ∈ K :
|π| ≤ k}, k > 0 where Ak(K), Bk ⊂ Rd. We have the following truncated Hamiltonian
functions:

(4.1) Fk(t, y, p) = max
ω∈Bk
{−ωTp− L̄(t, y, ω)} .

We consider the following function (t, π, y) 7→ f(t, π, y) as in[17]:

f(t, π, y) = −δ(t)πT b(t, y) +
δ(t)2

2
|
∑

(t, y)Tπ|2

+

∫
R\{0}

(
exp(−δ(s)πTγ(s, z))− 1 + δ(s)πTγ(s, z)

)
q(dz)

and the following constraints πi ≥ 0, i = 1, · · · , n and πi − k ≤ 0, i = 1, · · · , n. It is clear
that the function f is C1,2 in πi, convex in πi and coercive. Moreover, Ak(K) is a closed
and convex, and there exists a unique solution π∗(t, y) to the problem minπ∈Ak(K) f(t, π, y)
which implies that

L̄k(t, y, ω) = L̄(t, y, ω, π∗(t, y)) .

The Assumptions (G3) which satisfy a polynomial growth condition imply that the func-
tion L is C1,1 in (t, y) and that L,DyL are also C1,1 on [0,T]×Rd×Bk×Ak(K). Similarly,
the functions L̄k, DyL̄k are C1,1 in (t, y) and satisfy a polynomial growth condition in (t, y)
on [0,T] × Rd × Bk. Hence (from Mnif[17], page 254 and references therein) there exists
a unique φk ∈ C1,2([0,T),Rd) ∩ C0([0,T],Rd) with a polynomial growth condition, to the
following partial differential equation:

(4.2) −∂φk
∂t
− 1

2
∆φk + Fk(t, y,Dφk) = 0, (t, y) ∈ [0,T]× Rd ,

with Cauchy data φk(T, y) = 0. The following lemma gives a linear growth condition on
the derivative Dφk.

Lemma 4.1. Under the Assumptions of G3 with time-dependent parameters there exists
a positive constant C independent of k such that

|Dφk(t, y)| ≤ C(1 + |y|), ∀(t, y) ∈ [0,T]× Rd .

Proof. This follows as in (Pham [19], Lemma 4.2). Here, we clarify some time-dependent
parameters in the proof. From the standard verification theorem (see [19],[8]), φk can be
represented as the solution of the stochastic control problem:

(4.3) φk(t, y) = inf
ω∈Bk ,π∈Ak(K)

EQ
[ ∫ T

t

L̄(u, Yu, ωu) du |Yt = y
]
,
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where Bk = {ω ∈ Rd : |ω| ≤ k} and Ak(K) = {π ∈ K : |π| ≤ k} are compact sets and
the controlled dynamics of Y under Q is given as

(4.4) dYt = ωtdt+ dBt .

Moreover, an optimal control for (4.3) is Markov with the policy given in feedback form
by:

(4.5) (ω∗(t, y), π∗(t, y)) ∈ arg min
|ω|≤k ,|π|≤k

{ωTDφk(t, y) + L̄(t, y, ω, π)} .

Hence we obtain:

(4.6) ψk(t, y) = EQ
[ ∫ T

t

L̄(u, Y ∗u , ω
∗(u, Y ∗u )) du |Y ∗t = y

]
,

where Y ∗t solves (4.4) with the control ω∗t = ω∗k(t, Y
∗
t ) , πt = π∗(t, Y ∗t ). From [19] and

standard theory (Fleming and Soner [8], Lemma 11.4 on page 209), we have:

(4.7) Dψk(t, y) = EQ
[ ∫ T

t

DyL̄(u, Y ∗u , ω
∗
k(u, Y

∗
u )) du |Y ∗t = y

]
.

From Equation (4.7) and assumption G3, we have that, ∀(t, y, ω, π) ∈ [0,T]×Rd×Rd×K,

|DyL̄(t, y, ω, π)|

≤ |Dη(t, y)||ω − η(t, y)|+ δ(t)2

2
||D(Σ(t, y)Σ(t, y)T )(t, y)|||π(t, y)|2

+δ(t)|Db||π(t, y)| −
∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, y, z))− 1 + δ(s)πTγ(s, y, z)

)
q(dz)

≤ C[|1 + |ω − η(t, y)|2 − δ(t)2

2
||D(Σ(t, y)Σ(t, y)T )(t, y)|||π(t, y)|2

+δ(t)|Db||π(t, y)| −
∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, y, z))− 1 + δ(s)πTγ(s, y, z)

)
]q(dz)

≤ C
[
|1 + L̄(t, y, ω, π)|

]
,

where the generic positive constant C changes from line to line in the above estimation
process. As in Mnif [17], the ellipticity property of Σ(t, y)Σ(t, y)T implies that π∗(t, y)
satisfies:

ε|π∗(t, y)|2 − δ(t)|π∗(t, y)||b(t, y)|

+

∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, z))− 1 + δ(s)πTγ(s, z)

)
q(dz)

≤ δ(t)2

2
|D(Σ(t, y)Tπ∗(t, y)|2 − δ(t)π∗(t, y)T b(t, y)

+

∫
R\{0}

U(Xs−)
(
exp(−δ(s)πTγ(s, z))− 1 + δ(s)πTγ(s, z)

)
q(dz)

≤ 0,
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for ε > 0. This shows that |π∗(t, y)| ≤ δ(t)
ε
|b(t, y)|. Hence, from (4.7) and the Jensen’s

inequality, we obtain:

|Dyφk(t, y)|2 ≤ C

(
1 + EQ

[ ∫ T

t

DyL̄(u, Y ∗u , ω
∗
k(u, Y

∗
u )) du |Y ∗t = y

])
= C (1 + φk(t, y))

≤ C

(
1 + EQ

[ ∫ T

t

DyL̄(u, Y ∗u , 0) du |Yt = y
])

= C

(
1 + EQ

[ ∫ T

t

DyL̄(u, Y ∗u , 0, π
∗(u, y)) du |Yt = y

])
,

where Yt = y +BQ
t . Hence, the result follows. �

The following theorem states the existence of the smooth solution of the semilinear PDE
with time-dependent parameters:

Theorem 4.2. Under the Assumptions G3, there exists a solution φ ∈ C1,2([0,T),Rd) ∩
C0([0,T],Rd) , with linear growth condition in y on the derivative Dφ, to the semilinear
equation (3.4) with terminal condition (3.5).

Proof. As in Pham [19], [17] the function (ω, π)→ −ωTDφk(t, y) + 1
2
|ω − η(t, y)|2 attains

its maximum on [0,T]× Rd ×K for

ω∗k(t, y) = Dφk(t, y) + η(t, y) .

Furthermore, by Lemma 4.1, Dφk satisfies a linear growth condition in y uniformly in
k and η(t, y) is Liptschiz. Therefore, for M > 0 arbitrarily large, there exists a C > 0
independent of k such that

|π∗(t, y)|, |ω∗k(t, y)| ≤ C, ∀t ∈ [0,T], |(t, y)| ≤M.

Hence for K ≥ C, we obtain

Fk(t, y,Dφk(t, y)) = max
ω∈Bk

[
−ωTDφk(t, y) + L(t, y, ω)

]
,

= max
ω∈Rd

[
−ωTDφk(t, y) + max

π∈K
L(t, y, π, ω)

]
,

= F (t, y,Dφk(t, y)),

for all (t, y) ∈ [0,T] × {|y| ≤ M}. Letting M go to infinity we have that φk is a smooth
solution with linear growth. �

5. Example

In this section, we illustrate the theoretical results in this paper in the time-inhomogeneous
framework and discuss some other financial cases where time-dependency of parameters in
models are important.
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5.1. A Time-Dependent Multi-Assets Stochastic Volatility Model with Jumps.
Consider a model with n-risky assets, n ∈ N adopted from [17]. We assume that these
assets have nondegenerate volatility. The model is formalized as follows:

dSit
Sit−

= bi(t)dt+ νi(t, Yit)
i∑

j=1

ρijdW̄
j
t +

∫
R\{0}

γi(t, z)µ̄(dt, dz),(5.1)

dYit = (ai(t)− θi(t)Yit)dt+ dW i
t , for all i = {1, 2, · · · , n},(5.2)

where νi(t, y) are bounded C1,1 functions with bounded derivatives and lower bounded by
positive constants εi > 0 for all i = {1, 2, · · · , n} and where ai(t) , bi(t) and θi(t) are time-
dependent functions and ρij is the constant correlation between two Brownian motions W̄ i

t

and W̄ j
t , (i, j) ∈ {1, 2, · · · , n}2. Here we take νi(t, y) = εi + 1/

√
ζ2i (t)|y|2 + εi where ζi is

a time-dependent function.

Remark. The volatility is modelled by an Ornstein-Uhlenbeck process θi(t), i = {1, 2, · · · , n}
is the rate of mean reversion (θi(t) = 0 in the Hull-White model [11] and θi(t) 6= 0 in the
Scott model [21] and in the Stein-Stein model [22]). We assume that there is no correlation
between assets Si , i = {1, 2, · · · , n} and its volatility.

With reference to the notations in Section 2, in this case we have y = (y1, · · · yn) , η(t, y) =
(a1(t) − θ1(t)y1, · · · , an(t) − θn(t)yn)T , σ(t) = 0 , γ(t, z) = (γ1(t, z), · · · , γn(t, z))T and

ΣΣT (t, y) =
(
νi(t, yi))(νj(t, yj))

∑inf(i,j)
k=1 ρikρjk

)
1≤i,j≤n

.

We can interpret ΣΣT (t, y) as Y RY , where

Yij =

{
νi(t, yi) if 1 ≤ i = j ≤ n,

0 if not ,

and

R = ∧∧T =

inf(i,j)∑
k=1

ρikρjk

 ,

with

∧ij =

{
ρij if i ≥ j,

0 if i < j .

Note, as in Mnif [17], that the matrix ∧ is a lower triangle and invertible. Invertibility
is achieved if and only if ρii 6= 0 for all i = {1, 2, · · · , n}. Under this property, R is
symmetric positive definite and ΣΣT (t, y) is a nonsingular n×n matrix. We therefore have

that
(
ΣΣT (t, y)

)−1
= Y −1R−1Y −1 and

(5.3)
(
ΣΣT (t, y)

)−1
ij

=
1

(νi(t, yi))(νj(t, yj))
R−1ij , for all 1 ≤ i, j ≤ n .

Denote by ρ(ΣΣT (t, y))−1 the spectral radius of (ΣΣT (t, y))−1. But

ρ(ΣΣT (t, y))−1 ≤ ||(ΣΣT (t, y))−1||1 ,
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and since

||(ΣΣT (t, y))−1||1 = max
1≤j≤n

n∑
i=1

|
(
ΣΣT (t, y)

)−1
ij
| ,

there exists a constant C independent of y such that

ρ(ΣΣT (t, y))−1 ≤ C max
1≤j≤n

n∑
i=1

1

(νi(t, yi))(νj(t, yj))
(5.4)

≤ C max
1≤j≤n

n∑
i=1

1

εiεj

=
1

α
,

where α is a positive constant independent of y. The above inequality (5.4) implies the
smallest eigenvalue of ΣΣT (t, y), which is denoted by α(t, y), satisfies:

α(t, y) =
1

ρ(ΣΣT (t, y))−1
for all (t, y) ∈ [0, T ]× Rn .

The semilinear PDE is given by

−∂φ
∂t
− 1

2

n∑
i=1

∂2φ

∂y2i
− 1

2

n∑
i=1

(
∂φ

∂yi

)2

−
n∑
i=1

(ai − θiyi)
∂φ

∂yi
(5.5)

+ max
π∈K
{δ(t)

n∑
i=1

πibi −
δ2(t)

2

n∑
i,j=1

πiπj

νi(t, yi))(νj(t, yj)) inf(i,j)∑
k=1

ρikρjk


+

∫
R\{0}

(
exp(−δ(t)

n∑
i=1

πiγi(z))− 1 + δ(t)
n∑
i=1

πiγi(z)

)
q(dz)} = 0 ,

with the terminal condition φ(T, y) = 0. The value function of the optimization problem
is given by v(t, x, y) = − exp(−δ(t)x exp(φ(t, y)). The optimal solution is given by:

π∗(t, Yt) ∈ arg min
π∈K
{−δ(t)

n∑
i=1

πibi +
δ2(t)

2

n∑
i,j=1

πiπj

νi(t, yi))(νj(t, yj)) inf(i,j)∑
k=1

ρikρjk


−
∫
R\{0}

(
exp(−δ(t)

n∑
i=1

πiγi(z))− 1 + δ(t)
n∑
i=1

πiγi(z)

)
q(dz)} ,

a.s., 0 ≤ t ≤ T .

5.2. Other financial Cases. The time-inhomogeneous models are of extreme importance
to fund managers and interest-rate-options traders. For instance, trading on the yield-
curve, the trader takes quoted data as model input. To fit the observed yield-curve per-
fectly, time-dependent parameters need to be considered so that all risks on the curve are
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hedged away instantly (see e.g., [5], [6], [15], for other calibration purposes). In [3], a
thorough empirical study of the time-dependent diffusion models has been done.

Acknowledgment. This work is fully sponsored by the NRF (CSUR) Grant No: 90313.

References

[1] Y. Aktar and E. Taflin, A remark on smooth solutions to a stochastic control problem with a power
terminal cost function and stochastic volatilities, Math Finan Econ, 8 (2005), 489-509.

[2] F. E. Benth and K. Karlsen, A PDE representation of the density of the minimum entropy martin-
gale measure in stochastic volatility markets, Stochastics An International Journal of probability and
Stochastic Processes, 77(2) (2005), 109-123.

[3] J. Fan, J. Jiang, C Zhang and Z. Zhou, Time-dependent diffusion models for term structure dynamics,
Statistica Sinica, 13, (2003), 965-992.

[4] W. H. Fleming, Exit probabilities and optimal stochastic control, Applied Mathematics and Opti-
mazation, 4 (1978), 329-346.
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