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Abstract

Black pod rot, caused by Phytophthora megakarya, is the main cause of cocoa losses in
Cameroon. A few studies have focused on describing black pod epidemics in cocoa yet numerous
questions remain. Here, an epidemiological model describing the temporal evolution of cocoa
black pod, taking into account the development stages of pods, is developed and studied. In
particular, the relative importance of primary and secondary infection in disease dynamics is
investigated. Our theoretical study shows the existence of a disease free equilibrium and at
at least one endemic equilibrium. We highlight two threshold parameters, related to direct
and indirect infections that summarize all possible dynamics of the system. Then, based on
the literature, we define a periodic pod recruitment function, and provide several numerical
simulations to study the impact of phytosanitary pod removal on disease dynamics. We show
that intense and regular sanitary harvest could lead to complete disease eradication. Our results
also highlight the importance of the environmental spores reservoir in disease dynamics, such
that future field experiments and observations should focus on it.
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1 Introduction

Cocoa (Theobroma cacao L.) is one of the most important perennial crops worldwide, with an

estimated world production of 4.25 million tons in 2014/15 with an estimated value of around 12.6

billion US dollars [23] (ICCO, 2017). However, between 20 to 30% of annual yield is lost due

to pests and diseases. Some even estimate annual yield losses to be as high as 40% [32]. At a

global scale, the most important disease is cocoa black pod rot, which is due to several species of

Phytophthora. The most important species globally is P. palmivora [13], since it is pan-tropical,

occurring in all cacao producing countries. However, the most aggressive and damaging species

is P. megakarya (C.M. Brasier & M.J. Griffin) ([32],[2] and [3]). Phytophthora megakarya is only
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found in countries in West and Central Africa [3]. In both Nigeria and Cameroon, P megakarya

has replaced P. palmivora as a significant causal agent of black pod rot and is currently in an

invasive phase in Ghana and Ivory Coast [5]. Yet, since these West and Central African countries

produce around 70% of all cocoa beans worldwide. In Cameroon, 5th cocoa producer in the world

in 2014/15, cocoa black pod rot is only due to P. megakarya and losses often reach up to 80-90%

when plantations are poorly managed [21, 31].

It is known that cocoa production in Cameroon, as elsewhere, is tightly linked to climate, es-

pecially rainfall. In Cameroon, flowering of the cacao tree is induced by the first rains after a dry

season. Flowering typically lasts for about 1 to 2 months and it takes around 5-6 months from

pollination to full pod ripening. According to their growing stages, developing pods are subdivided

into cherelles, young, mature, and ripe pods. Developing pods are called cherelles until the stage

at which no further cherelle wilting, a cocoa physiological fruit thinning mechanism, occurs. When

rainfall is evenly distributed throughout the year, crop production can be spread out over many

months. In contrast, when rainfall distribution is more unevenly spread throughout the year, like

in Cameroon, cropping (production) is generally seasonal. In Cameroon, two types of rainfall areas

exists where cocoa is cropped, a unimodal rainfall area, with one dry and one wet season and a

bimodal rainfall area, with one long and one short dry season and also one short and one long

rainy season. The short and long rainy season in bimodal areas are usually from March/April to

June/July and August to November, respectively. The principal flowering period coincides with

the first rainy season. The short dry spell in bimodal rainfall areas can hamper the development

of Phytophthora pod rot.

Phytophthora megakarya: life cycle and epidemiology There are two means of infection

by P. megakarya, direct transmission (pod to pod infection) and indirect transmission (from an

environmental reservoir to a healthy pod). P. megakarya has 4 invective stages, the first one is the

mycelial stage and the others are the three spore types, sporangia, zoospores and chlamydospores.

All four stages can directly or indirectly cause infection. Primary inoculum, which survives in the

soil in the form of chlamydospores or mycelium during the dry season and/or when pods are absent,

is activated under wet and humid conditions and develops sprorangia. Through rain-splash or by

certain insects such as ants, sporangia or the motile biflagellate zoospores they contain, are trans-

ported onto pods where they can establish an infection [27]. Two factors that greatly contribute to

the success of P. megakarya as cocoa pathogen is its ability to rapidly form appressoria (a flattened

and thickened tip of a hyphal branch, that facilitates penetration of the host plant), in much greater

quantities than P. palmivora [3] as well as its capability to shed zoospores earlier and twice as much

than P. palmivora [11]. Successful infection then results in the generation of secondary inoculum

which gets dispersed again primarily through rain-splash, causing secondary infections. Black pod

disease incidence in the field is influenced by different environmental conditions yet several studies

have established rain as a primary factor governing epidemics ([11],[16]).

Moreover, under humid conditions a single pod may produce up to 4 million sporangia (each

containing up to around 40 motile zoospores), that are mainly disseminated by rain splash [11].

According to [11] P. megakarya inoculum can survive up to 18 months in the soil of cocoa plan-

tations. An overview of the life cycle of Phytophthora megakarya is presented in Fig. 1, page

3.

Although P. megakarya can infect cocoa pods at all developmental stages, studies from Cameroon
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Figure 1: The life cycle of Phytophthora megakarya highlighting the main spores type and describing
infection process on cocoa pod

(modified from [1]).

showed that susceptibility and the risk of attack depends among others on the developmental stage

of cocoa pods [18, 35]. The growth cycle of a cocoa pod can be divided into three phases: an

early accelerating/cell division phase, a linear/cell enlargement phase and a saturation phase for

ripening/maturation ([20]; see Fig. 2, page 4). This growth pattern of cocoa pods generally follows

a sigmoid curve ([36]; Fig. 2). Based on the literature [18, 35] it is assumed that the first growth

stage called cherelles is when pods are most susceptible. Ripe pods, even though at the end of the

production cycle they can still become infected, likely contribute little to Phytophthora pod rot

epidemics, even though ripe pods can still become infected. This is because ripe infected pods are

often and regularly being harvested. The full grown beans, although of less quality in the case of

infection, are still of economic interest to the farmer.

Control of cocoa black pod disease Cocoa black pod is generally controlled through fungicide

applications, combined with the use of partially resistant or tolerant cocoa cultivars and appro-

priate cultural practices, such as phytosanitation [30]. Biological control seems to be promising

but no commercial products are as yet available [29]. An increase in the effectiveness of control

can be expected when these control methods are rationally combined [9]. Under field conditions,

the natural activity of antagonistic and hyperparasitic microbes can also contribute to a decay of
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Figure 2: Generalised fruit development stages and Sigmoid growth curve with specific cacao pod
development periods

(modified from [36]).

Phytophtora sp. viability [26]. Phytosanitary pod removal is a preventive method which consists of

cleaning trees at the beginning of the season by removing mummified fruits left from the previous

season, and the subsequent regular removal of diseased pods which are the source of secondary

inoculum [30]. However, phytosanitation is time consuming and relatively difficult to put in place.

Fungicide applications are however, effective, especially economically speaking [19]. Metalaxyl is

the main active ingredient of the most effective fungicides for preventing/controlling black pod dis-

ease due to P. megakarya. Yet, fungicide use has numerous negative externalities, such as human

health problems, pollution, reductions in the populations of beneficial organisms, and emergence

of secondary diseases or pathogen resistance to pesticides [4]. Thus, there are compelling reasons

to come up with alternative, innovative and more effective control strategies. However, to do so

we need to identify control levers through which it is possible to exert control. This can only be

done through a better understanding of the disease dynamics. If Field expertise and experiments

are of utmost importance for this understanding, Modeling can also be a very helpful approach,

in particular when experiments are missing and/or difficult to conduct or to test new assump-

tions. However, relatively few studies have focused on understanding the temporal evolution of P.

megakarya epidemics, and there are still many questions regarding the factors that govern these

dynamics. For instance, the relative importance of the two different sources of inoculum (primary

and secondary) and spore dispersal dynamics are not well understood. We believe that Modeling

can be an effective approach to provide answers to these questions and help to improve or build

efficient control strategies, and, also, to better focus on future field experiments.

That is why the aims of this paper are threefolds: first, to understand the dynamics of the

diseases in the case of a constant or periodic pods production; second, to understand what are the

main parameters that drive these dynamics; and, third, to investigate the impact of phytosanitation

(a cultural control strategy).

The paper is structured as follows. In section 2, we first describe the Phytophthora model. Then,

in section 3, we provide a theoretical analysis of the model, followed by numerical simulations in

section 4, where we investigate the impact of phytosanitary pod removal on disease dynamic and

compare different scenarii of control strategies. Finally, in Section 5, we conclude and discuss

possible perspectives and extensions.
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2 The Phytophthora model

Our model classifies hosts (Cocoa pods) in two epidemiological states: susceptible (S) and infectious

(I). Transmissions from pod to pod and from the environment to pod, through spores, are the only

ways a black pod rot epidemic can expand. Healthy (susceptible) pods are classified in three classes

according to their developmental stage: the first developmental stage of cocoa pods, called Cherelles

(S1), then young and mature pods (S2), and then, ripe pods (S3), that can be harvested and provide

the beans used for commercialization. Based on our knowledge of the pathosystem, the infectious

pods compartment (I) has two sub-compartments according to the ways of transmission: spores

produced by infected pods and released in the environment, responsible for secondary infections,

(Sp,e), and spores produced by infected pods and directly responsible for primary infections (Sp,i).

Our epidemiological system is represented in Fig. 3, page 5.

Figure 3: A compartmental model of the black pod rot epidemic

We only consider an inflow in the cherelle compartment of new susceptible hosts at rate Λ:

we first assume Λ constant which corresponds to a regular production along the year in Central

America, while periodic Λ corresponds to region where the production is seasonal, like in Cameroon.

The other parameters µ1, w, and θ1 represent respectively the natural death rate, the additional

death rate due to wilt, and the maturation rate. Note that we distinguish ω from µ1, since cherelle

wilt can vary greatly from plot to plot and/or from one year to the next. This is a natural process

which plays the role of a regulation factor on each tree. At the pod stage, µ2 and θ2 represent

respectively the mean death rate, and the maturation rate from immature pods to mature or ripe

pods. µ3 is the mean death rate of ripe pods by excessive ripening or mummification, and γr
is the harvest rate of ripe pods. Finally, γI represents the rate of phytosanitary pod removal in

the plot and µI is the mean death rate of infected pods by mummification and saprophytic fungi

which leads to the end of infectivity. At the spores stages, σ is the production rate of spores by

infected pods. r2 and r1 are respectively the releasing speed and the shedding rate of spores in

the environment through infected plant tissue. d2 and d1 are respectively the inactivation speed of

spores released by infected pods due to parasitism and senescence and the natural decay of spores

in the environment (we assume for the spores compartment that r1 + r2 < 1). According to the

maturity stage k, where k = 1 or 2, susceptible pods, in contact with spores, coming either from
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the environment (primary inoculum), or spread directly from infected pods (secondary inoculum),

are contaminated according to the following infection rates

λk(Sp,e, Sp,i) = βk1
Sp,e

K1 + Sp,e
+ βk2

Sp,i
K2 + Sp,i

, k = 1, 2, (1)

where βk1 and βk2 are respectively the (maximal) rate of primary and secondary infection. Indeed, we

take into account that the total number of spores produced by infected pods in a plot is extremely

large, such that a saturation effect occurs in the transmission rate. That is why Michaelis-Menten

functionals have been considered. The parameters K1 and K2 in (1 page 6, are called the Michaelis

constants and represent the quantity of Phytophthora megakarya spores yielding 50% of chance for

a pod to be infected by one specific inoculum. The latent time between the infection of pods by

Phytophthora megakarya and the manifestation of firsts macroscopic symptoms being really short

(¡3-4 days[5]), there is often no way to distinguish an infected pod from an infectious one. This is

why the delay has not been considered in the infection dynamic.

Given that S3 does not play an important role in the infectious dynamic, the study of the

system will be done without this compartment. Thus, we deduce that our system is governed by

the following system of ODEs:

dS1

dt
= Λ− θ1S1 −

[
β1

1Sp,e
K1 + Sp,e

+
β1

2Sp,i
K2 + Sp,i

]
S1 − µ1S1 − wS1,

dS2

dt
= θ1S1 −

[
β2

1Sp,e
K1 + Sp,e

+
β2

2Sp,i
K2 + Sp,i

]
S2 − µ2S2 − θ2S2,

dI

dt
=

[
β1

1Sp,e
K1 + Sp,e

+
β1

2Sp,i
K2 + Sp,i

]
S1 +

[
β2

1Sp,e
K1 + Sp,e

+
β2

2Sp,i
K2 + Sp,i

]
S2 − γII − µII,

dSp,i
dt

= r2σI − d2Sp,i,

dSp,e
dt

= r1σI − d1Sp,e.

(2)

We complete system (2) with non negative initial conditions

(S1(0), S2(0), I(0), Sp,i(0), Sp,e(0)) ≥ 0. (3)

Some parameters values have been deduced from the bibliography, but for most of the parameters,

the values have been estimated. This is summarized in Table 1, page 33.
In the next section, we study the dynamics of system (2), with a particular focus on the Disease-

Free (DFE) and Endemic (EE) Equilibria, and the conditions to have existence and to reach these
equilibria. To this end, we will estimate the Basic Reproduction Number and other thresholds in
order to provide informations how model’s parameters may impact the disease dynamic and, also,
to study the efficiency of ongoing phytosanitary strategies (related to γ).
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3 Mathematical analysis of the model

System (2) can be rewritten in the following way
dX

dt
= A(X)X + F,

X(0) = X0 ≥ 0,

(4)

with X(t) = (S1, S2, I, Sp,i, Sp,e)
T ,

A(X) =



−θ1 −
[
β1
1Sp,e

K1+Sp,e
+

β1
2Sp,i

K2+Sp,i

]
− µ1 − w 0 0 0 0

θ1 −
[
β2
1Sp,e

K1+p,e +
β2
2Sp,i

K2+Sp,i

]
− µ2 − θ2 0 0 0[

β1
1Sp,e

K1+Sp,e
+

β1
2Sp,i

K2+Sp,i

] [
β2
1Sp,e

K1+Sp,e
+

β2
2Sp,i

K2+Sp,i

]
−µI − γI 0 0

0 0 r2σ −d2 0
0 0 r1σ 0 −d1


, F =


Λ
0
0
0
0

 .

Note that A(X) is a Metzler matrix, i.e a matrix such that off diagonal terms are non negative, for
all X ∈ R5

+.
Thus, using the fact that F ≥ 0, system (4) is positively invariant in R5

+, which means that any
trajectory of the system starting from an initial state in the positive orthant R5

+ remains forever
in R5

+.
Since the right hand side of system (2, page 6), is Lipschitz continuous, there exists an unique
maximal solution. Using the ”cascade method”, we show that any compartment of (2) is bounded.

From (2)1 (namely equation 1 in system (2)), we derive

dS1

dt
≤ Λ− θ1S1 − µ1S1 − wS1.

Setting

S∗1 =
Λ

µ1 + w + θ1
,

we deduce that S1(t) ≤ S∗1 + (S1(0)− S∗1) ∗ e−(µ1+w+θ1)t such that, if S1(0) is chosen less than S∗1 ,
one has

0 ≤ S1(t) ≤ S∗1 ,

Next, from (2)2, and since S1(t) ≤ S∗1 , we derive

dS2

dt
≤ θ1S1 − (µ2 + θ2)S2 ≤ θ1S

∗
1 − (µ2 + θ2)S2.

Then, setting

S∗2 =
θ1S

∗
1

µ2 + θ2
,

we deduce that S2(t) ≤ S∗2 + (S2(0)− S∗2)e−(µ2+θ2)t such that, if S2(0) is chosen less than S∗2 , one
has

0 ≤ S2(t) ≤ S∗2 .

Since we showed that all susceptible components, S1,2, are bounded, we are able to show that the
variable I has an upper bound too. Thanks to the definition of ”Michaelis-Menten” functions, we
know that
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
Sp,e

K1 + Sp,e
≤ 1,

Sp,i
K2 + Sp,i

≤ 1,

which implies

λi(Sp,e, Sp,i) =
βi1Sp,e

K1 + Sp,e
+

βi2Sp,i
K2 + Sp,i

≤ βi1 + βi2.

Thus, setting

I∗ =
(β1

1 + β1
2)µ2(µ1 + θ1) + (β2

1 + β2
2)θ1

(γi + µi) (µ2 + θ2) (µ1 + θ1)
Λ,

from (2)4, we deduce that I(t) ≤ I∗ + (I(0) − I∗) ∗ e−(γI+µI)t, such that if I(0) is chosen smaller
that I∗, one has 0 ≤ I(t) ≤ I∗.

Finally, with the same reasoning, upper bounds for the spores compartments follow immediately:

Sp,i(t) ≤
r2σ

d2
I∗,

and
Sp,e(t) ≤

r1σ

d1
I∗.

According to the previous results, we can define the following positively invariant subset of R5
+

Ω =

{
(S1, S2, I, Sp,i, Sp,e) ∈ R5

+ : S1 ≤ S∗1 , S2 ≤ S∗2 ; I ≤ I∗, Sp,i ≤
r2σ

d2
I∗, Sp,e(t) ≤

r1σ

d1
I∗
}
.

Ω is attractive, that is, solutions that start in Ω are bounded and remain in Ω.

3.1 Equilibria: existence, local, and global asymptotic stability

In this section, we study the existence of equilibria (DFE and EE) related to system (2). We study
the local and global asymptotic stability of DFE. We also compute the basic reproduction number
R0 related to system (2). The equilibria of system (2) are obtained from the following equalities
derived from (2) and representing the steady states of the system:

(θ1 + λ1(Sp,e, Sp,i) + µ1 + w)S1 = Λ
(λ2(Sp,e, Sp,i) + µ2 + θ2)S2 = θ1S1

(γI + µI)I = λ1(Sp,e, Sp,i)S1 + λ2(Sp,e, Sp,i)S2

d2Sp,i = r2σI
d1Sp,e = r1σI

(5)

Setting I = 0 in system (5), implies that Sp,i, Sp,e and the infections forces λi(Sp,e, Sp,i) are all
equal to zero. Thus, we immediately deduce that

Sdfe1 =
1

θ1 + µ1 + w
Λ

Sdfe2 =
θ1

(µ2 + θ2)(θ1 + µ1 + w)
Λ

such that the DFE of system (2) is defined by

DFE =
(
Sdfe1 , Sdfe2 , 0, 0, 0

)T
.
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3.1.1 Estimate of the Basic Reproduction Number

Using the next-generation matrix (NGM) approach described in [40] (see also [17]), we compute the
basic reproduction number R0, which is define in our case as the number of secondary infections
that an infectious pod could produce when introduced in a population of healthy pods of any
maturity stage.

Following [40], we rewrite system (2) as follow

dX

dt
= f(X) = F(X)− V(X)

where X = (S1, S2, I, Sp,i, Sp,e)
T , F is the incidence rate of new infections, and V is the transfer

rate of individuals into, and out of, each sub-population. Let Xs = {X ≥ 0/Xi = 0, i = 3, ..., 5} be
the set of all disease free states.

As it is very clearly explained in [40, 39, 15], the previous decomposition is not unique, such
that different choices for F lead to different values for the basic reproduction number. What
is important is the choice that is epidemiologically relevant. According to field experts, and as
explained in section 2, we distinguish Sp,i, spores that responsible for primary infections, from Sp,e,
spores that are responsible to secondary infections. In other words Sp,e acts as a reservoir, while
Sp,i is considered as an extension of the infectious pod compartment. Thus, according to these
explanations, this leads to the following choices for F and V:

F(X) =



0
0[

β1
1Sp,e

K1 + Sp,e
+

β1
2Sp,i

K2 + Sp,i

]
S1 +

[
β2

1Sp,e
K1 + Sp,e

+
β2

2Sp,i
K2 + Sp,i

]
S2

0
r1σI

 ,

and Vi(X)=V−i (X)− V+(X), where

V−i (X) =



[
β1

1Sp,e
K1 + Sp,e

+
β1

2Sp,i
K2 + Sp,i

+ (µ1 + ω + θ1)

]
S1

[
β2

1Sp,e
K1 + Sp,e

+
β2

2Sp,i
K2 + Sp,i

+ (µ2 + θ2)

]
S2

(γI + µI)I
d2Sp,i
d1Sp,e


and V+

i (X) =


0

θ1S1

0
r2σI

0

 ,

such that we verify the following assumptions given, for instance, in [40], that is

(A1) if X ≥ 0, then Fi, V+
i and V+

i ≥ 0 for i = 1, ..., 5.

(A2) if Xi = 0, then V−i = 0.

(A3) Fi = 0 for i = 1, .., 2.

(A4) if X ∈ Xs then Fi = 0 and V+
i = 0 for i = 3, .., 5
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(A5) If F(X) is set to zero, then all eigenvalues of Df DFE have negative real parts. Indeed, we
have

DfDFE =



−(µ1 + ω + θ1) 0 0
β1
2S

DFE
1
K2

β1
1S

DFE
1
K1

θ1 −(µ2 + θ2) 0
β2
2S

DFE
2
K2

β2
1S

DFE
2
K1

0 0 −(γI + µI) 0 0
0 0 r2σ −d2 0
0 0 0 0 −d1


A rapid calculation shows that all eigenvalues are real and negative (the terms in the diagonal),
ensuring that DFE is Locally Asymptotically Stable.

Then, considering the disease-free equilibrium, DFE, and taking into account that f verifies
assumptions (A1)-(A5), we can define the following 3× 3 matrices

Fi,j =
∂Fi+2

∂Xj+2

∣∣∣∣
DFE

, 1 ≤ i, j ≤ 3

and

Vi,j =
∂Vi+2

∂Xj+2

∣∣∣∣
DFE

, 1 ≤ i, j ≤ 3

such that we obtain

F =

 0
β1

2S
dfe
1 + β2

2S
dfe
2

K2

β1
1S

dfe
1 + β2

1S
dfe
2

K1
0 0 0
r1σ 0 0

 , V =

γI + µI 0 0
−r2σ d2 0

0 0 d1

 .

F is entrywise non-negative and V is obviously a non-singular M-matrix, so that V −1 ≥ 0. Thus,
if we consider that Ψ(0) is the number of initially infected individuals, then FV −1Ψ(0)(≥ 0) gives
the expected number of new infections. FV −1 is called the Next Generation Matrix. According to
the previous computations, we derive

FV −1 =


(β1

2S
dfe
1 + β2

2S
dfe
2 )r2σ

K2d2(γi + µi)

β1
2S

dfe
1 + β2

2S
dfe
2

K2d2

β1
1S

dfe
1 + β2

1S
dfe
2

K1d1

0 0 0
r1σ

γi + µi
0 0


According to [40], the basic reproduction number, R0, is defined as the spectral radius of FV −1,
i.e. R0 = ρ(FV −1). A straightforward computation shows that the characteristic polynomial of
FV −1 is

P (λ) = λ[R0,dλ+R0,i − λ2].

where

R0,d =
r2σ(β1

2S
dfe
1 + β2

2S
dfe
2 )

K2d2(γi + µi)
and R0,i =

r1σ(β1
1S

dfe
1 + β2

1S
dfe
2 )

K1d1(γi + µi)
. (6)

The eigenvalues of FV −1 are the roots of P , and the spectral radius the largest ones, which leads
to

R0 =
1

2

(
R0,d +

√
(R0,d)2 + 4R0,i

)
. (7)
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Remark 1. Note that R0 depends on R0,d and R0,i, that can be seen respectively as the basic
reproduction number related each transmission route: the direct route (pods to pods) and indirect
route (environment to pods).

Following [40], we have

Proposition 1. DFE is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.

It is important to recall that local asymptotic stability of the disease-free equilibrium does not
guarantee complete elimination of the disease. Only global asymptotic stability ensures that the
disease either dies out or persists.

Remark 2. Last but not least, if Sp,e is not seen as a reservoir compartment, but simply as a
transition compartment, then the Next Generation Matrix becomes

FV −1 =

R0,d +R0,i
β1
2S

dfe
1 +β2

2S
dfe
2

K2d2

β1
1S

dfe
1 +β2

1S
dfe
2

K1d1
0 0 0
0 0 0

 ,

such that the two routes of transmission enter R0 in an additive way, i.e. R0,g = R0,d + R0,i.
However, according to [7], or [39], or [40], both thresholds are mathematically equivalent, i.e. they
are simultaneously greater, equal or less than one. See also [15], where the authors discussed
the several forms of the basic reproduction number for continuous and discrete epidemiological
(population) systems.

3.1.2 Global Stability of the DFE

To show the global stability of the DFE, we used a theorem proved by Kamgang and Sallet [25],
and recalled, for convenience, in Appendix A. (see theorem 2, page 27)

Using the the DFE, we rewrite (2) in the following manner{
ẋS = A1(x)(xS − xDFE,S) +A1,2(x)xI ,
ẋI = A2(x)xI ,

(8)

where xs is the vector representing the state of different compartments of non transmitting individ-
uals and the vector xI represents the state of compartments of different transmitting individuals.
Here, we have xs = (S1, S2)T , xI = (I, Sp,i, Sp,e)

T and xDFE,S = ( Λ
θ1+µ1+w ,

θ1Λ
µ2(θ1+µ1+w))T . Indeed

from (S), we obtain the following matrices for A1(x), A1,2(x) and A2(x)

A1(x) =

(
−(θ1 + µ1 + w) 0

θ1 −µ2 − θ2

)

A1,2(x) =

(
0
−β1

2S1

K2

−β1
1S1

K1

0
−β2

2S2

K2

−β2
1S2

K1

)
and

A2(x) =


−(γI + µI)

β1
2S1+β2

2S2

K2

β1
1S1+β2

1S2

K1

r2σ −d2 0

r1σ 0 −d1

 .

Following [25], we show the global asymptotically stability of the DFE and we derive the following
theorem

11



Theorem 1. The disease free equilibrium of system (2) is globally asymptotically stable if R0 ≤ 1.

Proof. see Appendix B.

Remark 3. The previous result also holds if R0 is replaced by R0,g. We will see that R0,g plays a
role in the existence of at least one endemic equilibrium.

3.1.3 About Endemic equilibria

To derive the endemic equilibria, we solve system (5), page 8, which leads to

S∗1 =
Λ[

β1
1r1σI

∗

K1d1+r1σI∗
+

β1
2r2σI

∗

K2d2+r2σI∗

]
+ θ1 + µ1 + w

S∗2 =
Λθ1([

β1
1r1σI

∗

K1d1+r1σI∗
+

β1
2r2σI

∗

K2d2+r2σI∗

]
+ θ1 + µ1 + w

)([
β2
1r1σI

∗

K1d1+r1σI∗
+

β2
2r2σI

∗

K2d2+r2σI∗

]
+ µ2 + θ2

)
(γI + µI)I

∗ =
[

β1
1r1σI

∗

K1d1+r1σI∗
+

β1
2r2σI

∗

K2d2+r2σI∗

]
S∗1 +

[
β2
1r1σI

∗

K1d1+r1σI∗
+

β2
2r2σI

∗

K2d2+r2σI∗

]
S∗2

S∗p,i =
r2σ

d2
I∗

S∗p,e =
r1σ

d1
I∗.

(9)
Then, replacing (9)1 and (9)2 in the right-hand side of (9)3, leads to look after the positive roots
of the following polynomial

P (I) = a4I
4 + a3I

3 + a2I
2 + a1I + a0,

where the terms (ai)0≤i≤4 are given in Appendix C, page 30. In particular, we show that

a0 = (γI + µI)B
2
0 [1−R0,g],

such that we are able to deduce

Lemma 1. The sign of a0 is related to R0,g as follows:

1. a0 < 0 is equivalent to R0,g > 1

2. a0 > 0 is equivalent to R0,g < 1.

Then, according to Descarte’s rule of sign (see Appendix C, page 30), we deduce

Proposition 2. When R0,g > 1 system (2) admits one or three endemic equilibria.

Remark 4. The study of the stability/instability of the endemic equilibrium is not straightforward.
Therefore, we will only check numerically the stability property in the forthcoming simulations.

Since R0 and R0,g are equivalent, proposition 2 leads to

Proposition 3. When R0 > 1 system (2) admits one or three endemic equilibria.
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3.2 The Phytophthora model with periodic recruitment rate

When Λ is periodic (or if we consider that all parameters are periodic), of period T , the previous
estimates on the basic reproduction numbers are no more available. We still have existence of a non-
negative bounded solution. It is also straightforward to show that system (2), with periodic recruit-
ment rate, admits an unique T -periodic disease free solution, PDFE = (S1,per(t), S2,per(t), 0, 0, 0),
where

S1,per(t) =

(
1

e(θ1+µ1+w)T − 1

∫ T

0
Λ(τ)e(θ1+µ1+w)τdτ +

∫ t

0
Λ(τ)e(θ1+µ1+w)τdτ

)
e−(θ1+µ1+w)t

and

S2,per(t) =

(
1

e(µ2+θ2)T − 1

∫ T

0
S1,per(τ)e(µ2+θ2)τdτ +

∫ t

0
S1,per(τ)e(µ2+θ2)τdτ

)
e−µ1t.

Following [42], we are able to estimate a basic reproduction number, R0,per related to PDFE.
In Appendix A, we recall briefly the main assumptions, (A1)-(A6), to verify to be able to apply
Proposition 4, page 28 (see also [42]). Note that most of these assumptions are similar to those
given in [40] to estimate the standard basic reproduction number for constant parameters. However,
in the periodic case, they are two additional ones, (A6) and (A7) that we can easily verify here.
Indeed, since −V is a lower triangular cooperative matrix with constant values, the monodromy
matrix of system dy

dt = −V y is given by

Φ−V (t) =

 e−(γI+µI)t 0 0
∗ e−d2τ 0
0 ∗ e−d1t


Thus we deduce that ρ(Φ−V (T )) < 1. Assumption (A7) is verified. Let us verify assumption (A6).
We compute

M(t) =

(
−(θ1 + µ1 + w) 0

θ1 −µ2 − θ2

)
.

Again, M(t) being a lower triangular matrix with constant parameters, we deduce that the mon-
odromy matrix ΦM (t) is defined as follows

ΦM (t) =

(
e−(θ1+µ1+w)t 0

∗ e−(µ2+θ2)t

)
.

such that ρ(ΦM (T )) < 1. Assumptions (A6) and (A7) being verified, PDFE is asymptotically
stable. Following [42] (see appendix A) we consider the following linear τ -periodic system

dw

dt
=

(
−V +

F (t)

λ

)
w, (10)

with parameter λ ∈ (0,∞), and

F (t) =


0

β1
2S1,per(t) + β2

2S2,per(t)

K2

β1
1S1,per(t) + β2

1S2,per(t)

K1

0 0 0

r1σ 0 0


13



and

V =


γI + µI 0 0

−r2σ d2 0

0 0 d1

 ,

For each λ > 0, we are able to estimate the monodromy matrix W (τ, λ) and thus its spectral
radius, ρ(W (τ, λ)). According to Theorem 2.1 [42] (see also Appendix A), we are looking for
λ∗ > 0 such that ρ(W (τ, λ∗)) = 1, and thus deduce R0,per, the local periodic basic reproduction
number. Thanks to remark 2, page 11, we can also define similarly R0,g,per. Numerical estimates
of R0,per and R0,g,per are obtained by solving (10), using an iterative algorithm, as explained in the
end of Appendix A.

3.3 Global Sensitivity analysis of the Phytophthora model

A full sensitivity analysis is performed on the model outputs by using two well-known methods:
LHS-PRCC (Latin hypercube sampling-partial rank correlation coefficient) and eFAST (Extended
Fourier amplitude sensitivity test) [28]. These are complementary methods: PRCC provides mainly
information about how the outputs are impacted if we increase (or decrease) the inputs of a specific
parameter while eFAST indicates which parameter uncertainty has the greatest impact on the
output variability (see[28] for further explanations). We consider the ranges of values given in
Table 4, page 36. For some parameters, we have a relative good idea about the range of values,
for others, like the spores parameters, this is more vague, but we choose value that, according to
filed experts, are the most reasonable. In any case, and whatever the methods used to make the
full sensitivity analysis, the results are discussed and valid only under the chosen intervals.

First, in Fig. 4, page 15, we show a LHS-PRCC analysis on both basic reproduction numbers,R0

and R0,g. The parameters impact negatively or positively, as expected. However, it is interesting to
observe that, R0, is more impacted specifically by parameters related to the indirect transmission,
that is K1, r1 and d1.

Sensitivity analysis results are given in Fig. 5, page 16, and Fig. 6, page 17. While for the
variables S1 and S2, both methods provide the same analysis, that is Λ, ω, µi, and θi are very
sensitive parameters, the results are more contrasted in the compartments related to the dynamics
of the disease. However, from both methods it is clear that for I, Spi and Spe, d1 and d2 are very
sensitive parameters, γi, the roguing parameter, Λ, and σ are also sensitive parameters. Surprisingly
βij are not so sensitive as expected. However, from the eFAST, the Ki parameters seem to be very
sensitive. It is interesting to emphasize that given the sensitivity of the death rate parameters di,
it makes sense to use a control method like fungicide. This is in good agreement with ongoing field
practice.

Altogether, this brief sensitivity study shows that not only the parameters related to the dy-
namics of the pods are important, but also the parameters related to the dynamics of the spores.
While, the pod population dynamic is relatively well known, thanks to previous studies, this seems
not the case for the spores, where clearly the mean lifespan, di, as well as the spores production by
pods, ri, is not very well known.

4 Numerical simulations and discussions

We now provide and discuss some numerical simulations to illustrate the previous results and fur-
ther. The numerical approximations are obtained using Matlab 2016. Since for several parameters
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Figure 4: LHS-PRCC sensitivity analysis of R0 and R0,g.

little to no data are available (yet) in the literature, estimations of these parameters for use in the
simulations were based on expert knowledge of the pathosystem. The range of values of model’s
parameters are mentioned in table 1, page 33, in section 1.

According to these parameters, when γI = 0, we have R0 > 1 (or R0,g > 1), such that system
(2) admits a unique endemic equilibrium that is Locally Asymptotically Stable, at least numerically.
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Figure 5: e-FAST sensitivity analysis of Model’s outputs. White bar: first-order effects; Sum of
white and grey bars: total effect.

4.1 Estimation of the cherelle recruitment rate, Λ

In the context of Cameroon, it is not realistic to consider a constant recruitment rate for cherelles.
In contrary, cocoa pods are strongly connected to rainy periods: a long and a short rainy season.
Thus, using data from the literature [10], we estimate Λ as a T -periodic function (see Fig. 7, page
18), where T = 365 days.
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Figure 6: LHS-PRCC sensitivity analysis of Model’s outputs

4.2 Impact of phytosanitary pod removal on the disease dynamic

Using parameters values given in table 1, page 33, we highlight the impact of phytosanitary pod
removal on the disease dynamic of the system in two specific situations: when Λ is constant, and
when Λ is a time periodic function, defined in Fig.7, page 18. In the next simulations, we highlight
the dynamics without sanitary harvest and with sanitary harvest.

4.2.1 Simulations with a constant recruitment rate Λ

As value for Λ, we consider the mean value of Λper over one period, i.e. one year, i.e Λ =
1

365

∫ 365
0 λper(t)dt ≈ 12. In Figs. 8 and 9, page 18, we consider two initial conditions: when
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Figure 7: Cherelle recruitment rate function in the year

one pod is infectious, and when spores are present in the environment. Both simulations illustrate
clearly the impact of the phytosanitary pod removal on disease dynamics. Indeed, the application
of sanitary harvest (t > 750), i.e. γ = 0.25, drives R0 from a value greater than one to a value
lower than 1, such that the DFE becomes globally asymptotically stable, i.e. the infection dies out.
It is also interesting to notice that according to the initial conditions, the system, while converging
to the same constant positive equilibrium, may have a different transient dynamic.
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Figure 8: Time evolution of Susceptible pods, Infected pods, and Spores, when the initial infection
starts with an infective pod. Λ = 12, γI = 0 (t < 750) and γI = 0.25 (t > 750).

4.2.2 Simulations with a periodic recruitment rate Λ(t)

In Figs.10 and 11, we show simulations with Λ(t) periodic, as defined in Fig.7, page 18, and for
different sanitary harvest rate, γI = 0, 0.25, and 0.3. Using the same parameters values, but
with a periodic cherelle recruitment rate, the phytosanitary pod removal, with γI = 0.25, is clearly
efficient in reducing the number of infected pods and spores. However, R0,per is already greater
than 1, and thus, contrary to the constant case, the disease does not stop (see Table 2, page 33).
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Figure 9: Time evolution of Susceptible pods, Infected pods, and Spores, when the initial infection
starts with spores in the environment, Spe = 1000. Λ = 12, γI = 0 (t < 750) and γI = 0.25 (t > 750).
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Figure 10: Periodic time evolution of Susceptible pods, Infected pods, and spores, when the initial
infection starts with an infective pod and increasing sanitary harvest intensity. Λ periodic, γI =
0 (t ∈ [0− 500]), γI = 0.25 (t ∈ [500− 1000]) and γI = 0.3 (t ∈ [1000− 1500]

This is related to the use of a periodic recruitment rate and shows clearly that considering λ as a
constant may give wrong results in terms of control strategies. Like in the constant case, there is a
clear difference in the dynamic of the outbreaks when initially, either one pod is infected or spores
are present in the environment. The disease spreads faster when a pod is initially infected. Finally,
as expected, increasing the sanitary harvest, γI = 0.3, decays R0,per below 1, such that the disease
dies out. We summarize the values computed for the basic reproduction numbers in Table 2, page
33.

4.2.3 Impact of periodic impulsive sanitary harvest on disease dynamics

Here, instead of considering a continuous sanitary harvest, we consider that the sanitary harvest
occurs instantaneously (impulsive events), with a periodicity, τ , of 4, 7, and 14 days respectively.
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Figure 11: Periodic time evolution of Susceptible pods, Infected pods, and spores, when the initial
infection starts with spores in the environment, Spe = 1000 and increasing sanitary harvest intensity.
Λ periodic, γI = 0 (t ∈ [0− 500]), γI = 0.25 (t ∈ [500− 1000]) and γI = 0.3 (t ∈ [1000− 1500]

Compared to what happens in the field, this modeling is more realistic. In other words, we assume
that a proportion, ΓI ∈]0, 1[, of infected pods, I, is removed instantaneously every τ days. This
leads to the following system

dS1

dt
= Λ− θ1S1 −

[
β1
1Sp,e

K1+Sp,e
+

β1
2Sp,i

K2+Sp,i

]
S1 − µ1S1 − wS1,

dS2

dt
= θ1S1 −

[
β2
1Sp,e

K1+Sp,e
+

β2
2Sp,i

K2+Sp,i

]
S2 − µ2S2,

dI

dt
=
[
β1
1Sp,e

K1+Sp,e
+

β1
2Sp,i

K2+Sp,i

]
S1 +

[
β2
1Sp,e

K1+Sp,e
+

β2
2Sp,i

K2+Sp,i

]
S2 − µII,

dSp,i
dt

= r2σI − d2Sp,i
dSp,e
dt

= r1σI − d1Sp,e,

(11)

with impulsive conditions
S1(ts + nτ+) = S1(ts + nτ),
S2(ts + nτ+) = S2(ts + nτ),
I(ts + nτ+) = (1− ΓI)I(ts + nτ), n ∈ N∗,
Sp,i(ts + nτ+) = Sp,i(ts + nτ),
Sp,e(ts + nτ+) = Sp,e(ts + nτ),

(12)

where ts is the time when the (instantaneous) periodic sanitary harvest starts. According to the
theory of impulsive differential equations [6], system (11)-(12) is well defined and admits a unique
positive solution. However, at this stage, we don’t want to enter too much in the theory. This is
left for a future work.

In Fig. 12, page 21, Fig. 13, page 21, and Fig. 14, page 22, we obtain contrasting results.
Indeed, considering a 14 or a 7 days sanitary harvest, even with 60% of removal, shows poor result
compared to the period before the harvest (see Figs. 12 and 13). Only a 3-days harvest leads to
significant results (see Fig. 14). Clearly periodicity and intensity of the harvest may impact the
efficacy of this control method. From the field point of view, 60% of removal is quite large, but this
may depend on the model’s parameters. This requires further investigation.
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Figure 12: Periodic time evolution of Susceptible pods, Infected pods, and spores, when sanitary
harvest starts at t = 500, with a frequency of 14 days. Λ periodic, and ΓI = 0.6 (t > 500)
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Figure 13: Periodic time evolution of Susceptible pods, Infected pods, and spores, when sanitary
harvest starts at t = 500, with a frequency of 7 days. Λ periodic, and ΓI = 0.6 (t > 500)

5 Discussion and Conclusion

This paper considers an epidemiological model which incorporates a periodical birth rate function
for cocoa pods and analyzes the temporal evolution of black pod disease in a plot. The impact
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Figure 14: Periodic time evolution of Susceptible pods, Infected pods, and spores, when sanitary
harvest starts at t = 500, with a frequency of 3 days. Λ periodic, and ΓI = 0.6 (t > 500)

of phytosanitary pod removal was assessed here and the results seem to be in general agreements
with the literature. [30] shows that application of sanitary harvest could lead to reduced black
pod incidence by 22 % to 31 % , [33] found that weekly removal of infected pods by P. palmivora
reduced the incidence of epidemics significantly in comparison with fortnightly removal (35 to 66%
incidence reduction). Our results show that intense and regular phytosanitary pod removal (every
four days) could reduce disease incidence even more than these percentages. In some cases number
of infected pods in the plot could practically be reduced to nothing. It is important to mention
that the good qualitative properties of the system can be partially explained by the fact that the
model considers an isolated cocoa plot. Thus, we are neglecting external factors such as external
inoculum and neighboring plots which can provide external sources of infections. Furthermore,
the model does not take into account the impact of the climate in disease dynamics. It is also
important to mention that in reality phytosanitary pod removal will never be 100% effective. It
is time consuming, labor intensive and thus relatively expensive and, in general, only a certain
percentage of diseased pods is removed completely, such that inoculum remains in the system
capable of causing more infections. Indeed, when pods are eliminated from the trees they are most
often left on the ground where they, temporarily, can still cause secondary infections or contribute
to the environmental reservoir of spores (Spe). However, P. megakarya will lose ”viability” quicker
on pods laying on the ground than on pods remaining on the tree. In this paper, the relative
importance of the two different inoculum sources Spe and Spi was also investigated. According
to the results presented here it also seems that the environmental reservoir is preponderant and
seems to play an important role in disease epidemics. Although Turner already mentioned in 1965
that the importance of the soil as a reservoir of inoculum responsible for infections has not been
adequately addressed in consideration with Phytophthora cacao pod rot epidemics [38], since then,
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very little work specifically focused on the role and control of on the environmental spore reservoir
has been done. This can be explained by difficulties to put in place reliable experiments to estimate
some parameters linked to the environmental spore reservoir (Inoculum quantity in the soil and
spores shedding or decay rates in the environment). However, recent advances, e.g. the whole
genome sequencing of P. megakarya, opens up new avenues such as the development of qPCR
primers to easily quantify inoculum quantities in the soil [24]. Here we highlight the fact that
disease outbreaks and spores lasting in the environment are strongly linked to the environmental
spores compartment Spe. These results are in agreement with [37] who hypothesize that primary
inoculum (Spe) is the main determinant for the spatial and temporal development of an epidemic
at the plantation level and that secondary inoculum (Spi) is mainly responsible for the within-tree
temporal development of black pod. This could also explain why phytosanitation, seems to have
a more direct effect on secondary inoculum. This also indicates the need to focus and engage
new experimentations to broaden our knowledge on the role of the environmental spore reservoir in
disease epidemics in order to establish efficient control strategies. Since the sensitivity analyses also
show that the infectious compartments (I, Spe, Spi) are most sensitive to the Spores inactivation
rates parameters (d1 and d2), a more precise estimation of these parameters is needed to confirm
these results. In addition to sanitary harvesting, our study also highlights important parameters
on which we could act to establish efficient management strategies. For example recommendations
in terms of intelligent fungicide applications could lead to a reduction in the production rate of
spores, σ, and treatment of the soil reservoir could lead to increase the inactivation speed of primary
and secondary inoculum, i.e. increase the spores death rates di. These strategies combined with
intensive and regular sanitary pod removal could guarantee increased yield. This modeling exercise
helps us to define and engage new experimentations on the P. megakarya-Cocoa pathosystem. It
seems especially necessary that we broaden our knowledge on the role of the environmental spore
reservoir in disease epidemics and thus establish more efficient management strategies. The next
steps will be to develop and implement new experiments to estimate the infectious potential of the
environmental reservoir (Sp,e) and how to reduce it. This exercise also shows that for several other
parameters used in the model, scarce or no reliable data are available and thus experimentations
should be undertaken to provide more reliable estimates for these parameters. Future mathematical
studies include the analysis of the impulsive system (11)-(12), and take into account the spatial
propagation of the spores, like in [12](see also [14]).
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Appendix A

In this appendix we recall some useful results.

Theorem 2 ([25]). Let Ω ⊂ U = R3
+ × R3

+. The system (E) is of class C1, defined on U . If

(1) Ω is positively invariant relative to (E).

(2) The system ẋS = A1(x)(xS − xDFE,S) is GAS at xDFE,S.

(3) For any x ∈ Ω, the matrix A2(x) is metzler irreducible.

(4) There exists a matrix A2, which is an upper bound of the set M = A2(x) ∈ M3(R)|x ∈ Ω,
with the property that if A2 ∈ M, for any x ∈ Ω, such that A2(x) = A2, then x ∈ Ω.

(5) The stability modulus of A2, α(A2) = maxλ∈Sp(A2)Re(λ), satisfies α(A2) ≤ 0.

Then the DFE is GAS in Ω .

Theorem 3 ([22], theorem 6.23). Let A ∈Mn be a real matrix. A is irreducible if and only if the
matrix (In + |A|)n−1 is strictly positive.

To check condition (5), following Varga [41] and Berman and Plemmons [8] let us recall the
following definition and theorem.

Definition 1 ([41]). For a real Metzler matrix M , M = N + K is a regular splitting if K is a
Metzler stable matrix and N ≥ 0 is a nonnegative matrix .

Theorem 4 ( [41], Theorem 3.29). Let M = N +K be a regular splitting of a real Metzler matrix
M , then M is Metzler stable if and only if

ρ(−N−1K) < 1

For epidemiological models with periodic parameters, Wang et al. [42] generalized the results
from Van den Driessche et al. [40]. Like in [40], it is assumed that all compartments are divided in
two types: infected compartments, labeled by i = 1, ...,m, and uninfected compartments, labeled
by i = m+ 1,..., n. We consider the following disease transmission system

dxi
dt

= fi(x, t) = Fi(x, t)−
(
V−i (x, t)− V+

i (x, t)
)
, i = 1, ..., n. (13)

Let Xs = {x ≥ 0, xi = 0, i = 1, ...,m}. Then, we verify the following assumptions

(A1) For each 1 ≤ i ≤ n, Fi(x, t) , V+
i (x, t) , and V−i (x, t) are nonnegative and continuous on

Rn+ × R+, and continuously differentiable.

(A2) There is a real number T > 0 such that Fi(x, t) , V+
i (x, t) , and V−i (x, t) are τ−periodic in t.

(A3) If xi = 0, then V−i = 0. In particular if x ∈ Xs then V−i = 0 for i = 1, ...,m.

(A4) Fi = 0 for i > m.

(A5) If x ∈ Xs, then Fi(x) =V+
i (x) for i = 1, ...,m.
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Assume now that system (13) has a periodic equilibrium, xper = (0, ..., 0, xpm+1, ..., x
p
n). Then, we

compute the Jacobian matrix

DxF (DFE1) =

(
F (t) 0

0 0

)
and DxV (DFE1) =

(
V (t) 0
J(t) −M(t)

)
with

M(t) =

(
∂fi(xper, t

∂xj

)
m+1≤i,j≤n

F (t) =

(
∂Fi(xper, t

∂xj

)
1≤i,j≤m

, V (t) =

(
∂Vi(xper, t

∂xj

)
1≤i,j≤m

Let ΦM (t) be the monodrony matrix of the linear τ -periodic system dz
dt = M(t)z. We assume that

xper is linearly asymptotically stable in Xs, that is

(A6) ρ(ΦM (τ)) < 1.

and finally, the following condition needs to be meet

(A7) ρ(Φ−V (τ)) < 1.

Thus, if system (13) verifies assumptions (A1)-(A7), then we have

Proposition 4. [42]

• R0,per = 1 if and only if ρ (ΦF−V (T )) = 1.

• R0,per < 1 if and only if ρ (ΦF−V (T )) < 1.

• R0,per > 1 if and only if ρ (ΦF−V (T )) > 1.

Thus, the PDFE is asymptotically stable if R0,per < 1, and unstable if R0,per > 1.

In general R0,per is very difficult or impossible to derive analytically. But, following Theorem
2.1 [42], we are able to obtain a numerical approximation. Indeed it suffices to estimate the Floquet
multipliers and hence the spectral radius,ρ(w, τ), of the following linear τ -periodic system

dw

dt
= (−V (t) +

F (t)

λ
)w, (14)

with parameter λ ∈ (0,∞). Let W (t, λ) be the standard fundamental matrix of (14) with W (0, λ) =
Id. Then, according to Theorem 2.1[42] (ii), we know that if R0,per > 0, then λ = R0,per is the
unique solution of ρ(w, τ) = 1.

Appendix B

We prove Theorem 1 using Theorem 2, page 27, in Appendix A. Let us now verify the different
assumptions:

1. Assumptions (1) and (2) of theorem 2 are satisfied. Ω is positively invariant as shown in
section 3. A direct computation shows that the eigenvalues of A1(x) are real and negative
(λ1,A1 = −(θ1 + µ1 + w), and λ2,A1 = −µ2, thus the system ẋS = A1(x)(xS − xDFE,S) is
globally asymptotically stable (GAS) at xDFE,S .
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2. To verify assumption (3), we use Theorem 3. Clearly A2(x) is a Metzler matrix. Since n = 3,
we have to compute (I3 + |A2(x)|)2, which leads to

(I3 + |A2(x)|)2 =


1 + (γi + µi) β∗2 β∗1

r2σ 1 + d2 0

r1σ 0 1 + d1




1 + (γi + µi) β∗2 β∗1

r2σ 1 + d2 0

r1σ 0 1 + d1

 ,

where

β∗1 =
β1

1S1 + β2
1S2

K1
and β∗2 =

β1
2S1 + β2

2S2

K2

Finally

(I3 + |A2(x)|)2 =


(1 + (γi + µi))

2 + r2σβ
∗
2 + r1σβ

∗
1 (2 + γi + µi + d2)β

∗
2 (2 + γi + µi + d1)β

∗
1

r2σ(2 + γi + µi + d2) r2σβ
∗
2 + (1 + d2)

2 r2σβ
∗
1

r1σ(2 + γi + µi + d1) r1σβ
∗
2 r1σβ

∗
1 + (1 + d1)

2


which obviously implies (I3 + |A2(x)|)2 > 0 for all x ∈ Ω/{(0, 0, 0, 0, 0)}.

3. Assumption (4): we have to find an upper bound of matrix A2(x). In fact, since x ∈ Ω,

A2 is simply given by A2(x), where x = (Sdfe1 , Sdfe2 , 0, 0, 0) ∈ Ω, with Sdfe1 = Λ
θ1+µ1+w and

Sdfe2 = θ1Λ
µ2(θ1+µ1+w) .

4. To check the last assumption of Theorem 2, we first use Definition 1 and Theorem 4. We
consider the following regular splitting of matrix A2:

A2 =


−(γi + µi) 0 0

r2σ −d2 0

0 0 −d1

+


0

β1
2S

dfe
1 + β2

2S
dfe
2

K2

β1
1S

dfe
1 + β2

1S
dfe
2

K1

0 0 0

r1σ 0 0

 = N +M.

where N is a Metzler stable matrix and M is a non negative matrix. Note carefully that the
choice of N and M is fully in agreement with the Jacobian F and V in section 3.1.1

−N−1M =



1

(γi + µi)
0 0

r2σ

(γi + µi)d2

1

d2
0

0 0 1
d1




0

β1
2S

dfe
1 + β2

2S
dfe
2

K2

β1
1S

dfe
1 + β2

1S
dfe
2

K1

0 0 0

r1σ 0 0


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=



0
β1

2S
dfe
1 + β2

2S
dfe
2

K2(γi + µi)

β1
1S

dfe
1 + β2

1S
dfe
2

K1(γi + µi)

0
r2σ

(γi + µi)d2

β1
2S

dfe
1 + β2

2S
dfe
2

K2

r2σ

(γi + µi)d2

β1
1S

dfe
1 + β2

1S
dfe
2

K1

r1σ

d1
0 0


.

Now we have to estimate the eigenvalues of −N−1K by computing the characteristic polyno-
mial:

P (X) = det(−N−1M−XI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−X β1
2S

dfe
1 + β2

2S
dfe
2

K2(γi + µi)

β1
1S

dfe
1 + β2

1S
dfe
2

K1(γi + µi)

0
r2σ

(γi + µi)d2

β1
2S

dfe
1 + β2

2S
dfe
2

K2
−X r2σ

(γi + µi)d2

β1
1S

dfe
1 + β2

1S
dfe
2

K1

r1σ

d1
0 −X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which leads to

P (X) = X2

[
r2σ

(γi + µi)d2

β1
2S

dfe
1 + β2

2S
dfe
2

K2
−X

]
+
r1σ

d1

β1
1S

dfe
1 + β2

1S
dfe
2

K1(γi + µi)
X.

According to (6), we deduce

P (x) = X
(
R0,i +R0,dX −X2

)
.

which implies that

ρ(−N−1M) =
1

2

(
R0,d +

√
R2

0,d + 4R0,i

)
= R0.

Then according to theorem 4, page 27, we conclude that α(A2) ≤ 0 if and only if R0 ≤ 1.

Altogether, all assumptions of Theorem 2, page 27, being verified, we deduce that the DFE is GAS
if R0 ≤ 1.

Appendix C: Computations of the Endemic Equilibrium

Replacing S∗1 , S∗2 , Sp,i, and Sp,e by their respective expressions in (1)4, we show that the endemic
equilibrium of (S), satisfy a polynomial of the form

P (I) = a4I
4 + a3I

3 + a2I
2 + a1I + a0.

In the following, we compute the different terms of P (I) using the expression of S1 and S2 at the
equilibrium:

S1 =
(θ1 + µ1 + w)Sdfe1

θ1 + µ1 + w + λ1
, S2 =

(µ2 + θ2)Sdfe2

µ2 + θ2 + λ2
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
Sdfe1 =

Λ

θ1 + µ1 + w

Sdfe2 =
θ1Λ

(µ2 + θ2)(θ1 + µ1 + w)

Replacing Sp,e and Sp,i in the infection forces we get:

λi =

[
βi1r1σI

K1d1 + r1σI
+

βi2r2σI

K2d2 + r2σI

]
=

[(βi1 + βi2)r1r2σ
2]I2 + [βi1r1σK2d2 + βi2r2σK1d1]I

r1r2σ2I2 + [r1σK2d2 + r2σK1d1]I +K1K2d1d2

Then, using (5)3, we have:

(γI + µI)I = λ1S1 + λ2S2

=
(A1

2I
2 +A1

1I)(θ1 + µ1)Sdfe1

(B2I2 +B1I +B0)(θ1 + µ1 + λ1)
+

(A2
2I

2 +A2
1I)µ2S

dfe
2

(B2I2 +B1I +B0)(µ2 + λ2)

=
[A1

2S
dfe
1 ]I2 + [A1

1S
dfe
1 ]I

[B2 +
A1

2
θ1+µ1

]I2 + [B1 +
A1

1
θ1+µ1

]I +B0

+
[A2

2S
dfe
2 ]I2 + [A2

1S
dfe
2 ]I

[B2 +
A2

2
µ2

]I2 + [B1 +
A2

1
µ2

]I +B0

,

or equivalently

(γI + µI)I =
F1I

2 + F2I

F3I2 + F4I +B0
+

P1I
2 + P2I

P3I2 + P4I +B0
(15)

with
F1 = [(β1

1 + β1
2)r1r2σ

2]Sdfe1 ,

P1 = [(β2
1 + β2

2)r1r2σ
2]Sdfe2 ,

F2 = [β1
1r1σK2d2 + β1

2r2σK1d1]Sdfe1, ,

P2 = [β2
1r1σK2d2 + β2

2r2σK1d1]Sdfe2, ,

F3 = r1r2σ
2[1 +

(β1
1+β1

2)
θ1+µ1

],

P3 = r1r2σ
2[1 +

(β2
1+β2

2)
µ2+θ2

],

F4 = [1 +
β1
1

θ1+µ1
]r1σK2d2 + [1 +

β1
2

θ1+µ1
]r2σK1d1,

P4 = [1 +
β2
1
µ2

]r1σK2d2 + [1 +
β2
2
µ2

]r2σK1d1,

B0 = K1K2d1d2,

from (15), we have

(γI + µI)I =
F1I

2 + F2I

F3I2 + F4I +B0
+

P1I
2 + P2I

P3I2 + P4I +B0

which leads directly to

(γI + µI)I =
AI4 +BI3 + CI2 +DI

EI4 + FI3 +GI2 +HI +B2
0

, (16)

where 

A = F1P3 + P1F3,
B = F1P4 + P1F4 + F2P3 + P2F3,
C = B0(F1 + P1) + F2P4 + P2F4,
D = B0(F2 + P2),
E = F3P3,
F = F3P4 + P3F4,
G = B0(F3 + P3) + F4P4,
H = B0(F4 + P4).
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Then, equation (16) leads directly to:

P (I) = (γI + µI)E ∗ I4 + [(γI + µI)F −A] ∗ I3 + [(γI + µI)G−B] ∗ I2+
+[(γI + µI)H − C] ∗ I + [(γI + µI)B

2
0 −D],

which is equivalent to
P (I) = a4I

4 + a3I
3 + a2I

2 + a1I + a0,

with
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Table 1: Epidemiological parameters

Parameters description Units Values or range of values Source

Λ Cherelle ”recruitment” rate Days−1 12 [10]
θ1 Growth rate from cherelle Days−1 0.05 [36] [34]

to young pod
θ2 ripening rate Days−1 0.027
β1

1 primary infection rate at 0.05 Assumed
the cherelle stage Days−1

β1
2 secondary infection rate at 0.05 Assumed

the cherelle stage Days−1

β2
1 primary infection rate at 0.2 Assumed

the pod stage Days−1

β2
2 secondary infection rate at 0.2 Assumed

the pod stage Days−1

γI rate of phytosanitary Days−1 [0-0.8] [30]
pod removal

w attack rate by wilt Days−1 0.1 [35]
µ1 natural death rate of Days−1 0.05 [34]

cherelle
µ2 natural death rate of pods Days−1 0.00469 [34]
µI natural death rate of Days−1 0.05 Assumed

infected pods
d1 natural decay of spores in Days−1 0.02 Assumed

the environment
d2 inactivation speed of spores Days−1 0.4 Assumed
σ production rate of spores by Spores Days−1 574200 Assumed

infected pods
r2 releasing speed of spore Spores Days−1 0.4 Assumed
r1 shedding rate of spores in the Spores Days−1 0.4 Assumed

environment
K2 Michaelis constant for Number of spores 108 Assumed

pod to pod transmission
K1 Michaelis constant for Number of spores 2× 109 Assumed

environmental transmission

γI R0 R0,per

0 3.27 3.22

0.25 0.88 1.03

0.3 0.80 0.93

Table 2: Thresholds estimates for different values of γI when Λ constant and Λ periodic
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a0 = [(γI + µI)B
2
0 −B0(F2 + P2)]

= B2
0 [(γI + µI)−

F2 + P2

B0
]]

= (γI + µI)B
2
0 [

[
1− F2 + P2

(γI + µI)B0

]
= (γI + µI)B

2
0

[
1−

[
r1σ(β1

1S
dfe
1 + β2

1S
dfe
2 )

(γI + µI)K1d1
+
r2σ(β1

2S
dfe
1 + β2

2S
dfe
2 )

(γI + µI)K2d2

]]
= (γI + µI)B

2
0 [1−R0,g] (20)

Obviously, we can deduce that the sign of a0 depends on R0,g.
We clearly have an idea of the sign of a0, which is directly related to R0,g.
Thus, when R0,g > 1 than a0 < 0, which implies that there exists at least one positive root of

P (I), and thus, at least, one positive equilibrium.
However, using the Descarte’s rule of sign, we can go further and derive the possible number of

positive roots of P (I). The different possible results are summarized in Table 3, page 35.

Table 3: Descartes sign tab for the polynom P (I) when R0 > 1

No: a4 a3 a2 a1 a0 Number of Number of
signs changes positive roots

1 + + + - - 1 1

2 + + - - - 1 1

3 + - + - - 3 3 or 1

4 + - - - - 1 1

5 + + + + - 1 1

6 + + - + - 3 3 or 1

7 + - + + - 3 3 or 1

8 + - - + - 3 3 or 1
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Table 4: Range of values for the parameters used for the global sensitivity analysis

Parameters range of values

Λ [0 100]
θ1 [0.01 0.2]
θ2 [0.01 0.2]
β1

1 [0.01 0.5]
β1

2 [0.01 0.5]
β2

1 [0.01 0.5]
β2

2 [0.01 0.5]
γI [0 0.8]
w [0.01 0.4]
µ1 [0.01 0.2]
µ2 [0.0001 0.1]
µI [0.01 0.2]
d1 [0.01 0.5]
d2 [0.01 0.5]
σ [103 106]
r2 [0.01 0.8]
r1 [0.01 0.8]
K2 [0 1010]
K1 [0 1010]
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