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The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of
Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form
matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order
Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-
dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decom-
position, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of
the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new
matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon
form using the Gauss–Jordan elimination method. We extend the model to derive orthonormal vector general
polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient
matrix to give its equivalent in the general pupil. The outer form of the Gram–Schmidt procedure and the Gauss–
Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general 
polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model 
is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle. 

OCIS codes: (000.3860) Mathematical methods in physics; (080.1005) Aberration expansions; (110.0110) Imaging systems;

(120.5050) Phase measurement.

1. INTRODUCTION

Slope-based wavefront sensors characterize phase in three
stages. First, the Cartesian derivative of the phase map is gen-
erated by measuring the distribution of the local wavefront tilts.
This is followed by a numerical integration procedure to gen-
erate a phase map. Lastly, an appropriate polynomial set is fitted
to the phase map to generate expansion coefficients. The proc-
ess can be shortened into two stages, namely, generation of the
wavefront slope map, followed by fitting of an appropriate vec-
tor polynomial set to the slope map, from which the coefficients
can be derived. Traditionally, Zernike circle (ZC) polynomials
are used to characterize the wavefront. These polynomials pro-
vide a clear advantage when working with circular pupils since
their orthogonality guarantees minimum variance and they can
be related to classical aberrations. However, it becomes a tedi-
ous task to use ZC polynomials for determining the wavefront
slope in that vector polynomials calculated from their Cartesian
gradient are not normalized across the slope map. A complete

orthonormal vector circle polynomial set spanning the wave-
front slope map in a unit circle (OVC) was derived by
Zhao and Burge [1,2]. Their model for an OVC set provided
a step forward from Noll’s landmark paper in 1976, where the
Cartesian phase slope was presented in a unit circle as a linear
combination of lower ZC polynomials [3]. Noll’s model lacked
both a closed-form equation and orthonormal polynomials.
Rigorous investigations of the slope of the ZC polynomials with
trigonometric azimuthal dependence were implemented by
Stephenson [4] for real ZC polynomials with trigonometric azi-
muthal dependence, and by Janssen [5] using an unnormalized
ZC set with an exponential azimuthal complex component. In
a recent development, Mahajan and Acosta advanced a new
analytical method for deriving vector polynomials orthogonal
to the gradients of Zernike circle polynomials. What is special
about these polynomials is that they propagate minimum un-
correlated random noise from the data to coefficients [6], the
discussion of which is beyond the scope of this paper.



Wavefront slope is also critical in the study of intensity mo-
ments of weakly truncated aberrated TEM00 Gaussian laser
beams [7–9] where models have been developed showing
the dependence of the moments on aberration coefficients.
In fact, Alda et al. based a large part of their method on
Noll’s model [7]. Orthonormal Zernike-based (OZ) polyno-
mials have been applied to pupils other than circular pupils
[10–13]. Recent efforts to deal with orthonormality in
wavefront slope include the work of Ye et al., who devised a
matrix-based numerical orthogonal transformation method
for generating numerical orthogonal gradient polynomials
[14], and that of Li et al., who derived orthonormal vector poly-
nomials orthogonal in a square pupil of unit half-length [15].

The above literature has dealt with the characterization of
wavefront slope including the use of various polynomial sys-
tems. To our knowledge, the only study that has dealt with
the wavefront slope in noncircular pupils was in [15]. It is
our assertion that a procedure can be found to derive vector
polynomials orthonormal in any pupil. In this study, we present
an analytical method for the generation of OVC polynomials
using matrices in row-reduced echelon form and extending the
model to the general noncircular nonuniform pupil using the
Cholesky decomposition and a matrix similarity transforma-
tion. The result is a model that would allow one to derive vector
polynomials that are orthonormal in general pupils (OVG). A
general pupil is noncircular and nonuniform, which would
make a unit circle a special case. The model can therefore
be used to analyze any problem involving wavefront slopes
in any pupil shape. We revisit the existing OVC polynomial
model as outlined by Zhao and Burge [1,2] but this time using
matrices to facilitate the conversion to general pupil where ap-
propriate similarity and change of basis transformations would
be presented. We treat the pupil as a vector space in which the
OZ set is one of the bases that span the pupil. The approach we
use is purely analytical where the removal of the piston is not
assumed but is built into the model and so the piston is re-
moved naturally. The relationship between OZ coefficients
and OVG coefficients in general pupils is provided just like
the one relating ZC coefficients with OVC coefficients in a unit
circle in the case of the wavefront. Matrices have been utilized
selectively in some of the literature referred to so far so that we
have decided to look at the possibility of performing wavefront
analysis using matrices exclusively. The results for the case of
the unit circle [1,3,4] serve as an acid test for the validity of our
method before it is applied it to the general pupil.

The paper is organized as follows. In the following section,
the ZC Cartesian gradient field is introduced and expressed as a
sum of lower-order ZC polynomials. From this matrix, the
OVC polynomial set is derived using the Cholesky decompo-
sition method from which a relationship between the ZC and
the OVC coefficients sets is presented. We follow up with
Section 3 in which we explain how the OVC polynomials
can be used to characterize slope maps. In Section 4, a matrix
formulation of the Gram–Schmidt (GS) procedure is intro-
duced, which is used to derive an OZ set. In Section 5, the
OZ set is used to derive the orthonormal vector general poly-
nomial set starting with the appropriate gradient polynomial
field. The efficacy of the model is applied to the analysis of

simulated wavefront slope data in a square pupil inscribed
in a unit circle in Section 6. The paper is summarized in
Section 7.

2. ZERNIKE CIRCLE SLOPE EXPANSION

Consider a circular pupil described by a pupil function of the
form

E�ρ, θ� �
�
expfiϕc�ρ, θ�g, ρ ≤ 1

0, ρ > 1
, (1)

where a real unit amplitude described by a circular function and
a real phase ϕc�ρ, θ� are assumed, with �ρ, θ� being cylindrical
spatial coordinates across the pupil and i � ffiffiffiffiffi

−1
p

. The phase
can be written as a linear expansion of the complete ordered
Zernike polynomial set, z�ρ, θ� � fZm

n �ρ, θ�gJj�1, i.e.,

ϕc�ρ, θ� � ctz�ρ, θ�, (2)

where c � fCm
n gJj�1 is a column vector of expansion coeffi-

cients, with n and m being the order and azimuthal numbers,
respectively, and the superscript t representing matrix transpo-
sition. The orthonormality of the circle polynomials is
epitomized by the equation

1

π

Z
2π

0

Z
1

0
z�ρ, θ�zt�ρ, θ�ρdρdθ � I , (3)

where I is an identity matrix. Each coefficient, Cm
n , and its as-

sociated ZC polynomial, Zm
n �ρ, θ�, are therefore associated

with a unique double index set �n,m�. For all polynomial sets
we will follow the sequence of elements set by Noll [3], where
each aberration is also indicated by a mode number j. We as-
sume that the dimension is set at some finite number J. Note
that all matrices are represented by bold capital letters and are of
dimension J × J , while vectors are represented by bold small
letters and are of dimension J × 1. In cylindrical geometry, each
ZC polynomial is given by a product of a radial and an
azimuthal term of the form

Zm
n �ρ, θ� �

X1
2�n−jmj�

k�0

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p �−1�k�n − k�!ρn−2k
k!
n
1
2 �n� m� − k

o
!
n
1
2 �n − m� − k

o
!

×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − δjmj,0
p

cos mθ, m ≥ 0ffiffiffi
2

p
sin jmjθ, m < 0

: (4)

Note that Zm
n �ρ, θ� � 0 when n − jmj is a negative or odd

integer; otherwise, it is a nonnegative, even integer.
Equation (3) is an inner product matrix referred to as the
Gram matrix, which is constructed using the inner product
of an orthonormal set, in this case the ZC polynomial set in
the unit circle. The fact that the result is an identity matrix
implies that the ZC polynomial set forms an orthonormal basis
in this pupil. The determinant of this matrix is nonzero, mean-
ing that the ZC polynomials are linearly independent [16]. The
size of the matrix obviously depends on the number of basis
functions used.

The Cartesian gradient of the phase is defined by a trans-
verse linear gradient operator, ∇T � î∂x � ĵ∂y, on the phase of
the field as follows:

~∇Tϕc�ρ, θ� � ct∇T z�ρ, θ�, (5)
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where the Cartesian gradient of the phase is presented as an
expansion of a field of polynomials represented by the vector
field ∇T z�ρ, θ� of size J × 1 [1]:

∇T z�ρ, θ� � î∂xz�ρ, θ� � ĵ∂yz�ρ, θ� � ~Mz�ρ, θ�: (6)

We define all symbols with an arrow on top of the symbol to
represent a transverse two-dimensional Euclidean vector of the
standard basis. If the arrow is on top of a symbol representing a
column vector or a matrix, then all the elements in the column
vector or matrix would be transverse Euclidean vectors. Each
aberration up to j � J is arranged in the order of the ZC
set as fZm

n �ρ, θ�gJj�1.
In Subsection 2.A, we now outline a derivation of the ZC

gradient matrix using Taylor monomials. We then follow up in
Subsection 2.B with a derivation of a special singular matrix to
represent the Cartesian gradient of the ZC polynomials as a
linear combination of the OVC polynomials. We follow up
in Subsection 2.C with an innovative procedure involving
the use of the Gauss–Jordan elimination to reverse the matrix
equation outlined in Subsection 2.B to express the OVC
polynomials in terms of ZC polynomials.

A. Calculation of the ZC Polynomial Cartesian
Gradient Matrix ~M from Taylor Monomials

The matrix ~M is a characteristic square matrix for representing
the ZC polynomial Cartesian gradient as a linear combination
of lower-order ZC polynomials. The method to calculate this
matrix is to set the phase ϕc as a linear combination of the
Taylor monomials. The reason for this is that the first-order
Cartesian derivatives of Taylor monomials are easier to get than
those of the ZC set. The procedure first establishes a relation-
ship between the two expansion sets and then uses the Taylor
monomial derivatives to derive the Cartesian derivatives of the
ZC set. The Taylor monomials set can be represented by the
vector

τ�ρ, θ� � fT q
p�ρ, θ�gJl�1 � fρp Cosp−q θ Sinq θ�gJl�1

� fxp−qyq�gJl�1 � τ�x, y�, (7)

which is an ordered set arranged according to the order number
l , each one associated with a unique double index set �p, q�,
which can be related to l through [17,18]

p � int

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�l − 1� � 1

p
− 1

�
∕2

�
;

q � l − p�p� 1�∕2 − 1:
(8)

Unlike in [17,18], the expressions for p and q have been
modified to allow the monomial ordering to start at l � 1
instead of 0.

The ZC and the Taylor monomial sets can be related
through a matrix equation:

z�ρ, θ� � Pτ�ρ, θ� � Pτ�x, y�, (9)

where P is the nonsingular change-of-basis matrix from the
Taylor monomials to the ZC set. For J � 21, it is illustrated
in Fig. 1(a). The results match those shown in Table 5.10 of
[18]. The gradient of the Taylor monomials can be expressed as
a linear combination of lower-order Taylor monomials as
follows:

∇T τ�ρ, θ� � ~Qτ�ρ, θ� � îQx
l l 0τ�ρ, θ� � ĵQ y

l l 0τ�ρ, θ�, (10)

where the elements making up the vector ~∇T τ�ρ, θ� can be
calculated from [17]

∇T τ�ρ, θ� � f ~∇TT
q
p�ρ, θ�gJl�1

� fî�p − q�T q
p−1�ρ, θ� � ĵqT q−1

p−1�ρ, θ�gJl�0
, (11)

where τ�ρ, θ� follows a slightly different sequence from
Section 3.4.2 of [18]. These two matrices Qx

l l 0 and Q y
l l 0 are

illustrated in Figs. 1(b) and 1(c). It is apparent that, as with
the ZC polynomials, the Cartesian gradient of each Taylor
monomial is a linear combination of Taylor monomials of
lower order than that itself.

The gradient of the ZC set can then be calculated by taking
the gradient of Eq. (9), and then using Eq. (10) and again
Eq. (9) to get a matrix representation of the ZC Cartesian
gradient in terms of the ZC set:

∇T z�ρ, θ� � P∇T τ�ρ, θ� � P ~Qτ�ρ, θ� � P ~QP−1z�ρ, θ�:
(12)

Comparing Eq. (6) with Eq. (12), one finds a similarity
transformation on the Taylor monomial gradient matrix,

~M � P ~QP−1 � îγxjj 0 � ĵγxjj 0 , (13)

that facilitates the calculation of the ZC gradient matrix.
Similar matrices, like ~M and ~Q , share certain properties such
as rank, trace, determinant and eigenvalues, which remain
invariant during coordinate transformation [16]. Its compo-
nents are given by γxjj 0 and γyjjγ , respectively, shown in
Tables II and III in [3], which are x and y components.
Equation (6) is a representation of the equations listed in

Fig. 1. Scaled color image plot of (a) P, a square matrix for calcu-
lating the first 21 ZC polynomials from Taylor monomials. The two
square matrices (b)Qx and (c)Q y for expressing the Cartesian gradient
of Taylor monomials as linear combinations of the lower-order Taylor
monomials. Intensity scale bar is shown on the right of each plot.

3



Table 1 of [1]. The elements of γxjj 0 and γyjj 0 for J � 21 are
shown as scaled color images in Figs. 2(a) and 2(b), respectively.

B. Orthonormal Vector Circle Polynomials

The ZC Cartesian gradient set, ∇T z�ρ, θ�, is not orthonormal
in a circular pupil. A new set of OVC polynomials, which pos-
sesses this property, was therefore developed using the Gram–
Schmidt orthogonalization procedure [1,2]. We are revisiting
the same problem here, but using matrices instead. The
Zernike gradient set can be represented as a linear combination
of the OVC polynomials:

∇T z�ρ, θ� � K~s�ρ, θ�, (14)

where K , which is to be determined, is a square matrix of ex-
pansion coefficients of the polynomials. To ensure that the
OVC polynomial set, ~s�ρ, θ� � îsx�ρ, θ� � ĵsy�ρ, θ�, is ortho-
normal in a circle, the following Gram matrix equation should
be valid:

1

π

Z
2π

0

Z
1

0

~s�ρ, θ� ∘ ~s�ρ,θ�tρdρdθ � I , (15)

where ∘ represents scalar multiplication. Comparing Eqs. (6)
and (14), we find a relation between the OVC and the
Zernike set, as shown in the first equation of Eq. (16) below.
Each side of the resultant equation is then post scalar multiplied
by the transposed version of itself resulting in ~Mz�ρ, θ� ∘
zt�ρ, θ� ~M t on the left-hand side and K~s�ρ, θ� ∘ ~st�ρ, θ�K t

on the right-hand, respectively. The inner product of both sides
is then calculated in a unit circle and then simplified using both
Gram matrices, Eqs. (3) and (15), eliminating both z�ρ, θ� and
~s�ρ, θ�, thereby generating the second equation of Eq. (16):

~Mz�ρ, θ� � K~s�ρ, θ� ⇒ KK t � ~M ∘ ~M t : (16)

Since ~M ∘ ~M t is not positive definite, the Cholesky decom-
position procedure cannot be applied to solve for K . Neglecting
the first row and first column of ~M ∘ ~M t , which are all zeros, a
principal submatrix conformable with this procedure is ob-
tained. This problem can be handled by partitioning K into
the form

K �
�
0 ~0t

~0 K̃

�
, (17)

where the vector ~0 � f~0g is of size �J − 1� × 1, with K̃ ; being of
size �J − 1� × �J − 1�. The method is referred to as the outer

product form of the Cholesky decomposition [19]. Applying
this method to Eq. (16) gives the equation K̃ K̃ t �
~̃M ∘ ~̃M

t
, which is conformable with the decomposition pro-

cedure. After solving for K̃ , it is reinstated in Eq. (17).
Figure 3(a) shows the scaled color image plot of K for J �
21 where it can be verified that it is also a lower triangular
matrix, which is even sparser than ~M , with the first row
and column being zeroes.

C. Orthonormal Vector Circle Polynomials in Terms
of the Zernike Circle Polynomials

The OVC polynomials, ~s�ρ, θ�, can be calculated from
∇T z�ρ, θ� by solving Eq. (14). This is not a straightforward
task considering that K is a singular matrix. In this study,
we propose a method that will provide an analytical solution.
The matrix K is appended with an identity matrix of the same
size to get an augmented matrix �K ..

.
I � and row-reducing the

result using the Gauss–Jordan elimination method to get the
reduced row-echelon form �I p..

.
K r � [16] such that Eq. (14)

becomes

I p~s�ρ, θ� � K r∇T z�ρ, θ�: (18)

The matrix I p is a superdiagonal unit square matrix in which
all the elements are zeroes except those in the superdiagonal,

Fig. 2. Matrix components of ~M , (a) γxjj 0 and (b) γyjj 0 . The matrices
illustrate that the Cartesian gradient of each ZC polynomial depends
on linear combinations of ZC polynomials of orders lower than itself.

Fig. 3. (a) Matrices for expressing the ZC Cartesian gradient in
terms of OVC polynomials, K ; (b) a superdiagonal unit matrix,
I p; (c) expressing OVC polynomials in terms of ZC gradient polyno-
mials, K r ; (d),(e) expressing OVC polynomials in terms of ZC poly-
nomials, K rγx and K rγy ; (f ) polynomials in terms of the OVC
polynomials, �K t�r .
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which is occupied by ones, as shown in Fig. 3(b). It is apparent
that the effect of I p on ~s�ρ, θ� is to create a left-hand side in
which ~S00�ρ, θ� is effectively eliminated and plays no further
part, leaving the last element as ~0. The right-hand side is
the product of K r and the Cartesian gradient of the ZC set.
K r is a sparse matrix illustrated in Fig. 3(c) with the superdiag-
onal elements being nonzero. There are no nonzero elements
above the superdiagonal with a 1, which is the largest element,
at the bottom left-hand corner. The sequence of the OVC pol-
ynomials has been altered slightly than from that proposed by
Noll with the first order moved to the bottom row, making the
last element as ∇T Z 0

0. Note that the last elements on both sides
are the same regardless of the value of J meaning that the result
∇T Z 0

0 � 0 is therefore a universal result. Equation (18) can be
used to construct Table 3 in [1]. Consequently, the OVC poly-
nomials can be derived from the Zernike set by combining
Eqs. (6) and (18) by eliminating ∇T z�ρ, θ�, which leaves us
with

I p~s�ρ, θ� � K r ~Mz�ρ, θ�: (19)

Equation (19) can also be acquired directly by row-reducing
Eq. (14). Due to the construction of ~M , the matrix K r ~M con-
sists of two vector components, shown in Figs. 3(d) and 3(e) for
the x and y components, respectively. The last row of K r ~M
contains all zeroes, which is also a universal result independent
of J used in the analysis. Equation (19) can be used to construct
Table 4 of [1].

We chose this method as opposed to others, such as singular
value decomposition and QR decomposition, because of its
simplicity and ease of use. It appears that the matrix I p, which
is central to our model, could best be derived using the Gauss–
Jordan procedure. This is because the elements of the first row
of ~M are all zeroes. The resultant matrix, K , has a zero first row
and a zero first column. This makes using the least-squares ap-
proach impossible to implement since K tK is singular.
Moreover, although the QR decomposition technique can suc-
cessfully decompose K into an orthogonal matrix and an upper
triangular matrix, both are singular and hence it is not possible
to use this method either.

3. ZERNIKE CIRCLE SLOPE RECONSTRUCTION

The OVC coefficients can now be calculated by fitting OVC
polynomials, which span the wavefront slope in a unit circle,
generating slope coefficients, b � fBm

n gJj�1, such that the
wavefront slope can be reconstructed using

~∇Tϕc�ρ, θ� � bt~s�ρ, θ�: (20)

The slope maps concerned are generated from the Cartesian
gradient of the phase, which has î and ĵ components such that
∇Tϕc � î∂xϕc�ρ, θ� � ĵ∂yϕc�ρ, θ�. Therefore, the orthonor-
mality of the set equation allows one to directly calculate these
coefficients through a sum of two Cartesian components from
fitting the respective OVC polynomials as shown:

b � 1

π

Z
2π

0

Z
1

0
~s�ρ, θ� ∘ ~∇Tϕc�ρ, θ�ρdρdθ

� 1

π

Z
2π

0

Z
1

0

�
sx�ρ, θ�∂xϕc�ρ, θ�
�sy�ρ, θ�∂yϕc�ρ, θ�

�
ρdρdθ � bx � by:

(21)

The method used in [5] avoided the derivation of the OVC
set and thus avoids the use of Eq. (21). The Cartesian gradient
of the phase in a unit circle was expressed in the form
∂xϕc � ∂yϕc , which reduces to ctA�z where the matrix A�
is calculated from γxjj 0 � γyjj 0 . If we recast the Cartesian gradient
into a linear combination of the ZC set, δt�z, it is apparent that
δ� � At

�c, which was then solved by finding the pseudo-
inverse solution, �A�At

��−1A�. The least-squares estimate of
the expansion coefficients is a linear combination of the coef-
ficients of ∂xϕc � ∂yϕc of orders n� 1, n − 1 and azimuthal
numbers m� 1 [5].

From Eqs. (5) and (14), it has been established that

∇Tϕc�ρ, θ� � ctK ~s�ρ, θ�: (22)

By comparing Eqs. (20) and (22), the relationship between
the two coefficients is given by b � K tc. Applying the row-
reduction method, we obtain

I pc � fK tgrb: (23)

This equation allows us to calculate ZC coefficients from
slope coefficients in a unit circle if the OVC set is used to char-
acterize a slope map without the need to add an extra step of
integrating the slope maps to generate the phase. The matrix
fK tgr shown in Fig. 3(f ) is a mirror image to K r about the
superdiagonal except for the element 1 at the bottom left-hand
corner, which is common to both matrices.

The effect of I p is the elimination of the piston coefficient,
C0

0, from the formalism. Pre-multiplying fK tgr with b leaves us
with a vector whose last entry is 0 after effectively eliminating
B0
0. This is a very sparse matrix with nonzero elements along the

superdiagonal and to the right, giving two nonzero elements in
each row up to the ninth row. A cursory inspection tells us that
in each row corresponding to Cm

n , the two nonzero terms in-
dicate that each ZC coefficient is calculated from Bm

n and Bm
n�2.

4. ORTHONORMAL ZERNIKE-BASED
POLYNOMIALS

The general pupils can be described mathematically by any func-
tion of any pupil shape with the circular function being the spe-
cial case. This includes a nonuniform amplitude, a noncircular
system aperture, or both. Here the assumption is that the field is
defined by an amplitude function A�ρ� inside the aperture,
which obtains a value of zero outside, with ρ being a spatial co-
ordinate pinpointing any location within the aperture. The phase
distribution inside the aperture is given by ϕ� ρ�. The overall
result is a field in the aperture described by the pupil function

E� ρ� �
�
A� ρ� expfiϕ� ρ�g, inside the aperture

0, outside the aperture
: (24)

The wavefront inside the pupil is expressed as an expansion
of an infinite but discrete OZ polynomial set, z�ρ� �
fZm

n � ρ�gJj�0, spanning the pupil such that
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ϕ� ρ� � ctz� ρ� � χ tz�ρ, θ�, (25)

where c � fCm
n gJj�0 and χ � fXm

n gJj�0 are the respective expan-
sion coefficients if the phase is expanded as linear combinations
of the OC or ZC polynomials. The OZ set is orthonormal in
the pupil and so its Gram matrix has the property given by the
first equation shown below:RR

z� ρ�zt� ρ�A� ρ�d2ρRR
A�ρ�d2ρ � I : (26)

Equation (26) allows the calculation of the vector containing
the expansion coefficients, which can be derived using the first
equation. The OZ polynomials in a general pupil can be
written as a linear combination of the ZC polynomials and
so can be calculated through the first matrix equation below:

z� ρ� � �ρ, θ� ⇒ c � �H −1�tχ , (27)

which, incidentally, is a matrix form of the GS orthogonaliza-
tion procedure [10–12], indicating the change of basis from the
ZC to the OZ set. The right-hand side of Eq. (28) illustrates
the vector relationship between the two coefficient sets if we
select the same number of terms, J , for both expansions.

The expansion coefficients in a lower triangular matrix, H ,
are calculated from Eq. (28), which is derived by combining
Eq. (26) and the first equation of Eq. (27). The matrix H
is evaluated through the Cholesky decomposition considering
that H tH is a symmetric positive definite matrix [10–13]:

H tH �
�RR

z�ρ,θ�zt�ρ, θ�A� ρ�d2ρRR
A� ρ�d2ρ

�
−1

: (28)

5. ORTHONORMAL VECTOR GENERAL
POLYNOMIALS

Now that a formulation for the generation of the OZ polyno-
mials has been obtained, the model of the OVC polynomials
introduced in Sections 2 and 3 can be extended to include
general pupils. These are referred to as the OVG polynomials.
The wavefront gradient in this pupil is then represented by the
expression as a linear combination of the OVG set:

∇Tϕ� ρ� � ct∇T z� ρ�: (29)

Identical to the case of the gradient of a circular pupil, OVG
polynomials are generated through a GS orthogonalization of
∇T z�ρ, θ� � f∇Zm

n � ρ�gJj�1. Exploiting the linearity of the
operator, ∇T , it can be demonstrated that

∇T z� ρ� � ∇THz�ρ, θ� � H∇T z�ρ, θ�: (30)

In terms of the ZC gradient as defined in Eq. (6) into
Eq. (31) we eliminate ∇T z�ρ, θ� to obtain

∇T z� ρ� � H ~Mz�ρ, θ� � H ~MH −1z� ρ� � ~M z� ρ�: (31)

The third term in Eq. (31) is a result of the matrix form of
the Gram–Schmidt procedure [Eq. (27)], in which ∇T z� ρ� is
expressed in terms of a new gradient matrix ~M derived by a
similarity transformation of ~M :

~M � H ~MH −1, (32)

where H acts as a change of basis matrix of the transformation.
Using the method used in Eq. (9), the OZ Cartesian gradient
can also be expressed as follows:

∇T z� ρ� � K H~s� ρ�, (33)

where K H is a matrix to be determined as was done with K but
this time by solving the equation

K HK t
H � ~M ∘ ~M t : (34)

One can therefore surmise that OVG polynomials can be
calculated from OVC polynomials by a Gram–Schmidt
transformation given by the first question below:

~s� ρ� � H~s�ρ, θ�,
RR

~s� ρ� ∘ ~st� ρ�A� ρ�d2ρRR
A� ρ�d2ρ � I : (35)

The second equation of Eq. (35) is a Gram matrix of this set
in the general pupil. Equating Eqs. (31) and (33) and
row-reducing the result gives the OVG polynomials

I p~s� ρ� � K r
H & ~M z� ρ�: (36)

As described above, the acquisition of wavefront informa-
tion by an appropriate measurement device is usually achieved
using ZC polynomials, even for general pupils. In the case of
wavefront slope, the results are acquired by fitting OVC poly-
nomials to the wavefront in the general aperture to give results
of the form

∇Tϕ� ρ� � bt~s� ρ� � βt~s�ρ, θ� � βtH −1~s� ρ�: (37)

The elements of the vectors β and b are a result of fitting the
OVC set, ~s�ρ, θ�, or the OVG set, ~s� ρ�, respectively, to a given
slope map in a general pupil. The set b is given by

b �
RR

~s� ρ� ∘ ~∇Tϕ� ρ�A� ρ�d2ρRR
A� ρ�d2ρ

�
RR �sx� ρ�∂xϕ� ρ� � sy� ρ�∂yϕ� ρ��A� ρ�d2ρRR

A� ρ�d2ρ � bx � by:

(38)

To characterize the general pupil properly, it is necessary to
derive an expression relating β and the OZ coefficients, c. This
will provide a way to restore the advantages due to normaliza-
tion. Combining Eqs. (29) and (33) gives us an alternative
definition of the wavefront gradient:

∇Tϕ� ρ� � ctK H~s� ρ�: (39)

Comparing Eqs. (37) and (39) results in a matrix equation
relating all three coefficient vectors b � K t

H c � �H −1�tβ.
Since what is needed is to acquire c from the measured values,
this vector needs to be expressed as a function of b and β. This
is resolved by a row-reduction procedure:

I pc � �K t
H �rb � �K t

H �r�H −1�tβ: (40)

Equation (40) is used to generate OZ coefficients after mea-
surement of wavefront slope in general pupils. It is a generali-
zation that reduces to Eq. (23) in a unit circle in that H
becomes an identity matrix, following a similar procedure as
with other expressions introduced in this section.

6. WAVEFRONT RECONSTRUCTION IN A
SQUARE PUPIL INSCRIBED IN A UNIT CIRCLE

The model will now be used to analyze the aberrations in a
square pupil inscribed in a unit circle [10–12], as often used
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in high-power laser systems [13]. The model for the pupil will
be based on a slope-based wavefront sensor with a 69 × 69 mi-
crolens grid. The coordinate system used is a Cartesian coor-
dinate system, where ρ � �x, y� such that x ∈ �−1∕ ffiffiffi

2
p

; 1∕
ffiffiffi
2

p �
and y ∈ �−1∕ ffiffiffi

2
p

; 1∕
ffiffiffi
2

p �. The Zernike square (ZSq) polyno-
mial set, which we represent by the symbol z�x, y�, has been
discussed previously [10,11,13]. These polynomials can be de-
rived by generating the appropriate change of basis matrix, H ,
as outlined in Section 4. The matrix for this case is illustrated by
Fig. 4(a). The ZSq polynomials calculated in this case are listed
in [10,11,13]. This gives us all the information we need to ex-
press the Cartesian gradient of the ZSq polynomials as linear
combinations of the lower-order ZSq polynomials. Table 1
shows the set ∇T z�x, y� up to the fifth order expressed as linear
combinations of the ZC set. As expected, the Cartesian gradient
of the piston is a zero vector, which is a trivial result.

The expansion matrix used for the derivation, H ~Mz, ex-
presses the ZSq polynomials as a linear combination of the
ZC polynomials. For the aberrations selected for this study,
the x and y parts of the ZSq gradient polynomials are shown
in Figs. 4(b) and 4(c), respectively. The resultant polynomials
are listed in Table 1.

The OVG set for the inscribed square pupil was derived
next from the results in Table 1. The results are shown in
Table 2, where the OVG set is expressed as a function of
the Cartesian coordinates up to the fifth order. Equation (36)
was used replacing ~M z� ρ� withH ~Mz�ρ, θ�. Since the pupil is
a square, it is prudent to use Cartesian coordinates such that the
ZC polynomials z�ρ, θ� are replaced by Pτ�x, y�, where P
is a J × J matrix and τ�x, y� is a vector containing the first
J × 1 Taylor monomials. The matrix K r

H is illustrated in
Fig. 4(d). The complete matrix, K r

HH ~MP , has the two x and
y components, illustrated in Figs. 4(e) and 4(f ), respectively.

The last row in both matrices contains only zeroes. The result-
ant polynomials are listed in Table 2, showing that the model
eliminates ~S1. The orthonormality of the set was tested using
Eq. (35) and was found to conform. This is the set used to
characterize the slope maps such as the one generated by
slope-based wavefront sensors. These sensors generate two
maps, the x and y gradient maps, to which we can fit the
OVG polynomials sx�x, y� and sy�x, y�, which are additions
of the î and ĵ components, respectively, for each aberration.
The resultant coefficients, bx and by, are added to produce
b. The process can be repeated using the OVC polynomials
sx�x, y� and sy�x, y� to get βx and βy, which are also added
together to produce β. The orthonormal coefficients, c,
are then calculated using Eq. (40) from which the wavefront
is reconstructed.

We demonstrate the efficacy of the model in reconstructing
a simulated wavefront. The map consists of random coefficients
of the first 21 ZCs, which we set in the range �−0.1; 0.1�λ.
Coefficients belonging to the vector χ are shown in Fig. 5(a)
and the resultant phase map is shown in Fig. 5(b). The square
pupil inscribed in this pupil is superimposed on the phase map
with the square’s vertices touching the circular pupil such that
the square’s edges are vertical and horizontal. The expansion
coefficients for the part of the phase in the square pupil are
to be expressed as an expansion of the first 21 ZSq polynomials,
c, calculated using Eq. (28). The result is illustrated in Fig. 5(c).
The phase thus reconstructed is shown in Fig. 5(d), with
the rms wavefront error indicated on the graph. The agreement
between Figs. 5(b) and 5(d) is apparent. The Cartesian
gradient of the slope maps was calculated using Eq. (30) with
∇T z� ρ� replaced by H ~Mz�ρ, θ�. The result of this effort is
shown in Figs. 5(e) and 5(f ) in the form of the x and y maps,
respectively.

Fig. 4. (a) Transformation matrix for the change of basis matrix in a square pupil for calculating the first 21 Zernike square polynomials from
Zernike circle polynomials, H . This is used to calculate the other matrices such as those representing the Zernike square polynomials Cartesian
gradient in terms of (b),(c) ZC polynomials, Hγx and Hγy ; (d) in terms of OVG polynomials, K H ; or (e) in terms of OVG polynomials, K t

H . (f ),
(g) OVG polynomials in terms of Taylor monomials,K t

HH γxP andK t
HHγyP; or (h) Zernike square coefficients in terms of OZCartesian gradient,

�K t
H �r .
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The first 21 OVG and OVC polynomials were fitted to the
slope maps to generate the sets b and β, using a least-squares
approach from which we calculated c. This was achieved by
building a custom equation of the first 20 sx�x, y� and

sy�x, y� polynomials, which are the î and ĵ components of
the equations listed in Table 2 to the respective slope maps.
The process was repeated using the first 20 sx�x, y� and
sy�x, y� polynomials listed in Table 4 of [1], in which the poly-

Table 1. List of the First 21 Cartesian Gradients of the Zernike Square Polynomials in a Square Pupil Inscribed in a
Unit Circle Expressed as Functions of ZC Polynomials

∇T Z 1 � ~0;∇T Z 2 �
ffiffiffi
6

p
Z 1 î;∇T Z 3 �

ffiffiffi
6

p
Z 1 ĵ;∇T Z 4 � 3

ffiffiffiffiffiffiffiffi
5∕2

p
�Z 2 î � Z 3 ĵ�;∇T Z 5 � 3�Z 3 î � Z 2 ĵ�;∇T Z 6 � 3

ffiffiffiffiffiffiffiffi
5∕2

p
�Z 2 î − Z 3 ĵ�;

∇T Z 7 � �1∕2�
ffiffiffiffiffiffiffiffiffiffi
7∕31

p
�−15

ffiffiffi
2

p
Z 5 î � �15

ffiffiffi
2

p
Z 6 � 30Z 4 � 16

ffiffiffi
3

p
Z 1�ĵ�;

∇T Z 7 � �1∕2�
ffiffiffiffiffiffiffiffiffiffi
7∕31

p
��15

ffiffiffi
2

p
Z 6 � 30Z 4 � 16

ffiffiffi
3

p
Z 1�î � 15

ffiffiffi
2

p
Z 5 ĵ�;∇T Z 8

� �1∕2�
ffiffiffiffiffiffiffiffiffiffi
5∕31

p
��15

ffiffiffi
2

p
Z 6 � 30Z 4 � 16

ffiffiffi
3

p
Z 1�î � 9

ffiffiffi
6

p
Z 5 ĵ�;

∇T Z 10 � �1∕2�
ffiffiffiffiffiffiffiffiffiffi
5∕31

p
�9

ffiffiffi
6

p
Z 5 î � �22

ffiffiffi
6

p
Z 6 − 13

ffiffiffi
3

p
Z 4 − 21Z 1�ĵ�;∇T Z 10 � �1∕2�

ffiffiffiffiffiffiffiffiffiffi
5∕31

p
��22

ffiffiffi
6

p
Z 6 � 13

ffiffiffi
3

p
Z 4 � 21Z 1�î − 9

ffiffiffi
6

p
Z 5 ĵ�;

∇T Z 11 � 15��7
ffiffiffi
2

p
Z 8 � 12Z 2�î � �7

ffiffiffi
2

p
Z 7 � 12Z 3�ĵ�∕2

ffiffiffiffiffi
67

p
;∇T Z 12 � 15�7�Z 10 � Z 8� � 8

ffiffiffi
2

p
Z 2�î � �7�Z 9 − Z 7� − 8

ffiffiffi
2

p
Z 2�ĵ�∕8;

∇T Z 13 �
ffiffiffiffiffi
21

p
�5�Z 9 � Z 7� � 4

ffiffiffi
2

p
Z 2�î � �5�Z 9 � Z 7� � 4

ffiffiffi
2

p
Z 2�ĵ�∕4;

∇Z 14 � ��67Z 10 � 43Z 8 � 56
ffiffiffi
2

p
Z 2�î − �67Z 9 − 43Z 7 − 56

ffiffiffi
2

p
Z 3�ĵ�∕8

ffiffiffiffiffi
67

p
; ~∇Z 15 � 5

ffiffiffiffiffi
21

p
�Z 9 î � Z 10 ĵ�∕2;

∇T Z 16 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11∕983

p
��315Z 12 � 315

ffiffiffi
2

p
Z 11 � 143

ffiffiffiffiffi
15

p
Z 6 � 121

ffiffiffiffiffi
30

p
Z 4 � 162

ffiffiffiffiffi
10

p
Z 1��î � 9�35Z 13 � 11

ffiffiffiffiffi
15

p
Z 5�ĵ�∕4;

∇T Z 17 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11∕983

p
�9�35Z 13 � 11

ffiffiffiffiffi
15

p
Z 5��î � �−315Z 12 � 315

ffiffiffi
2

p
Z 11 − 143

ffiffiffiffiffi
15

p
Z 6 � 121

ffiffiffiffiffi
30

p
Z 4 � 162

ffiffiffiffiffi
10

p
Z 1�ĵ�∕4;

∇T Z 18 �
3

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
844397

p
� �13762 ffiffiffiffiffi

30
p

Z 14 � 14882
ffiffiffiffiffi
15

p
Z 11 � 21203

ffiffiffiffiffi
30

p
Z 12 � 169285

ffiffiffi
2

p
Z 6 � 127690Z 4 � 65792

ffiffiffi
3

p
Z 1�î�ffiffiffi

2
p �13762 ffiffiffiffiffi

15
p

Z 15 − 6321
ffiffiffiffiffi
15

p
Z 13 − 41595Z 5�ĵ

�
;

∇T Z 19 �
3

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
844397

p
� ffiffiffi

2
p �13762 ffiffiffiffiffi

15
p

Z 15 � 6321
ffiffiffiffiffi
15

p
Z 13 � 41595Z 5�î−

�13762 ffiffiffiffiffi
30

p
Z 14 � 14882

ffiffiffiffiffi
15

p
Z 11 − 21203

ffiffiffiffiffi
30

p
Z 12 − 169285

ffiffiffi
2

p
Z 6 � 127690Z 4 � 65792

ffiffiffi
3

p
Z 1�ĵ

�
;

∇T Z 20 �
1

16

ffiffiffiffiffiffiffiffi
7

859

r � �1647 ffiffiffiffiffi
10

p
Z 14 � 882

ffiffiffiffiffi
10

p
Z 12 � 1047

ffiffiffi
5

p
Z 11 � 2750

ffiffiffi
6

p
Z 6 � 3275

ffiffiffi
3

p
Z 4 � 5250Z 1�î�

15�−62 ffiffiffiffiffi
10

p
Z 15 � 11

ffiffiffiffiffi
10

p
Z 13 � 35

ffiffiffi
6

p
Z 5�ĵ

�
;

∇T Z 21 �
1

16

ffiffiffiffiffiffiffiffi
7

859

r �
15�62 ffiffiffiffiffi

10
p

Z 15 � 11
ffiffiffiffiffi
10

p
Z 13 � 35

ffiffiffi
6

p
Z 5�î�

�1647 ffiffiffiffiffi
10

p
Z 14 − 882

ffiffiffiffiffi
10

p
Z 12 � 1047

ffiffiffi
5

p
Z 11 − 2750

ffiffiffi
6

p
Z 6 � 3275

ffiffiffi
3

p
Z 4 � 5250Z 1�ĵ

�

Table 2. List of the First 20 Orthonormal Vector Polynomials is in a Square Pupil Inscribed in a Unit Circle Expressed as
Functions of Cartesian Coordinates

~S2 � î; ~S3 � ĵ; ~S4 �
ffiffiffi
3

p
�xî � yĵ�; ~S5 �

ffiffiffi
3

p
�yî � xĵ�; ~S6 �

ffiffiffi
3

p
�xî − yĵ�;

~S7 � �6xyî � �3x2 � 9y2 − 2�ĵ�∕
ffiffiffi
3

p
;

~S8 � ��9x2 � 3y2 − 2�î � 6xyĵ�∕
ffiffiffi
3

p
; ~S9 � �12xyî � �6x2 − 12y2 � 1�ĵ�∕2

ffiffiffi
2

p
;

~S10 � ��12x2 − 6y2 − 1�î − 12xyĵ�∕
ffiffiffi
8

p
;

~S11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕62

p
�xî � yĵ��15x2 � 15y2 − 7�; ~S12 �

ffiffiffi
7

p �x�10x2 − 3�î � y�3 − 10y2�ĵ�∕2;
~S13 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
21∕38

p
�x�15x2 � 5y2 − 4�î � y�5x2 � 15y2 − 4�ĵ�;

~S14 � �x�35x2 − 27y2 − 6�î � y�−27y2 − 3x2 − 6�ĵ�∕
ffiffiffiffiffiffiffiffiffiffi
5∕62

p
; ~S15 �

ffiffiffiffiffiffiffiffiffiffi
35∕3

p
�y�3x2 − y2�î � x�x2 − 3y2�ĵ�;

~S16 � �14175�x2 � y2��5x2 � y2� − 30�33x2 � 13y2� � 83�î � 60xy�21�x2 � y2� − 13�ĵ�∕2 ffiffiffiffiffiffiffiffiffiffi
1077

p
;

~S17 � �60xy�21�x2 � y2� − 13�î � 315�x2 � y2��x2 � 5y2� − 30�33x2 � 13y2� � 83�ĵ�∕2 ffiffiffiffiffiffiffiffiffiffi
1077

p
;

~S18 � 3�140�860x4 − 45x2y2 − 187y4� − 30�1685x2 − 522y2� � 1279�î − 40xy�105x2 � 2618y2 − 783�ĵ�∕2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2489214

p
;

~S19 � 3�40xy�2618x2 � 105y2 − 783�î � 140�187x4 � 45x2y2 − 860y4� − 30�522x2 − 1685y2� − 1279�ĵ�∕2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2489214

p

~S20 �
1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

13557143

r � �60�10948x4 − 7830x2y2 � 2135y4 − 3387x2 − 350y2� � 11171�î−
1200xy�261x2 − 427y2 � 35�ĵ

�
;

~S21 �
1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

13557143

r �
1200xy�427x2 − 261y2 − 35�î�
�60�2135x4 − 7830x2y2 � 10948y4 − 350x2 − 3387y2� � 11171�ĵ

�
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nomials are expressed in terms of ZC polynomials, which, in-
cidentally, can be expressed in terms of Cartesian coordinates.
The respective c coefficients were calculated from the result of
the fits. The coefficients were then used to reconstruct the
wavefronts shown in Figs. 6(a) and 6(b), with the respective
wavefront errors of the reconstruction indicated on the graphs.
As expected, Figs. 6(a) and 6(b) and their wavefront errors
match very well with Fig. 5(d). The plots of the piston-removed
residual error maps of both fits are shown in Figs. 6(c) and 6(d)
and were acquired by the respective subtraction of both
Figs. 6(a) and 6(b) from Fig. 5(d).

7. SUMMARY

We have developed orthogonal vector circle polynomials by de-
riving the set analytically, using matrix methods giving results
which agree with those already in the literature in addition to
the natural elimination of the piston. The novelty of our
method lies in the fact that it is analytical and matrix based.
The motivation for the matrix approach is that, apparently,
in a number of important papers in wavefront analysis
[4,5,10,11,13–15] it is possible to deal with wavefront analysis
problems by manipulating the expansion coefficients in the
form of matrices and acquire closed-form results similar to
those already published in the literature. The basis of virtually
all wavefront work is that the phase can be represented as a
linear combination of a discrete infinite series, which can be

expressed in vector form whose dimension can take any
required size. This is based on the fact that the method can
be used to derive polynomials with exact expansion coefficients
that fulfill the orthonormality requirements in Eq. (15) exactly.
The problem with round-off errors can be avoided if numbers
under square root signs or those expressed as fractions of two
integers are used without converting to their numerical approx-
imations where rounding off becomes a negative factor.

Our model is a robust, elegant model, compatible with most
programming languages. The matrices are, in general, sparse
and therefore computationally considerably less expensive
when working with large matrices. The relevant vector aspects
were presented as Euclidean vectors in the form of standard
basis vectors in two transverse dimensions, î and ĵ, as elements
making up the various vectors and matrices. The resultant
products between these vectors and matrices are in the form
of scalar products. The motivation behind selecting this
method is that the matrix formalism allows an analytic trans-
formation of the orthonormal vector set orthonormal in a unit
circle, once found, to one orthonormal in a general pupil.

Importantly, our approach can be applied to any general
pupil and any nonuniform laser beams. The matrix to facilitate
this transformation is derived from the matrix form of the
Gram–Schmidt procedure that is used to calculate a
Zernike-based polynomial set orthonormal in a general pupil
from the Zernike circle set. As long as this matrix can be found,
then the derivation of the respective OVG set should follow
through. These matrices have been derived for annular, hexago-
nal, rectangular, inscribed square and elliptical [10,11],
Gaussian and annular-Gaussian [11,12], and square
Gaussian [13] pupils, which implies that finding the OVG sets
for these pupils should be implied. These results have shown
that for these pupils, exact results have been acquired from the
Cholesky decomposition or Gram–Schmidt procedure. The
example discussed in this paper shows that the derived polyno-
mials in Table 2 are exact and therefore fulfill the orthonormal-
ity condition of Eq. (35) exactly. This proves further that

Fig. 5. (a) Set of 21 coefficients, each randomly generated in the
range of −0.1 to 0.1 waves. A bar chart showing the generated
Zernike circle coefficients, χ . (b) The reconstructed phase in a unit
circle showing the inscribed square pupil. (c) A bar chart of the
Zernike square coefficients, c. (d) The phase map in a square pupil
inscribed in a unit circle phase plot showing the calculated RMS error.
The calculated (e) x- and (f ) y-Cartesian gradients of the phase in the
square pupil.

Fig. 6. Reconstructed wavefronts using different approaches out-
lined in this paper with the indicated rms wavefront error associated
with each method. (a) Zernike circle polynomials fitting, (b) Zernike
square polynomial fitting. (c) Piston-removed residual errors from
OVC polynomial fitting and (d) OVG polynomial fitting.
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although the method is matrix based, the outcome for a par-
ticular pupil can be analytical if the Cholesky decomposition of
Eq. (28) in that pupil gives an analytical result [10].

Furthermore, the model can, potentially, be applied to fit
wavefront slopes and analyze intensity moments of light beams
in applications that require understanding the propagation of
light beams. Consequentially, this has implications in the
design of analytical tools for various research fields, such as
for ground-based telescope systems and in the development
of adaptive optics methods in microscopy.
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