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Abstract

A de�nition of detailed balance, tailored to a system of indis-

tinguishable fermions, is suggested and studied using an entangled

fermionic state. This is done in analogy to a known characteriza-

tion of standard quantum detailed balance with respect to a reversing

operation.

1 Introduction

In this paper we take the �rst steps to formulate quantum detailed balance
tailored for a system consisting of indistinguishable fermions, by using an
entangled fermionic state.

Classically, detailed balance of a Markov chain and a given probability
distribution means that the probability for the system to make a transition
from one pure state to another is equal to the probability for the opposite
transition. More precisely, pjγjk = pkγkj , where the pj form the probability
distribution over the pure states, and the γjk are the transition probabilities.
In the quantum case, however, one can express detailed balance in terms of
an entangled state of two copies of the system in question, without direct
reference to transition probabilities. See [23, 26, 27]. Also see the closely
related papers [15, 16]. This formulation creates the possibility to generalize
or adapt detailed balance in natural ways which are not apparent from the
classical formulation. See for example [24].

The references mentioned above build on previous work on quantum
detailed balance, where connections with entanglement were, however, not
made explicit, in particular [5, 6, 19, 35, 40, 39].

Entanglement of indistinguishable particles is not considered in the ref-
erences above. Since many relevant systems consist of indistinguishable par-
ticles, it is natural to ask whether the formulation of detailed balance in
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terms of an entangled state can be successfully adapted to entangled states
of indistinguishable particles.

In this paper we show that this is in fact possible, at least for simple
fermionic systems. We thus obtain a purely quantum mechanical formulation
of detailed balance for a system of indistinguishable fermions.

We focus on obtaining a fermionic version of the so-called standard quan-
tum detailed balance condition with respect to a reversing operation [27, 29].
A standard choice of reversing operation will be used in the latter, namely
transposition of matrices. Our fermionic detailed balance condition is then
modelled on this situation, and will be called fermionic standard quantum

detailed balance.
We take our fermionic system to be a �nite sublattice in a fermion lattice.

We then consider a second copy of this system elsewhere in the lattice, and
set up an entangled state for these two systems. In the entangled state
formulation of detailed balance for the generic case without reference to
indistinguishable particles, the tensor product of two copies of the system
being studied, plays a central role. In the fermionic case, however, this simple
tensor product structure is lost, but its place is �lled by the lattice structure.

Entangled states for indistinguishable particles are discussed in some
detail (both conceptually and technically) in for example [48, Section 5-4],
[25] and [33]. We only need a very particular case however, for which we give
a self-contained, although brief, discussion.

Duality of dynamical maps plays an important role in quantum detailed
balance (see for example [27]). A preliminary investigation into an analogous
duality in the fermionic case is presented in this paper. However, the analogy
with duality in the usual case may only be partial. In particular, it is not yet
clear if, or to what extent, results on the complete positivity of dual maps
in the usual case, will continue to hold in the fermionic case.

Tailoring quantum detailed balance to fermionic systems is in line with
the general theme of extending or adapting to fermionic systems, various con-
cepts and results from either classical probability, or from quantum proba-
bilistic theories that do not take fermionic behaviour into account. Examples
of this avenue of research can be found in [3, 7, 8, 9, 20, 31, 36].

We review the essentials of the fermion lattice in Section 2. In Section 3
we treat the fermionic entangled state which we need. Then, in Section 4,
we turn to the formulation of fermionic standard quantum detailed balance
in terms of this entangled state. The usual case (without reference to indis-
tinguishable particles) of standard quantum detailed balance with respect to
a reversing operation is also brie�y discussed as part of that section, in order
to clarify the origins of the fermionic formulation. Section 5 proceeds with
a simple example to illustrate fermionic standard quantum detailed balance.
A related example is discussed in Section 6 to show that fermionic standard
quantum detailed balance indeed di�ers from the usual standard quantum
detailed balance condition applied to a fermionic system. Duality of dynam-
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ical maps is explored in Section 7. The paper concludes in Section 8 with
some questions for possible further research.

2 The fermion lattice

Here we brie�y review the framework that we will use, and also set up much
of the notation for the rest of the paper. Our main references are [18, Section
5.2] and [8].

Let h denote the Hilbert space for a single fermion and consider the Fock
space

F (h) =
⊕
n≥0

hn

where
h0 := CΨ

with Ψ the vacuum vector, which we can simply take to be Ψ = 1 ∈ C, while
for n = 1, 2, 3, ...

hn := h⊗ ...⊗ h

where h appears n times.
Consider the projection

P : F (h)→ F (h)

de�ned by
PΨ = Ψ

and

P (x1 ⊗ ...⊗ xn) =
1

n!

∑
π∈Sn

επxπ(1) ⊗ ...⊗ xπ(n) (1)

for x1, ..., xn ∈ h, where n = 1, 2, 3, .... Here επ denotes the sign of the
permutation π. We then de�ne the Fermi-Fock space as

H = PF (h)

and denote its inner product, inherited from F (h), by 〈·, ·〉.
We can de�ne creation operators a∗(x) on H for all x ∈ h as follows:

First de�ne a creation operator b∗(x) on a dense subspace of F (h) by

b∗(x)Ψ = x

and
b∗(x)(x1 ⊗ ...⊗ xn) = (n+ 1)1/2x⊗ x1 ⊗ ...⊗ xn

for all x, x1, ..., xn ∈ h. The corresponding annihilation operator b(x), is
given by

b(x)Ψ = 0
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and
b(x)(x0 ⊗ x1 ⊗ ...⊗ xn) = (n+ 1)1/2 〈x, x0〉x1 ⊗ ...⊗ xn

for all x, x0, x1, ..., xn ∈ h, where the inner product 〈·, ·〉 of h is taken to be
linear in the second slot. The fermionic creation and annihilation operators
are then de�ned as

a∗(x) = Pb∗(x)|H
and

a(x) = Pb(x)|H
respectively, for all x ∈ h. These are bounded operators on H which are
adjoints of one another, and satisfy the anti-commutation relations

{a(x), a(y)} = 0

and
{a(x), a∗(y)} = 〈x, y〉 1H

for all x, y ∈ h, where 1H is the identity operator on H.
Next we introduce the lattice L. Let L be any countable or �nite set.

We assume that L indexes an orthonormal basis for h, namely

el

for l ∈ L. We could, if necessary, rather denote the orthonormal basis as
el,s where s ∈ S speci�es some further properties beyond the lattice we are
considering, say spin values. For simplicity of notation, however, we subsume
all such properties into the set L.

Also then write
f∅ := Ψ (2)

and
f(l1,...,ln) := Pel1 ⊗ ...⊗ eln (3)

for all l1, ..., ln ∈ L, for any n = 1, 2, 3, ....
Given any subset I of L, denote by

DI

a set of �nite sequences (l1, ..., ln) in L, for n = 0, 1, 2, 3, ..., with lj 6= lk when
j 6= k, such that each �nite subset of I corresponds to exactly one element
of DI . The empty subset of I corresponds to the empty sequence denoted
by ∅ ∈ DI , which is the case n = 0. Note that the vectors

fM

with M ∈ DL form an orthonormal basis for H. The set DI is not uniquely
speci�ed, but that does not matter, as it is just a way to label a set of
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orthonormal vectors up to a factor ±1 for each vector, irrespective of how
DI is chosen for a given I.

We also use the notation

a∗l = a∗(el)

and
al = a(el)

for all l ∈ L. We note that

a∗l f(l1,...,ln) = f(l,l1,...,ln)

(which is 0 if l ∈ {l1, ..., ln}) and

alf(l1,...,ln) = (−1)k−1f(l1,...,l̂k,...,ln)

for k such that lk = l, where (l1, ..., l̂k, ..., ln) refers to the sequence (l1, ..., ln)
with lk removed, while alf(l1,...,ln) = 0 if l /∈ {l1, ..., ln}. These facts are useful
to keep in mind when manipulating expressions involving f(l1,...,ln).

For any subset I of L, let
A(I)

denote the C*-subalgebra of B(H) generated by {al : l ∈ I}, where B(H)
is the C*-algebra of all bounded operators on H. Of course, since a∗l is the
adjoint of al, we have a∗l ∈ A(I) for all l ∈ L. Because {al, a∗l } = 1H , it
follows that A(I) contains the unit 1H of B(H).

From the next section onwards we are going to focus on the case where I is
�nite, and A(I) therefore �nite dimensional because of the anti-commutation
relations. In this case we can simply view A(I) as the algebra generated
by operators al and a∗l for l ∈ I, and C*-algebraic notions become less
important. However, we nevertheless continue with the usual C*-algebraic
notation of denoting the adjoint of an operator a by a∗. Note that we need
not assume that L is �nite.

3 A fermionic entangled state

Here our main goal is to construct the entangled state which is to play a
central role in the next section where detailed balance is discussed. How-
ever, we �rst construct a fermionic analogue of a product of two states, each
of which is given by a diagonal density matrix in terms of basis vectors ob-
tained from the creation operators. This product state will not be used in
fermionic detailed balance, but gives some insight into how states for com-
bined fermionic systems should be constructed, which is instructive for the
subsequent construction of the entangled state. It may also be relevant in
constructing examples of states for the more general case of balance instead
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of detailed balance (see [24]), but that will not be treated in this paper. Our
treatment of entanglement here is self-contained, but brief and limited to the
speci�c entangled state that we need, presented in a mathematical form con-
venient for our later work in the paper. For more systematic investigations
into entanglement for systems of identical particles, the reader is referred to
[25] and [33]. Also see [32, 37, 44, 47, 50, 51, 52, 53] for some of the other
early papers on this topic, as well as [10, 11, 12, 13, 14, 43] for a selection of
more recent ones.

Consider A(I) and A(J), where I and J are disjoint �nite subsets of L.
The �nite dimensionality of the algebras A(I) and A(J) due to I and J being
�nite, allows us to avoid any technicalities involving limits and in�nite sums.
It should be possible to handle such technicalities, but that will not help to
clarify the conceptual aspects we want to focus on.

The fermion lattice now provides a convenient framework to construct
fermionic analogues of product or entangled states for A(I) and A(J).

Consider two sets of probabilities, pM for M ∈ DI , and qN for N ∈ DJ ,
i.e. pM ≥ 0, qN ≥ 0,

∑
M∈DI pM = 1 and

∑
N∈DJ qN = 1. For A(I) and

A(J), we respectively consider the diagonal density matrices

ρI =
∑
M∈DI

pMfM on fM (4)

and
ρJ =

∑
N∈DJ

qNfN on fN

with
x on y ∈ B(H)

de�ned as
(x on y)z = x 〈y, z〉

for all x, y, z ∈ H, inspired by Dirac notation |x〉 〈y|. I.e., fM on fM could
also be written as |fM 〉 〈fM |.

We aim to de�ne a fermionic analogue of a product state for the two
states ρI and ρJ such that the state ρ which is obtained is itself a sensible
fermionic state. We achieve this by setting

ρ =
∑
M∈DI

∑
N∈DJ

pMqNfMN on fMN

where
MN

denotes the concatenation of the sequences M and N , i.e. if M and N are
the sequences (m1, ...,mj) and (n1, ..., nk) respectively, then MN denotes
the sequence (m1, ...,mj , n1, ..., nk), while for M = ∅ we have MN = N ,
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and for N = ∅ we have MN = M . The mixed state ρ is a fermionic state
simply because the pure states fMN are. Note that ρ was constructed in
analogy to the usual product state given by∑

M∈DI

∑
N∈DJ

pMqN (fM ⊗ fN ) on (fM ⊗ fN ),

which is not a fermionic state in general, since fM ⊗ fN is not.
It is worth emphasizing (see [33] and [25]) that despite the form of the

vectors fMN , which is given by (3) and (1), they are not viewed as being
entangled states. Therefore the state ρ, being a mixture of these pure states,
possesses no entanglement. Similarly ρI and ρJ possess no entanglement.

Next we consider the fermionic entangled state of main interest to us in
this paper. We assume that J above has the same number of elements as I,
but still with I ∩ J = ∅, and let

ι : I → J

be a bijection. The role of ι is to view J as a �copy� of I elsewhere in L,
with the goal of constructing an entangled state of two copies of the same
state. We use ρI as above, but replace ρJ by

ρι(I) =
∑
M∈DI

pMfι(M) on fι(M)

where ι(M) := (ι(m1), ..., ι(mj)) for M = (m1, ...,mj). The fermionic en-
tangled state of interest to us is then de�ned to be

Φ =
∑
M∈DI

p
1/2
M fMι(M) ∈ H (5)

where Mι(M) again denotes concatenation as above. This is in analogy to
the entangled state ∑

M∈DI

p
1/2
M fM ⊗ fι(M) (6)

which however is not a fermionic state, i.e. it is not in H, as fM⊗fι(M) /∈ H.

Remark 3.1. The term �diagonal state� could also be used for Φ, partly due
to only the form fMι(M) appearing, instead of the more general case fMι(N),
but also partly because in classical probability an analogous construction
leads to a so-called diagonal measure (in which entanglement plays no role).
This classical construction has a general noncommutative counterpart (see
[22] and [30], as well as [24, Subsection 7.2]) which generalizes (6), but not
(5).
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We note that both ρ and Φ reduce to the correct states, i.e.

Tr(ρa) = Tr(ρIa)

and
Tr(ρb) = Tr(ρJb)

for all a ∈ A(I) and b ∈ A(J), so ρ reduces to ρI and ρJ , while

〈Φ, aΦ〉 = Tr(ρIa)

and
〈Φ, bΦ〉 = Tr(ρι(I)b)

for all a ∈ A(I) and b ∈ A(ι(I)). This can be veri�ed by fairly straightfor-
ward calculations.

Note in particular that the pure state Φ reduces to the mixed states ρI
and ρι(I) for the algebras A(I) and A(ι(I)) respectively, each state being a
mixture of fermionic pure states, con�rming that Φ is entangled if at least
two of the probabilities pM are not zero.

To conclude, Φ is the state that will be of central importance in the rest
of the paper.

4 Fermionic standard quantum detailed balance

In this section we consider a purely fermionic formulation for detailed bal-
ance, in terms of the framework set up so far, in particular making use of
the state Φ de�ned in (5).

We start by brie�y reviewing the detailed balance condition in the generic
from not speci�cally involving indistinguishable particles. In particular we
focus on a standard quantum detailed balance of with respect to a reversing
operation, as de�ned in [27] and [29], and also studied in [16] and [28]. We
only discuss it for �nite dimensional systems. The development of quantum
detailed balance more generally can be retraced in [5, 6, 19, 35, 39, 40, 41,
42, 4].

Consider a quantum system with n dimensional Hilbert space and its
observable algebra representable as the algebraMn of n×n matrices over C.
Let the system's state be given by the density matrix ρ, and we then choose
to work in an orthonormal basis d1, ..., dn in which this density matrix is
diagonal, say

ρ =

 p1

. . .

pn

 .
Let

τt : Mn →Mn
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be a semigroup of (completely) positive unital maps giving the dynamics of
the system as a function of time t ≥ 0. One then considers the following
entangled state of two copies of (Mn, ρ):

Ω =
n∑
j=1

p
1/2
j dj ⊗ dj

which we represent as a state ω on the composite system's observable algebra
Mn ⊗Mn by

ω(a) = 〈Ω, aΩ〉 (7)

for all a ∈Mn ⊗Mn.
In this set-up we can express standard quantum detailed balance of the

system with respect to a reversing operation, as the condition

ω(a⊗ τt(b)) = ω(τt(a)⊗ b) (8)

for all a, b ∈ Mn and all t ≥ 0. Here we have in e�ect made a standard
choice of reversing operation as the transposition of matrices with respect to
the chosen basis. In this paper we refer to condition (8) simply as standard
quantum detailed balance of the system (Mn, τ, ρ). See [23, Section 5] for
more detail on this speci�c formulation of the standard quantum detailed
balance condition.

With this background in hand, we can now work towards writing down
a fermionic version of condition (8).

Returning to our notation from Section 3, we are going to work with the
algebra A(I∪ ι(I)) in the place ofMn⊗Mn, and in analogy with ω we de�ne
the state ϕ on A(I ∪ ι(I)) by

ϕ(a) = 〈Φ, aΦ〉 (9)

for all a ∈ A(I ∪ ι(I)). Consider a semigroup τ of positive (or completely
positive) unital maps

τt : A(I)→ A(I)

for t ≥ 0, which is taken to be the dynamics of the system on A(I), we need
this dynamics to be carried over to A(ι(I)) in order to have a copy of the
dynamics τ on A(ι(I)). So consider the ∗-isomorphism

η : A(I)→ A(ι(I))

given by η(al) = aι(l) for all l ∈ I. Then copy the dynamics on A(I) to
A(ι(I)) by

τ ιt : A(ι(I))→ A(ι(I)) : a 7→ η ◦ τt ◦ η−1.

Similarly we can de�ne αι = η ◦ α ◦ η−1 for any linear α : A(I)→ A(I).
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In analogy to Eq. (8), we then say that (A(I), ρI , τ) satis�es fermionic
standard quantum detailed balance when

ϕ(aτ ιt (b)) = ϕ(τt(a)b) (10)

for all a ∈ A(I) and b ∈ A(ι(I)), and all t ≥ 0.

Remark 4.1. Typically one would be interested in the case where all the
probabilities pM appearing in ρI , as given by (4), are non-zero. However,
this is not mathematically essential at the moment. In fact, it only becomes
important when studying duality in Section 7.

Note that the time variable t does not play an essential role in what we
have done so far. We could equally well only consider a single (completely)
positive unital map τ : A(I) → A(I), which means that we in e�ect only
consider one instant in time (or a discrete set of instants in time upon iter-
ating the single map). Then fermionic standard quantum detailed balance
of (A(I), ρI , τ) is expressed as

ϕ(aτ ι(b)) = ϕ(τ(a)b) (11)

for all a ∈ A(I) and b ∈ A(ι(I)).

5 An example

We exhibit a simple example of fermionic standard quantum detailed balance
as de�ned by Eq. (11). The example is based on an example of the type
discussed in [2, Section 6], [15], [26, Section 5], [27, Subsection 7.1] and [24,
Section 7], but adapted to the fermionic framework. At its core it can be
viewed as consisting of �balanced� cycles. We concentrate on discrete time,
but at the end of the section we explain how to extend this example to
continuous time.

Start by de�ning a unitary operator

U : H → H

by setting
Uf∅ = f∅

and
Uf(l1,...,ln) = f(σ(l1),...,σ(ln))

for all �nite sequences (l1, ..., ln) in L, for any n = 1, 2, 3, ..., where

σ : L→ L

is a permutation of I. By this we mean that σ|I : I → I is a bijection, while
σ|L\I is the identity map on the complement L\I of I. The operator U is
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well-de�ned, since the vectors f(l1,...,ln) include an orthonormal basis for H,
as mentioned in Section 3, while it is easily checked from the de�nition of
f(l1,...,ln) in Eq. (3) and Eq. (1) that any permutation of l1, ..., ln is consistent
with the de�nition of U .

It follows that

U∗a∗lUf(l1,...,ln) = U∗f(l,σ(l1),...,σ(ln)) = f(σ−1(l),l1,...,ln) = a∗σ−1(l)f(l1,...,ln)

so
U∗a∗lU = a∗σ−1(l)

which means in particular that

U∗A(I)U = A(I).

Furthermore,
Ua∗lU

∗ = a∗σ(l) (12)

so for any �xed λ ∈ [0, 1] we obtain a well-de�ned unital completely positive
map

τ : A(I)→ A(I)

by setting
τ(a) = λU∗aU + (1− λ)UaU∗ (13)

for all a ∈ A(I). Keep in mind that σ can be decomposed into cycles, so
in e�ect τ is built from two sets of cycles, the one set being opposite to
the other. It will shortly become clear that if we �balance� these opposite
cycles by taking λ = 1/2, then fermionic standard quantum detailed balance
emerges, analogous to the usual (or generic) case.

As in Section 3 we consider a bijection ι : I → J where I and J are
disjoint subsets of L, and as in Section 4 we copy the dynamics τ to A(ι(I)).
Explicitly we can do it as follows:

De�ne a permutation σι : L→ L of J by

σι(l) = ι ◦ σ ◦ ι−1(l)

for l ∈ J , and
σι(l) = l

for l ∈ L\J . Using this, we de�ne a unitary operator

V : H → H

by
V f∅ = f∅

and
V f(l1,...,ln) = f(σι(l1),...,σι(ln))
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for all �nite sequences (l1, ..., ln) in L. Then we can de�ne the copy τ ι of τ
on A(ι(I)) by

τ ι(b) = λV ∗bV + (1− λ)V bV ∗ (14)

for all b ∈ A(ι(I)).
Now, as opposed to the usual case of standard quantum detailed balance

in Eq. (8), where one uses the tensor product, we now make use of the
properties of our fermionic lattice, in particular the fact that I and ι(I)
are disjoint, to show how fermionic standard quantum detailed balance is
obtained. The key point in this respect, is that from Eq. (12) we deduce

a∗lU = Ua∗l

for all l ∈ L\I, hence
bU = Ub

for all b ∈ A(ι(I)), and similarly

aV = V a

for all a ∈ A(I).
Using this we can do the following calculation for any a ∈ A(I) and

b ∈ A(ι(I)), in terms of the state ϕ given by (9) and (5), to obtain conditions
under which fermionic standard quantum detailed balance is satis�ed:

Firstly,

ϕ(τ(a)b) = λ 〈Φ, U∗aUbΦ〉+ (1− λ) 〈Φ, UaU∗bΦ〉 .

But, using the notation σ(M) := (σ(l1), ..., σ(ln)), when M = (l1, ..., ln), we
obtain

〈Φ, U∗aUbΦ〉
= 〈UΦ, abUΦ〉

=

〈 ∑
M∈DI

p
1/2
M fσ(M)ι(M), ab

∑
N∈DI

p
1/2
N fσ(N)ι(N)

〉

=

〈 ∑
{M :σ−1(M)∈DI}

p
1/2
σ−1(M)

fMι(σ−1(M)), ab
∑

{N :σ−1(N)∈DI}

p
1/2
σ−1(N)

fNι(σ−1(N))

〉

=

〈 ∑
{M :σ−1(M)∈DI}

p
1/2
σ−1(M)

V ∗fMι(M), ab
∑

{N :σ−1(N)∈DI}

p
1/2
σ−1(N)

V ∗fNι(N)

〉
= 〈Φ1, aV bV

∗Φ1〉

where

Φ1 :=
∑

{M :σ−1(M)∈DI}

p
1/2
σ−1(M)

fMι(M) =
∑
M∈DI

p
1/2
M fσ(M)ι(σ(M)).
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Now, for any sequence M ∈ DI , let

σM : L→ L

be the permutation of M such that

σ ◦ σM (M) ∈ DI .

The point here is that σ(M) is a sequence in I, but it need not be in the
correct order to be an element of DI . The permutation σM corrects for this.
If we assume that the density matrix ρI in (4) satis�es

pσ−1
M ◦σ−1(M) = pM (15)

for all M ∈ DI , then it follows from the de�nition of f(l1,...,ln) in Eqs. (1),
(2) and (3), in particular how the sign of f(l1,...,ln) may change due to per-
mutation, that

Φ1 =
∑
M∈DI

p
1/2
M fσ◦σM (M)ι(σ◦σM (M)) =

∑
M∈DI

p
1/2

σ−1
M ◦σ−1(M)

fMι(M) = Φ.

A simpler (but less general) assumption that ensures Eq. (15), is

pM = pN (16)

for any pair of sequences M,N ∈ DI that have the same length.
Then

〈Φ, U∗aUbΦ〉 = 〈Φ, aV bV ∗Φ〉 .

If we let
σ̄M : L→ L

be the permutation of M ∈ DI such that

σ−1 ◦ σ̄M (M) ∈ DI ,

and we assume that the density matrix ρI satis�es

pσ̄−1
M ◦σ(M) = pM (17)

for all M ∈ DI , we also obtain

〈Φ, UaU∗bΦ〉 = 〈Φ, aV ∗bV Φ〉 .

From this we conclude that if conditions (15) and (17) are satis�ed, or alter-
natively just condition (16), then

ϕ(τ(a)b) = λ 〈Φ, aV bV ∗Φ〉+ (1− λ) 〈Φ, aV ∗bV Φ〉 .
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Under these conditions, if
λ = 1/2,

then
ϕ(τ(a)b) = ϕ(aτ ι(b))

for all a ∈ A(I) and b ∈ A(ι(I)). That is, (A(I), ρI , τ) then satis�es fermionic
standard quantum detailed balance.

This example can easily be adapted to a continuous time example by
using the form L(a) = λU∗aU + (1 − λ)UaU∗ − a as the generator of a
quantum Markov semigroup which then satis�es fermionic detailed balance
in the form (10).

6 Detailed balance vs fermionic detailed balance

Here we show that the standard quantum detailed balance and fermionic
standard quantum detailed balance conditions discussed in Section 4, are not
equivalent when we consider dynamics on an A(I). More precisely, we exhibit
a simple example of a unital completely positive map on A(I) satisfying
standard quantum detailed balance but not fermionic standard quantum
detailed balance. As is the case with the dynamics in Section 4, this example
will nevertheless still have even dynamics, the de�nition of which is also
discussed in this section.

Consider the following example of standard quantum detailed balance,
which is similar to the example discussed in Section 5, but not tailored to
the fermionic case:

Consider a n-dimensional Hilbert spaceK with orthonormal basis d1, ..., dn.
Given a permutation $ ∈ Sn of {1, ..., n}, we de�ne a unitary operator
W : K → K by

Wdj = d$(j)

for j = 1, ..., n. That is, we are considering a permutation of the orthonormal
basis. For 0 ≤ λ ≤ 1 we then consider the unital completely positive map
α : B(K)→ B(K) given by

α(a) = λW ∗aW + (1− λ)WaW ∗

for all a ∈ B(K). Now, using the basis d1, ..., dn to represent B(K) as Mn

as in Section 4, assume that the probabilities pj from Section 4 are equal for
the basis vectors dj lying in the same cycle of the decomposition of σ into
cycles. It is then straightforward to check that standard quantum detailed
balance is satis�ed when λ = 1/2 (the argument is similar, but notationally
simpler than that in Section 5).

In particular, keeping in mind that A(I) is isomorphic to M2|I| , we can
in this way obtain dynamics on A(I) satisfying standard quantum detailed
balance, using the vectors fM ,M ∈ DI , as the orthonormal basis in the place
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of d1, ..., dn, and applying a permutation to this basis. In particular, we see
from this argument that the dynamics on A(I) in Section 5 satis�es (usual)
standard quantum detailed balance when λ = 1/2, if the probabilities pM are
equal for basis vectors fM lying in the same cycle of the permutation. How-
ever, if the permutation of the orthonormal basis, namely the vectors fM , is
not obtained from a permutation of I as in Section 5, then the argument in
Section 5 falls apart. In that case we can not expect to have fermionic stan-
dard quantum detailed balance in general, even though standard quantum
detailed balance is satis�ed as explained above.

We can illustrate this explicitly, while preserving a basic property that
the dynamics τ in Section 5 has, namely that it is even. We describe this
concept before continuing to our example:

De�ne a unitary operator

θ : H → H

on the Fermi-Fock space via θfM = fM if the sequence M has even length,
while θfM = −fM if the sequence M has odd length. Note that θ = θ∗.
Furthermore, it is easily con�rmed that

θa∗l θ = −a∗l

for all l ∈ L, by applying θa∗l θ to the basis vectors fM . By taking the adjoint
both sides, we also have

θa∗l θ = −a∗l
for all l ∈ L. Therefore we can de�ne a ∗-automorphism ΘI of A(I) by

ΘI(a) = θaθ

for all a ∈ A(I). This works for every subset I of L, including I = L, so we
may as well just work with Θ = ΘL, since then ΘI is just the restriction of
Θ to A(I). (Also see [8, Section 4.1].)

One can then show that the dynamics τ in Section 5 is even for all
λ ∈ [0, 1], by which we mean that

τ ◦Θ = Θ ◦ τ.

This follows from Uθ = θU , which is true, since in Uf(l1,...,ln) = f(σ(l1),...,σ(ln))

the sequences (l1, ..., ln) and (σ(l1), ..., σ(ln)) have the same length, so both
are even or both are odd.

It is of interest to note that θΦ = Φ, so

ϕ ◦Θ = ϕ,

i.e. the state ϕ is even.
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We now construct an example of dynamics which is even and satis�es
standard quantum detailed balance, but not fermionic standard quantum
detailed balance:

Consider the case |I| = 2, i.e. A(I) is generated by two operators al; let
us call them a1 and a2. We use DI = {∅, (1), (2), (1, 2)}. Furthermore, for
the rest of this section, we set

p∅ = p(1) = p(2) = p(1,2) =
1

4

as the probabilities appearing in ρI given by (4), and in terms of which we
express the detailed balance conditions. We take |J | = 2 as well, with I ∩ J ,
and let a3 and a4 denote the generators of A(J). The bijection ι : I → J we
use is given by

ι(1) = 3, ι(2) = 4.

The dynamics on A(I) will be obtained from a unitary operator

UI : HI → HI ,

where HI is the subspace of H spanned by the set {f∅, f(1), f(2), f(1,2)}, and
UI is de�ned via

UIf∅ = f(1), UIf(1) = f(1,2), UIf(1,2) = f(2), UIf(2) = f∅.

Note that this is a permutation of the basis not given by a permutation of
the set I = {1, 2}.

View A(I) as being faithfully represented on HI by πI via

πI(a) := a|HI ,

i.e. we restrict the elements of A(I) to HI . In other words, we represent
A(I) faithfully as πI(A(I)), which is isomorphic to M4. The reason for this
is that we have not de�ned UI on the whole of H; trying to extend UI to
H, and working with A(I) itself, is inconvenient in this case. However, for
simplicity we suppress the πI in our notation below. Analogously for A(J)
on HJ .

By applying U∗I a1UI to the basis vectors f∅, f(1), f(2) and f(1,2) of HI ,
one can verify the formula

U∗I a1UI = a∗2[a1, a
∗
1]

where [·, ·] denotes the commutator. Similarly we have the formulas

UIa1U
∗
I = a2[a1, a

∗
1],

U∗I a2UI = a1[a∗2, a2],
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and
UIa2U

∗
I = a∗1[a2, a

∗
2].

For any �xed λ ∈ [0, 1] we can then de�ne dynamics α on A(I) by

α(a) = λU∗I aUI + (1− λ)UIaU
∗
I

for all a ∈ A(I). It is straightforward to check from the formulas above, that
α is even, i.e. α ◦Θ = Θ ◦ α.

We copy α to A(J) via

αι(b) = λV ∗J bVJ + (1− λ)VJbV
∗
J ,

using the correspondingly de�ned unitary operator VJ on HJ given by

VJf∅ = f(3), VJf(3) = f(3,4), VJf(3,4) = f(4), VJf(4) = f∅,

and for which corresponding formulas as for UI above hold.
Let us now study detailed balance for the case λ = 1/2. As already

explained earlier in this section, standard quantum detailed balance is then
satis�ed. However, fermionic standard quantum detailed balance is not:

ϕ(α(a1)a∗4) =
1

4
while

ϕ(a1α
ι(a∗4)) = −1

4
,

for ϕ in (9). This can be veri�ed using (5), which here is

Φ =
1

2
(f∅ + f(1,3) + f(2,4) + f(1,2,3,4)),

as well as

α(a1) =
1

2
(a2 + a∗2)[a1, a

∗
1]

and

αι(a4) =
1

2
(a∗3 − a3)[a4, a

∗
4],

and by then calculating that

α(a∗1)Φ = α(a1)∗Φ =
1

4
(f(2) + f(4) + f(1,2,3) + f(1,3,4)),

a∗4Φ =
1

2
(f(4) + f(1,3,4)),

a∗1Φ =
1

2
(f(1) + f(1,2,4)),

and

αι(a∗4)Φ =
1

4
(−f(1) − f(3) − f(1,2,4) − f(2,3,4)),

and then evaluating ϕ(α(a1)a∗4) = 〈α(a∗1)Φ, a∗4Φ〉 and ϕ(a1α
ι(a∗4)) = 〈a∗1Φ, αι(a∗4)Φ〉.

Thus (A(I), ρI , α) is indeed an example with even dynamics satisfying
standard quantum detailed balance, but not fermionic standard quantum
detailed balance.
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7 Duality

Certain types of duals (or adjoints) of dynamical maps play an important
role in quantum detailed balance conditions. See for example [42, 27, 23, 24].
Here we show that some, but not necessarily all, aspects of duality survive
in our framework for fermionic standard quantum detailed balance. Our
discussion here is of a preliminary nature and we suspect that it should be
possible to develop duality in the fermionic case further.

A very basic duality appearing in relation to standard quantum detailed
balance arises from the following bilinear form, de�ned in terms of the state
ω given in (7):

Bω : Mn ×Mn → C : (a, b) 7→ ω(a⊗ b).

We note that for a, b ≥ 0, in the usual operator algebraic sense, i.e. a and b
are self-adjoint operators with non-negative spectra, we have

Bω(a, b) ≥ 0. (18)

For a linear map α : Mn → Mn, the unique dual map α′ : Mn → Mn such
that

Bω(α(a), b) = Bω(a, α′(b))

for all a, b ∈ Mn, is then of some importance in connection to standard
quantum detailed balance and can for example be used to de�ne the KMS-
dual of a positive map (again see the references mentioned above, for example
[24, De�nition 2.9], but also [49] and [45, Proposition 8.3]). The positivity
of Bω mentioned above is necessary in showing α′ is n-positive when α is.
These points in fact hold in a much more general in�nite dimensional von
Neumann algebraic setup, not just on Mn (see [1, Proposition 3.1] and [24]).
The special case Mn �ts into the general von Neumann algebraic framework
by representing the �rst copy ofMn appearing in Bω asMn⊗1n, with 1n the
n× n identity matrix, while the commutant 1n ⊗Mn of this representation
serves as the second copy of Mn in Bω.

In analogy to this, we can study the following bilinear form in the
fermionic case, in terms of the state ϕ given by (9), and where I is again
a �nite subset of L, and ι : I → L is an injection such that I and ι(I) are
disjoint:

Bϕ : A(I)×A(ι(I))→ C : (a, b) 7→ ϕ(ab).

Note that as in Section 4, the role of the tensor product structure is here
essentially taken over by the fermion lattice structure. Below it will be seen
that Bϕ does allow us to de�ne dual maps similar to Bω, but on the other
hand it does not satisfy the positivity property Bϕ(a, b) ≥ 0 for all a ≥ 0
and b ≥ 0.

Note that in the de�nition of Bϕ we are in e�ect making a choice, since
we could equally well have used the de�nition Bϕ(a, b) = ϕ(ba). In Bω
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no corresponding choice had to be made, since (a ⊗ 1)(1 ⊗ b) = a ⊗ b =
(1⊗ b)(a⊗ 1). This is an indication that the de�nition of Bϕ is not quite as
natural as that of Bω.

In order to show that we can de�ne a dual in the fermionic case, analogous
to the usual case above, we �rst study the relevant properties of Bϕ as de�ned
above. The main technical property we need is the following non-degeneracy
of Bϕ:

Proposition 7.1. In the de�nition of Φ, given by (5), assume that pM > 0
for all M ∈ DI . Then:

(i) If Bϕ(a, b) = 0 for all a ∈ A(I), for some b ∈ A(ι(I)), then b = 0.
(ii) If Bϕ(a, b) = 0 for all b ∈ A(ι(I)), for some a ∈ A(I), then a = 0.

Proof. For any M ∈ DI , let aM := ams ...am1 and aι(M) := aι(ms)...aι(m1),
where M is the sequence (m1, ...,ms), while we set aM = aι(M) = 1 if M
is the empty sequence. Furthermore, let M ′ ∈ DI denote the complement
of M ∈ DI , i.e. M

′ is the sequence in DI consisting of the elements of I
not appearing in the sequence M . Keep in mind that the algebra A(ι(I)) is
spanned by the linearly independent set of 22|I| elements given by

a∗ι(N)aι(M)

for M,N ∈ DI , i.e. these elements form a basis for A(ι(I)).
Note that for any given M ∈ DI and b ∈ A(ι(I)) we then have from

I ∩ ι(I) = ∅ and {ak, al} = {ak, a∗l } = {a∗k, al} = {a∗k, a∗l } = 0 for k ∈ I and
l ∈ ι(I), that

a∗M ′aMb = ca∗M ′aM

where c is obtained from b by expanding b in the above mentioned basis for
A(ι(I)), and changing the signs of some terms due to the anti-commutation
relations mentioned above. (Which terms change sign will not be important
to us.) So c depends on b and |I|, since a∗M ′aM contains |I| factors of ak or
a∗k in total.

In addition we have

a∗M ′aMfMι(M) = fM ′ι(M)

and
a∗M ′aMfNι(N) = 0

for sequences N ∈ DI such that N 6= M . Therefore, from (5),

a∗M ′aMbΦ = p
1/2
M cfM ′ι(M).

Similarly it now follows that

aM ′a
∗
M ′aMbΦ = p

1/2
M d|M |fι(M).
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where d|M | is obtained from c via aM ′c = d|M |aM ′ by again changing the
signs of certain terms. Note that in the process a dependence on the length
of the sequenceM ′, so equivalently on that ofM , appears, which we indicate
by |M |.

Assume that Bϕ(a, b) = 0 for all a ∈ A(I). Then it follows for all
M,N ∈ DI that〈

fι(N), d|M |fι(M)

〉
=

1

(pMpN )1/2
〈aN ′a∗N ′aNΦ, aM ′a

∗
M ′aMbΦ〉

=
1

(pMpN )1/2
Bϕ(a∗NaN ′a

∗
N ′aM ′a

∗
M ′aM , b)

= 0

Even though the signs of the terms in d|M | may vary as M varies, the
fact that 〈

fι(N), a
∗
ι(N)aι(M)fι(M)

〉
= 〈f∅, f∅〉 = 1,

whereas aι(M1)fι(M2) = 0 if the sequence M1 contains entries not present in
M2, means that each term in d|M | is zero. To see this, start with the shortest
sequence M = N = ∅ in DI , i.e. start with

〈
f∅, d|∅|f∅

〉
= 0, to see that

the basis element a∗ι(∅)aι(∅) = 1 in the expansion of d|∅|, has coe�cient 0.

Then progressively check longer sequences M and N in
〈
fι(N), d|M |fι(M)

〉
,

step by step. Therefore all basis elements in the expansion of d|M | have zero
coe�cients. Likewise for b, as its coe�cients are the same, except possibly
for the signs, i.e. b = 0, proving (i).

Similarly for (ii).

For the rest of this section we continue to assume that

pM > 0

for all M ∈ DI .
From Proposition 7.1 we obtain the following:

Corollary 7.2. (i) Every linear functional f on A(I) is of the form

f = Bϕ(·, b)

for some b ∈ A(ι(I)) uniquely determined by f .
(ii) Every linear functional g on A(ι(I)) is of the form

g = Bϕ(a, ·)

for some a ∈ A(ι(I)) uniquely determined by g.
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Proof. Consider the linear map

F : A(ι(I))→ A(I)∗ : b 7→ Bϕ(·, b)

where A(I)∗ denotes the dual of A(I), i.e. the space of all linear functionals
on A(I). In order to show (i), we only need to prove that F is a bijection.

Because of Proposition 7.1, F is injective. It follows that

dimA(I)∗ = dimA(I) = dimM2|I| = dimA(ι(I))

= dim kerF + dimF (A(ι(I)) = dimF (A(ι(I))

which means that F is also surjective, i.e. F is bijective as needed.
Claim (ii) follows similarly.

Now we are in a position to obtain the dual of a linear map in terms of
Bϕ.

Theorem 7.3. (i) Any linear map

α : A(I)→ A(I).

has a unique fermionic dual map

αϕ : A(ι(I))→ A(ι(I))

(which is necessarily linear) such that

Bϕ(α(a), b) = Bϕ(a, αϕ(b))

for all a ∈ A(I) and b ∈ A(ι(I)).
(ii) Any linear map

β : A(ι(I))→ A(ι(I))

has a unique fermionic dual map

βϕ : A(I)→ A(I)

(which is necessarily linear) such that

Bϕ(a, β(b)) = Bϕ(βϕ(a), b)

for all a ∈ A(I) and b ∈ A(ι(I)).
(iii) In terms of (i) and (ii),

αϕϕ = α and βϕϕ = β
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Proof. For b ∈ A(ι(I)), de�ne fb ∈ A(I)∗ by fb(a) := Bϕ(α(a), b). By
Corollary 7.2 there is a unique element of A(ι(I)) which we denote by αϕ(b),
such that fb = Bϕ(·, αϕ(b)) proving (i). Part (ii) follows similarly. Part (iii)
follows from uniqueness.

Note that we can characterize fermionic standard quantum detailed bal-
ance in terms of this fermionic dual:

Corollary 7.4. Fermionic standard quantum detailed balance, as de�ned in

(10), is satis�ed for (A(I), ρI , τ) if and only if

τϕt = τ ιt

for all t ≥ 0. Furthermore, when fermionic standard quantum detailed bal-

ance holds, the map τ ιt (for any t) is the unique A(ι(I)) → A(ι(I)) map

satisfying (10) for all a ∈ A(I) and b ∈ A(ι(I)). Similarly for (11).

This theorem and its corollary show that at least two aspects of duality
survive when moving from the usual case to the fermionic case, namely the
dual always exists, and it can be used to characterize fermionic standard
quantum detailed balance. Compare this for example to [27, De�nition 1]
where standard quantum detailed balance with respect to a reversing oper-
ation is de�ned directly in terms of the KMS-dual.

On the other hand, the survival of positivity is not yet as clear. To
conclude this section, we consider two examples related to this. The �rst
shows that Bϕ does not satisfy a positivity property of a form analogous to
that satis�ed by Bω in (18). This may be an indication that the duality in the
fermionic setup is not as useful as the duality obtained in the usual case in
terms of Bω. On the other hand, the second example indicates that, despite
Bϕ's lack of this positivity property, complete positivity of the fermionic
dual of a completely positive map is not necessarily a lost cause. In addition,
we already know from Corollary 7.4 that, at least when fermionic standard
quantum detailed balance is satis�ed, it follows that τϕt is completely positive
if τt is, simply because τ ιt (being a copy of τt) is completely positive.

Example 7.5. Let a := (1+κc)∗(1+κc) ∈ A(I) and b := (1+λd)∗(1+λd) ∈
A(ι(I)), where c = al for some l ∈ I, d = aι(l) and κ, λ ∈ C. Then

ab = q + (κc+ κ̄c∗)b

where (due to the anti-commutation relations)

q := (1 + λd)∗(1 + |κ|2c∗c)(1 + λd) ≥ 0.

Now, ϕ(q) ≥ 0 and one can show from (5) and (9) that

r := ϕ((κc+ κ̄c∗)b) = κλϕ(cd) + κ̄λ̄ϕ(c∗d∗).
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The complex conjugate of ϕ(cd) is ϕ(cd) = ϕ((cd)∗) = −ϕ(c∗d∗), since
{c∗, d∗} = 0. From the form of Φ in (5), one can see that ϕ(cd) is real. So
ϕ(cd) = −ϕ(c∗d∗). Therefore

r = (κλ− κ̄λ̄)ϕ(cd).

It is simple to check that ϕ(cd) can be non-zero for suitable choices of the
probabilities pM > 0 in (5). Hence r /∈ R is possible. Then

Bϕ(a, b) = ϕ(ab) /∈ R

despite the fact that a ≥ 0 and b ≥ 0.

For our next example the proposition below is needed. This proposition
again follows from Proposition 7.1, and tells us that Φ is a separating vector
(as de�ned below) for the algebras A(I) and A(ι(I)). This is not to be
confused with the notion of a �separable state�. What we are interested in, is
rather to be able to distinguish operators in an algebra by their values on a
single vector, the separating vector. We in fact go further in the proposition
and show that Φ is cyclic, but this is not needed in the example. The
proposition may very well be of independent interest, as cyclic and separating
properties are often very important in other contexts, for example in Tomita-
Takesaki theory and its connections to equilibrium statistical mechanics.

Before stating the proposition, we de�ne the required terminology. Con-
sider any �nite subset J ⊂ L.

A vector Ω ∈ H is called separating for A(J) when the following is true:
if a ∈ A(J) and aΩ = 0, then a = 0.

Let K be a subspace of H. A vector Ω ∈ H is called cyclic in K for
A(J), if A(J)Ω = K. (If we allowed in�nite J , we would assume K to be
closed and require the closure of A(J)Ω to be K.)

De�ne
HJ = span{fM : M ∈ DJ}.

Note that A(J) is faithfully represented on HJ by restriction (a special case
of this was already mentioned in Section 6).

Proposition 7.6. (i) The vector Φ is separating for A(I) and separating for
A(ι(I)).

(ii) The vector Φ is cyclic in HI∪ι(I) for A(I), and cyclic in HI∪ι(I) for
A(ι(I)).

Proof. (i) We �rst show that Φ is separating for A(I). Suppose that aΦ = 0
for some a ∈ A(I). Then Bϕ(a∗, b) = 〈aΦ, bΦ〉 = 0 for all b ∈ A(ι(I)).
Hence, by part (ii) of Proposition 7.1, we have a∗ = 0, which means that
a = 0, as required.

Similarly, Φ is separating for A(ι(I).
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(ii) Next we show that Φ is cyclic inHI∪ι(I) for A(I). Note thatHI∪ι(I) =
span{fMι(N) : M,N ∈ DI}. Therefore we consider any M,N ∈ D(I), and
then only need to show that fMι(N) ∈ A(I)Φ.

Apply annihilation operators ak to Φ for all k that appear in the sequence
N , followed by applying creation operators a∗l for all l ∈ I that don't appear
in N , to obtain a new vector Φ2. In terms of the notation in Proposition
7.1's proof, we can set

Φ2 = a∗N ′aNΦ,

where N ′ ∈ DI is the sequence consisting of the elements of I which are
not in N . Note that the terms fRι(R) in Φ for sequences R ∈ dI which
don't contain all elements from N , are annihilated in this process (by the
annihilation operators), as are terms for R ∈ dI which contain elements
not appearing in N (by the creation operators). Therefore Φ2 is a non-zero
vector proportional to fN ′ι(N).

We now apply annihilation operators ak to Φ2 for all k that appear in the
sequence N ′, followed by applying creation operators a∗l for all l appearing
in M , to obtain a non-zero vector, for example

a∗MaN ′Φ2 = a∗MaN ′a
∗
N ′aNΦ,

proportional to fMι(N).
As all the operators we applied to Φ are from A(I), this shows that

fMι(N) ∈ A(I)Φ, as required.
Similarly, Φ is cyclic in HI∪ι(I) for A(ι(I)).

Remark 7.7. Put di�erently, this proposition tells us that (HI∪ι(I), πI∪ι(I),Φ)
is the cyclic representation (as one would obtain from the GNS construction,
and which is unique up to unitary equivalence) of A(I) associated with the
state ρI , where

πI∪ι(I)(a) := a|HI∪ι(I)
for all a ∈ A(I) de�nes the representation πI∪ι(I) of A(I) on HI∪ι(I) by re-
striction to HI∪ι(I). The reason for this is that Tr(ρIa) =

〈
Φ, πI∪ι(I)(a)Φ

〉
,

as mentioned in Section 3, since Φ ∈ HI∪ι(I) and so πI∪ι(I)(a)Φ = aΦ. Sim-
ilarly (HI∪ι(I), πI∪ι(I),Φ) is the cyclic representation of A(ι(I)) associated
with the state ρι(I), where πI∪ι(I) is still restriction to HI∪ι(I), but applied
to operators in A(ι(I)). In both these representations, the cyclic vector Φ is
also separating.

This is remarkably similar to usual entanglement in terms of the tensor
product structure (see for example [24, Section 7]).

Also see [10] and [21] for related work on entanglement and represen-
tations in the fermionic case. Consult [17, Sections 2.3.1, 2.3.3 and 2.5.1]
for general background on cyclic and separating vectors, as well as cyclic
representations.
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The following example indicates that the fermionic dual may have better
positivity properties than one may initially expect, and that it may behave
well with respect to some classes of generators of quantum Markov semi-
groups.

Example 7.8. Consider |I| = 2 as in the example in Section 6, and use the
same notation. However, as a shorthand, we write

p0 = p∅, p1 = p(1), p2 = p(2), p3 = p(1,2)

which are all non-zero, but need not be 1/4. So we have

Φ = p
1/2
0 f∅ + p

1/2
1 f(1,3) + p

1/2
2 f(2,4) + p

1/2
3 f(1,2,3,4)

as our entangled state.
(i) We start with the completely positive map

α : A(I)→ A(I)

de�ned by
α(a) = a∗1aa1

for all a ∈ A(I). To determine its fermionic dual, as de�ned in part (i) of
Theorem 7.3, one can proceed as follows:

Evaluate both Bϕ(α(a), b) = ϕ(α(a)b) and Bϕ(a, αϕ(b)) = ϕ(aαϕ(b)) for
each a in a basis for A(I), say a = 1, a1, a2, a

∗
1, a

∗
2, a1a2,..., a1a2a

∗
1a
∗
2. Since

A(I) is 16 dimensional, we obtain 16 equations in terms of b and αϕ(b),
namely

〈Φ, αϕ(b)Φ〉 =
〈
p

1/2
1 f(1,3) + p

1/2
3 f(1,2,3,4), bΦ

〉
for a = 1, 〈

p
1/2
0 f(1) + p

1/2
2 f(1,2,4), α

ϕ(b)Φ
〉

= 0

for a = a1, 〈
p

1/2
0 f(2) − p

1/2
1 f(1,2,3), α

ϕ(b)Φ
〉

=
〈
p

1/2
1 f(1,2,3), bΦ

〉
for a = a2, etc., which can then be used to �nd the components 〈fM , αϕ(b)Φ〉
of αϕ(b)Φ, in terms of the orthonormal basis of HI∪ι(I) given by fM for
M ∈ DI∪ι(I). In turn this can be used to determine αϕ(b)Φ for each b in a
basis for A(ι(I)), and using part (i) of Proposition 7.6, αϕ(b) itself can be
determined uniquely for each b.

For example, when b = 1, we obtain

αϕ(1)Φ =
p1

p
1/2
0

f∅ +
p3

p
1/2
2

f(2,4)
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which implies that

αϕ(1) =
p1

p0
a3a
∗
3a4a

∗
4 +

p3

p2
a3a
∗
3a
∗
4a4.

Proceeding in this (tedious) way, it is eventually found that

αϕ(b) = gbg∗

for all b ∈ A(ι(I)), where

g := a3

(
p

1/2
1

p
1/2
0

a4a
∗
4 −

p
1/2
3

p
1/2
2

a∗4a4

)
.

Interestingly, αϕ is therefore also completely positive.
(ii) We now expand on this by viewing α as part of a generator θ for a

quantum Markov semigroup on A(I), given by

θ(a) = −1

2
[a∗1a1a+ aa∗1a1 − 2a∗1aa1 + a1a

∗
1a+ aa1a

∗
1 − 2a1aa

∗
1]

for all a ∈ A(I). (See [34], [38] and [46, Section 30] for more on the general
theory of such generators). The dynamics on A(I) is then given by

τt(a) = etθ(a) (19)

for t ≥ 0. This θ was chosen as an example, since it has properties relevant
to our work:

We are mainly interested in dynamics that leave the state ρI from Sec-
tion 3 invariant, as it is required for fermionic standard quantum detailed
balance). This means that for all t ≥ 0,

Tr(ρIτt(a)) = Tr(ρIa),

or equivalently
Tr(ρIθ(a)) = 0,

for all a ∈ A(I). This is the case if and only if

p0 = p1 and p2 = p3. (20)

Nevertheless, fermionic standard quantum detailed balance is not satis�ed,
as can be checked from the de�nition of the latter, and will also be checked
by Corollary 7.4 below. This is relevant, since because of Corollary 7.4, if
τt is completely positive and satis�es fermionic standard quantum detailed
balance, then we in any case have that τϕt is completely positive, as it is
equal to τ ιt , which is just a copy of τt elsewhere in the lattice, and therefore
completely positive. The goal is to see if complete positivity of the fermionic
dual extends beyond this situation.
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Write θ as

θ = −1

2
[θ1 + θ2 − 2θ3 + θ4 + θ5 − 2θ6]

where θ1(a) = a∗1a1a, etc. As for α = θ3 above, we can determine θϕj for
each j in turn, for example θϕ1 (b) = a∗3a3b, to obtain

θϕ(b) = −1

2
[θϕ1 + θϕ2 − 2θϕ3 + θϕ4 + θϕ5 − 2θϕ6 ](b)

= −1

2
[a∗3a3b+ ba∗3a3 − 2gbg∗ + a3a

∗
3b+ ba3a

∗
3 − 2h∗bh]

for all b ∈ A(ι(I)), where

h := a3

(
p

1/2
0

p
1/2
1

a4a
∗
4 −

p
1/2
2

p
1/2
3

a∗4a4

)
.

For θϕ to again be a generator of a quantum Markov semigroup, in the
standard form as in [46, Corollary 30.13], we need to have h∗h = a∗3a3 and
gg∗ = a3a

∗
3. In other words, we need the invariance condition (20) to be

satis�ed, as is easily con�rmed. In this case g = h, and then we have

θϕ(b) = −1

2
[g∗gb+ bg∗g − 2g∗bg + gg∗b+ bgg∗ − 2gbg∗]

for all b ∈ A(ι(I)), which is indeed a generator of a quantum Markov semi-
group. Note that, by Corollary 7.4 and (19), this con�rms that fermionic
standard quantum detailed balance is not satis�ed, since

θι(b) = −1

2
[a∗3a3b+ ba∗3a3 − 2a∗3ba3 + a3a

∗
3b+ ba3a

∗
3 − 2a3ba

∗
3]

is not the same as θϕ, because of the a∗3ba3 and a3ba
∗
3 terms.

So essentially, at least in this example, the invariance condition (20) for
the original dynamics, also ensures that θϕ is a generator for a quantum
Markov semigroup, the latter of course just being the fermionic dual τϕt of
the semigroup τt generated by θ, as one can see from (19). In particular, τϕt
is then completely positive for all t ≥ 0.

In order to extend this example to more general maps and generators, it
would be advisable to �rst develop more e�cient techniques to deal with the
fermionic dual. This is left for further investigation.

8 Questions

There are some natural further questions that could be explored:
Can the fermionic standard quantum detailed balance condition lead to

more re�ned results than the usual quantum detailed balance conditions,
when applied to fermionic systems?
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What other interesting examples, aside from the one in Section 5, are
there of fermionic standard quantum detailed balance?

We saw in Example 7.8 that fermionic duals may have good positivity
properties and may behave well with respect to the structure of some classes
of generators of quantum Markov semigroups, despite the bilinear form not
having a simple positivity property. The question is if this is true more gen-
erally, say for semigroups leaving the state ρI invariant. Such an invariance
assumption is present in the general results on usual duality in the tensor
product setup (or more generally in terms of commutants) to ensure exis-
tence of the dual; see [1, Proposition 3.1] and [24, Theorem 2.5]. A more
general investigation could be done to determine when the fermionic dual
of a completely positive map is completely positive, and when the dual of a
generator of a quantum Markov semigroup is also the generator of a quantum
Markov semigroup.

A related question is if there is a more e�cient method of determining
the fermionic dual, than the method used in Example 7.8.

Alternatively, one can ask if duals of maps in the fermionic case be ap-
proached in a di�erent way from Section 7, in order to have better positivity
properties.

What other forms of quantum detailed balance, aside from standard
quantum detailed balance with respect to a reversing operation, can sim-
ilarly be tailored to the fermionic case?

In this paper we have essentially just considered �nite systems in a very
concrete set-up. What about more general fermionic systems and a more
abstract set-up? At least an in�nite version (i.e. in�nite I) should be possible
in the same concrete setting that we have used in this paper.

Lastly, can a bosonic version of detailed balance be developed in an anal-
ogous way? This seems plausible, but may be technically more demanding.
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