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Abstract 

In this paper, the long term (also known as the steady-state mode) run-length theoretical properties 

of the four different types of synthetic and runs-rules 𝑋̅ monitoring schemes that were empirically 

analyzed in another paper are discussed. That is, using the Markov chain imbedding technique 

(thoroughly discussed in Part 1 of this work), the closed-form expressions of the steady-state initial 

probabilities and average run-length (ARL) vectors are derived; so that the corresponding steady-

state ARL and overall performance expressions, of each of the four different types of the synthetic 

and runs-rules 𝑋̅ monitoring schemes, may be formulated. Since there is very little literature on 

steady-state analysis of the synthetic and runs-rules charts, the closed-form expressions derived 

here will ease the understanding and implementation of the different types synthetic and runs-rules 

𝑋̅ schemes in practice and in further academic research. 

 

Keywords: Average run-length (ARL), Overall performance, Runs-rules charts, Steady-state, 

Synthetic charts, Transition probability matrix (TPM).  

 

1. Introduction 

This paper is primarily dependent on Shongwe and Graham (2018b) (henceforth referred to as Part 

1 of this work) where all the important background information is thoroughly discussed. Hence, as 

directed by the referees, we will not re-define or re-introduce anything already discussed in Part 1, 

but instead we implore the reader to consult Part 1 of this work before reading this Part 2.  

The steady-state mode is used to characterize long term run-length properties of a monitoring 

scheme. Hence, the steady-state run-length is the number of sampling points at which the chart first 

signals given that the process begins and stays IC for a long time, then at some random time, an 

OOC signal is observed, see Zhang and Wu (2005). Thus, the steady-state ARL (SSARL) is given by 

𝑆𝑆𝐴𝑅𝐿(𝛿) = 𝐬(1×𝑀) ∙ 𝑨𝑹𝑳(𝑀×1)(𝛿) = 𝐬(1×𝑀) ∙ (𝐈(𝑀×𝑀) − 𝐐(𝛿)(𝑀×𝑀))
−1 ∙ 𝟏(𝑀×1), (1) 

where 𝐬(1×𝑀) is the steady-state initial probabilities vector and the rest of the elements of Equation 

(1) are explained in Part 1 of this work.  

                                                           
 Corresponding author: S.C. Shongwe (sandile@tuks.co.za) 



2 
 

In the area of basic synthetic and runs-rules 𝑋̅ charts, most authors usually consider only zero-state 

mode, apart from Shongwe and Graham (2018a) (who considered the steady-state empirical 

analysis of all the four different types of these schemes) to the best of our knowledge, only Champ 

(1992), Khoo et al. (2012), Davis and Woodall (2002) and Machado and Costa (2014) have 

considered some empirical steady-state studies on the basic RR1, S1, S2 and S3, respectively. More 

importantly, and also what inspired this paper, the excellent account of theoretical discussion that 

was conducted by Champ (1992) for the RR1 scheme as well as Machado and Costa (2014) for the 

S1 and S3 schemes. Thus, to supplement on this work as well as the empirical analysis in Shongwe 

and Graham (2018a), in this paper, a contribution to the theory of synthetic and runs-rules 𝑋̅ 

monitoring schemes is made by:   

i. Derive the steady-state closed-form expressions of 𝐬(1×𝑀) and 𝑨𝑹𝑳(𝑀×1), so that we 

formulate the SSARL and the overall performance expressions;   

ii. Show that the three methods that are mostly used to compute the 𝐬(1×𝑀), yield empirically 

and notionally different 𝐬(1×𝑀)’s; however, the resulting empirical SSARL values are 

approximately equal. 

The rest of the paper is organized as follows: In Sections 2 and 3, the steady-state initial probability 

and ARL vectors for each of the schemes are derived, respectively. In Section 4, the corresponding 

SSARL expressions are computed. In Section 5, the overall run-length distribution properties that 

may be used as an alternative to design or to evaluate the schemes here are given. Finally, in 

Section 6, we give some concluding remarks. 

2. Initial probabilities vectors 

The steady-state probabilities vector (SSPV) is such that 𝐬(1×𝑀) = (𝑠1, 𝑠2, … , 𝑠𝑀), with 𝐬 ∙ 𝐐 = 𝐬 

subject to ∑ 𝑠𝑗
𝑀
𝑗=1 = 1. In the SPCM literature, there are three methods that are mostly used to 

compute the SSPV: the cyclical, simplified cyclical and conditional steady-state methods – denoted 

by SSPV1, SSPV2 and SSPV3, respectively. Note that some of these steady-state methods were 

discussed in Shongwe and Graham (2017). Next, these three methods are discussed in Sections 2.1 

to 2.3. In Section 2.4, the general form of the initial probabilities vectors are given for each scheme. 

 2.1 The cyclical steady-state method (SSPV1) 

The SSPV1 method by Crosier (1986) requires that 𝐏∗  be computed first. The matrix 𝐏∗ is 

obtained by altering 𝐏 (in Equation (3) of Part 1 of this work) so that the control statistic is reset to 

the initial state whenever it goes into an OOC state. That is, the component with the value one on 
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the last row of the TPM is altered so that the value of one is moved to the respective initial state. 

Then, once 𝐏∗ has been determined, it can be used to find the (𝑀+1)×1 probability vector 𝐯 such 

that the following equation is satisfied 

𝐯 = 𝐏∗
′
𝐯    subject to    𝟏′𝐯 = 1. (2) 

where 

𝑷(𝑀+1)×(𝑀+1)
∗ = (

𝐐(𝑀×𝑀)
−

𝐮𝑗′(1×𝑀)
   
|
−
|
    

𝒓(𝑀×1)
−

0(1×1)
 ) (3) 

with the jth unit vector defined as 

𝐮𝑗 =  

{
 
 

 
 𝐮1                                   for RR1 
𝐮𝑀+1

2

          for RR2, RR3, RR4 

𝐮2                                    for S1
𝐮𝑀+1                  for S2, S3, S4.

     (4) 

Thus, the SSPV1 method is given by  

𝐬 = (𝟏′𝐳)−1 ∙ 𝐳 (5) 

where 𝐳 is the 𝑀×1 vector obtained from 𝐯 by deleting the (𝑀+1)th component associated with the 

absorbing state. 

 2.2 The simplified steady-state method (SSPV2) 

In the synthetic literature, it has been erroneous stated the SSPV2 method by Champ (1992) is 

calculated using Equation (5); however, with  

𝐳(𝑀×1) = (𝐆 − 𝐐
′)−1 ∙ 𝐮 where 𝐮(𝑀×1) = (1 0 0…0)′ (6) 

and  

𝐆(𝑀×𝑀) =

(

 
 
 
 

 

2 1 1 1 ⋯ 1 1
0 1 0 0 ⋯ 0 0
0 0 1 0 ⋯ 0 0
0 0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 1 0
0 0 0 0 ⋯ 0 1

 

)

 
 
 
 

, (7) 

see for example, Khoo et al. (2012), Hu et al. (2015), Hu and Sun (2015), Shongwe and Graham 

(2016, 2018a). In fact, Equations (6) and (7) were supposed to be defined as 

𝐳(𝑀×1) = (𝐆 − 𝐐
′)−1 ∙ 𝐮𝑗 where 𝐮𝑗 is as given in Equation (4) above (8) 

and  
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𝐆(𝑀×𝑀) = 𝐮𝑗 ∙ 𝟏
′ + 𝐈(𝑀×𝑀).   (9) 

Redefining 𝐆 as done in Equation (9) instead of Equation (7) ensures that the SSPV1 and SSPV2 

methods are exactly equivalent, as proclaimed in general by Champ (1992). 

2.3 The conditional steady-state method (SSPV3) 

The SSPV3 method (also used by Davis and Woodall (2002) and Machado and Costa (2014)) is 

obtained by dividing each element of 𝐐(𝛿 = 0) by its corresponding row sum, so that the ‘new’ 𝐐 

is called the conditional essential TPM, denoted by 𝐐𝑪. That is, 𝐐𝑪 is the altered version of 𝐐 so 

that the ‘new’ essential TPM is ergodic. Thus, the SSPV3 method is a vector such that 

𝐬 ∙ 𝐐𝑪 = 𝐬  subject to ∑ 𝑠𝑗
𝜏
𝑗=1 = 1. 

Unlike the SSPV1 and SSPV2 methods, the SSPV3 method is such that the dimension of the 

essential TPM of the corresponding synthetic and runs-rules schemes are equal (RR1 & S1, RR2 & 

S2, RR3 & S3, RR4 & S4) i.e. equal to 𝜏 rather than 𝑀. That is, the design of the SSPV3 method is 

such that it is assumed that the process has been IC for a very long time, hence, the effect of a head-

start feature has disappeared. Removing the head-start feature in the synthetic design is similar to 

removing the shaded elements in the TPMs in Table 5 of Part 1 of this work. Consequently, this 

implies that the synthetic and runs-rules schemes in that Table 5 (a), (b), (c) and (d) are respectively 

equivalent.   

2.4 General form of the initial probabilities vectors 

Since the process must be IC when calculating 𝐬, let: 𝑝 = 𝑝𝑂, 𝑝1 = 𝑝𝐴 = 𝑝𝐷, 𝛾 =
1

2
𝑝, 𝜑 =

2𝑝

1+𝑝
, 𝜗 =

2𝛾

1+2𝛾
=

𝑝

1+𝑝
, 𝜆 =

1−𝑝

1+𝑝
. In Table 1, we give a summary of which schemes have explicitly easy  𝐬 

expressions for each SSPV1, SSPV2 and SSPV3 methods. Note that those with ‘Not simple’ do not 

necessarily mean the expression does not exist; instead as H becomes very large, they are 

complicated to write explicitly.  Consequently, the SSPV expressions are shown in Tables 2 and 3, 

respectively (with the vector of the S2 and RR2 schemes using the dummy variables defined in 

Table 5, Panel (b) of Part 1 of this work). For the sake of consistency, we recommend the use of the 

SSPV3 method and consequently, moving forward we use the SSPV3 method. 

Table 1: Summary of which schemes have easy explicit expressions of the initial probability 

vectors 

 RR1 RR2 RR3 RR4 S1 S2 S3 S4 

SSPV1 

SSPV2 
Table 2 

Not 

simple 
Table 2 Table 2 Table 2 

Not 

simple 

Not 

simple 

Not 

simple 

SSPV3 Table 3 
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Table 2: The closed-form expressions of some of the synthetic and runs-rules 𝑋̅ schemes using the SSPV1 and SSPV2 methods 

(a) RR1 (b) S1 (c) RR3 (d) RR4 

(

 
 
 
 

s1
s2
s3
⋮

s𝐻−1
s𝐻
s𝐻+1)

 
 
 
 

′

=
1

2 − 𝑝𝑂
𝐻

(

 
 
 
 
 

1
1 − 𝑝𝑂

𝑝𝑂(1 − 𝑝𝑂)

𝑝𝑂
2(1 − 𝑝𝑂)

⋮
𝑝𝑂
𝐻−2(1 − 𝑝𝑂)

𝑝𝑂
𝐻−1(1 − 𝑝𝑂))

 
 
 
 
 

′

 

(

 
 
 
 

s1
s2
s3
⋮

s𝐻−1
s𝐻
s𝐻+1)

 
 
 
 

′

=

(

 
 
 
 
 

𝑝𝑂
𝐻

1 − 𝑝𝑂
𝑝𝑂(1 − 𝑝𝑂)

𝑝𝑂
2(1 − 𝑝𝑂)

⋮
𝑝𝑂
𝐻−2(1 − 𝑝𝑂)

𝑝𝑂
𝐻−1(1 − 𝑝𝑂))

 
 
 
 
 

′

 

(

 
 
 
 
 
 
 
 
 
 
 
 

s1
s2
s3
⋮

s𝐻−2
s𝐻−1
s𝐻
s𝐻+1
s𝐻+2
s𝐻+3
s𝐻+4
⋮

s2𝐻−1
s2𝐻
s2𝐻+1)

 
 
 
 
 
 
 
 
 
 
 
 

′

=
1

1 + 𝑝1∑ 𝑝𝑂
𝐼𝐻−1

𝑖=0

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑝𝑂
𝐻−1𝑝1
𝑝𝑂
𝐻−2𝑝1
𝑝𝑂
𝐻−3𝑝1
⋮

𝑝𝑂
2𝑝1
𝑝𝑂𝑝1
𝑝1

1 − 𝑝1 ∑𝑝𝑂
𝐼

𝐻−1

𝑖=0
𝑝1
𝑝𝑂𝑝1
𝑝𝑂
2𝑝1
⋮

𝑝𝑂
𝐻−3𝑝1
𝑝𝑂
𝐻−2𝑝1
𝑝𝑂
𝐻−1𝑝1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

′

 

(

 
 
 
 
 
 
 
 
 
 
 
 

s1
s2
s3
⋮

s𝐻−2
s𝐻−1
s𝐻
s𝐻+1
s𝐻+2
s𝐻+3
s𝐻+4
⋮

s2𝐻−1
s2𝐻
s2𝐻+1)

 
 
 
 
 
 
 
 
 
 
 
 

′

=
1

1 + 𝑝1∑ 𝛾𝐼𝐻−1
𝑖=0

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝛾𝐻−1𝑝1
𝛾𝐻−2𝑝1
𝛾𝐻−3𝑝1

⋮
𝛾2𝑝1
𝛾𝑝1
𝑝1

1 − 𝑝1 ∑𝛾𝐼
𝐻−1

𝑖=0
𝑝1
𝛾𝑝1
𝛾2𝑝1
⋮

𝛾𝐻−3𝑝1
𝛾𝐻−2𝑝1
𝛾𝐻−1𝑝1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

′

 

 

Table 3: The closed-form expressions of the initial probabilities vectors of the synthetic and runs-rules 𝑋̅ schemes using SSPV3 

method 

(a) S1 or RR1 (c) S3 or RR3 (d) S4 or RR4 

(

 
 
 
 

s1
s2
s3
⋮

s𝐻−1
s𝐻
s𝐻+1)

 
 
 
 

′

=
1

1 + 𝐻(1 − 𝑝)

(

 
 
 
 

1
1 − 𝑝
1 − 𝑝
⋮

1 − 𝑝
1 − 𝑝
1 − 𝑝)

 
 
 
 

′

 

(

 
 
 
 
 
 
 
 
 
 
 
 

s1
s2
s3
⋮

s𝐻−2
s𝐻−1
s𝐻
s𝐻+1
s𝐻+2
s𝐻+3
s𝐻+4
⋮

s2𝐻−1
s2𝐻
s2𝐻+1)

 
 
 
 
 
 
 
 
 
 
 
 

′

=
1

2∑ 𝜑𝑖
𝐻−1

𝑖=0
+ 2𝜑𝐻(1 − 𝑝)−1

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝜑𝐻−1

𝜑𝐻−2

𝜑𝐻−3

⋮
𝜑2

𝜑
1

2𝜑𝐻(1 − 𝑝)−1

1
𝜑

𝜑2

⋮
𝜑𝐻−3

𝜑𝐻−2

𝜑𝐻−1 )

 
 
 
 
 
 
 
 
 
 
 
 
 

′

 

(

 
 
 
 
 
 
 
 
 
 
 
 

s1
s2
s3
⋮

s𝐻−2
s𝐻−1
s𝐻
s𝐻+1
s𝐻+2
s𝐻+3
s𝐻+4
⋮

s2𝐻−1
s2𝐻
s2𝐻+1)

 
 
 
 
 
 
 
 
 
 
 
 

′

=
1

2∑ 𝜗𝑖
𝐻−1

𝑖=0
+ (2∑ 𝜗𝑖

𝐻−1

𝑖=1
 + 4𝜗𝐻) (1 − 2𝛾)−1

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜗𝐻−1

𝜗𝐻−2

𝜗𝐻−3

⋮
𝜗2

𝜗
1

(2∑ 𝜗𝑖
𝐻−1

𝑖=1

 + 4𝜗𝐻) (1 − 2𝛾)−1

1
𝜗
𝜗2

⋮
𝜗𝐻−3

𝜗𝐻−2

𝜗𝐻−1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

′

 



6 
 

Table 3: (continued) 

(b) S2 or RR2: 𝜏 = 𝐻2 + 𝐻 + 1 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s1
s2
⋮

s𝑎−2
s𝑎−1
s𝑎
s𝑎+1
s𝑎+2
⋮

s𝑏−1
s𝑏
s𝑏+1
⋮

s𝑐−1
s𝑐
⋮
⋮
⋮

s𝑙−11
s𝑙−10
s𝑙−9
s𝑙−8
s𝑙−7
s𝑙−6
s𝑙−5
s𝑙−4
s𝑙−3
s𝑙−2
s𝑙−1
s𝑙
s𝑙+1
s𝑙+2
s𝑙+3
s𝑙+4
s𝑙+5
s𝑙+6
s𝑙+7
s𝑙+8
s𝑙+9
s𝑙+10
s𝑙+11
⋮
⋮
⋮
s𝑥
s𝑥+1
⋮

s𝑦−1
s𝑦
s𝑦+1
⋮

s𝑧−2
s𝑧−1
s𝑧
s𝑧+1
s𝑧+2
⋮

s𝜏−1
s𝜏 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

′

=
1

2(𝐻 + 𝜆∑ (𝐻 − 𝑖)𝐻−1
𝑖=1 + 𝜑(1 − 𝑝)−1)

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜆
𝜆
⋮
𝜆
𝜆
1
𝜆
𝜆
⋮
𝜆
1
𝜆
⋮
𝜆
1
⋮
⋮
⋮
1
𝜆
𝜆
𝜆
1
𝜆
𝜆
1
𝜆
1
1

2𝜑(1 − 𝑝)−1

1
1
𝜆
1
𝜆
𝜆
1
𝜆
𝜆
𝜆
1
⋮
⋮
⋮
1
𝜆
⋮
𝜆
1
𝜆
⋮
𝜆
𝜆
1
𝜆
𝜆
⋮
𝜆
𝜆 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

′
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Note that Machado and Costa (2014) were the first to use the SSPV3 method to compute the initial 

probabilities vectors expressions for the S1 and S3 schemes. In this paper, it is pointed out that 

these also correspond to those of the 2-of-(H+1) RR1 and RR3 schemes. In addition, the initial 

probabilities expressions for the S2 / RR2 and S4 / RR4 schemes are introduced; not only by using 

SSPV3 method, by also illustrating how to correctly use SSPV1 and SSPV2 methods to calculate 

the steady-state initial probability vectors. 

3. Average run-length vectors 

Since we opted to use the SSPV3 method moving forward, here, we derive the closed-form 

expressions of the 𝑨𝑹𝑳(𝜏×1), for each of the schemes. This procedure is conducted recursively and 

based on the patterns of these expressions as H increases, we use mathematical or complete 

induction to formulate the general form of the ARL vectors – these are shown in Table 4, Panel (a) 

to (c), for the S1 / RR1, S3 / RR3 and S4 / RR4 schemes; where 

ℱ1 = 1 − 𝑝𝑂 − 𝑝𝑂
𝐻 + 𝑝𝑂

𝐻+1, 

ℱ2 = 1 − 𝑝𝑂 − 𝑝𝐴𝑝𝑂
𝐻 − 𝑝𝐷𝑝𝑂

𝐻 − 𝑝𝐴𝑝𝐷 ∑ 𝑝𝑂
𝑖

2𝐻−1

𝑖=0

, 

ℱ3 = 1 − 𝑝𝐴 (𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

) − 𝑝𝐵 (1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

) − 𝑝𝐶 − 𝑝𝐴𝑝𝐵
𝐻 (1 + 𝑝𝐷 ∑𝑝𝐶

𝑖

𝐻−1

𝑖=0

) − 𝑝𝐷𝑝𝐶
𝐻 − 𝑝𝐴 ∑𝑝𝐵

𝑗

𝐻−1

𝑗=1

(𝑝𝐶 + 𝑝𝐷 + 𝑝𝐷𝑝𝐶 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

). 

 

Note that unlike the S1 / RR1, S3 / RR3 and S4 / RR4 schemes, the 𝑨𝑹𝑳(𝜏×1) of the S2 / RR2 

scheme does not have a recursive pattern. We believe this is partly caused by the dimension of the 

TPMs as shown in Equation (6) of Part 1 of this work. That is, while those of the other schemes 

increase in a linear manner, the dimension of the S2 / RR2 schemes increase in a quadratic manner. 
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Table 4: The closed-form expressions of the ARL vectors of the synthetic and runs-rules 𝑋̅ schemes 

(a) RR1 or S1 (b) RR3 or S3 (c) RR4 or S4 

(

 
 
 
 
 
 
 

ς1(𝛿)

ς2(𝛿)

ς3(𝛿)

ς4(𝛿)
⋮

ς𝐻−2(𝛿)

ς𝐻−1(𝛿)

ς𝐻(𝛿)

ς𝐻+1(𝛿))

 
 
 
 
 
 
 

=
1

ℱ1

(

 
 
 
 
 
 
 

2 − 𝑝𝑂
𝐻

1
1 + 𝑝𝑂

𝐻−1 − 𝑝𝑂
𝐻

1 + 𝑝𝑂
𝐻−2 − 𝑝𝑂

𝐻

⋮
1 + 𝑝𝑂

4 − 𝑝𝑂
𝐻

1 + 𝑝𝑂
3 − 𝑝𝑂

𝐻

1 + 𝑝𝑂
2 − 𝑝𝑂

𝐻

1 + 𝑝𝑂 − 𝑝𝑂
𝐻 )

 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ς1(𝛿)

ς2(𝛿)
⋮

ς𝐻−3(𝛿)

ς𝐻−2(𝛿)

ς𝐻−1(𝛿)

ς𝐻(𝛿)

ς𝐻+1(𝛿)

ς𝐻+2(𝛿)

ς𝐻+3(𝛿)

ς𝐻+4(𝛿)

ς𝐻+5(𝛿)
⋮

ς2𝐻(𝛿)

ς2𝐻+1(𝛿))

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

ℱ2

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1 + 𝑝𝐴𝑝𝑂 ∑𝑝𝑂

𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝑂
2 ∑𝑝𝑂

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐴𝑝𝑂
𝐻−3∑𝑝𝑂

𝑖

2

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝑂
𝐻−2∑𝑝𝑂

𝑖

1

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝑂
𝐻−1) (1 + 𝑝𝐷 ∑𝑝𝑂

𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐷 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐴 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐴 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐷𝑝𝑂
𝐻−1) (1 + 𝑝𝐴∑𝑝𝑂

𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝑂
𝐻−2∑𝑝𝑂

𝑖

1

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝑂
𝐻−3∑𝑝𝑂

𝑖

2

𝑖=0

)(1 + 𝑝𝐴∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐷𝑝𝑂
2 ∑𝑝𝑂

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐴 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝑂 ∑𝑝𝑂
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐴 ∑𝑝𝑂
𝑖

𝐻−1

𝑖=0

)
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

ς1(𝛿)

ς2(𝛿)
⋮

ς𝐻−3(𝛿)

ς𝐻−2(𝛿)

ς𝐻−1(𝛿)

ς𝐻(𝛿)

ς𝐻+1(𝛿)

ς𝐻+2(𝛿)

ς𝐻+3(𝛿)

ς𝐻+4(𝛿)

ς𝐻+5(𝛿)
⋮

ς2𝐻(𝛿)

ς2𝐻+1(𝛿))

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=
1

ℱ3

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(1 + 𝑝𝐴𝑝𝐵 ∑𝑝𝐵

𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
2 ∑𝑝𝐵

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐴𝑝𝐵
𝐻−3∑𝑝𝐵

𝑖

2

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−2∑𝑝𝐵

𝑖

1

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐴𝑝𝐵
𝐻−1) (1 + 𝑝𝐷 ∑𝑝𝐶

𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐴 ∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)(1 + 𝑝𝐷 ∑𝑝𝐶
𝑖

𝐻−1

𝑖=0

)

1 + 𝑝𝐴 ∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

(1 + 𝑝𝐷𝑝𝐶
𝐻−1) (1 + 𝑝𝐴 ∑𝑝𝐵

𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−2∑𝑝𝐶

𝑖

1

𝑖=0

)(1 + 𝑝𝐴 ∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶
𝐻−3∑𝑝𝐶

𝑖

2

𝑖=0

)(1 + 𝑝𝐴 ∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

⋮

(1 + 𝑝𝐷𝑝𝐶
2∑𝑝𝐶

𝑖

𝐻−3

𝑖=0

)(1 + 𝑝𝐴 ∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)

(1 + 𝑝𝐷𝑝𝐶 ∑𝑝𝐶
𝑖

𝐻−2

𝑖=0

)(1 + 𝑝𝐴 ∑𝑝𝐵
𝑖

𝐻−1

𝑖=0

)
)
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4. Average run-length expressions 

The SSARL is the product of the initial probabilities vectors in Table 3 and the ARLs in Table 4, 

that is, 𝑆𝑆𝐴𝑅𝐿(𝛿) = 𝐬1×𝜏 ∙ 𝑨𝑹𝑳𝜏×1(𝛿) yields the closed-form expressions that are given by: 

RR1 or S1: 
1

1 + 𝐻(1 − 𝑝)
𝜍1(𝛿) +

1 − 𝑝

1 + 𝐻(1 − 𝑝)
∑ 𝜍𝑖(𝛿)

𝐻+1

𝑖=2

, (10a) 

RR2 or S2: 𝐬1×(𝐻2+𝐻+1) ∙ (𝐈 − 𝐐((𝐻2+𝐻+1)×(𝐻2+𝐻+1))(𝛿))

−1

∙ 𝟏, (10b) 

RR3 or S3: 𝑠𝐻+1
# 𝜍𝐻+1

# (𝛿) +∑𝑠𝑖
# (𝜍𝑖

#(𝛿) + 𝜍(2𝐻+2)−𝑖
# (𝛿))

𝐻

𝑖=1

, (10c) 

RR4 or S4: 𝑠𝐻+1𝜍𝐻+1(𝛿) +∑𝑠𝑖 (𝜍𝑖(𝛿) + 𝜍(2𝐻+2)−𝑖(𝛿))

𝐻

𝑖=1

. (10d) 

 

To avoid confusion between the S3 / RR3 and S4 / RR4 expressions, as they have similar structure 

but different values, from here onwards, the hash tag (i.e. ‘#’) is used for the S3 / RR3 SSARL 

expressions. As explained in Section 4, the closed-form expression of the 𝑨𝑹𝑳𝜏×1(𝛿) for the S2 / 

RR2 schemes does not exist and thus we need to use Equation (10b) directly for each different 

value of H by using some sophisticated statistical software.  

Although not shown here, due to space limitation, it is observed that, for each H, multiplying the 

SSPV1, SSPV2 and SSPV3 vectors with their corresponding ARL vectors in Section 4, yields 

SSARL values that are approximately equal to each other – this was illustrated in Shongwe and 

Graham (2017) for the S1 scheme. Thus, it follows that as long as a user of the synthetic or runs-

rules 𝑋̅ scheme selects one of the SSPV methods and uses it throughout, the resulting conclusion 

will be the same. 

5. Other run-length performance measures 

As an extension to Section 6 of Part 1 of this work, in the steady-state mode, the EWRL expressions 

for the four types of synthetic and runs-rules 𝑋̅ charts are given by: 

RR1 or S1: ∫ 𝑤(𝛿) × (
1

1 + 𝐻(1 − 𝑝)
𝜍1(𝛿) +

(1 − 𝑝)

1 + 𝐻(1 − 𝑝)
∑ 𝜍𝑖(𝛿)

𝐻+1

𝑖=2

) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿, 
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RR2 or S2: ∫ 𝑤(𝛿) × (𝐬1×(𝐻2+𝐻+1) ∙ (𝐈 − 𝐐((𝐻2+𝐻+1)×(𝐻2+𝐻+1))(𝛿))

−1

∙ 𝟏) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿, 

RR3 or S3: ∫ 𝑤(𝛿) × (𝑠𝐻+1
# 𝜍𝐻+1

# (𝛿) +∑𝑠𝑖
# (𝜍𝑖

#(𝛿) + 𝜍(2𝐻+2)−𝑖
# (𝛿))

𝐻

𝑖=1

) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿, 

RR4 or S4: ∫ 𝑤(𝛿) × (𝑠𝐻+1𝜍𝐻+1(𝛿) +∑𝑠𝑖 (𝜍𝑖(𝛿) + 𝜍(2𝐻+2)−𝑖(𝛿))

𝐻

𝑖=1

) × 𝑓(𝛿)

𝛿𝑚𝑎𝑥

𝛿𝑚𝑖𝑛

𝑑𝛿. 

 

6. Concluding remarks 

This paper provides the steady-state closed-form expressions of the four different types of the 2-of-

(H+1) synthetic and runs-rules 𝑋̅ monitoring schemes. Since some authors are not familiar with 

Markov chain and / or Monte Carlo simulation, the steady-state expressions derived here will ease 

the implementation as well as further academic research in the area of Shewhart-type synthetic and 

runs-rules 𝑋̅ monitoring schemes.   
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