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Abstract

Fragmentation–coagulation processes, in which aggregates can break up or get together,
often occur together with decay processes in which the components can be removed
from the aggregates by a chemical reaction, evaporation, dissolution, or death. In this
paper we consider the discrete decay–fragmentation equation and prove the existence
and uniqueness of physically meaningful solutions to this equation using the theory of
semigroups of operators. In particular, we find conditions under which the solution
semigroup is analytic, compact and has the asynchronous exponential growth property.
The theoretical analysis is illustrated by a number of numerical simulations.
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1 Introduction

Fragmentation–coagulation processes, in which we observe breaking up of clusters of particles
into smaller pieces or, conversely, creation of bigger clusters by an aggregation of smaller
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pieces, occur in many areas of science and engineering, where they describe polymerization
and depolymerization, droplets formation and their breakup, grinding of rocks, formation
of animal groups, or phytoplankton aggregates, [29, 27, 28, 5, 19, 21]. In many cases,
fragmentation and coagulation are accompanied by other processes such as growth or decay
of clusters due to chemical reactions, surface deposition from the solute or, conversely,
dissolution and evaporation, or birth and death of cells forming the cluster, see e.g. [1,
14, 18, 5, 10]. Another process affecting the concentration of clusters is their sinking, or
sedimentation, [1, 19].

There are two main ways of modelling fragmentation–coagulation processes: the discrete
one, in which we assume that each cluster is composed of a finite number of identical
indivisible units called monomers, [25], and the continuous one, where it is assumed that the
size of the particles constituting the cluster can be an arbitrary positive number x ∈ R, [20].
Consequently, the latter case is modelled by an integro–differential equation for the density
of size x clusters, while in the former we deal with an infinite system of ordinary differential
equations for the densities of the clusters of size i ∈ N, also called i-mers. Similarly, the
growth/decay process is modelled by a first order (transport) differential operator in x,
[14, 18, 5], in the continuous case and by a difference operator, as in the birth-and-death
equation, in the discrete case.

We assume that the mass of the monomer is normalized to 1 and thus the term size is
used interchangeably with mass.

In this paper, we shall focus on the discrete fragmentation model with death and sedi-
mentation, given by the system

dfi
dt

= ri+1fi+1 − rifi − difi − aifi +
∞∑

j=i+1

ajbi,jfj , i ≥ 1,

fi(0) = f̊i, i ≥ 1,

(1.1)

where f = (fi)
∞
i=1 gives the numbers fi of i-mers, i ≥ 1, ri and di represent, respectively,

the decay and sedimentation coefficients, ri > 0 and di ≥ 0. The fragmentation rate is given
by ai, while bi,j is the average number of i-mers produced after the breakup of a j-mer,
with j ≥ i. The difference operator, f → (ri+1fi+1 − rifi)∞i=1, gives the rate of change of
the number of i-mers due to the decay/death process (for instance, assuming that in an
aggregate of cells in a short period of time only one monomer may die, the number of i-mers
increases due to the death of cells in the i+1-mers, which then become i-mers, and decreases
due to the death of cells in size i-mers that then move to the i− 1 class). Setting ri = 0 and
di = 0, we arrive at the classical mass-conserving fragmentation equation.

Naturally, the clusters can only fragment into smaller pieces. Hence, we must have

a1 = 0, bi,j = 0, i ≥ j. (1.2)
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We also assume that all clusters that are not monomers undergo fragmentation; that is,
ai > 0 for i ≥ 2. Since the fragmentation process only consists in the rearrangement of the
total mass into clusters, it must be conservative and for this we require

j−1∑

i=1

ibi,j = j, j ≥ 2. (1.3)

The above equation expresses the fact that the masses of all particles resulting from a break-
up of a cluster of mass j must add up to j. Note that, the total mass of the ensemble at
time t is given by

M(t) =

∞∑

i=1

ifi

and, in general, for the system (1.1) is not conserved.

Remark 1.1. We observe that it is possible to include the terms ri+1ui+1 into the gain
term of (1.1) by defining new coefficients b̃i,i+1 = rn+1 + bi,i+1. In this way we obtain
a pure fragmentation system that, however, is not mass conservative. Such systems were
considered in [14, 24]. While mathematically they are equivalent to (1.1), physically they
describe different models as in (1.1) the death process is independent of fragmentation and
in [14] the mass loss is caused by the so-called explosive fragmentation. Also, the study of
death–sedimentation process is of independent interest.

While the continuous form of (1.1) has been well studied, both from theoretical, [14, 18,
3, 11, 8], and the numerical [13], points of view, the discrete form has received much less
attention, see [14, 23, 24], where the authors considered a nonconservative fragmentation
process resulting from the so-called random bond annihilation. In this paper, as in [24],
we shall use the substochastic semigroup theory, [9], to prove the solvability of (1.1) and
investigate the properties of the solutions. The main results of the paper are the derivation
of the conditions under which the solution semigroup is analytic and compact and hence
the analysis of its long term-behaviour. In particular, we prove that if the sedimentation
rate is at least as strong as the fragmentation rate and either is stronger than the death
rate, the solution semigroup satisfies a spectral gap condition and consequently it has the
asynchronous exponential growth property. This result gives a partial support to the obser-
vation in e.g. [1] that size dependent sedimentation is a major factor in the rapid clearance
of material from the surface of the ocean.

2 Theoretical analysis of the decay-fragmentation equation

Following the general framework developed in [9], we shall apply the theory of semigroups of
operators. Denote X0 = `1, the space of summable sequences. The analysis will be carried
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out in the subspace of X0,

X =
{
f := (fn)∞n=1 : ‖f‖ =

∞∑

n=1

n|fn| <∞
}
.

The norm ‖ · ‖ has a simple physical interpretation — for a given distribution of clusters
f = (fn)∞n=1, ‖f‖ is the total mass of the system. For x,y ∈ X, we denote xy = (xnyn)∞n=1.
For any Y ⊆ X, by Y+, we denote the set of all nonnegative sequences in Y .

The ACP associated with (1.1) is given by

df

dt
= Af +Bf , f(0) = f̊ . (2.1)

The operators (A,D(A)) and (B,D(B)) are defined as restrictions of the expressions

[Af ]i = ri+1fi+1 − (ri + di + ai)fi, [Bf ]i =

∞∑

j=i+1

ajbi,jfj , i ≥ 1,

where, recall, a1 = 0, on the domains, respectively D(A) and D(B) to be determined below.
The main tool is the Kato-Voigt Perturbation Theorem, [9, Corollary 5.17].

2.1 The decay semigroup

We begin by establishing the existence of a C0-semigroup generated by a suitable realization
of the decay operator A. Consider the diagonal/off-diagonal splitting A = A0 + A1 and
the operators (A0, D(A0)) and (A1, D(A1)) being the restrictions of A0 and A1, defined as
follows

[A0f ]i = −θifi, i ≥ 1, D(A0) = {f ∈ X : θf ∈ X},
[A1f ]i = ri+1fi+1, i ≥ 1, D(A1) = {f ∈ X : rf ∈ X},

where θi = ri + ai + di. It is easy to see that (A0, D(A0)) generates a substochastic C0-
semigroup in X. Furthermore, (A1, D(A1)) is positive and D(A0) ⊂ D(A1), so that the
Kato–Voigt perturbation theory applies. In particular, we have

Theorem 2.1. The closure of (A0 + A1, D(A0)) generates a substochastic C0-semigroup
{SA0+A1

(t)}t≥0 in X.

Proof. For f ∈ D(A0)+, we have

∞∑

n=1

n[(A0 +A1)f ]n =

∞∑

n=1

n(rn+1fn+1 − rnfn)−
∞∑

n=1

n(an + dn)fn

= −
∞∑

n=1

n
(
an + dn +

rn
n

)
fn =: −

∞∑

n=1

ncnfn =: −c(f) ≤ 0.
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Hence, there exists a smallest substochastic semigroup {SA(t)}t≥0 generated by an extension
(K,D(K)) of A0 + A1. In fact (K,D(K)) is the closure of A0 + A1. To see this, consider
the maximal extensions A0 and A1 of A0 and A1, respectively. Since K ⊂ A0 + A1, see [9,
Theorem 6.20], for f ∈ D(K)+, we have

∞∑

n=1

n[(A0 + A1)f ]n = lim
N→∞

N∑

n=1

n

(
− dnfn − anfn − rnfn + rn+1fn+1

)

= lim
N→∞

(
−

N∑

n=1

n
(
an + dn +

rn
n

)
fn +NrN+1fN+1

)

= −
∞∑

n=1

ncnfn + lim
N→∞

NrN+1fN+1 ≥ −c(f). (2.2)

Hence K = A0 +A1 and
∑∞

n=1 n[Kf ]n = −c(f), [9, Theorem 6.22].

In view of [26, Theorem 2.3.4.], Theorem 2.1 implies that {SK(t)}t≥0 is unique in the
sense this is the only semigroup whose generator is extensions of (A0 +A1, D(A0)).

The characterizationK = A0 +A1 is sharp but not easy to use. An alternative character-
ization of K follows directly from [9, Lemma 3.50 & Proposition 3.52]. Let Kmax = A0 +A1

on
D(Kmax) = {f ∈ X; A0f + A1f ∈ X}.

Proposition 2.1.
D(K) = D(Kmax)

if and only if there is no f ∈ X satisfying

A0f + A1f = λf , λ > 0. (2.3)

Proof. Equation (2.3) takes the form

(λ+ θi)fi − ri+1fi+1 = 0, i ≥ 1. (2.4)

Formally, it can be solved by fixing fλ,1 = (λ+ θ1)
−1 > 0 and recursively calculating

fλ,n =
fλ,1
λ+ θn

n∏

i=2

λ+ θi
ri

, n ≥ 2. (2.5)

Hence the solution space is at most 1 dimensional. Thus, by [9, Proposition 3.52], Kmax is
closed and [9, Lemma 3.50] yields the decomposition

D(Kmax) = D(K)⊕Ker(λI −Kmax).

Hence the proposition follows.
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We will analyse (2.3) later. Here we list the properties of K that can be deduced from
Theorem 2.1.

Corollary 2.2. If f ∈ D(K)+, then

∞∑

n=1

nanfn <∞,
∞∑

n=1

ndnfn <∞,
∞∑

n=1

rnfn <∞ (2.6)

and
lim
n→∞

nrnfn = 0. (2.7)

Proof. Properties (2.6) follow from the fact that the functional c extends to D(K) by con-
tinuity (in the norm of D(K)) and to D(K)+ by monotonic limits, [9, Theorem 6.8], as in
the proof of [7, Theorem 2.1]. Eqn. (2.7) follows from [9, Theorem 6.13].

For further consideration, we need one more result that is an obvious consequence of
(2.6) and the definition of D(A0).

Corollary 2.3. If there is C > 0 such that

dn + an ≥ Crn, n ∈ N, (2.8)

then D(K) = D(A0) and K = A0 +A1.

To provide a complete characterization of D(K) in general case, we find an explicit
formula for the resolvent.

2.2 An alternative characterization of K

Consider the formal resolvent equation for A:

(λ+ θi)ui − ri+1ui+1 = fi, (2.9)

where f = (fn)∞n=1. Solving (2.9) for ui, we get the formal identity:

ui =
1

λ+ θi

∞∑

n=i

fn

n∏

j=i+1

rj
λ+ θj

, i ≥ 1. (2.10)

It turns out that the operator Rλ : X → X, defined by (2.10), is bounded.

Lemma 2.4. For λ > 0, we have ‖Rλ‖ ≤ 1
λ .
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Proof. Let f ∈ X. We apply the triangle inequality and change the order of summation to
obtain

‖Rλf‖ =
∞∑

n=1

n
∣∣∣ 1

λ+ θn

∞∑

i=n

fi

i∏

j=n+1

rj
λ+ θj

∣∣∣ ≤
∞∑

i=1

|fi|
i∑

n=1

n

λ+ θn

i∏

j=n+1

rj
λ+ θj

≤ 1

λ

∞∑

i=1

|fi|
i∑

n=1

n

(
1− θn

λ+ θn

) i∏

j=n+1

θj
λ+ θj

≤ 1

λ

∞∑

i=1

|fi|
[ i∑

n=1

n

i∏

j=n+1

θj
λ+ θj

−
i∑

n=1

n

i∏

j=n

θj
λ+ θj

]

=
1

λ

∞∑

i=1

|fi|
[ i∑

n=1

n

i∏

j=n+1

θj
λ+ θj

−
i−1∑

n=0

(n+ 1)

i∏

j=n+1

θj
λ+ θj

]

=
1

λ

∞∑

i=1

|fi|
[
i−

i−1∑

n=1

i∏

j=n+1

θj
λ+ θj

−
i∏

j=1

θj
λ+ θj

]
≤ 1

λ

∞∑

i=1

i|fi|

(2.11)

and the required estimate follows.

Next, we show that Rλ, λ > 0, is the resolvent of A if the domian D(A) is appropriately
chosen. To simplify our calculations, we let p = (pn)∞n=1 with pn = an + dn, and 4f =

(f1, (fn−1 − fn)n≥2).

Lemma 2.5. Operator Rλ, λ > 0, maps X into the set

S = {f ∈ X : pf ∈ X,4(rf) ∈ X, lim
n→∞

rnfn = 0}. (2.12)

Proof. Our estimates are similar to those used in formula (2.11):

‖pRλf‖ =
∞∑

n=1

n
∣∣∣(an + dn)

λ+ θn

∞∑

i=n

fi

i∏

j=n+1

rj
λ+ θj

∣∣∣ ≤
∞∑

i=1

|fi|
i∑

n=1

n(θn − rn)

λ+ θn

i∏

j=n+1

rj
λ+ θj

=
∞∑

i=1

|fi|
i∑

n=1

n

[ −λ
λ+ θn

+ 1− rn
λ+ θn

] i∏

j=i+1

rj
λ+ θj

≤
∞∑

i=1

|fi|
i∑

n=1

n

[
1− rn

λ+ θn

] i∏

j=i+1

rj
λ+ θj

=

∞∑

i=1

|fi|
[
i+

i−1∑

n=1

n
i∏

j=n+1

rj
λ+ θj

−
i∑

n=1

n
i∏

j=n

rj
λ+ θj

]

=
∞∑

i=1

|fi|
[
i−

i−1∑

n=1

i∏

j=n+1

rj
λ+ θj

−
i∏

j=1

rj
λ+ θj

]
≤
∞∑

i=1

i|fi| = ‖f‖.
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Next, we have to estimate ‖4(rRλf)‖. For this, we observe that

[4(rRλf)]n = rn+1[Rλf ]n+1 − rn[Rλf ]n

= (λ+ pn)[Rλf ]n + [rn+1[Rλf ]n+1 − (λ+ θn)[Rλf ]n]

= (λ+ pn)[Rλf ]n +
rn+1

λ+ θn+1

∞∑

i=n+1

fi

i∏

j=n+2

rj
λ+ θj

−
∞∑

i=n

fi

i∏

j=n+1

rj
λ+ θj

= (λ+ pn)[Rλf ]n +

∞∑

i=n+1

fi

i∏

j=n+1

rj
λ+ θj

−
∞∑

i=n

fi

i∏

j=n+1

rj
λ+ θj

= (λ+ pn)[Rλf ]n − fn.

Consequently,

‖4(rRλf)‖ = ‖(λ+ p)Rλf − f‖ ≤ λ‖Rλf‖+ ‖pRλf‖+ ‖f‖ ≤ 3‖f‖.

Finally,

lim
n→∞

|rn[Rλf ]n| ≤ lim
n→∞

rn
λ+ θn

∞∑

i=n

|fi|
i∏

j=n+1

rj
λ+ θj

≤ lim
n→∞

∞∑

i=n

|fi| = 0,

and the claim is proved.

Lemma 2.6. For λ > 0, the operator Rλ is the resolvent of (A,S), where A = A|S.
Proof. First, we show that Rλ, λ > 0 is the right inverse of (I −A,S). Indeed, Rλ maps X
into S, hence (λI − A)Rλ : X → X is well defined. Further, for any v = Rλf , f ∈ X, we
have

[(λI −A)Rλf ]n = (λ+ θn)[Rλf ]n − rn+1[Rλf ]n+1

=

∞∑

i=n

fi

i∏

j=n+1

rj
λ+ θj

−
∞∑

i=n+1

fi

i∏

j=n+1

rj
λ+ θj

= fn +
∞∑

i=n+1

fi

i∏

j=n+1

rj
λ+ θj

−
∞∑

i=n+1

fi

i∏

j=n+1

rj
λ+ θj

= fn.

Next we show that the operator Rλ, λ > 0, is the left inverse of λI −A. Indeed, for any
f ∈ S, we have

[Rλ(λI −A)f ]n = lim
N→∞

1

λ+ θn

N∑

i=n

((λ+ θi)fi − ri+1fi+1)

i∏

j=n+1

rj
λ+ θj

= lim
N→∞

( N∑

i=n

fi

i−1∏

j=n

rj+1

λ+ θj
−

N+1∑

i=n+1

fi

i−1∏

j=n

rj+1

λ+ θj

)

= fn − lim
N→∞

fN+1rN+1

N∏

j=n

rj
λ+ θj

= fn,
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for

lim
N→∞

|fN+1rN+1|
N∏

j=n

rj
λ+ θj

≤ 1

λ
lim
N→∞

|rNfN | = 0,

when f ∈ S. We conclude that Rλ, λ > 0, is the resolvent of (A,S).

We can write S = D(A). The following result gives an explicit characterization of
A0 +A1.

Theorem 2.7. The operator (A,D(A)) generates a substochastic C0-semigroup {SA(t)}t≥0
on X. Furthermore, K = A0 +A1 = A.

Proof. The first assertion follows from Lemmas 2.4, 2.6, the classical Hille-Yosida theorem
[22] and positivity of the resolvent. The second statement is a by product of Theorem 2.1 -
it follows by the uniqueness of the semigroup.

We observe that there is an apparent inconsistency between Theorem 2.7 and Corollary
2.2, as conditions (2.6) and (2.7) are different than that defining D(A). We can, however,
directly prove that, indeed, if f ∈ D(A), then it satisfies (2.6) and (2.7).

Proposition 2.2. Define

S′ = {f ∈ X : pf ∈ X, rf ∈ X0, lim
n→∞

nrnfn = 0}. (2.13)

Then D(A) ⊂ S′.
Proof. Let f ∈ S. In general, the positive and negative parts of f , f±, do not belong to S.
However, since S = D(A) is the domain of a resolvent positive operator, we can write f as
a difference of nonnegative elements f = f+−f− (not necessarily the positive and negative
part of f). Indeed, for some g ∈ X we have

f = R(λ,A)g = R(λ,A)g+ −R(λ,A)g− =: f+ − f−,

where g = g+−g− is the decomposition of g into its positive and negative parts in X. Thus
we can assume f ∈ S+. Since 4rf ∈ X, also

∑∞
n=1[4rf ]n converges. However,

∞∑

n=1

[4(rf)]n = lim
N→∞

N∑

n=1

[4(rf)]n = 2r1f1 − lim
N→∞

rNfN = 2r1f1,

by the last condition in (2.12). Again by 4rf ∈ X, the terms in the sum can be rearranged
∞∑

n=1

n[4(rf)]n = r1f1 + 2(r1f1 − r2f2) + 3(r2f2 − r3f3) + . . .

=

∞∑

n=1

[4(rf)]n +

∞∑

n=2

(rn−1fn−1 − rnfn) +

∞∑

n=3

(rn−1fn−1 − rnfn) + . . .

= 2r1f1 +
∞∑

n=1

rnfn,
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hence rf ∈ X0. To complete the proof, we note that also

∞∑

n=1

n[4(rf)]n = lim
N→∞

N∑

n=1

[4(rf)]n = 2r1f1 + lim
N→∞

(
N−1∑

n=1

rnfn −NrNfN
)
. (2.14)

This shows that limN→∞NrNfN = c ≥ 0 exists. If c > 0, then rNfN ≥ c′

N > 0 for c′ > 0

and sufficiently large N which contradicts rf ∈ X0. Hence S ⊂ S′.

The last aspect to be clarified is the relation of D(A) to the domain D(Kmax), explicitly
given as

D(Kmax) = {f ∈ X :
∞∑

n=1

n|anfn + dnfn + rnfn − rn+1fn+1| <∞}. (2.15)

Proposition 2.1 asserts that
D(Kmax) = S,

provided (2.3) has no solutions in X. The latter is related to the last condition in (2.12),

lim
n→∞

rnfn = 0, (2.16)

that, in general, cannot be discarded. We observe that the solution fλ to (2.4), given by
(2.5), belongs to X if and only if

∞∑

n=2

n

λ+ θn

n∏

i=2

λ+ θi
ri

<∞.

In particular, if
∞∏

j=2

λ+ θj
rj

<∞, (2.17a)

∞∑

n=1

n

λ+ θn
<∞, (2.17b)

then fλ ∈ X. The relation between D(Kmax) and D(A) is then settled by the following
result.

Lemma 2.8. If one of the conditions (2.17a) or (2.17b) is not satisfied and pf ,4(rf) ∈ X,
then (2.16) holds.

Proof. Note that in view of the condition 4(rf) ∈ X, limn→∞ rnfn exists and is finite.
Assume limn→∞ rnfn 6= 0. Then |rnfn| ≥ c for some c > 0 and all n sufficiently large. If
(2.17a) does not hold, then the series

∑∞
j=1

λ+pj
rj

diverges. However, for large values of n,
we have

n+k∑

j=n

λ+ pj
rj

≤ 1

c

n+k∑

j=n

(λ+ pj)|fj | ≤
1

c

∞∑

j=n

(λ+ pj)|fj | <∞,
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a contradiction.
Similarly, if (2.17b) does not hold, then

N∑

n=1

n

λ+ θn
≤ 1

c

N∑

n=1

n|fn|
rn

λ+ θn
≤ 1

c

∞∑

n=1

n|fn| <∞.

Hence, (2.16) holds.

Example 2.1. Summarizing, if there are no solutions to (2.4) in X, then one of the condi-
tions (2.17a) or (2.17b) is not satisfied and hence

D(A) = D(Kmax) = {f ∈ X : pf ∈ X,4(rf) ∈ X}. (2.18)

This is a typical case. We observe that for (2.17a) to hold,
∑∞

j=1
λ+pj
rj

must converge and
this requires rj to diverge to infinity much faster that pj. Then, in (2.17b), rj would be a
dominant term in θj. For instance, if rj = jp, p ≤ 2, or either aj or dj grows faster than
rj/j, then (2.18) holds. We observe that the latter condition is satisfied if, in particular, the
assumption of Corollary 2.3 is satisfied.

We also note that if (2.18) holds, then we can consider A as the sum

A = L+D

of the diagonal operator Lf = −pf , corresponding to the loss term in the fragmentation
and the sedimentation, and the operator Df = (rn+1fn+1 − rnfn)∞n=1, corresponding to the
death of particles, mentioned in Introduction. Such a representation makes more sense as it
separates two independent processes driving the evolution of the system.

2.3 The decay-fragmentation semigroup

Now we turn to the complete model (2.1). As in any fragmentation model, it can be
shown that B is finite and nonnegative on D(B) = D(A0) ⊃ D(A), hence the operator
(A+B,D(A)) is well defined. Again, we shall apply the Kato-Voigt theorem [4, 9] to show
that there exist a smallest extension G of A + B that generates a substochastic semigroup
{SG(t)}t≥0 on X.

Theorem 2.9. Let X, A and B be as defined earlier. Then the closure G = A+B generates
a substochastic semigroup {SG(t)}t≥0 on X. If, in addition, for some λ > 0

lim sup
n→∞

an
dn

<∞, (2.19)

then D(G) = D(A).
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Proof. In the previous section we have proved that A generates the substochastic semigroup
{SA(t)}t≥0 onX. It remains to verify that A+B satisfies the last condition of the Kato-Voigt
theorem.

Let f ∈ D(A). By Proposition 2.2

lim
n→∞

nrnfn = 0.

With the aid of the last identity, (1.3) and remembering that a1 = 0, for f ∈ D(A)+ we
have, as in Theorem 2.1,

∞∑

n=1

n[Af +Bf ]n =
∞∑

n=1

n

(
rn+1fn+1 − (rn + dn + an)fn +

∞∑

j=n+1

ajbn,jfj

)

= −
∞∑

n=1

(rn + ndn)fn := −
∞∑

n=1

cnfn := −c(f) ≤ 0,

where the fragmentation part vanishes due to the conservativeness of the fragmentation
process. Hence, there exists a smallest substochastic semigroup, {SG(t)}t≥0, generated by
an extension (G,D(G)) of A+B.

Also as in Theorem 2.1, for the extensions A and B of A and B and f ∈ D(G)+, we have
∞∑

n=1

n[Af + Bf ]n = lim
N→∞

N∑

n=1

n

(
rn+1fn+1 − (rn + dn + an)fn +

∞∑

j=n+1

ajbn,jfj

)

= −c(f) + lim
N→∞

( ∞∑

n=N+1

anfn

N∑

j=1

jbj,n +NrN+1fN+1

)
≥ −c(f).

Hence G = A+B.
To prove the last statement we argue as in Corollary 2.2. Since G = A+B, we have

∞∑

n=1

n[Gf ]n = −c(f),

for any f ∈ D(G). However, as shown in the proof of Proposition 2.2, it is sufficient to
consider f ∈ D(G)+. Hence

lim
N→∞

( ∞∑

n=N+1

anfn

N∑

j=1

jbj,n +NrN+1fN+1

)
= 0,

yielding
lim
N→∞

NrNfN = 0, f ∈ D(G)+,

as both terms in the limit are nonnegative. Furthermore, since c extends to D(G)+, we have
rf ∈ X0 and df ∈ X. Next, assuming that (2.19) holds, for f ∈ D(G)+, we have

∞∑

n=1

npnfn ≤ C
( ∞∑

n=1

(rn + ndn)fn

)
= Cc(f),
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for some constant C, so pf ∈ X. Hence, D(A) = S′ ⊇ D(G), and so D(G) = D(A).

2.4 Analyticity and compactness

In this section, we show that, under additional assumptions on the coefficients, the decay-
fragmentation semigroup {SG(t)}t≥0 is analytic and compact. We use the following result
from [2].

Theorem 2.10. Let X be a Banach lattice, (A,D(A)) be a generator of a positive analytic
semigroup and (B,D(A)) be a positive operator. Assume also that (λI− (A+B), D(A)) has
a nonnegative inverse for some λ > s(A). Then (A+B,D(A)) generates a positive analytic
semigroup.

Theorem 2.11. Assume that (2.8) and (2.19) are satisfied. Then the semigroup {SG(t)}t≥0,
generated by (A+B,D(A)) is analytic on X. In addition, if

lim inf
n→∞

θn =∞, (2.20)

then {SG(t)}t≥0 is immediately compact.

Proof. Since (2.19) is satisfied, Theorem 2.9 ensures that (A+B,D(A)) generates a positive
C0-semigroup of contractions in X. Consequently, R(λ,A+B) is positive for some λ > 0. It
was shown earlier that (A,D(A)) generates a substochastic semigroup in X. On the other
hand, Corollary 2.3 states that under (2.8), we have A = A0 +A1, hence A = A0 +A1 +B

on D(A) = D(A0). Since A0 is diagonal, it is clear that it generates an analytic semigroup.
Thus, Theorem 2.10 gives the analyticity of {SG(t)}t≥0 on account of A1 +B being positive.

Since {SG(t)}t≥0 is analytic, it is immediately uniformly continuous. Thus it remains to
show that R(λ,A + B) is compact for some λ > s(A), as then the result follows from [22,
Theorem 2.3.3].

By virtue of Theorem 2.10 and [9, Theorem 4.3], I − (A1 +B)R(λ,A0) is invertible and

R(λ,A0 +A1 +B) = R(λ,A0)[I − (A1 +B)R(λ,A0)]
−1.

In view of the last identity, it suffices to show that R(λ,A0) is compact for some λ > 0. For
each f ∈ X with ‖f‖ ≤ 1, we have ‖R(λ,A0)f‖ ≤ 1

λ and
∞∑

n=n0

∣∣[R(λ,A0)f ]n
∣∣ ≤ sup

n≥n0

1

λ+ θn

∞∑

n=n0

n|fn|,

If (2.20) holds, we have

lim
n0→∞

sup
n≥n0

1

λ+ θn
=

1

λ+ lim infn→∞ θn
= 0.

Hence the image of the unit ball B = {f ∈ X : ‖f‖ ≤ 1} under R(λ,A0) is bounded and
uniformly summable and therefore it is precompact, see [15, IV.13.3].
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3 Long time behaviour of the decay-fragmentation semigroup

Let us introduce the dual space to X = `11,

X∗ =
{
f∗ : ‖f∗‖X∗ := sup

k≥1

1

k
|fk| <∞

}

with the duality pairing

〈f∗,f〉 :=
∞∑

i=1

f∗i fi, f ∈ X,f∗ ∈ X∗.

The following result is analogous to classical theorems on asynchronous exponential growth,
see e.g. [17, Theorem VI.3.5] since, however, {SG(t)}t≥0 is not irreducible, it requires a
separate proof.

Theorem 3.1. Let the decay-fragmentation semigroup {SG(t)}t≥0 satisfies conditions (2.8),
(2.19) and (2.20) and let

λ1 := −min
n∈N

θn (3.1)

be the strict minimum of the sequence (θn)∞n=1. Then there exist constants ε > 0, M ≥ 1

and e ∈ X, e∗ ∈ X∗ such that for any f ∈ X

‖e−λ1tSG(t)f − 〈e∗,f〉e‖ ≤Me−εt. (3.2)

Proof. We follow the proof of [12, Theorem 4.3] with some modifications. Under the adopted
assumptions, R(λ,G) is compact, hence σ(G) is countable and consists of poles of R(λ,G)

of finite algebraic multiplicity, [16, Corollary V.3.2]. Thus, in particular, the essential radius
of the semigroup and its essential growth rate satisfy, respectively, ress(SG(t)) = 0 and
ωess(G) = −∞. Hence, any half-plane {<λ > a : a > −∞} contains only a finite number
of eigenvalues of G. Since, in addition, {SG(t)}t≥0 is positive, it follows that the peripheral
spectrum of G is additively cyclic and, being finite, consists of the single point s(G) that is
the dominant eigenvalue of G, see e.g. [6, Theorems 48 & 49].

To prove that λ1 = s(G), first we observe that, by (2.20), the infimum of θn is attained.
Let PN be the projection operator on X defined by

PNu = (u1, u2, ..., uN , 0, ...) for fixed N ∈ N. (3.3)

The key observation is that the space PNX is invariant under G = A+B (and thus under
{SG(t)}t≥0) for each N – this follows from the upper triangular structure of A+B. Denoting
GN = G|PNX , we have σ(GN ) = {−θ1, . . . ,−θN} and s(G) ≥ λ1 as, due to the invariance,
any eigenvalue of GN is an eigenvalue of G. On the other hand, assume s := s(G) > λ1.
Then s is an isolated eigenvalue of G and hence there is a decomposition X = X1 ⊕ X2,
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where X1 is the spectral subspace corresponding to s, whose dimension is at least 1, while
X2 is a closed complementary subspace invariant under G on which sI −G is invertible. In
particular, (sI −G)X ⊂ X2. On the other hand, since s /∈ σ(GN ) for any N

(sI −G)X ⊃ (sI −G)
∞⋃

N=2

PNX =

∞⋃

N=2

PNX

and the latter is dense in X. This contradiction shows s(G) = λ1.
By [16, Corollary V.3.2] we can write

SG(t) = S1
G(t) +R(t), (3.4)

where there is ε > 0 and M ≥ 1 such that

‖R(t)‖ ≤Mεe
(λ1−ε)t t ≥ 0. (3.5)

The operator S1
G has finite rank and hence is given by

S1
G(t) =

(
eλ1t

k−1∑

j=0

tj

j!

)
Π, (3.6)

where k is the order of the pole λ1 = s(G) and Π is the corresponding spectral projection
onto the subspace of X whose dimension equals the algebraic multiplicity m of λ1. We shall
prove that k = m = 1.

The semigroup (S1
G(t))t≥0 is finite-dimensional and it is generated by an operator which

has λ1 = s(G) as the only eigenvalue. Since, by the previous part of the proof, ‖eλ1tSG(t)‖ ≤
1, also ‖eλ1tS1

G(t)‖ ≤ 1 and thus k = 1, for otherwise ‖eλ1tS1
G(t)‖ would grow polynomially

in t. Using the inequality mg+k−1 ≤ m ≤ mgk, where mg is the geometric multiplicity, see
e.g. [6, p. 19], for k = 1, we find mg = m which shows that to prove m = 1, it is sufficient
to show mg = 1.

We prove thatmg = 1 by examining the adjoint operator G∗. Arguing as in [12, Theorem
4.3], we find that the operator G∗ defined by

(G∗f∗)1 := −θ1f∗1 ,

(G∗f∗)j := −θjf∗j + rjf
∗
j−1 + aj

j−1∑

i=1

bi,jf
∗
i , j = 2, 3, . . . ,

(3.7)

with the domain

D(G∗) :=

{
f∗ ∈ X∗ : sup

j≥2

1

j

∣∣∣∣∣−θjf
∗
j + rjf

∗
j−1 + aj

j−1∑

i=1

bi,jf
∗
i

∣∣∣∣∣ <∞
}
, (3.8)

is the adjoint of G.
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Suppose that e∗ = (e∗1, e
∗
2, . . . ) is an eigenvector of G∗ corresponding to the eigenvalue

λ1 = s(G) and assume λ1 = −θN0 . Then we see that e∗i = 0 for 1 ≤ i ≤ N0 − 1, the N0-th
equation is satisfied irrespectively of e∗N0

, so e∗N0
can be chosen in an arbitrary way and then

e∗N for N > N0 can be recursively evaluated in a unique way (for a given e∗N0
) as

e∗N =
1

θN − θN0


rNe∗N−1 + aN

N−1∑

j=N0

bj,Ne
∗
j


 . (3.9)

Therefore, the geometric multiplicity of λ1 = s(G) is at most 1. Hence, λ1 = s(G) is a
simple dominating eigenvalue of G. To complete the proof, let us find the explicit form of
the spectral projection Π. For this we find the eigenvector e = (e1, e2, . . .) of G belonging
to λ1 = −θN0 . We observe that e satisfies

−θN0e1 = −θ1e1 + r2e2 +

∞∑

j=2

ajbi,jej ,

... =
...,

−θN0eN0−1 = −θN0−1eN0−1 + rN0eN0 +
∞∑

j=N0

ajbi,jej ,

0 = rN0+1eN0+1 +
∞∑

j=N0+1

ajbi,jej ,

−θN0eN0+1 = −θN0+1eN0+1 + rN0+2eN0+2 +
∞∑

j=N0+2

ajbi,jej ,

... =
....

We see that the equations for N ≥ N0 + 1 decouple from the system and are solved by
eN = 0, N ≥ N0 + 1. Then the N0-th equation is trivially satisfied and the remaining N0−1

equations form an upper triangular system with N0 unknowns that can be solved recursively
setting eN0 = 1,

eN =
1

θN − θN0


rN+1eN+1 +

N0∑

j=N+1

ajbi,jej


 , 1 ≤ N ≤ N0 − 1. (3.10)

Choosing e∗ with e∗N0
= 1, we obtain 〈e∗, e〉 = 1, hence, by using the standard linear algebra

formula on PNX and passing to the limit, we obtain the spectral projection

Πf =

( ∞∑

k=1

e∗kfk

)
e = 〈e∗,f〉e

and, in view of (3.6),
S1
G(t)f = eλ1tΠf = eλ1t〈e∗,f〉e. (3.11)

The last formula combined with (3.5) yields (3.2).
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4 Numerical simulations

In this section, we provide numerical study of the decay-fragmentation equation (1.1). Note
that if the initial condition satisfies un(0) = 0, n ≥ N + 1, the complete model cannot
generate clusters of sizes greater than N and the dynamics is essentially finite dimensional.
In view of this, we replace the complete model (1.1) with its truncated version

duNi
dt

= ri+1u
N
i+1 − riuNi − diuNi − aiuNi +

N∑

j=i+1

ajbi,ju
N
j , i ≥ 1,

ui(0) = u0i , for i = 1, . . . , N.

(4.1)

Problem (4.1) is just a system of linear ODEs that can be integrated numerically. In our
simulations, we employ the ode23tb MATLAB solver. The latter is an implementation of
TR-BDF2, an implicit Runge-Kutta formula with a trapezoidal rule step in the first stage
and backward differentiation formula of order two in the second stage. In all our simulations,
we set the time interval to be [0, 20] and let N = 64.

4.1 Constant decay and fragmentation rates

In our first example, we set ri = 1, di = 0, i ≥ 1; a1 = 0 and ai = 1, i ≥ 2; and bi,j = 2
j−1 ,

i ≥ 1, j ≥ i + 1. The scenario falls in the scope of general Theorem 2.9 and models the
decay-fragmentation process with constant decay and fragmentation rates and no death. As
the initial condition, we take the monodisperse distribution

un(0) = 10δn,32, 1 ≤ n ≤ 64,

where δn,m is the Kronecker delta.
The dynamics of the model is shown in the top diagram of Fig. 1. As expected, when

time increases no clusters of size greater than 10 appears. Further, due to the fragmentation
process the total number of aggregates of size 10 is steadily decreasing while smaller clusters
appear in the system. Due to the transport process, the total number of particles gradually
decays and becomes almost negligible when t approaches the terminal time T = 20.

Further illustration is provided by the two bottom diagrams in Fig. 1. The left-bottom
diagram shows the evolution of the total number of particles Np =

∑N
n=1 un. The quantity

is increasing initially due to the fragmentation process, and then after some transition time,
decreases steadily to zero due to the transport (decay) process.

Note that in the model (1.1), the fragmentation process is conservative and the mass
leakage is solely due to the decay. The latter process is monotone, in the sense that the total
mass of a system in a pure decay equation shall decrease monotonically (see Theorem 2.1).
Theoretically, in (1.1), we expect similar mass dynamics as in the pure decay equation. This
is confirmed in the right-bottom diagram of Fig. 1.
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Figure 1: Evolution of the decay-fragmentation model (1.1) with constant transport and
fragmentation rates (top); evolution of total number of particles (bottom left); evolution of
the total mass (bottom right).

4.2 Linear decay and constant fragmentation rates

As another illustration to Theorem 2.9, we let: ri = i, di = 0, i ≥ 0; a1 = 0 and ai = 1;
and bi,j = 2

j−1 , i ≥ 1, j ≥ i+ 1. The dynamics of the model is shown in the top diagram of
Figure 2. The particles break at a constant rate but decay at a rate faster than in the first
example. The total number of particles increases initially (see the left-bottom diagram in
Fig. 2), but decreases quickly due to the strong decay. The observation is further confirmed
by the right-bottom diagram in Fig. 2.

4.3 Constant decay and linear fragmentation and death rates

We let ri = 1, di = i, i ≥ 0; a1 = 0 and ai = i; and bi,j = 2
j−1 , i ≥ 1, j ≥ i + 1. Unlike

our previous examples, the strong death rate prevents explosive growth of small clusters
near t = 0. As time goes the solution decays steadily at a constant rate, see evolution of
the total number of particles and the total mass of the system in the left-bottom and the
right-bottom diagrams of Fig. 3, respectively.
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Figure 2: Evolution of the decay-fragmentation model (1.1) with linear transport and con-
stant fragmentation rates (top); evolution of total number of particles (bottom left); evolu-
tion of the total mass (bottom right).

Note that in this example conditions of Theorem 3.1 are satisfied. It is easy to verify
that λ1 = −2. Hence, we expect the numerical solution to converge to the asymptotic limit

S1
G(t)u0 = eλ1t〈u0, e

∗〉e,

where e∗ and e are given respectively by (3.9) and (3.10), with N0 = 1. This is indeed
the case. In complete agreement with (3.2), after a short transition stage the gap between
e−λ1tS1

G(t)u0 and the projection 〈u0, e
∗〉e decreases exponentially as t increases. The evo-

lution of the gap e−λ1tS1
G(t)u0 − 〈u0, e

∗〉e and its X-norm is shown in Fig. 4.
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Figure 3: Evolution of the decay-fragmentation model (1.1) with constant transport and
linear fragmentation and death rates (top); evolution of total number of particles (bottom
left); evolution of the total mass (bottom right).
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Figure 4: The asymptotic error in the decay-fragmentation model (1.1) with constant trans-
port and linear fragmentation and death rates.

4.4 Linear decay, fragmentation and death rates

In our last example, we model a scenario that incorporates strong fragmentation and trans-
port processes, i.e. we assume ri = i, di = i, i ≥ 0; a1 = 0 and ai = i; and bi,j = 2

j−1 , i ≥ 1,
j ≥ i+ 1. The qualitative behavior of the numerical solution shares the dynamical features
discussed in Section 4.3 (see the top diagram of Fig. 5). As in Sections 4.3, strong death
process prevents explosive growth of small clusters near t = 0, while strong transport yields
rapid decay of the total number of particles and the total mass of the system, see the left-
and the right-bottom diagram of Fig. 5, respectively. Further, the conditions of Theorem 3.1
are satisfied. As a consequence, the gap e−λ1tS1

G(t)u0 − 〈u0, e
∗〉e demonstrates the same

qualitative behaviour as in Section 4.3, see Fig. 6.
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