
Atmospheric Boundary Layer Stability
and its Application to

Computational Fluid Dynamics

Author:
Hendrik Johannes Breedt

Supervisor:
Prof KJ Craig

Submitted in partial fulfilment for the degree of

Master of Engineering (Mechanical)

Department of Mechanical and Aeronautical Engineering

January 2018

i

Abstract
Atmospheric Boundary Layer Stability and its Application to

Computational Fluid Dynamics

Author: Hendrik Johannes Breedt
Supervisor: Prof KJ Craig
Department: Mechanical and Aeronautical Engineering
Degree: Master of Engineering (Mechanical)

In the wind resource and wind turbine suitability industry Computational Fluid Dy-
namics has gained widespread use to model the airflow at proposed wind farm loca-
tions. These models typically focus on the neutrally stratified surface layer and ignore
physical process such as buoyancy and the Coriolis force. These physical processes
are integral to the accurate description of the atmospheric boundary layer and reduc-
tions in uncertainties of turbine suitability and power production calculations can be
achieved if these processes are included. The present work focuses on atmospheric
flows in which atmospheric stability and the Coriolis force are included.

The study uses Monin-Obukhov Similarity Theory to analyse time series data output
from a proposed wind farm location to determine the prevalence and impact of stabil-
ity at the location. The output provides the necessary site data required for the CFD
model as well as stability-dependent wind profiles from measurements. The results
show non-neutral stratification to be the dominant condition onsite with impactful
windfield changes between stability conditions.

The wind flows considered in this work are classified as high Reynolds number flows
and are based on numerical solutions of the Reynolds-Averaged Navier-Stokes equa-
tions. A two-equation closure method for turbulence based on the k − ε turbulence
model is utilized. Modifications are introduced to standard CFD model equations to
account for the impact of atmospheric stability and ground roughness effects. The
modifications are introduced by User Defined Functions that describe the profiles,
source terms and wall functions required for the ABL CFD model. Two MOST models
and two wall-function methods are investigated.

The modifications are successfully validated using the horizontal homogeneity test
in which the modifications are proved to be in equilibrium by the model’s ability to
maintain inlet profiles of velocity and turbulence in an empty domain. The ABL model
is applied to the complex terrain of the proposed wind farm location used in the data
analysis study. The inputs required for the stability modifications are generated using
the available measured data. Mesoscale data are used to describe the inlet boundary
conditions. The model is successfully validated by cross prediction of the stability-
dependent wind velocity profiles between the two onsite masts.

ii

The advantage of the developed model is the applicability into standard wind indus-
try loading and power production calculations using outputs from typical onsite mea-
surement campaigns. The model is tuning-free and the site-specific modifications are
input directly into the developed User Defined Functions. In summary, the results
show that the implemented modifications and developed methods are applicable and
reproduce the main wind flow characteristics in neutral and non-neutral flows over
complex wind farm terrains. In additions, the developed method reduce modelling
uncertainties compared against models and measurements that neglect non-neutral
stratification.

Keywords: Atmospheric Boundary Layer, Atmospheric Stability, Monin Obukhov Sim-
ilarity Theory, Computational Fluid Dynamics, Wind Energy, Buoyancy.

iii

Acknowledgements
The following individuals and institutions are thanked for their support and guidance:

• Prof. Ken Craig from the University of Pretoria for his overall supervision and
support throughout the project

• Mr. Venkatesh Duraisamy Jothiprakasam, PhD from Siemens Wind Power for his
guidance in CFD and stability related topics

• CHPC (Centre for High Performance Computing) in Cape Town for providing
the computing capacity required

• Mr. Paul van der Laan from the Technical University of Denmark for assisting in
the correct implementation of the M.P. van der Laan et al. [1] developed stability
model

• Mr. Alessandro Parente from the Université Libre de Bruxelles for assisting in the
correct implementation of the wall function developed by A. Parente et al. [2]

Gratitude is also extended to Siemens Wind Power for their financial support

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 2
1.3 Objectives . 2
1.4 Overview . 3

2 Literature Review 4
2.1 The Atmospheric Boundary Layer . 4

2.1.1 Gradient Richardson number . 10
2.1.2 Bulk Richardson number . 11
2.1.3 Profile method . 11
2.1.4 Heat flux . 11
2.1.5 Air density . 11

2.2 Governing Equations . 12
2.2.1 The RANS equations . 13
2.2.2 k − ε model . 14
2.2.3 Wall functions . 16

2.3 Adaptation of Governing Equations for the ABL 18
2.3.1 Boussinesq approximation for buoyancy 18
2.3.2 Monin-Obukhov similarity theory 19
2.3.3 MOST turbulence modelling . 19
2.3.4 Method I: Alinot and Masson . 21
2.3.5 Method II: DTU solution . 22
2.3.6 ABL wall functions . 23

2.4 Summary . 25

3 Data Acquisition and Analysis 26
3.1 Study Area . 26

3.1.1 Meteorological mast . 28
3.1.2 Mesoscale data . 29

3.2 Calculation of Prevalence of Stability from Data 29
3.3 Calculation of Vertical Profiles from Data 33
3.4 Summary . 37

v

4 ABL CFD Model 38
4.1 Numerical Implementation . 38

4.1.1 Momentum source terms . 39
4.1.2 Turbulence source terms . 39
4.1.3 Temperature variations . 40
4.1.4 Wall function . 41
4.1.5 Height above ground . 42
4.1.6 Initialization . 42

4.2 Model Settings . 42
4.2.1 Fluid properties . 43

4.3 Empty Domain Model . 43
4.3.1 Wall function test results . 45
4.3.2 Stability model test results . 50
4.3.3 Buoyancy term test results . 55

4.4 Summary . 60

5 CFD Simulation of Complex terrain 61
5.1 Wind Farm Computational Domain . 61
5.2 Windfarm Model Setup . 65
5.3 Mast Velocity Cross-Prediction Results . 65
5.4 Stability Lifting/Blocking Effects . 67
5.5 Summary . 70

6 Conclusions 71
6.1 Future Work . 72

Appendices 77

A Roughness Lengths 78

B Mast Data Sample 79

C Data Analysis Code 80
C.1 dataAnalysis.m . 80
C.2 stabilityRose.m . 105

D User Defined Functions Code 112
D.1 Neutral.c . 112
D.2 Unstable.c . 116
D.3 Stable.c . 123

vi

List of Figures

2.1 The ABL as shown in a vertical cross section of the troposphere 4
2.2 The ABL evolution of a typical summer day 5
2.3 Typical wind speed profiles for the various stability conditions 6

3.1 Study area location . 26
3.2 View towards North of study area . 27
3.3 View towards East of study area . 27
3.4 Angle of topographical inclination from the wind farm digital terrain

model . 28
3.5 Stability frequency classification for Mast 1 30
3.6 Stability rose for Mast 1 . 30
3.7 Diurnal stability classification for Mast 1 31
3.8 Diurnal turbulence intensity and wind shear exponent 32
3.9 Diurnal Monin-Obukhov Length . 33
3.10 Measured velocity profiles - Sector 180° 35
3.11 Measured potential temperature profiles - Sector 180° 35
3.12 Turbulent kinetic energy from measurements - Sector 180° 36
3.13 Turbulent dissipation rate from measurements - Sector 180° 36

4.1 Computational domain - Empty domain 43
4.2 Close up of z refinement - Empty domain 44
4.3 Mesh overview - Empty domain . 44
4.4 Wall function test results - Velocity . 47
4.5 Wall function test results - k . 48
4.6 Wall function test results - ε . 49
4.7 Stability model test results - Velocity . 52
4.8 Stability model test results - k . 53
4.9 Stability model test results - ε . 54
4.10 Buoyancy term results - Velocity . 57
4.11 Buoyancy term results - k . 58
4.12 Buoyancy term results - ε . 59

5.1 Computational Domain - Complex terrain 61
5.2 Mesh block structure used to discretized wind farm terrain model 62
5.3 Wind farm terrain model - Height above sea level 62
5.4 Top view - Wind farm mesh . 63
5.5 Easterly view - Wind farm mesh . 63
5.6 Terrain mesh at Mast 1 . 64
5.7 Terrain mesh at Mast 2 . 64
5.8 Predicted vs. measured wind speed profiles at Mast 2 66
5.9 Velocity streamlines over terrain feature under neutral stratification . . . 68

vii

5.10 Effect of atmospheric stability on velocity streamlines - DTU model Stable 68
5.11 Effect of atmospheric stability on velocity streamlines - DTU model Un-

stable . 69
5.12 Effect of atmospheric stability on velocity streamlines - AM model Stable 69
5.13 Effect of atmospheric stability on velocity streamlines - AM model Un-

stable . 70

viii

List of Tables

2.1 Monin-Obukhov Length classification for atmospheric stability 10
2.2 Default k − ε model constants . 15
2.3 Model constants for various k − ε models for ABL flows 21
2.4 Alinot and Masson Cε3 model constants 22

3.1 Wind shear exponent results from Mast 1 - Sector 180° 32
3.2 Stability classification difference between measured and mesoscale data 33
3.3 Average measured velocity, potential temperature and MOL - Sector 180° 34
3.4 Results from Mast 1 data analysis - Sector 180° 35

4.1 Air Properties . 43
4.2 Roughness lengths - Wall function test . 45
4.3 Percentage error at 96.8 m AGL - Wall function test 46
4.4 Model parameters - Stability model test 50
4.5 Percentage error at 96.8 m AGL - Stability model test 51
4.6 Model parameters - Buoyancy term test 55
4.7 Percentage error at 96.8 m AGL - Buoyancy term test 56

5.1 Windfarm CFD model input data . 65
5.2 Mast 2 cross prediction results at 82 m . 66

A.1 Typical Roughness Lengths . 78

B.1 Mast data sample . 79

ix

List of Abbreviations

ABL Atmospheric Boundary Layer
AGL Above Ground Level
AM Alinot and Masson
ASL Above Sea Level
CFD Computational Fluid Dynamics
DES Detached Eddy Simulation
DNS Direct Numerical Simulation
DTU Technical University of Denmark
LES Large Eddy Simulation
MOST Monin Obukhov Similarity Theory
MOL Monin Obukhov Length
RANS Reynolds-Averaged Navier-Stokes
RSM Reynolds Stress Model
SFS Sub Filter Scale
SRTM Shuttle Radar Topography Mission
SST Shear Stress Transport
TKE Turbulent Kinetic Energy
TI Turbulence Intensity
WRF Weather Research and Forecasting

x

Physical Constants

Cp Constant Pressure Specific Heat Air = 1006.43 J (kg K)−1

Cs Roughness Constant = 0.5
E Wall Function Empirical Constant = 9.793
g Gravitational Acceleration = -9.81 m s−2

Lb Standard temperature lapse rate = -0.0065 K m−1

M Molar Mass Dry Air = 29 g mol−1

Mv Molar Mass Water = 18.015 g mol−1

p0 Reference Pressure = 1× 105 Pa
R Universal Gas Constant = 8.314 J (K mol)−1

β Thermal Expansion Coefficient of Air = 0.0032 K−1

µ Dynamic Viscosity of Air = 1.7894 ×10−5 kg (m s)−1

ΘE Earth Rotational Speed = 7.292× 10−5 rad s−1

xi

List of Symbols

Roman Symbols
B Turbulent Kinetic Energy Production Term m2 s−3

Cε Turbulence Model Constants –
D Diffusion Coefficient –
d Wall Distance m
etot Total Energy J
fc Coriolis parameter rad s−1

Fi Body Force N
G Turbulent Kinetic Energy Source/Sink m2 s−3

K Von Karman Constant –
Ks Physical Roughness Height m
k Turbulent Kinetic Energy m2 s−2

L Monin Obukhov Length m
ls Length Scale m
O Turbulent Kinetic Energy Transport Term m2 s−3

P Turbulent Kinetic Energy from Shear Term m2 s−3

p Pressure Pa
Qh Ground Heat Flux W m−2

q Heat Flux W m−2

Rigradient Gradient Richardson Number –
Ribulk Bulk Richardson Number –
Ri∆ Finite Difference Gradient Richardson Number –
S Source Term –
T Temperature K
u∗ Frictional Velocity m s−1

U Velocity vector m s−1

u x Velocity m s−1

v y Velocity m s−1

Vs Velocity Scale m s−1

w z Velocity m s−1

xv Fraction of Water Vapour –
z Height AGL m
z0 Roughness Length m
zref Reference Height m
Z Compressibility Factor –
zs Length Scale m

xii

Greek Symbols
α Shear Exponent –
Γ Velocity Transfer Function –
∆ Finite Difference –
∆B Wall Function Additive Constant –
δij Kronecker Delta –
ε Turbulent Kinetic Dissipation m2 s−3

θ Potential Temperature K
θ∗ Temperature Length Scale K
Λ Latitude rad
µ Dynamic Eddy Viscosity N s m−2

µt Dynamic Turbulent Eddy Viscosity N s m−2

υ Kinematic Viscosity m2 s−1

υt Kinematic Turbulent Eddy Viscosity m2 s−1

Υ General Variable –
ρ Air Density kg m−3

ρ0 Reference Air Density kg m−3

σ Prandtl Number –
τ Shear Stress Pa
τw Wall Shear Stress Pa
χ User Defined Scalar –
ψ Universal Stability Function –
Ψ Integrated Universal Stability Function –

Sub- and Superscripts
’ Fluctuating Part of a Quantity
¯ Time Averaged Part of a Quantity
+ Non Dimensional
˜ Modified Quantity
0 Surface Value
k Parameters Associated to Turbulent Kinetic Energy k
ε Parameters Associated to Dissipation Rate ε
θ Parameters Associated to Energy
p Parameters at Wall Adjacent Cell
t Turbulent Property
T Transpose
MO Monin Obukhov Similarity Theory Formulation

1

Chapter 1

Introduction

1.1 Motivation

In the wind energy field knowledge about the flow properties of the atmospheric
boundary layer (ABL) is important as the wind field is crucial to the design of wind
turbines, suitability of turbines to the site and also the energy production of the wind
farm. The wind fields over wind farm location vary spatially due to topographical in-
fluences caused by complex terrain effects such as valleys, hills, mountains and cliffs.
Roughness changes are caused by varying ground cover from vegetation, trees and
buildings and also obstacles such as large buildings or forests. These changes in ter-
rain and roughness cause significant variation in the wind speed, wind direction and
turbulence intensity.

Site specific information about the wind fields is required and can be obtained by ei-
ther a measurement campaign where meteorological masts are erected onsite to mea-
sure data for a period in excess of one year or by use of synthesized mesoscale data
sets. The output of these methods is time series data (typically every 10 minutes or
1 hour) that contain measurements of the flow field at various heights above ground
level (AGL). Wind flow modelling is then used to extrapolate this information to areas
onsite where no data are available. In this way the on-site data are used to determine
the wind field at a turbine location.

Computational Fluid Dynamics (CFD) is widely used for this application and focuses
primarily on modelling the neutrally stratified atmospheric surface-layer. The atmo-
spheric surface-layer covers approximately the bottom 10 % of the atmospheric bound-
ary layer (ABL) [3]. Using a typical logarithmic wind profile in this layer guarantees a
valid approximation and CFD models can account for the factors that cause wind field
variations, however, these neutrally stratified simulations ignore atmospheric stability
[3]. In order to reduce uncertainty in wind farm predictions it is necessary to model
the whole ABL and its physical mechanisms. This is especially important in complex
terrain where strong ABL fluctuations are present spatially.

The ABL can be in three main states namely stable, neutral and unstable. In stable
conditions ambient turbulence and vertical fluxes are suppressed by buoyancy forces.
This suppression of turbulence leads to delays in wake recovery from wind turbines
and can lead to increased energy losses associated with velocity deficits caused by
turbine wakes. The lack of vertical motion increases vertical wind shear, defined as the
change in velocity with height, and can lead to uneven wind turbine blade loading.

Chapter 1. Introduction 2

Unstable conditions are characterized by higher ambient turbulence as well as an in-
creased boundary layer height due to the vertical motion experienced. The higher
turbulence levels effects the turbine blade fatigue loads. In a diurnal cycle stable con-
ditions are typically seen at night with cooler land temperatures while unstable con-
ditions appear in day times with elevated temperatures. Typically, non-neutral condi-
tions dominate for wind speeds lower than 15 m s−1 [1]. This leads to the conclusion
that it is important to include atmospheric stability in wind farm simulations and that
a change of the standard model equations are necessary. These changes should account
for atmospheric stability and the Coriolis force due to the rotation of the earth.

1.2 Aim

The aim of this work is to develop a CFD model for the ABL using a Reynolds-Averaged
Navier-Stokes (RANS) model. The model must be able to solve both neutral and non-
neutral flow over a typical wind farm terrain with its parameters derived from onsite
time series wind data. The model results must also be able to be used in standard wind
industry turbine loading software.

1.3 Objectives

The method can be briefly described as follows: Monin-Obukhov Similarity Theory
(MOST) is applied to measured time series data from meteorological masts at a pro-
posed wind farm location to understand the effects of atmospheric stability onsite and
also to obtain the characteristic values. The data analysis is conducted using a devel-
oped Matlab 16a code [4]. Modifications based on MOST are made to the standard
RANS CFD model equations to account for atmospheric stability. These modifications
are tested to be in equilibrium using the horizontal homogeneity test in an empty do-
main. Two k−ε RANS turbulence model modifications for MOST are investigated, two
wall function methods and two methods for the turbulent production due to buoyancy.
The model is applied to the wind farm location using boundary conditions obtained
by applying MOST to a mesoscale data set and source terms from the meteorological
mast. The model is validated by cross predicting the velocity profiles obtained from
the two meteorological masts. Ansys Fluent 18.1 is used for all CFD simulations [5].

The objectives of this work are as follows:

• Development of an empirical data analysis method for computing the stability
conditions using wind speed, wind direction, temperature, pressure and relative
humidity from onsite measured and mesoscale data. The method determines the
stability conditions based on the Monin-Obukhov Length (MOL) and includes
the calculation of density, frictional velocity, heat flux and temperature scale in
each 30° sector.

• Calculation of the corresponding velocity, turbulence and temperature profiles
using Monin-Obukhov Similarity Theory.

Chapter 1. Introduction 3

• Investigation of the developed method to analyse a proposed wind farm location
using time series data.

• Development of a CFD model that demonstrates horizontal homogeneity in an
empty domain and accounts for neutral and non-neutral stratification.

• Investigation of the turbulence model and buoyancy production term modifica-
tions for MOST along with modifications to the standard log law wall function.

• Application of user defined functions to appropriately modify the RANS model
equations.

• Extension of the developed CFD model to investigate the same proposed wind
farm location by simulating neutral and non-neutral wind flow over complex
wind farm terrain for which the inlet and source descriptions are obtained from
the site data analysis.

• Validation of the CFD model by cross prediction of the onsite measured wind
speed profiles.

• Comparison of the Alinot-and-Masson and the M.P. van der Laan et al RANS
turbulence model modifications with respect to model results and validity.

1.4 Overview

The structure of this document is as follows: Chapter 2 is devoted to the necessary liter-
ature review. Chapter 2.1 presents a review of the ABL physics and theory along with
the main ABL governing equations. In Chapter 2.2 the the current state of CFD models
are presented along with RANS turbulence models and wall functions. Chapter 2.3 is
devoted to describing Monin-Obukhov Similarity Theory. The theory and physics of
MOST are presented along with its adaptation into the k − ε RANS turbulence model
through constants and profiles. The incompatibility of MOST with the standard k − ε
turbulence model is presented along with two solution methods. The incompatibility
of the standard wall functions with ABL simulations are presented and two ABL spe-
cific wall function models are introduced.

Chapter 3 presents the selected wind farm location and the main features present at
the location. The wind data from the site are analysed for stability effects and profiles
are generated for wind speed, temperature and turbulence. Chapter 4 provides the
description of the CFD model including the physical models along with the boundary
conditions and the modified equations. The numerical implementation of the modifi-
cations is presented and tested for validity through the models ability to maintain the
inlet profiles in an empty domain. Chapter 5 presents the results of the model’s appli-
cation to the complex terrain of the proposed wind farm location. Finally the model
is validated using onsite measured data. Chapter 6 provides the conclusions to the
dissertation and also highlights possible future work to be performed.

4

Chapter 2

Literature Review

2.1 The Atmospheric Boundary Layer

The Atmospheric boundary layer (ABL) is defined in literature as the lower portion
of the atmosphere that is influenced by the earth’s surface and typically occupies the
lower 10-20 % of the troposphere with a height range of less than 100 m up to 3000 m
or more [6]. The height is typically defined as the region where turbulence drops to
values in the range of 5 % of the surface value. Above the ABL temperature starts to
increase causing a temperature inversion that separates the ABL from the rest of the
troposphere [3]. The ABL is shown graphically in Figure 2.1. The varying conditions
of the earth’s surface influence the ABL wind field by means of turbulence communi-
cating the drag from the ground surface throughout the ABL.

The ABL consists of two regions with the atmospheric surface layer occupying the
lower 10 % of the ABL. The surface layer is categorized by steep vertical gradients of
wind speed and temperature with their structures governed mainly by surface friction
and the vertical temperature gradient. In this region, the heat and momentum fluxes
are approximately constant with negligible impact from the Coriolis force. Above the
surface layer, the gradients of wind speed and temperature decrease and the Coriolis
effect influence becomes more apparent causing a turning of the wind with height [3].

Figure 2.1: The ABL as shown in a vertical cross section of the troposphere [6].

Chapter 2. Literature Review 5

The ABL undergoes continuous change during the day (24 Hour diurnal cycle) during
typical fair weather conditions. The changes are induced by alternating heating and
cooling of the earth’s surface caused by incoming solar radiation that heats the ground
during daytime and cooling in night time caused by emitted long-wave radiation [6].
The windfield changes rapidly in response to these changing conditions and Figure 2.2
shows this graphically in a vertical cross section [6]. The three distinct states of the
ABL can be defined (Neutral, Stable and Unstable). Neutral conditions occur when a
constant potential temperature with height is present. Stable occurs when the ground
surface is cooler than the air, typically in night time, and unstable occurs when the
ground surface is warmer than the air, typically during day time.

Figure 2.2: The ABL evolution of a typical summer day [6].

A typical diurnal cycle is described below and will repeat daily in fair weather condi-
tions [6]. During unstable conditions air heated from the ground surface rises due to
buoyancy forces, this effect enhances turbulence production causing a mixing layer to
form. This layer is also called the convective boundary layer. The ABL continues to
grow throughout the day caused by strengthening of the buoyancy forces and turbu-
lent mixing. This process leads to entrainment in which rising thermals overshoot a
small distance into the inversion layer. Strong convective turbulence causes air parcels
from above the inversion layer to be mixed into the mixing layer, this is called the en-
trainment zone. The ABL continues to grow until typically late afternoon when the
maximum height of the ABL is reached and the ABL is then in a neutral condition.
After sunset the decrease in ground surface temperature causes a small stable layer to
form close to the ground (Nocturnal Boundary Layer), the near neutral layer remains
on top of the stable layer and is called the residual layer and retains the capping inver-
sion. In the nocturnal layer cold air sinks to the ground due to buoyancy forces and also
causes the turbulence to be suppressed. The nocturnal layer continues to grow during
night time. Upon sunrise unstable conditions will start to occur close to ground level
which will erode the stable conditions.

Chapter 2. Literature Review 6

The windfields close to ground react quickly to any changes on the ground surface
that occur diurnally. Typical ABL fluctuations appear with a time scale of around one
hour or less [6]. Generally the wind profiles are assumed to be accurately approxi-
mated with a logarithmic profile that reduces to zero at ground level. However, when
stability is taken into account, the profile can deviate significantly from the standard
neutral condition logarithmic profile [1] [6]. Stable conditions are characterized by low
turbulence levels due to drag from the surface layer not being effectively communi-
cated from the ground surface level. This leads to less mixing effects and an increase in
shear (higher increase for wind speed as a function of height above ground). Unstable
conditions are characterized by high turbulence levels that mix momentum towards to
the ground which leads to a high wind speed increase with height close to the ground,
however, further away the well-mixed flow results in much smaller vertical gradients
for wind speed. This means that the wind profile for unstable conditions have a much
lower wind shear value. Figure 2.3 shows the wind speed profiles for the three condi-
tions as described above [6]. Non-neutral stratification can also cause lifting/blocking
effects when the windfields encounter a terrain feature like a hill [7] [1]. In neutral
conditions the wind profiles would go smoothly over the hill, in stable conditions they
are more likely to flow around the hill rather than over. This is due to the buoyancy ef-
fects in stable condition that counteract lifting. In unstable conditions the profile rises
over the hill and is more prone to continue to rise after the hill due the buoyancy effect
caused by the displaced profiles which is warmer than the surrounding air [7].

Figure 2.3: Typical wind speed profiles for the various stability conditions [6].

The atmosphere consists mainly of oxygen and nitrogen with trace amounts of other
gases including water vapour, hydrogen, carbon dioxide and helium. However, the
atmosphere can be regarded as homogeneous gas of uniform composition [6]. Con-
sider a parcel of air lifted upwards in the atmosphere. The pressure of the parcel will
decrease in response to the atmospheric pressure field under the influence of gravity if
there is no heat transfer to the parcel from conduction or radiation (Adiabatic). Due to
the rapid nature of the vertical turbulence motions of the ABL, the adiabatic assump-
tion is considered to be accurate [6].

Chapter 2. Literature Review 7

Determining the wind speed profiles of the ABL is not easily assessed due numerous
parameters that influence the ABL. A valid assumption for the ABL can be made by
modelling the ABL as a Newtonian fluid with the Navier-Stokes equations. The most
common relation is based on the turbulence kinetic energy (TKE) [6]. TKE is given as
the sum of the average square fluctuations of the wind speed.

TKE = 0.5×
(
u′′2 + v′2 + w′2

)
(2.1)

There are several contributors such as buoyancy and dissipation that influence the
definition of TKE, dividing these terms by u3

∗/(kz) to make them non dimensional, the
relation in Equation 2.2 is obtained. The left hand side of the equation represents the
mechanical production/loss due to shear. K is the von Karman constant and z is the
vertical height above ground [6]. All of the other contributing terms are included in the
right-hand side that is written as a function of a non-dimensional universal function
ψm. This function is proportional to the frictional velocity u∗ as given in Equation 2.3.
The wind speed fluctuations parallel and perpendicular to the average of the main
wind speed u are given by u′ and w′, respectively.

Kz

u∗

∂u

∂z
= ψm (2.2)

u2
∗ =| u′w′ | (2.3)

If the mechanical wind shear term is in equilibrium with the other contributing factors
ψm equals to 1 [6]. This occurs during neutral conditions and allows Equation 2.2 to be
rewritten into the format in Equation 2.4. Taking the integral of this relation between
the ground roughness length z0 and a reference height zref as is done in Equation 2.5
the logarithmic wind speed profile above ground is obtained with Equation 2.6. The
roughness length is defined as the height above ground up to which the wind speed is
zero, Appendix A shows a table of typically assumed roughness lengths [8].

∂u =
u∗
Kz

∂z (2.4)∫ uref

0

du =

∫ zref

z0

u∗
Kz

dz (2.5)

u (z) =
u∗
K

ln

(
z

z0

)
(2.6)

Equations 2.4 to 2.6 are only valid in neutral conditions, for general conditions ψm does
not equal 1 and the derivation of the wind speed profile is more complex and a new
specific universal function taking into account the other terms from buoyancy and dis-
sipation in the TKE relation is needed.

The problem is overcome by using the Monin-Obukhov Similarity Theory (MOST) [9].
The theory assumes that by using a nondimensionalization scheme (Buckingham’s π-
theorem) the parameters g/T0 (T0 is the ground surface temperature and g the gravi-
tational acceleration) along with u∗ and QH/(Cpρ) (where QH is the ground kinematic

Chapter 2. Literature Review 8

heat flux, Cp the specific heat and ρ the air density) successfully describe the atmo-
spheric turbulence. Only one parameter is then needed to describe the process, the
Monin-Obukhov Length (MOL) as given in Equation 2.7 [10] with θ∗ indicating the
temperature scale and L the symbol used for Monin-Obukhov Length.

L =
u2
∗T0

Kgθ∗
(2.7)

From Buckingham’s π-theorem the universal functions for wind speed and tempera-
ture should only be a function of the dimensionless parameter z/L. This allows the
following equations to be obtained.

Kz

u∗

∂u

∂z
= ψm

(z
L

)
(2.8)

Kz

T∗

∂T

∂z
= ψt

(z
L

)
(2.9)

The most used universally accepted functions for ψmand ψt and the relations used
throughout this study, are the Dyer relations [11]:

Stable:
ψm

(z
L

)
= ψt

(z
L

)
= 1 + 5

z

L
(2.10)

Neutral:
ψm

(z
L

)
= ψt

(z
L

)
= 0 (2.11)

Unstable:
ψm

(z
L

)
=
(

1− 16
z

L

)−1/4

(2.12)

ψt

(z
L

)
=
(

1− 16
z

L

)−1/2

(2.13)

A useful conversion is made from temperature to potential temperature θ using Equa-
tion 2.14 [6]. R is the universal gas constant. Potential temperature is defined as the
temperature a parcel of air will attain if it were brought adiabatically to the standard
pressure p0 of the earth’s surface [6]. Potential temperature is used for the intrinsic
property of being conserved with height and undergoes no change during vertical
movements of the air parcel in the adiabatic atmosphere. This removes the typical
rate of change of temperature with height known as dry adiabatic lapse rate (ALR). At
ground level the temperature and potential temperature are equal.

θ = T

(
p0

p

)R/Cp

(2.14)

Using potential temperature, the stability conditions are easily recognizable using Equa-
tions 2.15 to 2.17 [3].

Chapter 2. Literature Review 9

∂θ

∂z
> 0 Unstable (2.15)

∂θ

∂z
= 0 Neutral (2.16)

∂θ

∂z
< 0 Stable (2.17)

After converting and integrating Equations 2.10 to 2.13 as before, the expressions for
wind speed and potential temperature are obtained. Ψm and Ψt are the universal func-
tions for wind speed and temperature which are the integrals of ψm and ψt respectively.

u (z) =
u∗
K

[
ln

(
z

z0

)
−Ψm

(z
L

)]
(2.18)

θ (z) = θ (z0) +
θ∗
K

[
ln

(
z

z0

)
−Ψt

(z
L

)]
(2.19)

With the following obtained by integrating Equations 2.10-2.13:

Stable:

Ψm

(z
L

)
= Ψt

(z
L

)
=

(
−5z

L

)
(2.20)

Neutral:
Ψm

(z
L

)
= Ψt

(z
L

)
= 0 (2.21)

Unstable:

Ψm

(z
L

)
= 2 ln

[
1 + x

2

]
+ ln

[
1 + x2

2

]
− 2 arctan (x) +

π

2
(2.22)

Ψt

(z
L

)
= 2 ln

[
1 + x2

2

]
(2.23)

(2.24)

Where
x =

[
1−

(
16
z

L

)]1/4

(2.25)

This indicates the variation of wind speed and temperature profiles and highlights the
importance of using stability-based profiles instead of the standard logarithmic pro-
files.

The Monin-Obukhov Length is used as the parameter to define atmospheric stability.
The stability is defined in five classes as reported in Table 2.1 [12]. Up to seven classes
exist including slightly unstable and slightly stable, for this work these cases are ab-
sorbed into the unstable and stable regions respectively. Using classes to bin the wind
field allows the correct profiles to be obtained for each onsite stability condition.

Chapter 2. Literature Review 10

Table 2.1: Monin-Obukhov Length classification for atmospheric stability [12]

Condition Monin-Obukhov Length [m]

Extremely Unstable −100 ≤ L < 0
Unstable −500 ≤ L < −100
Neutral | L |> 500
Stable 50 ≤ L < 500
Extremely Stable 0 ≤ L < 50

The calculation of MOL is paramount in the definitions of the stability classes and
profiles. Determining MOL, however, is not straightforward and various techniques
are presented in literature. The following methods are presented hereafter: Gradient
Richardson Rigradient, Bulk Richardson Ribulk and a profile method using different lev-
els of wind speed and temperature.

2.1.1 Gradient Richardson number

The Gradient Richardson method is based on wind speed and temperature gradients
[11]. It is shown in Equation 2.26. Negative values of Gradient Richardson indicate
unstable conditions and positive values stable.

Rigradient =
g

θ

∂θ
∂z(
∂u
∂z

)2 (2.26)

A typical implementation involves taking a finite difference from two relevant heights
with ∆z = z1 − z2.

Ri∆ =
g

θ

∆θ

∆z(
∆u

∆z

)2 (2.27)

Using the Gradient Richardson number and Equation 2.29 the MOL can be calculated
using Equation 2.29 using the following length scale.

zs =
∆z

ln
z1

z2

(2.28)

The method is only valid for Ri∆ < 0.2 [13].

L =


z′

Ri∆
, Ri∆ ≤ 0

→∞ , Ri∆ = 0
z′(1−5Ri∆)

Ri∆
, 0 < Ri∆ ≤ 0.2

(2.29)

Chapter 2. Literature Review 11

2.1.2 Bulk Richardson number

The Bulk Richardson number is based on the wind speed at only the upper level [13].
Due to only using wind speed at one level (z2), using Ribulk to determine L leads to
inaccuracies in the method when extrapolating the profiles [13].

Ribulk =

z2g∆θ

θ2

u2
2

(2.30)

2.1.3 Profile method

Using the profiles obtained in Equations 2.18-2.19 along with the relations from Equa-
tions 2.20-2.25 and rewriting them using two different levels, one can explicitly solve
for u∗ and θ∗ using the equations below:

u∗ =
k (u2 − u1)

ln

(
z2

z1

)
−Ψm

(z2

L

)
+ Ψm

(z1

L

) (2.31)

θ∗ =
k (θ2 − θ1)

ln

(
z2

z1

)
−Ψt

(z2

L

)
+ Ψt

(z1

L

) (2.32)

These values can then be used in Equation 2.7 to obtain L. The method is presented
here using 2 heights to explicitly solve for u∗ and θ∗. If more height data points are
available a non-linear least squares fitting using Equations 2.18-2.19 can be used to
obtain the profiles that best fit the measurements by solving for u∗ and θ∗.

2.1.4 Heat flux

The ground heat fluxQH can be calculated using Equation 2.33 [6]. A positive heat flux
is associated with warm air moving up, cold air moving down and is experienced dur-
ing unstable conditions. During stable conditions the warm air starts to move down-
ward and negative heat flux is experienced [6].

QH = −ρCpu∗θ∗ (2.33)

2.1.5 Air density

Atmospheric gases can be considered to exactly obey the ideal gas law. Taking into
account moist air the density of air, can be determined using:

ρ =
pM

ZRT

[
1− xv

(
1− Mv

M

)]
(2.34)

with p pressure, T temperature, R the universal gas constant, Z the compressibility
factor, M and Mv the molar mass for dry air and water respectively. xv is the mole
fraction of water vapour derived from the relative humidity [14].

Chapter 2. Literature Review 12

2.2 Governing Equations

In this section the governing equations that describe the dynamics and physics of the
turbulent ABL are presented. The focus is on micro-scale phenomena in the ABL and
processes on greater scales are omitted along with atmospheric processes such as ra-
diation, heat transfer between soil and air, clouds and precipitation. Firstly the basic
set of governing equations for neutral incompressible atmospheric flows are presented
along with the standard k− ε turbulence model. In the following section the necessary
adaptations of the governing equations are presented in order to describe the non-
neutral ABL including the Coriolis force.

There are three main expressions governing fluid mechanics: the conservation of mass,
momentum and energy. The ABL can be treated as an incompressible Newtonian
fluid obeying the perfect gas law [6] and the governing equations reduce to the in-
compressible Navier-Stokes equations for mass, momentum and energy presented in
Equations 2.35 to 2.37. xi(x1 = x, x2 = y, x3 = z) are the longitudinal, lateral and ver-
tical directions and ui is the velocity component along xi labelled (u, v, w) respectively.
µ is the dynamic viscosity, ρ the fluid density and Fi the body forces. etot represents the
total energy, qj the heat flux and τ the viscous stresses.

Continuity:
∂ui
∂xi

= 0 (2.35)

Momentum:

ρ

(
∂ui
∂t

+ uk
∂ui
∂xk

)
= − ∂p

∂xi
+ ρFi +

∂

∂xk

(
µ
∂ui
∂xk

)
(2.36)

Energy:

ρ
∂etot

∂t
= − ∂

∂xj
[ρujetot + ujp+ qj − uiτij] (2.37)

The flow in this present study is treated as incompressible due to the fact that density
changes are small and appear at low speeds, however, this does not imply constant
density and by definition pressure changes due to density changes are negligible [3].
More information is presented in Section 2.3.1.

In most cases analytical solutions to the Navier Stokes equations equations do not ex-
ist and numerical solutions remain the only possible way. Solutions for the buoyancy
forces, thermal effects, Coriolis forces and turbulence in the ABL are needed for full
description of the ABL.

Full resolution of turbulence is only possible using Direct-Numerical-Simulations (DNS).
This method is affordable only for very low Reynolds numbers. The typical Reynolds
numbers for ABL flows are in the range of 105 to 1010 [3]. These kind of flows are
affordable to Reynolds-Averaged Navier-Stokes equations (RANS) and in smaller do-
mains with high fidelity models such as Large-Eddy-Simulation (LES) and hybrid
methodologies that use a combination of RANS and LES such as the Detached-Eddy-
Simulation (DES).

Chapter 2. Literature Review 13

The most common method for studying turbulence uses Reynolds decomposition.
This separates the fluctuation variables in turbulent flow into a mean term indicated
with a overbar and a fluctuating term indicated by an apostrophe. In the case of a gen-
eral variable, Υ = Υ + Υ′, respectively [15]. RANS applies Reynolds decomposition
to the Navier-Stokes equations in order to time average them. RANS contains further
unknowns called Reynolds stresses and these stresses need to be modelled in order to
allow for the closure of turbulence. There are various RANS-based turbulence mod-
els and they are typically based upon the additional number of differential transport
equations needed to close the original set of partial differential equations [15]. Some of
the main models are:

• Zero equation algebraic model: mixing length

• One equation model: Spalart Allmaras

• Two equation model: k − ε (standard, RNG, realizable), k − ω (standard, SST)

• Seven equation model: Reynolds Stress Model (RSM)

A second approach to turbulence modelling is LES, which is based on the space-filtered
Navier Stokes equations. This method resolves the large eddies whose dimensions are
larger than that of the filter width. The smaller eddies are modelled using Sub-Filter-
Scale (SFS) turbulence models [15]. Due to fact that the large eddies are resolved, the
LES methods needs to be three-dimensional and transient. In general using LES over
RANS alleviates the issue of needing to tune model constants to the given problem.
Large eddies are strongly anisotropic and are thus heavily dependant on the flow and
boundary conditions. The smaller eddies lose information about these conditions and
are more homogeneously spread and isotropic. This means that if the correct filter is
applied, the small eddies can be accurately modelled for all turbulence conditions. LES
requires fine grids to discretize the near-wall region in wall-bounded flows which in-
creases the expense of running the model.

DES uses a RANS approach in the near-wall region and an LES model for the zones dis-
tant from the walls. It originated for external aerodynamic simulations. DES modifies
the usual RANS model to act in its standard way close to the wall and in a modified
method far from the wall using an SFS model. Eddy solving methods are computa-
tionally expensive, however, with modern computational capabilities it is possible to
use these methods for ABL simulations typically using Wall Modelled LES or DES [16].
However these results are transient and barriers remain for the use of these results in
wind turbine loading calculations, as such RANS remains the most widely used ap-
proach for ABL modelling and it is the focus method of this study.

2.2.1 The RANS equations

Turbulent flows can be treated as statistically steady if the statistics of the flow remain
constant over a certain time period. Time averaging the Navier-Stokes using Reynolds
decomposition over a time period long enough to reach this state results in the RANS
Equations 2.38 and 2.39 for continuity and momentum. The high Reynolds number
ABL flows in this study are based on solutions to these equations.

Chapter 2. Literature Review 14

∂ρUi
∂xi

= 0 (2.38)

∂ρUi
∂t

+
∂ρUiUj
∂xj

− ∂

∂xj

[
(µ+ µt)

(
∂Ui
∂xj

+
∂Uj
∂xi

)]
+
∂p̂

∂xi
= SM (2.39)

When time averaging the Navier-Stokes equations new unknowns are introduced for
turbulent eddy viscosity µt and Reynolds stresses ρu′iu′j . The Boussinesq hypothesis is
used to relate the Reynolds stresses to the mean velocity gradients using Equation 2.40
[15], with δij the Kronecker symbol.

ρu′iu
′
j = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3

(
ρK + µ

∂Ui
∂xi

)
δij (2.40)

The Reynolds stresses originate from time averaging the convective term of the Navier-
Stokes equations [15]. They are typically grouped in the diffusive term of the RANS
momentum and are responsible for turbulent diffusion of momentum which in highly
turbulent flows is several orders of magnitude greater than molecular diffusion due
to viscosity. The hydrostatic pressure p̂ = ρ0gi is absorbed into the pressure formula-
tion [3].

In order to close the equations the turbulent eddy-viscosity needs to be modelled. Var-
ious models for µt exist and are listed in Section 2.2 [15]. Zero-equation models as-
sume a constant turbulent eddy-viscosity or calculates a direct solution for turbulent
eddy-viscosity using the flow variables. One-equation models use a single transport
equation for the turbulent eddy-viscosity. The most common is to use two transport
equations, one for the length scale and one for the velocity scale of the turbulence.
A way to close the RANS without the Boussinesq hypothesis is to apply a transport
equation for each of the seven Reynolds stresses, however, this leads to a high compu-
tational cost and it is more common to perform a simulation using LES or DES instead.

In the following section the standard two-equation k− ε turbulence model is described
as it is the primary model uses in this study. The model is presented in the formulation
it is included in Fluent 18.1. [5] [17].

2.2.2 k − ε model

In the k − ε turbulence model the turbulent eddy viscosity is defined using a velocity
scale Vs and a length scale ls with use of Equations 2.41 and 2.42 [15].

µt =ρCµVsls (2.41)

Vs = k1/2 ls =
k3/2

ε
(2.42)

The standard model is based on two transport equations for turbulent kinetic energy
(k) and its dissipation rate (ε) as shown respectively in Equations 2.43 and 2.44 [17].

Chapter 2. Literature Review 15

∂ρk

∂t
+
∂ρkui
∂xi

=
∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Gk +Gb − ρε− Ym + Sk (2.43)

∂ρε

∂t
+
∂ρεui
∂xi

=
∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ Cε1

ε

k
(Gk + Cε3Gb)− Cε2ρ

ε2

k
+ Sε (2.44)

σk and σε are the turbulent Prandtl numbers for k and ε respectively with Sk and Sε user
defined source terms. Cε1, Cε2 and Cε3 are model constants. The model constants are
not universal, although certain values are typically used as they produce the correct
levels of turbulence in common industrial flows. The default values adopted in the
k − ε model are shown in Table 2.2 [15] [17].

Table 2.2: Default k − ε model constants

Cµ C1ε C2ε σk σε

0.09 1.44 1.92 1 1.3

Gk represents turbulence production due to the mean velocity gradients and is deter-
mined using Equation 2.45.

Gk = −ρu′iu′j
∂ρuj
∂xi

(2.45)

Gb represents turbulence production due to buoyancy and is determined with Equa-
tion 2.46 with β the coefficient of thermal expansion given by Equation 2.47. Gb is in-
cluded in Fluent only if a non-zero gravity field and temperature gradient are present.
σθ is the turbulent Prandtl number for energy and has a Fluent default value of 0.85
[17].

Gb = βgi
µt
σθ

∂T

∂xi
(2.46)

β = −1

ρ

(
∂ρ

∂T

)
(2.47)

When Gb is positive, turbulence is augmented, while a negative Gb suppresses tur-
bulence. These conditions are in alignment with the unstable and stable conditions
respectively. The buoyancy effects on k is well understood, not so however, for ε [17].
By default Gb is set to zero in the ε transport equation, however, it can be included
by advanced settings in Fluent [17]. For this study it is not activated in Fluent but
reintroduced via the source term. The degree to which ε is influenced by Gb is deter-
mined using the Cε3 constant. Fluent does not allow the specification of Cε3 and it is
instead calculated using Equation 2.48 where v is the velocity component parallel to
the gravitational vector and u perpendicular to the gravitational vector [17].

Cε3 = tanh
(∣∣∣v
u

∣∣∣) (2.48)

Chapter 2. Literature Review 16

2.2.3 Wall functions

The presence of walls has a significant impact on turbulent flows. The velocity field is
affected by the wall no-slip condition. The turbulence is affected very close to the wall
by viscous damping which reduces the tangential velocity fluctuations and the normal
fluctuations are reduced by kinematic blocking [17]. Due the large gradients in mean
velocity towards the outer part of the near-wall region there is a rapid augmentation in
turbulence. In the near-wall region the solution variables have large gradients and the
transport equations occur more vigorously than in other regions [17]. Walls are typi-
cally the main source of turbulence and mean vorticity. Solution fidelity and accurate
predictions of wall-bounded turbulent flows therefore require accurate representation
of the flow in the near-wall region [17].

There are two main approaches for near-wall modelling. The first, called the wall func-
tion approach, relies on the use of semi-empirical formulas that bridge the region be-
tween the wall and the fully turbulent region [17]. This method does not require the
modification of the turbulence models in the near-wall region. The second approach
relies on the modification of the turbulence models near the wall to allow resolution
using a fine a mesh all the way down to the wall [17]. This method is called the near-
wall modelling approach.

To obtain high quality numerical results using near-wall modelling the resolution of
the wall boundary needs to be sufficiently fine [17]. Due to large size of ABL simula-
tions the required resolution for this method would not be feasible and wall-function
methods are predominately used in ABL simulations.

The standard wall function used in Fluent is based on the work of Launder and Spald-
ing [18] [17]. The wall function is applied in the wall adjacent cells only. The wall
function modified for roughness has the following form [19] [20].

Upu∗ρ

τw
=

1

K
ln

(
E
ρu∗zp
µ

)
−∆B (2.49)

with

u∗ = Frictional velocity = (C1/4
µ k1/2)

E = Empirical constant (= 9.793)

Up = Fluid mean velocity at the wall adjacent cell centroid
kp = Fluid turbulent kinetic energy at the wall adjacent cell centroid
zp = Distance from wall to cell centroid of the wall adjacent cell
τw = Wall shear stress

∆B is the additive constant which quantifies the shift of the standard log-law intercept
due to roughness effects and depends on the type and size of roughness [19]. The
constant has been correlated with the non-dimensional roughness height K+

s based on
the physical roughness height Ks [19] [21].

Chapter 2. Literature Review 17

K+
s =

ρKsu∗
µ

(2.50)

There are three distinctive forms for K+
s namely hydrodynamically smooth (K+

s ≤
2.25), transitional (2.25 ≥ K+

s ≤ 90) and fully rough (K+
s ≥ 90) [19]. The condition for

ABL flow is generally rough and the non-dimensional roughness height then becomes
Equation 2.51 where Cs is the roughness constant which has a Fluent default value of
0.5 [21] [19].

∆B =
1

K
ln
(
1 + CsK

+
s

)
(2.51)

The k transport equation is solved in the whole domain including the wall-adjacent
cell with the following boundary condition imposed at the wall where n is the local
coordinate normal to the wall [17]

∂k

∂n
= 0 (2.52)

The production of turbulent kinetic energy, Gk and the dissipation rate are computed
in the wall adjacent cells under the local equilibrium hypothesis which assumes the
production of k and dissipation are equal [17]. The production of k at the wall adjacent
cell then becomes

Gk =
τ 2
w

KρC
1/4
µ k

1/2
p zp

(2.53)

The dissipation transport equation is not solved at the wall adjacent cells, instead ε is
determined using the following equation.

εp =
C

3/4
µ k

3/2
p

Kzp
(2.54)

Chapter 2. Literature Review 18

2.3 Adaptation of Governing Equations for the ABL

When modelling the ABL at full scale there are additional dynamics that need to be
added to the RANS momentum Equation 2.39. These include buoyancy forces caused
by thermal stratification and the Coriolis force due to the earth’s rotation [3]. These
effects can be introduced into the RANS momentum Equation 2.39 as an external force
via an additional source term. Their effects are summed up here using a source term
SM defined in Equation 2.55 with ρ0 the reference density, gi and ιi is defined in Equa-
tion 2.56 [3].

SM = gi(ρ−ρ0) + ιifcρUi (2.55)

gTi = (0, 0,−g) , ιTi = (−1, 1, 0) (2.56)

fc is defined as the Coriolis parameter using Equation 2.57 with the earth’s rotation
rate ΘE and latitude Λ in geographical radians. The earth’s rotation rate equals 7.292×
10−5 rad s−1 [6].When viewed from a rotating reference frame only the component that
acts perpendicular to the direction of the wind is considered. The Coriolis force causes
the air to deflect from its original path of motion and causes increasing wind veer as
a function of height. Only the horizontal components are considered as the vertical
component is negligible due to the gravitational acceleration.

fc = 2ΘE sin(Λ) (2.57)

2.3.1 Boussinesq approximation for buoyancy

The buoyancy term gi(ρ− ρ0) in Equation 2.55 accounts for temperature based density
variations in the ABL. According to the Boussinesq approximation for buoyancy den-
sity variations are small enough to be considered negligible except when appearing
together with gravitational acceleration and is based on a combination of the ideal gas
law, hydrostatic relation and potential temperature. The Fluent model treats density
as a constant value in all solved equations except for the buoyancy term [17].

ABL temperature, pressure and density are linked over a wide range of conditions with
the use of the ideal gas law [6]. With the assumption of incompressible flow this law
can be simplified with the molar form of the ideal gas law approximated by:

ρ =
Mp

RT
≈ Mp0

RT
(2.58)

This relation indicates that relative changes in temperature are now inversely propor-
tional to changes in density; coupled with gravitational acceleration this results in ver-
tical buoyancy forces [3]. The Boussinesq approximation accounts for density changes
only in the vertical component of the momentum equation via a buoyancy term. Along
with the continuity and momentum equations, the energy equation is then solved to
model the temperature changes. With the Boussinesq approximation the buoyancy
term then becomes the following based on a reference temperature T0 and density
ρ0 [19].

Chapter 2. Literature Review 19

gi(ρ− ρ0) = −ρ0β (T − T0) gi (2.59)

Typical ABL density variations are small and the Boussinesq approximation is consid-
ered accurate [3] [6]. The Boussinesq approximation is used in various models other
than those presented here and its use is incorporated into the Fluent RANS models by
default as was discussed in Section 2.2.2 [17].

2.3.2 Monin-Obukhov similarity theory

The standard k − ε turbulence model as presented in Section 2.2.2 is not capable of
accurately representing non-neutral conditions and modifications are needed to take
stability effects into account [10] [1]. This is due to the fact that turbulence profiles
generated using MOST are unbalanced with the turbulent transport equations to the
standard k− ε turbulence model [3] [10]. This means that the profiles for velocity, tem-
perature and turbulence will not demonstrate horizontal homogeneity in an empty
domain. Several authors have presented methods to introduce modifications of the
turbulent transport equations to overcome the inconsistencies. The changes are gener-
ally in the form of parametrizations of one or two model constants as listed in Table 2.3.
Freedman and Jacobson [22] argued that the k-equation is in near equilibrium in stable
atmospheric conditions and changes only need to be made in the ε-equation and intro-
duced Cε1 as a function of Richardson number to overcome the inconsistency. Alinot
and Masson [10] proposed modifications to the transport equations by introducing Cε3
as a function of the stability parameter z/L. The ε inlet profile was also modified to
account for the k-equation imbalance. This method has been shown to work well for
small domains [10] [1] but it can face issues in large domains due to the fact that the
transport equation for k is still not in equilibrium with MOST. Parente et al. [23] pro-
posed adding a new source term into the k-equation to allow the model to sustain the
k profile. M.P. van der Laan et al. [1] have most recently proposed a new k-epsilon
model consistent with MOST. The model is based on a combination of ideas from Par-
ente et al. and Alinot and Masson where an additional analytical source term is added
to the k-equation and a variable Cε3 is used. This ensures both stable and unstable
MOST profiles to be maintained, this model is referred to as the DTU model.

Turbulence modelling with MOST is described in the following section followed by
descriptions of the Alinot and Masson (AM) and DTU models.

2.3.3 MOST turbulence modelling

MOST assumes that the ABL is steady and horizontally homogeneous and that the
turbulent stresses u′w′ and vertical turbulent heat flux w′θ are constant with height [1].
This is coupled with the assumption that normalized velocity and potential tempera-
ture gradients can be described with analytical functions ψm and ψt as was described
in Section 2.1.

Chapter 2. Literature Review 20

The kinematic turbulent eddy viscosity:

υt =
−u′w′
∂U
∂z

(2.60)

can then be represented as υtMO conforming to MOST as

υtMO =
Ku∗z

ψm

(z
L

) (2.61)

If one then writes the TKE rate equation in non-dimensionalized form it is possible to
relate ψm to the MOST functions of the TKE components. Expressed mathematically
this implies normalizing the TKE budget in Equation 2.62 by the surface-layer dissipa-
tion rate u3

∗/(Kz) to obtain Equation 2.63 with the normalized dissipation ψε defined
in Equation 2.64 [1]..

O + P + B = ε (2.62)
Kz

u3
∗

(O + P + B) = ψT + ψm + ψB = ψε (2.63)

ψε =
εKz

u3
∗

(2.64)

O , P and B respectively represents TKE transport, turbulence production due to shear
and rate of turbulent production or destruction of TKE due to buoyancy. A typically
used relation for ψε is that of Panofsky and Dutton [24]:

ψε =

{
1− z

L
, L < 0

ψε − z
L

, L > 0
(2.65)

Due to homogeneity requirements it is required that the transport equations solved
by the CFD code must be in balance with the formulae used to specify the boundary
conditions of the turbulence quantities of the ABL. Richards and Hoxey [25] proposed
one of the most widely used methods for the neutrally stratified ABL under the as-
sumption of constant properties in the direction of flow and that the flow is driven by
a shear stress applied at the top of the layer. This shear term is given by Equation 2.66.

τ =
Kz

u∗

∂u

∂z
(2.66)

Applying these assumptions with the logarithmic wind speed profile of Equation 2.6
and using the relations from the k − ε model results in Equations 2.67 and 2.68 [1].
These have gained widespread use as boundary conditions for the neutral ABL and
they are used in this study along with Equation 2.6 for velocity.

k =
u2
∗√
Cµ

(2.67)

ε(z) =
u3
∗
kz

(2.68)

Chapter 2. Literature Review 21

A similar approach can be followed for the boundary conditions of MOST under the
same assumptions. Using the standard eddy viscosity from the k− ε model, the MOST
profile from Equation 2.61 and the dissipation from Equation 2.63 imply a vertical tur-
bulent kinetic energy profile as follows:

k(z) =

(
υtMOε

Cµ

)1/2

=
u2
∗√
Cµ

(
ψε
ψm

)1/2

(2.69)

The transport equations for k and ε can then be written as:

Dk

Dt
= Dk + P− ε+ B ,

Dε

Dt
= Dε + (Cε1P− Cε2ε+ Cε3B)

ε

k
(2.70)

where Dk and Dε represent the diffusion-based transport of k and ε. The above relations
are known to be inconsistent with the standard k−εmodel [10] [1] and various methods
have been proposed to deal with the inconsistency. The methods of Alinot and Masson
(AM) and the DTU model is used in this study. Table 2.3 indicates the various models
available and the adaptation needed for the models.

Table 2.3: Model constants for various k − ε models for ABL flows [1] [10] [15]

k − ε Method Cµ K Cε1 Cε2 Cε3 σk σε σθ k-eq.

Launder and Spalding 0.09 0.4 1.44 1.92 0 1 1.3 0.71 -
ABL neutral Sorensen 0.03 0.4 1.21 1.92 0 1 1.3 - -
MOST Alinot & Masson 0.033 0.42 1.176 1.92 eq.2.73 1 1.3 1 -
MOST DTU model 0.03 0.4 1.21 1.92 eq.2.79 1 1.3 1 eq.2.75

2.3.4 Method I: Alinot and Masson

Based on measurements of the surface turbulent kinetic energy budget terms Alinot
and Masson [10] obtained the following for ε

ε(z) =
u3
∗

Kz
ψε

(z
L

)
(2.71)

To ensure the velocity, temperature and turbulence profiles for MOST represent exact
solutions to the k−εmodel, the values of Cµ, K, Cε1 and Cε3 are updated to those listed
in Table 2.3. Using Equations 2.71 and 2.68 combined with Equation 2.61 obtains the
value for Cµ = 5.48−2. Cε1 is obtained from the ε transport equations by introducing
MOST:

Cε1 = Cε2 −
k2

σε
√
Cµ

= 1.176 (2.72)

Finally Cε3 is obtained using a fifth order polynomial:

Cε3

(z
L

)
=

5∑
n=0

an

(z
L

)n
(2.73)

Chapter 2. Literature Review 22

with the coefficients listed in Table 2.4. The polynomial in Equation 2.73 is not a com-
plete analytical solution but instead an approximation and is only valid for −2.3 <
z/L < 2.0 [1].

Table 2.4: Alinot and Masson Cε3 model constants [10]

L > 0 L < 0(
z
L

)
< 0.33

(
z
L

)
> 0.33

(
z
L

)
< -0.25

(
z
L

)
>-0.25

a0 4.181 5.225 -0.0609 1.765
a1 33.994 -5.269 -33.672 17.1346
a2 -442.398 5.115 -546.88 19.165
a3 2368.12 -2.406 -3234.06 11.912
a4 -6043.544 0.435 -9490.792 3.821
a5 5970.776 0 -11163.202 0.492

2.3.5 Method II: DTU solution

The DTU method involves an additional source SkMO in the k-equation [1].

Dk

Dt
= Dk + P− ε+ B− SkMO (2.74)

with

SkMO =
u3
∗
kz
×


(
L

z

)
(ψm − ψε)−

ψh
σθψm

− CkD
4
ψ

13/2
m ψ

−3/2
ε fus

(z
L

)
, L < 0

1− ψh
σθψm

− CkD
4
ψ

7/2
m ψ

−3/2
ε fst

(z
L

)
, L > 0

(2.75)

employing the following stability functions:

CkD =
k2

σk
√
Cµ

(2.76)

fus

(z
L

)
=
(

2− z

L

)
+

16

2

(
1− 12

z

L
+ 7

(z
L

)2
)
− 16

(
3− 54

z

L
+ 35

(z
L

)2
)

(2.77)

fst

(z
L

)
=
(

2− z

L

)
− 10

z

L

(
1− 2

z

L
+ 2

(z
L

)2
)

(2.78)

Finally Cε3 is determined using Equation 2.79.

Cε3 =
σθL

z

ψm
ψh

(
Cε1ψm − Cε2ψε + [Cε2 − Cε1]ψ−1/2

ε fε

(z
L

))
(2.79)

with:

fε

(z
L

)
=

{
ψ

5/2
m

(
1− 12

z

L

)
, L < 0

ψ
−5/2
m (2ψm − 1) , L > 0

(2.80)

Chapter 2. Literature Review 23

For the DTU model SkMO and Cε3 are complete analytical solutions to MOST and is
valid for the entire range of z/L [1]. This is important as the domain in ABL CFD
models extend multiple kilometres above ground and using typical values for MOL
the region in which the Alinot and Masson method is valid is quickly overcome.

Following the MOST assumptions, Gb from Equation 2.46 can be rewritten to yield
Equation 2.81, shown here in its potential temperature form [1]. This expression for Gb

is commonly used in literature [26] [27]. It can be considered as the ABL modeller’s
choice because it does not require ∂T

∂xi
which allows MOST to be used without solving

the energy equation and also removes the issue where accurate steady simulations
are difficult to obtain with buoyancy forces [1] [7]. Using this method yields steady-
state results that can be implemented into typical wind turbine loading simulations.
In this study the standard and MOST formulation of Gb are investigated. The MOST
formulation is referred to as GbMO and is presented in Equation 2.81.

GbMO =
gυt
θ0σεθ

∂θ

∂z
= −υt

(
∂U

∂z

)
zψt

Lσθψ2
m

(2.81)

The MOST profiles for velocity and turbulence from Equations 2.18, 2.69 and 2.71 are
used for the Alinot and Masson and the DTU model boundary conditions [1] [10].

2.3.6 ABL wall functions

The accuracy of ABL simulations can be severely comprised when wall-function rough-
ness modifications used in the standard wall functions employed in Fluent as dis-
cussed in Section 2.2.3 are applied at the bottom of the computational domain [20].
These functions are developed based on experimental data for sand grain roughened
pipes and channels [20]. The effect of improper wall functions cause unintended stream-
wise gradients in the vertical mean wind speed and turbulence profiles [20]. The typ-
ical implication is unwanted acceleration of the flow near the surface which causes
changes in velocity and especially turbulent kinetic energy, which leads to simulations
that are not horizontally homogeneous[20]. The requirements for ABL wall functions
can be described using the following four criteria [20] [19].

• A sufficiently fine mesh resolution close to ground, typically < 1m

• Horizontally homogeneous ABL flow in the empty domain

• The wall adjacent cell centre distance zp should be greater than the physical
roughness height Ks

• The correct relationship between ground roughness length z0 and physical rough-
ness height Ks can be derived

The relationship for point 4 can be derived by first order matching the wall function
velocity profile and the neutral ABL velocity profile. Applying the K+

s relation for a
fully rough equilibrium boundary layer τw = ρu2

∗ , CsK+
s >> 1 and combining Equa-

tions 2.49, 2.50 and 2.51 yield the wall function velocity [20].

Chapter 2. Literature Review 24

Up
u∗

=
1

K
ln

(
E

zp
CsKs

)
(2.82)

The neutral wind velocity profile from Equation 2.6 can be rewritten with the same left
side argument

Up
u∗

=
1

K
ln

(
z

z0

)
(2.83)

These two equations must be equivalent in the first cell where z = zp which yields
Equation 2.84 and recovers the standard neutral wind speed profile from Equation 2.6
[20].

Ks = z0
E

Cs
(2.84)

The above indicates the relation between ground roughness length z0 and physical
roughness height Ks. Fluent takes the input to its wall functions as physical rough-
ness height and this equation must be adhered to for accurate ABL simulations. In this
study this method is referred to as the modified roughness approach.

This method has gained widespread use [20], however, it faces some issues. Using
a typical roughness length of 0.1 m and the Fluent default values for Cs = 0.5 and
E = 9.793 the physical roughness height in Fluent would then become 1.9586 m. With
the restriction that the cell centre of the wall adjacent cell should be greater than the
physical roughness height this would result in a unacceptably course mesh at ground
level[20], with a first cell height greater than 4 m. Also the standard wall function
does not consider any direct effect of roughness on the turbulence quantities at the
wall [2]. For these reasons there have been ABL specific wall function developments.
The method used in this study is based on the work of Parente et al [2] which uses
the boundary conditions of Richards and Hoxey [25]. The proposed model uses the
following for wall velocity, turbulent kinetic energy and dissipation.

Up =
u∗
K

ln

(
zp + z0

z0

)
(2.85)

Gk =
τ 2
w

KρC
1/4
µ k

1/2
p (zp + z0)

(2.86)

εp =
C

3/4
µ k

3/2
p

K (zp + z0)
(2.87)

Comparing these relations with the standard wall functions the direct use and addition
of roughness length z0 is noted. There is also now a direct influence of roughness on
the wall properties and also adds more freedom in mesh generation as the wall func-
tion does not impose any additional limitations on first cell height. In this study this
method is referred to as the modified wall function approach.

MOST profiles as discussed in Section 2.3.3 approach neutral conditions at the wall
and wall functions developed for neutral flow can be used [1].

Chapter 2. Literature Review 25

2.4 Summary

Following the reviewed literature the following conclusions can be drawn:

The ABL can be in three main stability conditions namely stable, neutral and unsta-
ble. The neutral condition neglects thermal stratification. During a diurnal cycle stable
conditions typically occur at night with cooler land temperatures while unstable con-
ditions appear in day times with elevated temperatures. Stable conditions are charac-
terized by lower ambient turbulence and vertical fluxes are suppressed by buoyancy
forces. In unstable conditions the increase in vertical motion increases the boundary
layer height and is also categorized by higher ambient turbulence.

MOST is used to describe the non-neutral wind profiles. The theory describes wind
speed, temperature and turbulence profiles as a function of MOL, using the universal
Dyer functions. MOL is used to categorize the various stability classes. Converting
temperature to potential-temperature allows neutral and non-neutral stratification to
be easily recognized. Various MOL calculation methods are presented, including: Gra-
dient Richardson, bulk Richardson and a profile method that can be extended to a
least-squares fit implementation.

In order to have an accurate ABL CFD model that accounts for the large scale physical
mechanisms of the ABL, modifications to the standard RANS CFD model equations
are required. The rotation of the earth causes a Coriolis force which acts on the mo-
mentum equation. The thermal stratification causes a buoyancy force, due to the small
density variations in the ABL the Boussinesq approximation for buoyancy is typically
employed. The standard wall function methods are not applicable to ABL models. A
modified roughness and modified wall-function approach, based on the work of Par-
ente et al, were reviewed.

The standard k − ε turbulence model is not capable of accurately representing non-
neutral conditions. This is due to the fact that turbulence profiles generated using
MOST are unbalanced with the turbulent transport equations of the standard k− ε tur-
bulence model. Several authors have presented methods to introduce modifications to
the turbulent transport equations to overcome the inconsistencies. Two primary meth-
ods were reviewed, the first is the Alinot and Masson model, the model uses a fifth
order polynomial for Cε3. The second model is based on the work of M.P. van der Laan
et al. which uses an additional source term in the k-equation and an analytical solution
for the Cε3 variable.

Following the MOST assumptions the standard turbulence production due to buoy-
ancy can be rewritten as a function of MOL and velocity gradient. Since this term does
not require the temperature gradient using this method, it is not necessary to include
the energy equation, which is known to cause solution fidelity problems in steady-state
simulations.

26

Chapter 3

Data Acquisition and Analysis

This chapter focuses on applying the analytical equations from MOST as presented in
Sections 2.1 and 2.3.2. The theory is applied to measured time series data from onsite
meteorological masts located on a proposed wind farm location in the Eastern Cape in
South Africa. The masts are used to gather representative windfield information about
the onsite conditions. Three heights were measured for wind speed and direction, two
for temperature and one for pressure and relative humidity. Mesoscale data obtained
from a WRF (Weather Research and Forecasting) model were also downloaded at the
same location. The analyses apply MOST to obtain the influence of atmospheric sta-
bility on the wind farm and determine the profiles for wind speed, temperature and
turbulence. The study area and results are used in the complex terrain CFD analysis
and validation study in Chapter 5. The analysis was conducted using Matlab 2016a
(code included in Appendix C).

3.1 Study Area

A main overview of the study area is shown in Figure 3.1

Figure 3.1: Study area location. Map data: Google, 2017 DigitalGlobe, 2017 AfriGIS

The study area is characterized by a hill of 950 m above sea level (ASL) that drops
down to 550 m ASL via steep and undulating terrain. Two meteorological masts are
located on the hill where turbines would then be erected in between the two locations.
The masts are located East-West approximately 7200 m apart.

Chapter 3. Data Acquisition and Analysis 27

A Northern view of the study area can be seen in Figure 3.2 with both mast locations
shown. Mast 1 is the primary mast and used for the current data analysis study.

Figure 3.2: Northern view of study area. Map data: Google, 2017 DigitalGlobe, 2017 AfriGIS

An Easterly view along the hill is shown in Figure 3.3. The ground cover is typical
open farmland with no major obstacles, this corresponds to a roughness height z0 of
0.030 m.

Figure 3.3: Eastern view of study area. Map data: Google, 2017 DigitalGlobe, 2017 AfriGIS

Chapter 3. Data Acquisition and Analysis 28

The digital terrain model of the site is constructed from surveyed 5 m contour data
over and around the main hill and then extended with 30 m shuttle radar topography
mission data [28] to obtain a site model of 35 km× 25 km. The x and y axes are aligned
with East and North respectively. The model indicates high topographical direction
changes of up to 70° of inclination on the hill. Due to the steep terrain features linear
flow models such as WAsP Engineering from DTU Wind Energy, which are specifically
designed to work in flat terrain, are not suitable and CFD modelling is required [29].
The topographical angle of inclination is shown in Figure 3.4 below.

Figure 3.4: Angle of topographical inclination from the wind farm digital terrain model

3.1.1 Meteorological mast

In order to accurately represent the conditions onsite the data measurement campaign
has to be of a certain standard. For the meteorological mast this can be summarised as
follows [8]: Observations must be made at heights no lower than 0.75 of the proposed
wind turbine hub on a lattice mast tower. The instruments must be located on slen-
der booms extending from the mast much further than the diameter of the mast or the
anemometer. Multiple readings along the mast are required with sufficient spacing to
avoid interference. Experimentally calibrated first class anemometers and wind vanes
must be used. Measurements are averaged over 10 minute periods concurrently for all
sensors.

The masts used in this study are 82 m tall mast with cup anemometers located at 82 m,
60 m, and 40 m. Wind vanes are installed at 80 m and 40 m with temperature sensors
at 80 m and 5 m. Pressure and relative humidity are measured at 5 m. Measnet Sensor
calibration [30] has been successfully completed on all anemometers and wind vanes.
The anemometers measure mean and standard deviation. A sampled 1 hour data set
is shown in Appendix B.

Chapter 3. Data Acquisition and Analysis 29

3.1.2 Mesoscale data

The WRF model is a mesoscale numerical weather prediction system designed for both
atmospheric research and operational forecasting and generates atmospheric simula-
tions based on real data obtained from observations and analyses. EMD [31] uses its
own in-house WRF model to allow users to download data sets at any location in the
world based on this model. The data are available at any location with a temporal
resolution of 1 hour. Typical correlation coefficients for the data sets to onsite data sets
are in the range of 0.7-0.9 [31]. For this study the EMD model is utilized. The returned
data for the set include: wind speed and direction at 10 m, 25 m, 50 m, 75 m, 100 m,
150 m and 200 m as well as temperature at 2 m and 100 m and pressure at 2 m. The
data can be acquired for any time period with a 3 month delay to the current date and
up to 20 years in the past. This allows simultaneous data sets to be downloaded to
that of the measured data onsite. For this study WRF data sets were downloaded at
the inlet location of the CFD model and also at the same location of Mast 1. The inlet
location WRF data are used to describe the inlet boundary conditions and the WRF
data at Mast 1 is used to understand the ability of WRF to predict stability on the site.

3.2 Calculation of Prevalence of Stability from Data

Two years worth of data were extracted for 2015-2017, full years are used to not in-
troduce any seasonal bias in the data. The measured data have a recovery in excess
of 90 % and the mesoscale data has 100 % recovery. The data were cleaned for faulty
readings and outliers using standard wind industry data cleaning procedures. For this
study Mast 1 is the primary mast and is used for the results displayed in this section.
To determine the frequency of each stability condition the temperature was converted
to potential temperature using Equation 2.14 for each reading. Using the potential
temperature gradient and Equations 2.15-2.17 the reading is then classified as neutral,
stable or unstable. The Monin-Obukhov Length of each reading is calculated using the
three measurement heights for velocity to perform a non-linear least squares fit with
the corresponding stability velocity profile from Equation 2.18. Using the conditions
in Table 2.1 the data are then binned into the various classes. The results for the data
from Mast 1 set can be seen in Figure 3.5. The results show that only 11 % is spent in
the neutral condition, this shows that using the standard ABL CFD model for this site
would be applicable to a very small portion of the actual onsite conditions. 36 % of
the time is spent in the extremely unstable condition. This is typical in countries in the
Southern hemisphere due to the high daytime temperatures. 40 % of the time the site
was in the stable condition.

Chapter 3. Data Acquisition and Analysis 30

Extremely Unstable: 36%

Unstable: 6%

Neutral: 11%

Stable: 40%

Extremely Stable: 7%

Figure 3.5: Stability frequency classification for Mast 1

Windfarm CFD models simulate the wind flow from 12 different directions, this means
the data need to be split into 30° bins. The stability rose in Figure 3.6 shows the sector
wise distribution of stability from the mast obtained by using the top wind vane for
directional binning. The prevailing wind directions can be identified as sectors 120-
180°. This shows that the wind mainly approaches the hill from the South Eastern
direction. It can also be noted that the stability percentage remains mainly unchanged
within each sector and indicates that stability is independent of the direction for this
location and time span.

2%

4%

6%

8%

10%

12%

 EW

N

S

Extremely Stable
Stable
Neutral
Unstable
Extremely Unstable

Figure 3.6: Stability rose for Mast 1

Chapter 3. Data Acquisition and Analysis 31

The 10 minute diurnal evolution of stability can be seen in Figure 3.7. The main trend is
identifiable with strong (90%) extremely unstable and unstable prevalence during day-
time with stable conditions dominating the night time. This matches with the typical
diurnal ABL evolution presented in Section 2.1. This diurnal cycle is used to average
the data for all of the following calculations and any mean determined is weighted
against the time it occurs in the diurnal cycle. This means when determining statis-
tics for the extremely stable region the effects of the conditions occurring in night time
is weighted more heavily than the few times it occurs during day time. This is done
to alleviate the effects of stratification occurring outside of its normal conditions, for
example a day time rain storm with high cloud cover can cause the extremely stable
condition during daytime.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

0

10

20

30

40

50

60

70

80

90

100

%
 O

f
St

ab
ili

ty
 C

la
ss

Extremely Unstable
Unstable
Neutral
Stable
Extremely Stable

Figure 3.7: Diurnal stability classification for Mast 1

Three of the main conditions effecting turbine power performance and suitability are:
wind speed, turbulence and wind shear. Turbulence Intensity (TI) can be determined
from anemometer data using the fraction of standard deviation ζU to mean wind speed
U using Equation 3.1 [8].

TI =
U

ζU
(3.1)

Wind shear is defined in terms of a shear exponent α as shown in Equation 3.2 using a
power law for wind speed as a function of height u(z) based on a reference wind speed
from a fixed height u(zref). A larger shear exponent indicates a faster growth of wind
speed with height than a lower shear exponent. This equation is solved for α using
a least squares fit with the three measurement heights. This was completed for every
reading to obtain the instantaneous shear exponent.

u(z)

u(zref)
=

(
z

zref

)α
(3.2)

Chapter 3. Data Acquisition and Analysis 32

Rewriting this equation in a linear form results in:

ln(u(z)) = ln(u(zref)) + α ln

(
z

zref

)
(3.3)

The diurnal conditions are analysed by assuming the central limit theorem allowing
the mean to be taken at each 10 minute bin of the measured data by fitting a normal
distribution at each time step. The results for turbulence intensity and shear exponent
are shown in Figure 3.8. It can be seen that in the extremely unstable condition the tur-
bulence intensity is much higher than in any other condition. The daytime extremely
unstable turbulence exceeds 0.16. This is an important factor as wind turbines are de-
signed within certain turbulence classes and above 0.16 a class-A turbine is required
[8]. Meaning that if stability is neglected and not modelled an unsuitable turbine could
be used onsite. The shear exponent also indicates how in the extremely unstable and
unstable region the shear exponent is very low due to the vertical motion of the air
that limits wind profile growth. While the extremely stable and stable conditions both
show very high wind shear values. Understanding the time spent at these high shear
conditions is important for turbine suitability as high shear leads to uneven turbine
loading. The diurnally averaged results for the shear exponent are shown in Table 3.1.
Figure 3.9 shows the diurnal MOL and illustrates how the diurnal cycle starts stable
during night time and changes to extremely unstable as the temperature starts to rise
in day time before reverting back to stable as the cooler night time starts.

Table 3.1: Wind shear exponent results from Mast 1 - Sector 180°

Extremely Unstable Neutral Stable Extremely
Unstable Stable

Shear Exponent α 0.001 0.059 0.079 0.246 0.680

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

-0.2

0

0.2

0.4

0.6

0.8

Sh
ea

r
E

xp
on

en
t

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

0.05

0.1

0.15

0.2

0.25

T
ur

bu
le

nc
e

In
te

ns
ity

Figure 3.8: Diurnal turbulence intensity and wind shear exponent

Chapter 3. Data Acquisition and Analysis 33

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

-60

-40

-20

0

20

40

60

80

100

120

140

M
on

in
 O

bu
kh

ov
 L

en
gt

h

Figure 3.9: Diurnal Monin-Obukhov Length

Based on the stability prevalence results it is clear that non-neutral stratification is
present on the site and that it influences the conditions to such an extent that using
only the standard neutral CFD model the necessary effects would not be captured on-
site.

Table 3.2 compares the stability distribution obtained using the measured and mesoscale
data. There is a negligible difference, expect for the unstable and neutral conditions.
The difference can be attributed to the fact that these conditions are non-dominating
and statistically larger variations are present during the condition due to their less fre-
quent occurrence. In the two dominating conditions (extremely unstable and stable)
only a 1% difference is present, this shows the mesoscale data are able to capture sta-
bility for the site location.

Table 3.2: Stability classification difference between measured and mesoscale data

Extremely Unstable Unstable Neutral Stable Extremely Stable

Mast [%] 36 6 11 40 7
Mesoscale [%] 37 13 3 39 8
Difference [%] 1 7 8 1 1

3.3 Calculation of Vertical Profiles from Data

Turbulent fluxes of momentum and heat near the surface are of primary concern to
the design of wind farms as they determine the shape of the velocity, temperature
and turbulence profiles. These profiles are calculated using the measured data. Sector
180° (wind direction from 165-195°) is used as the test sector for this study as it is one
of the prevailing wind directions as well as being located directly south of the main
hill. Using this direction as an inlet for the CFD model allows a suitable upwind and
downwind fetch along the flat terrain. All of the results presented further are based on
this sector only.

Chapter 3. Data Acquisition and Analysis 34

First only the data from the relevant sector are extracted. Using the diurnally weighted
average of the data at each height a fixed data point for velocity and potential tempera-
ture is then calculated for each stability condition. The same is done for the MOL. This
process yields the results in Table 3.3.

Table 3.3: Average measured velocity, potential temperature and MOL - Sector 180°

u82 [ms−1] u60 [ms−1] u40 [ms−1] θ80 [K] θ5 [K] MOL [m]

Extremely Unstable 7.00 6.95 6.97 299.6 298.4 -5.8
Unstable 8.25 8.13 7.86 299.4 298.5 -230.0
Neutral 8.10 7.90 7.71 294.1 294.2 N/A
Stable 5.68 5.29 4.87 295.3 296.0 221.8
Extremely Stable 2.65 2.19 1.76 294.1 294.8 26.3

Using Equation 2.18 with the corresponding stability functions in Equation 2.20 to 2.25
and the data from Table 3.3 in a non-linear least squares fit allows the solution of the
frictional velocity u∗ to be obtained such that the velocity profile is the best fit to the
data. z0 is set to the roughness height on-site of 0.030 m. The initial guess for u∗ is
obtained using the profile method from Equations 2.31 along with the top and bottom
height. The results for frictional velocity are shown in Table 3.4 and the velocity pro-
file results can be seen in Figure 3.10. The crosses indicate the averaged data points
to which the profiles are fitted. In the extremely stable and stable condition the ve-
locity profiles are flat, indicating a high increase in windspeed as a function of height.
The opposite is true for the unstable and extremely unstable conditions where there is
hardly any change of velocity with height. It can also be seen that the extremely stable
condition is much more prevalent a lower wind speeds.

The procedure is repeated for potential temperature using Equation 2.19 with the cor-
responding stability functions from Equations 2.20 to 2.25 and the data from Table 3.3.
This time, however, there are two unknowns, potential temperature length scale and
also ground potential temperature. Once again the profile method in Equation 2.32 is
used as initial guess for θ∗. Solving for θ∗ and θ(z0) using a non-linear regression yields
a direct solution since there are 2 unknowns and 2 data points. The resulting profiles
are shown in Figure 3.11. The crosses indicate the averaged data points to which the
profiles are fitted. The profiles are located along the temperature axis in their expected
positions with the unstable conditions occurring during the higher daytime tempera-
tures and stable during the cooler night-time temperatures. The shape of the profiles
also corresponds with Stable ∂θ

∂z
< 0 and unstable ∂θ

∂z
> 0. The neutral condition ap-

pears vertical since during this condition the potential temperature gradient matches
that of the dry adiabatic lapse rate. The results for potential temperature length scale
and ground potential temperature are shown in Table 3.4.

Using Equation 2.33 and the determined frictional velocity and potential temperature
length scale the ground heat flux is calculated. The stable condition is characterized by
negative heat flux due to the heat transfer from the air to the ground, the heated ground
in unstable conditions causes a positive heat flux and the neutral condition has a heat
flux close to zero. The density at the mast location is determined using Equation 2.34
and the diurnally averaged pressure, relative humidity and temperature data at 5 m.
The results for heat flux and density are shown in Table 3.4.

Chapter 3. Data Acquisition and Analysis 35

Table 3.4: Results from Mast 1 data analysis - Sector 180°

Extremely Unstable Neutral Stable Extremely
Unstable Stable

Frictional Velocity u∗ [m s−1] 0.361 0.332 0.308 0.181 0.040
Temperature Length Scale θ∗ [K] -1.126 -0.217 0.000 0.064 0.016
Ground Temperature θ(z0) [K] 316.6 303.6 294.2 294.0 293.8
Density ρ [kg m−3] 1.082 1.082 1.101 1.097 1.103
Heat Flux QH [W m−2] 441.7 78.4 0.00 -12.8 -0.8

0 1 2 3 4 5 6 7 8 9

 u [m s-1]

10

20

30

40

50

60

70

80

90

100

z
[m

]

Extremely Unstable
Unstable
Neutral
Stable
Extremely Stable

Figure 3.10: Measured velocity profiles - Sector 180°

294 295 296 297 298 299 300 301

 [K]

10

20

30

40

50

60

70

80

90

100

z
[m

]

Extremely Unstable
Unstable
Neutral
Stable
Extremely Stable

Figure 3.11: Measured potential temperature profiles - Sector 180°

Chapter 3. Data Acquisition and Analysis 36

The turbulence profiles for k and ε are determined using Equation 2.69 and 2.71 with
the frictional velocity calculated above. The resulting profiles are presented in Fig-
ures 3.12 and 3.13. The turbulent kinetic energy k has a much higher value in the
unstable conditions than that of the stable regions. This is to be expected due to fluc-
tuations present in this state. In the stable regions the fluctuations are suppressed and
yields the vertical profiles with a much lower value than that of the other conditions.
The turbulent dissipation rate ε profiles highlight how the dissipation is increased close
to ground level.

0 1 2 3 4 5 6

 k [m2 s-2]

10

20

30

40

50

60

70

80

90

100

z
[m

]

Extremely Unstable
Unstable
Neutral
Stable
Extremely Stable

Figure 3.12: Turbulent kinetic energy from measurements - Sector 180°

0 0.1 0.2 0.3 0.4 0.5 0.6

 [m2 s-3]

10

20

30

40

50

60

70

80

90

100

z
[m

]

Extremely Unstable
Unstable
Neutral
Stable
Extremely Stable

Figure 3.13: Turbulent dissipation rate from measurements - Sector 180°

Chapter 3. Data Acquisition and Analysis 37

3.4 Summary

From the data analysis it can be concluded that non-neutral stratification is present at
the site location and assuming the standard neutral conditions would not result in a
accurate description of the site conditions. The two most dominating conditions are
the extremely unstable and stable conditions which account for more than 75% of the
stratification onsite. The results from the mesoscale data stability prediction showed
that the mesoscale data are able to capture the various stability conditions.

The analysis of the time series data successfully showed that the method can be used to
determine accurate profiles of velocity and potential temperature and the calculation
of MOL based on a non-linear least squares profile fit.

The site conditions used in the validation study of the complex terrain ABL CFD model
in Chapter 5 is obtained from the analysis performed on the data from Mast 1 with the
results listed in Tables 3.3 and 3.4. Sector 180° is used as the test sector for the val-
idation study as it is one of the prevailing sectors as well as being located upstream
perpendicular to the main hill.

The data analysis procedure is repeated using the data from Mast 2. It is used in the
validation study by comparing the measured velocity profiles from Mast 2 with the
ability of the CFD model to predict the velocity profiles using the data from Mast 1.
The procedure is also applied to a mesoscale data set obtained at the inlet location to
create the inlet vertical profiles needed for the CFD model.

38

Chapter 4

ABL CFD Model

The MOST modifications presented in Section 2.3 are applied to the Fluent 18.1 RANS
model equations by user defined functions (UDF). The numerical implementation of
these functions are presented along with a description of the CFD model. The imple-
mentations are tested by their ability to maintain inlet profiles in an empty computa-
tional domain. Three main cases are tested. A comparison is made of the modified
roughness and wall function approaches. The AM and DTU models are tested using
the MOST Gb formulation. Finally the standard and MOST Gb formulations are both
tested using the AM model.

4.1 Numerical Implementation

User defined functions (UDFs) are additional functions that can be loaded into the
ANSYS Fluent Solver to enhance the standard features. UDFs are defined by various
DEFINE macros provided in Fluent. The UDFs are coded using the C language. They
use additional functions and macros that can access Fluent solver data and perform
numerous tasks [32]. Each UDF is hooked into the Fluent solver prior to performing a
simulation. The following UDFs are used in this study:

• DEFINE_PROFILE Specification of the velocity, temperature, turbulence and
wall roughness profiles at the boundary conditions.

• DEFINE_SOURCE Specification of the source terms in the momentum and tur-
bulence transport equations.

• DEFINE_WALL_FUNCTIONS Implementation of the modified wall function

• DEFINE_INIT Initialization of the solution

• DEFINE_EXECUTE_AT_END Custom function that executes at the end of each
iteration to compute the height above ground.

• Data access macros allow access to stored variables at each cell centroid location.
These include velocity components, turbulence values and gradients.

Three main UDF sets have been developed, one each for neutral, unstable and stable
conditions. They are included in Appendix D. The UDFs are compiled inside Fluent
using Microsoft Visual Studios on Windows and the internal TUI commands on Linux.
Each UDF is controlled by specifying values in the #define section of the code. The same
UDF is used for the extreme and normal cases only with different values in the #define
section.

Chapter 4. ABL CFD Model 39

4.1.1 Momentum source terms

The Coriolis force is included in the source term Sm in Equation 2.39. Equation 2.57 is
applied in both the X and Y momentum equations in Fluent. u and v is respectively
set to fluid x and y velocity obtained at each cell centroid using the appropriate data
access macro. The local latitude of each cell is used by adding the difference between
the latitude at the inlet and the latitude at the cell of interest.

The buoyancy momentum source gi(ρ− ρ0) is included by activating the energy equa-
tion and the Boussinesq Approximation. This is an included feature in Fluent and no
UDF code is needed to control the source. For the MOST Gb formulation the energy
equation is not activated and the buoyancy momentum source is neglected.

4.1.2 Turbulence source terms

For the DTU method the Sk source term in the turbulent kinetic energy transport equa-
tion, Equation 2.43, includes SkMO and GbMO. It is described in the UDF using the
source term in Equation 4.1. GbMO is included since the DTU model does not activate
the energy equation and Fluent therefore neglects Gb from the turbulent kinetic energy
transport equation. SkMO and GbMO are given by Equations 2.75 and 2.81 respectively.
Fluent stores the gradients required to describe ∂U

∂z
in GbMO and it is extracted at each

cell centroid using the appropriate data access macro. The velocity has two horizontal
components (u and v) and ∂U

∂z
is therefore evaluated using the Euclidean norm shown

in Equation 4.2.

Sk = −ρSkMO + µtGbMO (4.1)

∂U

∂z
=

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

(4.2)

The frictional velocity in the Sk source term is not kept constant but instead calculated
by rewriting Equation 2.69 to obtain

u∗ = C1/4
µ k1/2

(
ψε
ψm

)−1/4

(4.3)

The ε source terms included in the turbulence energy dissipation rate transport equa-
tion, Equation 2.44, are based on modifications to the Cε3 constant. Fluent by default
sets Cε3 to zero. In order to reintroduce Cε3 in a manner consistent with Equation 2.44,
Sε takes the following form.

Sε = Cε1
ε

k
Cε3Gb (4.4)

For this study there are three versions of the Sε source term: The DTU method, AM
with the energy equation and AM without the energy equation. The versions are pre-
sented in Equations 4.5-4.7 with Cε3 obtained from Equations 2.79 and 2.73 for the DTU
and AM methods respectively. The Cε1 constant for each method is listed in Table 2.3.

Chapter 4. ABL CFD Model 40

DTU with GbMO:
Sε = Cε1

ε

k
Cε3µtGbMO (4.5)

AM with GbMO:
Sε = Cε1

ε

k
Cε3µt (−GbMO) (4.6)

AM with energy and Gb:
Sε = Cε1

ε

k
Cε3µtGb (4.7)

The AM is model is only valid for −2.3 < z/L < 2.0 and outside this region Sε is set to
0. The source terms are introduced only after 5 iterations so that divergence does not
occur if ill-posed initializations exist that cause extreme gradients.

The height of the boundary layer must be taken into account, above this height the inlet
profiles and sources are set to the fixed value they would attain at the boundary layer
edge. The values used in this study follow typical ABL heights. The stable boundary
layer is known to be more shallow and is set to 600 m AGL, while the vertical motions
in the unstable condition cause an increased boundary layer height and is set to 800 m.
The neutral boundary layer is set as 1000 m AGL. For the empty domain study all of
the heights are, however, set to 1000 m AGL to not introduce any additional gradients
into the solution.

4.1.3 Temperature variations

For the AM model including energy and the standard Gb, the temperature variations
are included by activating the energy equation in Fluent. The potential temperature
profiles obtained using Equation 2.19 are converted to standard temperature inlet pro-
files in Fluent using Equation 2.14. The method is employed only in the empty domain
test and the pressure above ground is calculated using the standard barometric for-
mula based on Fluent’s operating pressure and temperature [6].

p = poper

(
Toper

Toper + Lbz

)−gM
RLb (4.8)

with

poper = Operating pressure = 101325 Pa
Toper = Operating temperature = 288.16 K

M = Molar mass dry dir = 29 g mol−1

g = Gravitational acceleration = −9.81 m s−2

R = Universal gas constant = 8.314 J (K mol)−1

Lb = Standard temperature lapse rate = −0.0065 K m−1

Chapter 4. ABL CFD Model 41

4.1.4 Wall function

Two versions of wall functions are investigated in this study. To implement the modi-
fied roughness approach, the physical roughness height input into Fluent is simply set
equal to the roughness length relation in Equation 2.84.

The modified wall function approach is incorporated using a user-defined wall func-
tion. The wall function is designed according to the ABL wind velocity profile in Equa-
tion 2.83.

In laminar flow

u+ = z+ =
u∗zp
ρ

(4.9)

and in the fully turbulent region, written here to preserve the form of Equation 2.82

u+ =
1

K
ln
(
Ẽz̃+

)
(4.10)

with

Ẽ =
µ

ρz0u∗
, z̃+ =

ρ (zp + z0)u∗
µ

(4.11)

where u+ = Up/u∗ is the dimensionless wall tangential velocity. z̃+ is the non-dimensional
distance and is simply the standard z+ shifted by z0. For Equation 4.11 u∗ is not kept
constant but instead calculated using Equation 4.12 obtained by rewriting the neutral k
profile from Equation 2.67. MOST profiles approach neutral conditions at the wall and
the neutral relation between u∗ and k is used instead of the non-neutral relationship
used in the sources.

u∗ = C1/4
µ k1/2 (4.12)

To incorporate the wall function UDF into fluent the function must compute and re-
turn u+ along with its first and second order derivatives taken with respect to z+ in
both laminar and turbulent regions. Using Equations 4.9 and 4.10 for u+ laminar and
turbulent respectively results in the following Equations.

Laminar Turbulent

u+ = z+ u+ =
1

K
ln
(
Ẽz̃+

)
(4.13)

∂u+

∂z+
= 1

∂u+

∂z+
=

1

Kz̃+
(4.14)

∂2u+

∂z+2 = 0
∂2u+

∂z+2 = − 1

Kz̃+2
(4.15)

Fluent automatically uses u+ and the derivatives to calculate Gk and εp at the wall ad-
jacent cell and thus recovers Equations 2.85-2.87 [32]. With the user-defined wall func-
tion the physical roughness specification in Fluent is not necessary as the roughness
length is input directly into the UDF.

Chapter 4. ABL CFD Model 42

4.1.5 Height above ground

The source terms are function of height above ground and requires accurate informa-
tion on the distance between the cell centroid and the bottom boundary. The z coordi-
nate of the cell cannot be used due to terrain features on the bottom boundary. Fluent
does not have a standard macro to access height above ground. This limitation is over-
come by introducing a user defined scalar (UDS) that is solved inside Fluent. Fluent
allows the specification of user defined scalars (χ) that are solved via

∂ρχj
∂t

+
∂

∂xi

(
ρuiχj −Dj

∂χj
∂xi

)
= Sχj j = 1, .., N (4.16)

whereDj and Sχj are the diffusion coefficients and source terms for each of theN scalar
equation added [17]. The approach to calculate the wall distance involves solving an
additional UDS using a diffusion only transport equation with a uniform unity source
term through the entire domain [33]. The UDS value (χ) is set to zero on walls to which
the distance is to be calculated, in this case the ground and the normal flux ∂χ

∂n
is set

to zero for all other. The UDS is then used to reconstruct the wall distance d to the
selected boundary using Equation 4.17[33] where ∇ represents the gradient operation.
The UDS is incorporated in an ’Execute at end’ UDF that calculated at the end of an
iteration, for this reason the source terms are not activated at the first iteration as the
height above ground would not yet have been calculated.

d = −|∇χ| =
√

∇χ ·∇χ+ 2χ (4.17)

4.1.6 Initialization

The solution is initialized using the velocity and turbulence profiles from Equations 2.18,
2.69 and 2.71. This ensures that the gradients used to evaluate the first iteration do not
cause divergence if the standard initialization was ill-posed and also helps speed up
the solution procedure.

4.2 Model Settings

The general setup of the ABL CFD model is described here and is identically employed
in the empty domain and wind farm simulation performed in Chapter 5.

The inflow is along the y axis, the x axis is horizontally perpendicular to the inlet and
z is the height above ground. The inlet boundary is a x-z plane located upstream of the
computational domain. The inlet profiles are set via the ’define profile’ UDF based on
the velocity and turbulence profiles and are imposed normal to the inlet boundary. The
top boundary is a x-y plane and is also treated as an inlet using the same profiles as
the inlet. The velocity is described in the y direction only. The sides of the domain are
y-z planes and are set to symmetry boundary conditions. The outlet boundary is a x-z
plane located downstream of the computational domain and uses an outflow condition
that allows extrapolation of the relevant flow variables from inside the domain onto the
outlet boundary. The bottom of the domain is set to a zero-slip wall.

Chapter 4. ABL CFD Model 43

The standard limit of 105 for turbulent viscosity ratio inside Fluent is based on common
industrial internal flows and for the ABL simulation it is increased to 1010.The solution
algorithm adopted in Fluent uses the coupled method for pressure-velocity coupling.
The Presto (PREssure STaggering Option) is used for pressure spatial discretization. A
least squares cell based method is used for the gradients and all other properties adopt
a second-order upwind scheme based on a multi-linear reconstruction approach. All
simulations are performed under steady-state conditions.

4.2.1 Fluid properties

The fluid used is air with the properties listed in Table 4.1. These settings are retained
throughout the study except in Chapter 5 where the site specific air density is used.

Table 4.1: Air Properties [6]

Density ρ [kg m−3] 1.225
Specific Heat Cp [J (kg K)−1] 1006.43
Thermal Expansion β [K−1] 0.0032
Viscosity µ [kg (m s)−1] 1.7894 ×10-5

4.3 Empty Domain Model

The first step towards the validation of the proposed approach and its numerical im-
plementation is to demonstrate that the methods produce sustainable ABL profiles of
velocity and turbulence. The first objective is thus to prove horizontal homogeneity of
the fully developed inlet profiles in an empty domain. A schematic of the computa-
tional domain used for this study is shown in Figure 4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

In
le

t
u

k
ǫ

O
ut

le
t

O
ut

fl
ow1000 m

65 cells
0.03 m at ground

Top - u k ǫ

Bottom - No slip wall

10100 m
550 cells of 20 m

[Sides - Symmetry]
 [300 m - 15 cells of 20 m]

xz
y

Figure 4.1: Computational domain - Empty domain
Square brackets indicate properties along the x dimension

The domain is rectangular cuboid with dimensions of 300 m, 10100 m and 1000 m in
x, y and z respectively. The domain is discretized with a uniform grid in the x and y
directions of 20 m. In the z direction the ground cell height equals 0.030 m and expands
using geometric growth ratio of 1.14 with 65 cells. The complete mesh is comprised of
492375 cells. Figures 4.2 and 4.3 respectively show the cells close to ground and a full
overview of the mesh. Typical upstream inlet locations in ABL CFD models are around
2000-5000 m from the main features and using this sized domain allows the model
results to be checked at distances up to 10000 m. Only the stability-based source terms
are included in the horizontal homogeneity tests and Coriolis force is neglected.

Chapter 4. ABL CFD Model 44

Figure 4.2: Close up of z refinement - Empty domain

Figure 4.3: Mesh overview - Empty domain

Chapter 4. ABL CFD Model 45

4.3.1 Wall function test results

Three roughness length values were used to test the modified roughness and wall
function approach. These are listed in Table 4.2 along with the modified roughness
method’s corresponding physical roughness height using Equation 2.84. For the mod-
ified wall function method the roughness length is directly used in the user-defined
wall function. A normal, high and low roughness were tested under neutral condi-
tions using a frictional velocity u∗ of 0.612 m s−1. The inlet profiles are created using
the neutral profile Equations 2.6, 2.67 and 2.68 for velocity and turbulence.

Table 4.2: Roughness lengths - Wall function test

Roughness length z0 [m] Physical roughness height Ks [m]

Normal 0.002 0.0392
High 0.5 9.793
Low 0.0002 0.0039

The resulting profiles at 1000 m, 5000 m and 10000 m downstream from the inlet for
velocity, turbulent kinetic energy and dissipation are shown graphically in Figures 4.4,
4.5 and 4.6, respectively. In each figure the right-side plot is a zoomed-in view of the left
plot. Table 4.3 gives the absolute percentage error from the inlet profile calculated at
96.8 m AGL. This height corresponds closely with the typical wind turbine hub heights
used on commercial wind farms.

From the results it can be seen that for the normal and low roughness both methods
perform very well with negligible errors even up to 10000 m. However, for the high
roughness the modified approach breaks down completely with errors in excess of
10 % for turbulent kinetic energy and dissipation at 5000 m while the wall function
method is less than 1 % from the inlet values. For velocity the modified roughness
error is approximately double that of the modified wall function method.

The reason for the breakdown of the modified roughness approach in high roughness
is due to the large physical roughness height that it requires which is larger than the
first cell height. As described in Section 2.3.6 the first cell height should be greater
than the roughness height to insure numerical fidelity. This breakdown in fidelity is
evident in the k and ε high roughness profiles in Figures 4.5 and 4.6. It can be seen
that close to ground level the modified roughness method’s values are completely in-
correct, either greatly over or under predicted. In the case of k the profile switches
from large over to under prediction at 5000 m compared to 10000 m, this emphasizes
the inability of the Fluent solver and mesh to deal with problem setup. The normal
roughness length used equates to a physical roughness height in slight excess of the
first cell height (Ks = 0.0392 > 0.030) however, the Fluent solver is able to deal with
this inconsistency.

It can be concluded that if roughness lengths are present that would cause the physical
roughness height to be sufficiently in excess of the first cell height the modified wall
function approach should be used rather than the modified roughness approach.

Chapter 4. ABL CFD Model 46

Table 4.3: Percentage error at 96.8 m AGL - Wall function test

Velocity u [m s−1] 1000 m 5000 m 10000 m

z0 Normal - Mod Roughness 0.02 0.27 0.43
z0 Normal - Wall Function 0.00 0.32 0.65
z0 High - Mod Roughness 0.19 0.92 0.24
z0 High - Wall Function 0.13 0.98 1.11
z0 Low - Mod Roughness 0.01 0.20 0.36
z0 Low - Wall Function 0.00 0.20 0.45

k [m2 s−2] 1000 m 5000 m 10000 m
z0 Normal - Mod Roughness 0.05 0.44 0.10
z0 Normal - Wall Function 0.08 0.73 2.44
z0 High - Mod Roughness 2.04 10.45 2.63
z0 High - Wall Function 0.07 0.19 3.68
z0 Low - Mod Roughness 0.03 0.11 0.15
z0 Low - Wall Function 0.05 0.41 1.61

ε [m2 s−3] 1000 m 5000 m 10000 m
z0 Normal - Mod Roughness 0.48 1.65 2.12
z0 Normal - Wall Function 0.38 2.24 4.29
z0 High - Mod Roughness 4.74 19.56 13.92
z0 High - Wall Function 0.41 0.99 1.21
z0 Low - Mod Roughness 0.44 0.62 0.76
z0 Low - Wall Function 0.41 1.36 3.25

Chapter 4. ABL CFD Model 47

0 5 10 15 20 25 30 35

 u [m s-1]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

0 5 10 15 20 25

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

0 5 10 15 20 25 30 35

 u [m s-1]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

0 5 10 15 20 25

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

0 5 10 15 20 25 30 35

 u [m s-1]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

0 5 10 15 20 25

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.4: Wall function test results - Velocity

Chapter 4. ABL CFD Model 48

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

 k [m2 s-2]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

2 2.1 2.2 2.3 2.4 2.5 2.6

 k [m2 s-2]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

2 2.1 2.2 2.3 2.4 2.5 2.6

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

 k [m2 s-2]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

1.7 1.8 1.9 2 2.1 2.2 2.3

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.5: Wall function test results - k

Chapter 4. ABL CFD Model 49

10-3 10-2 10-1 100

 ǫ [m2 s-3]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

10-2 10-1 100

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

10-3 10-2 10-1 100 101

 ǫ [m2 s-3]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

10-2 10-1 100

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

10-3 10-2 10-1 100

 ǫ [m2 s-3]

0

100

200

300

400

500

 z
 [

m
]

Inlet

Z
0
 Normal

Z
0
 High

Z
0
 Low

Modified Z
0

Z
0
 Normal

Z
0
 High

Z
0
 Low

Wall Function
Z

0
 Normal

Z
0
 High

Z
0
 Low

10-2 10-1 100

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.6: Wall function test results - ε

Chapter 4. ABL CFD Model 50

4.3.2 Stability model test results

The AM and DTU MOST stability models were tested using the four non-neutral stabil-
ity conditions, the corresponding properties for MOL and frictional velocity are listed
in Table 4.4. The AM and DTU models are introduced using the procedure described in
Section 4.1.2. The results shown here are based on the GbMO implementation and thus
the energy equation is not included. A roughness length of 0.002 m is used. Based on
the results of the wall function test and the fact that MOST profiles approach neutral
conditions at the wall the modified wall function method is used for this section and
the remainder of this study. The inlet profiles are created using the non-neutral profile
Equations 2.18, 2.69 and 2.71 for velocity and turbulence.

Table 4.4: Model parameters - Stability model test

MOL L [m] Frictional Velocity u∗ [m s−1]

Extremely Unstable -20.0 0.642
Unstable -200.0 0.642
Stable 200.0 0.424
Extremely Stable 20.0 0.424

The resulting profiles at 1000 m, 5000 m and 10000 m downstream from the inlet for
velocity, turbulent kinetic energy and dissipation are shown graphically in Figures 4.7,
4.8 and 4.9, respectively. In each figure the right-side plot is a zoomed-in view of the
left plot. Table 4.5 gives the absolute percentage error from the inlet profile calculated
at 96.8 m AGL.

The results show that for the velocity profiles the error induced at 5000 m is negligibly
small (< 1%). At 10000 m, however, there are increased errors for the two extreme
conditions. For k and ε the same trend is seen: Analysing the DTU k error at 5000 m in
unstable and stable conditions the error is 7.42% and 14.87% respectively. However, in
the two extreme cases this error is increased in excess of 38%. The AM method shows
close to double the percentage errors than the DTU method in stable and unstable con-
ditions.

Comparing the turbulence values at 1000 m it is noted that both models have problems
with the two extreme cases. The AM model shows difficulties in the extremely stable
case as it has a 29.19% error. This can attributed to the fact that this model is only valid
for z/L < 2.0 and using a MOL of 20 m this source is only valid up to 40 m AGL.
The 10000 m velocity profiles in Figure 4.7c highlights the issues with both models in
the extreme cases: In the extremely stable condition the AM velocity is artificially in-
creasing close to ground and in the extremely unstable conditions the DTU profile has
started to decelerate.

Graphically it can be seen that in extremely unstable conditions the profiles from both
models lack the energy to sustain the high turbulence values and the profiles start to
trail back compared to the inlet. In the extremely stable and stable case the AM model
overshoots the k − ε profiles. Both methods suffer breakdowns at 10000 m.

Chapter 4. ABL CFD Model 51

From the results it can be concluded care should be taken in the extreme cases, the
models are presented in literature under standard non-neutral conditions (Omitting
the extreme conditions) and their use in these cases are not well documented. The
DTU model shows less error due the fact that the model is in balance for all values of
z/L, including both extreme cases.

Under standard non-neutral conditions both models perform well with the DTU model
showing less error. However, both models have trouble sustaining profiles over very
large distances. ABL CFD models are known to be problematic in flat terrain [20]. For
this reason care should be taken to not use excessively long upstream inlet distances.
The low percentage error results at 1000 m and 5000 m indicates the models are suit-
able up to this range.

Using these results it can finally be concluded that the models can account for atmo-
spheric stability and that horizontal homogeneity of the profiles can be obtained. How-
ever care should be taken in the two situations listed above.

Table 4.5: Percentage error at 96.8 m AGL - Stability model test

Velocity u [m s−1] 1000 m 5000 m 10000 m

Extremely Unstable - DTU 0.03 0.48 2.83
Extremely Unstable - AM 0.12 0.58 0.30
Unstable - DTU 0.02 0.08 0.16
Unstable - AM 0.06 0.06 0.42
Stable - DTU 0.11 0.01 0.07
Stable - AM 0.14 0.01 0.98
Extremely Stable - DTU 0.30 0.19 0.25
Extremely Stable - AM 0.33 0.95 3.39

k [m2 s−2] 1000 m 5000 m 10000 m

Extremely Unstable - DTU 2.50 47.85 100.00
Extremely Unstable - AM 0.46 35.50 72.26
Unstable - DTU 0.47 7.42 27.78
Unstable - AM 1.91 12.76 34.16
Stable - DTU 1.42 14.87 26.97
Stable - AM 10.94 38.92 60.10
Extremely Stable - DTU 6.22 38.75 64.22
Extremely Stable - AM 29.19 159.21 520.18

ε [m2 s−3] 1000 m 5000 m 10000 m

Extremely Unstable - DTU 4.37 35.56 96.74
Extremely Unstable - AM 10.73 24.29 67.69
Unstable - DTU 2.02 2.37 17.05
Unstable - AM 1.76 6.22 21.88
Stable - DTU 1.63 10.38 20.63
Stable - AM 15.11 45.09 57.58
Extremely Stable - DTU 2.27 35.96 62.76
Extremely Stable - AM 41.20 192.82 591.95

Chapter 4. ABL CFD Model 52

5 10 15 20 25 30 35 40

 u [m s-1]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

5 10 15 20 25 30

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

5 10 15 20 25 30 35 40

 u [m s-1]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

5 10 15 20 25 30

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

0 5 10 15 20 25 30 35 40

 u [m s-1]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

0 5 10 15 20 25 30

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.7: Stability model test results - Velocity

Chapter 4. ABL CFD Model 53

0 5 10 15 20 25

 k [m2 s-2]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

0 1 2 3 4 5 6 7 8 9 10

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

0 5 10 15 20 25

 k [m2 s-2]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

0 1 2 3 4 5 6 7 8 9 10

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

0 5 10 15 20 25

 k [m2 s-2]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

0 1 2 3 4 5 6 7 8 9 10

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.8: Stability model test results - k

Chapter 4. ABL CFD Model 54

10-2 10-1 100

 ǫ [m2 s-3]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

10-2 10-1 100

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

10-2 10-1 100

 ǫ [m2 s-3]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

10-2 10-1 100

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

10-2 10-1 100 101

 ǫ [m2 s-3]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

DTU
Extremely Unstable
Unstable
Stable
Extremely Stable

AM
Extremely Unstable
Unstable
Stable
Extremely Stable

10-2 10-1 100 101

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.9: Stability model test results - ε

Chapter 4. ABL CFD Model 55

4.3.3 Buoyancy term test results

The standard Gb and MOST GbMO were tested using the four non-neutral stability con-
ditions, the corresponding properties for MOL, frictional velocity, ground temperature
and potential temperature scale are listed in Table 4.6. The buoyancy term is tested
with the AM model and introduced using the procedure described in Sections 4.1.2
and 4.1.3. The energy equation and the Boussinesq buoyancy approximation are used
when evaluating the standard buoyancy term. A roughness length of 0.002 m is used
with the modified wall-function method. The inlet profiles are created using the non-
neutral profile Equations 2.18, 2.19, 2.69 and 2.71 for velocity, potential temperature
and turbulence.

Table 4.6: Model parameters - Buoyancy term test

MOL L [m] Frictional Ground Temp.
Velocity u∗ [m s−1] Temp. T0 [k] Scale θ∗ [k]

Extremely Unstable -20.0 0.642 303.0 -0.108
Unstable -200.0 0.642 303.0 -0.108
Stable 200.0 0.424 288.0 0.0232
Extremely Stable 20.0 0.424 288.0 0.0232

The resulting profiles at 1000 m, 5000 m and 10000 m downstream from the inlet for ve-
locity, turbulent kinetic energy and dissipation are shown graphically in Figures 4.10,
4.11 and 4.12, respectively. In each figure the right-side plot is a zoomed-in view of the
left plot. Table 4.7 gives the absolute percentage error from the inlet profile calculated
at 96.8 m AGL.

From the results it is clear that under the extreme conditions the standard Gb formula-
tion immediately breaks down with errors in excess of 100% for the turbulence quanti-
ties at 1000 m. This can be attributed to the fact that in these cases large heat fluxes and
temperature gradients are present and obtaining an accurate steady-state solution is
very difficult [7]. The values presented here are thus of little value and a transient sim-
ulation will be needed to deal with the unsteady convection physics that are at work.
Under the standard not non-neutral conditions the effects are less intense however still
present with the standard Gb formulation subject to excessively large errors.

Graphically the issue can be seen in the velocity plots from Figure 4.10c where in the
extremely stable case the velocity for Gb completely collapses and predicts overly large
velocities. In the extremely unstable case Figure 4.11c the turbulent kinetic energy is
also greatly over-predicted.

Using the MOST GbMO formulation the stratification effects on the momentum equa-
tion is not directly present due the energy equation being neglected, however the low
errors in the velocity profile results shows that the effects are negligible. This can be
attributed to the fact that the turbulence source terms augment/suppress the turbu-
lent quantities in the k − ε transport equations. Thus these effects are included in the
turbulent eddy viscosity which is used in RANS momentum equation as explained in
Sections 2.2.1 and 2.2.2.

Chapter 4. ABL CFD Model 56

It can be concluded that the MOST GbMO formulation produces more accurate results
and for ABL CFD models the standard Gb formulation along with the energy equation
and the Boussinesq buoyancy approximation is incompatible with steady-state simu-
lations. Further research is therefore required into transient ABL CFD models.

Table 4.7: Percentage error at 96.8 m AGL - Buoyancy term test

Velocity u [m s−1] 1000 m 5000 m 10000 m

Extremely Unstable - Gb 1.15 0.39 0.48
Extremely Unstable - GbMO 0.12 0.58 0.30
Unstable - Gb 3.08 0.37 0.04
Unstable - GbMO 0.06 0.06 0.42
Stable - Gb 0.22 0.85 1.00
Stable - GbMO 0.14 0.01 0.98
Extremely Stable - Gb 0.73 23.44 85.43
Extremely Stable - GbMO 0.33 0.95 3.39

k [m2 s−2] 1000 m 5000 m 10000 m

Extremely Unstable - Gb 487.21 224.20 219.90
Extremely Unstable - GbMO 0.46 35.50 72.26
Unstable - Gb 973.65 292.50 278.38
Unstable - GbMO 1.91 12.76 34.16
Stable - Gb 20.25 91.36 124.90
Stable - GbMO 10.94 38.92 60.10
Extremely Stable - Gb 245.81 16015.37 47797.47
Extremely Stable - GbMO 29.19 159.21 520.18

ε [m2 s−3] 1000 m 5000 m 10000 m

Extremely Unstable - Gb 274.07 132.48 127.05
Extremely Unstable - GbMO 10.73 24.29 67.69
Unstable - Gb 935.17 209.71 187.00
Unstable - GbMO 1.76 6.22 21.88
Stable - Gb 28.05 93.15 100.35
Stable - GbMO 15.11 45.09 57.58
Extremely Stable - Gb 117.04 6746.45 22905.36
Extremely Stable - GbMO 41.20 192.82 591.95

Chapter 4. ABL CFD Model 57

5 10 15 20 25 30 35 40

 u [m s-1]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

5 10 15 20 25 30 35 40

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

5 10 15 20 25 30 35 40

 u [m s-1]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

5 10 15 20 25 30 35 40

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

5 10 15 20 25 30 35 40 45 50 55

 u [m s-1]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

5 10 15 20 25 30 35 40

 u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.10: Buoyancy term results - Velocity

Chapter 4. ABL CFD Model 58

0 5 10 15 20 25 30 35

 k [m2 s-2]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

0 5 10 15 20 25

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

0 5 10 15 20 25 30 35

 k [m2 s-2]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

0 5 10 15 20 25

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

0 5 10 15 20 25 30 35

 k [m2 s-2]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

0 5 10 15 20 25

 k [m2 s-2]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.11: Buoyancy term results - k

Chapter 4. ABL CFD Model 59

10-2 10-1 100 101

 ǫ [m2 s-3]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

10-2 10-1 100 101

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(a) 1000 m

10-2 10-1 100 101

 ǫ [m2 s-3]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

10-2 10-1 100 101

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100
 z

 [
m

]

(b) 5000 m

10-2 10-1 100 101

 ǫ [m2 s-3]

0

50

100

150

200

250

300

350

400

450

500

 z
 [

m
]

Inlet
Extremely Unstable
Unstable
Stable
Extremely Stable

G
b

Extremely Unstable
Unstable
Stable
Extremely Stable

G
bMO

Extremely Unstable
Unstable
Stable
Extremely Stable

10-2 10-1 100 101

 ǫ [m2 s-3]

0

10

20

30

40

50

60

70

80

90

100

 z
 [

m
]

(c) 10000 m

Figure 4.12: Buoyancy term results - ε

Chapter 4. ABL CFD Model 60

4.4 Summary

From the results it can be concluded that the inclusion of the required inlet profiles,
sources and wall functions using UDFs are implemented correctly. They are identi-
cally implemented in the complex terrain CFD model in Chapter 5.

The results of the wall-function test showed that both methods can be accuratly used
for neutral profiles. However, the modified roughness approach breaks down under
high roughness. For this reason the modified wall-function method is preferred.

The results from the stability model test highlighted that both models have issues
with the extreme conditions as well as maintaining profiles over distances greater than
5000 m. For this reason care should be taken for the extreme conditions and upstream
inlet distances should be minimized. The DTU model also proved to be more accurate
in maintaining the profiles, however the results prove non-definitive and both models
are evaluated in the complex terrain CFD model to follow.

Finally, the buoyancy term test highlighted the issues of including thermal effects in
steady CFD simulations and the MOST GbMO formulation is more accurately able to
account for the stratification effects in the turbulence equations. The MOST formula-
tion also showed the ability to accurately include the stratification effects on the ve-
locity profiles without the need for additional buoyant momentum sources. For these
reasons theGbMO formulation is preferred and used in the complex terrain CFD model.

61

Chapter 5

CFD Simulation of Complex terrain

The developed ABL CFD model from Chapter 4 along with the stability and site data
from Chapter 3 are used to test and validate the model in a complex terrain. The model
is validated by using two onsite masts to cross-predict the velocity profiles via transfer
functions developed using the CFD results. Based on the conclusions from Chapter 4
the model uses the modified wall-function approach and the MOST buoyancy term
formulation. The AM and DTU models are both evaluated.

5.1 Wind Farm Computational Domain

The complex terrain CFD model uses the same setup, settings and coordinate system as
the empty domain model as described in Section 4.2. A schematic of the computational
domain is shown in Figure 5.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

In
le

t
u

k
ǫ

O
ut

le
t

O
ut

fl
ow6000 m

80 cells
0.1 m at ground

Top - u k ǫ

Bottom - No slip wall

24900 m
20 m cell size in center

[Sides - Symmetry]
[35300 m]

[20 m cell size in center]

y
z x

Figure 5.1: Computational Domain - Complex terrain
Square brackets indicate properties along the x dimension

The domain is rectangular cuboid with dimensions of 35300 m, 24900 m and 6000 m in
x, y and z respectively. Using the wind farm contour data the domain is discretized via
a block-structured double-O grid using the Ansys ICEM CFD mesher. The mesh block
structure is shown in Figure 5.2. In the inner O grid the cell size is fixed to 20 m. This
covers the entire hill feature plus a 500 m boundary. The next block is located 3000 m
from this boundary. In this block the cells expand in size from 20 m to a maximum of
50 m using a geometric growth ratio of 1.05. In the outer O grid the cells expand in size
from 50 m to a maximum of 100 m using a geometric growth ratio of 1.1. The cells at
the edges of the domain thus have a size of 100 m. The z-direction is discretized using
80 vertical cells with a ground cell height of 0.1 m and a geometric growth ratio of 1.1.
The complete mesh comprises of 24966291 cells. The meshing procedure and details
are in accordance to generally accepted industry standards and are known to produce
reliable and mesh independent results.

Chapter 5. CFD Simulation of Complex terrain 62

Figure 5.2: Mesh block structure used to discretized wind farm terrain model

The wind farm terrain model and the mesh on the South and West faces are shown
in Figure 5.3. The pink and black spheres respectively shows the locations of Mast 1
and 2. It can be noted that an artificial smoothing is applied around the terrain model.
This is used so that the inlet profiles can be applied on a completely flat terrain and
removes the possibility of having terrain features present along any of the boundaries
causing problems with the symmetry and outflow boundary conditions. The terrain
is smoothed to the mean normal height ASL at the edge of the terrain model. The
smoothed section thus serves as the upstream inlet and has a length of 2500 m. The
stability models demonstrated the ability of maintaining profiles up to 5000 m in Sec-
tion 4.3.2.

Figure 5.3: Wind farm terrain model coloured using height above sea level and indicating mesh density
on South and West faces

Chapter 5. CFD Simulation of Complex terrain 63

Figure 5.4: Top view - Wind farm mesh

Figure 5.5: Easterly view - Wind farm mesh

The effect of the block-structured refinement is illustrated in Figure 5.4. The three dis-
tinct O grid regions can be seen with the 20 m cells shown in the dark central block.
In Figure 5.5 the z refinement can be seen from the Easterly view that highlights the
growth in cell size from the bottom to the top of the domain and the central refined
grid.

The mesh’s ability to accurately capture the small ravines and undulating terrain around
the main hill is shown by the ground level mesh in Figures 5.6 and 5.7. Both masts are
highlighted by the coloured spheres. It can be noted that at both mast locations the
hill is not perfectly sinusoidal or smooth but instead there are ravines leading up the
hill. These varying features cause differences in the measured profiles as well as the
CFD results at the mast locations. These differences cause changes in the wind profiles
experienced at the mast locations. Using these differences between Mast 1 and Mast 2
it is possible to construct a transfer function based on the CFD results that allows the
wind profile prediction at Mast 2 using the measured data from Mast 1.

Chapter 5. CFD Simulation of Complex terrain 64

Figure 5.6: Terrain mesh at Mast 1 - Coloured using height above sea level

Figure 5.7: Terrain mesh at Mast 2 - Coloured using height above sea level

Chapter 5. CFD Simulation of Complex terrain 65

5.2 Windfarm Model Setup

The solver settings as well as the procedure for setting up the required inlet profiles,
source terms and wall function using UDFs are repeated from Section 4.2. The x and
y momentum source terms for the Coriolis force are now included because of the in-
creased size of the domain and the need to capture all of the onsite physical processes.
The inlet profiles are obtained by applying the data analysis procedure described in
Chapter 3 to a WRF mesoscale data set obtained at the inlet location. The site MOL and
site air density are obtained from the measured data at Mast 1. The main model-input
data are given in Table 5.1. A linear interpolation function is employed to determine
the MOL used in the source terms. The function interpolates from the MOL obtained
using the WRF data at the inlet location to the MOL calculated from the measured
data at Mast 1. This allows the inlet profiles to be maintained along the upwind fetch
by their accompanying MOL and at the hill the actual measured onsite MOL is used.
The simulations are considered converged when the residuals level out, resulting in a
decrease of at least five orders of magnitude.

Table 5.1: Windfarm CFD model input data

Inlet - Mesoscale Mast 1 - Measured

MOL L [m] Frictional MOL L [m] Air density
Velocity u∗ [m s−1] ρ [kg m−3]

Extremely Unstable -9.0 0.373 -5.8 1.082
Unstable -254.6 0.374 -231.0 1.082
Neutral N/A 0.144 N/A 1.101
Stable 124.7 0.141 221.8 1.097
Extremely Stable 21.4 0.065 26.3 1.103

5.3 Mast Velocity Cross-Prediction Results

Using the CFD results three transfer functions are created from the velocity magnitude
at 40 m, 60 m and 82 m AGL at both mast locations. These heights correspond to the
measurement heights of the masts. The velocity transfer function Γ is defined as

Γ =
uM2 CFD

uM1 CFD
(5.1)

where M1 and M2 denote Mast 1 and 2. Using the transfer function it is the possible to
obtain the predicted velocity at Mast 2 using Equation 5.2.

uM2 Predict = Γ uM1 CFD (5.2)

The percentage cross-prediction error is then calculated using Equation 5.3

Error = 100× |uM2 Measured − uM2 Predict|
uM2 Measured

(5.3)

Chapter 5. CFD Simulation of Complex terrain 66

The prediction results at 82 m AGL for both models are given in Table 5.2. The mea-
sured vs. predicted velocity profiles are shown in Figure 5.8. The crosses indicate the
mean measured velocity from Mast 2 and the solid line is the velocity profile fit for
these points. The circles and triangles are the predicted velocities using Equation 5.2.

Table 5.2: Mast 2 cross prediction results at 82 m

Extremely Unstable Neutral Stable Extremely
Unstable Stable

uM2 Measured [m s−1] 7.33 7.69 6.85 5.88 2.78
uM2 Predict DTU [m s−1] 7.34 8.92 8.80 1 5.32 2.53
uM2 Predict AM [m s−1] 7.28 9.09 5.49 2.24
Prediction Error DTU [%] 0.08 15.97 28.50 2 9.49 9.10
Prediction Error AM [%] 0.74 18.17 6.74 19.36

1 Using the neutral model - uM2 Predict Neutral [m s−1]
2 Using the neutral model - Error Neutral [%]

The cross-prediction results show that both models were able to accurately capture the
two main stability conditions onsite. The model results give an error of less than 1%
in the extremely unstable condition, as discussed in Chapter 3 this condition is present
on-site 36 % of the time. The most dominating condition is the stable condition which
is present 40% of the time. In this condition both models have errors of less than 10%.
In the extremely stable condition at 82 m the DTU model outperformed the AM model
by 10%. The profiles in Figure 5.8 illustrate this as one of the shortcomings of the
AM model. As discussed previously in stable conditions this model is only valid for
z/L < 2 and using the mast MOL of 21.4 m this model loses validity for heights greater
than 42.8 m. This can be seen in the profiles by noting the small error at 40 m extremely
stable compared to the increased error it exhibits at 82 m.

0 1 2 3 4 5 6 7 8 9

u [m s-1]

0

10

20

30

40

50

60

70

80

90

100

z
[m

]

Measured
Extremely Stable
Stable
Neutral
Extremely Unstable
Unstable

DTU
Extremely Stable
Stable
DTU
Extremely Unstable
Unstable

AM
Extremely Stable
Stable
Extremely Unstable
Unstable

Figure 5.8: Predicted vs. measured wind speed profiles at Mast 2
The crosses indicate the mean measured velocity

Chapter 5. CFD Simulation of Complex terrain 67

Marginally increased errors are present for both models in the unstable condition. The
worst performing model is the neutral model with a 28.5 % error. This high error can
be attributed to the increased variance in the neutral data. The neutral condition is
only present for 11% of the measurement campaign and by analysing the diurnal sta-
bility classification in Figure 3.7 the neutral condition does not have a fixed period in
which it occurs, instead occurring at any time of day. There is thus higher variance in
the neutral data which causes the increased error.

In order to understand the total error a frequency weighted error is calculated. This
error is weighted according to the stability frequency classification and is determined
as

Total Error =

∑5
j=1 frequencyj × Errorj∑5

j=1 frequencyj
(5.4)

where j indicates the five stability classes, the error is obtained from Table 5.2 and the
frequency is the stability frequency classification presented in Figure 3.5. The total er-
ror is calculated as 8.55% for the DTU model and 8.54% for the AM model. There is
thus negligible difference between these two models in the total cross prediction error
and both models have a error of less then 10% in cross prediction.

From the profiles in Figure 5.8 it can be seen that both models were able to accurately
predict the shape of the wind profiles. In stable the high shear exponent causes the
more flattened profiles and in unstable the profiles are closer to upright as there is very
little change in velocity with height. The only condition that has an error in this regard
is the extremely unstable condition in which both models have problems predicting
the complete vertical profile, instead over-predicting the velocity at 42 m.

5.4 Stability Lifting/Blocking Effects

As described in Section 2.1 one the effects of non-neutral stratification is that of lifting
and blocking the air flow. In stable conditions the wind profiles tend to flow around
rather than over obstacles as it would in the neutral conditions and in unstable condi-
tions the profiles keep rising after the obstacle.

This effect is present in the CFD results. In Figure 5.9 the neutral velocity streamlines
over a specific hill section in the terrain are shown. The hill has a slight opening toward
the Eastern part. The streamlines are released directly in front and perpendicular to the
hill. In the neutral condition the streamlines flow over the hill completely straight and
smooth with no turbulent mixing behind the hill.

In Figures 5.10 to 5.13 the streamlines released from the same location in unstable and
stable conditions are shown for the DTU and AM models. Both models exhibit the
same behaviour and were accurately able to capture the lifting and blocking effects.

Chapter 5. CFD Simulation of Complex terrain 68

Figure 5.9: Velocity streamlines over terrain feature under neutral stratification

In stable conditions, Figures 5.10 and 5.12, the streamlines flow around the hill towards
the opening instead of over. This effect causes the high wind shear values experienced
in stable conditions. The streamlines close to ground flow around instead of up the
hill. A slow moving parcel of air is thus experienced close to ground on top of the hill,
the streamlines higher above ground do flow over the hill and where these two meet
there is an increased change of velocity with height which leads to the high wind shear
values.

In unstable conditions, Figures 5.11 and 5.13, the streamlines go over the hill and travel
onwards after the hill instead of flowing smoothly down. This causes the turbulent
mixing zone that is present behind the hill, this zone was captured by both models.
This increased turbulence is the reason why in unstable conditions the turbulence in-
tensity is increased from the neutral and stable conditions.

Figure 5.10: Effect of atmospheric stability on velocity streamlines - DTU model Stable

Chapter 5. CFD Simulation of Complex terrain 69

Figure 5.11: Effect of atmospheric stability on velocity streamlines - DTU model Unstable

Figure 5.12: Effect of atmospheric stability on velocity streamlines - AM model Stable

Chapter 5. CFD Simulation of Complex terrain 70

Figure 5.13: Effect of atmospheric stability on velocity streamlines - AM model Unstable

5.5 Summary

Based on the results presented in this chapter it can be concluded that both models
were able to successfully model the onsite effects of atmospheric stability. Applying
the developed data analysis procedure on a WRF mesoscale data point at the inlet and
the primary mast at the centre of the site yielded accurate inputs to the CFD model.
The cross-prediction study successfully validated the ABL model with low errors ex-
perienced in all non-neutral conditions. A total error of 8.5% was obtained for both
models. The greatest errors occurred for conditions which are non-dominant and it
can be concluded that care should be taken when analysing these conditions due the
naturally increased variance in non-dominating conditions. The lifting and blocking
effects known to be caused by stratification were also found to be in accordance to
those described in literature.

The difference in errors from both models are negligible and not one clear model per-
formed better than the other. The only major difference in cross-prediction error is in
the extremely stable condition, however, as this condition is not one of the dominating
conditions using it to decide on one model or the other is premature. Further cross pre-
diction studies on wind farm locations with other conditions and terrains are therefore
required to accurately comment on which model is best. Both models are successfully
validated for modelling atmospheric stability. However, care should be taken in con-
ditions where the AM model loses validity, as the polynomial used in its formulation
is only valid for −2.3 < z/L < 2.0.

71

Chapter 6

Conclusions

This study presented an atmospheric boundary layer (ABL) CFD model which aims
to describe neutral and non-neutral wind flow over complex terrain using site-specific
stability parameters. The model was successfully validated using a horizontal homo-
geneity test and a cross-prediction study from a proposed wind farm location.

The prevalence and effect of atmospheric stability on the windfields were determined
by applying Monin-Obukhov Similarity Theory (MOST) to two years of onsite mea-
sured time series data. The results indicated strong non-neutral conditions with neu-
tral conditions present for only 11% of the measurement period. The central limit theo-
rem was applied and mean conditions were determined using the diurnally weighted
average. The results showed that large variations in conditions were present with in-
creased wind shear during extremely stable conditions and increased turbulence dur-
ing unstable conditions. The results highlight the shortcomings of assuming only neu-
tral conditions when determining the site conditions. The data analysis method which
applies MOST to measured time series data and uses the diurnally weighted average
to determine sector-wise mean conditions were developed by the author. It is to the
best of the authors knowledge a novel implementation of MOST to determine atmo-
spheric stability and vertical profiles of velocity, temperature and turbulence.

MOST is known to be incompatible with the standard k − ε turbulence model and
modifications to the standard model CFD equations are required in non-neutral ABL
simulations. Modifications are also required to the standard wall-function methods.
The required modifications to the standard CFD model equations were implemented
by User Defined Functions (UDF).

The first step towards the validation of the ABL CFD model was the horizontal ho-
mogeneity test in which the MOST and wall-function modifications were tested to
be in equilibrium by the model’s ability to sustain inlet profiles in an empty domain.
The results showed that the standard method of using a modified roughness value in
the ABL model breaks down under high roughness. A modified ABL specific wall-
function is preferred which is able to sustain neutral profiles accurately for distances
of over 10000 m while allowing more freedom in mesh generation at ground level. Two
MOST models were tested, the results from both models highlighted problems mod-
elling extreme conditions and maintaining profiles for extended distances. Both mod-
els were able to accurately maintain profiles of velocity and turbulence up to 5000 m.
The standard buoyancy turbulent production term was shown to be incompatible with
steady-state simulations and the MOST formulation is preferred as it produced accu-
rate profiles of velocity and turbulence in steady-state simulations.

Chapter 6. Conclusions 72

The final model validation procedure applied the ABL CFD model to the complex wind
farm terrain utilized in the data analysis study. Both MOST models were tested by us-
ing the CFD results to cross predict stability-dependent velocity profiles from the two
onsite meteorological masts. During the two main stability conditions experienced,
both models gave errors of less than 10%. The DTU model showed it is more capable
of dealing with the extreme cases than the AM model due to being valid throughout
the computational domain. Using the frequency classification, both models gave a to-
tal error of 8.5% which proves both models were successfully validated and able to
accurately model non-neutral flows onsite. To the best of the authors knowledge this
study presents the first application of the DTU model to complex terrain as well as
the first comparison of the AM and DTU models in complex terrain. The AM model
application to complex terrains has been studied [34].

The advantage of using the proposed ABL CFD model is the ability to model more
of the large scale physical mechanisms of the ABL. This allows greater accuracy in
the design of wind farms. On the proposed location used in this study the two masts
are located more than 7000 m apart and the model was able to accurately predict the
velocity profiles experienced at the other mast location. Using this method the mea-
sured stability-dependent profiles can be accurately extrapolated to any proposed tur-
bine location onsite and used in turbine loading and power production calculations.
In summary, the results showed that the implemented modifications and developed
methods are applicable and reproduced the main wind flow characteristics in neutral
and non-neutral flows over complex wind farm terrains.

6.1 Future Work

Although the methods developed in this study have shown significant improvements
over the neutral CFD models there are several issues that warrant further investigation.

In the horizontal homogeneity test both models showed increased errors under ex-
treme conditions. These models are presented in literature under standard non-neutral
conditions. However, the DTU model is in balance for all conditions and based on an
unpublished study the DTU model author was able to accurately model the extreme
cases using the EllipSys3D CFD code. Further work can therefore be done to under-
stand if the errors produced during non-neutral modelling are associated with the CFD
code. The Ansys CFX and OpenFOAM codes are cadidates for further testing.

The study focused on steady state-simulations, using transient simulations the stan-
dard buoyant turbulence production term can be utilised.

The user defined function implementation of the MOST models currently uses a linear
interpolation scheme between the inlet and primary mast location. Further investiga-
tions can be performed on sites where multiple masts are present to perform interpo-
lation between each of the mast locations.

Chapter 6. Conclusions 73

Incorporating the methods utilised in this study into the existing models currently
used to access commercially proposed wind farms requires thorough model valida-
tion. The current state of field experiments available for ABL CFD models are not
sufficient [7] [3]. During typical measurement campaigns temperature data are often
not sufficient to classify stability satisfactorily. The data measured at commercial wind
farms are also not readily available for open use. The Bolund Hill field experiment is
only applicable to neutral modelling [35]. The Benakanahalli hill field experiment does
include the necessary measurements and is subject to non-neutral stratification. How-
ever, the experiment conditions are not ideal with low wind speeds, high turbulence
and only a fraction of wind flow from the sector of interest [3] [36].

Finally, other turbulence models can be investigated such as the k − ω model or an
eddy-solving method. Using LES or DES would require new methods to be developed
to provide non-neutral transient boundary conditions and the required modifications
to the subgrid-scale turbulence model to account for buoyancy effects.

74

Bibliography

[1] M. P. van der Laan, M. C. Kelly, and N. N. Sørensen, “A new k-epsilon model
consistent with Monin–Obukhov similarity theory,” Wind Energy, vol. 20, no. 3,
pp. 479–489, 2017.

[2] A. Parente, C. Gorlé, J. van Beeck, and C. Benocci, “Improved k-ε model and wall
function formulation for the RANS simulation of ABL flows,” Journal of Wind En-
gineering and Industrial Aerodynamics, vol. 99, no. 4, pp. 267–278, 2011.

[3] T. Koblitz, CFD Modeling of Non-Neutral Atmospheric Boundary Layer Conditions.
PhD thesis, Danmarks Tekniske Universitet, 2013.

[4] Matlab, “MATLAB - MathWorks.” [Online] (Date last accessed 2017-10-28)
http://www.mathworks.com/products/matlab/.

[5] ANSYS, “ANSYS Fluent.” [Online] (Date last accessed 2017-10-28)
http://www.ansys.com/Products/Fluids/ANSYS-Fluent.

[6] J. M. Wallace and H. P. V., Atmospheric Science An Introductory Survey, vol. 2. Else-
vier, 2006.

[7] C. Meissner, A. R. Gravdahl, and B. Steensen, “Including thermal effects in CFD
simulations,” Journal of the environmental sciences, p. 5, 2009.

[8] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained. Wiley,
2 ed., 2009.

[9] T. Foken, “50 Years of the Monin–Obukhov Similarity Theory,” Boundary-Layer
Meteorology, vol. 119, no. 3, pp. 431–447, 2006.

[10] C. Alinot and C. Masson, “Aerodynamic Simulations of Wind Turbines Operat-
ing in Atmospheric Boundary Layer With Various Thermal Stratifications,” ASME
2002 Wind Energy Symposium, no. July, pp. 206–215, 2002.

[11] A. J. Dyer, “A review of flux-profile relationships,” Boundary-Layer Meteorology,
vol. 7, no. 3, pp. 363–372, 1974.

[12] A. Sathe, J. Mann, T. Barlas, W. A. A. M. Bierbooms, and G. J. W. Van Bussel,
“Influence of atmospheric stability on wind turbine loads,” Wind Energy, vol. 16,
pp. 1013–1032, Oct 2013.

[13] J. S. Irwin and F. S. Binkowski, “Estimation of the Monin-Obukhov scaling length
using on-site instrumentation,” Atmospheric Environment (1967), vol. 15, no. 6,
pp. 1091–1094, 1981.

BIBLIOGRAPHY 75

[14] R. S. Davis, “Equation for the Determination of the Density of Moist Air
(1981/91),” Metrologia, vol. 29, no. 1, p. 67, 1992.

[15] H. Versteeg and W. Malaasekera, An introduction to computational fluid dynamics:
the finite volume method. Pearson Education Limited, 2 ed., 1995.

[16] G. Crasto, Numerical Simulations of the Atmospheric Boundary Layer. PhD thesis,
University of Cagliari, 2007.

[17] ANSYS, “ANSYS Fluent Theory Guide 18.1,” tech. rep., Ansys Fluent 18.1, 2017.

[18] B. E. Launder and D. B. Spalding, “The numerical computation of turbulent
flows,” Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269–289,
Mar 1974.

[19] ANSYS, “ANSYS Fluent User Guide 18.1,” tech. rep., Ansys Fluent 18.1, 2017.

[20] B. Blocken, T. Stathopoulos, and J. Carmeliet, “CFD simulation of the atmospheric
boundary layer: wall function problems,” Atmospheric Environment, vol. 41, no. 2,
pp. 238–252, 2007.

[21] X. Zhang, CFD simulation of neutral ABL flows. PhD thesis, Danmarks Tekniske
Universitet, Apr 2009.

[22] F. R. Freedman and M. Z. Jacobson, “Modification of the standard e-equation for
the stable ABL through enforced consistency with Monin-Obukhov similarity the-
ory,” Boundary-Layer Meteorology, vol. 106, no. 3, pp. 383–410, 2003.

[23] A. Parente, C. Gorlé, J. van Beeck, and C. Benocci, “Improved k-ε model and wall
function formulation for the RANS simulation of ABL flows,” Journal of Wind En-
gineering and Industrial Aerodynamics, vol. 99, no. 4, pp. 267–278, 2011.

[24] H. A. Panofsky and J. A. J. A. Dutton, “Atmospheric turbulence : models and
methods for engineering applications,” 1984.

[25] P. J. Richards and R. P. Hoxey, “Appropriate boundary conditions for computa-
tional wind engineering models using the k-e turbulence model,” Journal of Wind
Engineering and Industrial Aerodynamics, vol. 46, pp. 145–153, 1993.

[26] A. Sogachev, M. Kelly, and M. Y. Leclerc, “Consistent Two-Equation Closure Mod-
elling for Atmospheric Research: Buoyancy and Vegetation Implementations,”
Boundary-Layer Meteorology, vol. 145, pp. 307–327, Nov 2012.

[27] C. Alinot and C. Masson, “k-epsilon Model for the atmospheric boundary
layer under various thermal stratifications,” Journal of Solar Energy Engineering-
Transactions of The ASME, vol. 127, no. 4, pp. 438–443, 2005.

[28] T. G. Farr, P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick,
M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland,
M. Werner, M. Oskin, D. Burbank, and D. E. Alsdorf, “The shuttle radar topogra-
phy mission,” Reviews of Geophysics, vol. 45, p. RG2004, May 2007.

BIBLIOGRAPHY 76

[29] J. Mann, S. Ott, B. H. Jørgensen, and P. Frank, “WAsP Engineering 2000,”
Risø–R–1356(EN), vol. 1356, p. 91, Aug 2002.

[30] M. Strack, “MEASNET Procedure „Evaluation of Site-Specific Wind Conditions“
Released,” DEWI Magazin, vol. 36, pp. 76–81, 2010.

[31] EMD, “EMD International A/S – EMD-WRF South Africa Mesoscale Data.” [On-
line] (Date last accessed 2017-10-28) http://www.emd.dk/windpro/mesoscale-
data/emd-wrf-south-africa-mesoscale-data/.

[32] ANSYS, “ANSYS Fluent Customization Manual 18.1,” tech. rep., Ansys Fluent
18.1, 2017.

[33] P. G. Tucker, C. L. Rumsey, P. R. Spalart, R. E. Bartels, and R. T. Biedron, “Compu-
tations of wall distances based on differential equations,” AIAA Journal, vol. 43,
no. 3, pp. 539–549, 2005.

[34] J. Pieterse and T. Harms, “CFD investigation of the atmospheric boundary layer
under different thermal stability conditions,” Journal of Wind Engineering and In-
dustrial Aerodynamics, vol. 121, pp. 82–97, Mar 2013.

[35] J. Berg, J. Mann, A. Bechmann, M. S. Courtney, and H. E. Jørgensen, “The Bolund
Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill,” Boundary-Layer
Meteorology, vol. 141, no. 2, pp. 219–243, 2011.

[36] T. Koblitz, A. Bechmann, J. Berg, A. Sogachev, N. Sørensen, and P.-E. Réthoré, “At-
mospheric stability and complex terrain: comparing measurements and CFD,”
Journal of Physics: Conference Series, vol. 555, p. 12060, 2014.

77

Appendices

78

Appendix A

Roughness Lengths

Table A.1: Typical Roughness Lengths [8]

Terrain description z0 (mm)

Very smooth, ice or mud 0.01
Calm open sea 0.2
Blown sea 0.5
Snow surface 3
Lawn grass 8
Rough pasture 10
Fallow field 30
Crops 50
Few trees 100
Many trees, hedges, few buildings 250
Forest and woodlands 500
Suburbs 1500
City centres with tall buildings 3000

79

Appendix B

Mast Data Sample

Table B.1: Mast data sample

TIMESTAMP REC S1V82M S1V82M S1V82M D1V80M D1V80M
TS RN m/s m/s m/s Deg Deg

Avg Std Max Avg Std

12/06/2015 11:00 562 4.898 0.478 5.773 112 5.063
12/06/2015 11:10 563 4.308 0.571 5.607 107.6 8.44
12/06/2015 11:20 564 3.938 0.405 5.207 113.7 8.29
12/06/2015 11:30 565 3.297 0.552 4.79 115.3 10.07
12/06/2015 11:40 566 3.461 0.51 4.657 115.1 9.49
12/06/2015 11:50 567 3.529 0.442 4.64 116.8 9.98
12/06/2015 12:00 568 3.58 0.447 4.673 113.8 9.43

TIMESTAMP REC Press5m Temp5m RH5m
TS RN mBar Deg C %

Avg Avg Avg

12/06/2015 11:00 562 843 10.2 75.51
12/06/2015 11:10 563 843 10.3 75.64
12/06/2015 11:20 564 843 10.62 74.74
12/06/2015 11:30 565 843 10.92 73.49
12/06/2015 11:40 566 843 11.15 73.2
12/06/2015 11:50 567 843 11.27 72.98
12/06/2015 12:00 568 843 11.5 72.18

80

Appendix C

Data Analysis Code

The data analysis code is included below. Coded using Matlab 2016a. Requires the
optimization and statistics toolboxes. It accepts WindPro3.1 meteorogical mast data
exports as inputs.

C.1 dataAnalysis.m

1 function [mastStruct,profiles,turbModelConstants,sectorTables,diurnals,figs] = ...
dataAnalysis()

2 %% Data Analysis
3 %
4 % Analyse Met Export data from WindPro to determine atmospheric stability
5 % based on the gradient Richardson number or MOL approach.
6 % Can handle Met mast and Mesoscale data sets
7 % Sectorwise stability, MOL, Shear and Velocity tables are given as outputs
8 % as well as a mast structure containing time series data split into the
9 % various stavbility cases.

10 % Metrics are presented in the Figure outputs
11 % Each function has its own description about the methods involved with
12 % references
13 % Requires the stabilityRose.m code on the path.
14 % Control preferences by changing values in input section
15 %
16 % Function Call Example:
17 %
18 % Rules for exporting from WindPro
19 % - Normal meteo object export
20 % - Remove names of heights
21 % - Only use one channel per height
22 % - Data must be exported after it has been cleaned, the functions will
23 % clean data according to how it was originally done in Windpro
24 % - Do not include channels that are mostly disablded. (Low Availability)
25 % - Temperature and Pressure should appear in the same channels if more
26 % than one pressure is used
27 % - Do not repeat any channels
28 %
29 %
30 % ---
31 % Owner: Hendri Breedt <u10028422@tuks.co.za>
32 % Date: 09/11/2017
33 % Version: 00 - Public release
34
35 clearvars
36 fclose all;
37 close all;
38 %% Load & Clean Data
39
40 % Load Data
41 [mast,mastName,header,dateRangeStr,inputFilenamePath] = dataImport();
42
43 % Clean Data
44 [mast,U,D,Ti,T,P,RH,Zs,Zt,TiAvail] = dataClean(mast,header,mastName,dateRangeStr);
45
46 % pause; % Paused so the user can now change the script below.
47
48 %% Inputs %%%
49
50 % Start and End Dates if you want specific period: Format 'dd/mm/yyyy HH:MM'
51 startDateStr = '01/10/2015 00:00';
52 endDateStr = '01/11/2015 00:00';
53 % Empty sets and it will use the whole set
54 % startDateStr = [];
55 % endDateStr = [];
56
57 % Wind speed and Temperature channels
58 % These are the heights used to determine stability.
59 % The indexes must be [high, low]
60 % Note: if scaling is used then the ZsUse index is 'length(Zs)+1'
61 % -----------------------------------
62 ZsUse = [1, 3]; % Wind Speed
63 ZtUse = [2, 1]; % Temperature
64

Appendix C. Data Analysis Code 81

65 % Number of sectors
66 % -----------------------------------
67 sectors = 12;
68
69 % Source values
70 % The number is the height index as given above
71 % -----------------------------------
72 sourceVal = 1; % This height is used as the fixed value for shear and also the binning ...

for direction, TI & speed
73
74 % Shear Scaling
75 % If Shear Scaling is required, If not the target can be set to a dummy [] value
76 % -----------------------------------
77 % shearScaling = 'Yes';
78 shearScaling = 'No';
79 targetZ = []; % Target height [m]
80
81 % MOL Calculation Method
82 % Richardson based or Profile Fitting
83 % Profile fit is more accurate but takes time (10minutes per year)
84 % -----------------------------------
85 molCalcType = 'fit';
86 % molCalcType = 'Ri';
87
88 % Boundary Conditions
89 % Write profiles for U,T,k,e,w at the data position to use BC's
90 % -----------------------------------
91 bcZheight = 1000; % Total height of BC
92 % bcHeightFix = 500; % Height AGL at which fixed val for wind speed
93 % velAtBc = 15; % Wind speed at fixed val [m/s]
94 bcZstep = 1;
95 zo = 0.002; %[m] % Roughness Length
96 profSec = 6; % Sector to display turbulence model profiles for
97 k_eModel = 4; % Choose from the list below;
98 % | 1 | 2 |
99 % | k_e Orig (Jones and Launder) | k_e ASL neutral (Sorensen) |

100 % | 3 | 4 |
101 % | k_e MOST (Alinot and Masson) | k_e MOST (Proposed DTU) |
102
103
104 % Diurnul type
105 % Cant use 10min if only hourly data is available
106 % -----------------------------------
107 diurType = '10Min';
108 % diurType = 'hourly';
109
110 % Diurnul Smoothing
111 % Decide to smooth out the diurnals with a smoothing spline.
112 % Works well with 10Min diurnals, requires at least 3 data points
113 % -----------------------------------
114 % diurSmooth = 'Yes';
115 diurSmooth = 'No';
116
117 % Confidence Inverval Diurnal
118 % Display 95% confidince interval on diurnal Ri and MOL
119 % Removing this makes the graphs display more cleanly and clearly
120 % -----------------------------------
121 % diurConfi = 'Yes';
122 diurConfi = 'No';
123
124 % Sectorwise shear profiles to plot
125 % Always uses 4 or 6 sectors
126 % -----------------------------------
127 shearSectors2Plot = [4 5 6 7];
128
129 % Save Outputs Automatically
130 % -----------------------------------
131 saveOutput = 'Yes';
132 % saveOutput = 'No';
133 outputType = 'mat';
134 % outputType = 'txt'; % Saves text files instead of .mat files
135
136 % Density Calculation
137 % Perform density calculation using the selected channels, Selection works
138 % the same as for the source values.
139 % Height is dependent on the channels selected by the user below.
140 % -----------------------------------
141 densityCalc = 'Yes';
142 % densityCalc = 'No';
143 fixedDens = 1.225; % If density calc is not requested a fixed value is used
144
145 % Average Pressure
146 % -----------------------------------
147 % Use this if no pressure data is available
148 Pavg = 1000;
149
150 % Diurnal Filtering
151 % This is to clean outlier data that skews the image plot of the diurnal
152 % when the mean of each time step is taken. This is only a filtering on the
153 % display data for the diurnal graph. It does not effect the results output
154 % in the various tables. Alter these values to obtain better looking graphs
155 % -----------------------------------
156 diurRiFilterVal = [-25 25];
157 diurMOLFilterVal = [-1000 1000];
158
159 %%%
160 %% Calculations
161
162 % Cut data to start and end date
163 if ¬isempty(startDateStr)
164 startInd = find(datenum(startDateStr,'dd/mm/yyyy HH:MM') == mast.TimeStamp);
165 if isempty(startInd)
166 error('Start date not found in data set')
167 end
168 else
169 startInd = 1;

Appendix C. Data Analysis Code 82

170 startDateStr = datestr(mast.TimeStamp(1),'dd/mm/yyyy HH:MM');
171 end
172 % End Date
173 if ¬isempty(endDateStr)
174 endInd = find(datenum(endDateStr,'dd/mm/yyyy HH:MM') == mast.TimeStamp);
175 if isempty(endInd)
176 error('End date not found in data set')
177 end
178 else
179 endInd = height(mast);
180 endDateStr = datestr(mast.TimeStamp(end),'dd/mm/yyyy HH:MM');
181 end
182
183 mast = mast(startInd:endInd,:);
184 U = U(startInd:endInd,:);
185 D = D(startInd:endInd,:);
186 Ti= Ti(startInd:endInd,:);
187 T = T(startInd:endInd,:);
188 P = P(startInd:endInd,:);
189 RH = RH(startInd:endInd,:);
190 dateRangeStr = [startDateStr,' - ',endDateStr];
191
192 if isempty(P)
193 P = Pavg*ones(size(mast,1),1);
194 end
195
196 % Replace 0m heights with z0 height
197 Zt(Zt == 0) = zo;
198
199 % Determine Source Values
200 sourceZ = Zs(:,sourceVal); % Height of the sources
201 sourceU = U(:,sourceVal); % Speed used in figures
202 sourceD = D(:,sourceVal); % This direction is used to bin sectors
203 sourceTi = Ti(:,sourceVal); % Ti used in figures if available
204 refU = U(:,sourceVal);
205
206 % Shear
207 [mast,U,Zs] = shearScale(shearScaling,mast,U,Zs,refU,sourceZ,targetZ,sourceVal);
208 % The scaling calculation is always run. This is to determine the shear
209 % exponent using the least squares method across all the heights. The
210 % scaled wind speed is only determined if the shear scaling has been
211 % requested
212
213 % Richardson Number
214 [mast,¬,potenTemp] = richardsonNumber(mast,Zt,ZtUse,Zs,ZsUse,U,T,P);
215
216 % Monin-Obukhov - Using nonlinfit
217 if strcmpi(molCalcType,'fit')
218 [mast] = moninObukhovFit(mast,ZtUse,Zs,U,potenTemp,k_eModel,zo);
219 else
220 % Monin-Obukhov - Using Richardson Number
221 [mast] = moninObukhov(mast,ZsUse,Zs);
222 end
223 stabCond = mast.ConditionMol;
224
225 % Ti ans Shear Stability
226 [mast] = TiShearStab(mast,TiAvail,sourceTi);
227
228 % Stability Classification
229 [numReadings,exUnstable,unstable,neutral,stable,exStable] = ...

stabilityClass(stabCond,sectors,sourceD);
230
231 stabClass = [exUnstable(end), unstable(end), neutral(end), stable(end), ...

exStable(end)]/numReadings;
232
233 % Density Calculation
234 if strcmp(densityCalc,'Yes')
235 try
236 densT = T(:,1);
237 densP = P(:,1);
238 densRH = RH(:,1);
239 catch
240 densityCalc = 'No';
241 waring('Error in density calculation, switching to fixed density')
242 end
243 end
244 if strcmp(densityCalc, 'Yes')
245 rho = airDensity(densT,densRH,densP*100);
246 rho(isnan(sum([densT,densRH,densP],2))) = nan;
247 mast.Density = rho;
248 else
249 rho = fixedDens*ones(size(mast,1),1);
250 end
251
252 % Diurnal Calculation
253 % Which type to run
254 switch diurType
255 case '10Min';
256 [diurSpeed,diurAlpha,diurTi,diurRi,diurMOL,diurCondition, ...

diurConditionUnWeight,DiurWeighting] = ...
diurnal10Minutely(mast,sourceU,sourceTi,stabCond, ...
diurRiFilterVal,diurMOLFilterVal);

257 case 'hourly'
258 [diurSpeed,diurAlpha,diurTi,diurRi,diurMOL,diurCondition, ...

diurConditionUnWeight,DiurWeighting] = ...
diurnalHourly(mast,sourceU,sourceTi,stabCond, ...
diurRiFilterVal,diurMOLFilterVal);

259 otherwise % If none specified run hourly
260 [diurSpeed,diurAlpha,diurTi,diurRi,diurMOL,diurCondition, ...

diurConditionUnWeight,DiurWeighting] = ...
diurnalHourly(mast,sourceU,sourceTi,stabCond, ...
diurRiFilterVal,diurMOLFilterVal);

261 end
262 diurnals = struct('Velocity',diurSpeed,'Alpha',diurAlpha,'Ti', ...

diurTi,'Ri',diurRi,'MOL',diurMOL,'Condition',diurCondition);
263
264

Appendix C. Data Analysis Code 83

265 %% Outputs
266
267 % Construct Sectorwise MOL Distribution
268 [MOLTable,maxFreq] = sectorWiseMOL(mast,stabCond,sourceD,sectors,DiurWeighting);
269
270 % Construct Sectorwise Shear Exponent Distribution
271 [shearTable] = sectorWiseShear(mast,stabCond,sourceD,sectors,MOLTable,DiurWeighting);
272
273 % Construct Sectorwise Velocity Distribution
274 [velocityTable,velSecAllHeights] = ...

sectorWiseVelocity(stabCond,refU,sourceD,sectors,MOLTable,U,Zs,DiurWeighting);
275
276 % Construct Sectorwise Ti Distribution if Ti is available
277 % and create output variable sectorTables
278 if strcmpi('No', TiAvail)
279 sourceTi = 0.5*ones(size(sourceU));
280 % Without TiTable
281 sectorTables = {MOLTable,shearTable,velocityTable};
282 elseif strcmpi('Yes', TiAvail)
283 [TiTable] = sectorWiseTi(stabCond,sourceTi,sourceD,sectors,MOLTable,DiurWeighting);
284 % With TiTable
285 sectorTables = {MOLTable,shearTable,velocityTable,TiTable};
286 end
287
288 % Construct Sectorwise Density Distribution
289 [densTable,densSec] = ...

sectorWiseDensity(stabCond,rho,sourceD,sectors,MOLTable,DiurWeighting);
290 if strcmp(densityCalc,'Yes')
291 sectorTables = {sectorTables{:},densTable};
292 end
293
294 % Turbulence Model, Profiles and Heat Flux
295 [profiles,turbModelConstants,qoTable,PotenTempSecAllHeights,uStarTable] = ...

modelProfiles(mast,Zs,Zt,ZsUse,sourceZ,zo,U,ZtUse,potenTemp,stabCond,sourceD, ...
sectors,sectorTables,bcZheight,bcZstep, ...
MOLTable,velSecAllHeights,DiurWeighting,k_eModel,densSec,molCalcType);

296 sectorTables = {sectorTables{:},qoTable,uStarTable};
297
298 % WindSpeed Vs. Stab condition
299 [velocityStab] = conditionalVelocity(stabCond,refU);
300
301 % Create Figures
302 [figs,stabilityTable] = createFigs(mast,mastName,dateRangeStr, sectors, ...

sourceU,sourceTi,sourceD, numReadings,exUnstable, unstable,neutral, ...
stable,exStable, stabCond,diurSmooth, shearSectors2Plot,TiAvail,velSecAllHeights, ...
Zs,maxFreq,shearScaling ,diurConfi,refU,profiles,PotenTempSecAllHeights,Zt ...
,diurSpeed,diurAlpha,diurTi, diurRi,diurMOL, diurCondition,diurConditionUnWeight ...
,turbModelConstants,profSec,k_eModel,sourceZ,velocityStab);

303 sectorTables = {stabilityTable,sectorTables{:}};
304
305 % Sector table contents
306 if strcmpi('No', TiAvail) && strcmp(densityCalc,'Yes')
307 sectorTableContent = ...

{'Frequencies','MOL','Shear','Velocity','Density','HeatFlux','Frictional ...
Velocity'};

308 elseif strcmpi('Yes', TiAvail) && strcmp(densityCalc,'No')
309 sectorTableContent = ...

{'Frequencies','MOL','Shear','Velocity','Ti','HeatFlux','Frictional Velocity'};
310 elseif strcmpi('Yes', TiAvail) && strcmp(densityCalc,'Yes')
311 sectorTableContent = ...

{'Frequencies','MOL','Shear','Velocity','Ti','Density','HeatFlux','Frictional ...
Velocity'};

312 elseif strcmpi('No', TiAvail) && strcmp(densityCalc,'No')
313 sectorTableContent = {'Frequencies','MOL','Shear','Velocity','HeatFlux','Frictional ...

Velocity'};
314 end
315
316 % Split Data
317 [mastStruct] = dataSplit(mast,stabCond);
318
319 % Save Outputs
320 if strcmpi(saveOutput,'Yes')
321 dirPath = uigetdir(inputFilenamePath,'Select directory to save all outputs');
322 imageSave(figs,mastName, dateRangeStr,shearSectors2Plot,dirPath,TiAvail,profSec);
323 dataSave(mastName,dateRangeStr,dirPath, ...

mastStruct,profiles,turbModelConstants,sectorTables, ...
diurnals,stabClass,outputType, sectorTableContent,velSecAllHeights)

324 end
325
326 % ------------------------- Sub Functions ------------------------------- %
327
328 function [mast,mastName,header,dateRangeStr,inputFilenamePath] = dataImport()
329 %% dataImport
330 % Import data from met object stored from the .txt file
331 % Rules for exporting from WindPro:
332 % - Only use one channel at a selected height
333 % - No heights at 0m
334 % - Do not repeat sensors on channels (Except Direction)
335
336
337 % File information
338 [fileName,inputFilenamePath] = uigetfile({'*.txt','Meteo Object'},...
339 'Please select the .txt file of the exported met object');
340 % Open the text file.
341 fileID = fopen([inputFilenamePath,fileName],'r');
342 delimiter = '\t';
343
344 try % try once with start row = 24 and once with 32 if recalibration
345 startRow = 24; % Manually change this if the mast was recalibrated as then the ...

startrow is later
346
347 % Create format string
348 firstBlock = textscan(fileID, '%[^\n\r]', startRow-1, 'WhiteSpace', '', ...

'ReturnOnError', false); % This reads the header block
349 headerStrTotal = firstBlock{1,1}(startRow-2);
350
351 % This part removes the |L|U| section of the header names

Appendix C. Data Analysis Code 84

352 toDelete = nan(1,2);
353 ex = headerStrTotal{:};
354 count = 0;
355 for i = 1:length(ex)
356 if strcmpi(ex(i),'|')
357 startInd = i;
358 tempInd = regexp(ex(startInd:end),'\t', 'once');
359 endInd = tempInd + startInd -1;
360 count = count+1;
361 toDelete(count,:) = [startInd endInd];
362 end
363 end
364
365 if ¬isnan(toDelete)
366 [¬,uniqueInd] = unique(toDelete(:,2));
367 toDelete = toDelete(uniqueInd,:);
368
369 exNew = ex;
370 sizeLost = 0;
371 for i = 1:size(toDelete,1)
372 exNew(toDelete(i,1)-sizeLost:toDelete(i,2)-1-sizeLost) = [];
373 sizeLost = sizeLost + length(toDelete(i,1):toDelete(i,2)-1);
374 end
375 headerStrTotal = {exNew};
376 end
377
378 [¬, numChannels] = sscanf(headerStrTotal{:},'%s'); % Count number of channels
379
380 mastName = firstBlock{1, 1}{4, 1}(14:end); % Reads the description of the mast
381 if isempty(mastName) || strcmp(mastName,' ')
382 mastName = firstBlock{1, 1}{5, 1}(13:end); % Reads the user label of the mast
383 end
384
385 if isempty(mastName) || strcmp(mastName,' ') % If still empty use a default name
386 mastName = 'NoMastName';
387 warning('No mast name detected')
388 end
389 dateType = firstBlock{1, 1}{6, 1}(19:29);
390 % dateType = 'dd-MM-yyyy'; % You can manaully type in the date format here if it ...

does not work
391
392 formatSpecData = '%s';
393 for i = 1:numChannels
394 formatSpecData = [formatSpecData,'%f'];
395 end
396
397 % Create Header Names
398 tabInd = regexp(headerStrTotal,'\s');
399
400 header = cell(1,numChannels);
401 header{1} = 'TimeStamp';
402 temp = headerStrTotal{1};
403 for i = 1:numChannels-1
404 header{i+1} = [temp(tabInd{1,1}(i)+1:tabInd{1,1}(i+1)-4),'m'];
405 end
406
407 catch
408 warning('Recalibration detected, setting start row to 32. If no recalibration check ...

met export')
409 fclose all;
410 clearvars -except inputFilenamePath fileName delimiter startDateStr endDateStr
411 fileID = fopen([inputFilenamePath,fileName],'r');
412 startRow = 32;
413
414 % Create format string
415 firstBlock = textscan(fileID, '%[^\n\r]', startRow-1, 'WhiteSpace', '', ...

'ReturnOnError', false); % This reads the header block
416 headerStrTotal = firstBlock{1,1}(startRow-3);
417
418 % This part removes the |L|U| section of the header names
419 toDelete = nan(1,2);
420 ex = headerStrTotal{:};
421 count = 0;
422 for i = 1:length(ex)
423 if strcmpi(ex(i),'|')
424 startInd = i;
425 tempInd = regexp(ex(startInd:end),'\t', 'once');
426 endInd = tempInd + startInd -1;
427 count = count+1;
428 toDelete(count,:) = [startInd endInd];
429 end
430 end
431
432 if ¬isnan(toDelete)
433 [¬,uniqueInd] = unique(toDelete(:,2));
434 toDelete = toDelete(uniqueInd,:);
435 exNew = ex;
436 sizeLost = 0;
437 for i = 1:size(toDelete,1)
438 exNew(toDelete(i,1)-sizeLost:toDelete(i,2)-1-sizeLost) = [];
439 sizeLost = sizeLost + length(toDelete(i,1):toDelete(i,2)-1);
440 end
441 headerStrTotal = {exNew};
442 end
443
444 [¬, numChannels] = sscanf(headerStrTotal{:},'%s'); % Count number of channels
445
446 mastName = firstBlock{1, 1}{4, 1}(14:end); % Reads the description of the mast
447 if isempty(mastName) || strcmp(mastName,' ')
448 mastName = firstBlock{1, 1}{5, 1}(13:end); % Reads the user label of the mast
449 end
450
451 if isempty(mastName) || strcmp(mastName,' ') % If still empty use a default name
452 mastName = 'NoMastName';
453 warning('No mast name detected')
454 end

Appendix C. Data Analysis Code 85

455 dateType = firstBlock{1, 1}{6, 1}(19:29);
456 % dateType = 'dd-MM-yyyy'; % You can manaully type in the date format here if it ...

does not work
457
458 formatSpecData = '%s';
459 for i = 1:numChannels
460 formatSpecData = [formatSpecData,'%f'];
461 end
462
463 % Create Header Names
464 tabInd = regexp(headerStrTotal,'\s');
465
466 header = cell(1,numChannels);
467 header{1} = 'TimeStamp';
468 temp = headerStrTotal{1};
469 for i = 1:numChannels-1
470 header{i+1} = [temp(tabInd{1,1}(i)+1:tabInd{1,1}(i+1)-4),'m'];
471 end
472
473 end
474 % Read columns of data according to format string data
475 textscan(fileID, '%[^\n\r]', 0, 'WhiteSpace', '', 'ReturnOnError', false); % This reads ...

the header block
476 dataArray = textscan(fileID, formatSpecData, 'Delimiter', delimiter, 'EmptyValue' ...

,NaN,'ReturnOnError', false,'TreatAsEmpty','-');
477 mast = table(dataArray{1:end-1}, 'VariableNames', header);
478 fclose all;
479
480 mast.TimeStamp = datenum(mast.TimeStamp, [lower(dateType) 'HH:MM']); % Convert string ...

dates to num
481
482 startDateStr = datestr(mast.TimeStamp(1),'dd/mm/yyyy HH:MM');
483 endDateStr = datestr(mast.TimeStamp(end),'dd/mm/yyyy HH:MM');
484 dateRangeStr = [startDateStr,' - ',endDateStr];
485
486 function [mast,U,D,Ti,T,P,RH,Zs,Zt,TiAvail] = dataClean(mast,header,mastName,dateRangeStr)
487 %% MetExportDataClean Data clean up of WindPro met mast export
488 % Clean according to the data filtering applied in WindPro
489 %
490
491 %% Pre Allocate
492
493 height = [];
494 for i = 1:length(header)
495 heightIdx = regexp(header{i}, '\d');
496 if ¬isempty(heightIdx)
497 heightNew = str2double(header{i}(heightIdx));
498 height = [height heightNew];
499 end
500 end
501
502 [¬,I]=unique(height,'first');
503 height=height(sort(I)); % Find all heights on mast
504
505 height = floor(height); % In order to match the text import function
506 numHeights = length(height);
507 headerIdxDataStatus = false(numHeights, length(header));
508 heightStatus = zeros(length(mast{:,1}), numHeights);
509 headerIdxWSmean = headerIdxDataStatus;
510 headerIdxWDmean = headerIdxDataStatus;
511 headerIdxTI = headerIdxDataStatus;
512 headerIdxTemperature = headerIdxDataStatus;
513 headerIdxPressure = headerIdxDataStatus;
514 headerIdxRelHumid = headerIdxDataStatus;
515 active = [];
516 rep = [];
517
518 %% Get Data Status and Required Channels
519
520 for i = 1:numHeights
521 % Match Headers to find needed channels
522 % statusIdxCell = regexp(header, ['DataStatus\w*','_',num2str(height(i)),'m\w*']);
523 statusIdxCell = regexp(header, ['SampleStatus\w*','_',num2str(height(i)),'m\w*']);
524 WSmeanIdxCell = regexp(header, ['MeanWindSpeed\w*','_',num2str(height(i)),'m\w*']);
525 WDmeanIdxCell = regexp(header, ['Direction\w*','_',num2str(height(i)),'m\w*']);
526 TIIdxCell = regexp(header, ['TurbInt\w*','_',num2str(height(i)),'m\w*']);
527 temperatureIdxCell = regexp(header, ['Temperature\w*','_',num2str(height(i)),'m\w*']);
528 pressureIdxCell = regexp(header, ['Pressure\w*','_',num2str(height(i)),'m\w*']);
529 relHumidIdxCell = regexp(header, ...

['RelativeHumidity\w*','_',num2str(height(i)),'m\w*']);
530 for j = 1:length(header)
531 headerIdxDataStatus(i,j) = (¬isempty(statusIdxCell{j}) && statusIdxCell{j} == 1);
532 headerIdxWSmean(i,j) = (¬isempty(WSmeanIdxCell{j}) && WSmeanIdxCell{j} == 1);
533 headerIdxWDmean(i,j) = (¬isempty(WDmeanIdxCell{j}) && WDmeanIdxCell{j} == 1);
534 headerIdxTI(i,j) = (¬isempty(TIIdxCell{j}) && TIIdxCell{j} == 1);
535 headerIdxTemperature(i,j) = (¬isempty(temperatureIdxCell{j}) && ...

temperatureIdxCell{j} == 1);
536 headerIdxPressure(i,j) = (¬isempty(pressureIdxCell{j}) && pressureIdxCell{j} == 1);
537 headerIdxRelHumid(i,j) = (¬isempty(relHumidIdxCell{j}) && relHumidIdxCell{j} == 1);
538 end
539
540 heightStatus = sum(mast{:,headerIdxDataStatus(i,:)} ,2) == 0;
541 % Status of the instruments at each height, all instruments active
542
543 headerSize = sum(headerIdxWSmean(i,:) + headerIdxWDmean(i,:) + headerIdxTI(i,:) ...
544 + headerIdxTemperature(i,:) + headerIdxPressure(i,:)); % Size of new ...

header
545
546 rep = repmat(heightStatus, [1, headerSize]);
547 active = logical([active rep]);
548 end
549
550 %% Build New Data Set
551
552 headerCol = logical(sum(headerIdxWSmean) + sum(headerIdxWDmean) + sum(headerIdxTI) ...
553 + sum(headerIdxTemperature) + sum(headerIdxPressure) + sum(headerIdxRelHumid));
554 headerCol(1) = true(); % Activate DateTime
555

Appendix C. Data Analysis Code 86

556 % New Sets
557 headerNew = header(headerCol);
558 mast = mast(:,headerCol);
559
560 % Non Active Values to NaN
561 mast{:,:}(¬([ones(length(active),1) active])) = nan ;
562 mast.Properties.VariableNames = headerNew;
563 remRows = sum(isnan(mast{:,:}),2) 6= 0;
564 mast(remRows,:) = []; % Clear Rows with NaN's
565
566 % Get Values
567 U = mast{:,(strncmp(headerNew,'MeanWindSpeed',length('MeanWindSpeed')))}; % Mean ...

Wind Speed
568 D = mast{:,(strncmp(headerNew,'Direction',length('Direction')))}; % ...

Direction
569 Ti = mast{:,(strncmp(headerNew,'Turb',length('Turb')))}; % ...

Turbulence
570 T = mast{:,(strncmp(headerNew,'Temperature',length('Temperature')))}; % ...

Temperature
571 P = mast{:,(strncmp(headerNew,'Pressure',length('Pressure')))}; % Pressure
572 RH = mast{:,(strncmp(headerNew,'RelativeHumidity',length('RelativeHumidity')))}; % ...

Relative Humidity
573
574 % Get Texts for display
575 UTxt = headerNew(:,(strncmp(headerNew,'MeanWindSpeed',length('MeanWindSpeed'))));
576 DTxt = headerNew(:,(strncmp(headerNew,'Direction',length('Direction'))));
577 TiTxt = headerNew(:,(strncmp(headerNew,'Turb',length('Turb'))));
578 TTxt = headerNew(:,(strncmp(headerNew,'Temperature',length('Temperature'))));
579 PTxt = headerNew(:,(strncmp(headerNew,'Pressure',length('Pressure'))));
580 RHTXT = headerNew(:,(strncmp(headerNew,'RelativeHumidity',length('RelativeHumidity'))));
581
582 % Extract heights for wind speed and temp
583 Zs = [];
584 Zt = [];
585 for i = 1:length(headerNew)
586 [startIndWS,endIndWS] = regexp(headerNew{:,i}, 'MeanWindSpeedUID_');
587 [startIndT,endIndT] = regexp(headerNew{:,i}, 'TemperatureUID_');
588 if ¬isempty(startIndWS) || ¬isempty(endIndWS)
589 txt = headerNew{:,i};
590 heightWS = str2double(txt(endIndWS+1:end-1));
591 Zs = [Zs heightWS];
592 elseif ¬isempty(startIndT) || ¬isempty(endIndT)
593 txt = headerNew{:,i};
594 heightT = str2double(txt(endIndT+1:end-1));
595 Zt = [Zt heightT];
596 end
597 end
598
599 % Determine if data set has TI data
600 if isempty(Ti)
601 TiAvail = 'No';
602 Ti = ones(size(U)); % Create dummy dummy value for Ti so it does not error below
603 TiTxt = {'None'};
604 else
605 TiAvail = 'Yes';
606 end
607
608 % Determine if data set has RH data
609 if isempty(RHTXT)
610 RHTXT = {'None'};
611 end
612
613 chanTxt = {UTxt, DTxt, TiTxt, TTxt, PTxt, RHTXT}; % Create channel txts
614 chanTxtHeadings = {'Wind Speed', 'Wind Direction', 'Turbulence Intensity', ...

'Temperature', 'Pressure', 'Relative Humidity'};
615 % Disp header to help user select the channels, in the final GUI this will
616 % be made into a drop down selection. The available dates are also shown
617 fprintf('Mast: %s \n',mastName)
618 fprintf('The available channels are shown below. Please select heights in the order ...

they are presented \n')
619 fprintf('-- \n')
620 for i = 1:length(chanTxtHeadings)
621 fprintf('*** %s ***\n',chanTxtHeadings{i});
622 fprintf('%s\n',chanTxt{i}{:});
623 fprintf('-- \n')
624 end
625 fprintf('\n Data is available between the following dates %s \n', dateRangeStr)
626
627 function [mast,U,Zs] = shearScale(shearScaling,mast,U,Zs,refU,sourceZ,targetZ,sourceVal)
628 %% Scale using instantaneous shear profile
629 % Velocity profile using method from Wind Energy Explained (Manwell)
630 % Using a least sqaures implimentation with all velocity heights
631
632 refInd = 1:length(Zs) 6= sourceVal;
633 ZsForScale = Zs(refInd);
634 UForScale = U(:,refInd);
635
636 A = nan(length(ZsForScale)-1, 1);
637 b = nan(length(ZsForScale)-1, size(UForScale,1));
638 for i = 1:length(ZsForScale)-1
639 A(i,1) = log(ZsForScale(i)/sourceZ);
640 b(i,:) = log(UForScale(:,i)./refU)';
641 end
642
643 % Solve least sqaures implimentation for alpha using remaining heights
644 alphaShear = (A'*A)\(A'*b)';
645 alphaShear(isinf(abs(alphaShear))) = nan;
646 if strcmpi(shearScaling, 'Yes') % Only create new entries if requested
647 wsScaled = refU.*(targetZ/refZ).^alphaShear;
648 % wsScaled(alphaShear < 0.000001) = nan; % If inversion NaN the values
649 % New entries
650 U(:,end+1) = wsScaled;
651 mast{:,end+1} = wsScaled;
652
653 try % Overwrite if variable already exists
654 mast.Properties.VariableNames{end} = ['MeanWindSpeedUID_',num2str(targetZ),'m'];

Appendix C. Data Analysis Code 87

655 catch
656 warning(['Wind Speed at ',num2str(targetZ),'m already defined. Overwriting ...

values'])
657 mast.(['MeanWindSpeedUID_',num2str(targetZ),'m']) = wsScaled;
658 mast(:,end) = [];
659 end
660 Zs(end+1) = targetZ;
661 mast.AlphaShear = alphaShear;
662
663 else
664 mast.AlphaShear = alphaShear;
665 end
666
667 function [mast,stabCond,potenTemp] = richardsonNumber(mast,Zt,ZtUse,Zs,ZsUse,U,T,P)
668 %% Richardson Number calculation
669 % Using Equations and limits given in (Ashrafi 2008): 'A Model to Determine
670 % Atmospheric Stability and its Correlation with CO Concentration'
671 % Also Potential Temp from Venora Master Thesis
672 %
673 % Condition | Richardson Number | Condition Number
674 % ---
675 % Extremely unstable | Ri < -0.04 | 1
676 % Unstable | -0.04 ≤ Ri < 0 | 2
677 % Neutral | Ri = 0 | 3
678 % Stable | 0 < Ri < 0.25 | 4
679 % Extremely stable | Ri ≥ 0.25 | 5
680
681 % Zt = Zt(ZtUse);
682 % T = T(:,ZtUse);
683 % P = P(:,2);
684 potenTemp = nan(height(mast), length(Zt));
685
686 if size(P,2) == length(Zt)
687
688 for i = 1:length(Zt);
689 potenTemp(:,i) = (T(:,i) + 273.15).*(1013.25./P(:,i)).^0.286; % R/Cp = 0.286, ...

Standard Pressure = 1013.25
690 end
691 else
692 for i = 1:length(Zt);
693 potenTemp(:,i) = (T(:,i) + 273.15).*(1013.25./P).^0.286; % R/Cp = 0.286, ...

Standard Pressure = 1013.25
694 end
695
696 end
697
698 Ri = (9.81./(273.15+T(:,end))).*(((potenTemp(:,ZtUse(1)) - ...

potenTemp(:,ZtUse(2)))/(Zt(1) - Zt(2)))./(((U(:,ZsUse(1)) - ...
U(:,ZsUse(2)))/(Zs(ZsUse(1)) - Zs(ZsUse(2)))).^2));

699
700 Ri(mast.AlphaShear ≤ 0) = -1e03; % if Shear 6= 0 then Highly Unstable
701
702 stabCond = nan(height(mast),1);
703 stabCond(Ri < -0.04) = 1;
704 stabCond(Ri ≥ -0.04 & Ri < -0.001) = 2;
705 stabCond(Ri ≥ -0.001 & Ri < 0.001) = 3; % Wont achieve perfect 0 with machine ...

precision will set to 0.0001 tolerance
706 stabCond(Ri ≥ 0.001 & Ri < 0.25) = 4;
707 stabCond(Ri ≥ 0.25) = 5;
708
709 mast.Richardson = Ri;
710 mast.ConditionRi = stabCond;
711
712 function [mast] = moninObukhov(mast,ZsUse,Zs)
713 %% Monin-Obukhov Length Calculation
714 % This method is based on the gradient Richardson number.
715 % Based on Dyer 1974 with criteria in Sathe 2012 Influence of atmospheric
716 % stability on wind turbine loads
717 % This is the method used by Siemens
718 %
719 % Condition | Monin-Length | Condition Number
720 % ---
721 % Extremely unstable | -100 < L < 0 | 1
722 % Unstable | -500 < L < -100 | 2
723 % Neutral | |L| > 500 | 3
724 % Stable | 50 < L < 500 | 4
725 % Extremely stable | 0 < L < 50 | 5
726 %
727 % ToDo: Impliment and compare a direct method using profile methods or frictional
728 % velocity calculation for MOL Calculation
729
730 lS = (Zs(ZsUse(1)) - Zs(ZsUse(2)))/log(Zs(ZsUse(1))/Zs(ZsUse(2))); %Length Scale
731 Ri = mast.Richardson;
732 cond = mast.ConditionRi;
733
734 L = nan(length(Ri),1);
735
736 ind = (cond == 1 | cond == 2); % Unstable & Extremely Unstable
737 L(ind) = lS./Ri(ind);
738
739 ind = cond == 3; % Neutral;
740 L(ind) = 10000;
741
742 ind = cond == 4; % Stable
743 L(ind) = lS.*((1-5*Ri(ind))./Ri(ind));
744
745 ind = (Ri ≥ 0.2); % Extremely Stable
746 % L(ind) = nan; % The method does not work for Ri > 0.2
747 L(ind) = 25; % So we force the value to be 25
748
749 stabCondMol = nan(height(mast),1);
750 stabCondMol(L ≥ -100 & L < 0) = 1;
751 stabCondMol(L ≥ -500 & L < -100) = 2;
752 stabCondMol(abs(L) ≥ 500) = 3;
753 stabCondMol(L ≥ 50 & L < 500) = 4;

Appendix C. Data Analysis Code 88

754 stabCondMol(L ≥ 0 & L < 50) = 5;
755
756 mast.MOL = L;
757 mast.ConditionMol = stabCondMol;
758
759 function [mast] = moninObukhovFit(mast,ZtUse,Zs,U,potenTemp,k_eModel,zo)
760 %% Monin Obukhov Length using nonlinfit
761 %
762
763 % Stability Splitting - Prelim, only 3 classes, according to the potential temp gradient
764
765 stabCondPrelim = nan(height(mast),1);
766 % 3 = neutral , 4 = stable, 2 = unstable
767 stabCondPrelim(potenTemp(:,ZtUse(1)) > potenTemp(:,ZtUse(2))) = 4;
768 stabCondPrelim(potenTemp(:,ZtUse(1)) < potenTemp(:,ZtUse(2))) = 2;
769 stabCondPrelim(abs(potenTemp(:,ZtUse(1)) - potenTemp(:,ZtUse(2))) < 0.1) = 3; % a 0.1 ...

difference is used for the neutral condition
770
771
772 kVals = [0.4 0.4 0.42 0.4];
773 k = kVals(k_eModel);
774 options = optimoptions('lsqcurvefit');
775 options.Display = 'off';
776 h = waitbar(0,'Calculating MOL...');
777 xResult = nan(height(mast),2);
778 exitflagResult = nan(height(mast),1);
779
780 % Fit velocity profile at each time step to calculate MOL
781
782 timeStep = floor(height(mast)/100);
783 xData = Zs;
784 for i =1:height(mast)
785 if ¬isnan(stabCondPrelim(i)) && ¬any(isnan(U(i,:)))
786 yData = U(i,:);
787 switch stabCondPrelim(i)
788 case 2
789 UzModelFun = @(x,xData) (x(1)/k)*(log(xData./zo) - ...

2*log((1+(1-16*xData./x(2)).^0.25) ...
/2)-log((1+((1-16*xData./x(2)).^0.25) .^2)/2) + ...
2*atan((1-16*xData./x(2)).^0.25)-pi/2);

790 [x,¬,¬,exitflag] = lsqcurvefit(UzModelFun,[0.3 -5],xData,yData,[0 -inf] ...
, [10 0],options);

791 xResult(i,:) = x;
792 exitflagResult(i) = exitflag;
793 case 3
794 UzModelFun = @(x,xData) (x(1)/k)*(log(xData./zo));
795 [x,¬,¬,exitflag] = lsqcurvefit(UzModelFun,0.3,xData,yData,0,10,options);
796 xResult(i,1) = x;
797 xResult(i,2) = 10^5;
798 exitflagResult(i) = exitflag;
799 case 4
800 UzModelFun = @(x,xData) (x(1)/k)*(log(xData./zo) + 5*(xData./x(2)));
801 [x,¬,¬,exitflag] = lsqcurvefit(UzModelFun,[0.3 5],xData,yData,[0 0] , ...

[10 inf],options);
802 xResult(i,:) = x;
803 exitflagResult(i) = exitflag;
804 end
805 end
806 if rem(i,timeStep) == 0
807 waitbar(i/height(mast))
808 end
809 end
810 close(h)
811
812 % Stability Classification
813 L = xResult(:,2);
814 stabCondMol = nan(height(mast),1);
815 stabCondMol(L ≥ -100 & L < 0) = 1;
816 stabCondMol(L ≥ -500 & L < -100) = 2;
817 stabCondMol(abs(L) ≥ 500) = 3;
818 stabCondMol(L ≥ 50 & L < 500) = 4;
819 stabCondMol(L ≥ 0 & L < 50) = 5;
820
821 % Remove velocity and potential temperature profiles not matching
822 removalInd1 = stabCondPrelim == 2 & stabCondMol > 3;
823 removalInd2 = stabCondPrelim == 4 & stabCondMol < 3;
824 removalInd3 = stabCondMol == 3 & abs(potenTemp(:,ZtUse(1)) - potenTemp(:,ZtUse(2))) > 0.1;
825 removalInd = any([removalInd1 removalInd2 removalInd3],2);
826 xResult(removalInd,1) = nan;
827 L(removalInd) = nan;
828 stabCondMol(removalInd) = nan;
829
830 mast.uStar = xResult(:,1);
831 mast.MOL = L;
832 mast.ConditionMol = stabCondMol;
833
834 function [mast] = TiShearStab(mast,TiAvail,sourceTi)
835 %% Ti and Shear Based Stability Split
836 % Based on Atmospheric stability affects wind turbine power collection
837 % Authors: Sonia Wharton1 and Julie K Lundquist
838
839 stabCondTiShear = nan(height(mast),1);
840 shear = mast.AlphaShear;
841
842 if strcmpi(TiAvail,'Yes')
843 stabCondTiShear(shear < 0 & sourceTi ≥ 0.2) = 1;
844 stabCondTiShear((shear ≥ 0 & shear < 0.1) & (sourceTi ≥ 0.13 & sourceTi < 0.2)) = 2;
845 stabCondTiShear(shear ≥ 0.1 & shear < 0.2 & (sourceTi ≥ 0.10 & sourceTi < 0.13)) = 3;
846 stabCondTiShear(shear ≥ 0.2 & shear < 0.3 & (sourceTi ≥ 0.08 & sourceTi < 0.1)) = 4;
847 stabCondTiShear(shear ≥ 0.3 & sourceTi < 0.08) = 5;
848 else % No TI data avail
849 stabCondTiShear(shear < 0) = 1;
850 stabCondTiShear(shear ≥ 0 & shear < 0.1) = 2;
851 stabCondTiShear(shear ≥ 0.1 & shear < 0.2) = 3;
852 stabCondTiShear(shear ≥ 0.2 & shear < 0.3) = 4;
853 stabCondTiShear(shear ≥ 0.3) = 5;
854 end

Appendix C. Data Analysis Code 89

855
856 mast.ConditionTiShear = stabCondTiShear;
857
858 function [numReadings,exUnstable,unstable,neutral,stable,exStable] = ...

stabilityClass(stabCond,sectors,sourceD)
859 %% Stability Classification
860 % Bins conditions into sectors
861
862 secAng = 360/sectors; % This determines the sector angles
863 dirInt = (-secAng/2:secAng:360-secAng/2)';
864 dirInt(1) = 360-secAng/2;
865
866 exUnstable = nan(1,sectors);
867 unstable = exUnstable; neutral = exUnstable; stable = exUnstable; exStable = exUnstable;
868 for j = 1:sectors % Sectors
869 if j == 1 % Sector 1
870 exUnstable(j) = sum(stabCond == 1 & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)));
871 unstable(j) = sum(stabCond == 2 & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)));
872 neutral(j) = sum(stabCond == 3 & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)));
873 stable(j) = sum(stabCond == 4 & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)));
874 exStable(j) = sum(stabCond == 5 & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)));
875 else % Remaining sectors
876 exUnstable(j) = sum(stabCond == 1 & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)));
877 unstable(j) = sum(stabCond == 2 & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)));
878 neutral(j) = sum(stabCond == 3 & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)));
879 stable(j) = sum(stabCond == 4 & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)));
880 exStable(j) = sum(stabCond == 5 & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)));
881 end
882 end
883
884 numReadings = sum(sum([exUnstable' unstable' neutral' stable' exStable'])); % Readings ...

per sector
885 exUnstable(j+1) = sum(exUnstable,2);
886 unstable(j+1) = sum(unstable,2);
887 neutral(j+1) = sum(neutral,2);
888 stable(j+1) = sum(stable,2);
889 exStable(j+1) = sum(exStable,2);
890
891 function [rho] = airDensity(t,hr,p)
892 %% AIR_DENSITY calculates density of air
893 % Usage :[ro] = air_density(t,hr,p)
894 % Inputs: t = ambient temperature (C)
895 % hr = relative humidity [%]
896 % p = ambient pressure [Pa] (1000 mb = 1e5 Pa)
897 % Output: ro = air density [kg/m3]
898
899 %
900 % Refs:
901 % 1)'Equation for the Determination of the Density of Moist Air' P. Giacomo Metrologia ...

18, 33-40 (1982)
902 % 2)'Equation for the Determination of the Density of Moist Air' R. S. Davis Metrologia ...

29, 67-70 (1992)
903 %
904 % Downloaded from Matlab Central
905 % ver 1.0 06/10/2006 Jose Luis Prego Borges (Sensor & System Group, Universitat ...

Politecnica de Catalunya)
906 % ver 1.1 05-Feb-2007 Richard Signell (rsignell@usgs.gov) Vectorized
907 % ver 1.2 14/09/2016 Fixed vecorization - Hendri Breedt
908
909 %---
910 T0 = 273.16; % Triple point of water (aprox. 0C)
911 T = T0 + t; % Ambient temperature in Kelvin
912
913 %---
914 %---
915 % 1) Coefficients values
916
917 R = 8.314510; % Molar ideal gas constant [J/(mol.K)]
918 Mv = 18.015*10^-3; % Molar mass of water vapour [kg/mol]
919 Ma = 28.9635*10^-3; % Molar mass of dry air [kg/mol]
920
921 A = 1.2378847*10^-5; % [K^-2]
922 B = -1.9121316*10^-2; % [K^-1]
923 C = 33.93711047; %
924 D = -6.3431645*10^3; % [K]
925
926 a0 = 1.58123*10^-6; % [K/Pa]
927 a1 = -2.9331*10^-8; % [1/Pa]
928 a2 = 1.1043*10^-10; % [1/(K.Pa)]
929 b0 = 5.707*10^-6; % [K/Pa]
930 b1 = -2.051*10^-8; % [1/Pa]
931 c0 = 1.9898*10^-4; % [K/Pa]
932 c1 = -2.376*10^-6; % [1/Pa]
933 d = 1.83*10^-11; % [K^2/Pa^2]
934 e = -0.765*10^-8; % [K^2/Pa^2]
935
936 %---
937 % 2) Calculation of the saturation vapour pressure at ambient temperature, in [Pa]
938 psv = exp(A.*(T.^2) + B.*T + C + D./T); % [Pa]
939
940
941 %---
942 % 3) Calculation of the enhancement factor at ambient temperature and pressure
943 fpt = 1.00062 + (3.14*10^-8)*p + (5.6*10^-7)*(t.^2);
944
945
946 %---

Appendix C. Data Analysis Code 90

947 % 4) Calculation of the mole fraction of water vapour
948 xv = hr.*fpt.*psv.*(1./p)*(10^-2);
949
950
951 %---
952 % 5) Calculation of the compressibility factor of air
953 Z = 1 - ((p./T).*(a0 + a1*t + a2*(t.^2) + (b0+b1*t).*xv + (c0+c1*t).*(xv.^2))) + ...

((p.^2./T.^2).*(d + e.*(xv.^2)));
954
955
956 %---
957 % 6) Final calculation of the air density in [kg/m^3]
958 rho = (p.*Ma./(Z.*R.*T)).*(1 - xv.*(1-Mv./Ma));
959
960 function [MOLTable,maxFreq,MOLSec] = ...

sectorWiseMOL(mast,stabCond,sourceD,sectors,DiurWeighting)
961 %% SectorWiseMol
962 % Determines the sectorwise MOL distribution
963 %
964
965 secAng = 360/sectors; % This determines the sector angles
966 dirInt = (-secAng/2:secAng:360-secAng/2)';
967 dirInt(1) = 360-secAng/2;
968 MOL = mast.MOL;
969
970 MOLSec = nan(5,sectors);
971 MOLSecStdDev = MOLSec;
972
973 for i = 1:5
974 for j = 1:sectors
975 if j == 1 % Sector 1
976 x = MOL(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)));
977 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
978
979 MOLSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
980 MOLSecStdDev(i,j) = std(MOL(stabCond == i & (dirInt(1) ≤ sourceD | sourceD ...

< dirInt(2))),w,'omitnan');
981 else % Remaining sectors
982 x = MOL(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < dirInt(j+1)));
983 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
984
985 MOLSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
986 MOLSecStdDev(i,j) = std(MOL(stabCond == i & (dirInt(j) ≤ sourceD & sourceD ...

< dirInt(j+1))),w,'omitnan');
987 end
988 end
989 end
990
991 hFigTemp = figure(99);
992 [¬,stabilityTable] = stabilityRose(sourceD,stabCond,hFigTemp,'nDirections', sectors);
993 close(hFigTemp);
994
995 maxFreq = max(cell2mat(stabilityTable(3:end-2,end))); % Max freq used later when the ...

stab rose is plotted
996
997 % Save time by reusing the format from the Stability Table
998 MOLTable = [stabilityTable;{'-','-','-','-','-','-','-','-'};stabilityTable];
999 MOLTable{1,1} = 'MOL Length[m]';

1000 MOLTable{sectors+6, 1} = 'Std. Dev MOL Length[m]';
1001 MOLTable(sectors+3:sectors+4,:) = '';
1002 MOLTable(end-1:end,:) = '';
1003 MOLTable(:,8) = [];
1004
1005 MOLTable(3:2+sectors,3:end) = num2cell(MOLSec'); % MOL
1006 MOLTable(end-sectors+1:end,3:end) = num2cell(MOLSecStdDev'); % Std. Dev Gives ...

indication of confidence of MOL
1007
1008 function [shearTable] = ...

sectorWiseShear(mast,stabCond,sourceD,sectors,MOLTable,DiurWeighting)
1009 %% SectorWiseShear
1010 % Determines the sectorwise Shear exponent distribution
1011 %
1012
1013 secAng = 360/sectors; % This determines the sector angles
1014 dirInt = (-secAng/2:secAng:360-secAng/2)';
1015 dirInt(1) = 360-secAng/2;
1016 shear = mast.AlphaShear;
1017
1018 shearSec = nan(5,sectors);
1019 shearSecStdDev = shearSec;
1020
1021 for i = 1:5
1022 for j = 1:sectors
1023 if j == 1 % Sector 1
1024 x = shear(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)));
1025 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
1026
1027 shearSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1028 shearSecStdDev(i,j) = std(shear(stabCond == i & (dirInt(1) ≤ sourceD | ...

sourceD < dirInt(2))),w,'omitnan');
1029 else % Remaining sectors
1030 x = shear(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < dirInt(j+1)));
1031 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
1032
1033 shearSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1034 shearSecStdDev(i,j) = std(shear(stabCond == i & (dirInt(j) ≤ sourceD & ...

sourceD < dirInt(j+1))),w,'omitnan');
1035 end
1036 end
1037 end
1038
1039 % Save time by reusing the format from the MOL Table
1040 shearTable = MOLTable;

Appendix C. Data Analysis Code 91

1041 shearTable{1,1} = 'Shear Exponent';
1042 shearTable{sectors+4, 1} = 'Std. Dev Shear Exponent';
1043
1044 shearTable(3:2+sectors,3:end) = num2cell(shearSec'); % MOL
1045 shearTable(end-sectors+1:end,3:end) = num2cell(shearSecStdDev'); % Std. Dev Gives ...

indication of confidence of Shear value
1046
1047 function [velocityTable,velSecAllHeights] = ...

sectorWiseVelocity(stabCond,refU,sourceD,sectors,MOLTable,U,Zs,DiurWeighting)
1048 %% SectorWiseVelocity
1049 % Determines the sectorwise average velocity distribution
1050 %
1051
1052 secAng = 360/sectors; % This determines the sector angles
1053 dirInt = (-secAng/2:secAng:360-secAng/2)';
1054 dirInt(1) = 360-secAng/2;
1055
1056 velocitySec = nan(5,sectors);
1057 velocitySecStdDev = velocitySec;
1058
1059 for i = 1:5
1060 for j = 1:sectors
1061 if j == 1 % Sector 1
1062 x = refU(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)));
1063 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
1064
1065 velocitySec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1066 velocitySecStdDev(i,j) = std(refU(stabCond == i & (dirInt(1) ≤ sourceD | ...

sourceD < dirInt(2))),w,'omitnan');
1067 else % Remaining sectors
1068 x = refU(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < dirInt(j+1)));
1069 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
1070
1071 velocitySec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1072 velocitySecStdDev(i,j) = std(refU(stabCond == i & (dirInt(j) ≤ sourceD & ...

sourceD < dirInt(j+1))),w,'omitnan');
1073 end
1074 end
1075 end
1076
1077 % Save time by reusing the format from the MOL Table
1078 velocityTable = MOLTable;
1079 velocityTable{1,1} = 'Average Velocity [m/s]';
1080 velocityTable{sectors+4, 1} = 'Std. Dev Velocity [m/s]';
1081
1082 velocityTable(3:2+sectors,3:end) = num2cell(velocitySec');
1083 velocityTable(end-sectors+1:end,3:end) = num2cell(velocitySecStdDev');
1084
1085 % Tabulate the mean velocities at the heights available in the sectors
1086 % Weigted against the diurnals
1087 velSecAllHeights = nan(5,12,length(Zs));
1088 for i = 1:5
1089 for j = 1:sectors
1090 for k = 1:length(Zs)
1091 if j == 1 % Sector 1
1092 x = U(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)),k);
1093 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
1094 velSecAllHeights(i,j,k) = sum(w.*x)./sum(w);
1095 else % Remaining sectors
1096 x = U(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < dirInt(j+1)),k);
1097 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
1098 velSecAllHeights(i,j,k) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1099 end
1100 end
1101 end
1102 end
1103
1104 function [TiTable] = sectorWiseTi(stabCond,sourceTi,sourceD,sectors,MOLTable,DiurWeighting)
1105 %% SectorWiseVelocity
1106 % Determines the sectorwise average Ti distribution
1107 %
1108
1109 secAng = 360/sectors; % This determines the sector angles
1110 dirInt = (-secAng/2:secAng:360-secAng/2)';
1111 dirInt(1) = 360-secAng/2;
1112
1113 TiSec = nan(5,sectors);
1114 TiSecStdDev = TiSec;
1115
1116 for i = 1:5
1117 for j = 1:sectors
1118 if j == 1 % Sector 1
1119 x = sourceTi(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)));
1120 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
1121
1122 TiSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1123 TiSecStdDev(i,j) = std(sourceTi(stabCond == i & (dirInt(1) ≤ sourceD | ...

sourceD < dirInt(2))),w,'omitnan');
1124 else % Remaining sectors
1125 x = sourceTi(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < dirInt(j+1)));
1126 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
1127
1128 TiSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1129 TiSecStdDev(i,j) = std(sourceTi(stabCond == i & (dirInt(j) ≤ sourceD & ...

sourceD < dirInt(j+1))),w,'omitnan');
1130 end
1131 end
1132 end
1133
1134 % Save time by reusing the format from the MOL Table

Appendix C. Data Analysis Code 92

1135 TiTable = MOLTable;
1136 TiTable{1,1} = 'Turbulence Intensity';
1137 TiTable{sectors+4, 1} = 'Std. Dev Turbulence Intensity';
1138
1139 TiTable(3:2+sectors,3:end) = num2cell(TiSec');
1140 TiTable(end-sectors+1:end,3:end) = num2cell(TiSecStdDev');
1141
1142 function [densTable,densSec] = ...

sectorWiseDensity(stabCond,rho,sourceD,sectors,MOLTable,DiurWeighting)
1143 %% SectorWiseDensity
1144 % Determines the sectorwise average density distribution
1145 %
1146
1147 secAng = 360/sectors; % This determines the sector angles
1148 dirInt = (-secAng/2:secAng:360-secAng/2)';
1149 dirInt(1) = 360-secAng/2;
1150
1151 densSec = nan(5,sectors);
1152 densSecStdDev = densSec;
1153
1154 for i = 1:5
1155 for j = 1:sectors
1156 if j == 1 % Sector 1
1157 x = rho(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < dirInt(2)));
1158 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
1159
1160 densSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1161 densSecStdDev(i,j) = std(rho(stabCond == i & (dirInt(1) ≤ sourceD | ...

sourceD < dirInt(2))),w,'omitnan');
1162 else % Remaining sectors
1163 x = rho(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < dirInt(j+1)));
1164 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
1165
1166 densSec(i,j) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1167 densSecStdDev(i,j) = std(rho(stabCond == i & (dirInt(j) ≤ sourceD & ...

sourceD < dirInt(j+1))),w,'omitnan');
1168 end
1169 end
1170 end
1171
1172 % Save time by reusing the format from the MOL Table
1173 densTable = MOLTable;
1174 densTable{1,1} = 'Density [kg/m3]';
1175 densTable{sectors+4,1} = 'Std. Dev Density';
1176
1177 densTable(3:2+sectors,3:end) = num2cell(densSec');
1178 densTable(end-sectors+1:end,3:end) = num2cell(densSecStdDev');
1179
1180 function [velocityStab] = conditionalVelocity(stabCond,refU)
1181 %% conditionalVelocity
1182 % Bin velocities by stabilty class for use in figure
1183 % Based on the source U
1184
1185 bins = ceil(max(refU));
1186 velocityStab = nan(6,bins+1);
1187 colTotal = nan(1,bins);
1188 for j = 0:bins
1189 for i = 1:5
1190 velocityStab(i,j+1) = sum(stabCond == i & refU ≥ j & refU ≤ j+1);
1191 end
1192 colTotal(j+1) = sum(velocityStab(1:5,j+1)); % Last Row = Velocity
1193 velocityStab(6,j+1) = j;
1194 end
1195
1196 delInd = sum(velocityStab(1:end-1,:)) ≤ 3;
1197 velocityStab(:,delInd) = [];
1198 colTotal(delInd) = [];
1199
1200 for j = 0:size(velocityStab,2)-1;
1201 velocityStab(1:end-1,j+1) = velocityStab(1:end-1,j+1)./colTotal(j+1);
1202 end
1203
1204 function [profiles,turbModelConstants,qoTable,PotenTempSecAllHeights,uStarTable] = ...

modelProfiles(mast,Zs,Zt,ZsUse,¬,zo,U, ...
ZtUse,potenTemp,stabCond,sourceD,sectors,sectorTables,bcZheight, ...
bcZstep,MOLTable,velSecAllHeights, DiurWeighting,k_eModel,densSec,molCalcType)

1205 %% Profiles based on MOST
1206 % Assuming the shear stress and heat flux to be constant over the lower part
1207 % of the atmospheric boundary layer, a modified logarithmic velocity and
1208 % temperature profles are created. Used as boundary conditions
1209 % ref: AERODYNAMIC SIMULATIONS OF WIND TURBINES OPERATING IN ATMOSPHERIC
1210 % BOUNDARY LAYER WITH VARIOUS THERMAL STRATIFICATIONS [Alinot and Masson]
1211 % Frictional velocity using Pieterse 2013 with Dyer approximations for
1212 % fluxes from Dyer 1974 and Venora 2013
1213 %
1214 % Based on measurements of the turbulent kinetic energy budget terms in the
1215 % surface layer of an atmospheric boundary layer over a at terrain one can
1216 % find k,epsilon and Omega. Ref [Alinot and Masson]
1217 %
1218 % Used as boundary conditions from profiles for temp and velocity Ref
1219 % [Monin-Obukhov Similarity Theory Applied to Offshore Wind Data]
1220 % The stability conditon based on MOL is used for the profile creations
1221
1222 %% Constants
1223 modelNames = {'k_e Orig (Jones and Launder)' 'k_e ASL neutral (Sorensen)' 'k_e MOST ...

(Alinot and Masson)' 'k_e MOST (Proposed DTU)'}';
1224 constantVals = {1.44 1.92 1.0 0.09 1.0 1.3 [] 0.4
1225 1.21 1.92 0 0.03 1 1.3 [] 0.4
1226 1.176 1.92 'F_Ce3' 0.033 1 1.3 1 0.42
1227 1.21 1.92 'F_Ce3' 0.03 1 1.3 1 0.4};
1228
1229 Ce1 = constantVals(:,1);
1230 Ce2 = constantVals(:,2);
1231 Ce3 = constantVals(:,3);

Appendix C. Data Analysis Code 93

1232 Cmu = constantVals(:,4);
1233 sigma_k = constantVals(:,5);
1234 sigma_e = constantVals(:,6);
1235 sigma_theta = constantVals(:,7);
1236 K = constantVals(:,8);
1237 k_eConstants = table(modelNames,Ce1,Ce2,Ce3,Cmu,sigma_k,sigma_e,sigma_theta,K);
1238
1239 % Values from model selected
1240 Cmu = cell2mat(k_eConstants.Cmu(k_eModel));
1241 sigma_theta = cell2mat(k_eConstants.sigma_theta(k_eModel));
1242 Ce1 = cell2mat(k_eConstants.Ce1(k_eModel));
1243 Ce2 = cell2mat(k_eConstants.Ce2(k_eModel));
1244 k = cell2mat(k_eConstants.K(k_eModel));
1245
1246 g = 9.81;
1247 Cp = 1003.5;
1248
1249 L = mast.MOL;
1250 MOLSector = cell2mat(sectorTables{1}(3:2+sectors,3:end));
1251 zFine = 0:bcZstep:bcZheight;
1252
1253 %% Frictional Values
1254 U = U(:,ZsUse);
1255 Z1 = Zs(ZsUse(1));
1256 Z2 = Zs(ZsUse(2));
1257 Zt1 = Zt(ZtUse(1));
1258 Zt2 = Zt(ZtUse(2));
1259
1260 psiM1 = nan(length(L),1);
1261 psiM2 = psiM1;
1262 psiT1 = psiM1;
1263 psiT2 = psiM1;
1264
1265 % Using two heights to obtain an initial approximation for the frictional
1266 % values
1267
1268 ind = stabCond == 1 | stabCond == 2; % Extremly Unstable and Unstable
1269 psiM1(ind) = ...

2*log((1+(1-16*Z1./L(ind)).^0.25)/2)+log((1+((1-16*Z1./L(ind)).^0.25).^2)/2) - ...
2*atan((1-16*Z1./L(ind)).^0.25)+pi/2;

1270 psiM2(ind) = ...
2*log((1+(1-16*Z2./L(ind)).^0.25)/2)+log((1+((1-16*Z2./L(ind)).^0.25).^2)/2) - ...
2*atan((1-16*Z2./L(ind)).^0.25)+pi/2;

1271 psiT1(ind) = 2*log((1+((1-16*Z1./L(ind)).^0.25).^2)/2);
1272 psiT2(ind) = 2*log((1+((1-16*Z2./L(ind)).^0.25).^2)/2);
1273
1274 ind = stabCond == 3; % Neutral
1275 psiM1(ind) = 0;
1276 psiM2(ind) = 0;
1277 psiT1(ind) = 0;
1278 psiT2(ind) = 0;
1279
1280 ind = stabCond == 4 | stabCond == 5; % Stable and Ex Stable
1281 psiM1(ind) = -5*Z1./L(ind);
1282 psiM2(ind) = -5*Z2./L(ind);
1283 psiT1(ind) = psiM1(ind);
1284 psiT2(ind) = psiM2(ind);
1285
1286 % Evaluation of Stability Corrections in
1287 % Wind Speed Profiles Over the North Sea [A.J.M. Van Wijk]
1288 % ind = stabCond == 5; % Extremely Stable
1289 % psiM1(ind) = -0.7*Z1./L(ind) - (0.75*Z1./L(ind) - 10.72*exp(-0.35*Z1./L(ind))) - 10.72;
1290 % psiM2(ind) = -0.7*Z2./L(ind) - (0.75*Z2./L(ind) - 10.72*exp(-0.35*Z2./L(ind))) - 10.72;
1291 % psiT1(ind) = psiM1(ind);
1292 % psiT2(ind) = psiM2(ind);
1293
1294 % Frictional Velocity and Temp Approximations
1295 if strcmpi(molCalcType,'fit')
1296 uStarAprox = mast.uStar;
1297 else
1298 uStarAprox = k*(U(:,2)-U(:,1))./(log(Z2/Z1) - psiM2 + psiM1);
1299 end
1300 potenTempStarAprox = k*(potenTemp(:,2)-potenTemp(:,1))./(log(Zt2/Zt1) - psiT2 + psiT1);
1301 potenTemp0Aprox = (potenTempStarAprox./(uStarAprox.^2)).*(g*k*L);
1302 potenTemp0Aprox(isinf(potenTemp0Aprox)) = nan;
1303 %% Split Sectorwise/Stability Class
1304
1305 secAng = 360/sectors; % This determines the sector angles
1306 dirInt = (-secAng/2:secAng:360-secAng/2)';
1307 dirInt(1) = 360-secAng/2;
1308
1309 uStarSec = nan(sectors,5);
1310 potenTempStarSec = uStarSec;
1311 Temp0Sec = uStarSec;
1312
1313 for i = 1:5
1314 for j = 1:sectors
1315 if j == 1 % Sector 1
1316 uStarSec(j,i) = mean(uStarAprox(stabCond == i & (dirInt(1) ≤ sourceD | ...

sourceD < dirInt(2))),'omitnan');
1317 potenTempStarSec(j,i) = mean(potenTempStarAprox(stabCond == i & (dirInt(1) ≤...

sourceD | sourceD < dirInt(2))),'omitnan');
1318 Temp0Sec(j,i) = mean(potenTemp0Aprox(stabCond == i & (dirInt(1) ≤ sourceD ...

| sourceD < dirInt(2))),'omitnan');
1319 else % Remaining sectors
1320 uStarSec(j,i) = mean(uStarAprox(stabCond == i & (dirInt(j) ≤ sourceD & ...

sourceD < dirInt(j+1))),'omitnan');
1321 potenTempStarSec(j,i) = mean(potenTempStarAprox(stabCond == i & (dirInt(j) ≤...

sourceD & sourceD < dirInt(j+1))),'omitnan');
1322 Temp0Sec(j,i) = mean(potenTemp0Aprox(stabCond == i & (dirInt(j) ≤ sourceD ...

& sourceD < dirInt(j+1))),'omitnan');
1323 end
1324 end
1325 end
1326
1327 % Tabulate the mean potenTemp at the heights available in the sectors

Appendix C. Data Analysis Code 94

1328 PotenTempSecAllHeights = nan(5,12,length(Zt));
1329 for i = 1:5
1330 for j = 1:sectors
1331 for k2 = 1:length(Zt)
1332 if j == 1 % Sector 1
1333 x = potenTemp(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),k2);
1334 w = DiurWeighting(stabCond == i & (dirInt(1) ≤ sourceD | sourceD < ...

dirInt(2)),i);
1335 PotenTempSecAllHeights(i,j,k2) = sum(w.*x)./sum(w);
1336 else % Remaining sectors
1337 x = potenTemp(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),k2);
1338 w = DiurWeighting(stabCond == i & (dirInt(j) ≤ sourceD & sourceD < ...

dirInt(j+1)),i);
1339 PotenTempSecAllHeights(i,j,k2) = sum(w.*x,'omitnan')./sum(w,'omitnan');
1340 end
1341 end
1342 end
1343 end
1344 %% Profiles
1345 stabText = {'Extremely Unstable', 'Unstable', 'Neutral', 'Stable', 'Extremely Stable'};
1346 Uz = nan(sectors,5,length(zFine)); % Velocity Profile
1347 potenTempZ = Uz; % Potential Temp Profile
1348 epsilonZ = Uz; % epsilon profile
1349 kZ = Uz; % k profile
1350 omegaZ = Uz; % omega profile
1351 f_Ce3 = Uz; % Ce3 k-epsilon profile from DTU MOST model (This is ...

the default)
1352 qoSec = nan(size(MOLSector));
1353 uStarSecFinal = nan(size(MOLSector));
1354
1355 for i = 1:sectors
1356 for j = 1:5
1357 yVel = reshape(velSecAllHeights(j,i,:),length(velSecAllHeights(j,i,:)),1)';
1358 xZs = Zs;
1359 beta0Vel = uStarSec(i,j); % Use the UstarSec computed from 2 heights as the ...

initial guess
1360 % uStar is the value that we fit for on the heights available
1361
1362 yTemp = ...

reshape(PotenTempSecAllHeights(j,i,:),length(PotenTempSecAllHeights(j,i,:)),1)';
1363 xTemp = Zt;
1364 beta0Temp = [potenTempStarSec(i,j) 280]; % Use the PotenTempstarSec computed ...

from 2 heights as the initial guess
1365 % PotenTemp is the value that we fit for on the heights available
1366 switch j
1367 case {1,2} % UnStable
1368 try
1369 UzModelFun =@(uStarBeta,z) (uStarBeta(1)/k)*(log(z./zo) - ...

2*log((1+(1-16*z./MOLSector(i,j)).^0.25)/2) ...
-log((1+((1-16*z./MOLSector(i,j)).^0.25).^2)/2) + ...
2*atan((1-16*z./MOLSector(i,j)).^0.25)-pi/2);

1370 %if strcmpi(molCalcType,'fit')
1371 % betaVel = beta0Vel; % If profile MOL fit was run use the ...

calculated ustar
1372 %else
1373 [betaVel] = nlinfit(xZs,yVel,UzModelFun,beta0Vel);
1374 % end
1375 Uz(i,j,:) = UzModelFun(betaVel,zFine);
1376 Uz(i,j,1) = 0;
1377
1378 potenTempzModelFun =@(potenTempStarBeta,z) potenTempStarBeta(2) + ...

(potenTempStarBeta(1)/k)*(log(z./zo) - ...
(2*log((1+((1-16*z./MOLSector(i,j)).^0.25).^2)/2)));

1379 [betaTemp] = nlinfit(xTemp,yTemp,potenTempzModelFun,beta0Temp);
1380 potenTempZ(i,j,:) = potenTempzModelFun(betaTemp,zFine);
1381 potenTempZ(i,j,1) = betaTemp(2);
1382
1383 psiM = (1-16*zFine./MOLSector(i,j)).^(-0.25);
1384 psiT = sigma_theta*(1-16*zFine./MOLSector(i,j)).^(-0.5);
1385 psiE = 1-zFine./MOLSector(i,j);
1386
1387 epsilonZ(i,j,:) = (betaVel./(k*zFine)).*psiE;
1388 kZ(i,j,:) = ((1/sqrt(Cmu))*betaVel^2)*sqrt(psiE./psiM);
1389 omegaZ(i,j,:) = k*epsilonZ(i,j,:)./Cmu; %Todo: confirm this eqaution
1390
1391 % DTU K-e MOST Model
1392 fe = psiM.^(5/2).*(1-0.75*16*zFine./MOLSector(i,j));
1393 f_Ce3(i,j,:) = ...

(sigma_theta./(zFine./MOLSector(i,j))).*(psiM./psiT).*(Ce1.*psiM ...
- Ce2.*psiM + (Ce2-Ce1)./(sqrt(psiE).*fe));

1394
1395 catch
1396 warning('Not enough data to create profile in the %s condition for ...

sector %s',stabText{j},num2str(i))
1397 end
1398
1399 case 3 % Neutral
1400 try
1401 UzModelFun =@(uStarBeta,z) (uStarBeta/k)*(log(z./zo));
1402 % if strcmpi(molCalcType,'fit')
1403 % betaVel = beta0Vel; % If profile MOL fit was run use the ...

calculated ustar
1404 % else
1405 [betaVel] = nlinfit(xZs,yVel,UzModelFun,beta0Vel);
1406 % end
1407 Uz(i,j,:) = UzModelFun(betaVel,zFine);
1408 Uz(i,j,1) = 0;
1409
1410 potenTempzModelFun =@(potenTempStarBeta,z) potenTempStarBeta(2) + ...

(potenTempStarBeta(1)/k)*(log(z./zo));
1411 [betaTemp] = nlinfit(xTemp,yTemp,potenTempzModelFun,beta0Temp);
1412 potenTempZ(i,j,:) = potenTempzModelFun(betaTemp,zFine);
1413 potenTempZ(i,j,1) = betaTemp(2);
1414

Appendix C. Data Analysis Code 95

1415 epsilonZ(i,j,:) = (betaVel^3)./(k*zFine);
1416 kZ(i,j,:) = (betaVel^2)./sqrt(Cmu);
1417 omegaZ(i,j,:) = k*epsilonZ(i,j,:)./Cmu; %Todo: confirm this eqaution
1418
1419 % f_Ce3 = nan; Remains nan's
1420 catch
1421 warning('Not enough data to create profile in the %s condition for ...

sector %s',stabText{j},num2str(i))
1422 end
1423
1424 case {4,5} % Stable
1425 try
1426 UzModelFun =@(uStarBeta,z) (uStarBeta/k)*(log(z./zo) + ...

5*(z./MOLSector(i,j)));
1427 % if strcmpi(molCalcType,'fit')
1428 % betaVel = beta0Vel; % If profile MOL fit was run use the ...

calculated ustar
1429 % else
1430 [betaVel] = nlinfit(xZs,yVel,UzModelFun,beta0Vel);
1431 % end
1432 Uz(i,j,:) = UzModelFun(betaVel,zFine);
1433 Uz(i,j,1) = 0;
1434
1435 potenTempzModelFun =@(potenTempStarBeta,z) potenTempStarBeta(2) + ...

(potenTempStarBeta(1)/k)*(log(z./zo) + 5*(z./MOLSector(i,j)));
1436 [betaTemp] = nlinfit(xTemp,yTemp,potenTempzModelFun,beta0Temp);
1437 potenTempZ(i,j,:) = potenTempzModelFun(betaTemp,zFine);
1438 potenTempZ(i,j,1) = betaTemp(2);
1439
1440 psiM = 1+5*zFine./MOLSector(i,j);
1441 psiT = psiM;
1442 psiE = psiM-zFine./MOLSector(i,j);
1443
1444 epsilonZ(i,j,:) = (betaVel./(k*zFine)).*psiE;
1445 kZ(i,j,:) = ((1/sqrt(Cmu))*betaVel^2)*sqrt(psiE./psiM);
1446 omegaZ(i,j,:) = k*epsilonZ(i,j,:)./Cmu; %Todo: confirm this eqaution
1447
1448 fe = psiM.^(-5/2).*(2*psiM-1);
1449 f_Ce3(i,j,:) = ...

(sigma_theta./(zFine./MOLSector(i,j))).*(psiM./psiT).*(Ce1.*psiM ...
- Ce2.*psiM + (Ce2-Ce1)./(sqrt(psiE).*fe));

1450
1451 catch
1452 warning('Not enough data to create profile in the %s condition for ...

sector %s',stabText{j},num2str(i))
1453 end
1454
1455 end
1456
1457 try
1458 qoSec(i,j) = -Cp*densSec(j,i).*betaVel.*betaTemp(1); % Heat Flux Calc - ...

Based on Pieterse 2013 - q0 [W/m^2]
1459 catch
1460 qoSec(i,j) = nan;
1461 end
1462
1463 try
1464 uStarSecFinal(i,j) = betaVel;
1465 catch
1466 uStarSecFinal(i,j) = nan;
1467 end
1468
1469 end
1470 end
1471
1472 notes = {'f(sector,condition,height) - condition = [exUnstab,Unstab,Neutral,Stab,exStab]'};
1473 notes2 = {'Inspect values at small Z. Unstable Ce3 should be [+] and Stable Ce3 should ...

be [-]'};
1474
1475 %% Alinot and Masson
1476 % Only valid of -2.3 < z/L < 2 and also highly sensitive
1477 % z/L< 0.33 | z/L > 0.33 | z/L < -0.25 | z/L > -0.25
1478 if k_eModel == 3
1479 AMcons = [4.181 5.225 -0.0609 1.765
1480 33.994 -5.269 -33.672 17.1346
1481 -442.398 5.115 -546.880 19.165
1482 2368.12 -2.406 -3234.06 11.912
1483 -6043.544 0.435 -9490.792 3.821
1484 5970.776 0.000 -11163.202 0.492];
1485
1486 n = 0:5;
1487 aMat = nan(length(zFine),6);
1488 f_Ce3 = nan(sectors,5,length(zFine)); % A&M k-epsilon model (Numerically unstable ...

- Consider constant mean values)
1489
1490 for i = 1:sectors
1491 for j = 1:5
1492 zeta = zFine./MOLSector(i,j);
1493 for l = 1:4
1494 switch l
1495 case 1
1496 ind = zeta ≥ 0 & zeta < 0.33;
1497 case 2
1498 ind = zeta ≥ 0.33 & zeta < 0;
1499 case 3
1500 ind = zeta < -0.25 & zeta >-2.3;
1501 case 4
1502 ind = zeta ≥ -0.25 & zeta < 0;
1503 end
1504 aMat(ind,1) = AMcons(1,l)';
1505 aMat(ind,2) = AMcons(2,l)';
1506 aMat(ind,3) = AMcons(3,l)';
1507 aMat(ind,4) = AMcons(4,l)';
1508 aMat(ind,5) = AMcons(5,l)';
1509 aMat(ind,6) = AMcons(6,l)';
1510 end
1511 for k = 1:length(zFine);

Appendix C. Data Analysis Code 96

1512 f_Ce3(i,j,k) = sum(aMat(k,:).*zeta(k).^n);
1513 end
1514 end
1515 end
1516
1517 notes2 = {'This model is numerically over sensitive - Consider mean values for Ce3 ...

Ranges from -0.8 for unstable conditions up to 2.15 in stable conditions'};
1518 end
1519
1520 %% Profile & Constant Outputs
1521 profiles = struct('Uz',Uz,'potenTempZ',potenTempZ,'epsilonZ',epsilonZ, ...

'kZ',kZ,'omegaZ',omegaZ,'Z',zFine,'Note',notes);
1522
1523 if k_eModel == 3 || k_eModel == 4
1524 turbModelConstants = struct('Model',modelNames(k_eModel),'Constants' ...

,k_eConstants(k_eModel,:),'F_Ce3',f_Ce3,'Note',notes2);
1525 else
1526 turbModelConstants = struct('Model',modelNames(k_eModel),'Constants' ...

,k_eConstants(k_eModel,:));
1527 end
1528 %% Heat Flux Table
1529
1530 qoTable = MOLTable;
1531 qoTable{1,1} = 'Heat Flux [W/m^2]';
1532 qoTable(3:2+sectors,3:end) = num2cell(qoSec);
1533 qoTable = qoTable(1:2+sectors,1:end);
1534
1535 %% Frictional Velocity Table
1536 uStarTable = MOLTable;
1537 uStarTable{1,1} = 'Frictional Velocity [m/s]';
1538 uStarTable(3:2+sectors,3:end) = num2cell(uStarSecFinal);
1539 uStarTable = uStarTable(1:2+sectors,1:end);
1540
1541 function [diurSpeed,diurAlpha,diurTi,diurRi, ...

diurMOL,diurCondition,diurConditionUnWeight,DiurWeighting] = ...
diurnalHourly(mast,sourceU,sourceTi,stabCond, diurRiFilterVal,diurMOLFilterVal)

1542 %% Hourly Diurnal Calculation
1543 % Creates 24 hour diurnal using daily hourly averages using the mean value for
1544 % each time cycle. The method uses the normal distribution (mean,stdDev) of
1545 % each time step i.e 01:10 to determine the values. Validated using
1546 % normfit() function
1547
1548 hourVec = datevec(mast.TimeStamp);
1549 hourVec = hourVec(:,4);
1550
1551 % This is the Richardson number used for calculating the diurnal, the
1552 % outliers are removed as to not scew the result with inf values
1553 RiFilterInd = mast.Richardson < diurRiFilterVal(2) & mast.Richardson > diurRiFilterVal(1);
1554 RiFilter = mast.Richardson(RiFilterInd);
1555 MOLFilterInd = mast.MOL < diurMOLFilterVal(2) & mast.MOL > diurMOLFilterVal(1);
1556 MOLFilter = mast.MOL(MOLFilterInd);
1557
1558 diurAlpha = nan(24,7);
1559 diurTi = diurAlpha;
1560 diurSpeed = diurAlpha;
1561 diurRi = nan(24,2);
1562 diurMOL = diurRi;
1563 diurConditionUnWeight = nan(24,5);
1564 diurCondition = diurConditionUnWeight;
1565 diurCondition2 = diurCondition;
1566 DiurWeighting = nan(height(mast),5);
1567 diurRiMean = nan(24,5);
1568 diurMOLMean = diurRiMean;
1569 diurRiVar = diurRiMean;
1570 diurMOLVar = diurRiMean;
1571
1572
1573 %% Diurnal Hourly
1574
1575 for i = 0:23 % Values for diurnal
1576 for j = 1:5 % Stability Class
1577 diurSpeed(i+1,j) = mean(sourceU(hourVec == i & stabCond == j),'omitnan');
1578 diurAlpha(i+1,j) = mean(mast.AlphaShear(hourVec == i & stabCond == j),'omitnan');
1579 diurTi(i+1,j) = mean(sourceTi(hourVec == i & stabCond == j),'omitnan');
1580 diurConditionUnWeight(i+1,j) = sum(hourVec == i & stabCond == j,'omitnan'); % ...

How many times each condition appeared
1581
1582 diurRiMean(i+1,j) = mean(RiFilter(hourVec(RiFilterInd) == i & ...

stabCond(RiFilterInd) == j),'omitnan');
1583 diurMOLMean(i+1,j) = mean(MOLFilter(hourVec(MOLFilterInd) == i & ...

stabCond(MOLFilterInd) == j),'omitnan');
1584 diurRiVar(i+1,j) = var(RiFilter(hourVec(RiFilterInd) == i & ...

stabCond(RiFilterInd) == j),'omitnan');
1585 diurMOLVar(i+1,j) = var(MOLFilter(hourVec(MOLFilterInd) == i & ...

stabCond(MOLFilterInd) == j),'omitnan');
1586 end
1587
1588 % Total in second last row
1589 diurSpeed(i+1,end-1) = mean(sourceU(hourVec == i),'omitnan');
1590 diurAlpha(i+1,end-1) = mean(mast.AlphaShear(hourVec == i),'omitnan');
1591 diurTi(i+1,end-1) = mean(sourceTi(hourVec == i),'omitnan');
1592
1593
1594 % Standard devitaion of the total in last row
1595 diurSpeed(i+1,end) = std(sourceU(hourVec == i),1,'omitnan');
1596 diurAlpha(i+1,end) = std(mast.AlphaShear(hourVec == i),1,'omitnan');
1597 diurTi(i+1,end) = std(sourceTi(hourVec == i),1,'omitnan');
1598 end
1599
1600 %% Normalization Hourly
1601 %Normalize data againts time step for each condition
1602 for j = 1:5
1603 diurCondition(:,j) = diurConditionUnWeight(:,j)./max(diurConditionUnWeight(:,j)); ...

%Normalize data
1604 end
1605
1606 %Normalize data against the most dominant condition at each time step

Appendix C. Data Analysis Code 97

1607 for i = 1:24
1608 diurCondition2(i,:) = diurConditionUnWeight(i,:)./max(diurConditionUnWeight(i,:));
1609 end
1610
1611 %% Stability Class Diurnal 10min
1612 % Weighted diurnal conditions
1613 for i = 0:23 % 10 Min values for diurnal
1614 xRi = diurRiMean(i+1,:);
1615 xMOL = diurMOLMean(i+1,:);
1616 varRi = diurRiVar(i+1,:);
1617 varMOL = diurMOLVar(i+1,:);
1618 w = diurCondition2(i+1,:);
1619 % Total
1620 diurRi(i+1,1) = sum(w.*xRi,'omitnan')./sum(w,'omitnan');
1621 diurMOL(i+1,1) = sum(w.*xMOL,'omitnan')./sum(w,'omitnan');
1622
1623 % Standard devitaion: From weighted Var method ref: ...

http://mathworld.wolfram.com/NormalSumDistribution.html
1624 diurRi(i+1,2) = sqrt(sum((varRi).*(w.^2),'omitnan'));
1625 diurMOL(i+1,2) = sqrt(sum((varMOL).*(w.^2),'omitnan'));
1626 end
1627
1628 %% Set weighting at each hour
1629 for i = 0:23 % Values for diurnal
1630 for j = 1:5 % Stability Class
1631 DiurWeighting(hourVec == i & stabCond == j,j) = diurCondition(i+1,j);
1632 end
1633 end
1634
1635 function [diurSpeed,diurAlpha,diurTi,diurRi,diurMOL ...

,diurCondition,diurConditionUnWeight,DiurWeighting] = ...
diurnal10Minutely(mast,sourceU,sourceTi,stabCond,diurRiFilterVal,diurMOLFilterVal)

1636 %% 10 Minute Diurnal Calculation
1637 % Creates 24 hour diurnal using daily 10min averages using the mean value for
1638 % each time cycle. The method uses the normal distribution (mean,stdDev) of
1639 % each time step i.e 01:10 to determine the values. Validated using
1640 % normfit() function
1641
1642 hourVec = datevec(mast.TimeStamp);
1643 minsVec = hourVec(:,5);
1644 hourVec = hourVec(:,4);
1645
1646 % This is the Richardson number used for calculating the diurnal, the
1647 % outliers are removed as to not scew the result with inf values
1648 RiFilterInd = mast.Richardson < diurRiFilterVal(2) & mast.Richardson > diurRiFilterVal(1);
1649 RiFilter = mast.Richardson(RiFilterInd);
1650 MOLFilterInd = mast.MOL < diurMOLFilterVal(2) & mast.MOL > diurMOLFilterVal(1);
1651 MOLFilter = mast.MOL(MOLFilterInd);
1652
1653 diurAlpha = nan(144,7);
1654 diurTi = diurAlpha;
1655 diurSpeed = diurAlpha;
1656 diurRiMean = nan(144,5);
1657 diurMOLMean = diurRiMean;
1658 diurRiVar = diurRiMean;
1659 diurMOLVar = diurRiMean;
1660 diurRi = nan(144,2);
1661 diurMOL = diurRi;
1662 diurConditionUnWeight = nan(144,5);
1663 diurCondition = diurConditionUnWeight;
1664 diurCondition2 = diurConditionUnWeight;
1665 DiurWeighting = nan(height(mast),5);
1666
1667 minComb = [0 10 20 30 40 50]; % Possible 10min combinations
1668
1669 %% Diurnal 10min
1670 countMin = 0;
1671 countHrs = 0;
1672 hrs = 0;
1673 for i = 0:143 % 10 Min values for diurnal
1674
1675 countMin = countMin + 1;
1676 countHrs = countHrs + 1;
1677 mins = minComb(countMin);
1678 if countMin == 6
1679 countMin = 0;
1680 end
1681 if countHrs == 7
1682 hrs = hrs + 1;
1683 countHrs = 1;
1684 end
1685
1686 for j = 1:5 % Stability Classes
1687 diurSpeed(i+1,j) = mean(sourceU(hourVec == hrs & stabCond == j & minsVec == ...

mins),'omitnan');
1688 diurAlpha(i+1,j) = mean(mast.AlphaShear(hourVec == hrs & stabCond == j & ...

minsVec == mins),'omitnan');
1689 diurTi(i+1,j) = mean(sourceTi(hourVec == hrs & stabCond == j & minsVec == ...

mins),'omitnan');
1690 diurConditionUnWeight(i+1,j) = sum(hourVec == hrs & stabCond == j & minsVec == ...

mins,'omitnan'); % How many times each condition appeared
1691
1692 diurRiMean(i+1,j) = mean(RiFilter(hourVec(RiFilterInd) == hrs & ...

stabCond(RiFilterInd) == j & minsVec(RiFilterInd) == mins),'omitnan');
1693 diurMOLMean(i+1,j) = mean(MOLFilter(hourVec(MOLFilterInd) == hrs & ...

stabCond(MOLFilterInd) == j & minsVec(MOLFilterInd) == mins),'omitnan');
1694 diurRiVar(i+1,j) = var(RiFilter(hourVec(RiFilterInd) == hrs & ...

stabCond(RiFilterInd) == j & minsVec(RiFilterInd) == mins),'omitnan');
1695 diurMOLVar(i+1,j) = var(MOLFilter(hourVec(MOLFilterInd) == hrs & ...

stabCond(MOLFilterInd) == j & minsVec(MOLFilterInd) == mins),'omitnan');
1696 end
1697
1698 % Total in second last row
1699 diurSpeed(i+1,end-1) = mean(sourceU(hourVec == hrs & minsVec == mins),'omitnan');
1700 diurAlpha(i+1,end-1) = mean(mast.AlphaShear(hourVec == hrs & minsVec == ...

mins),'omitnan');
1701 diurTi(i+1,end-1) = mean(sourceTi(hourVec == hrs & minsVec == mins),'omitnan');

Appendix C. Data Analysis Code 98

1702
1703 % Standard devitaion of the total in last row
1704 diurSpeed(i+1,end) = std(sourceU(hourVec == hrs & minsVec == mins),1,'omitnan');
1705 diurAlpha(i+1,end) = std(mast.AlphaShear(hourVec == hrs & minsVec == ...

mins),1,'omitnan');
1706 diurTi(i+1,end) = std(sourceTi(hourVec == hrs & minsVec == mins),1,'omitnan');
1707
1708 end
1709
1710 %% Normilization 10min
1711 %Normalize data againts time step for each condition
1712 for j = 1:5
1713 diurCondition(:,j) = diurConditionUnWeight(:,j)./max(diurConditionUnWeight(:,j));
1714 end
1715
1716 %Normalize data against the most dominant condition at each time step
1717 for i = 1:144
1718 diurCondition2(i,:) = diurConditionUnWeight(i,:)./max(diurConditionUnWeight(i,:));
1719 end
1720
1721 %% Stability Class Diurnal 10min
1722 % Weighted diurnal conditions
1723 for i = 0:143 % 10 Min values for diurnal
1724 xRi = diurRiMean(i+1,:);
1725 xMOL = diurMOLMean(i+1,:);
1726 varRi = diurRiVar(i+1,:);
1727 varMOL = diurMOLVar(i+1,:);
1728 w = diurCondition2(i+1,:);
1729 % Total
1730 diurRi(i+1,1) = sum(w.*xRi,'omitnan')./sum(w,'omitnan');
1731 diurMOL(i+1,1) = sum(w.*xMOL,'omitnan')./sum(w,'omitnan');
1732
1733 % Standard devitaion: From weighted Var method ref: ...

http://mathworld.wolfram.com/NormalSumDistribution.html
1734 diurRi(i+1,2) = sqrt(sum((varRi).*(w.^2),'omitnan'));
1735 diurMOL(i+1,2) = sqrt(sum((varMOL).*(w.^2),'omitnan'));
1736 end
1737
1738 %% Set weighting at each 10min
1739
1740 countMin = 0;
1741 countHrs = 0;
1742 hrs = 0;
1743 for i = 0:143 % Values for diurnal
1744
1745 countMin = countMin + 1;
1746 countHrs = countHrs + 1;
1747 mins = minComb(countMin);
1748 if countMin == 6
1749 countMin = 0;
1750 end
1751 if countHrs == 7
1752 hrs = hrs + 1;
1753 countHrs = 1;
1754 end
1755
1756 for j = 1:5 % Stability Class
1757 DiurWeighting(hourVec == hrs & stabCond == j & minsVec == mins,j) = ...

diurCondition(i+1,j);
1758 end
1759 end
1760
1761 function [figs,stabilityTable] = createFigs(mast,mastName,dateRangeStr,sectors, ...

sourceU,sourceTi,sourceD,numReadings,exUnstable, ...
unstable,neutral,stable,exStable,stabCond,diurSmooth, ...
shearSectors2Plot,TiAvail,velSecAllHeights,Zs,maxFreq,shearScaling, ...
diurConfi,refU,profiles,PotenTempSecAllHeights,Zt,diurSpeed,diurAlpha,diurTi ...
,diurRi,diurMOL,diurCondition,diurConditionUnWeight, ...
turbModelConstants,profSec,k_eModel,sourceZ,velocityStab)

1762 %% Create figures
1763 % Create the required output figures
1764
1765 % set(groot,'defaultTextInterpreter','latex')
1766 scrsz = get(groot,'ScreenSize');
1767 stabColor = flipud(jet(25));
1768 stabColor = stabColor([1 8 12 18 25],:); % Create colormap for 5 stability cases
1769 % colormap(stabColor);
1770
1771 stabText = {'Extremely Unstable', 'Unstable', 'Neutral', 'Stable', 'Extremely Stable'};
1772 diurTitleText = {'Diurnal Average Wind Speed', 'Diurnal Shear Exponent' , 'Diurnal ...

Turbulence Intensity', 'Diurnal Richardson Number', 'Diurnal Monin Obukhov Length'};
1773 diurYlabelText = {['$ U_{',num2str(sourceZ),'m} [m/s] $'], '$ \alpha $' , 'Ti', ...

'Richardson Number', 'Monin Obukhov Length'};
1774 turbModelxLabel = {'$ k $', '$ \epsilon $', '$ \omega $', '$ C_{\epsilon 3} $'};
1775
1776 %% Figure 1 - Total Stability Cases
1777 hFig1 = figure(1);
1778 set(hFig1,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
1779 y = 100*[exUnstable(end), unstable(end), neutral(end), stable(end), ...

exStable(end)]/numReadings;
1780
1781 hPie1 = pie(y);
1782 % Fix Pie Chart
1783 hText = findobj(hPie1,'Type','text'); % text object handles
1784 percentValues = get(hText,'String'); % percent values
1785 pieLabeltxt = {'Extremely Unstable: '; 'Unstable: '; 'Neutral: '; 'Stable: '; ...

'Extremely Stable: '}; % strings
1786 oldExtents_cell = get(hText,'Extent'); % cell array
1787 oldExtents = cell2mat(oldExtents_cell); % numeric array
1788 hText(1).String = strcat(pieLabeltxt(1),strrep(percentValues(1),'%','\%'));
1789 hText(2).String = strcat(pieLabeltxt(2),strrep(percentValues(2),'%','\%'));
1790 hText(3).String = strcat(pieLabeltxt(3),strrep(percentValues(3),'%','\%'));
1791 hText(4).String = strcat(pieLabeltxt(4),strrep(percentValues(4),'%','\%'));
1792 hText(5).String = strcat(pieLabeltxt(5),strrep(percentValues(5),'%','\%'));
1793 newExtents_cell = get(hText,'Extent'); % cell array
1794 newExtents = cell2mat(newExtents_cell); % numeric array
1795 width_change = newExtents(:,3)-oldExtents(:,3);

Appendix C. Data Analysis Code 99

1796 signValues = sign(oldExtents(:,1));
1797 offset = signValues.*(width_change/2);
1798 textPositions_cell = get(hText,{'Position'}); % cell array
1799 textPositions = cell2mat(textPositions_cell); % numeric array
1800 textPositions(:,1) = textPositions(:,1) + offset; % add offset
1801 hText(1).Position = textPositions(1,:);
1802 hText(2).Position = textPositions(2,:);
1803 hText(3).Position = textPositions(3,:);
1804 hText(4).Position = textPositions(4,:);
1805 hText(5).Position = textPositions(5,:);
1806 hPie1(1).FaceColor = stabColor(1,:);
1807 hPie1(3).FaceColor = stabColor(2,:);
1808 hPie1(5).FaceColor = stabColor(3,:);
1809 hPie1(7).FaceColor = stabColor(4,:);
1810 hPie1(9).FaceColor = stabColor(5,:);
1811
1812
1813 %% Figure 2 - Sectorwise Bar Chart
1814 hFig2 = figure(2);
1815 set(hFig2,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
1816 colormap(stabColor)
1817 y = nan(5, sectors);
1818 yTemp = [exUnstable(1:end-1)', unstable(1:end-1)', neutral(1:end-1)', stable(1:end-1)', ...

exStable(1:end-1)']';
1819 for i = 1:sectors
1820 y(:,i) = 100*yTemp(:,i)./sum(yTemp(:,i),1); %Normalize with the sectors
1821 end
1822 % y(:,end+1) = 100*[exUnstable(end), unstable(end), neutral(end), stable(end), ...

exStable(end)]/numReadings;
1823 % if you want the total in the last row
1824 bar(y',1,'stacked') % Bar chart that shows the percentage for each sector
1825 title(['Sectorwise Stability Classification ', mastName, ' ', dateRangeStr])
1826 ylabel('\% Of Sector')
1827 axis tight
1828 xlabel('Sector')
1829 hFig2.CurrentAxes.XTick= 1:sectors;
1830 legend(stabText,'Location','bestoutside','Interpreter','latex');
1831
1832 %% Figure 3 - Stability rose
1833 maxFreq = ceil(maxFreq);
1834 if rem(maxFreq,2) 6= 0 % To have whole numbers of graph
1835 maxFreq = maxFreq + 1;
1836 end
1837 optionsStabRose = {'nDirections', sectors,...
1838 'AngleNorth',0,...
1839 'AngleEast',90,...
1840 'nFreq',maxFreq/2,...
1841 'MaxFrequency',maxFreq,...
1842 'TitleString', {['Stability Rose ', mastName, ' ', dateRangeStr];''}};
1843 echo stabilityRose off % Turn of warnings from Stability Rose function
1844 hFig3 = figure(3);
1845 set(hFig3,'Position',[1 1 scrsz(3)/2 scrsz(4)/1.5],'Color',[1 1 1])
1846 [hFig3,stabilityTable] = stabilityRose(sourceD,stabCond,hFig3,optionsStabRose);
1847
1848 %% Figure 4 - Stability velocity comparison
1849 hFig4 = figure(4);
1850 set(hFig4,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.25],'Color',[1 1 1])
1851 for i = 1:5
1852 subplot(2,3,i)
1853 stabInd = stabCond == i;
1854 [Ux, Uy] = pol2cart(deg2rad(sourceD(stabInd)),sourceU(stabInd));
1855 uLim = ceil(max(abs([Ux Uy])));
1856 scatter(Ux,Uy,2,'b','filled')
1857 title(stabText(i))
1858 xlabel(['$ U_{x',num2str(sourceZ),'m} [m/s] $'])
1859 ylabel(['$ U_{y',num2str(sourceZ),'m} [m/s] $'])
1860 try
1861 axis([-uLim(1) uLim(1) -uLim(2) uLim(2)])
1862 catch
1863 axis tight
1864 end
1865 end
1866
1867 %% Figure 5 - TI Vs. Windspeed
1868 hFig5 = figure(5);
1869 set(hFig5,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
1870 if strcmpi(TiAvail,'Yes')
1871 for i = 1:5
1872 subplot(2,3,i)
1873 stabInd = stabCond == i & sourceU > 0 & ¬isnan(sourceU) & ¬isnan(sourceTi); % ...

Can not fit with non positive values or NaN's
1874 try
1875 f = fit(sourceU(stabInd),sourceTi(stabInd),'power2'); % Fits Power Law of ...

the form f(x) = a*x^b+c
1876 plot(f,sourceU(stabInd),sourceTi(stabInd))
1877 % plot(sourceU(stabInd), sourceTi(stabInd),'b.')
1878 coeffNum = coeffvalues(f);
1879 legend('Data',[num2str(coeffNum(1),2), ...

'\timesx^{',num2str(coeffNum(2),2),'}+' ...
,num2str(coeffNum(3),2)],'Interpreter','latex')

1880 catch
1881 warning('Not enough data to fit TI model for %s condition', stabText{i})
1882 plot(sourceU(stabInd), sourceTi(stabInd),'b.')
1883 end
1884
1885 title(stabText(i))
1886 xlabel(['$ U_{',num2str(sourceZ),'m} [m/s] $'])
1887 ylabel('Ti')
1888 if max(sourceTi) > 1
1889 ylim([0 1])
1890 else
1891 ylim([0 max(sourceTi)])
1892 end
1893 if max(sourceU) > 25
1894 xlim([0 25])
1895 else

Appendix C. Data Analysis Code 100

1896 xlim([0 max(sourceU)])
1897 end
1898 end
1899 else
1900 close(5)
1901 end
1902 %% Figure 6 - Diurnals
1903
1904 diurnals = {diurSpeed,diurAlpha,diurTi,diurRi,diurMOL,diurCondition};
1905 stabColor(end+1,:) = 0; % Last Color = black
1906 diurAmount = size(diurRi,1)-1;
1907
1908 hFig6 = figure(6);
1909 set(hFig6,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.25],'Color',[1 1 1])
1910 for i = 1:4
1911 subplot(2,2,i)
1912 if i 6=4
1913 for j = 1:5
1914 hold on
1915 if strcmpi(diurSmooth,'Yes')
1916 % Spline
1917 x = linspace(0,24,diurAmount+1)';
1918 y = diurnals{i}(:,j);
1919 perDataAvail = 1-sum(isnan(y))/length(y); % percentage data available - ...

if less than 25% < then ignore it completely
1920 indNaN = isnan(x) | isnan(y) | isinf(x) | isinf(y);
1921 if perDataAvail > 0.25 % Play around iwth the value to get the best cut ...

off point to get a clean smoothing spline
1922 f = fit(x,y,'smoothingspline', 'Exclude', indNaN); % Fits Spline ...

over data to smooth out
1923 yNew = feval(f,x);
1924 plot(x,yNew,'Color',stabColor(j,:),'LineWidth',1.5)
1925
1926 else
1927 stabTextandTotal = [stabText, 'Total'];
1928 warning('Too few diurnal data points available to use smoothing ...

spline %s for %s condition. \n Using direct data ...
instead',diurTitleText{i}, stabTextandTotal{j})

1929 % Direct
1930 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,j), ...

'Color',stabColor(j,:),'LineWidth',1.5)
1931 end
1932 else
1933 % Direct
1934 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,j), ...

'Color',stabColor(j,:),'LineWidth',1.5)
1935 end
1936 hold off
1937 if i == 3 && strcmp(TiAvail,'No')
1938 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,j),'Color',[1 1 1]) ...

%Overwrites the graph to clear it
1939 text(12,0.5,'No TI Data ...

Available','Color','red','FontSize',14,'HorizontalAlignment','center')
1940 end
1941 end
1942 else
1943 hold on
1944 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,1),'k','LineWidth',1.5)
1945 plot([0 24],[0 0],'Color','k')
1946 hold off
1947 end
1948 title(diurTitleText(i))
1949 xlabel('Hours')
1950 axis tight
1951 hFig6.CurrentAxes.XTick = 0:24;
1952 ylabel(diurYlabelText(i))
1953
1954 if i == 1
1955 legend(stabText,'Location','best','Interpreter','latex')
1956 end
1957 end
1958
1959 %% Figure 7 - Stability Diurnal
1960 hFig7 = figure(7);
1961 set(hFig7,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
1962 colormap(stabColor(1:end-1,:)) %Remove black color
1963 y = nan(diurAmount+1,5);
1964 for i = 1:diurAmount+1
1965 y(i,:) = diurConditionUnWeight(i,:)/sum(diurConditionUnWeight(i,:)); % Normalize ...

with amount of readings
1966 end
1967
1968 bar(linspace(0,24,diurAmount+1),100*y,1,'stacked') % Bar chart that shows the ...

percentage for each stability class diurnally
1969 title(['Diurnal Stability Classification ', mastName, ' ', dateRangeStr])
1970 ylabel('\% Of Stability Class')
1971 ylim([0 100])
1972 xlabel('Hours')
1973 axis tight
1974 hFig7.CurrentAxes.XTick = 0:24;
1975 legend(stabText,'Location','bestoutside','Interpreter','latex')
1976
1977 %% Figure 8 - Diurnal Richard and MOL
1978 hFig8 = figure(8);
1979 set(hFig8,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
1980 colormap(stabColor(1:end-1,:)) %Remove black color
1981 for i = 4:5
1982 subplot(2,1,i-3)
1983 hold on
1984 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,1),'k','LineWidth',1.5)
1985 if strcmpi(diurConfi,'Yes')
1986 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,1) ...

+2*diurnals{i}(:,2),'--r','LineWidth',0.25)
1987 plot(linspace(0,24,diurAmount+1),diurnals{i}(:,1) ...

-2*diurnals{i}(:,2),'--r','LineWidth',0.25)
1988 end

Appendix C. Data Analysis Code 101

1989 % plot([0 24],[0 0],'Color',stabColor(3,:))
1990 plot([0 24],[0 0],'k')
1991 if i == 4
1992 % Plot Stability values - This can be removed, it is a bit messy
1993 % plot([0 24],[-0.04 -0.04],'Color',stabColor(1,:))
1994 % plot([0 24],[0 0],'Color',stabColor(3,:))
1995 % plot([0 24],[0.25 0.25],'Color',stabColor(5,:))
1996 %TODO: Fix this so the arrows and text are in the best location or
1997 %just remove it
1998 text(0.5,2.5,' $ \uparrow $ Extremely ...

Stable','VerticalAlignment','bottom','Color','k')
1999 text(0.5,-2.5,' $ \downarrow $ Extremly ...

Unstable','VerticalAlignment','top','Color','k')
2000 end
2001 hold off
2002 title(diurTitleText(i))
2003 ylabel(diurYlabelText(i))
2004 xlabel('Hours')
2005 axis tight
2006 hFig8.CurrentAxes.XTick = 0:24;
2007 end
2008
2009 %% Figure 9 - Alpha Vs Windspeed
2010 hFig9 = figure(9);
2011 set(hFig9,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
2012 alphaShear = mast.AlphaShear;
2013 for i = 1:5
2014 subplot(2,3,i)
2015 stabInd = stabCond == i & refU > 0 & ¬isnan(refU) & ¬isnan(alphaShear) & ¬...

isinf(abs(alphaShear)); % Can not fit with non positive values or NaN's
2016 try
2017 f = fit(refU(stabInd),alphaShear(stabInd),'power2'); % Fits Power Law of the ...

form f(x) = a*x^b+c
2018 plot(f,refU(stabInd),alphaShear(stabInd))
2019 % plot(refU(stabInd),alphaShear(stabInd),'bx')
2020
2021 coeffNum = coeffvalues(f);
2022 legend('Data',[num2str(coeffNum(1),2), '\timesx^{',num2str(coeffNum(2),2),'} ...

+',num2str(coeffNum(3),2)], 'Interpreter','latex')
2023 catch
2024 warning('Shear inversion for %s condition', stabText{i})
2025 plot(refU(stabInd), alphaShear(stabInd),'b.')
2026 end
2027 title(stabText(i))
2028 xlabel(['$ U_{',num2str(sourceZ),'m} [m/s] $'])
2029 ylabel('$ \alpha $ ')
2030
2031 try
2032 if min(alphaShear(stabInd)) < 0 && min(alphaShear(stabInd)) > -2;
2033 yMin = min(alphaShear(stabInd));
2034 elseif min(alphaShear(stabInd)) < 0 && min(alphaShear(stabInd)) < -2
2035 yMin = -2;
2036 else
2037 yMin = 0;
2038 end
2039
2040 if max(alphaShear) > 2
2041 yMax = 2;
2042 else
2043 yMax = max(alphaShear);
2044 end
2045
2046 ylim([yMin yMax]);
2047
2048 if max(refU) > 25
2049 xlim([0 25])
2050 else
2051 xlim([0 max(refU)])
2052 end
2053 catch
2054 yMin = 0;
2055 yMax = 2;
2056 ylim([yMin yMax]);
2057 xlim([0 max(refU)])
2058 end
2059 end
2060
2061 %% Figure 10 - Sectorwise Velocity Profiles
2062 % Only plot 4 or 6 sectors at a time, any more than this and the graphs become
2063 % too messy
2064
2065 % Create suitable height for velocity profile
2066 if max(Zs) ≥ 100 && max(Zs) < 150
2067 ZMax = 150;
2068 elseif max(Zs) ≥ 150
2069 ZMax = 200;
2070 else
2071 ZMax = 100;
2072 end
2073
2074 zProfile = profiles.Z';
2075 zInd = zProfile ≤ ZMax & zProfile≥ 1;
2076
2077 if length(shearSectors2Plot) == 4
2078 a = 2;
2079 b = 2;
2080 elseif length(shearSectors2Plot) == 6
2081 a = 2;
2082 b = 3;
2083 else
2084 error('Error in shear profile sectors to plot')
2085 end
2086
2087 velSecAllHeightsSec2Plot = velSecAllHeights(:,shearSectors2Plot,:); % Only extract ...

sectors that you need
2088
2089 hFig10 = figure(10);

Appendix C. Data Analysis Code 102

2090 set(hFig10,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
2091 for i = 1:length(shearSectors2Plot)
2092 subplot(a,b,i)
2093 hold on
2094 for j = 1:5
2095 Uprofile = reshape(profiles.Uz(shearSectors2Plot(i),j,2:end) ...

,length(profiles.Uz(shearSectors2Plot(i),j,2:end)),1);
2096 plot(Uprofile(zInd), zProfile(zInd),'Color',stabColor(j,:) ,'LineWidth',3);
2097 % Plot the observed data as crosses
2098 if strcmpi(shearScaling, 'Yes') % To not plot the scaled value as an observed value
2099 plot(reshape(velSecAllHeightsSec2Plot(j,i,1:end-1),1, ...

length(Zs)-1),Zs(1:end-1),'x','Color', stabColor(j,:),'LineWidth',2.5) ...
% This plots the observed data as crosses

2100 else
2101 plot(reshape(velSecAllHeightsSec2Plot(j,i,:),1, ...

length(Zs)),Zs,'x','Color',stabColor(j,:),'LineWidth',2.5)
2102 end
2103 end
2104 hold off
2105 title(['Sector ',num2str(shearSectors2Plot(i))])
2106 xlabel('$ U [m/s] $')
2107 ylabel('Height AGL [m]')
2108 % %ToDo: Sort out this legend
2109 % if i == 1
2110 % legend()
2111 % end
2112 end
2113
2114 %% Figure 11 - Sectorwise PotenTemp Profiles
2115 PotenTempSecAllHeightsSec2Plot = PotenTempSecAllHeights(:,shearSectors2Plot,:); % Only ...

extract sectors that you need
2116
2117 hFig11 = figure(11);
2118 set(hFig11,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
2119 for i = 1:length(shearSectors2Plot)
2120 subplot(a,b,i)
2121 hold on
2122 for j = 1:5
2123 potenTempProfile = reshape(profiles.potenTempZ(shearSectors2Plot(i),j,2:end), ...

length(profiles.potenTempZ(shearSectors2Plot(i),j,2:end)),1);
2124 plot(potenTempProfile(zInd), zProfile(zInd),'Color',stabColor(j,:),'LineWidth',3);
2125 % Plot the observed data as crosses
2126 plot(reshape(PotenTempSecAllHeightsSec2Plot(j,i,:), 1,length(Zt)),Zt, ...

'x','Color',stabColor(j,:),'LineWidth',2.5)
2127 end
2128 hold off
2129 title(['Sector ',num2str(shearSectors2Plot(i))])
2130 xlabel('$ \theta $ [K]')
2131 ylabel('Height AGL [m]')
2132 % %ToDo: Sort out this legend
2133 % if i == 1
2134 % legend()
2135 % end
2136 end
2137
2138 %% Figure 12 - Turbulence Model Profiles
2139 hFig12 = figure(12);
2140 set(hFig12,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
2141
2142 if k_eModel == 3 || k_eModel == 4
2143 turbProf = {reshape(profiles.kZ(profSec,:,zInd),[5 length(zProfile(zInd))])
2144 reshape(profiles.epsilonZ(profSec,:,zInd),[5 length(zProfile(zInd))])
2145 reshape(profiles.omegaZ(profSec,:,zInd),[5 length(zProfile(zInd))])
2146 reshape(turbModelConstants.F_Ce3(profSec,:,zInd),[5 length(zProfile(zInd))])};
2147 else
2148 turbProf = {reshape(profiles.kZ(profSec,:,zInd),[5 length(zProfile(zInd))])
2149 reshape(profiles.epsilonZ(profSec,:,zInd),[5 length(zProfile(zInd))])
2150 reshape(profiles.omegaZ(profSec,:,zInd),[5 length(zProfile(zInd))])
2151 table2array(turbModelConstants.Constants{1,4})*ones([5 length(zProfile(zInd))])};
2152 end
2153
2154 for i = 1:4
2155 subplot(2,2,i)
2156 hold on
2157 for j = 1:5
2158 plot(turbProf{i}(j,:),zProfile(zInd),'Color',stabColor(j,:),'LineWidth',3);
2159 end
2160 hold off
2161 xlabel(turbModelxLabel(i))
2162 ylabel('$ z [m] $')
2163 end
2164
2165 %% Figure 13 - Velocity Vs. Stability Class
2166 hFig13 = figure(13);
2167 set(hFig13,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
2168 colormap(stabColor(1:end-1,:)) %Remove black color
2169
2170 bar(velocityStab(end,:)',flipud(100*velocityStab(1:end-1,:))',1,'stacked') % Bar chart ...

that shows the percentage for each stability class diurnally
2171 title(['Windspeed Vs. Stability ', mastName, ' ', dateRangeStr])
2172 ylabel('\% Stability Class')
2173 ylim([0 100])
2174 xlabel(['$ U_{',num2str(sourceZ),'m} [m/s] $'])
2175 axis tight
2176 legend(stabText,'Location','bestoutside','Interpreter','latex')
2177
2178 %% Figure 14 - Comparison of stability calculation methods
2179 hFig14 = figure(14);
2180 set(hFig14,'Position',[1 1 scrsz(3) scrsz(4)/1.5],'Color',[1 1 1])
2181 colormap(stabColor(1:end-1,:)) %Remove black color
2182
2183 if strcmpi(TiAvail,'Yes')
2184 pieTitles = {'Ri','MOL','Ti \& Shear'};
2185 else
2186 pieTitles = {'Ri','MOL','Shear'};
2187 end

Appendix C. Data Analysis Code 103

2188
2189 for i = 1:3
2190 switch i
2191 case 1 % Ri
2192 exUnstable2 = sum(mast.ConditionRi == 1)/sum(¬isnan(mast.ConditionRi));
2193 unstable2 = sum(mast.ConditionRi == 2)/sum(¬isnan(mast.ConditionRi));
2194 neutral2 = sum(mast.ConditionRi == 3)/sum(¬isnan(mast.ConditionRi));
2195 stable2 = sum(mast.ConditionRi == 4)/sum(¬isnan(mast.ConditionRi));
2196 exStable2 = sum(mast.ConditionRi == 5)/sum(¬isnan(mast.ConditionRi));
2197 case 2 % MOL
2198 exUnstable2 = sum(mast.ConditionMol == 1)/sum(¬isnan(mast.ConditionMol));
2199 unstable2 = sum(mast.ConditionMol == 2)/sum(¬isnan(mast.ConditionMol));
2200 neutral2 = sum(mast.ConditionMol == 3)/sum(¬isnan(mast.ConditionMol));
2201 stable2 = sum(mast.ConditionMol == 4)/sum(¬isnan(mast.ConditionMol));
2202 exStable2 = sum(mast.ConditionMol == 5)/sum(¬isnan(mast.ConditionMol));
2203 case 3 % Shear/Ti
2204 exUnstable2 = sum(mast.ConditionTiShear == ...

1)/sum(¬isnan(mast.ConditionTiShear));
2205 unstable2 = sum(mast.ConditionTiShear == 2)/sum(¬isnan(mast.ConditionTiShear));
2206 neutral2 = sum(mast.ConditionTiShear == 3)/sum(¬isnan(mast.ConditionTiShear));
2207 stable2 = sum(mast.ConditionTiShear == 4)/sum(¬isnan(mast.ConditionTiShear));
2208 exStable2 = sum(mast.ConditionTiShear == 5)/sum(¬isnan(mast.ConditionTiShear));
2209 end
2210 y = 100*[exUnstable2, unstable2, neutral2, stable2, exStable2];
2211 subplot(1,3,i)
2212 hPie2 = pie(y);
2213 title(pieTitles{i})
2214 hPie2(1).FaceColor = stabColor(1,:);
2215 hPie2(3).FaceColor = stabColor(2,:);
2216 hPie2(5).FaceColor = stabColor(3,:);
2217 hPie2(7).FaceColor = stabColor(4,:);
2218 hPie2(9).FaceColor = stabColor(5,:);
2219
2220 if i 6= 3
2221 legend1 = legend(stabText);
2222 set(legend1,...
2223 'Position',[0.0107681274692211 0.448399554666699 0.104809760854814 ...

0.142384102012938]);
2224 end
2225 end
2226
2227 %% Figure 15 - Wind speed vs. freq
2228 hFig15 = figure(15);
2229 set(hFig15,'Position',[1 1 scrsz(3)/1.5 scrsz(4)/1.5],'Color',[1 1 1])
2230
2231 edges = 0:0.5:ceil(max(sourceU));
2232 hold on
2233 for i = 1:5
2234 [N] = histcounts(sourceU(stabCond == i),edges,'Normalization', 'probability');
2235 N(N==0) = nan;
2236 plot(edges(2:end)-0.25,100.*N,'-','Color',stabColor(i,:),'LineWidth',3)
2237 end
2238 hold off
2239 ylabel('Frequency \% ')
2240 xlabel(['$ U_{',num2str(sourceZ),'m} [m/s] $'])
2241 axis tight
2242 legend(stabText,'Location','bestoutside','Interpreter','latex')
2243
2244 %% Create figure output
2245
2246 figs = [hFig1, hFig2, hFig3, hFig4, hFig5, hFig6, hFig7, hFig8, hFig9, hFig10, hFig11, ...

hFig12, hFig13, hFig14, hFig15];
2247
2248 function [mastStruct] = dataSplit(mast,stabCond)
2249 %% dataSplit
2250 % Split data into stability based timeseries based on the Richardson Number
2251
2252 mast.TimeStamp = datestr(mast.TimeStamp,'yyyy-mm-dd HH:MM');
2253 mastExtremelyUnstable = mast(stabCond == 1,:);
2254 mastUnstable = mast(stabCond == 2,:);
2255 mastNeutral = mast(stabCond == 3,:);
2256 mastStable = mast(stabCond == 4,:);
2257 mastExtremelyStable = mast(stabCond == 5,:);
2258
2259 % mastStruct = struct('Total',mast,'Stable',mastStable,'unStable', ...

mastUnstable,'Neutral',mastNeutral,'unStableAndNeutral',mastUnstableAndNeutral);
2260 mastStruct = struct('Total',mast,'ExtremelyStable',mastExtremelyStable, ...

'Stable',mastStable,'Neutral', mastNeutral,'Unstable',mastUnstable, ...
'extremelyUnstable',mastExtremelyUnstable);

2261
2262 function [] = ...

imageSave(figs,mastName,dateRangeStr,shearSectors2Plot,dirPath,TiAvail,profSec)
2263 %% imageSave
2264 % Saves all active image handles in the selected folder
2265
2266 % Create date range and sector string that works as a figure name
2267 dateRangeStr = [dateRangeStr(7:10),dateRangeStr(4:5),dateRangeStr(1:2),'-', ...

dateRangeStr(26:29),dateRangeStr(23:24),dateRangeStr(20:21)];
2268
2269 figNames = {[mastName,' Stability Classification ',dateRangeStr,'.png']
2270 [mastName,' Sectorwise Stability Classification ',dateRangeStr,'.png']
2271 [mastName,' Stability Rose ',dateRangeStr,'.png']
2272 [mastName,' Ux Vs Uy ',dateRangeStr,'.png']
2273 [mastName,' Ti Vs Windspeed ',dateRangeStr,'.png']
2274 [mastName,' Diurnals ',dateRangeStr,'.png']
2275 [mastName,' Diurnal Stability Classification ',dateRangeStr,'.png']
2276 [mastName,' Diurnal Richardson and MOL ',dateRangeStr,'.png']
2277 [mastName,' Shear Vs Windspeed ',dateRangeStr,'.png']
2278 [mastName,' Velocity Profile Sectors [',int2str(shearSectors2Plot(:)'),'] ...

',dateRangeStr,'.png']
2279 [mastName,' Temperature Profile Sectors ...

[',int2str(shearSectors2Plot(:)'),'] ',dateRangeStr,'.png'];
2280 [mastName,' Turbulence Model Profiles Sector ',int2str(profSec),' ...

',dateRangeStr,'.png']
2281 [mastName,' Stability Vs Windspeed ',dateRangeStr,'.png']
2282 [mastName,' Stability Classifictaion Comparison ',dateRangeStr,'.png']

Appendix C. Data Analysis Code 104

2283 [mastName,' Windspeed Vs Frequency ',dateRangeStr,'.png']};
2284
2285 for i=1:length(figs)
2286 if strcmpi(TiAvail,'No') && i 6= 5
2287 print(figs(i),[dirPath,'\' ,figNames{i}],'-dpng','-r0')
2288 disp(['Figure ' figNames{i},' Saved'])
2289 elseif strcmpi(TiAvail,'Yes')
2290 print(figs(i),[dirPath,'\' ,figNames{i}],'-dpng','-r0')
2291 disp(['Figure ' figNames{i},' Saved'])
2292 end
2293 end
2294
2295 function [] = dataSave(mastName, dateRangeStr,dirPath, mastStruct,profiles, ...

turbModelConstants, sectorTables,diurnalProfiles,stabClass, ...
outputType,sectorTableContent,velSecAllHeights) %#ok<INUSL>

2296 %% Save Data
2297 % Save .mat or .txt file to selected dir
2298
2299 dateRangeStr = [dateRangeStr(7:10),dateRangeStr(4:5),dateRangeStr(1:2),'-', ...

dateRangeStr(26:29),dateRangeStr(23:24),dateRangeStr(20:21)];
2300 fileName = [dirPath,'\',mastName,'_',dateRangeStr,'.mat'];
2301
2302 mastTableContent = ...

{'Total','ExtremelyStable','Stable','Neutral','Unstable','extremelyUnstable'};
2303 mastTable = struct2cell(mastStruct);
2304 if strcmpi(outputType,'mat')
2305 save(fileName,'mastStruct','profiles','turbModelConstants', ...

'sectorTables','diurnalProfiles','stabClass','velSecAllHeights')
2306 else
2307 for i = 1:6
2308 writetable(mastTable{i},[dirPath,'\',mastTableContent{i},'_',dateRangeStr,'.txt'])
2309 end
2310
2311 for i = 1:length(sectorTables)
2312 writetable(cell2table(sectorTables{i}), ...

[dirPath,'\',sectorTableContent{i},'_',dateRangeStr,'.txt'])
2313 end
2314 end

Appendix C. Data Analysis Code 105

C.2 stabilityRose.m

1 function [figure_handle,Table] = stabilityRose(direction,speed,figHandle,varargin)
2 %% StabilityRose
3 % Draw a Stability Rose knowing direction and condition number
4 % This is an edit of the original windrose code from Daniel Pereira - ...

daniel.pereira.valades@gmail.com 22/06/2015
5 % It is implimented in the dataAnalysis.m code
6 %
7 % Condition | Condition Number
8 % ---
9 % Extremely unstable | 1

10 % Unstable | 2
11 % Neutral | 3
12 % Stable | 4
13 % Extremely stable | 5
14 %
15 %
16 % ---
17 % Revised: Hendri Breedt <u10028422@tuks.co.za>
18 % Date: 09/11/2017
19 % Version: 00 - Public release
20
21 %% Check funciton call
22 if nargin<2
23 error('stabilityRose needs at least two inputs'); % function needs 2 ...

input arguments
24 elseif mod(length(varargin),2)6=0 % If varargin are not paired
25 if (length(varargin)==1 && isstruct(varargin{1})) % Could be a single ...

structure with field names and field values.
26 varargin = reshape([fieldnames(varargin{1}) ...

struct2cell(varargin{1})]',1,[]); % Create varargin as if they were ...
separate inputs

27 elseif (length(varargin)==1 && iscell(varargin{1})) % Could be a single cell ...
array with all the varargins

28 varargin = reshape(varargin{1},1,[]); % Reshape just in case, and ...
create varargin as if they were separate inputs.

29 else
30 error('Inputs must be paired: ...

stabilityRose(Speed,Direction,''PropertyName'',PropertyValue,...)'); % ...
If not any of the two previous cases, error

31 end
32 elseif ¬isnumeric(speed) || ¬isnumeric(direction) % Check that speed and ...

direction are numeric arrays.
33 error('Speed and Direction must be numeric arrays.');
34 elseif ¬isequal(size(speed),size(direction)) % Check that speed and ...

direction are the same size.
35 error('Speed and Direction must be the same size.');
36 end
37
38 %% Default parameters
39 SCS = get(0,'screensize');
40
41 CeteredIn0 = true;
42 ndirections = 36;
43 FrequenciesRound = 1;
44 NFrequencies = 5;
45 WindSpeedRound = [];
46 NSpeeds = 5;
47 circlemax = [];
48 FreqLabelAngle = 60;
49 TitleString = {'Wind Rose';' '};
50 lablegend = '';
51 colorfun = 'jet';
52 height = min(SCS(3:4))*2/3;
53 width = min(SCS(3:4))*2/3;
54 figcolor = 'w';
55 TextColor = 'k';
56 label.N = 'N';
57 label.S = 'S';
58 label.W = 'W';
59 label.E = 'E';
60 titlefontweight = 'bold';
61 legendvariable = 'W_S';
62 RefN = 90;
63 RefE = 0;
64 min_radius = 1/15;
65 LegendType = 2;
66 MenuBar = 'figure';
67 ToolBar = 'figure';
68 colors = [];
69 inverse = false;
70 vwinds = [];
71 scalefactor = 1;
72 axs = [];
73
74 %% User-.specified parameters
75
76 for i=1:2:numel(varargin)
77 switch lower(varargin{i})
78 case 'centeredin0'
79 CeteredIn0 = varargin{i+1};
80 case 'ndirections'
81 ndirections = varargin{i+1};
82 case 'freqround'
83 FrequenciesRound = varargin{i+1};
84 case 'nfreq'
85 NFrequencies = varargin{i+1};

Appendix C. Data Analysis Code 106

86 case 'speedround'
87 WindSpeedRound = varargin{i+1};
88 case 'nspeeds'
89 NSpeeds = varargin{i+1};
90 case 'freqlabelangle'
91 FreqLabelAngle = varargin{i+1};
92 case 'titlestring'
93 TitleString = varargin{i+1};
94 case 'lablegend'
95 lablegend = varargin{i+1};
96 case 'cmap'
97 colorfun = varargin{i+1};
98 case 'height'
99 height = varargin{i+1};

100 case 'width'
101 width = varargin{i+1};
102 case 'figcolor'
103 figcolor = varargin{i+1};
104 case 'textcolor'
105 TextColor = varargin{i+1};
106 case 'min_radius'
107 min_radius = varargin{i+1};
108 case 'maxfrequency'
109 circlemax = varargin{i+1};
110 case 'titlefontweight'
111 titlefontweight = varargin{i+1};
112 case 'legendvariable'
113 legendvariable = varargin{i+1};
114 case 'legendtype'
115 LegendType = varargin{i+1};
116 case 'inverse'
117 inverse = varargin{i+1};
118 case 'labelnorth'
119 label.N = varargin{i+1};
120 case 'labelsouth'
121 label.S = varargin{i+1};
122 case 'labeleast'
123 label.E = varargin{i+1};
124 case 'labelwest'
125 label.W = varargin{i+1};
126 case 'labels'
127 label.N = varargin{i+1}{1};
128 label.S = varargin{i+1}{2};
129 label.E = varargin{i+1}{3};
130 label.W = varargin{i+1}{4};
131 case 'menubar'
132 MenuBar = varargin{i+1};
133 case 'toolbar'
134 ToolBar = varargin{i+1};
135 case 'scalefactor'
136 scalefactor = varargin{i+1};
137 case 'vwinds'
138 k = any(arrayfun(@(x) strcmpi(x,'nspeeds'),varargin));
139 if k
140 warning('''vwinds'' and ''nspeeds'' have been specified. The value for ...

''nspeeds'' wil be omitted');
141 end
142 vwinds = varargin{i+1};
143 case 'colors'
144 k = any(arrayfun(@(x) strcmpi(x,'nspeeds'),varargin)) + any(arrayfun(@(x) ...

strcmpi(x,'vwinds'),varargin));
145 if ¬k
146 error('To specify ''colors'' matrix, you need to specify the number of ...

speed bins ''nspeeds'' or the speeds to be used ''vwinds''');
147 end
148 k = any(arrayfun(@(x) strcmpi(x,'cmap'),varargin));
149 if k
150 warning('Specified CMAP is not being used, since ''colors'' argument ...

has been set by user');
151 end
152 colors = varargin{i+1};
153 case 'anglenorth'
154 k = any(arrayfun(@(x) strcmpi(x,'angleeast'),varargin));
155 if ¬k
156 error('Reference angles need to be specified for AngleEAST and ...

AngleNORTH directions');
157 end
158 case 'angleeast'
159 k = find(arrayfun(@(x) strcmpi(x,'anglenorth'),varargin));
160 if isempty(k)
161 error('Reference angles need to be specified for AngleEAST and ...

AngleNORTH directions');
162 else
163 RefE = varargin{i+1};
164 RefN = varargin{k+1};
165 end
166 if abs(RefN-RefE)6=90
167 error('The angles specified for north and east must differ in 90 degrees');
168 end
169 case 'axes'
170 axs = varargin{i+1};
171 otherwise
172 error([varargin{i} ' is not a valid property for stabilityRose function.']);
173 end
174 end
175
176 if ¬isempty(vwinds)
177 vwinds = unique(reshape(vwinds(:),1,[])); % ?? Should have used vwinds = ...

unique([0 reshape(vwinds(:),1,[])]); to ensure that values in the interval [0 ...
vmin) appear. If user want hat range to appear, 0 must be included.

178 NSpeeds = length(vwinds);
179 end
180
181 if ¬isempty(colors)
182 if ¬isequal(size(colors),[NSpeeds 3])

Appendix C. Data Analysis Code 107

183 error('colors must be a nspeeds by 3 matrix');
184 end
185 if any(colors(:)>1) || any(colors(:)<0)
186 error('colors must be in the range 0-1');
187 end
188 end
189
190 if inverse
191 colorfun = regexprep(['inv' colorfun],'invinv','');
192 colors = flipud(colors);
193 end
194
195 % Create Custom colormap for 5 stability cases
196 colors = [0.857142857142857,0,0;1,0.857142857142857,0;0.571428571428571,1, ...

0.428571428571429;0,0.714285714285714,1;0,0,0.714285714285714];
197 % colors = flipud(colors);
198
199 speed = reshape(speed,[],1); % Convert ...

wind speed into a column vector
200 direction = reshape(direction,[],1); % Convert ...

wind direction into a column vector
201 NumberElements = numel(direction); % Coun the ...

actual number of elements, to consider winds = 0 when calculating frequency.
202 dir = mod((RefN-direction)/(RefN-RefE)*90,360); % Ensure ...

that the direction is between 0 and 360
203 dir = dir(speed>0); % Wind = 0 ...

does not have direction, so it cannot appear in a wind rose, but the number of ...
appeareances must be considered.

204 speed = speed(speed>0); % Only show ...
winds higher than 0. See comment before.

205
206 % if isempty(axs) % If no axes were specified, create a new figure
207 % figure_handle = ...

figure('color',figcolor,'units','pixels','position',[SCS(3)/2-width/2 ...
SCS(4)/2-height/2 width height],'menubar',MenuBar,'toolbar',ToolBar);

208 % else % If axes are specified, use the figure in which the axes are located
209 % figure_handle = get(axs,'parent');
210 % end
211
212 figure_handle = figHandle;
213 %% Bin Directions
214 N = linspace(0,360,ndirections+1); % Create ...

ndirections direction intervals (ndirections+1 edges)
215 N = N(1:end-1); % N is the ...

angles in which direction bins are centered. We do not want the 360 to appear, ...
because 0 is already appearing.

216 n = 180/ndirections; % Angle that ...
should be put backward and forward to create the angular bin, 1st centered in 0

217 if ¬CeteredIn0 % If user ...
does not want the 1st bin to be centered in 0

218 N = N+n; % Bin goes ...
from 0 to 2n (N to N+2n), instead of from -n to n (N-n to N+n), so Bin is not ...
centered in 0 (N) angle, but in the n (N+n) angle

219 end
220
221 %% Bin intensities
222 if isempty(vwinds) % If user ...

did not specify the wind speeds he/she wants to show
223 if ¬isempty(WindSpeedRound) % If user ...

did specify the rounding value
224 if isempty(NSpeeds); NSpeeds = 6; end % Default ...

value for NSpeeds if not user-specified
225 vmax = ceil(max(speed)/WindSpeedRound)*WindSpeedRound; % Max wind ...

speed rounded to the nearest whole multiple of WindSpeedRound (Use round or ...
ceil as desired)

226 if vmax==0; vmax=WindSpeedRound; end; % If max ...
wind speed is 0, make max wind to be WindSpeedRound, so wind ...
speed bins are correctly shown.

227 vwinds = linspace(0,vmax,NSpeeds); % Wind ...
speeds go from 0 to vmax, creating the desired number of wind speed intervals

228 else % If user ...
did nor specify the rounding value

229 figure2 = figure('visible','off'); plot(speed); % Plot wind ...
speed

230 vwinds = get(gca,'ytick'); delete(figure2); % Yaxis will ...
automatically make divisions for us.

231 if ¬isempty(NSpeeds) % If a ...
number of speeds are specified

232 vwinds = linspace(min(vwinds),max(vwinds),NSpeeds); % create a ...
vector with that number of elements, distributed along the plotted ...
windspeeds.

233 end
234 end
235 end
236
237 %% Histogram in each direction + Draw
238 count = PivotTableCount(N,n,vwinds,speed,dir,NumberElements); % For each ...

direction and for each speed, value of the radius that the windorose must reach ...
(Accumulated in speed).

239
240 if isempty(circlemax) % If no max ...

frequency is specified
241 circlemax = ceil(max(max(count))/FrequenciesRound)*FrequenciesRound; % Round ...

highest frequency to closest whole multiple of theFrequenciesRound (Use round ...
or ceil as desired)

242 end
243
244 min_radius = min_radius*circlemax; % The ...

minimum radius is initially specified as a fraction of the circle max, convert it ...
to absolute units.

245 isaxisempty = isempty(axs); % ...
isaxisempty will allow us to identify whether the axes where specified or not, ...
because we are going to assign in the next line a value, so axs will be never again ...
empty.

Appendix C. Data Analysis Code 108

246 [color,axs] = ...
DrawPatches(N,n,vwinds,count,colorfun,figcolor,min_radius,colors,inverse,axs); % ...
Draw the windrose, knowing the angles, the range for each direction, the speed ...
ranges, the count (frequency) values, the colormap used and the colors used.

247
248 axis off; % turn axis off
249 axis equal; % equal axis
250 circlemax = circlemax/max(eps,scalefactor); % If a scale ...

factor is specified, embiggen the circelmax (which defines x and y limits)
251
252 if isaxisempty; set(axs,'position',[0 0 1 1]); end % If no axes ...

were specified, set the axes position to fill the whole figure.
253 %% Constant frequecy circles and x-y axes + Draw + Labels
254
255 [x,y] = cylinder(1,50); x = x(1,:); y = y(1,:); % Get x and ...

y for a unit-radius circle
256 circles = linspace(0,circlemax,NFrequencies+1); circles = circles(2:end);% Radii of ...

the circles that must be drawn (frequencies). We do not want to spend time drawing ...
radius=0.

257
258 radius = circles + min_radius; % for each ...

circle, add the minimum radius
259 radiusmax = circlemax + min_radius;
260
261 radius = radius * scalefactor; % scale up ...

or down the radius values.
262 radiusmax = radiusmax * scalefactor;
263 min_radius = min_radius * scalefactor;
264
265 if ¬isaxisempty % If axis are specified (not empty)
266 h=fill(x'*radiusmax,y'*radiusmax,figcolor); % create a ...

background circle
267 hAnnotation = get(h,'Annotation'); % get ...

annotation from the circle
268 hLegendEntry = get(hAnnotation','LegendInformation'); % get legend ...

information from the circle
269 set(hLegendEntry,'IconDisplayStyle','off') % remove the ...

cricle from the legened information.
270 uistack(h,'bottom'); % the circle ...

must be placed below everything.
271 end
272 plot(axs,x'*radius,y'*radius,':','color',TextColor); % Draw ...

dooted circle lines
273 plot(axs,x*radiusmax,y*radiusmax,'-','color',TextColor); % Redraw ...

last circle line in solid style
274
275 axisangles = 0:30:360; axisangles = axisangles(1:end-1); % Angles in ...

which to draw the radial axis (trigonometric reference)
276 R = [min_radius;radiusmax]; % radius
277 plot(axs,R*cosd(axisangles),R*sind(axisangles),':','color',TextColor); % Draw ...

radial axis, in the specified angles
278
279 FrequecyLabels(circles,radius,FreqLabelAngle,TextColor); % Display ...

frequency labels
280 CardinalLabels(radiusmax,TextColor,label); % Display N, ...

S, E, W
281
282 xlim(axs,[-radiusmax radiusmax]/scalefactor); % Set limits
283 ylim(axs,[-radiusmax radiusmax]/scalefactor);
284
285 %% Title and Legend
286 title(TitleString,'color',TextColor,'fontweight',titlefontweight); % Display a ...

title
287 if isaxisempty; set(axs,'outerposition',[0 0 1 1]); end % Check that ...

the current axis fills the figure, only if axis were not specified
288 if LegendType==2 % If legend ...

type is box:
289 leyenda = CreateLegend(vwinds,lablegend,legendvariable,inverse); % Create a ...

legend cell string
290 % This overwrites the above section to create the legend we need
291 % leyenda(2:end) = {'Extremely Unstable', 'Unstable', 'Neutral', 'Stable', ...

'Extremely Stable'};
292 leyenda(2:end) = {'Extremely Stable', 'Stable', 'Neutral', 'Unstable', 'Extremely ...

Unstable'};
293
294 l = legend(axs,leyenda,'location','northeast','Interpreter','latex'); ...

% Display the legend wherever (position is corrected)
295 if isaxisempty % If axis ...

were not specified
296 PrettyLegend(l,TextColor); % Display ...

the legend in a good position
297 else % If axis ...

were specified
298 set(l,'textcolor',TextColor,'color',figcolor); % change ...

only the legend colour (text and background)
299 end
300 elseif LegendType==1 % If legend ...

type is colorbar
301 caxis(axs,[vwinds(1) vwinds(end)]); % Set ...

colorbar limits
302 colormap(axs,interp1(vwinds,color,linspace(min(vwinds),max(vwinds),256))); % set ...

colorbar colours (colormap)
303 colorbar('YTick',vwinds); % The values ...

shown in the colorbar are the intenisites.
304 end
305
306
307 %% Outputs
308 [count,speeds,directions,Table] = CreateOutputs(count,vwinds,N,n,RefN,RefE); % Create ...

output arrays and tables.
309
310 function count = PivotTableCount(N,n,vwinds,speed,dir,NumberElements)
311 count = zeros(length(N),length(vwinds));
312 for i=1:length(N)
313 d1 = mod(N(i)-n,360); % Direction ...

1 is N-n

Appendix C. Data Analysis Code 109

314 d2 = N(i)+n; % Direction ...
2 is N+n

315 if d1>d2 % If ...
direction 1 is greater than direction 2 of the bin (d1 = -5 = 355, d2 = 5)

316 cond = or(dir≥d1,dir<d2); % The ...
condition is satisfied whenever d≥d1 or d<d2

317 else % For the ...
rest of the cases,

318 cond = and(dir≥d1,dir<d2); % Both ...
conditions must be met for the same bin

319 end
320 % counter = histc(speed(cond),vwinds); %# REMOVED ...

2015/Jun/22 % If vmax was for instance 25, counter will have counts for these ...
intervals: [≥0 y <5] [≥5 y <10] [≥10 y <15] [≥15 y <20] [≥20 y <25] [≥25]

321 counter = histc(speed(cond),[vwinds(:)' inf]); %# ADDED ...
2015/Jun/22: Consider the wind speeds greater than max(vwinds), by adding ...
inf into the histogram count

322 counter = counter(1:length(vwinds)); %# ADDED ...
2015/Jun/22: Crop the resulting vector form histc, so as it has only ...
length(Vwinds) elements

323 if isempty(counter); counter = zeros(1,size(count,2)); end % If counter ...
is empty for any reason, set the counts to 0.

324 count(i,:) = cumsum(counter); % Computing ...
cumsum will make count to have the counts for [<5] [<10] [<15] [<20] [<25] ...
[≥25] (cumulative count, so we have the radius for each speed)

325 end
326 count = count/NumberElements*100; % Frequency ...

in percentage
327
328 function [color,axs] = ...

DrawPatches(N,n,vwinds,count,colorfun,figcolor,min_radius,colors,inverse,axs)
329 if isempty(colors)
330 inv = strcmp(colorfun(1:3),'inv'); % INV = ...

First three letters in cmap are inv
331 if inv; colorfun = colorfun(4:end); end % if ...

INV, cmap is the rest, excluding inv
332 color = feval(colorfun,256); % Create ...

color map
333 color = interp1(linspace(1,length(vwinds),256),color,1:length(vwinds));% Get ...

the needed values.
334 if inv; color = flipud(color); end; % if ...

INV, flip upside down the colormap
335 else
336 color = colors;
337 end
338 if isempty(axs)
339 plot(0,0,'.','color',figcolor, 'markeredgecolor',figcolor, ...

'markerfacecolor',figcolor); % This will create an empty legend entry.
340 axs = gca;
341 else
342 plot(axs,0,0,'.','color',figcolor, 'markeredgecolor',figcolor, ...

'markerfacecolor',figcolor); % This will create an empty legend entry.
343 end
344 set(gcf,'currentaxes',axs);
345 hold on; axis square; axis off;
346
347 if inverse % If wind ...

speeds are shown in inverse way (slowest is outside)
348 count = [count(:,1) diff(count,1,2)]; % De-compose ...

cumsum
349 count = cumsum(fliplr(count),2); % Cumsum ...

inverting count.
350 end
351
352 for i=1:length(N) % For every ...

angle
353 for j=length(vwinds):-1:1; % For every ...

wind speed range (last to first)
354 if j>1 % If the ...

wind speed range is not the first
355 r(1) = count(i,j-1); % the lower ...

radius of this bin is the upper radius of the one with lower speeds
356 else % If the ...

wind speed range is the first
357 r(1) = 0; % the lower ...

radius is 0
358 end
359 r(2) = count(i,j); % The upper ...

radius is the cumulative count for this angle and this speed range
360 r = r+min_radius; % We have to ...

sum the minimum radius.
361
362 alpha = linspace(-n,n,100)+N(i); % these are ...

the angles for which the bins are plotted
363 x1 = r(1) * sind(fliplr(alpha)); % convert 1 ...

radius and 100 angles into a line, x
364 y1 = r(1) * cosd(fliplr(alpha)); % and y
365 x = [x1 r(2)*sind(alpha)]; % Create ...

circular sectors, completing x1 and y1 with the upper radius.
366 y = [y1 r(2)*cosd(alpha)];
367 fill(x,y,color(j,:),'edgecolor',hsv2rgb(rgb2hsv(color(j,:)).*[1 1 0.7])); % ...

Draw them in the specified coloe. Edge is slightly darker.
368 end
369 end
370
371 function FrequecyLabels(circles,radius,angulo,TextColor)
372 s = sind(angulo); c = cosd(angulo); % Get the ...

positions in which labels must be placed
373 if c>0; ha = 'left'; elseif c<0; ha = 'right'; else ha = 'center'; end % ...

Depending on the sign of the cosine, horizontal alignment should be one or another
374 if s>0; va = 'bottom'; elseif s<0; va = 'top'; else va = 'middle'; end % ...

Depending on the sign of the sine , vertical alignment should be one or another
375 for i=1:length(circles)
376 text(radius(i)*c,radius(i)*s,[num2str(circles(i)) ...

'\%'],'HorizontalAlignment',ha,'verticalalignment',va,'color',TextColor); % ...
display the labels for each circle

Appendix C. Data Analysis Code 110

377 end
378 rmin = radius(1)-abs(diff(radius(1:2)));
379 if rmin>0
380 if c>0; ha = 'right'; elseif c<0; ha = 'left'; else ha = 'center'; end % ...

Depending on the sign of the cosine, horizontal alignment should be one or ...
another

381 if s>0; va = 'top'; elseif s<0; va = 'bottom'; else va = 'middle'; end % ...
Depending on the sign of the sine , vertical alignment should be one or ...
another

382 % text(rmin*c,rmin*s,'0%','HorizontalAlignment', ha,'verticalalignment',va,'color', ...
TextColor); % display the labels for each circle

383 end
384
385 function CardinalLabels(circlemax,TextColor,labels)
386 text(circlemax,0,[' ' labels.E],'HorizontalAlignment','left' ...

,'verticalalignment','middle','color',TextColor); % East label
387 text(-circlemax,0,[labels.W ' '],'HorizontalAlignment','right' ...

,'verticalalignment','middle','color',TextColor); % West label
388 text(0, circlemax,labels.N ...

,'HorizontalAlignment','center','verticalalignment','bottom','color',TextColor); ...
% North label

389 text(0,-circlemax,labels.S ...
,'HorizontalAlignment','center','verticalalignment','top' ...
,'color',TextColor); % South label

390
391 function leyenda = CreateLegend(vwinds,lablegend,legendvariable,inverse)
392 leyenda = cell(length(vwinds),1); % Initialize ...

legend cell array
393 cont = 0; % Initialize ...

Counter
394 if inverse % If wind ...

speed order must bu shown in inverse order
395 orden = length(vwinds):-1:1; % Set order ...

backwards
396 else % Else
397 orden = 1:length(vwinds); % Set normal ...

order (cont will be equal to j).
398 end
399
400 for j=orden % Cross the ...

speeds in the specified direction
401 cont = cont+1; % Increase ...

counter
402 if j==length(vwinds) % When last ...

index is reached
403 string = sprintf('%s %s %g',legendvariable,'\geq',vwinds(j)); % Display ...

wind ≤ max wind
404 else % For the ...

rest of the indices
405 string = sprintf('%g %s %s < ...

%g',vwinds(j),'\leq',legendvariable,vwinds(j+1)); % Set v1 ≤ v2 < v1
406 end
407 string = regexprep(string,'0 \leq','0 <'); % Replace "0 ...

≤" by "0 <", because wind speed = 0 is not displayed in the graph.
408 leyenda{length(vwinds)-cont+1} = string;
409 end
410 if isempty(lablegend); lablegend = ' '; end % Ensure ...

that lablegend is not empty, so windspeeds appear in the right position.
411 leyenda = [lablegend; leyenda]; % Add the ...

title for the legend
412
413 function PrettyLegend(l,TextColor)
414 set(l,'units','normalized','box','off'); % Do not ...

display the box
415 POS = get(l,'position'); % get legend ...

position (width and height)
416 set(l,'position',[0 1-POS(4) POS(3) POS(4)],'textcolor',TextColor); % Put the ...

legend in the upper left corner
417 uistack(l,'bottom'); % Put the ...

legend below the axis
418
419 function [count,speeds,directions,Table] = CreateOutputs(count,vwinds,N,n,RefN,RefE)
420 count = [count(:,1) diff(count,1,2)]; % Count had ...

the accumulated frequencies. With this line, we get the frequency for each ...
single direction and each single speed with no accumulation.

421 speeds = vwinds; % Speeds are ...
the same as the ones used in the Wind Rose Graph

422 directions = mod(RefN - N'/90*(RefN-RefE),360); % Directions ...
are the directions in which the sector is centered. Convert function reference ...
to user reference

423 vwinds(end+1) = inf; % Last wind ...
direction is inf (for creating intervals)

424
425 [directions,i] = sort(directions); % Sort ...

directions in ascending order
426 count = count(i,:); % Sort count ...

in the same way.
427
428 wspeeds = cell(1,length(vwinds)-1);
429 for i=1:(length(vwinds)-1)
430 if vwinds(i) == 0; s1 = '('; else s1 = '['; end % If ...

vwinds(i) =0 interval is open, because count didn't compute windspeed = 0. ...
Otherwise, the interval is closed [

431 wspeeds{i} = [s1 num2str(vwinds(i)) ' , ' num2str(vwinds(i+1)) ')'];% Create ...
wind speed intervals, open in the right.

432 end
433
434 wdirs = cell(length(directions),1);
435 for i=1:length(directions)
436 wdirs{i} = sprintf('[%g , %g)',mod(directions(i)-n,360),directions(i)+n); % ...

Create wind direction intervals [a,b)
437 end
438
439 WindZeroFreqency = 100-sum(sum(count)); % Wind speed ...

= 0 appears 100-sum(total) % of the time. It does not have direction.

Appendix C. Data Analysis Code 111

440 WindZeroFreqency = WindZeroFreqency*(WindZeroFreqency/100>eps); % If ...
frequency/100% is lower than eps, do not show that value.

441
442 Table = [{'Frequencies (%)'},{''},{'Stability ...

Class'},repmat({''},1,numel(wspeeds));'Direction Interval (deg)','Avg. ...
Direction',wspeeds,'TOTAL';[wdirs num2cell(directions) num2cell(count) ...
num2cell(sum(count,2))]]; % Create table cell. Ready to xlswrite.

443 Table(end+1,:) = [{'[0 , ...
360)','TOTAL'},num2cell(sum(count,1)),{sum(sum(count))}]; % the last row is the ...
total

444 Table(end+1,1:2) = {'[0 , 360)', 'Data Unavailable'}; % add an ...
additional row showing Wind Speed = 0 on table.

445 Table{end,end} = WindZeroFreqency; % at the end ...
of the table (last row, last column), show the total number of elements with 0 ...
speed.

446 Table(2,3:7) = {'Extremely Unstable', 'Unstable', 'Neutral', 'Stable', 'Extremely ...
Stable'};

112

Appendix D

User Defined Functions Code

The UDF codes are included below, coded using C. Three UDF sets are included, one
each for neutral, unstable and stable. Each UDF is controlled via the #define parameters
included at the top of each UDF code.

D.1 Neutral.c

1 #include "udf.h"
2 #include "math.h"
3
4 /* **
5 ** Neutral **
6 **
7 Fluent UDFs for simulating neutral ABL flow
8
9 Control via the defined parameters

10 Ensure the solver is in expert mode
11 Use compiled UDF method
12
13 Model Axis. xz = inlet/outlet plane, yz = sides, z = AGL, origin at the inlet, ...

positive in direction of flow and AGL
14
15 C_UDMI - 3 User memory slots, 1User scalar slot
16 0 Wall Distance
17 1 Cor x
18 2 Cor y
19
20 C_UDSI
21 0 wallPhi - See description in define cell wall distance
22
23 ---
24 Owner: Hendri Breedt <u10028422@tuks.co.za>
25 Date: 09/11/2017
26 Version: 00 - Public release */
27
28 /* Model Constants - DTU */
29 #define Cmu 0.03
30 #define vonKarman 0.4
31 #define Ce1 1.21
32 #define Ce2 1.92
33 #define sigma_k 1.0
34 #define sigma_e 1.3
35 #define sigma_theta 1.0
36 #define PrTurb 0.85
37
38 /* Model Constants AM */
39 #define CmuAM 0.033
40 #define vonKarmanAM 0.42
41 #define Ce1AM 1.176
42 /* The rest are the same as the DTU model */
43
44 /* Wind speed relations */
45 #define z0 0.03 /*m*/
46 #define Cs 0.5 /* Roughness Constant */
47 #define uStar 0.1439 /* uStar = (vonKarman*uRef)/log(zRef/z0); */
48 #define ablHeight 1000.0 /* Height of ABL, this is the height for fixed values of all ...

profiles and sources */
49
50 /* Site */
51 #define globalLat -33.0 /* Latitude of the origin in degrees - This is a dummy value ...

for confidentiality*/
52 #define siteElevation 0.0 /* Altitude of site AMSL - If you specify the operating ...

pressure from site data then DO NOT change this value. */
53 #define earthRot 0.000072921159 /* Earth rotational speed */
54 #define offset 477.0 /* Use to control the z value, this is deducted from the mesh z ...

coordinate. This is the height AGL of the inlet location of the mesh */
55 #define offsetY -3000.0 /* This is deducted from the local lattitude in the corliolis ...

calculation */
56
57 /* General */
58 #define pi 3.141592
59 #define g -9.80665
60 #define R 8.3144598 /* Universal Gas Constant - Dry Air */
61 #define M 0.0289644 /* Molar mass of Earth's air */

Appendix D. User Defined Functions Code 113

62 #define Lb -0.0065 /* Standard temperature lapse rate */
63
64 /* Operating Conditions - Material Air */
65 #define presOper 101325 /* Operating Pressure Pa - Internal Solver Pressure. This is ...

the pressure specified at 0m and for this you can use lowest mast pressure reading */
66 #define tempOper 288.16 /* Operating Temperature - Internal Solver Standard ...

Tempearture. This is the temperature based from the lowest measurement height on ...
the mast. But can be left as the standard value */

67 #define densOper 1.0919 /* Problem density */
68 #define Cp 1006.43
69 #define beta 0.032
70 #define viscosity 1.7894e-05
71
72 /* Initilization */
73 /* Due to HAGL variations and Fluent not being able to compute cell distance before ...

initialiazing we have to manually set the initialiaze values. These are used for z ...
values lower than maxZInit, afterwards it returns to the inlt profile values */

74 #define maxZInit 1000.0 /* Height before using init values from inlet profiles */
75 #define initVelocity 10.0 /* y velocity */
76 #define initK 2.0 /* k */
77 #define initEpsilon 2.0 /* epsilon */
78
79 /* ********************** Inlet Velocity ********************** */
80 DEFINE_PROFILE(inletVelocityNeutral, t, i)
81 {
82 real x[ND_ND];
83 real z;
84 face_t f;
85
86 begin_f_loop(f, t)
87 {
88 F_CENTROID(x,f,t);
89 z = x[2] + z0 - offset;
90 if (z > ablHeight){
91 z = ablHeight;
92 }
93 F_PROFILE(f, t, i) = (uStar/vonKarman)*log(z/z0);
94 }
95 end_f_loop(f, t)
96 }
97
98 /* ********************** Inlet k ********************** */
99 DEFINE_PROFILE(inlet_k_Neutral, t, i)

100 {
101 real x[ND_ND];
102 face_t f;
103
104 begin_f_loop(f, t)
105 {
106 F_CENTROID(x,f,t);
107 F_PROFILE(f, t, i) = pow(uStar,2.0)/sqrt(Cmu);
108 }
109 end_f_loop(f, t)
110 }
111
112 /* ********************** Inlet epsilon ********************** */
113 DEFINE_PROFILE(inlet_e_Neutral, t, i)
114 {
115 real x[ND_ND];
116 real z;
117 face_t f;
118
119 begin_f_loop(f, t)
120 {
121 F_CENTROID(x,f,t);
122 z = x[2] + z0 - offset;
123 if (z > ablHeight){
124 z = ablHeight;
125 }
126 F_PROFILE(f, t, i) = pow(uStar,3.0)/(vonKarman*z);
127 }
128 end_f_loop(f, t)
129 }
130
131
132 /* ********************** Wall Roughness ********************** */
133
134 /* Use this if you are using the ABL log law wall function */
135 DEFINE_PROFILE(wallRoughness,t,i)
136 {
137 real x[ND_ND];
138 face_t f;
139 begin_f_loop(f,t)
140 {
141 F_CENTROID(x,f,t);
142 F_PROFILE(f,t,i) = z0; /* Use this if you are using the ABL log law wall function */
143 }
144 end_f_loop(f,t)
145 }
146
147 /* Modified wall roughness */
148 DEFINE_PROFILE(wallRoughnessModified,t,i)
149 {
150 real x[ND_ND];
151 face_t f;
152 begin_f_loop(f,t)
153 {
154 F_CENTROID(x,f,t);
155 F_PROFILE(f,t,i) = 9.793*z0/Cs;
156 }
157 end_f_loop(f,t)
158 }
159
160 /* ************************* Cell Wall Distance ************************** */
161 /* To Use: Define a UDS with Flux Function = none, no Inlet Diffusion
162 Add Material Property "UDS Diffusivity"; defined-per-uds: constant, ...

Coefficient = 1 [kg/ms]

Appendix D. User Defined Functions Code 114

163 Add Source Terms for User Scalars in the cell zone: Source Term = 1
164 Set Boundary Conditions for User Scalar: Specified Value = 0 on all ...

boundaries to which the distance should be computed (boundary lower in ...
the attached sample case); Specified Flux = 0 on all other boundaries.

165 Define a User-Defined Memory Location in which the UDF stores the computed ...
distance

166 Hook to Fluent */
167
168 DEFINE_EXECUTE_AT_END(computeSelectedWallDistance)
169 {
170 Domain *d=Get_Domain(1);
171 Thread *t;
172 cell_t c;
173 real wallPhi, gradWallPhi, wallDistance;
174
175 /* Check if UDM and UDS exist */
176 if (N_UDM < 3 || N_UDS < 1) {
177 Message0("\n Error: No UDM or no UDS defined! Abort UDF execution.\n");
178 return;
179 }
180
181 /* Loop over all threads and cells to compute the wall distance */
182 thread_loop_c(t,d)
183 {
184 begin_c_loop(c,t)
185 {
186 /* Retrieve wallPhi from UDS-0 */
187 wallPhi = C_UDSI(c,t,0);
188 /* Compute magnitude of gradient of wallPhi */
189 gradWallPhi = NV_MAG(C_UDSI_G(c,t,0));
190 /* Compute local wall distance */
191 wallDistance = -gradWallPhi + sqrt(MAX(gradWallPhi*gradWallPhi + 2*wallPhi, ...

0));
192
193 /* Store local wall distance in UDM-0 */
194 C_UDMI(c,t,0) = wallDistance; /* Call C_UDMI(c,t,0) to retrieve the wall ...

distance */
195 }
196 end_c_loop(c,t)
197 }
198 }
199
200 /* ****************** Sources *********************
201 **************** Corliolis Force *************** */
202 DEFINE_SOURCE(Coriolis_X_source,c,t,dS,eqn)
203 {
204 real x[ND_ND];
205 real source;
206 real Lat, density;
207
208 C_CENTROID(x,c,t);
209
210 Lat = globalLat + (x[1] - offsetY)*9.0066*1e-6; /* Add the local lattitude change ...

converted from m to degrees */
211 density = C_R(c,t);
212
213 source = 2.0*earthRot*sin(Lat * 3.1459/180)*density*C_V(c,t);
214 dS[eqn] = 0.0;
215 C_UDMI(c,t,1) = source;
216 return source;
217 }
218
219 DEFINE_SOURCE(Coriolis_Y_source,c,t,dS,eqn)
220 {
221 real x[ND_ND];
222 real source;
223 real Lat, density;
224
225 C_CENTROID(x,c,t);
226
227 Lat = globalLat + (x[1] - offsetY)*9.0066*1e-6; /* Add the local lattitude change ...

converted from m to degrees */
228 density = C_R(c,t);
229
230 source = -2.0*earthRot*sin(Lat * 3.1459/180)*density*C_U(c,t);
231 dS[eqn] = 0.0;
232 C_UDMI(c,t,2) = source;
233 return source;
234 }
235
236 /* ************************* Initilization ************************** */
237
238 DEFINE_INIT(initNeutral,d)
239 {
240 cell_t c;
241 Thread *t;
242 real x[ND_ND];
243 real z;
244 /* loop over all cell threads in the domain */
245 thread_loop_c(t,d)
246 {
247 /* loop over all cells */
248 begin_c_loop_all(c,t)
249 {
250 C_CENTROID(x,c,t);
251 z = x[2] + z0;
252 if (z > ablHeight){
253 z = ablHeight;
254 }
255
256 if (z > maxZInit){
257 C_U(c,t) = 0.0; /*x velocity */
258 C_V(c,t) = (uStar/vonKarman)*log(z/z0); /* y velocity */
259 C_W(c,t) = 0.0; /* z velocity */
260 C_K(c,t) = pow(uStar,2.0)/sqrt(Cmu); /* k */
261 C_D(c,t) = pow(uStar,3.0)/(vonKarman*z); /* epsilon */
262 C_P(c,t) = 0.0; /*Pressure*/

Appendix D. User Defined Functions Code 115

263 }
264 else{
265 C_U(c,t) = 0.0;
266 C_V(c,t) = initVelocity;
267 C_W(c,t) = 0.0;
268 C_K(c,t) = pow(uStar,2.0)/sqrt(Cmu);
269 /* C_K(c,t) = initK; */
270 C_D(c,t) = initEpsilon;
271 C_P(c,t) = 0.0;
272 }
273 }
274 end_c_loop_all(c,t)
275 }
276 }
277
278
279 /* ************************* Wall Functions ************************** */
280
281 /* Designed around u/uStar = 1/K*log(z/z0) ref: Improved k-e model and wall function ...

formulation for the RANS simulation of ABL flows, Parente et al
282 Removes the need for multiplying z0 by 9.73/Cs and can thus use roughness lengths ...

directly from ABL modelling with first cell height = 2*z0*/
283
284
285 DEFINE_WALL_FUNCTIONS(ABL_logLaw, f, t, c0, t0, wf_ret, yPlus, Emod)
286 {
287 real ustar_ground, E_prime, yPlus_prime, zp, dx_mag, wf_value;
288 real mu=C_MU_L(c0,t0);
289 real xf[ND_ND];
290 real xc[ND_ND];
291 real dx[ND_ND];
292
293 F_CENTROID(xf, f, t);
294 C_CENTROID(xc, c0,t0);
295
296 dx[0] = xc[0] - xf[0];
297 dx[1] = xc[1] - xf[1];
298 dx[2] = xc[2] - xf[2];
299 dx_mag = NV_MAG(dx);
300 zp = dx_mag;
301
302 ustar_ground = pow(C_K(c0,t0),0.5)*pow(Cmu, 0.25);
303 E_prime = (mu/densOper)/(z0*ustar_ground);
304 yPlus_prime = (zp+z0)*ustar_ground/(mu/densOper);
305
306 switch (wf_ret)
307 {
308 case UPLUS_LAM:
309 wf_value = yPlus;
310 break;
311 case UPLUS_TRB:
312 wf_value = log(E_prime*yPlus_prime)/vonKarman;
313 /*wf_value = log(Emod*yPlus)/vonKarman; Standard Fluent*/
314 break;
315 case DUPLUS_LAM:
316 wf_value = 1.0;
317 break;
318 case DUPLUS_TRB:
319 wf_value = 1.0/(vonKarman*yPlus_prime);
320 break;
321 case D2UPLUS_TRB:
322 wf_value = -1.0/(vonKarman*yPlus_prime*yPlus_prime);
323 break;
324 default:
325 printf("Wall function return value unavailable\n");
326 }
327 return wf_value;
328 }

Appendix D. User Defined Functions Code 116

D.2 Unstable.c

1 #include "udf.h"
2 #include "math.h"
3
4 /* **
5 ** Unstable **
6 **
7
8 Fluent UDFs for simulating unstable ABL flow
9

10 Control via the defined parameters
11 Ensure the solver is in expert mode
12 Use compiled UDF method
13
14 /* C_UDMI - 12 User memory slots, 1 User scalar slot
15 0 Wall Distance
16 1 Cor x
17 2 Cor y
18 3 k DTU
19 4 k Dtu Norm
20 5 epsilon Fluent
21 6 epsilon AM
22 7 epsilon AM Ce3
23 8 epsilon AM Gb
24 9 epsilon DTU
25 10 epsilon DTU - Ce3
26 11 DTU Gb
27
28 C_UDSI
29 0 wallPhi - See description in define cell wall distance
30
31 ---
32 Owner: Hendri Breedt <u10028422@tuks.co.za>
33 Date: 09/11/2017
34 Version: 00 - Public release */
35
36 /* Model Constants - DTU */
37 #define Cmu 0.03
38 #define vonKarman 0.4
39 #define Ce1 1.21
40 #define Ce2 1.92
41 #define sigma_k 1.0
42 #define sigma_e 1.3
43 #define sigma_theta 1.0
44 #define PrTurb 0.85
45
46 /* Model Constants AM */
47 #define CmuAM 0.033
48 #define vonKarmanAM 0.42
49 #define Ce1AM 1.176
50 /* The rest are the same as the DTU model */
51
52 /* Wind speed relations */
53 #define z0 0.03 /*m*/
54 #define Cs 0.5 /* Roughness Constant */
55 #define uStar 0.3739
56 #define Lin -254.5957 /* L at the inlet - L must be < 0 to use this UDF set!!! */
57 #define Lmast -224.2239 /* L at the mast position Interpolation is performed from the ...

inlety to the mast for the L values so that at the inlet the value is Lin and at ...
the mast the value is L mast */

58 #define T0 313.0
59 #define Tstar -0.108
60 #define ablHeight 800.0
61
62 /* Site */
63 #define globalLat -33.0 /* Latitude of the origin in degrees - This is a dummy value ...

for confidentiality*/
64 #define siteElevation 0.0 /* Altitude of site AMSL - If you specify the operating ...

pressure from site data then DO NOT change this value. */
65 #define earthRot 0.000072921159 /* Earth rotational speed */
66 #define offset 477.0 /* Use to control the z value, this is deducted from the mesh z ...

coordinate. This is the height AGL of the inlet location of the mesh */
67 #define offsetY -3000.0 /* This is deducted from the local lattitude in the corliolis ...

calculation */
68 #define mastLocation 8687.0
69
70 /* General */
71 #define pi 3.141592
72 #define g -9.80665
73 #define R 8.3144598 /* Universal Gas Constant - Dry Air */
74 #define M 0.0289644 /* Molar mass of Earth's air */
75 #define Lb -0.0065 /* Standard temperature lapse rate*/
76
77 /* Operating Conditions - Material Air */
78 #define presOper 101325 /* Operating Pressure Pa - Internal Solver Pressure. This is ...

the pressure specified at 0m and for this you can use lowest mast pressure reading */
79 #define tempOper 288.16 /* Operating Temperature - Internal Solver Standard ...

Tempearture. This is the temperature based from the lowest measurement height on ...
the mast. But can be left as the standard value */

80 #define densOper 1.0827 /* Problem density */
81 #define Cp 1006.43
82 #define beta 0.0032
83 #define viscosity 1.7894e-05
84
85 /* Initilization */
86 /* Due to HAGL variations and Fluent not being able to compute cell distance before ...

initialiazing we have to manually set the initialiaze values. These are used for z ...
values lower than maxZInit, afterwards it returns to the inlt profile values */

87 #define maxZInit 1000.0 /* Height before using init values from inlet profiles */
88 #define initVelocity 10.0 /* y velocity */
89 #define initK 2.0 /* k */

Appendix D. User Defined Functions Code 117

90 #define initEpsilon 2.0 /* epsilon */
91
92 double linearInterpolation(double y);
93
94
95 /* ********************* Profiles ******************************
96 ********************** Inlet Velocity ********************** */
97 DEFINE_PROFILE(inletVelocityUnstable,t,i)
98 {
99 real x[ND_ND];

100 real z;
101 real phiM;
102 face_t f;
103
104 begin_f_loop(f,t)
105 {
106 F_CENTROID(x,f,t);
107 z = x[2] + z0 - offset;
108 if (z > ablHeight){
109 z = ablHeight;
110 }
111 phiM = pow(1.0-16.0*(z/Lin),-0.25);
112 F_PROFILE(f, t, i) = (uStar/vonKarman)*(log(8.0*(z/z0) * (pow(phiM,4.0))/(...

pow(phiM+1.0,2.0)*(pow(phiM,2.0)+1.0))) -pi/2.0 + 2.0*atan(1.0/phiM));
113 }
114 end_f_loop(f,t)
115 }
116
117
118 /* ********************* Inlet Temperature ********************** */
119 /* The site values for temperature are in potential temperature. This is converted back ...

to standard temperature via the operating pressure of Fluent */
120 DEFINE_PROFILE(inletTemperatureUnstable,t,i)
121 {
122 real x[ND_ND];
123 real z;
124 real phiM,potenTemp,pressure,zAMSL;
125 face_t f;
126
127 begin_f_loop(f,t)
128 {
129 F_CENTROID(x,f,t);
130 z = x[2] + z0 - offset;
131 if (z > ablHeight){
132 z = ablHeight;
133 }
134 zAMSL = z + siteElevation;
135 phiM = pow(1.0-16.0*(z/Lin),-0.25);
136 potenTemp = T0 + (Tstar/vonKarman)*(log(z/z0) -2.0*log(0.5*(1.0+pow(phiM,-2.0))));
137 pressure = presOper*pow(tempOper/(tempOper+Lb*zAMSL),(-g*M)/(R*Lb));
138 F_PROFILE(f,t,i) = potenTemp/(pow(presOper/pressure,0.286));
139 }
140 end_f_loop(f,t)
141 }
142
143
144 /* ********************* Inlet k ********************** */
145 DEFINE_PROFILE(inlet_k_Unstable,t,i)
146 {
147 real x[ND_ND];
148 real z;
149 real phiE,phiM;
150 face_t f;
151
152 begin_f_loop(f,t)
153 {
154 F_CENTROID(x,f,t);
155 z = x[2] + z0 - offset;
156 if (z > ablHeight){
157 z = ablHeight;
158 }
159 phiE = 1.0-(z/Lin);
160 phiM = pow(1.0-16.0*(z/Lin),-0.25);
161 F_PROFILE(f,t,i) = (pow(uStar,2.0)/sqrt(Cmu))*pow(phiE/phiM,0.5);
162 }
163 end_f_loop(f,t)
164 }
165
166 /* ********************* Inlet epsilon ********************** */
167 DEFINE_PROFILE(inlet_e_Unstable,t,i)
168 {
169 real x[ND_ND];
170 real z;
171 real phiE;
172 face_t f;
173
174 begin_f_loop(f,t)
175 {
176 F_CENTROID(x,f,t);
177 z = x[2] + z0 - offset;
178 if (z > ablHeight){
179 z = ablHeight;
180 }
181 phiE = 1.0-z/Lin;
182 F_PROFILE(f,t,i) = phiE*pow(uStar,3.0)/(vonKarman*z);
183 }
184 end_f_loop(f,t)
185 }
186
187
188 /* ********************** Walls ***********************
189
190 /* ********************** Wall Roughness ********************** */
191 /* Use this if you are using the ABL log law wall function */
192 DEFINE_PROFILE(wallRoughness,t,i)
193 {
194 real x[ND_ND];

Appendix D. User Defined Functions Code 118

195 face_t f;
196 begin_f_loop(f,t)
197 {
198 F_CENTROID(x,f,t);
199 F_PROFILE(f,t,i) = z0; /* Use this if you are using the ABL log law wall function */
200 }
201 end_f_loop(f,t)
202 }
203
204 /* Modified wall roughness */
205 DEFINE_PROFILE(wallRoughnessModified,t,i)
206 {
207 real x[ND_ND];
208 face_t f;
209 begin_f_loop(f,t)
210 {
211 F_CENTROID(x,f,t);
212 F_PROFILE(f,t,i) = 9.793*z0/Cs;
213 }
214 end_f_loop(f,t)
215 }
216
217 /* ********************* Wall Temperature ********************** */
218 DEFINE_PROFILE(wallTemperatureUnstable,t,i)
219 {
220 real x[ND_ND];
221 face_t f;
222 begin_f_loop(f,t)
223 {
224 F_CENTROID(x,f,t);
225 F_PROFILE(f,t,i) = T0;
226 }
227 end_f_loop(f,t)
228 }
229
230 /* ************************* Cell Wall Distance ************************** */
231 /* To Use: Define a UDS with Flux Function = none, no Inlet Diffusion
232 Add Material Property "UDS Diffusivity"; defined-per-uds: constant, Coefficient = ...

1 [kg/ms]
233 Add Source Terms for User Scalars in the cell zone: Source Term = 1
234 Set Boundary Conditions for User Scalar: Specified Value = 0 on all boundaries to ...

which the distance should be computed (boundary lower in the attached sample ...
case); Specified Flux = 0 on all other boundaries.

235 Define a User-Defined Memory Location in which the UDF stores the computed distance
236 Hook to define_excecute_at_end */
237
238 DEFINE_EXECUTE_AT_END(computeSelectedWallDistance)
239 {
240 Domain *d=Get_Domain(1);
241 Thread *t;
242 cell_t c;
243 real wallPhi, gradWallPhi, wallDistance;
244
245 /* Check if UDM and UDS exist */
246 if (N_UDM < 12 || N_UDS < 1) {
247 Message0("\n Error: No UDM or no UDS defined! Abort UDF execution.\n");
248 return;
249 }
250
251 /* Loop over all threads and cells to compute the wall distance */
252 thread_loop_c(t,d)
253 {
254 begin_c_loop(c,t)
255 {
256 /* Retrieve wallPhi from UDS-0 */
257 wallPhi = C_UDSI(c,t,0);
258 /* Compute magnitude of gradient of wallPhi */
259 gradWallPhi = NV_MAG(C_UDSI_G(c,t,0));
260 /* Compute local wall distance */
261 wallDistance = -gradWallPhi + sqrt(MAX(gradWallPhi*gradWallPhi + 2*wallPhi, 0));
262
263 /* Store local wall distance in UDM-0 */
264 C_UDMI(c,t,0) = wallDistance; /* Call C_UDMI(c,t,0) to retrieve the wall distance */
265 }
266 end_c_loop(c,t)
267 }
268 }
269
270 /* ******************** Sources *********************
271 **************** Corliolis Force *************** */
272 DEFINE_SOURCE(Coriolis_X_source,c,t,dS,eqn)
273 {
274 real x[ND_ND];
275 real source;
276 real Lat, density;
277
278 C_CENTROID(x,c,t);
279
280 Lat = globalLat + (x[1] - offsetY)*9.0066*1e-6; /* Add the local lattitude change ...

converted from m to degrees */
281 density = C_R(c,t);
282
283 source = 2.0*earthRot*sin(Lat * 3.1459/180)*density*C_V(c,t);
284 dS[eqn] = 0.0;
285 C_UDMI(c,t,1) = source;
286 return source;
287 }
288
289 DEFINE_SOURCE(Coriolis_Y_source,c,t,dS,eqn)
290 {
291 real x[ND_ND];
292 real source;
293 real Lat, density;
294
295 C_CENTROID(x,c,t);
296

Appendix D. User Defined Functions Code 119

297 Lat = globalLat + (x[1] - offsetY)*9.0066*1e-6; /* Add the local lattitude change ...
converted from m to degrees */

298 density = C_R(c,t);
299
300 source = -2.0*earthRot*sin(Lat * 3.1459/180)*density*C_U(c,t);
301 dS[eqn] = 0.0;
302 C_UDMI(c,t,2) = source;
303 return source;
304 }
305
306 /* ************************ k ****************************
307 DTU
308 No energy eqaution is solved with this model*/
309 DEFINE_SOURCE(k_source_DTU_Unstable,c,t,dS,eqn)
310 {
311 real fUn, phiM, phiE, phiH, CkD, source, Gb, Sk, uStarLocal;
312 real x[ND_ND];
313 real z, L;
314 C_CENTROID(x,c,t);
315 z = C_UDMI(c,t,0) + z0;
316 L = linearInterpolation(x[1]);
317 if (z > ablHeight){
318 z = ablHeight;
319 }
320
321
322 if (N_ITER > 5) {
323 phiM = pow(1.0-16.0*(z/L),-0.25);
324 phiE = 1.0-(z/L);
325 phiH = sigma_theta*pow(1.0-16.0*(z/L),-0.5);
326 uStarLocal = pow(C_K(c,t),0.5)*pow(Cmu,0.25)*pow(phiM,0.25)*pow(phiE,-0.25);
327
328 fUn = 2.0-(z/L) + 8.0*(1.0-12.0*(z/L)+7.0*pow(z/L,2.0)) - ...

16.0*(z/L)*(3.0-54.0*(z/L)+35.0*pow(z/L,2.0));
329 CkD = pow(vonKarman,2)/(sigma_k*sqrt(Cmu));
330 Gb = -C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2)); /* ...
DTU Formulation */

331 Sk = pow(uStarLocal,3.0)/(vonKarman*L)*((L/z)*(phiM - phiE) - ...
(phiH)/(sigma_theta*phiM) - 0.25*CkD*pow(phiM,6.5)*pow(phiE,-1.5)*fUn);

332
333 source = -densOper*Sk + Gb;
334 }
335 else {
336 source = 0.0; /* Only run this source after 5 iterations. The gradients can cuase ...

divergence with an illposed initilization */
337 Sk = 0.0;
338 }
339
340 dS[eqn] = 0.0;
341 C_UDMI(c,t,3) = Sk;
342 C_UDMI(c,t,4) = Sk*vonKarman*z/pow(uStar,3.0);
343 return source;
344 }
345
346
347 /* ************************ Epsilon **********************
348 Epsilon is a function of the gradients and to save these the solver needs to be in ...

expert mode
349 Issue: 'solve/set/expert' in the FLUENT window, and answer YES when it asks if you ...

want to free temporary memory
350
351 Standard Fluent buoyancy treatment for epsilon
352 Checking advanced buoyancy treatmnent in the viscous model box adds in the formulation ...

below
353 Changes in the model is made by changing Ce3 according to the AM or DTU method
354 Not checking the box sets Gb = 0, this term is then re added in by the sources below. ...

Do not check the box in the viscous box! */
355 DEFINE_SOURCE(epsilon_source_Fluent_Unstable,c,t,dS,eqn)
356 {
357 real Gb, C3e, source;
358
359 if (N_ITER > 5) {
360 Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2]; /* Standard Fluent Gb formulation, ...

C_MU_T = Turbulent Viscosity, PrTurb = Turbulent Prandtl number, C_T_G = ...
[partial_T/partial_xi] */

361 C3e = tanh(fabs(C_V(c,t)/C_U(c,t))); /* Standard Fluent C3e formulation, C_V = ...
v velocity, C_U = x velocity */

362 source = Ce1*C_D(c,t)/C_K(c,t)*C3e*Gb; /* C_D = epsilon, C_K = k */
363 }
364 else {
365 source = 0.0; /* Only run this source after 5 iterations. The gradients can cuase ...

divergence with an illposed initilization */
366 }
367 C_UDMI(c,t,5) = source;
368 dS[eqn] = 0;
369 return source;
370 }
371
372
373 /* ALot & Masson */
374 /* Epsilon source treatment based on an anylytical expression for Ce3 */
375 /* % Only valid of -2.3 < z/L < 2 and also highly sensitive*/
376 DEFINE_SOURCE(epsilon_source_AM_Unstable,c,t,dS,eqn)
377 {
378 real x[ND_ND];
379 real z, L;
380 real Gb, C3e, source;
381 real a0, a1, a2, a3, a4, a5;
382 C_CENTROID(x,c,t);
383 z = C_UDMI(c,t,0) + z0;
384 L = linearInterpolation(x[1]);
385
386 if (z > ablHeight){
387 z = ablHeight;
388 }
389

Appendix D. User Defined Functions Code 120

390 if (N_ITER > 5 && z/L > -2.3){
391 if (z/L > -0.25) {
392 a0 = -0.0609;
393 a1 = -33.672;
394 a2 = -546.88;
395 a3 = -3234.06;
396 a4 = -9490.792;
397 a5 = -11163.202;
398 }
399 else {
400 a0 = 1.1765;
401 a1 = 17.1346;
402 a2 = 19.165;
403 a3 = 11.912;
404 a4 = 3.821;
405 a5 = 0.492;
406 }
407
408 Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2];
409 C3e = a0*pow((z/L),0) + a1*pow((z/L),1.0) + a2*pow((z/L),2.0) + a3*pow((z/L),3.0) + ...

a4*pow((z/L),4.0) + a5*pow((z/L),5.0); /* AM C3e formulation */
410 }
411 else if (N_ITER > 5 && z/L ≤ -2.3){
412 Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2];
413 C3e = -6.523095460000015;
414 }
415 else{
416 Gb = 0.0;
417 C3e = 0.0;
418 }
419
420 dS[eqn] = 0;
421 source = Ce1AM*C_D(c,t)/C_K(c,t)*C3e*Gb;
422 C_UDMI(c,t,6) = source;
423 C_UDMI(c,t,7) = C3e;
424 C_UDMI(c,t,8) = Gb*vonKarmanAM*z/pow(uStar,3.0);
425 return source;
426 }
427
428 /* 2 - This uses the DTU Gb formulation and is run without a temperature eqaution */
429 DEFINE_SOURCE(epsilon_source_AM_Unstable_2,c,t,dS,eqn)
430 {
431 real x[ND_ND];
432 real z, L;
433 real Gb, C3e, phiM, phiH, source;
434 real a0, a1, a2, a3, a4, a5;
435 C_CENTROID(x,c,t);
436 z = C_UDMI(c,t,0) + z0;
437 L = linearInterpolation(x[1]);
438
439 if (z > ablHeight){
440 z = ablHeight;
441 }
442 phiM = pow(1.0-16.0*(z/L),-0.25);
443 phiH = sigma_theta*pow(1.0-16.0*(z/L),-0.5);
444
445 if (N_ITER > 5 && z/L > -2.3){
446 if (z/L > -0.25) {
447 a0 = -0.0609;
448 a1 = -33.672;
449 a2 = -546.88;
450 a3 = -3234.06;
451 a4 = -9490.792;
452 a5 = -11163.202;
453 }
454 else {
455 a0 = 1.1765;
456 a1 = 17.1346;
457 a2 = 19.165;
458 a3 = 11.912;
459 a4 = 3.821;
460 a5 = 0.492;
461 }
462
463 Gb = C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0));
464 C3e = a0*pow((z/L),0) + a1*pow((z/L),1.0) + a2*pow((z/L),2.0) + a3*pow((z/L),3.0) + ...

a4*pow((z/L),4.0) + a5*pow((z/L),5.0); /* AM C3e formulation */
465 }
466 else if (N_ITER > 5 && z/L ≤ -2.3){
467 Gb = C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0));
468 C3e = -6.523095460000015;
469 }
470 else{
471 Gb = 0.0;
472 C3e = 0.0;
473 }
474
475 dS[eqn] = 0;
476 source = Ce1AM*C_D(c,t)/C_K(c,t)*C3e*Gb;
477 C_UDMI(c,t,6) = source;
478 C_UDMI(c,t,7) = C3e;
479 C_UDMI(c,t,8) = Gb*vonKarmanAM*z/pow(uStar,3.0);
480 return source;
481 }
482
483
484 /* DTU */
485 /* Epsilon source treatment based on an anylytical expression for Ce3 */
486 /* No energy eqaution is solved with this model */
487 DEFINE_SOURCE(epsilon_source_DTU_Unstable,c,t,dS,eqn)
488 {
489 real x[ND_ND];
490 real z, L;
491 real Gb, C3e, source;

Appendix D. User Defined Functions Code 121

492 real phiM, phiH, phiE, fe;
493 C_CENTROID(x,c,t);
494 z = C_UDMI(c,t,0) + z0;
495 L = linearInterpolation(x[1]);
496
497 if (z > ablHeight){
498 z = ablHeight;
499 }
500
501
502 if (N_ITER > 5) {
503 phiM = pow(1.0-16.0*(z/L),-0.25);
504 phiE = 1.0-(z/L);
505 phiH = sigma_theta*pow(1.0-16.0*(z/L),-0.5);
506 fe = pow(phiM,2.5)*(1.0-0.75*16.0*(z/L));
507 /* Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2]; */ /*Standard Fluent Gb ...

formulation, C_MU_T = Turbulent Viscosity, PrTurb = Turbulent Prandtl number, ...
C_T_G = [partial_T/partial_xi] */

508 Gb = -C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...
C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0)); ...
/* DTU Formulation */

509 C3e = ...
(sigma_theta/(z/L))*(phiM/phiH)*(Ce1*phiM-Ce2*phiE+(Ce2-Ce1)*pow(phiE,-0.5)*fe); ...

/* DTU C3e formulation */
510
511 source = Ce1*C_D(c,t)/C_K(c,t)*C3e*Gb; /*C_D = epsilon, C_K = k */
512 }
513 else {
514 source = 0.0; /* Only run this source after 5 iterations. The gradients can cuase ...

divergence with an illposed initilization */
515 Gb = 0.0;
516 C3e = 0.0;
517
518 }
519 dS[eqn] = 0.0;
520
521 C_UDMI(c,t,9) = source;
522 C_UDMI(c,t,10) = C3e;
523 C_UDMI(c,t,11) = Gb*vonKarman*z/pow(uStar,3.0);
524 return source;
525 }
526
527 /* ************************* Initilization ************************** */
528
529 DEFINE_INIT(initUnstable,d)
530 {
531 cell_t c;
532 Thread *t;
533 real x[ND_ND];
534 real phiM, phiE, phiH, pressure, potenTemp, z, zAMSL, L;
535 /* loop over all cell threads in the domain */
536 thread_loop_c(t,d)
537 {
538 /* loop over all cells */
539 begin_c_loop_all(c,t)
540 {
541 C_CENTROID(x,c,t);
542 z = x[2] + z0 - offset;
543 L = linearInterpolation(x[1]);
544 if (z > ablHeight){
545 z = ablHeight;
546 }
547
548 if (z > maxZInit){
549 phiM = pow(1.0-16.0*(z/L),-0.25);
550 phiE = 1.0-(z/L);
551 phiH = sigma_theta*pow(1.0-16.0*(z/L),-0.5);
552 C_U(c,t) = 0.0; /*x velocity */
553 C_V(c,t) = (uStar/vonKarman)*(log(8.0*(z/z0) * (pow(phiM,4.0))/(...

pow(phiM+1.0,2.0)*(pow(phiM,2.0)+1.0))) -pi/2.0 + 2.0*atan(1.0/phiM)); /* y ...
velocity */

554 C_W(c,t) = 0.0; /* z velocity */
555 /* C_T(c,t) = potenTemp/(pow(presOper/pressure,0.286)); /* Temperature */
556 C_K(c,t) = (pow(uStar,2.0)/sqrt(Cmu))*pow(phiE/phiM,0.5); /* k */
557 C_D(c,t) = phiE*pow(uStar,3.0)/(vonKarman*z); /* epsilon */
558 C_P(c,t) = 0.0; /*Pressure*/
559 }
560 else{
561 C_U(c,t) = 0.0;
562 C_V(c,t) = initVelocity;
563 C_W(c,t) = 0.0;
564 C_K(c,t) = initK;
565 C_D(c,t) = initEpsilon;
566 C_P(c,t) = 0.0;
567 }
568 }
569 end_c_loop_all(c,t)
570 }
571 }
572
573
574 /* ************************* Wall Functions ************************** */
575
576 /* Designed around u/uStar = 1/K*log(z/z0) ref: Improved k-e model and wall function ...

formulation for the RANS simulation of ABL flows, Parente et al
577 Removes the need for multiplying z0 by 9.73/Cs and can thus use roughness lengths ...

directly from ABL modelling with first cell height = 2*z0*/
578
579 DEFINE_WALL_FUNCTIONS(ABL_logLaw, f, t, c0, t0, wf_ret, yPlus, Emod)
580 {
581 real ustar_ground, E_prime, yPlus_prime, zp, dx_mag, wf_value;
582 real mu=C_MU_L(c0,t0);
583 real xf[ND_ND];
584 real xc[ND_ND];
585 real dx[ND_ND];
586
587 F_CENTROID(xf, f, t);

Appendix D. User Defined Functions Code 122

588 C_CENTROID(xc, c0,t0);
589
590 dx[0] = xc[0] - xf[0];
591 dx[1] = xc[1] - xf[1];
592 dx[2] = xc[2] - xf[2];
593 dx_mag = NV_MAG(dx);
594 zp = dx_mag;
595
596 ustar_ground = pow(C_K(c0,t0),0.5)*pow(Cmu, 0.25);
597 E_prime = (mu/densOper)/(z0*ustar_ground);
598 yPlus_prime = (zp+z0)*ustar_ground/(mu/densOper);
599
600 switch (wf_ret)
601 {
602 case UPLUS_LAM:
603 wf_value = yPlus;
604 break;
605 case UPLUS_TRB:
606 wf_value = log(E_prime*yPlus_prime)/vonKarman;
607 /*wf_value = log(Emod*yPlus)/vonKarman; Standard Fluent*/
608 break;
609 case DUPLUS_LAM:
610 wf_value = 1.0;
611 break;
612 case DUPLUS_TRB:
613 wf_value = 1.0/(vonKarman*yPlus_prime);
614 break;
615 case D2UPLUS_TRB:
616 wf_value = -1.0/(vonKarman*yPlus_prime*yPlus_prime);
617 break;
618 default:
619 printf("Wall function return value unavailable\n");
620 }
621 return wf_value;
622 }
623
624 /* ************************* Interpolation ************************** */
625 /* Currently does linear interpolation, Must be run with 180degree inlet location. ...

This function can be expanded in future to bilinear (or more) to include more ...
mast/WRF locations */

626 double linearInterpolation(double y)
627 {
628 double L;
629 if (y > mastLocation){
630 L = Lmast;
631 }
632 else{
633 L = (Lin*(mastLocation - y) + Lmast*(y - offsetY))/(mastLocation - offsetY); /* ...

Local L */
634 }
635
636 return L;
637 }

Appendix D. User Defined Functions Code 123

D.3 Stable.c

1 #include "udf.h"
2 #include "math.h"
3
4 /* **
5 ** Stable **
6 **
7 Fluent UDFs for simulating stable ABL flow
8
9 Control via the defined parameters

10 Ensure the solver is in expert mode
11 Use compiled UDF method
12
13 C_UDMI - 12 User memory slots, 1 User scalar slot
14 0 Wall Distance
15 1 Cor x
16 2 Cor y
17 3 k DTU
18 4 k Dtu Norm
19 5 epsilon Fluent
20 6 epsilon AM
21 7 epsilon AM Ce3
22 8 epsilon AM Gb
23 9 epsilon DTU
24 10 epsilon DTU - Ce3
25 11 DTU Gb
26
27 C_UDSI
28 0 wallPhi - See description in define cell wall distance
29
30 ---
31 Owner: Hendri Breedt <u10028422@tuks.co.za>
32 Date: 09/11/2017
33 Version: 00 - Public release */
34
35 /* Model Constants - DTU */
36 #define Cmu 0.03
37 #define vonKarman 0.4
38 #define Ce1 1.21
39 #define Ce2 1.92
40 #define sigma_k 1.0
41 #define sigma_e 1.3
42 #define sigma_theta 1.0
43 #define PrTurb 0.85
44
45 /* Model Constants AM */
46 #define CmuAM 0.033
47 #define vonKarmanAM 0.42
48 #define Ce1AM 1.176
49 /* The rest are the same as the DTU model */
50
51 /* Wind speed relations */
52 #define z0 0.03 /*m*/
53 #define Cs 0.5 /* Roughness Constant */
54 #define uStar 0.1407
55 #define Lin 124.7334 /* L - Inlet L must be > 0 to use this UDF set!!! */
56 #define Lmast 222.1774 /* L at the mast position Interpolation is performed from the ...

inlety to the mast for the L values so that at the inlet the value is Lin and at ...
the mast the value is L mast */

57 #define T0 288.0
58 #define Tstar 0.0232
59 #define ablHeight 600.0 /* Height of ABL, this is the height for fixed values of all ...

profiles */
60
61 /* Site */
62 #define globalLat -33.0 /* Latitude of the origin in degrees - This is a dummy value ...

for confidentiality*/
63 #define siteElevation 0.0 /* Altitude of site AMSL - If you specify the operating ...

pressure from site data then DO NOT change this value. */
64 #define earthRot 0.000072921159 /* Earth rotational speed */
65 #define offset 477.0 /* Use to control the z value, this is deducted from the mesh z ...

coordinate. This is the height AGL of the inlet location of the mesh */
66 #define offsetY -3000.0 /* This is deducted from the local lattitude in the corliolis ...

calculation */
67 #define mastLocation 8687.0
68
69
70 /* General */
71 #define pi 3.141592
72 #define g -9.80665
73 #define R 8.3144598 /* Universal Gas Constant - Dry Air */
74 #define M 0.0289644 /* Molar mass of Earth's air */
75 #define Lb -0.0065 /* Standard temperature lapse rate */
76
77 /* Operating Conditions - Material Air */
78 #define presOper 101325 /* Operating Pressure Pa - Internal Solver Pressure. This is ...

the pressure specified at 0m and for this you can use lowest mast pressure reading */
79 #define tempOper 288.16 /* Operating Temperature - Internal Solver Standard ...

Tempearture. This is the temperature based from the lowest measurement height on ...
the mast. But can be left as the standard value */

80 #define densOper 1.0800 /* Problem density */
81 #define Cp 1006.43
82 #define beta 0.0032
83 #define viscosity 1.7894e-05
84
85 /* Initilization */
86 /* Due to HAGL variations and Fluent not being able to compute cell distance before ...

initialiazing we have to manually set the initialiaze values. These are used for z ...
values lower than maxZInit, afterwards it returns to the inlt profile values */

87 #define maxZInit 1000.0 /* Height before using init values from inlet profiles */
88 #define initVelocity 10.0 /* y velocity */

Appendix D. User Defined Functions Code 124

89 #define initK 2.0 /* k */
90 #define initEpsilon 2.0 /* epsilon */
91
92 double linearInterpolation(double y);
93 /* ********************* Profiles ****************************** */
94
95 /* ********************** Inlet Velocity ********************** */
96 DEFINE_PROFILE(inletVelocityStable,t,i)
97 {
98 real x[ND_ND];
99 real z;

100 real phiM;
101 face_t f;
102
103 begin_f_loop(f,t)
104 {
105 F_CENTROID(x,f,t);
106 z = x[2] + z0 - offset;
107 if (z > ablHeight){
108 z = ablHeight;
109 }
110 phiM = 1.0 + 5.0*(z/Lin);
111 F_PROFILE(f, t, i) = (uStar/vonKarman)*(log(z/z0) +phiM -1.0);
112 }
113 end_f_loop(f,t)
114 }
115
116
117 /* ********************** Inlet Temperature **********************
118 The site values for temperature are in potential temperature. This is converted back to ...

standard temperature via the operating pressure of Fluent. */
119 DEFINE_PROFILE(inletTemperatureStable,t,i)
120 {
121 real x[ND_ND];
122 real z;
123 real phiM, potenTemp, pressure, zAMSL;
124 face_t f;
125
126 begin_f_loop(f,t)
127 {
128 F_CENTROID(x,f,t);
129 z = x[2] + z0 - offset;
130 if (z > ablHeight){
131 z = ablHeight;
132 }
133 zAMSL = z + siteElevation;
134 phiM = 1.0 + 5.0*(z/Lin);
135 potenTemp = T0 + (Tstar/vonKarman)*(log(z/z0) +phiM -1.0);
136 pressure = presOper*pow(tempOper/(tempOper+Lb*zAMSL),(-g*M)/(R*Lb));
137 F_PROFILE(f,t,i) = potenTemp/(pow(presOper/pressure,0.286));
138 }
139 end_f_loop(f,t)
140 }
141
142
143 /* ********************** Inlet k ********************** */
144 DEFINE_PROFILE(inlet_k_Stable,t,i)
145 {
146 real x[ND_ND];
147 real z;
148 real phiE,phiM;
149 face_t f;
150
151 begin_f_loop(f,t)
152 {
153 F_CENTROID(x,f,t);
154 z = x[2] + z0 - offset;
155 if (z > ablHeight){
156 z = ablHeight;
157 }
158 phiM = 1.0 + 5.0*(z/Lin);
159 phiE = phiM-z/Lin;
160 F_PROFILE(f,t,i) = (pow(uStar,2.0)/sqrt(Cmu))*pow(phiE/phiM,0.5);
161 }
162 end_f_loop(f,t)
163 }
164
165 /* ********************** Inlet epsilon ********************** */
166 DEFINE_PROFILE(inlet_e_Stable,t,i)
167 {
168 real x[ND_ND];
169 real z;
170 real phiE, phiM;
171 face_t f;
172
173 begin_f_loop(f,t)
174 {
175 F_CENTROID(x,f,t);
176 z = x[2] + z0 - offset;
177 if (z > ablHeight){
178 z = ablHeight;
179 }
180 phiM = 1.0 + 5.0*(z/Lin);
181 phiE = phiM-z/Lin;
182 F_PROFILE(f,t,i) = phiE*pow(uStar,3.0)/(vonKarman*z);
183 }
184 end_f_loop(f,t)
185 }
186
187
188 /* *********************** Walls *********************** */
189
190 /* ********************** Wall Roughness ********************** */
191 /* Use this if you are using the ABL log law wall function */
192 DEFINE_PROFILE(wallRoughness,t,i)
193 {
194 real x[ND_ND];

Appendix D. User Defined Functions Code 125

195 face_t f;
196 begin_f_loop(f,t)
197 {
198 F_CENTROID(x,f,t);
199 F_PROFILE(f,t,i) = z0; /* Use this if you are using the ABL log law wall function */
200 }
201 end_f_loop(f,t)
202 }
203
204 /* Modified wall roughness */
205 DEFINE_PROFILE(wallRoughnessModified,t,i)
206 {
207 real x[ND_ND];
208 face_t f;
209 begin_f_loop(f,t)
210 {
211 F_CENTROID(x,f,t);
212 F_PROFILE(f,t,i) = 9.793*z0/Cs;
213 }
214 end_f_loop(f,t)
215 }
216
217 /* ********************** Wall Temperature ********************** */
218 DEFINE_PROFILE(wallTemperatureStable,t,i)
219 {
220 real x[ND_ND];
221 face_t f;
222 begin_f_loop(f,t)
223 {
224 F_CENTROID(x,f,t);
225 F_PROFILE(f,t,i) = T0;
226 }
227 end_f_loop(f,t)
228 }
229
230 /* ************************* Cell Wall Distance ************************** */
231 /* To Use: Define a UDS with Flux Function = none, no Inlet Diffusion
232 Add Material Property "UDS Diffusivity"; defined-per-uds: constant, Coefficient = ...

1 [kg/ms]
233 Add Source Terms for User Scalars in the cell zone: Source Term = 1
234 Set Boundary Conditions for User Scalar: Specified Value = 0 on all boundaries to ...

which the distance should be computed (boundary lower in the attached sample ...
case); Specified Flux = 0 on all other boundaries.

235 Define a User-Defined Memory Location in which the UDF stores the computed distance
236 Hook to define_excecute_at_end */
237
238 DEFINE_EXECUTE_AT_END(computeSelectedWallDistance)
239 {
240 Domain *d=Get_Domain(1);
241 Thread *t;
242 cell_t c;
243 real wallPhi, gradWallPhi, wallDistance;
244
245 /* Check if UDM and UDS exist */
246 if (N_UDM < 12 || N_UDS < 1) {
247 Message0("\n Error: No UDM or no UDS defined! Abort UDF execution.\n");
248 return;
249 }
250
251 /* Loop over all threads and cells to compute the wall distance */
252 thread_loop_c(t,d)
253 {
254 begin_c_loop(c,t)
255 {
256 /* Retrieve wallPhi from UDS-0 */
257 wallPhi = C_UDSI(c,t,0);
258 /* Compute magnitude of gradient of wallPhi */
259 gradWallPhi = NV_MAG(C_UDSI_G(c,t,0));
260 /* Compute local wall distance */
261 wallDistance = -gradWallPhi + sqrt(MAX(gradWallPhi*gradWallPhi + 2*wallPhi, 0));
262
263 /* Store local wall distance in UDM-0 */
264 C_UDMI(c,t,0) = wallDistance; /* Call C_UDMI(c,t,0) to retrieve the wall distance */
265 }
266 end_c_loop(c,t)
267 }
268 }
269
270 /* ******************** Sources ********************* */
271
272 /* **************** Corliolis Force *************** */
273 DEFINE_SOURCE(Coriolis_X_source,c,t,dS,eqn)
274 {
275 real x[ND_ND];
276 real source;
277 real Lat, density;
278
279 C_CENTROID(x,c,t);
280
281 Lat = globalLat + (x[1] - offsetY)*9.0066*1e-6; /* Add the local lattitude change ...

converted from m to degrees */
282 density = C_R(c,t);
283
284 source = 2.0*earthRot*sin(Lat * 3.1459/180)*density*C_V(c,t);
285 dS[eqn] = 0.0;
286 C_UDMI(c,t,1) = source;
287 return source;
288 }
289
290 DEFINE_SOURCE(Coriolis_Y_source,c,t,dS,eqn)
291 {
292 real x[ND_ND];
293 real source;
294 real Lat, density;
295
296 C_CENTROID(x,c,t);
297

Appendix D. User Defined Functions Code 126

298 Lat = globalLat + (x[1] - offsetY)*9.0066*1e-6; /* Add the local lattitude change ...
converted from m to degrees */

299 density = C_R(c,t);
300
301 source = -2.0*earthRot*sin(Lat * 3.1459/180)*density*C_U(c,t);
302 dS[eqn] = 0.0;
303 C_UDMI(c,t,2) = source;
304 return source;
305 }
306
307 /* ************************ k **************************** */
308 /* No energy eqaution is solved with this model*/
309 DEFINE_SOURCE(k_source_DTU_Stable,c,t,dS,eqn)
310 {
311 real fSt, phiM, phiE, phiH, CkD, source, Gb, Sk, uStarLocal;
312 real x[ND_ND];
313 real z, L;
314 C_CENTROID(x,c,t);
315 z = C_UDMI(c,t,0) + z0;
316 L = linearInterpolation(x[1]);
317 if (z > ablHeight){
318 z = ablHeight;
319 }
320
321 if (N_ITER > 5) {
322 phiM = 1.0 + 5.0*(z/L);
323 phiE = phiM-z/L;
324 phiH = 1.0 + 5.0*(z/L);
325 uStarLocal = pow(C_K(c,t),0.5)*pow(Cmu,0.25)*pow(phiM,0.25)*pow(phiE,-0.25);
326
327 fSt = 2.0-(z/L) - 10.0*(z/L)*(1.0-2.0*(z/L) + 10.0*(z/L));
328 CkD = pow(vonKarman,2.0)/(sigma_k*sqrt(Cmu));
329 Gb = -C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0)); ...
/* DTU Formulation */

330 Sk = pow(uStarLocal,3.0)/(vonKarman*L)*(1.0 - (phiH)/(sigma_theta*phiM) - ...
0.25*CkD*pow(phiM,-3.5)*pow(phiE,-1.5)*fSt);

331 source = -densOper*Sk + Gb;
332 }
333 else {
334 source = 0.0;
335 }
336
337 dS[eqn] = 0.0;
338 C_UDMI(c,t,3) = Sk;
339 C_UDMI(c,t,4) = Sk*vonKarman*z/pow(uStar,3.0);
340 return source;
341 }
342
343
344 /* ************************ Epsilon **********************
345 Epsilon is a function of the gradients and to save these the solver needs to be in ...

expert mode
346 Issue: 'solve/set/expert' in the FLUENT window, and answer YES when it asks if you ...

want to free temporary memory
347
348 Standard Fluent buoyancy treatment for epsilon
349 Checking advanced buoyancy treatmnent in the viscous model box adds in the formulation ...

below
350 Changes in the model is made by changing Ce3 according to the AM or DTU method
351 Not checking the box sets Gb = 0, this term is then re added in by the sources below. ...

Do not check the box in the viscous box! */
352 DEFINE_SOURCE(epsilon_source_Fluent_Stable,c,t,dS,eqn)
353 {
354 real Gb, C3e, source;
355
356 if (N_ITER > 5) {
357 Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2]; /* Standard Fluent Gb formulation, ...

C_MU_T = Turbulent Viscosity, PrTurb = Turbulent Prandtl number, C_T_G = ...
[partial_T/partial_xi] */

358 C3e = tanh(fabs(C_V(c,t)/C_U(c,t))); /* Standard Fluent C3e formulation, C_V = ...
v velocity, C_U = x velocity */

359 source = Ce1*C_D(c,t)/C_K(c,t)*C3e*Gb; /* C_D = epsilon, C_K = k */
360 }
361 else {
362 source = 0.0; /* Only run this source after 15 iterations. The gradients can cuase ...

divergence with an illposed initilization */
363 }
364 dS[eqn] = 0.0;
365 C_UDMI(c,t,5) = source;
366 return source;
367 }
368
369
370 /* ALot & Masson
371 /* Epsilon source treatment based on an anylytical expression for Ce3 */
372 /* Only valid of -2.3 < z/L < 2 and also highly sensitive*/
373 DEFINE_SOURCE(epsilon_source_AM_Stable,c,t,dS,eqn)
374 {
375 real x[ND_ND];
376 real z, L;
377 real Gb, C3e, source;
378 real a0, a1, a2, a3, a4, a5;
379 C_CENTROID(x,c,t);
380 z = C_UDMI(c,t,0) + z0;
381 L = linearInterpolation(x[1]);
382 if (z > ablHeight){
383 z = ablHeight;
384 }
385
386 if (N_ITER > 5 && z/L < 2.0) {
387 if (z/L < 0.33) {
388 a0 = 4.181;
389 a1 = 33.994;
390 a2 = -442.398;
391 a3 = 2368.12;
392 a4 = -6043.544;

Appendix D. User Defined Functions Code 127

393 a5 = 5970.776;
394 }
395 else {
396 a0 = 5.225;
397 a1 = -5.269;
398 a2 = 5.115;
399 a3 = -2.406;
400 a4 = 0.435;
401 a5 = 0;
402 }
403
404 Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2];
405 C3e = a0*pow((z/L),0) + a1*pow((z/L),1.0) + a2*pow((z/L),2.0) + a3*pow((z/L),3.0) + ...

a4*pow((z/L),4.0) + a5*pow((z/L),5.0); /* AM C3e formulation */
406 }
407 else if (N_ITER > 5 && z/L ≥ 2.0){
408 Gb = beta*g*C_MU_T(c,t)/PrTurb*C_T_G(c,t)[2];
409 C3e = 2.858999999999999;
410 }
411 else{
412 Gb = 0.0;
413 C3e = 0.0;
414 }
415
416 dS[eqn] = 0;
417 source = Ce1AM*C_D(c,t)/C_K(c,t)*C3e*Gb;
418 C_UDMI(c,t,6) = source;
419 C_UDMI(c,t,7) = C3e;
420 C_UDMI(c,t,8) = Gb*vonKarmanAM*z/pow(uStar,3.0);
421 return source;
422 }
423
424 /* 2 - This uses the DTU Gb formulation and is run without a temperature eqaution */
425 DEFINE_SOURCE(epsilon_source_AM_Stable_2,c,t,dS,eqn)
426 {
427 real x[ND_ND];
428 real z, L;
429 real Gb, C3e, phiM, phiH, source;
430 real a0, a1, a2, a3, a4, a5;
431 C_CENTROID(x,c,t);
432 z = C_UDMI(c,t,0) + z0;
433 L = linearInterpolation(x[1]);
434
435 if (z > ablHeight){
436 z = ablHeight;
437 }
438 phiM = 1.0 + 5.0*(z/L);
439 phiH = 1.0 + 5.0*(z/L);
440
441 if (N_ITER > 5 && z/L < 2.0) {
442 if (z/L < 0.33) {
443 a0 = 4.181;
444 a1 = 33.994;
445 a2 = -442.398;
446 a3 = 2368.12;
447 a4 = -6043.544;
448 a5 = 5970.776;
449 }
450 else {
451 a0 = 5.225;
452 a1 = -5.269;
453 a2 = 5.115;
454 a3 = -2.406;
455 a4 = 0.435;
456 a5 = 0;
457 }
458
459 Gb = C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0));
460 C3e = a0*pow((z/L),0) + a1*pow((z/L),1.0) + a2*pow((z/L),2.0) + a3*pow((z/L),3.0) + ...

a4*pow((z/L),4.0) + a5*pow((z/L),5.0); /* AM C3e formulation */
461 }
462 else if (N_ITER > 5 && z/L ≥ 2.0){
463 Gb = C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0));
464 C3e = 2.858999999999999;
465 }
466 else{
467 Gb = 0.0;
468 C3e = 0.0;
469 }
470
471 dS[eqn] = 0;
472 source = Ce1AM*C_D(c,t)/C_K(c,t)*C3e*Gb;
473 C_UDMI(c,t,6) = source;
474 C_UDMI(c,t,7) = C3e;
475 C_UDMI(c,t,8) = Gb*vonKarmanAM*z/pow(uStar,3.0);
476 return source;
477 }
478
479 /* DTU
480 Epsilon source treatment based on an anylytical expression for Ce3 */
481 DEFINE_SOURCE(epsilon_source_DTU_Stable,c,t,dS,eqn)
482 {
483 real x[ND_ND];
484 real z, L;
485 real Gb, C3e, source;
486 real phiM, phiH, phiE, fe;
487 C_CENTROID(x,c,t);
488 z = C_UDMI(c,t,0) + z0;
489 L = linearInterpolation(x[1]);
490
491 if (z > ablHeight){
492 z = ablHeight;
493 }
494

Appendix D. User Defined Functions Code 128

495 if (N_ITER > 5) {
496 phiM = 1.0 + 5.0*(z/L);
497 phiE = phiM-z/L;
498 phiH = 1.0 + 5.0*(z/L);
499 fe = pow(phiM,-2.5)*(2.0*phiM-1.0);
500
501 Gb = -C_MU_T(c,t)*pow(sqrt(C_U_G(c,t)[2]*C_U_G(c,t)[2] + ...

C_V_G(c,t)[2]*C_V_G(c,t)[2]),2.0)*((z/L)/(sigma_theta))*(phiH/pow(phiM,2.0)); ...
/* DTU Formulation */

502 C3e = sigma_theta/(z/L)*(phiM/phiH)*(Ce1*phiM-Ce2*phiE+(Ce2-Ce1)*pow(phiE,-0.5)*fe);
503 source = Ce1*C_D(c,t)/C_K(c,t)*C3e*Gb;
504 }
505 else {
506 C3e = 0.0;
507 Gb = 0.0;
508 source = 0.0;
509 }
510
511 C_UDMI(c,t,9) = source;
512 C_UDMI(c,t,10) = C3e;
513 C_UDMI(c,t,11) = Gb*vonKarman*z/pow(uStar,3.0);
514 dS[eqn] = 0.0;
515 return source;
516 }
517
518 /* ************************* Initilization ************************** */
519
520 DEFINE_INIT(initStable,d)
521 {
522 cell_t c;
523 Thread *t;
524 real x[ND_ND];
525 real phiM, phiE, phiH, pressure, potenTemp, z, zAMSL, L ;
526 /* loop over all cell threads in the domain */
527 thread_loop_c(t,d)
528 {
529 /* loop over all cells */
530 begin_c_loop_all(c,t)
531 {
532 C_CENTROID(x,c,t);
533 z = x[2] + z0;
534 L = linearInterpolation(x[1]);
535 if (z > ablHeight){
536 z = ablHeight;
537 }
538
539 if (z > maxZInit){
540 phiM = 1.0 + 5.0*(z/L);
541 phiE = phiM-z/L;
542 phiH = 1.0 + 5.0*(z/L);
543 C_U(c,t) = 0.0; /*x velocity */
544 C_V(c,t) = (uStar/vonKarman)*(log(z/z0) +phiM -1.0); /* y velocity */
545 C_W(c,t) = 0.0; /* z velocity */
546 /* C_T(c,t) = potenTemp/(pow(presOper/pressure,0.286)); */ /* Temperature */
547 C_K(c,t) = (pow(uStar,2.0)/sqrt(Cmu))*pow(phiE/phiM,0.5); /* k */
548 C_D(c,t) = phiE*pow(uStar,3.0)/(vonKarman*z); /* epsilon */
549 C_P(c,t) = 0.0; /*Pressure*/
550 }
551 else{
552 C_U(c,t) = 0.0;
553 C_V(c,t) = initVelocity;
554 C_W(c,t) = 0.0;
555 C_K(c,t) = initK;
556 C_D(c,t) = initEpsilon;
557 C_P(c,t) = 0.0;
558 }
559 }
560 end_c_loop_all(c,t)
561 }
562 }
563
564
565 /* ************************* Wall Functions ************************** */
566
567 /* Designed around u/uStar = 1/K*log(z/z0) ref: Improved k-e model and wall function ...

formulation for the RANS simulation of ABL flows, Parente et al
568 Removes the need for multiplying z0 by 9.73/Cs and can thus use roughness lengths ...

directly from ABL modelling with first cell height = 2*z0*/
569
570 DEFINE_WALL_FUNCTIONS(ABL_logLaw, f, t, c0, t0, wf_ret, yPlus, Emod)
571 {
572 real ustar_ground, E_prime, yPlus_prime, zp, dx_mag, wf_value;
573 real mu=C_MU_L(c0,t0);
574 real xf[ND_ND];
575 real xc[ND_ND];
576 real dx[ND_ND];
577
578 F_CENTROID(xf, f, t);
579 C_CENTROID(xc, c0,t0);
580
581 dx[0] = xc[0] - xf[0];
582 dx[1] = xc[1] - xf[1];
583 dx[2] = xc[2] - xf[2];
584 dx_mag = NV_MAG(dx);
585 zp = dx_mag;
586
587 ustar_ground = pow(C_K(c0,t0),0.5)*pow(Cmu, 0.25);
588 E_prime = (mu/densOper)/(z0*ustar_ground);
589 yPlus_prime = (zp+z0)*ustar_ground/(mu/densOper);
590
591 switch (wf_ret)
592 {
593 case UPLUS_LAM:
594 wf_value = yPlus;
595 break;
596 case UPLUS_TRB:
597 wf_value = log(E_prime*yPlus_prime)/vonKarman;

Appendix D. User Defined Functions Code 129

598 /*wf_value = log(Emod*yPlus)/vonKarman; Standard Fluent*/
599 break;
600 case DUPLUS_LAM:
601 wf_value = 1.0;
602 break;
603 case DUPLUS_TRB:
604 wf_value =
605 break;
606 case D2UPLUS_TRB:
607 wf_value = -1.0/(vonKarman*yPlus_prime*yPlus_prime);
608 break;
609 default:
610 printf("Wall function return value unavailable\n");
611 }
612 return wf_value;
613 }
614
615
616 /* ************************* Interpolation ************************** */
617 /* Currently does linear interpolation, Must be run with 180degree inlet location. ...

This function can be expanded in future to bilinear (or more) to include more ...
mast/WRF locations */

618 double linearInterpolation(double y)
619 {
620 double L;
621 if (y > mastLocation){
622 L = Lmast;
623 }
624 else{
625 L = (Lin*(mastLocation - y) + Lmast*(y - offsetY))/(mastLocation - offsetY); /* ...

Local L */
626 }
627
628 return L;
629 }

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Aim
	Objectives
	Overview

	Literature Review
	The Atmospheric Boundary Layer
	Gradient Richardson number
	Bulk Richardson number
	Profile method
	Heat flux
	Air density

	Governing Equations
	The RANS equations
	k- model
	Wall functions

	Adaptation of Governing Equations for the ABL
	Boussinesq approximation for buoyancy
	Monin-Obukhov similarity theory
	MOST turbulence modelling
	Method I: Alinot and Masson
	Method II: DTU solution
	ABL wall functions

	Summary

	Data Acquisition and Analysis
	Study Area
	Meteorological mast
	Mesoscale data

	Calculation of Prevalence of Stability from Data
	Calculation of Vertical Profiles from Data
	Summary

	ABL CFD Model
	Numerical Implementation
	Momentum source terms
	Turbulence source terms
	Temperature variations
	Wall function
	Height above ground
	Initialization

	Model Settings
	Fluid properties

	Empty Domain Model
	Wall function test results
	Stability model test results
	Buoyancy term test results

	Summary

	CFD Simulation of Complex terrain
	Wind Farm Computational Domain
	Windfarm Model Setup
	Mast Velocity Cross-Prediction Results
	Stability Lifting/Blocking Effects
	Summary

	Conclusions
	Future Work

	Appendices
	Roughness Lengths
	Mast Data Sample
	Data Analysis Code
	dataAnalysis.m
	stabilityRose.m

	User Defined Functions Code
	Neutral.c
	Unstable.c
	Stable.c

