
The Perils of Particle Swarm Optimisation

in High Dimensional Problem Spaces

by

Elre Talea Oldewage

Submitted in partial fulfillment of the requirements for the degree

Master of Science (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

May 2017

Publication data:

Elre Talea Oldewage. The Perils of Particle Swarm Optimisation in High Dimensional Problem Spaces. Master’s

dissertation, University of Pretoria, Department of Computer Science, Pretoria, South Africa, April 2018.

The Perils of Particle Swarm Optimisation in High

Dimensional Problem Spaces

by

Elre Talea Oldewage

E-mail: eoldewage@csir.co.za

Abstract

Particle swarm optimisation (PSO) is a stochastic, population-based optimisation al-

gorithm. PSO has been applied successfully to a variety of domains. This thesis examines

the behaviour of PSO when applied to high dimensional optimisation problems. Empiri-

cal experiments are used to illustrate the problems exhibited by the swarm, namely that

the particles are prone to leaving the search space and never returning. This thesis does

not intend to develop a new version of PSO specifically for high dimensional problems.

Instead, the thesis investigates why PSO fails in high dimensional search spaces.

Four different types of approaches are examined. The first is the application of ve-

locity clamping to prevent the initial velocity explosion and to keep particles inside the

search space. The second approach selects values for the acceleration coefficients and

inertia weights so that particle movement is restrained or so that the swarm follows par-

ticular patterns of movement. The third introduces coupling between problem variables,

thereby reducing the swarm’s movement freedom and forcing the swarm to focus more on

certain subspaces within the search space. The final approach examines the importance

of initialisation strategies in controlling the swarm’s exploration to exploitation ratio.

The thesis shows that the problems exhibited by PSO in high dimensions, particularly

unwanted particle roaming, can not be fully mitigated by any of the techniques exam-

ined. The thesis provides deeper insight into the reasons for PSO’s poor performance by

means of extensive empirical tests and theoretical reasoning.

Keywords: Particle swarm optimisation, high dimensions, large scale optimisation

mailto:eoldewage@csir.co.za

Supervisors : Prof. A. P. Engelbrecht

Dr. C. Cleghorn

Department : Department of Computer Science

Degree : Master of Science

“A single idea, if it is right, saves us the labor of an infinity of experiences.”

Jacques Maritain

“To the scientist there is the joy in pursuing truth, which nearly

counteracts the depressing revelations of truth.”

H.P. Lovecraft

Acknowledgements

I would like to thank the following people, without whom this work would not have been

possible:

• My supervisors, Prof. Andries Engelbrecht and Dr. Christopher Cleghorn for their

continued insight and inspiration.

• Chris Serfontein and Klaus Müller at the CSIR for all the opportunities that they

have presented to me.

• Hein, my husband, for listening to me describe experimental results first thing in

the morning, admiring graphs over dinner, and discussing stubborn proofs late at

night, when he’d rather be sleeping.

This work has been supported by a studentship from the Council for Scientific and

Industrial Research (CSIR).

Contents

List of Figures v

List of Algorithms xi

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Dissertation Outline . 4

2 Background 7

2.1 Optimisation . 7

2.2 Particle Swarm Optimisation . 8

2.2.1 Position and Velocity Update Equations 9

2.2.2 Velocity Clamping . 11

2.2.3 PSO with Inertia Weight Coefficient 11

2.2.4 Social and Cognitive Acceleration Coefficients 12

2.2.5 Social Structures . 13

2.2.6 Applications . 14

2.3 Summary . 16

3 Symptoms of High Dimensional Problems 18

3.1 The Curse of Dimensionality . 18

3.2 Empirical Illustration . 20

i

3.2.1 A Naive Approach . 20

3.2.2 Swarm Size and the Search Space 25

3.3 Particle Roaming . 28

3.4 Summary . 33

4 Velocity Clamping 36

4.1 Clamping Methods . 37

4.1.1 Method 1 - Clamping Per Dimension 37

4.1.2 Method 2 - Magnitude . 39

4.2 Experimental Results . 40

4.2.1 Optimal δ-Values . 41

4.2.2 Clamping Method Comparison 49

4.2.3 Swarm Behaviour . 50

4.3 Summary . 51

5 Variance of Particle Positions 54

5.1 A Brief History of Variance . 54

5.2 Restricting Variance . 56

5.2.1 Restricting the Variance of Particle Positions 56

5.2.2 Experimental Method . 62

5.2.3 Variance and Dimensionality . 62

5.2.4 Summary . 71

5.3 Frequency and Variance of Particle Positions 71

5.3.1 Base Frequency and Range of Movement 73

5.3.2 Experimental Method . 75

5.3.3 Movement Patterns in High Dimensions 77

5.4 Summary . 89

6 Grouping Stochastic Scalars 91

6.1 Stochastic Scaling: Vector or Scalar . 91

6.1.1 Scaling with Scalars . 92

6.1.2 Component-Wise Scaling with Vectors 102

ii

6.2 Grouping Stochastic Scalars . 106

6.2.1 Groups of Variables . 107

6.2.2 Fixed Group Number . 108

6.2.3 Decreasing Group Number . 109

6.2.4 Increasing Group Number . 109

6.3 Results and Discussion . 110

6.3.1 Comparison to Standard Inertia PSO 110

6.3.2 Static vs Dynamic Grouping Strategies 111

6.3.3 Fixed Group Numbers . 116

6.3.4 Comparison of Grouping Strategies 117

6.4 Summary . 123

7 Swarm Initialisation 125

7.1 Initialisation Methods . 126

7.1.1 Uniform Random Initialisation . 127

7.1.2 Sobol Sequences . 127

7.1.3 Centroidal Voronoi Tesselations 128

7.1.4 Non-linear Simplex Method . 129

7.2 Proposed Initialisation Strategy . 131

7.3 Experimental Procedure . 136

7.4 Results and Discussion . 137

7.4.1 Initialisation and Dimensionality 137

7.4.2 Different Seed Set Sizes . 149

7.4.3 Restricted Uniform Random Initialisation 151

7.4.4 Roaming Behaviour . 155

7.5 Conclusion . 158

8 Conclusions 160

8.1 Summary . 160

8.2 Future Work . 162

Bibliography 165

iii

A Benchmark Functions 175

A.1 Separability and Basic Functions . 175

A.2 Basic Functions . 177

A.2.1 Sphere Function . 177

A.2.2 Rotated Elliptic Function . 178

A.2.3 Schwefel’s Problem 1.2 . 178

A.2.4 Rosenbrock’s Function . 178

A.2.5 Rotated Rastrigin’s Function . 178

A.2.6 Rotated Ackley’s Function . 179

A.3 Benchmark Functions . 179

A.3.1 Separable Functions . 179

A.3.2 Single-Group m-Nonseparable Functions 179

A.3.3 n
2m

-Group and m-Nonseparable Functions 180

A.3.4 n
m

-Group and m-Nonseparable Functions 181

A.3.5 Nonseparable Functions . 181

A.4 Benchmark Function Summary . 182

B Acronyms 184

. 184

C Symbols 185

C.1 Chapter 2: Background . 185

C.2 Chapter 3: Symptoms of High Dimensional Problems 186

C.3 Chapter 4: Velocity Clamping . 186

C.4 Chapter 5: Variance of Particle Positions 187

C.5 Chapter 6: Grouping Stochastic Scalars 187

C.6 Chapter 7: Swarm Initialization . 187

D Derived Publications 189

iv

List of Figures

2.1 Star Neighbourhood Topology . 14

2.2 Ring Neighbourhood Topology . 15

3.1 Score of best position in iteration vs score of global best on F3 27

3.2 Fraction of swarm outside search space 28

3.3 Fraction of Swarm Outside Search Space (n = 10) 29

3.4 Fraction of Swarm Outside Search Space (n = 1000) 29

3.5 Swarm Diversity (n = 10) . 31

3.6 Swarm Diversity (n = 1000) . 31

3.7 Average Particle Velocity (n = 10) . 32

3.8 Average Particle Velocity (n = 1000) . 32

3.9 Average number of dimensions out of bounds on F7 for varying swarm

sizes (n = 10) . 34

3.10 Average number of dimensions out of bounds on F7 for varying swarm

sizes (n = 1000) . 34

4.1 Illustrations of the effects of velocity clamping 39

4.2 Performance of Method 1 . 42

4.3 Performance of Method 2 . 42

4.4 Maximum velocity component for F1 across dimensionalities 45

4.5 Minimum velocity component for F1 across dimensionalities 45

4.6 Performance of method 1 for smaller δ and larger n (lighter is better) . . 46

4.7 Optimal delta for dimensionality . 46

4.8 Average Velocity - Method 1 . 47

v

4.9 Average Velocity - Method 2 . 47

4.10 Velocity Component Distribution . 48

4.11 Fraction of Swarm Out of Bounds . 51

4.12 Swarm Diversity . 51

5.1 Probability distribution of swarm for worst case scenario in 1-D 58

5.2 Hypersphere within one standard deviation of the search space centre

(where |ŷj − yj| = 2, which is half the search space) 62

5.3 Average velocity magnitude for w = 0.95 on F7 with n = 1000 65

5.4 Average velocity magnitude for w = 0.75 on F7 with n = 1000 65

5.5 Average velocity magnitude for w = 0.55 on F7 with n = 1000 65

5.6 Average velocity magnitude for w = 0.35 on F7 with n = 1000 65

5.7 Average velocity magnitude for w = 0.15 on F7 with n = 1000 65

5.8 Average velocity magnitude for γ = 0.5 on F2 with n = 1000 66

5.9 Average velocity magnitude for γ = 0.75 on F2 with n = 1000 66

5.10 Average velocity magnitude for γ = 1.0 on F2 with n = 1000 66

5.11 Performance of swarm configuration produced by restricting standard de-

viation of positions . 68

5.12 Score of acceleration coefficients and inertia weights produced by restrict-

ing standard deviation of positions . 69

5.13 Swarm diversity on F18 with n = 1000 (5 best configurations) 70

5.14 Average number of dimensions out of bounds on F18 with n = 1000 (5

best configurations) . 70

5.15 Swarm diversity of outlier configurations on F9 with n=1000 70

5.16 Swarm diversity of outlier configurations and surrounding configurations

on F9 with n=1000 . 70

5.17 Relationship between base frequency and correlation of particle positions 74

5.18 Relative error on variance across frequencies 77

5.19 Optimal frequency-variance combinations (n=10) 78

5.20 Optimal frequency-variance combinations (n=1000) 78

5.21 Optimal frequency for given variance (n=10) 78

5.22 Optimal frequency for given variance (n=10) 78

vi

5.23 Score of acceleration coefficients and inertia weights produced by fre-

quency and variance . 82

5.24 Swarm diversity on F7 with n = 1000 (best 5 configurations) 84

5.25 Swarm diversity on F11 with n = 1000 (best 5 configurations) 84

5.26 Average number of personal best updates on F7 with n = 1000 (best 5

configurations) . 84

5.27 Average number of personal best updates on F11 with n = 1000 (best 5

configurations) . 84

5.28 Fraction of swarm out of bounds on F8 with n = 1000 (best 5 configurations) 86

5.29 Fraction of of swarm out of bounds on F7 with n = 1000 (best 5 configu-

rations) . 86

5.30 Fraction of of swarm out of bounds on F11 with n = 1000 (best 5 config-

urations) . 86

5.31 Swarm diversity when Vc = 0.1 on F17 with n = 1000 88

5.32 Swarm diversity when Vc = 0.4 on F17 with n = 1000 88

5.33 Swarm diversity when Vc = 1.6 on F17 with n = 1000 88

5.34 Swarm diversity when Vc = 6.4 on F17 with n = 1000 88

5.35 Swarm diversity when Vc = 25.6 on F17 with n = 1000 88

6.1 Step size inside initial subspace vs step size outside initial subspace of

standard PSO on F17 . 104

6.2 Step size inside initial subspace vs step size outside initial subspace of

standard PSO on F17 (incorrect scaling) 105

6.3 Swarm diversity per iteration of standard PSO, static fixed group number

and dynamic fixed group number with g = 10 on F1 for 1000 dimensions

over 5000 iterations . 113

6.4 Ratio of step sizes, SI
SO

inside and outside initial subspaces for static vs

dynamic strategy with fixed number of groups (where g = 10 on F3 for

n = 1000, over 5000 iterations, one run) 113

6.5 Swarm diversity for static vs dynamic strategy with decreasing number of

groups on F3 (for n = 1000, over 5000 iterations) 115

vii

6.6 Comparison of swarm diversity profiles of standard PSO and decreasing

number of groups PSO, both static and dynamic versions on F3 (for n =

1000, over 5000 iterations) . 115

6.7 Ratio of step sizes, SI
SO

inside and outside initial subspaces for static vs

dynamic strategy with decreasing number of groups on F3 (for n = 1000,

over 5000 iterations) . 115

6.8 Swarm diversity for standard PSO and both static and dynamic versions

of the increasing number of groups strategy on F3 (for n = 1000, over

5000 iterations) . 116

6.9 Ratio of step sizes, SI
SO

inside and outside initial subspaces for standard

PSO and both static and dynamic strategy with increasing number of

groups on F3 (for n = 1000, over 5000 iterations) 116

6.10 Ratio of step sizes, SI
SO

inside and outside initial subspaces for standard

PSO and both static and dynamic strategy with increasing number of

groups on F3 (for n = 1000, from iteration 50 onwards) 117

6.11 Swarm diversity per iteration of static fixed group number PSO with vary-

ing g values on F1 for 1000 dimensions over 2000 iterations 118

6.12 Ratio of step sizes, SI
SO

inside and outside initial subspaces on F3 (for

n = 1000, from iteration 50 onwards) . 119

6.13 Fraction of particles out of bounds per iteration on F3 for 1000 dimensions

over 5000 iterations . 121

6.14 Best score per iteration of PSO with fixed, decreasing and increasing group

numbers on F3 for 1000 dimensions over 5000 iterations 122

6.15 Swarm diversity per iteration of PSO with fixed, decreasing and increasing

group numbers on F3 for 1000 Dimensions over 5000 Iterations 122

7.1 Determining bounds for the scalar t in a 2-dimensional space centred at

(0, 0), given a direction vector d . 134

7.2 Performance of Different Initialisation Strategies as Dimensionality Varies

(Lighter is Better) . 139

7.3 Best score per iteration for F17 with n = 1000 141

7.4 Distance of best solution from the optimum for F17 with n = 1000 141

viii

7.5 Swarm diversity per iteration on F17 with n = 2000 142

7.6 Similar fitness of CVT and subspace-based PSO on F17 with n=1000 . . 144

7.7 Similar diversities of CVT and subspace-based PSO on F17 with n=1000 144

7.8 Dissimilar fitness of CVT and subspace-based PSO on F6 with n=1000 . 144

7.9 Dissimilar diversities of CVT and subspace-based PSO on F6 with n=1000 144

7.10 Average distance between centroid pairs per CVT iteration, (L,U) =

(−100, 100) . 146

7.11 Ratio between final and initial distances between centroid pairs 146

7.12 Average component-wise distance between centroid pairs per CVT itera-

tion, (L,U) = (−100, 100) . 147

7.13 Number of sample points assigned to each centroid for each CVT iteration

(n=10) . 148

7.14 Number of sample points assigned to each centroid for each CVT iteration

(n=1000) . 148

7.15 Typical swarm diversity profile (F10 with n=1000) 149

7.16 Typical swarm diversity profile (F11 with n=1000) 149

7.17 Performance of Different Seed Set Sizes as Dimensionality Varies (Lighter

is Better) . 150

7.18 Optimal seed set size for each dimensionality 151

7.19 Ratio of optimal seed set size to problem dimensionality 151

7.20 Maximal initial component-wise distance between centroids for CVT . . . 153

7.21 Performance of restricted uniform random as dimensionality varies (lighter

is better) . 154

7.22 Swarm diversity of restricted uniform random on F16 with n = 10 156

7.23 Swarm diversity of restricted uniform random on F16 with n = 100 . . . 156

7.24 Swarm diversity of restricted uniform random on F16 with n = 500 . . . 156

7.25 Swarm diversity of restricted uniform random on F16 with n = 1000 . . . 156

7.26 Fraction of swarm out of bounds on F12 with n = 1000 (profile 1) 157

7.27 Fraction of swarm out of bounds on F3 with n = 1000 (profile 2) 157

7.28 Fraction of swarm out of bounds on F15 with n = 1000 (a-typical profile) 157

ix

7.29 Average number of dimensions out of bounds on F12 with n=1000 (profile

1) . 158

7.30 Average number of dimensions out of bounds on F3 with n=1000 (profile 2)158

x

List of Algorithms

2.1 Standard gBest PSO . 17

7.1 Centroidal Voronoi Tessalations . 130

7.2 Gram-Schmidt . 132

7.3 t-Bounds . 135

xi

List of Tables

3.1 Parameter Settings . 22

3.2 PSO (n = 10) - Best Fitness . 23

3.3 PSO (n = 1000) - Best Fitness . 24

3.4 Rank test comparing swarm size 250 against other swarm sizes (n = 1000 26

4.1 Optimal δ-value for problem dimensionality 43

4.2 Pairwise comparison of clamping methods across problem dimensionalities 49

4.3 Best fitness for method 1 with δ = 0.005 and 750 dimensions 52

5.1 Parameter configurations for swarms with fractionally restricted standard

deviations . 63

5.2 Coefficient values for best-performing combinations 67

5.3 Coefficient values for worst-performing combinations 67

5.4 Coefficient values for best-performing combinations 81

5.5 Coefficient values for worst-performing combinations 81

6.1 Best fitness comparison of swarm with grouping-based stochastic scaling

against simple swarm . 111

6.2 Best fitness comparison between static and dynamic grouping strategies . 112

6.3 Performance of static fixed group number strategy for varying g-parameter 118

6.4 Comparison of decreasing group number strategy with fixed and increasing

group number strategies . 119

6.5 Comparison of increasing group number strategy with fixed and decreasing

group number strategies . 120

xii

7.1 Comparison with subspace-based PSO on n = 10 138

7.2 Comparison with subspace-based PSO on n = 50 138

7.3 Comparison with subspace-based PSO on n = 100 138

7.4 Comparison with subspace-based PSO on n = 500 138

7.5 Comparison with subspace-based PSO on n = 750 138

7.6 Comparison with subspace-based PSO on n = 1000 140

7.7 Fraction of search space for particle initialisation (τ) 151

7.8 Maximum initial component-wise distance for CVT with n = 10 152

A.1 Separable functions . 180

A.2 Single-Group m-nonseparable Functions 180

A.3 n
2m

-Group and m-nonseparable functions 181

A.4 n
m

-Group and m-nonseparable functions 182

A.5 Nonseparable functions . 182

A.6 Benchmark functions . 183

xiii

Chapter 1

Introduction

A grey plume drifts through the low sky, like smoke but not smoke,

slow to disperse

reforming and palping like a long streak of foam on the sea; a grubby bag

turning, plastic and drifting

dividing in the sky: a shifting exclamation mark pulls out of shape

turns pale to vanishing, is gone.

A sound like pages riffling, like a thousand paper fans rustling, a darkening

in the air

turning in the low light all together

wheeling, breaking, re-combining, stretching again. Sky geometry.

- Starlings by J. D. Barker

1.1 Motivation

Computing hardware is cheaper and more powerful than ever before. With the advent

of affordable, efficient computation, comes the ability to solve problems that were previ-

ously intractable. One such class of problems is that of Large Scale Optimisation (LSO).

Large scale optimisation refers to optimisation problems that have many decision vari-

ables, typically more than one hundred [75]. Many optimisation methods suffer from

the “curse of dimensionality” [3], meaning that the methods’ performance deteriorate as

1

Chapter 1. Introduction 2

problem dimensionality increases. The complexity of high dimensional problems has two

facets: the solution space’s hyper-volume usually increases exponentially as the number

of dimensions in the problem space grows; and the characteristics of the problem may

change with dimensionality.

Particle swarm optimisation (PSO) is a nature-inspired optimisation algorithm that

has been successfully applied to a number of real-world problems [18, 54, 85]. The recent

interest in LSO has inspired the invention of PSO variants, developed specifically to solve

large scale problems [11, 79]. Although these PSO variants were successful in solving

LSO problems, development took place without fully understanding and considering the

reasons that a standard PSO does not scale well.

The purpose of this thesis is not to develop another variant of PSO to solve high

dimensional problems. Instead, this thesis provides an empirical analysis that is deeply

rooted in theory, of the limiting behaviours exhibited by PSO in high dimensional spaces.

Literature contains a number of studies regarding particular facets of PSO as problem

dimensionality increases. This thesis aims to tie a number of these aspects together to

form a broad picture of the strengths and weaknesses of a standard PSO when applied to

high dimensional problems and to unearth underlying reasons for the observed behaviour.

This will give practitioners an intuitive idea of what kind of swarm behaviour is beneficial

or detrimental when approaching LSO.

1.2 Objectives

This thesis is an in-depth study of PSO applied to high dimensional problems. Specif-

ically, the aim is to determine what traits are beneficial in high dimensional search

spaces and to determine the root causes underlying standard PSO’s poor behaviour on

high dimensional problems. The objectives of this work are summarized as follows:

• To illustrate the problems exhibited by PSO in high dimensional search spaces and

to demonstrate that there is no “quick fix”.

• To critically evaluate the use of velocity clamping in preventing velocity explosion.

Chapter 1. Introduction 3

• To consider the influence of the algorithm’s parameters on the variance of particle

positions and to select algorithm parameters that reduce particle roaming.

• To provide an empirical and theoretical analysis of the influence of component-wise

stochastic scaling on the swarm’s degrees of freedom.

• To empirically investigate the feasibility of controlling the ratio of exploration to

exploitation by introducing grouping mechanisms for stochastic scaling.

• To examine the importance of initialisation strategies in the swarm’s behaviour.

• To determine what factors influence the swarm’s behaviour positively and nega-

tively in high dimensional spaces.

Based on these objectives, the thesis provides the following contributions:

• Due to velocity explosion in the first few iterations, particles leave the search space

and never return for the duration of the search (even when the local and global

attractors are guaranteed to be in the search space).

• Numerous empirical results show that in high dimensional spaces, swarms that

perform local exploitation and search granularly perform better than swarms that

attempt to explore the search space or take large steps.

• Velocity clamping can force particles to search in a granular manner by reducing

the step sizes of particles.

• In high dimensional spaces, clamping per dimension performs better than clamping

based on the magnitude of particle velocities according to empirical results.

• It is demonstrated that, as problem dimensionality increases, the optimal maximum

clamping velocity decreases.

• Experiments show that particle roaming behaviour can be reduced by restricting

the variance of particle positions.

Chapter 1. Introduction 4

• Particles with high inertia weights and low acceleration coefficients perform well

in high dimensional spaces, as shown by experimentation. Such a particle is less

likely to rapidly change direction, which prevents velocity explosion.

• By theoretical proof, if the stochastic scaling components are scalars and the swarm

size is less than the problem dimensionality, then it is not possible for the swarm

to reach every point in the search space.

• Empirical results show that dimensional coupling may be used to restrict the

swarm’s movement and encourage granular searching. Multiple dimensional cou-

pling strategies are introduced, in which the same stochastic scalar is applied to

all dimensions in a group.

• Opposite to the typical behavioural profile (which first performs exploration and

then behaves exploitatively), dimension coupling strategies that first restrict swarm

movement and then gradually allow the swarm more freedom, perform better in

high dimensional spaces.

• A new particle initialisation strategy is proposed, which initialises particles within

a small subspace of the search space.

• As problem dimensionality increases, initialisation strategies that only generate

positions within a small region of the search space perform better than strategies

that attempt to maximize coverage of the search space.

1.3 Dissertation Outline

The remainder of the thesis proceeds as follows:

• Chapter 2 provides an overview of the PSO algorithm and discusses the most

important algorithm parameters such as neighbourhood topology, inertia weight

and acceleration coefficients, amongst others.

• Chapter 3 discusses high dimensional problems and considers the application of

PSO to large scale problems. The chapter provides compelling empirical evidence

Chapter 1. Introduction 5

which shows that PSO exhibits several undesirable traits in high dimensional prob-

lem spaces such as velocity explosion and continuous particle roaming.

• Chapter 4 critically examines the use of velocity clamping to prevent unwanted

roaming. Two different mechanisms of clamping are examined, clamping per di-

mension and clamping based on the norm of the velocity vector.

• Chapter 5 examines how the variance of particle positions can be constrained in

order to reduce particle roaming (by selecting certain values for the inertia weight

and acceleration coefficients). The chapter also considers the different movement

patterns that can be exhibited by PSO and identifies movement patterns that are

advantageous in high dimensional spaces.

• Chapter 6 considers the effect of component-wise stochastic scaling on the swarm’s

freedom of movement. The chapter examines the importance of component-wise

scaling both theoretically and empirically. The chapter also introduces coupling

between variables, i.e. grouping stochastic scalars, as a mechanism to control the

ratio of exploration to exploitation.

• Chapter 7 discusses the importance of the swarm’s initialisation strategy and its

effect on the swarm’s behaviour in high dimensional problem spaces.

• Chapter 8 concludes the thesis with a summary of the main findings and suggests

future research.

The thesis is supplemented by a number of appendices, list below:

• Appendix A provides a detailed discussion of the benchmark suite that is used

in the empirical experiments performed in the thesis.

• Appendix B lists and defines the most important acronyms that are used or

introduced throughout the thesis.

• Appendix C provides a list of the mathematical symbols used in this thesis, as

well as the corresponding definitions.

• Appendix D lists the publications derived from this work.

Chapter 1. Introduction 6

The illustrations and figures presented throughout the thesis are intended to be

viewed in color.

Chapter 2

Background

This chapter is intended to introduce the particle swarm optimisation (PSO) algorithm

and to discuss key aspects of the algorithm’s behaviour. The chapter begins by explaining

what is meant by an unconstrained optimisation problem in section 2.1. Next, section 2.2

provides an introduction to particle swarm optimisation and discusses several important

implementation details.

2.1 Optimisation

Optimisation is the task of finding values for a set of variables so that some measure of

optimality is satisfied, where the values are subject to a set of constraints. A tuple of

candidate variable values is referred to as a solution. The set of all possible solutions

that are within the specified constraints is referred to as the feasible search space. The

“measure of optimality” is defined in terms of one or more objective function(s). If the

quality of a solution depends on only one objective function, the optimisation problem

is referred to as a single-objective problem. Otherwise, the problem is a multi-objective

problem. The search space may be discrete, continuous or a mixture of both. Optimi-

sation problems may be constrained or unconstrained. Unconstrained problems impose

no constraints on the set of allowed solutions. Constrained problems require that the

solutions be subject to additional constraints.

Constraints are typically imposed due to the intrinsic properties of the variables being

7

Chapter 2. Background 8

optimized. Constraints may also be chosen using prior knowledge of the search space,

so that the search is restricted to an area in which the solution is known or expected to

exist. Boundary constrained problems only require that solutions adhere to boundary

constraints, which define maximum and minimum values for each variable.

An optimisation problem may require that the objective function be either minimized

or maximized. This thesis mainly considers minimization problems. Since the task of

maximizing a function f is equivalent to minimizing the function −f , there is no loss of

generality by considering only minimization problems.

This thesis considers boundary constrained, single-objective, minimization problems

in continuous search spaces. Formally, such an optimisation problem with objective

function f : Rn → R is the task of finding x in Rn such that

minf(x). (2.1)

The boundary constraints in the jth dimension are expressed as

Lj ≤ xj ≤ Uj. (2.2)

If the boundary constraints are the same in each dimension so that

L1 = L2 = ... = Ln = L and U1 = U2 = ... = Un = U (2.3)

then the search space is restricted to (L,U)n, where n denotes the dimensionality of the

optimisation problem.

2.2 Particle Swarm Optimisation

This section provides a brief introduction to the particle swarm optimisation (PSO) al-

gorithm. Sub-section 2.2.1 introduces the position and velocity update equations as orig-

inally conceptualized by Kennedy and Eberhart. The remaining sub-sections discuss the

parameters and implementation choices that should be considered when implementing

a PSO. More specifically, sub-section 2.2.3 discusses PSO with an inertia weight coeffi-

cient, which is the algorithm under discussion for the majority of this thesis. Sub-section

2.2.4 examines the acceleration coefficients and their relationship with convergence of the

Chapter 2. Background 9

swarm in terms of the expectation and variance of particle positions. Sub-section 2.2.5

describes a few common choices for neighbourhood topologies. Sub-section 2.2.6 men-

tions some interesting applications of the PSO algorithm and sub-section 2.3 concludes

the chapter.

2.2.1 Position and Velocity Update Equations

PSO was introduced by Kennedy and Eberhart in 1995 [20, 41]. It is a population-based,

stochastic search algorithm that was inspired by the flocking behaviour of birds.

A swarm of particles are initialised within the search space. Each particle’s position

represents a possible solution to the optimisation problem. The particles are “flown”

through the search space for a number of iterations, using local and global information

to guide their movement. The quality of a particle’s position is evaluated by the objective

function and is referred to as the particle’s score or fitness throughout the thesis.

In every iteration, a particle’s position is updated according to the position update

equation as given below:

xt+1
i = xti + vt+1

i (2.4)

where xt+1
i denotes the position and vt+1

i denotes the velocity of the ith particle at

iteration t+ 1. Note that vectors are denoted in bold, as above.

Usually, the particles’ initial position are sampled from a uniform distribution in each

dimension so that x0
i,j ∼ U(L,U). Other means of initialisation have been proposed in

order to maximize the initial spread of the swarm. Schoeman and Engelbrecht suggested

using a quasi-random number generator such as a Sobol sequence [66]. Richards and

Ventura proposed making use of Voronoi tessellations to partition the search space into

small cells of approximately the same size and using the centre of each cell as an ini-

tial particle position [61]. Parsopoulos and Vrahitis [56] suggested a method that uses

the non-linear simplex method [50] to find initial positions with a good score. A full

discussion of PSO initialisation strategies is postponed to Chapter 7.

The optimisation process is driven by the velocity update equation, which determines

the direction in which the particles will fly. The velocity update equation as originally

Chapter 2. Background 10

suggested by Eberhart and Kennedy [20] is given by

vt+1
i,j = vti,j + c1r1,j(y

t
i,j − xti,j) + c2r2,j(ŷ

t
i,j − xti,j). (2.5)

for particle i in the jth dimension, at iteration t + 1. The second and third terms are

called the cognitive and social components, respectively. These two terms bring about

the basic behaviour of a particle, which is to emulate the success of its neighbours as

well as its own previous successes.

The cognitive term (c1r1,j(y
t
i,j − xti,j)) guides the particle towards the best position

that it has encountered thus far. The best position encountered by particle i at iteration

t is referred to as its personal best position and is denoted by yti.

The social term (c2r2,j(ŷ
t
i,j − xti,j)) guides the particle towards the best position that

has been encountered by any of the particles in its neighbourhood. The best position in

the neighbourhood of particle i at iteration t is denoted by ŷti and is referred to as the

global best position or the local best position, depending on how the particle’s neighbour-

hood is defined. See section 2.2.5 for further discussions about particle neighbourhoods.

The cognitive and social components are weighted by the acceleration coefficients,

denoted by c1 and c2, which govern the influence of the personal best and global best

positions respectively. Every dimension of the cognitive and social components are also

weighted by uniform random variables, r1,j and r2,j, in the range [0, 1]. This introduces

stochasticity to the search, thereby allowing the swarm to explore the search space in

the areas between its current position and its attractors.

The first term in equation (2.5) is called the momentum component and allows the

particle to maintain some of its search direction from one iteration to the next. This may

prevent a particle’s velocity from oscillating rapidly [23], depending on the values of c1

and c2. It also prevents the swarm from rapidly contracting to the global best position,

thereby facilitating exploration of the search space [70].

It was originally suggested that particle velocities be initialised uniform randomly

throughout the search space, but it has been found that initialising particle velocities to

zero may improve convergence time and prevent particles from leaving the search space

[26]. Personal best positions may be set equal to the initial positions. Alternatively,

personal best positions may also be initialised randomly within the search space. The

value of the initial position and initial personal best position should be swapped if

Chapter 2. Background 11

necessary, to ensure that the fitness of the personal best position is better than the

particle’s initial position.

2.2.2 Velocity Clamping

Eberhart and Kennedy proposed clamping the velocity of the particles [20], so that the

particle velocities can not be higher than some maximum value. Velocity clamping is ap-

plied to each velocity vector after being calculated, but before being used in the position

update equation. There are a number of possible ways in which velocity clamping can

be implemented. The simplest is to choose a maximum value for the velocity in a given

dimension. Let vmax,j denote the maximum velocity in dimension j. Then the velocity

vector is updated in each dimension j according to

vt+1
i,j =

vt+1
i,j if − vmax,j ≤ vt+1

i,j ≤ vmax,j

vmax,j if vmax,j < vt+1
i,j

−vmax,j if vt+1
i,j < −vmax,j

(2.6)

2.2.3 PSO with Inertia Weight Coefficient

A number of modifications have been made to the original velocity equation proposed by

Kennedy and Eberhart in [20]. This study uses PSO with an inertia weight coefficient

as proposed by Eberhart and Shi [70] in 1998.

The social and cognitive components cause a particle to emulate good solutions that

have already been encountered, thereby encouraging exploitation. The momentum com-

ponent causes each particle to maintain its current trajectory. This forces the particle

to move through areas of the search space that may not be directly on course to previ-

ously observed successes, thereby encouraging exploration of the search space [70]. There

must be a balance between exploration and exploitation: a swarm that only explores and

never refines good solutions will waste resources exploring fruitless areas of the search

space. A swarm that only exploits is likely to converge prematurely to a local optimum.

Introducing the inertia weight coefficient to the momentum component provides more

control over this exploration-exploitation balance.

The velocity update equation for particle i at iteration t in dimension j is thus given

Chapter 2. Background 12

by

vt+1
i,j = wvti,j + c1r1,j(y

t
i,j − xti,j) + c2r2,j(ŷ

t
i,j − xti,j) (2.7)

where w ∈ (0, 1) is called the inertia weight.

Since w < 1 decreases the magnitude of the velocity vector, it may seem that using

an inertia weight coefficient may remove the need for velocity clamping. Unfortunately,

it was found that the use of an inertia weight coefficient alone is not enough to avoid

velocity clamping [76, 78, 80]. Instead, attention must be paid to the choice of values

for the acceleration coefficients, which is the topic of the next subsection.

The standard global best or Global Best (gBest) PSO algorithm for a swarm with ns

particles is summarized in Algorithm 2.1. The algorithm is for a n-dimensional search

space with boundaries (L,U) in all dimensions. The algorithm runs for tmax iterations.

In a gBest PSO, the entire swarm forms a single neighbourhood. Thus all the particles

have the same neighbourhood best, which may be denoted by ŷt at iteration t.

2.2.4 Social and Cognitive Acceleration Coefficients

Typically, the values for c1 and c2 are chosen in the range [0, 2] and that of w is in (0, 1).

Although some regard PSO to be fairly robust with regard to selection of these param-

eters [20], ill-chosen values may lead to premature convergence, excessive wandering or

cause the swarm to exhibit divergent or cyclic behaviour [57, 78, 80]. In general, these

parameters should be tuned for each optimisation problem.

Eberhart and Shi proposed “rule of thumb” parameter values for which the algorithm

performs well [22]. The paper also provided guidelines for choosing parameters that will

ensure convergence based on the work of Clerc and Kennedy on constriction models [15].

The chosen values were c1 = c2 = 1.49445 and w = 0.7929.

Further theoretical research has shown that there is a “convergent region” within

which swarm convergence is guaranteed [76, 78, 80]. For parameters within the conver-

gent region, it is guaranteed that the expectation and variance of particle positions will

converge to constant values. The most accurate convergent region is that derived by Poli

[57], given below:

Chapter 2. Background 13

0 < c1 + c2 < 24
(1− w2)

7− 5w
(2.8)

|w| < 1 (2.9)

The region above was derived and verified empirically assuming search stagnation

during which all particles behave independently and no improved solutions are found.

The convergent region given above was empirically verified without assumptions by

Cleghorn and Engelbrecht [13].

There are also a number of proposed strategies to vary the coefficients w, c1 and c2

according to the iteration or other information about the search progress [31, 81]. These

schemes include a time-varying, linearly decreasing inertia weight component proposed

by Shi and Eberhart [72] and a scheme proposed by Ratnaweera et al. that also varies

the acceleration coefficients linearly with time [60]. In general, these strategies are not

efficient [31, 81].

2.2.5 Social Structures

A particle’s neighbourhood topology or social structure describes the flow of information

among the particles. The topology can be expressed in terms of a graph where particles

are represented by vertices and the ability to share information is represented by edges.

In a star topology, illustrated in figure 2.1, every particle is informed about the successes

of every other particle in the swarm. In this case, the particle’s neighbourhood is the

entire swarm. Particles imitate the overall best solution, which has been shown to cause

faster convergence than other neighbourhood topologies [43] due to faster knowledge

transfer (though in general, the speed of convergence to an optimum remains problem

dependent [27]). When using the star topology, the social term’s attractor is referred to

as the global best position. The algorithm is referred to as a gBest PSO.

A ring topology, as illustrated in 2.2 defines a smaller neighbourhood for each par-

ticle. This restricts the flow of information among the particles. A particle can only

communicate with its k immediate neighbours. In the case where k = 2, the particle

can only communicate with the particles that are immediately adjacent to it in terms of

particle indices.

Chapter 2. Background 14

Figure 2.1: Star neighbourhood topology, social structure of a gBest PSO

In general, the neighbourhood of a particle is not determined by its position in the

search space. Instead, the neighbourhood is defined based on particle indices. This pro-

motes the flow of information. Otherwise, particles in poor regions of the search space

would only be guided by other particles in that region, perhaps preventing the particles

from leaving to find a better region. Spatial ordering, such as the method proposed by

Suganthan [74], is also computationally expensive. For non-spatial topologies, neigh-

bourhoods can overlap. This allows information to be communicated across different

neighbourhoods. Nevertheless, the flow of information is restricted, which causes the

swarm to lose diversity more slowly than a gBest PSO. This encourages exploration of

the search space and may provide higher quality solutions in a multimodal search space

than a gBest PSO. When using the ring topology, the social term’s attractor is referred

to as the local best position. The algorithm is referred to as Local Best (lBest) PSO.

Other neighbourhood topologies have been suggested such the wheel, pyramid, four

clusters and Von Neumann topologies [42]. However, this study uses the star and ring

topologies for reasons that will be described in Chapter 4.

2.2.6 Applications

PSO has been applied to numerous problems in industry including medicine, reactive

power and voltage control, scheduling, antennae design, photovoltaic systems and as-

sembly line balancing problems. In 1999, Eberhart and Hu used PSO to train a neural

network that can distinguish between healthy subjects and subjects that are affected by

Chapter 2. Background 15

Figure 2.2: Ring neighbourhood topology, social structure of a lBest PSO with k = 2

Parkinsons or an essential tremor [21]. In 2015, Li et al. [44] proposed a PSO variant

that optimized parameters for Otsu image segmentation which is used to process medical

images. Costa et al. successfully applied PSO to the problem of reactive power com-

pensation and voltage level control [16]. Pandey et al. developed a heuristic to schedule

applications in the cloud, considering both the execution and data transmission costs

using PSO [54]. Zhang et al. successfully applied PSO to solve resource-constrained

project scheduling problems [85]. A modified PSO was developed by Faria et al. to

optimize the management of energy resources in a distribution network [29]. Bataineh

made use of PSO to design Chebyshev arrays [2]. Robinson and Rahmat-Samii used

PSO to develop a profiled corrugated horn antenna [64]. Ishqaue and Salam applied a

deterministic version of PSO to track the maximum power point of photovoltaic arrays

under partial shading [35]. PSO has also been used to determine the optimal size of a

solar photovoltaic system [77]. In 2017, Delice et al. developed a modified PSO with

negative knowledge and applied it to solve the mixed-model, two-sided assembly line

balancing problem [18].

In principle, PSO can be applied to any problem that can be expressed in terms

of an objective function to be optimized. Since the algorithm does not use gradient

information explicitly, PSO can be applied to situations where no gradient information

is available or where the objective function is not differentiable. Particularly, PSO can

be applied to solve black-box optimisation problems.

Chapter 2. Background 16

2.3 Summary

Section 2.1 defined what is meant by an “optimisation problem.” Section 2.2 introduced

the Standard PSO algorithm and explained relevant concepts such as exploration and

exploitation. Section 2.2 also discussed the components of the velocity update equation

in detail and provided a brief overview of different social structures that may be chosen

for information exchange within the swarm.

Chapter 3 begins to examine high dimensional search spaces and the complications

that arise in such search spaces. The chapter discusses the curse of dimensionality and

provides an overview of existing literature related to PSO in high-dimensional search

spaces.

Chapter 2. Background 17

//Initialise a swarm of ns particles

for all particles i = 1, ..., ns do

for all dimensions j = 1, ..., n do

x0
i,j ∼ U(L,U)

y0
i,j ∼ U(L,U)

v0
i,j = 0

end for

//Swap personal best and current position if necessary

iff(x0
i) < f(y0

i)

tmp = y0
i y0

i = x0
i x0

i = tmp

end if

end for

//Search iteratively

for all t = 1, ..., tmax

for all particles i = 1, ..., ns do

if f(xti) < f(yti)

yti = xti

end if

if f(yti) < f(ŷt)

ŷt = yti

end if

end for

for all particles i = 1, ..., ns do

Update vt+1
i using Equation (2.7)

Update xt+1
i using Equation (2.4)

end for

end for

Algorithm 2.1: Standard algorithm for a gBest PSO

Chapter 3

Symptoms of High Dimensional

Problems

This chapter launches the discussion of PSO applied specifically to high dimensional

problems, meaning problems with 100 or more dimensions. The aim of this chapter is

to illustrate the problems exhibited by PSO on high dimensional problems. Armed with

empirical evidence, the chapter identifies “symptoms” that occur in high dimensions

such as velocity explosion and continuous particle roaming so that the remainder of the

thesis may attempt to unearth their causes and mitigate their effects.

Section 3.1 introduces the “curse of dimensionality” and discusses some of the phe-

nomena that arise in high dimensional spaces. Section 3.2 contains an initial empirical

study showcasing the troublesome behaviour of PSO in high dimensions. Section 3.3

considers particle roaming behaviour and how it is amplified in high dimensional search

spaces. Lastly, section 3.4 concludes the chapter with a summary and reasoning for the

chapters that follow.

3.1 The Curse of Dimensionality

The “curse of dimensionality” is a term coined by Bellman in his book on dynamic

programming in 1957 [3]. The phrase refers to the unintuitive phenomena that arise

in high dimensional spaces, but are typically not observed in low dimensional spaces.

18

Chapter 3. Symptoms of High Dimensional Problems 19

High dimensional phenomena generally arise from the exponential increase in hyper-

volume of the corresponding problem space. In combinatorics, for example, an increase

in problem dimensionality leads to an exponentially larger number of possible states to

be considered. The curse of dimensionality is problematic in fields such as modelling and

optimisation [69], machine learning [19], and data mining [73, 84, 86] where information

is gleaned from samples in the problem space. The exponential increase in the search

space’s hyper-volume causes data points to be sparse, making it difficult to perform accu-

rate analysis. The number of samples required to learn statistically significant patterns

grows exponentially with the search space. In the case of machine learning, the number

of training samples required to accurately characterize the input space increases expo-

nentially [19]. Due to the sheer size of the search space, algorithms and techniques that

require systematic sampling or exploration of the search space often become infeasible.

In data mining, the enormity of the search space may lead to data snooping bias [86].

Data snooping or p-hacking refers to the practice of searching for patterns in a data set

without a particular hypothesis. The process typically involves testing many different

hypotheses about a single data set until one happens to be statistically significant. When

there are a large number of possible associations between variables, but only a few real

associations exist, the majority of findings may be false positives [73]. In high dimensional

spaces, the number of possible associations to be considered increases exponentially,

which may lead to p-hacking.

In the field of modelling the computational demand of generating models and run-

ning simulations increases exponentially with problem dimensionality [69]. Evaluation of

a high-dimensional objective function is computationally expensive, making numerical

optimisation difficult [9]. Optimisation methods that rely on sampling points from the

solution space fail to achieve good coverage of the search space due to the exponential

increase in search space hyper-volume and the cost of evaluating a sample [9].

Another problem in high dimensions is that the notion of proximity may become

ill-defined. As shown by [4], for certain sampling distributions and distance metrics, all

points in the sample approach the same distance apart as the problem dimensionality

goes to infinity. Let d(,) denote a distance metric and let S denote the sample set. For

Chapter 3. Symptoms of High Dimensional Problems 20

a given query point, x, the distance ratio below:

max
y∈S
{d(x,y)}

min
z∈S
{d(x, z)}

→p 1 (3.1)

converges in probability to 1 as dimensionality increases (where→p denotes convergence

in probability). Particularly, this holds for the Lp norm when the sample is drawn from

independent distributions with finite variance that are identical across dimensions. Thus,

equation (3.1) will converge when the Euclidean norm is applied to points drawn from

a uniform random distribution. The rate of convergence under these conditions were

clearly illustrated by Morgan and Gallagher [49]. For dimensionality as low as 20, the

maximum distance between the query point and any point in the sample, is less than a

single order of magnitude larger than the smallest distance. Algorithms such as k-nearest

neighbour [30] that rely on distance metrics such as the Euclidean norm to organize data

are thus prone to exhibiting poor performance in high dimensional spaces [59].

3.2 Empirical Illustration

This section contains experiments showcasing the difficulties encountered in high dimen-

sions with regard to optimisation problems. The section begins by showing the behaviour

exhibited by PSO on typical high dimensional problems in comparison with its behaviour

in lower dimensions in section 3.2.1. Section 3.2.2 discusses the use of swarm size adjust-

ments to compensate for dimensionality increase and recognizes the problem of particle

roaming.

3.2.1 A Naive Approach

This section performs a somewhat naive comparison of PSO behaviour between high di-

mensional problems and low dimensional problems for illustrative purposes. Specifically,

PSO is used to solve a suite of 10-dimensional problems and a suite of 1000-dimensional

problems. The difference in behaviour of the swarms provides a basis for the other

empirical illustrations that are performed in section 3.2.2 and the following chapters.

Chapter 3. Symptoms of High Dimensional Problems 21

The parameter values chosen are the “rule of thumb” values or the values deter-

mined from theoretical results in the field. The experiment thus illustrates what might

be encountered when applying PSO to high dimensional problems without any special

modifications or forethought, i.e. what a naive practitioner will observe.

The benchmark functions from the CEC’2010 special session and competition on

large-scale optimisation were used [75]. The benchmark suite allows the degree of sepa-

rability within certain functions to be specified using the parameter m. In order to scale

the problems down to 10 dimensions, the experiment used a value of m = 10. Appendix

A provides a detailed discussion of the benchmark functions and the parameter m. The

search spaces for all the benchmark problems had the same upper and lower bounds

in every dimension, denoted by U and L respectively. These values corresponded to

the specifications in [75]. The benchmark suite includes separable functions, partially

separable functions, and non-separable functions. The swarm was tested on each of

the benchmark functions by running 30 independent simulations to achieve statistical

significance. The performance of an algorithm on a given benchmark function was char-

acterized in terms of the best fitness value attained in a given simulation. For all of the

benchmark functions, the best possible fitness value is 0.

The experiment was performed using a swarm size of 30. No velocity clamping

was applied (the effects of velocity clamping are discussed at length in Chapter 4).

Swarm updates were performed synchronously. The swarm was allowed to run for 5000

iterations, which provides a total of 30 × 5000 function evaluations. The values for the

cognitive and social acceleration components as well as the inertia weight were chosen

as suggested by [15] and are given in table 3.1 along with the other pertinent parameter

values.

Initial particle velocities were set to zero [26]. Particle positions were initialised by

sampling from a uniform random distribution in every dimension, so that x0
i,j ∼ U(L,U)

as described in section 2.2.1. Particles’ personal best positions were initialised in the

same manner, then both the current position and personal best position were evaluated.

If the current position had a better score than the personal best position, the two were

swapped.

To ensure that the solution found by the swarm is within the search space, the global

Chapter 3. Symptoms of High Dimensional Problems 22

Table 3.1: Parameter Settings

Parameter Value

ns 30

Velocity Clamping No

Function Evaluations 30× 5000

c1 1.49618

c2 1.49618

w 0.7298

best and personal best positions were only updated if they were within the search space.

Thus, both particle attractors were always within the search space.

The experimental setup for all the other experiments in this chapter are similar to

what is described here. For the sake of brevity, the sections that follow only describe

deviations from this setup.

The mean and standard deviation of the best fitness achieved by the swarms are

given in Table 3.2 and Table 3.3. The functions are labeled with numbers that match

the source [75].

For the suite of 10-dimensional problems, PSO successfully found a solution within

one order of magnitude of the optimal value for three-quarters of the benchmark functions

as seen in Table 3.2. The poor performance on functions F4 to F8 can be understood

by looking at their general form:

F (x) = Fγ
(
z(P1 : Pm)

)
× 106 + Fα

(
z(Pm+1 : Pn)

)
(3.2)

where Fγ and Fα are two “basic” functions, such as the elliptic function or the spher-

ical function and z is the shifted candidate solution. P is a random permutation of

{1, 2, 3, ..., n} where n denotes problem dimensionality and Pj is the j-th component

of P . The notation z(P1 : Pm) denotes a vector formed by the components of z that

correspond to the indices P1, P2, ..., Pm. These benchmark functions are thus the sum

of two basic functions, where the parts of the candidate solution that are given as input

to each basic function is randomly determined and shuffled (once for all the runs). More

information regarding the benchmark functions is provided in Appendix A.

Chapter 3. Symptoms of High Dimensional Problems 23

Table 3.2: Mean and standard deviation of best fitness for PSO (n = 10)

Function Mean Standard Deviation

F1 0.0000e+ 00 0.0000e+ 00

F2 7.5617e+ 00 1.3097e+ 00

F3 2.3685e− 16 2.4516e− 16

F4 1.4429e+ 11 1.8038e+ 10

F5 1.9302e+ 07 1.5302e+ 06

F6 4.0625e+ 05 1.8883e+ 05

F7 0.0000e+ 00 0.0000e+ 00

F8 5.3594e+ 05 3.7449e+ 05

F9 0.0000e+ 00 0.0000e+ 00

F10 7.9597e− 01 2.5026e− 01

F11 0.0000e+ 00 0.0000e+ 00

F12 0.0000e+ 00 0.0000e+ 00

F13 0.0000e+ 00 0.0000e+ 00

F14 2.1945e+ 04 4.0079e+ 03

F15 2.6134e+ 01 2.9051e+ 00

F16 1.0038e+ 00 2.5738e− 01

F17 0.0000e+ 00 0.0000e+ 00

F18 1.3458e+ 00 5.1694e− 01

F19 0.0000e+ 00 0.0000e+ 00

F20 2.6762e− 01 2.7497e− 01

Since m = 10, equation (3.2) reduces to only the first term for the 10-dimensional

problems (since n = m, the entire candidate solution is given as input to Fγ). The scaling

by 106 of the first term causes quality of the solution to be large, even when close to the

optimum. Function F9 and F14 contains a sum of rotated elliptic functions, which is

also very large until the solution is very close to zero.

Table 3.3, which records the best fitness attained by PSO on the 1000-dimensional

problems, paints a very different picture. PSO failed to attain a fitness value anywhere

Chapter 3. Symptoms of High Dimensional Problems 24

Table 3.3: Mean and standard deviation of best fitness for PSO (n = 1000)

Function Mean Standard Deviation

F1 4.3880e+ 11 3.8811e+ 09

F2 2.6099e+ 04 7.4363e+ 01

F3 2.1541e+ 01 1.6471e− 03

F4 1.6898e+ 15 1.5412e+ 14

F5 1.8676e+ 08 5.1447e+ 06

F6 2.1156e+ 07 4.4054e+ 04

F7 9.0093e+ 11 5.8336e+ 10

F8 6.1919e+ 16 5.8365e+ 15

F9 6.6098e+ 11 5.8167e+ 09

F10 2.6108e+ 04 4.6733e+ 01

F11 1.0914e+ 03 3.5023e− 01

F12 9.5776e+ 07 5.5507e+ 05

F13 4.3821e+ 12 3.5102e+ 10

F14 7.5268e+ 11 7.8549e+ 09

F15 2.6138e+ 04 5.5472e+ 01

F16 2.1396e+ 03 4.1803e− 01

F17 1.8030e+ 08 1.1784e+ 06

F18 9.3999e+ 12 3.5413e+ 10

F19 1.9977e+ 12 1.2580e+ 10

F20 1.0441e+ 13 7.6299e+ 10

near the optimal value for all the benchmark functions. Additionally, the standard

deviation of the best fitness is very high for some of the functions such as F14 which has

a standard deviation with an order of magnitude of 109. Such a high standard deviation

indicates poor search quality and erratic, random swarm behaviour.

The experiment shows that problem complexity grows far beyond the ability of a

simple, unmodified PSO as the dimensionality increases.

Chapter 3. Symptoms of High Dimensional Problems 25

3.2.2 Swarm Size and the Search Space

The next step by the optimistic, naive practitioner may be to increase the size of the

swarm. A larger number of particles may be able to traverse a greater portion of the

search space because every additional particle provides the swarm with additional “sam-

ple points” or information regarding the location of good or bad solutions. From another

perspective, every randomly initialised particle has a certain problem-dependent proba-

bility of being initialised in a fruitful region of the search space. Thus, every additional

particle increases the swarm’s chances of encountering good solutions and making it less

likely for the swarm to become trapped in local minima.

Unfortunately, the size of the search space grows exponentially as the problem di-

mensionality is increased. In low dimensions, it is inexpensive to have at least as many

particles as there are problem dimensions, which allows relatively good search space

coverage. However, a constant value, such as ns = 50 (as recommended by [8]) that

achieves good search coverage in low dimensions, will degenerate to sparse coverage in

higher dimensions. Even linearly increasing the swarm size with the problem dimension-

ality seems as though it will be insufficient, since the hyper-volume to be explored grows

exponentially.

The ramifications of having fewer particles than problem dimensions is discussed in

detail in [10] and in Chapter 6. This section explores the effect of increasing the swarm

size, confirming the results of [10], and is useful for further discussion of the pathological

behaviour exhibited by PSO in high dimensional search spaces.

The next experiment illustrates the effect of different swarm sizes on the behaviour

of the swarm. The experiment described in section 3.2.1 was repeated for both 10

and 1000 dimensions, but for different swarm sizes. The chosen swarm sizes were:

5, 10, 30, 50, 100, 250. Apart from the swarm size, all other parameters were the same

as listed in table 3.1. Each swarm configuration was allowed to run for the same number

of function evaluations, namely 30×5000, as before. A swarm of size ns was thus allowed

to run for 30×5000
ns

-many iterations. Although there may be some question regarding the

fairness of using function evaluations as a stopping condition [25], practicality also had

to be considered. Running very large swarms for many iterations requires a great deal of

computation time, thus a stopping condition had to be chosen that penalized the very

Chapter 3. Symptoms of High Dimensional Problems 26

Table 3.4: Rank test comparing swarm size 250 against other swarm sizes (n = 1000

> PSO (ns = 250) = < PSO (ns = 250)

PSO (ns = 100) 0 2 18

PSO (ns = 50) 0 0 20

PSO (ns = 30) 0 0 20

PSO (ns = 10) 0 0 20

PSO (ns = 5) 0 0 20

large swarms in some way. The allowed number of function evaluations was still very

large and should have provided sufficiently many iterations for a swarm to obtain a good

solution. Empirically, none of the swarms were still improving in best fitness or updating

the global best position by the time that the search was halted, so the stopping condition

was deemed fair.

Friedman tests with a p-value of 0.05 were used to detect statistically significant

differences among the swarms’ performance across varying swarm sizes. If the Friedman

test indicated significant differences, further pairwise comparisons were done by means

of Mann-Whitney U tests with a p-value of 0.05.

Table 3.4 provides the outcome of the rank tests where the score of the largest swarm

(ns = 250) was compared to the scores of all the other swarms. The table may be

interpreted as follows: a cell in the first column provides the number of functions for

which the swarm configuration listed in that row performed statistically significantly

better than the swarm in the column headings. A cell in the last column contains the

number of functions for which the situation was reversed, i.e. the swarm configuration

in the column headings performed significantly better than the swarm listed in that row.

The cells in the middle column contains the number of functions for which the swarms’

scores were not significantly different.

At first glance, table 3.4 indicates that a larger swarm size is advantageous. The

swarm with 250 particles performed significantly better than the smaller swarms in

almost all cases. Upon inspection of figure 3.1, the results seem a bit suspect. Figure

3.1 follows a single run of the algorithm with ns = 30 on F3 (shifted Ackley’s function)

in 1000 dimensions and shows the best objective function value of the particles’ current

Chapter 3. Symptoms of High Dimensional Problems 27

Figure 3.1: Score of best position and score of global best throughout search on F3

(ns = 30, n = 1000)

positions for every iteration as well as the objective function value of the global best

position. Disconcertingly, the score of the global best position never changes throughout

the search. This observation held regardless of swarm size or benchmark problem.

The only situation in which particles may have better scores than the global best

position is when those particles were not in bounds. Since the global best position was

never updated, figure 3.1 implies that the particles immediately left the bounds of the

search space within the first iteration and failed to return. Figure 3.2 confirms the

hypothesis by showing the percentage of the swarm that was out of bounds throughout

the search. The values plotted in figure 3.2 were averaged over all 30 runs of the algorithm

with ns = 30. Similar plots were obtained for all the other swarm sizes on all of the

benchmark functions.

Since the parameter values are convergent (i.e. the expectation and variance of

particle positions will converge to constant values) according to [57] and [12], the problem

is not that the experiments were performed with divergent parameters which caused the

exacerbated roaming behaviour. Further discussion of swarm convergence and particle

roaming behaviour is postponed to Chapter 5.

Chapter 3. Symptoms of High Dimensional Problems 28

Figure 3.2: Fraction of swarm outside the search space on F3 (ns = 30, n = 1000)

Both the local and global attractors were confined to the search space, so it seems

intuitive for the swarm to be pulled back into the search space. Indeed, Engelbrecht [24]

postulated that given sufficiently many iterations, particles will eventually return to the

search space. Unfortunately, as shown in this section, such intuitions do not hold in high

dimensional spaces. The section that follows will relate these observations regarding

particle roaming to existing literature.

3.3 Particle Roaming

Particle roaming behaviour is documented in existing literature [24, 34]. Empirically,

even in low dimensional spaces, particle roaming can be observed. Particle roaming

refers to a phenomenon that usually occurs in the first few iterations of the search where

particles are likely to leave the search space. Typical particle roaming behaviour in low

dimensional spaces is captured in figures 3.3, 3.5 and 3.7. These will be placed in contrast

with figures 3.4, 3.6 and 3.8, which illustrate particle roaming in high dimensional spaces.

These figures are plotted for a typical run of the algorithms on F7. Similar plots were

Chapter 3. Symptoms of High Dimensional Problems 29

obtained for the other benchmark functions.

The most conspicuous aspect to examine is how many particles are outside the search

space, i.e. roaming. The fraction of the swarm that was outside of the search space was

measured and is shown in figures 3.3 and 3.4. For the low dimensional case, the fraction

of particles outside the search space increased sharply and then rapidly decreased as the

particles were pulled back towards the attractors (figure 3.3). For the high dimensional

problem, the particles also left the search space at once and started roaming. However,

the roaming particles failed to return to the search space (figure 3.4).

Figure 3.3: Fraction of swarm outside

search space on F7 (n = 10)

Figure 3.4: Fraction of swarm outside search

space on F7 (n = 1000)

Other artifacts related to the roaming behaviour can be observed in the swarm di-

versity and the average particle velocity. Swarm diversity characterizes the spread of the

swarm and may be used to illustrate exploration and exploitation behaviour. Different

measures for swarm diversity have been suggested such as the swarm diameter and ra-

dius [62], the average distance around the swarm centre [43], and the normalized average

distance around the swarm centre [62]. Engelbrecht and Olorunda [51] found that the

average distance from the swarm centre [43] provides a good compromise between accu-

racy, robustness and computational efficiency, so this thesis will use the average distance

Chapter 3. Symptoms of High Dimensional Problems 30

from the swarm centre to measure diversity. The swarm diversity is given by

D =
1

ns

ns∑
i=1

√√√√ n∑
j=1

(xi,j − x̂j)2 (3.3)

where x̂ denotes the swarm centre, given as

x̂ =
1

ns

ns∑
i=1

xi (3.4)

The average particle velocity is given by

V =
1

ns

ns∑
i=1

√√√√ n∑
j=1

v2
i,j (3.5)

Particle roaming in low dimensional spaces usually takes place in the first few iter-

ations, when swarm diversity is the highest. As illustrated in figure 3.5, the diversity

started high, showed a small spike for some of the swarms, and then gradually decreased

as the search progressed and the particles converged. Observe that all the swarms con-

verged to a fixed point since the diversity decreased to 0, regardless of swarm size.

The high dimensional case is now considered. Note that, for the high dimensional

problems, a larger range in diversity values is expected, since the metric does not correct

for the number of dimensions, i.e. the maximum distance from the swarm centre will

grow with dimensionality since every extra dimension adds a non-negative value to the

sum inside the square root in equation (3.3). However, it would also be expected of a

successful search that the diversity would decrease to a relatively small amount as the

swarm eventually focused on exploiting a fruitful region.

As shown in figure 3.6, for n = 1000, the swarm diversity was initially much higher

than for the low dimensional case - as expected, but then plummeted and settled to

constant value within the first 50 iterations. In comparison, the diversity drop was much

slower for n = 10, with the diversity still decreasing by iteration 100. Additionally, the

value around which the diversity settled for the high dimensional case was between 1400

and 1500 which is unfortunately very far from 0. It can thus be concluded that none of

the swarms converged to a fixed point for the high dimensional case. It is also interesting

to note that the average distance from the swarm center was lower for the smaller swarm

Chapter 3. Symptoms of High Dimensional Problems 31

sizes, but seemed to increase asymptotically towards the same value as the swarm size

increases. It is clear that simply changing the swarm size will not rectify the swarm’s

behaviour.

Figure 3.5: Swarm diversity on F7 for vary-

ing swarm sizes (n = 10)

Figure 3.6: Swarm diversity on F7 for varying

swarm sizes (n = 1000)

Figures 3.7 and 3.8 plot the average particle velocity throughout the search for n = 10

and n = 1000, respectively. For the low dimensional problem (figure 3.7), the average

particle velocity spiked sharply from the initialised value of 0 as the particles began to

explore and roam, then gradually decreased as the search progressed and the particles

converged to the solution. The swarms on the high dimensional problems exhibited a

similar initial spike and drop. Although the initial spike for n = 1000 was an order of

magnitude larger than that of n = 10, this was not unexpected since the average particle

velocity does not correct for the number of problem dimensions.

For n = 1000 (figure 3.8), the average particle velocity reduced rapidly and then settled

to a large value within the first 50 iterations where it remained for the rest of the search.

In comparison, for the n = 10 problem, the swarms were still decreasing in average

particle velocity by iteration 100.

Generally, the average particle velocity behaves similarly to the average swarm diver-

sity in that both metrics exhibit large initial spikes for both problem dimensionalities.

Both metrics reduce to zero for the low dimensional problem, but stay at a large constant

Chapter 3. Symptoms of High Dimensional Problems 32

value for the high dimensional problem.

Figure 3.7: Average particle velocity on F7

for varying swarm sizes (n = 10)

Figure 3.8: Average particle velocity on F7

for varying swarm sizes (n = 1000)

In lower dimensional problems, the roaming particles return to the search space and

the swarm diversity and average particle velocity decrease. Results from [24] suggest

that the early roaming behaviour may even be beneficial to the search if the attractors

are appropriately constrained. But as illustrated by the results in this chapter, in high

dimensional search spaces, the roaming behaviour continues indefinitely.

The relationship between particle roaming and problem dimensionality has been

proved theoretically in literature. Helwig and Wanka [34] related problem dimensionality

to the probability of particles leaving the search space. Before stating the theorems, a

definition of the term with overwhelming probability is provided below:

Definition 3.1. An event A(n) occurs with overwhelming probability with respect to n

if there exists a constant γ > 0 so that

P(A(n)) = 1− e−Ω(nγ) (3.6)

where Ω refers to the big-O notation for expressing asymptotic behaviour.

There are two theorems of interest, the first of which states that particles will leave

the search space with overwhelming probability within the first iteration. The theorem

is stated formally below [34]

Chapter 3. Symptoms of High Dimensional Problems 33

Theorem 3.1. Assume the following initial conditions for each particle i and dimension

j:

1. The initial velocity v0
i,j is sampled from a uniform random distribution in [−r, r]

2. The initial position x0
i,j is also sampled from U [−r, r]

3. The personal best position is equal to the initial position, so that y0
i,j = x0

i,j

Then every particle will leave the search space [−r, r]n with overwhelming probability.

In other words, the probability that a particle will leave the search space rapidly

approaches 1 as n is increased. The result was proved for any neighbourhood topology

and for additional velocity initialisation strategies (namely initialisation to zero and

initialisation to half the difference between the upper and lower search space bounds),

though the theorem above is stated in terms of uniform random initialisation.

The other theorem states that there is a fixed probability for a particle to leave the

search space in a given dimension.

Theorem 3.2. Assume that conditions 1 to 3 from Theorem 1 hold. Then each particle

that is a local attractor (x0
i = ŷ0) leaves the search space in, on average, w

4
n dimensions

within the first iteration.

Although Helwig and Wanka proved the result for a swarm in which the personal best

position is set to the particle’s initial position, the empirical results in figures 3.9 and 3.10

show similar results. Figure 3.10 shows that the average number of dimensions that were

out of bounds per iteration was approximately 5.7%. This held across all benchmark

functions and for all swarm sizes. In contrast, on the low dimensional problem (n = 10),

the particles were never out of bounds on more than one dimension.

Particle roaming is thus unavoidable with a simple PSO and becomes exacerbated in

high dimensional spaces.

3.4 Summary

This chapter introduced the most troublesome behaviour of PSO in high dimensional

problem spaces, namely that the particles leave the search space almost immediately

Chapter 3. Symptoms of High Dimensional Problems 34

Figure 3.9: Average number of dimensions

out of bounds on F7 for varying swarm sizes

(n = 10)

Figure 3.10: Average number of dimensions

out of bounds on F7 for varying swarm sizes

(n = 1000)

and fail to return. The roaming behaviour is exacerbated as the dimensionality of the

problem increases. Empirical experiments were leveraged to illustrate the effects of high

dimensional search spaces on the swarm’s behaviour, particularly on the swarm’s velocity

explosion and roaming behaviour. A number of metrics were introduced such as swarm

diversity and average particle velocity which may be used to illustrate particle roaming

behaviour and the extent to which it occurs.

Unfortunately, it is no easy task to prevent particles from leaving the search space or

to coax them back into the search space once they are out of bounds. Further avenues

of study that are pursued in this thesis are listed below:

1. Apply velocity clamping to limit the particles’ maximum step size to prevent the

particles from leaving the search space by curbing the initial velocity explosion.

2. Examine the inertia weight and acceleration coefficients of the swarm in pursuit of

parameter values that may force the swarm’s variance to be small enough that the

particles stay within the search space.

3. Use different initialisation strategies that may curb particle roaming.

Chapter 3. Symptoms of High Dimensional Problems 35

4. Limit the effect of the stochastic scaling components, which may discourage particle

roaming.

In the following chapters, each of these items are discussed in detail. The next

chapter critically examines the use of velocity clamping to prevent particle from leaving

the search space.

Chapter 4

Velocity Clamping

The previous chapter observed that for high dimensional problems, particle velocities

may become very large and particles are prone to leaving the search space, never to

return. This chapter examines the extent to which velocity clamping may help in pre-

venting the initial velocity explosion.

It has been claimed [20] that velocity clamping can be employed to prevent particles

from leaving the search space by preventing the initial explosion of particle velocities.

However, velocity clamping does not modify particle positions and thus does not directly

prevent particles from roaming. Limiting the magnitude of a particle’s velocity by an

upper bound will limit the particle’s step size. The particle will thus have to perform

more steps to traverse the same distance in the search space. The step size determines

the granularity of the search and thus how much the swarm will focus on exploring the

entire search space or exploiting locally.

Preventing a particle from taking very large steps may prevent the initial velocity

explosion, but the strategy introduces a problem dependent parameter (namely, the

maximum allowed velocity). Clamping to values that are too large will have no visible

effect. On the other hand, values that are too small may lead to rapid loss of diversity

and premature convergence [23]. Additionally, the type of clamping applied may directly

influence the behaviour of the particles (as described in sections 4.1.1 and 4.1.2).

This chapter proceeds as follows: section 4.1 introduces two clamping strategies for

consideration. Section 4.2 performs a number of experiments that examine the rela-

36

Chapter 4. Velocity Clamping 37

tionship between the optimal clamping value and problem dimensionality for each of

the clamping strategies, compares the two clamping strategies in terms of performance

and ascertains whether velocity clamping is sufficient to prevent particles from roaming

outside the search space. Lastly, section 4.3 contains the chapter’s closing remarks.

4.1 Clamping Methods

Velocity clamping was introduced to prevent rapid velocity growth which may cause

particles to leave the boundaries of the search space [20]. It may also be used to control

the ratio of exploration to exploitation performed by the swarm [23], by controlling the

granularity of particle steps.

Velocity clamping limits a particle’s step size to some maximum, typically chosen

as a fraction of the search space. The granularity of the search is thus determined by

the chosen velocity limit. The optimal value for the maximum step size is problem

dependent [52, 71]. Note that velocity clamping does not modify or confine the positions

of the particles directly; particles can still leave the search space.

Dynamic methods of velocity clamping - where the maximum velocity changes as a

function of the search iteration - have also been proposed. Among these are strategies

such as decreasing the maximum velocity when there has not been any improvement of

the global best position for a number of iterations [67], allowing the maximum velocity

to decay exponentially [28], and constraining velocities using the hyperbolic tangent

function [23].

This chapter considers two common methods of static velocity clamping, which are

discussed in the following two sub-sections.

4.1.1 Method 1 - Clamping Per Dimension

The first method, as proposed by Eberhart and Kennedy [20], chooses some maximum

value for the velocity in each dimension, denoted by vmax,j. Each dimension j of the

velocity vector is then examined and if its absolute value exceeds the chosen maximum,

vmax,j, the j-th velocity component’s value is adjusted. The velocity vector is updated

Chapter 4. Velocity Clamping 38

in each dimension j according to

vt+1
i,j =

vt+1
i,j if − vmax,j ≤ vt+1

i,j ≤ vmax,j

vmax,j if vmax,j < vt+1
i,j

−vmax,j if vt+1
i,j < −vmax,j

(4.1)

The value for vmax,j is typically chosen as a fraction of the search space. Let the

bounds of the search space for dimension j be given by [Lj, Uj], then

vmax,j = δ(Uj − Lj) (4.2)

where δ ∈ (0, 1).

For the problems under consideration, the search space was the same in all dimensions

so that L1 = L2 = ... = Ln and U1 = U2 = ... = Un. Therefore, the upper and lower

limits of the search space in dimension j will be denoted as U and L respectively.

Observe that the direction of a particle in a single dimension is thus not changed by

velocity clamping (since a positive vt+1
i,j remains positive and vice versa). However, if

n > 1, then the direction of the velocity vector is changed by applying velocity clamping

as illustrated in figure 4.1a for the 2-dimensional case. The black arrows indicate the

velocity components in the x-y plane, the dotted red lines next to the x and y components

indicate the maximum velocity for each component, and the orange arrow indicates

the magnitude and direction of the velocity vector. Velocity clamping per dimension

may thus force particles into unfavourable regions of the search space, by distorting

information from the local and global best positions and from the particle’s previous

trajectory [63, 68].

Clamping per dimension has another potential problem. If the particle velocities are

clamped in all dimensions, then all the velocity components are equal to the maximum

velocity. The particles are thus restricted to the boundaries of a hypercube defined by

[xti − vmax,x
t
i + vmax]. Although it is possible that the optimum may be found in this

region, it is unlikely [23, 68]. The hypercube problem can be mitigated by using an

inertia weight (as done in this chapter) or by decreasing the maximum velocity over

time.

Chapter 4. Velocity Clamping 39

(a) Velocity Clamping with method 1 - per dimension

(b) Velocity Clamping with method 2 - magnitude

Figure 4.1: Illustrations of the effects of velocity clamping

4.1.2 Method 2 - Magnitude

Velocity clamping based on the magnitude of the velocity vector aims to preserve the

search direction of the particle. Instead of examining every dimension of the velocity

vector individually, this strategy considers the total magnitude of the velocity vector. If

the magnitude of the particle’s velocity exceeds some chosen maximum, then the entire

velocity vector is adjusted so that its magnitude is within bounds, but its direction is

preserved. This is mathematically expressed by

vt+1
i =

{
vt+1
i if ‖vt+1

i ‖ ≤ vmax
vmax
‖vt+1
i ‖v

t+1
i if ‖vt+1

i ‖ > vmax
(4.3)

where ‖.‖ denotes the Euclidean norm. As was the case for clamping per dimension,

the value for vmax is determined based on some fraction of the maximum step size.

Whereas clamping per dimension only considers the maximum step size possible in each

Chapter 4. Velocity Clamping 40

dimension, this strategy must consider the maximum distance that a particle can travel

(i.e. the largest magnitude that the velocity vector can attain).

As before, let the bounds of the search space for dimension j be given by [Lj, Uj].

Then

vmax = δ

√√√√ n∑
j=1

(Uj − Lj)2 (4.4)

= δ‖U− L‖ (4.5)

where U = [U1, U2, ..., Un]T and L = [L1, L2, ..., Ln]T are n-dimensional vectors.

This approach does not modify the velocity’s direction and thus preserves the infor-

mation from the momentum, social and cognitive components (see figure 4.1b). However,

this method is susceptible to outliers in the sense that all the velocity vector’s compo-

nents will be adjusted even if there are only a few large components. A velocity that

consists of a few very large components and many small components will be penalized

just as heavily as a velocity vector that is rather large in many dimensions. This may

cause the particles to move very slowly in most dimensions due to very large velocities

in other dimensions.

4.2 Experimental Results

This section presents empirical results and observations regarding the behaviour of the

two velocity clamping strategies as problem dimensionality increases. Two sets of ex-

periments were performed. The experimental method followed was very similar to the

method described in Chapter 3, except that velocity clamping was applied.

The first experiment examined the relationship between problem dimensionality and

the optimal value for δ and is discussed in section 4.2.1. The first experiment was used to

empirically determine an optimal δ for each strategy. The second experiment, described

in section 4.2.2 compared the two clamping methods in terms of swarm performance

(using the optimal δ values found in the first experiment). Finally, section 4.2.3 analyses

the better-performing strategy to determine whether the strategy successfully mitigated

the symptoms exhibited by PSO on the high dimensional problems.

Chapter 4. Velocity Clamping 41

4.2.1 Optimal δ-Values

In order to determine an optimal δ for each clamping strategy, a number of different

values were tried, i.e. δ = {0.005, 0.01, 0.05, 0.1, 0.25, 0.5}. Larger values of δ were not

tested because preliminary empirical tests showed no difference in swarm behaviour for

δ = 0.5 and unclamped swarms. Each swarm configuration was tested on a number of

different problem dimensionalities, i.e. n ∈ {10, 100, 250, 500, 750}. Each combination

of δ and n were run on each benchmark function 30 times, to provide 30 independent

samples (as in Chapter 3).

The optimal value for δ was determined for each strategy over all the functions

of a given problem dimensionality (using the benchmark suite in Appendix A). It is

thus assumed that the optimal δ-value is dimension dependent. The comparison among

different δ-values was performed in a similar manner to [6] and is described below.

Let the problem dimension n and velocity clamping strategy be fixed. Let two dif-

ferent algorithm configurations (i.e. with two different values for δ) be denoted by g and

h. For every (g, h) pair and function f , define sg,h,f as follows

sg,h,f =

1 if Rg,f < Rh,f with p ≤ 0.05

0 if p ≥ 0.05

−1 if Rh,f < Rg,f with p ≤ 0.05

(4.6)

where Rg,f denotes the median of the best score attained by configuration g when opti-

mizing function f and p denotes the confidence bound of the Mann-Whitney U test. For

every configuration pair (g, h), the “wins” of g over h is measured in terms of a point

system. This measure is denoted by zg,h and is calculated by

zg,h =

3 if

∑F
f=1 sg,h,f > 0

1 if |
∑F

f=1 sg,h,f | = 0

0 if
∑F

f=1 sg,h,f < 0

(4.7)

where F denotes the number of functions in the benchmark suite. For the benchmark

suite in appendix A, F = 20.

The total “score” of a configuration g is the sum of its wins over all the other con-

Chapter 4. Velocity Clamping 42

Figure 4.2: Performance of method 1 as δ

and n vary (lighter is better)

Figure 4.3: Performance of method 2 as δ and

n vary (lighter is better)

figurations. The total score, Mg, of configuration g is denoted by

Mg =
J∑

h=1;h6=g

zg,h (4.8)

where J denotes the number of configurations. Since six different values for δ were

considered, J = 6. If Mg > Mh, then configuration g performed better on the benchmark

suite than configuration h.

The results of the comparison described above are plotted in figures 4.2 and 4.3. The

figures plot the δ-values on the y-axis and the problem dimensionality on the x-axis. The

score of configuration g determines the lightness of its block. So the best configuration

for a given n can be found by finding the lightest block in n’s column. Figure 4.2

shows the scores for the per-dimension clamping strategy and figure 4.3 shows the scores

for clamping based on velocity magnitude. The optimal values for δ for both velocity

clamping methods are also given in Table 4.1.

The figures show that for both clamping methods, as the dimensionality increased,

the optimal value for δ (denoted by δ∗) decreased significantly by orders of magnitude.

Thus in higher dimensional search spaces, particle step sizes must be made smaller.

Smaller step sizes will facilitate locally exploitative behaviour, which has been shown to

improve performance in high dimensional spaces [82, 83]. These results will be examined

closely for each clamping method in the two sub-sections that follow.

Chapter 4. Velocity Clamping 43

Table 4.1: Optimal δ-value for problem dimensionality

Method 1 Method 2

n = 10 0.5 or 0.25 0.5 or 0.25

n = 100 0.05 0.01

n = 250 0.01 0.01

n = 500 0.005 0.05

n = 750 0.005 0.05

4.2.1.1 Optimal δ Method 1

When considering the higher dimensional problems (n = 500 and n = 750), method 1’s

δ∗ was the smallest value under consideration (δ = 0.005).

In unclamped swarms, the velocity explosion becomes more pronounced as problem

dimensionality is increased. This is not simply because there are more terms in the ve-

locity magnitude expression (
√∑n

i=1 v
2
i), as shown by figures 4.4 and 4.5, which provide

component-wise information about swarm velocities.

Figure 4.4 shows the average maximum velocity component for all the particles in

an unclamped swarm, as problem dimensionality varies from 10 to 5000. Figure 4.5

shows the average minimum velocity component for all the particles in an unclamped

swarm. As the problem dimensionality increases, the range of particles’ velocity shifts

higher. In other words, particle velocities become larger as the problem dimensionality

increases, even when examined component-wise. It is thus intuitive that smaller δ values

will perform better as n increases.

The fact that small δ-values perform well can be further explained by considering

the nature of high dimensional problems: as n increases, the hyper-volume of the search

space increases exponentially, making the likelihood of encountering the region containing

the global optimum far smaller. It has been suggested that in such high dimensional

spaces it may be more fruitful to employ locally exploitative strategies [83]. Smaller

values of δ, which force local exploitation, are thus advantageous for high dimensional

problems. (Later chapters elaborate on the idea of focusing on local exploitation rather

Chapter 4. Velocity Clamping 44

than exploration).

Figure 4.2 establishes that δ∗ decreases as the problem dimensionality increases. It

is not immediately clear whether the trend continues as n → ∞ or whether there is

convergence to a particular δ-value.

Further simulations were run on problem sets of even higher dimensionality to test

whether the optimal δ-value continued to decrease as dimensionality increases. The

simulations were run for δ = {0.005, 0.001, 0.0005, 0.0001} on problem suites with di-

mensionality in n = {1000, 1500, 2000, 5000, 10000}.
Figure 4.6 plots the score of each δ-value for a problem suite of given dimensionality,

where lighter colours indicate better scores. Scores were calculated as described earlier in

this section. As problem dimensionality became very large, the optimal δ-value remained

0.005 and smaller values degraded performance. Thus, δ∗ converges to a value near 0.005

as n goes to infinity.

Based on these observations, the relationship between δ and n appears to be an

exponential model of the form

δ∗ = aebn + c (4.9)

where a, b and c are constants. Fitting an exponential curve of this form (using Matlab’s

fit function with the parameter exp1) produced the model

δ∗ = 0.3977e−0.02159n + 0.005 (4.10)

as depicted in figure 4.7. The exact coefficients for the model are likely dependent on

the algorithm parameters such as swarm size, inertia weight and acceleration coefficients.

Nevertheless, showing that the relationship between δ∗ and n is exponential remains an

interesting result.

In summary: if the δ-values are too large, relative to the search space, then velocity

clamping fails to prevent the velocity explosion. The higher the problem dimensionality,

the greater the velocity explosion (again, consult figures 4.4 and 4.5), and thus smaller

values of δ are required. However, δ∗ converges to a fixed value as n goes to infinity.

Convergence of the optimal δ-values implies that there comes a point where the reper-

cussions of mitigating the initial velocity explosion are too high: although the initial

Chapter 4. Velocity Clamping 45

Figure 4.4: Maximum velocity component for F1 across dimensionalities (averaged over 10

runs, n in {10, 50, 100, 250, 500, 750, 1000, 1500, 2000, 5000})

Figure 4.5: Minimum velocity component for F1 across dimensionalities (averaged over 10

runs, n in {10, 50, 100, 250, 500, 750, 1000, 1500, 2000, 5000})

Chapter 4. Velocity Clamping 46

Figure 4.6: Performance of method 1 for smaller δ and larger n (lighter is better)

Figure 4.7: Optimal delta for dimensionality, exponential model

velocity explosion can be contained, applying the same clamping value throughout the

search impedes the swarm’s ability to find a good solution.

Chapter 4. Velocity Clamping 47

Figure 4.8: Average velocity of swarm for

F14 by method 1 (averaged over

30 runs, n = 750)

Figure 4.9: Average velocity of swarm for F14

by method 2 (averaged over 30 runs, n = 750)

4.2.1.2 Optimal δ Method 2

Considering the discussion regarding the importance of granular searching in section

4.2.1.1, it is counter-intuitive that method 2 performed better when using larger δ values.

It is even more unexpected when one observes that for a fixed δ, method 2’s average

velocity magnitude is usually larger than that of method 1’s by an order of magnitude

(as depicted by figures 4.8 and 4.9). The reason for method 2’s larger average velocities

sheds light on the counter-intuitive optimal values for δ, as explained below.

Figure 4.10 shows that, for both clamping methods, more than half of the velocity

components were below the average, implying that there were a few large components

that skewed the average upward. Figure 4.10 also illustrates that, when method 2 was

applied, a particle’s velocity component had more small components than when applying

method 1. The figure was generated by calculating the average absolute component

value of a particle’s velocity, then counting the number of components with absolute

value below that average.

When using method 2, a velocity vector needs only one very large component for

clamping to be applied on the entire vector. If the component is very large, all the other

components in the vector will be heavily penalized, since clamping preserves direction.

To make matters worse, the large component will remain large after clamping, relative

to the other components and will likely require clamping in the next iteration, hence

Chapter 4. Velocity Clamping 48

preserving a large velocity magnitude.

In comparison, per dimensional clamping would not have penalized the reasonably

sized velocities at all and instead would have decreased the problematic velocity compo-

nent to a point where future clamping may not have been necessary. This is illustrated

in figures 4.8 and 4.9, which shows the initial velocity spike decreasing more sharply for

swarms clamped by method 1, than for swarms clamped by method 2.

Figure 4.10: Number of velocity components below the average absolute component velocity

on F17, 750 dimensions

As n increases, the probability of the particle leaving the search space due to a large

velocity in at least one dimension increases [34], thereby increasing the occurrences of

“unfair” clamping. This explains why method 2 performs increasingly poorly as problem

dimensionality increases. The concept of unfair clamping also explains why the optimal

value for δ is larger than for method 1: if the value of δ is very small, then the unfairly

penalized components of the velocity vector are even smaller, to the point where very

little search progress is made in the majority of the problem dimensions (refer again to

figure 4.10).

Chapter 4. Velocity Clamping 49

Table 4.2: Pairwise comparison of clamping methods across problem dimensionalities

Method 1 Method 2

+ = - + = -

n = 10 1 19 0 0 19 1

n = 100 10 3 7 7 3 10

n = 250 13 1 6 6 1 13

n = 500 16 0 4 4 0 16

n = 750 17 2 1 1 2 17

4.2.2 Clamping Method Comparison

From Table 4.1, an optimal configuration for each clamping method can be obtained for

a given n. Using these values, the two clamping methods were compared against each

other to determine which method is best for a given dimensionality and whether this

changes as the dimensionality increases.

To compare the two algorithms, a Friedman test was performed with a confidence

bound p ≤ 0.05 to test whether the difference in their performance was statistically

significant. If the Friedman test indicated a significant difference, Mann-Whitney U

tests were performed with a p-value of 0.05. The number of wins (functions for which

one method performed statistically significantly better than the other), draws (functions

on which there was no statistically significant difference in performance) and losses were

calculated for each n. These values are reflected in table 4.2.

In low dimensions (n = 10), the two methods are not significantly different on all

but one function. This may largely be due to the fact that in low dimensional spaces,

the particles are not clamped as frequently as in higher dimensions. As the problem

dimensionality increases, the strategy of clamping per dimension (method 1), gradually

outperforms clamping based on magnitude (method 2). For n = 100, method 1 wins on

half of the functions. For the highest dimensionality (n = 750), method 1 statistically

significantly outperforms method 2 on all but 3 of the functions. Clearly, method 1 is

the better choice, particularly for high dimensional problems.

Chapter 4. Velocity Clamping 50

The maximum step size allowed by method 2 depends directly on the number of

problem dimensions. Thus, as n increases, the particles are allowed larger step sizes.

Thus, for large n, the clamping method fails to enforce sufficiently granular searching.

As discussed in sub-section 4.2.1, simply decreasing δ is not a solution because it will slow

down searching in dimensions that already had sufficiently small velocity components.

4.2.3 Swarm Behaviour

The question of whether the velocity clamping was “successful” has not yet been an-

swered. Velocity clamping serves two main purposes: controlling the ratio of exploration

to exploitation and preventing particles from leaving the search space. Thus, this sub-

section examines these two aspects of swarm behaviour. Since clamping particle velocities

per dimension has been shown to perform better than clamping based on magnitude,

clamping per dimension (method 1) will be discussed in this sub-section.

Figure 4.11 shows the fraction of the swarm that was out of bounds at every iteration.

For the largest δ, the swarm quickly left the search space and failed to return for the

remainder of the search. For smaller values of δ, the fraction of the swarm outside the

search space decreases. But even for the smallest δ-values, some of the particles left the

search space after the first few hundred iterations. This behaviour was more pronounced

for some of the other benchmark functions such as F9. Thus, even clamping to a very

small velocity can not prevent particles from roaming outside the search space, although

it may mitigate the problem to some extent.

Additionally, although the performance of method 1 was better than method 2, the

actual results obtained on the benchmark functions were still far from the optimal values

of 0 (see Table 4.3). Although small values of δ discouraged particles from leaving the

search space, small step sizes may also cause the swarm to converge prematurely to a

local minimum. For almost all the benchmark functions, the swarm diversity became

very small within the first 500 iterations, an indication of premature convergence (see

figure 4.12 for a typical example).

Chapter 4. Velocity Clamping 51

Figure 4.11: Fraction of swarm out

of bounds for F9 by method 1 and 750 dimen-

sions

Figure 4.12: Swarm diversity for F9 by

method 1 and 750 dimensions

4.3 Summary

This chapter examined whether velocity clamping can successfully be applied to prevent

particles from leaving the search space in high dimensional spaces. The chapter aimed to

investigate the relationship between the optimal maximum velocity and problem dimen-

sionality. Two different velocity clamping strategies were considered: method 1 clamped

every dimension independently and method 2 clamped the entire velocity vector in a

way that preserved its direction.

The optimal values to which the particle velocities should be clamped was found

to be dependent on problem dimensionality, even when clamping by dimension. It was

observed that, as the number of problem dimensions increases, the optimal maximum

step size decreases for both of the velocity clamping strategies.

For a given problem dimensionality, the optimal value for δ when clamping based

on magnitude was higher than when clamping per dimension. This counter-intuitive

observation can be explained by noting that method 2 will “unfairly” adjust reasonably-

sized velocity components because of a few very large velocity components in order to

preserve the velocity’s direction. Small velocity components will be even smaller after

clamping is applied, thus slowing down the search process for those dimensions.

Although the two clamping methods performed very similarly for low-dimensional

spaces (n = 10), clamping per dimension became increasingly advantageous as the prob-

Chapter 4. Velocity Clamping 52

Table 4.3: Mean and standard deviation of best fitness achieved by method 1 with δ = 0.005

and 750 dimensions

Function Mean Standard Deviation

F1 2.3641E + 08 1.1711E + 07

F2 6.6518E + 03 2.2892E + 01

F3 1.9696E + 01 6.6803E − 03

F4 9.0220E + 09 1.0233E + 09

F5 4.5411E + 07 1.9031E + 06

F6 1.8913E + 07 1.3660E + 05

F7 6.3700E + 02 2.4809E + 01

F8 2.7861E + 06 3.9762E + 05

F9 3.8684E + 08 5.9134E + 06

F10 6.4532E + 03 2.0604E + 01

F11 7.3341E + 02 4.3445E − 01

F12 7.2441E + 04 2.3541E + 03

F13 1.7914E + 06 2.2766E + 05

F14 7.1905E + 08 1.2383E + 07

F15 6.6617E + 03 2.2755E + 01

F16 1.4567E + 03 6.6091E − 01

F17 9.8013E + 04 3.8881E + 03

F18 4.9748E + 06 3.9487E + 05

F19 6.4384E + 08 2.0608E + 07

F20 1.6417E + 08 1.6433E + 08

lem dimensionality grew, to the point where clamping per dimension outperformed the

other strategy on 17 out of the 20 benchmark functions for n = 750. It is intuitive

that the clamping strategy which is independent of n should perform better as problem

dimensionality becomes very large.

When examining the actual behaviour of the swarm, it was observed that velocity

clamping was relatively successful in reducing the number of particles outside the search

Chapter 4. Velocity Clamping 53

space. However, even for the most restrictive δ-values, there were always some particles

outside the search space. Furthermore, there were cases in which clamping prevented

initial particle explosion of velocities, but eventually the particles left the search space

anyway.

Even the best-performing swarm configurations found solutions very far from the

optimum for the high dimensional problems. The swarms with small maximum veloci-

ties mostly succeeded in confining the particles to the search space, but were prone to

premature convergence.

Clearly, velocity clamping alone is not effective at mitigating the velocity explosion

while simultaneously preserving swarm diversity. Simply forcing the particles to take

smaller steps is thus not the answer to the symptoms of high dimensionality. The next

chapter will take a more nuanced approach to limiting particle step sizes by carefully

choosing values for the acceleration coefficient and inertia weight.

Chapter 5

Variance of Particle Positions

This chapter examines the variance of particle positions and how it is influenced by

the inertia weight and acceleration coefficients of PSO. A brief overview of existing

literature on the variance of particle positions is given in section 5.1. This chapter

examines the advantages and disadvantages of certain movement patterns exhibited by

PSO in high dimensional spaces. The inertia weight and acceleration coefficients can

be used to control the variance of particle positions, thereby controlling the swarm’s

range of movement. By choosing parameters so that the variance of swarm positions

is small, the velocity explosion may be mitigated. This approach towards preventing

particle roaming is examined in section 5.2. Particular values for w, c1 and c2 can also

be used to bring about certain patterns of particle movement such as controlling the level

of oscillation or the smoothness of particle trajectories. Section 5.3 examines different

movement patterns and determines which are more suitable to high dimensional spaces.

Section 5.4 concludes the chapter.

5.1 A Brief History of Variance

This section provides a brief overview of the literature regarding the variance of particle

positions and its relationship to the inertia weight and acceleration coefficients.

Usually, theoretical analysis of particle behaviour requires some form of the stagnation

assumption which assumes that the personal best positions and the global best position

54

Chapter 5. Variance of Particle Positions 55

have stopped improving. Under stagnation, each particle behaves independently of the

other particles since no new information is introduced by a global or personal best posi-

tion update. Thus, each particle’s behaviour can be studied separately when stagnation

is assumed. Furthermore, each particle’s dimensions are independent, so the particle

need only be analyzed in one dimension without loss of generality. This significantly

reduces the complexity of theoretical analysis. Due to the independence of particles and

problem dimensions, the subscript i and j for particle positions and velocities may be

dropped for the purposes of the discussion that follows.

Jian et al. [36, 37] performed convergence analysis of the expectation and variance of

particle positions. The analysis yielded convergence regions for the choice of w, c1 and c2

parameter values, within which all the particles in the swarm are guaranteed to converge

in expectation. Poli [57] extended the results of [36, 37], by deriving an expression for

the variance of a particle’s position, which allows practitioners to choose parameters

that will bring about certain behaviours in the variance (such as self-limiting growth or

convergence to a fixed point). Poli also emphasized the importance of variance dynamics

in understanding and influencing PSO’s search behaviour.

Poli [57] proved that under stagnation, an arbitrary particle will converge to an

arbitrary fixed point if all the following conditions hold:

c <
12(w2 − 1)

5w − 7
(5.1)

c > 0 (5.2)

−1 < w < 1 (5.3)

where c1 = c2 = c. The fixed point for the variance of a particle’s positions is given by

σ2 =
c(w + 1)

4(c(5w − 7)− 12w2 + 12)
(ŷ − y)2 (5.4)

Liu [45] proved that the convergence regions found by [36, 37, 57] are valid even

under a weak stagnation assumption. Liu [45] extended the findings of [36, 37, 57]

by assuming that w, φ1 = c1r1 and φ2 = c2r2 are arbitrary random variables with

known expected values and variances (whereas previous analysis had assumed w to be

constant and φ1 and φ2 to be uniformly distributed random variables). Bonyadi and

Chapter 5. Variance of Particle Positions 56

Michalewicz [5] also assumed that y and ŷ are random variables as opposed to constant

values. Using the stagnant distribution assumption, Bonyadi and Michalewicz derived

convergence boundaries that are necessary (proven theoretically) and sufficient (proven

empirically) for convergence of position variance. Cleghorn and Engelbrecht [14] made

a further generalization under the non-stagnant distribution assumption (i.e. without

assuming stagnation) where the personal and global best positions were considered as

convergent sequences of random variables. The analysis presented by Cleghorn and

Engelbrecht can be applied to obtain the convergence boundaries for general classes of

PSOs. Furthermore, the assumption that the expected value and variance of personal

and global best positions are convergent sequences was shown to be a necessary condition

for convergence (i.e. is the weakest possible assumption under which the expected value

and variance of particle positions converge).

5.2 Restricting Variance

This section uses existing theory regarding the variance of particle positions to restrict

particle movement. Section 5.2.1 explains that the variance of particle positions can

be reduced to a chosen fraction of its original value by calculating corresponding values

for the inertia weight and acceleration coefficients. Swarms with variance restricted to

different values were then tested on the high dimensional benchmark suite from Appendix

A. Section 5.2.2 describes the experimental method and section 5.2.3 analyses the results

of the experiments. The effects of restricting the variance are discussed and the best

performing swarm configurations are identified. Section 5.2.4 summarizes this section

and provides motivation for the section that follows.

5.2.1 Restricting the Variance of Particle Positions

In the experiments that were performed in Chapter 3, the stagnation assumption held

after the first iteration, because all the particles left the search space and personal and

global best positions were only updated if the position was valid. Since the particles did

not return to the subspace, the remainder of the search was under stagnation.

According to Poli [57], the standard deviation of a particle’s position under stagnation

Chapter 5. Variance of Particle Positions 57

is given by

σ =
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
|ŷ − y|

= Vc|ŷ − y| (5.5)

where

Vc =
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
(5.6)

Observe that, if the conditions for convergence in expectation and variance hold (equa-

tions (5.1) to (5.3)), then the standard deviation will only be zero if y = ŷ.

The experiments in Chapter 3 used convergent parameter values, which guarantee

that the expected value and variance of the particle positions will converge to a constant.

In high dimensions, the particles leave the search space immediately, so the personal

best and global best positions are never updated. Therefore, the variance of the particle

positions immediately becomes a large constant. The swarm thus converges within the

first iteration. Even if the attractors are confined to the search space, the resulting

variance is large enough for all the particles to stay outside the search space.

For the usual “good parameters” for the inertia weight and acceleration coefficients

(w = 0.7298 and c1 = c2 = 1.49618) that were used in Chapter 3, the coefficient in

equation (5.5) evaluates to

1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
(5.7)

=
1

2

√
1.49618(0.729844 + 1)

1.49618(50̇.729844− 7)− 120̇.7298442 + 12
(5.8)

= 1.0432 (5.9)

which is larger than one. The maximum possible value for |y − ŷ| is the range of the

search space, given by U −L. Thus, for the given c and w values, the maximum possible

standard deviation is larger than the size of the search space. If |y − ŷ| for each of the

particles in the swarm and the particles are distributed normally around the center of

Chapter 5. Variance of Particle Positions 58

the search space, approximately 38% of the particles will be located within the search

space (i.e. within half a standard deviation of the center). The probability of a particle’s

next position being outside the search space is thus much higher than the probability of

being inside the search space; therefore most of the swarm will be located outside of the

search space (see figure 5.1).

Figure 5.1: Probability distribution of swarm for worst case scenario in 1-D

Of course, this is a worst case scenario. Consider a better scenario, in which the

distance between the personal best position and the global best position is approximately

half of the search space, i.e. |y − ŷ| = 1
2
(U − L). On average, approximately 68% of the

particles will be found within the search space (i.e. within one standard deviation of the

center), which leaves a third of the particles outside the search space.

If the value of |y− ŷ| is known or can be estimated, then equation (5.5) can be solved

for values of c and w that ensure that a particle is within the search space. If y and ŷ are

both independent, uniformly distributed variables between L and U , then the expected

Chapter 5. Variance of Particle Positions 59

value of |y − ŷ| is zero. However, y and ŷ are not independent, since both variables

depend on the location of the benchmark function’s optimum.

Thus, calculating the coefficient Vc to obtain an exact standard deviation is a difficult,

problem-dependent exercise. Instead, the value of the coefficient Vc can be used to restrict

the standard deviation fractionally, i.e. to some fraction of what it would be otherwise.

For example, suppose that the aim is to restrict the standard deviation to some fraction,

γ, of its unrestricted value. Then setting the value of Vc to γ and solving for c yields:

γ = Vc (5.10)

=
1

2

√
c(w + 1)

c(5w − 7)− 12w2 + 12
(5.11)

∴ c =
12(1− w2)

7− 5w + w+1
4γ2

(5.12)

By allowing w to range between 0 and 1 and solving for the corresponding c-value, it

is possible to produce a set of (c, w) pairs for which the standard deviation will be the

desired fraction of what it would have been otherwise.

It should be noted that, although two pairs of (w, c) values may restrict the standard

deviation to the same amount, those two pairs may bring about very different search

behaviours in the swarm because the w and c coefficients play very different roles. For

example, the pair (0.1, 1.5632) and (0.9, 0.5182) both restrict the standard deviation

fractionally by a half (i.e. γ = 0.5 and the standard deviation is half of what it would be

otherwise), the different configurations cause very different behaviour in the swarms: the

first swarm will have almost no momentum and high acceleration coefficients whereas

the second swarm has very high momentum and low acceleration coefficients.

Two questions arise:

• To what fraction should the standard deviation be restricted?

• How are the optimal w and c chosen from the resulting sets?

Both of these questions will be answered by empirical study in section 5.2.3. The re-

mainder of this section is devoted to motivating the method of restricting the standard

deviation fractionally and its applicability to high dimensional spaces in particular.

Chapter 5. Variance of Particle Positions 60

The discussion regarding the standard deviation of a particle’s position has thus far

considered only a single dimension, since all dimensions are independent under stag-

nation. However, another phenomenon arises as more dimensions are considered. A

n-dimensional particle’s standard deviation, σ, will be a vector with each component j

given by

σj = Vc|ŷj − yj| (5.13)

As the dimensionality grows, the Euclidean length of σ grows, since every additional

dimension will add a non-negative term to the norm that depends on the distance between

ŷj and yj, as shown below:

‖σ‖ =

√√√√ n∑
j=1

σ2
j (5.14)

=

√√√√ n∑
j=1

(Vc|ŷj − yj|)2 (5.15)

=

√√√√V 2
c

n∑
j=1

|ŷj − yj|2 (5.16)

= Vc

√√√√ n∑
j=1

|ŷj − yj|2 (5.17)

Unless the particle is the global best, it is unlikely for |ŷj − yj| to be zero in many

dimensions. Thus, the hyper-volume within which particles are likely to be found grows

with dimensionality, and may be larger than the search space in hyper-volume. As an

example, consider figure 5.2, which depicts a 2-dimensional search space with bounds

[−2, 2]2. Suppose that |ŷj − yj| = 1
2
(U − L) = 2, for each j. Then the particles within

one standard deviation of the search space center can be found anywhere in the circle

Chapter 5. Variance of Particle Positions 61

with radius

R = Vc

√√√√ n∑
j=1

|ŷj − yj|2 (5.18)

= Vc
√

(22 + 22) (5.19)

= Vc2
√

2 (5.20)

= Vc
√

2
1

2
(U − L) (5.21)

= Vc
√

2|ŷj − yj| (5.22)

Thus, the distance between the personal and global best positions in any dimension

is approximately half of the search space and if the upper and lower bounds are the same

in all dimensions, the length of the standard deviation is given by

Vc
√
n

1

2
(U − L) (5.23)

If the radius of the search space is defined by

Rss =

√√√√ n∑
i=1

(U − L
2

)2
(5.24)

=
U − L

2

√
n (5.25)

and is used as a measure of the search space’s size, then the ratio between the length of

the standard deviation and the search space’s radius is given by Vc. The coefficients c

and w, which determine Vc, thus play an important role in determining the range of the

swarm’s movement.

It should be noted that particles further than one standard deviation from the center

of the search space are thus guaranteed to be out of bounds (i.e. 32% of the swarm will

be out of bounds). In a worse scenario (if |ŷj − yj| > Uj −Lj or if Vc is much larger than

one), then even more particles will be outside the search space.

Since the size of the standard deviation grows with problem dimensionality, the op-

timal γ to which to restrict the standard deviation may depend on n. If so, it may

thus be possible to obtain coefficients that will negate the effect of dimensionality on the

standard deviation’s norm and restrict the particles’ movement, hopefully preventing

roaming.

Chapter 5. Variance of Particle Positions 62

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

Figure 5.2: Hypersphere within one standard deviation of the search space centre (where

|ŷj − yj | = 2, which is half the search space)

5.2.2 Experimental Method

Table 5.1 summarizes all the c-w combinations that were tested and the corresponding

γ values. Three different γ values were tested, i.e. γ ∈ {1.0, 0.75, 0.5}. For each γ, w

was varied from 0.1 to 1.0 in increments of 0.05, so that

w ∈ {0.1 + 0.05k
∣∣ 0 ≤ k ≤ 18} (5.26)

For the chosen (γ, w) pair, the corresponding value for the acceleration coefficient was

calculated according to equation (5.12). Except for w = 1, where the corresponding c

values were unique (i.e. regardless of γ, if w = 1 then c = 0). Each configuration was

run on the benchmark suite for 30 independent runs, as in the experiments in Chapter

3.

5.2.3 Variance and Dimensionality

Restricting the standard deviation influenced the swarm’s average velocity magnitude,

as expected. It may have been that the swarm was not roaming due to the distance

between the particles’ personal and global best positions, but rather because the swarm

was attracted to a position near the boundary of the search space. Then the particles

Chapter 5. Variance of Particle Positions 63

Table 5.1: Parameter configurations for swarms with fractionally restricted standard devia-

tions

γ = 1.0 γ = 0.75 γ = 0.5

γ c w γ c w γ c w

1.0 1.7535 0.1 0.75 1.6998 0.1 0.5 1.5632 0.1

1.0 1.7943 0.15 0.75 1.7349 0.15 0.5 1.5851 0.15

1.0 1.8286 0.2 0.75 1.7633 0.2 0.5 1.6 0.2

1.0 1.8557 0.25 0.75 1.7841 0.25 0.5 1.6071 0.25

1.0 1.8747 0.3 0.75 1.7967 0.3 0.5 1.6059 0.3

1.0 1.8846 0.35 0.75 1.8 0.35 0.5 1.5955 0.35

1.0 1.8841 0.4 0.75 1.7929 0.4 0.5 1.575 0.4

1.0 1.8719 0.45 0.75 1.774 0.45 0.5 1.5435 0.45

1.0 1.8462 0.5 0.75 1.7419 0.5 0.5 1.5 0.5

1.0 1.8049 0.55 0.75 1.6947 0.55 0.5 1.4431 0.55

1.0 1.7455 0.6 0.75 1.6302 0.6 0.5 1.3714 0.6

1.0 1.6649 0.65 0.75 1.5457 0.65 0.5 1.2833 0.65

1.0 1.5592 0.7 0.75 1.4381 0.7 0.5 1.1769 0.7

1.0 1.4237 0.75 0.75 1.3034 0.75 0.5 1.05 0.75

1.0 1.2522 0.8 0.75 1.1368 0.8 0.5 0.9 0.8

1.0 1.0366 0.85 0.75 0.9322 0.85 0.5 0.7239 0.85

1.0 0.7664 0.9 0.75 0.6817 0.9 0.5 0.5182 0.9

1.0 0.4274 0.95 0.75 0.3754 0.95 0.5 0.2786 0.95

1.0 0.0 1.0 0.75 0.0 1.0 0.5 0.0 1.0

exploring the region near the global best may have been likely to be out of bounds in at

least a few dimensions, due to the positioning of the attractor, even though the particles’

velocities were not very high. If this was the case, then restricting the variance would

Chapter 5. Variance of Particle Positions 64

not reduce the swarm’s average velocity.

Figures 5.3 to 5.7 illustrate the typical profile of the swarms’ average velocity mag-

nitude. Each figure is for a fixed inertia weight and shows the effect of varying γ. In all

cases, the smaller standard deviation resulted in lower average velocity, as expected.

Figures 5.8 to 5.10 show the average velocity magnitude for a fixed γ as w varies.

For each γ, lower inertia weights result in higher average velocities and vice versa. The

average velocity magnitude increases asymptotically as w decreases (with the upper

bound increasing as γ increases). Thus, the movement of swarms with higher inertia

weights is generally more restrained than swarms with lower inertia weights.

Restrictions to the standard deviation combined with high w-values cause the cor-

responding acceleration coefficients to have relatively low values. Such swarms will rely

more heavily on momentum than on new information received from its neighbours, or

learned throughout its own search. These particles will exhibit smooth trajectories due

to the regularising influence of the large momentum component and because any di-

rection alterations introduced by their personal and global best positions will be small,

since the acceleration coefficients are small.

If the inertia weight is low and the acceleration coefficients are high, then the particle

is more likely to divert its course if its attractors are updated. If the location of the

particle’s attractors changes drastically, from one side of the search space to the other,

this may lead to the particle taking huge steps, causing velocity explosion. If the inertia

weight is high and the acceleration coefficients are low, then the pull of a particle’s

attractors will be exerted more gradually, preventing the particle from oscillating between

the extremes of the search space due to updating attractors.

Figure 5.11 shows the score of a swarm with a given γ and w on the 1000 dimensional

problem suites. The score of a configuration was calculated as described in section 4.2.1

using the swarm’s best fitness achieved throughout the search. The color of a block

shows its score, with lighter indicating a better score. Comparisons were done across

all combinations of γ and w, so that the overall best combinations can be determined.

Figure 5.12 visualizes the performance of all the c-w combinations. For every parameter

configuration, the corresponding score of the configuration is reflected in the color of the

data point, where pink is the best possible score and blue is the worst score.

Chapter 5. Variance of Particle Positions 65

Figure 5.3: Average velocity magnitude for

w = 0.95 on F7 with n = 1000

Figure 5.4: Average velocity magnitude for

w = 0.75 on F7 with n = 1000

Figure 5.5: Average velocity magnitude for

w = 0.55 on F7 with n = 1000

Figure 5.6: Average velocity magnitude for

w = 0.35 on F7 with n = 1000

Figure 5.7: Average velocity magni-

tude for w = 0.15 on F7 with n = 1000

Chapter 5. Variance of Particle Positions 66

Figure 5.8: Average velocity magnitude for γ = 0.5 on F2 with n = 1000

Figure 5.9: Average velocity magnitude for γ = 0.75 on F2 with n = 1000

Figure 5.10: Average velocity magnitude for γ = 1.0 on F2 with n = 1000

Chapter 5. Variance of Particle Positions 67

Table 5.2: Coefficient values for best-performing combinations

γ c w Score

0.5 0.2786 0.95 162

0.5 0.5182 0.9 159

1.0 0.4274 0.95 156

0.75 0.3754 0.95 153

0.75 0.6817 0.9 150

Table 5.3: Coefficient values for worst-performing combinations

γ c w Score

1.0 0.00 1.0 23

0.5 1.575 0.4 25

1.0 1.8462 0.5 25

0.5 1.2833 0.65 26

1.0 1.5592 0.7 28

The w, c and score of the five best combinations are given in table 5.2. In general,

severe restrictions to the standard deviation (i.e. lower γ) and high inertia weights

performed the best. Values for w below 0.75 generally did not perform well in comparison

to the others. The best performing swarms varied across all three chosen γ, but all

swarms had high inertia weights and relatively low acceleration coefficients.

Relying on inertia weight rather than immediately utilizing information regarding

newly found good positions does not seem like exploitative behaviour in the sense that

the particle is emulating the success of its attractors. However, it is a very granular form

of searching. There is less danger of the particle taking huge steps from one end of the

search space (due to the particle’s attractors being updated) because the influence of

the social and cognitive components is small. Instead, the particle’s trajectory may be

pulled towards the updated attractors gradually, without fear of velocity explosion (as

discussed previously, based on figures 5.8 to 5.10).

The w, c and score of the five worst combinations are given in table 5.3. The worst

performing swarms were either γ = 1 or γ = 0.5. The worst configuration used only

Chapter 5. Variance of Particle Positions 68

inertia and had no social or cognitive component whatsoever. It is not surprising that

the swarm did not perform well, since the particles could not incorporate any additional

information into their search direction. The search will devolve into sampling a num-

ber of points along a line, where the line’s direction was determined by the randomly

initialised personal and global best positions. The other configurations that scored in

the bottom five all had large acceleration coefficients and medium-range inertia weights.

Disconcertingly, some of these values were not far away from the rule of thumb “good”

parameters.

Simply restricting the standard deviation is thus not enough to ensure good perfor-

mance: some of the worst-performers had severely restricted standard deviations. The

swarm’s performance is also dependent on the chosen values for w and c. This is not

unexpected: just because a swarm’s movement is restricted to be within the search space

does not guarantee that the swarm will find a good solution within the search space.

Figure 5.11: Performance of swarm configuration produced by restricting standard deviation

of positions

Figure 5.13 shows the typical diversity profiles of the five best-performing configu-

rations. In general, the configurations with better scores exhibited lower diversities. It

Chapter 5. Variance of Particle Positions 69

Figure 5.12: Score of acceleration coefficients and inertia weights produced by restricting

standard deviation of positions

is interesting to note that, although the chosen value for w and c plays a larger role in

determining the swarm’s behaviour, the role of γ is still visible here, even when com-

paring across different inertia weights: the swarms for which γ = 1 showed increasing

diversity, in comparison to the configurations for which γ < 1, where the swarm diversity

decreased or, at least, did not increase after the initial spike.

In general, larger γ values exhibited higher diversities and more dimensions out of

bounds (see figures 5.13 and 5.14), although large values for c also played a role. For

example, when γ = 1 and c = 0.4274, the diversity was lower than for γ = 0.75 and

c = 0.6817. When c is larger, the local and global attractors exert more influence over

the particle trajectories, allowing the particles to be diverted towards updated attractors

and increasing the swarm’s diversity. Usually, none of the configurations’ diversities went

to zero, indicating that the particles did converge in the vicinity of a single point, even

for the configurations with very low acceleration coefficients.

From figures 5.11 and 5.12, there appear to be three points with low inertia weights

and high acceleration coefficients that also perform well (circled in red on figure 5.12).

However, further investigation yielded nothing interesting about these configurations. In

general, the swarms were out of bounds for almost the entire search and their personal

Chapter 5. Variance of Particle Positions 70

Figure 5.13: Swarm diversity on F18 with

n = 1000 (5 best configurations)

Figure 5.14: Average number of dimensions

out of bounds on F18 with n = 1000 (5 best

configurations)

Figure 5.15: Swarm diversity of outlier

configurations on F9 with n=1000

Figure 5.16: Swarm diversity of outlier config-

urations and surrounding configurations on F9

with n=1000

best positions were almost never updated. The behaviour of these three points did not

seem very different from their surrounding neighbours, as can be seen in figures 5.15

and 5.16. Figure 5.15 plots the diversities of the three outlier points and figure 5.16

Chapter 5. Variance of Particle Positions 71

includes the diversities of the outlier’s surrounding neighbours for comparison. Since the

calculated scores are relative, it may simply be that these points scored slightly higher

than the other parameter configurations in the same vicinity, but their performance was

still poor.

5.2.4 Summary

Particle movement can successfully be restricted by choosing an inertia weight and ac-

celeration coefficients to reduce the variance of particle positions. For a given inertia

weight, decreasing γ caused the swarm to exhibit lower velocity magnitudes, thereby

reducing the step sizes of the particles and encouraging a more granular search.

For a fixed γ, increasing the inertia weight caused the swarm’s average velocity mag-

nitude to decrease and vice versa. High inertia weights regularise the particle’s movement

because the particle is less likely to divert its course rapidly if the positions of its at-

tractors changes. Thus, if the particle’s attractors change drastically from one iteration

to the next, a momentum-focused particle will be less prone to oscillation and velocity

explosion than a particle that has high acceleration components.

It was found that high inertia weights and low acceleration coefficients perform the

best in high dimensional spaces. Although such configurations are not “highly exploita-

tive”, such configurations are restrictive because particle trajectories can only change

gradually (due to the low weighting of their social and cognitive components relative to

their momentum). Thus, granular searching and smooth trajectories appear to be the

key aspects to searching successfully in high dimensions.

The analysis performed in this section was based on empirical observations regarding

why particles roam. The section that follows makes use of existing literature regarding

the swarm’s movement patterns to provide additional insight into the behaviour of PSO

in high dimensional spaces.

5.3 Frequency and Variance of Particle Positions

The value of the coefficients w, c1 and c2 play a large role in the search behaviour of

the swarm and directly influences the patterns of movement exhibited by the particles

Chapter 5. Variance of Particle Positions 72

[76, 7]. Trelea [76] categorized the movement patterns into four groups:

1. non-oscillatory - the particle’s position does not oscillate throughout the search,

2. harmonic - the particle’s position oscillates smoothly in a wave-like motion,

3. zigzagging - the particle’s position oscillates significantly from one iteration to the

next, and

4. harmonic-zigzagging - the particle’s position displays a combination of harmonic

and zigzagging motion.

Trelea [76] also divided the convergence region (for convergence in terms of the expec-

tation of particle positions) into sub-regions, depending on what type of behaviour is

brought about by the parameters w, c1 and c2 in those regions.

The movement pattern exhibited by a swarm may be characterized in terms of its

range of movement and the smoothness of its particles’ trajectories. Particle trajecto-

ries may be smooth (with positions strongly positively correlated between iterations) or

oscillatory (with positions strongly negatively correlated between iterations). Particle

trajectories can also exhibit various degrees of chaos, when subsequent positions are only

weakly correlated or are independent.

This section examines different movement patterns and identifies behaviours that

perform well in high dimensional spaces. The section is also intended to provide further

insight into the findings from the previous section. The inertia weights and acceler-

ation coefficients that performed well previously may correspond to certain classes of

movement patterns, making it easier to interpret the swarm’s behaviour. Section 5.3.1

introduces the concepts of the base frequency and range of movement of particle po-

sitions and discusses their influence on the swarm’s movement patterns. Section 5.3.2

describes the settings of the experiment, which examines the influence of the base fre-

quency and range of movement on the swarm’s behaviour in high dimensional spaces.

Lastly, section 5.3.3 examines the results of the empirical experiment and determines

what swarm configurations and corresponding movement patterns are optimal in high

dimensional spaces in terms of performance.

Chapter 5. Variance of Particle Positions 73

5.3.1 Base Frequency and Range of Movement

A particle’s trajectory may be characterized in terms of the particle’s range of movement

and its base frequency. The base frequency of a particle, denoted by F , is defined to

be the largest amplitude among the Fourier series coefficients of the particle’s positions

throughout the search [7]. The base frequency influences the oscillatory behaviour exhib-

ited by a particle. Particles with small values for F typically exhibit smooth trajectories,

while large F -values are prone to more oscillations with large steps between positions.

Range of movement refers to the size of the hyper-volume bounded by all the particles’

positions from the start to the end of the search. The range of movement is characterized

by the variance of a particle’s position, denoted by σ2 where σ is defined as in equation

(5.5). The coefficient Vc is independent of the global and local best positions, and

characterizes the swarm’s ability to explore.

For a given F and Vc, corresponding velocity update coefficients, w, c1 and c2 can be

calculated as described by [7] and the previous section. If the velocity update coefficients

are assumed to be constant and c1 = c2 = c and w > 0, then the simultaneous equations

(5.27) and (5.28) are sufficient to calculate the corresponding velocity update coefficients:

c = 1 + w − 2cos(2πF)
√
w (5.27)

=
−48Vcw

2 + 48Vc
28Vc + w − 20Vcw + 1

(5.28)

Equations (5.27) and (5.28) allow the practitioner to choose a pattern of movement

for particle trajectories that is most suited to the problem and to calculate values for

w, c1 and c2 that bring about the desired behaviour.

The base frequency, F should be in the range [0, 0.5] where F = 0 implies that the

particle’s position does not oscillate at all. On the other hand, F = 0.5 means that

the particle’s position will oscillate with every iteration. Bonyadi and Michalewicz [7]

examined the relationship between the base frequency and the correlation of particle

positions. Figure 5.17 from [7] shows the correlation measure as a function of the base

frequency. Each point is the correlation for a given frequency averaged across different

variance values, with bars indicating the standard deviation. Bonyadi and Michalewicz

observed that positions are positively correlated when F < 0.25, so the particle moves

Chapter 5. Variance of Particle Positions 74

smoothly, with high dependence between subsequent positions. When F > 0.25, particle

positions are negatively correlated implying no dependence between subsequent posi-

tions. When F is near 0.25, the correlation between particle positions is close to zero,

so particle movement may be chaotic.

Figure 5.17: Relationship between base frequency and correlation of particle positions

The variance of movement, Vc, can be used as a measure a particle’s search range. Its

value can be any value larger than zero. However, if the value of Vc is very small, then the

particle is not guaranteed to sample positions outside the boundaries [min{y, ŷ},max{y, ŷ}],
because the expected value of the particle’s position is between its personal and global

best positions [78]. Thus, the particle’s exploration ability will be limited.

The following theorem from [7] (simplified for constant w, c1 and c2) provides a min-

imum bound for Vc to ensure that at least one of the particle’s positions is not on the

line between y and ŷ.

Theorem 5.1. Assume that y 6= ŷ. If

Vc >

(
max{c1, c2}
c1 + c2

)2

(5.29)

Chapter 5. Variance of Particle Positions 75

then for any distribution of xti generated by the velocity update equation (2.7), the number

of points generated by xti outside the interval

(E(xti)−min{y, ŷ},E(xti) + max{y, ŷ}) (5.30)

is non-zero.

Bonyadi and Michalewicz [7] suggested that large Vc-values are generally the better

choice, observing that small values of Vc prevent the particles from exploring the search

space sufficiently. In high dimensional spaces, literature and the findings of this thesis

suggest that search strategies which focus on local exploitation may be more effective

than searches that attempt exploration, due to the exponential growth of the search

space with dimensionality [82, 83]. Thus, smaller values for Vc may prove better than

large values, by curbing the particles’ exploration.

The sections that follow investigate the relationship between particle movement pat-

terns (brought about by different F and Vc values) and problem dimensionality.

5.3.2 Experimental Method

This section examines whether the movement patterns recommended by literature also

perform well in high dimensional spaces. As before, Bonyadi and Michalewicz [7] ob-

served that generally high values for Vc performed well by allowing particles to explore

the search space. It was also observed that generally smaller values for F perform better

than larger values, regardless of the choice of Vc. High Vc values imply a large range of

particle movement and focus on exploration. Small F -values are associated with smooth

particle trajectories with high correlation between subsequent positions.

The experiment was performed as in Chapter 3, but with varying values for c1, c2 and

w. The experiment tested different values for the frequency and variance of movement

with

F ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.25, 0.4, 0.45} (5.31)

Vc ∈ {0.1, 0.4, 1.6, 6.4, 25.6} (5.32)

which is similar to the values tested in [7]. For each (F, Vc) pair, the corresponding

values for the acceleration coefficients and inertia weight were calculated using equations

Chapter 5. Variance of Particle Positions 76

(5.27) and (5.28). Setting (5.27) = (5.28) and solving for w yields a polynomial of order

4, which was solved using Matlab’s roots function. The root with the smallest absolute

value and no imaginary component was chosen as the w value. This value was then

substituted into both equations (5.27) and (5.28) and the average of the two values was

used as c (to compensate for any error in w).

To ensure that the results remain interpretable and are not skewed by the errors

introduced when solving for w, the resulting w and c values were substituted back into

equations (5.27) and (5.28) to solve for the frequency and variance. The recalculated fre-

quency and variance, denoted by F ′ and V ′c , capture the error on w and c. The resulting

error between the desired frequency and variance (F , Vc), and the actual frequency and

variance (F ′,V ′c) can then be calculated. The error on the frequency, EF , was calculated

as

EF = |F − F ′| (5.33)

The frequency error was never larger than 0.005; that is, the error on the frequency was

never larger than 10% of the tested frequency increment of 0.05. The error in frequency

was thus deemed sufficiently negligible.

The relative error on the variance, EVc , was calculated using

EVc =
|Vc − V ′c |

Vc
(5.34)

so that the error is normalized according to the size of the variance, since the tested

variances had quite a large range. Figure 5.18 shows EVc for each F . Generally, the

relative error increased as the frequency increased gradually until F = 0.3, then decreased

again. For Vc = 0.1, the relative error became as high as 62%. The relative error of the

other variances were lower and never went higher than 16%. The results for the following

(Vc, F) pairs were deemed unacceptable due to high relative errors:

{(0.1, 0.25), (0.1, 0.3), (0.1, 0.35)} (5.35)

Although the use of base frequency and variance of movement may prove a useful tool in

examining the patterns of swarm behaviour, the error in calculating the corresponding

parameter values is problematic. Future work may include finding a different formula-

tion for these calculations that can be solved analytically or more readily by numerical

methods.

Chapter 5. Variance of Particle Positions 77

Figure 5.18: Relative error on variance across frequencies

5.3.3 Movement Patterns in High Dimensions

This section presents the results of the experiments described in the previous section.

Section 5.3.3.1 examines all the tested swarm configurations and determines which were

the best. The behaviour of the best swarm configurations are examined in detail and

possible reasons for their success are presented. Section 5.3.3.2 examines the influence

of variance on the swarm’s movement.

5.3.3.1 Optimal Frequency and Variance of Movement

This section determines the optimal combinations for F and Vc for both a low and a

high dimensional problem suite. From the frequency and variance values, it is possible

to determine what kind of movement patterns are exhibited by the swarms that perform

well. The section also shows that the optimal movement pattern for the swarm is different

for high and low dimensional spaces.

Figures 5.19 and 5.20 show the score of all the (F, Vc) pairs on 10 and 1000 dimensional

problem suites. The color of a block shows its score, with lighter indicating a better

score. Comparisons were done across all combinations of F and Vc, so that the overall

Chapter 5. Variance of Particle Positions 78

best combinations could be determined for each problem suite.

Figure 5.19: Optimal frequency-variance

combinations (n=10)

Figure 5.20: Optimal frequency-variance

combinations (n=1000)

Figure 5.21: Optimal frequency for given

variance (n=10)

Figure 5.22: Optimal frequency for given vari-

ance (n=10)

For the discussions that follow, recall that oscillatory behaviour due to negative

correlation between positions occurs for F ∈ [0.25, 5] whereas trajectories are smooth

with positive correlation between positions when F ∈ [0, 0.25). Chaotic behaviours

occurs near 0.25, where correlation between particle positions is near zero.

The frequency-range combinations that perform well are quite different on the low and

Chapter 5. Variance of Particle Positions 79

high dimensional suites. In low dimensions, the frequency F = 0.05 never performed well

and generally values F ∈ [0.1, 0.2] provided good performance. Thus, swarms exhibiting

smooth trajectories with some positive correlation between particle positions performed

well, though parameters causing very strong correlation between particle positions did

not perform well (the lowest F values did not perform as well as frequencies near 0.1−
0.15). Thus, some chaotic behaviour is beneficial to the swarm’s ability to find good

solutions. As variance increases, the performance of larger F -values improved, but never

overtook the smaller values. This indicates that, as the range of the swarm’s movement

increases, some chaotic and oscillatory behaviour is beneficial.

For high dimensional problems, the best performing combinations had low frequency

and low variance of movement. The swarms exhibiting oscillatory behaviour performed

much worse than smooth trajectories (F ≥ 25 performed badly in comparison with

F < 0.25). The variance had less of an effect on swarm performance, but there was still

a trend indicating that larger variance is detrimental to performance. Of the five best

configurations, four had the smallest possible variance of 0.1 and one had a variance of

0.4. All five of the best performing configurations had frequencies below 0.25, where par-

ticles have smooth trajectories. The frequency and variance as well as the corresponding

momentum and acceleration coefficients are given in table 5.4.

Thus particles with low range of movement and smooth trajectories showed the best

performance. Low F -values imply that the particles’ search was smooth and granular,

and that particle positions were highly correlated. Low Vc values imply that the particles

did not search in a very large range, thereby preventing the swarm from trying to explore

the entire search space. For the lowest possible variance of 0.1, slightly higher frequencies

(where position correlation is lower) performed better whereas for the other variances,

the lowest possible frequency performed the best. This indicates that, when the particles’

range of movement is sufficiently small, some chaos in movement may be beneficial; the

small movement range is sufficient to restrict particle movement and small chaotic steps

do not cause a velocity explosion. But as particle steps become larger, chaotic movement

is detrimental to swarm performance and instead, highly correlated particle positions are

required to prevent particles from roaming.

Observations regarding the good performance of smooth trajectories (and small fre-

Chapter 5. Variance of Particle Positions 80

quencies) agree with previous literature. The observed benefit of using small variance

differs from previous findings that were focused on low dimensional problems. However,

this is in line with the hypothesis that fine-grained searching within small areas of the

search space are the most effective in solving problems in high dimensions. Using small

variance to limit particle exploration and small frequencies to ensure smooth, granular

movement will bring about the desired behaviour for high dimensional spaces.

Four of the five top combinations had Vc = 0.1, which does not satisfy the relation

in equation (5.29): (
max{c1, c2}
c1 + c2

)2

=

(
c

2c

)2

=
1

4
> Vc = 0.1 (5.36)

Thus, there was no guarantee that the particles sampled any points outside the region

between their personal and global best positions. This does not imply that no points

outside this region were sampled, but it does point towards exploitative behaviour by

the particles that performed well.

Figures 5.21 and 5.22 show the optimal F -value for a given Vc. Comparisons were

thus done within each column (as opposed to over all the possible pairs, as done in figures

5.19 and 5.20). On the low dimensional suite, the optimal frequency was usually around

0.15, which produces smooth particle trajectories, but particle positions are not highly

correlated.

For the high dimensional case, the optimal frequency was almost always 0.05, the

smallest possible value. Similar to the low dimensional case, Vc = 0.1 was the exception.

In the high dimensional case, the best frequency for Vc = 0.1 was 0.15. For all values of

Vc, the optimal frequency was smaller on the high dimensional problems than it was on

the low dimensional problems. Thus, highly correlated particle positions and granular

searching behaviour is a requirement for good performance in high dimensional spaces.

Additionally, observe that, unlike the low dimensional case, none of the F -values that

induce oscillatory behaviour performed well in high dimensions. This further supports

the hypothesis that fine-grained exploitation performs better than exploration-focused

behaviour in high dimensional spaces.

Tables 5.4 and 5.5 show the acceleration coefficient and inertia weight corresponding

to the best and worst (F, Vc) combinations. In addition, figure 5.23 plots the c and

Chapter 5. Variance of Particle Positions 81

w values that correspond to the (F, Vc) combinations tested in the experiments. The

colour of each data point corresponds to its score in comparison to all the other swarm

configurations, where pink dots have the highest score and light blue dots have the lowest

score.

The best performing swarms generally had high momentum components and rel-

atively low acceleration coefficients. This corresponds to the findings in figure 5.12,

but the additional information provided by the corresponding base frequency and vari-

ance of movement has aided the discussion regarding the reasons why these swarms

performed well. Figure 5.23 shows no configurations that perform well in the region

c ∈ (0.58, 1.88), w ∈ (0.15, 0.3), which supports the conclusion that the three outliers in

figure 5.12 are not significantly better than their neighbours.

Table 5.4: Coefficient values for best-performing combinations

Vc F c w Score Reference

0.1 0.15 0.74883 0.70521 132 Config A

0.1 0.05 0.099381 0.96941 129 Config B

0.4 0.05 0.097915 0.98631 126 Config C

0.1 0.1 0.37326 0.87483 123 Config D

0.1 0.2 1.0965 0.40746 120 Config E

Table 5.5: Coefficient values for worst-performing combinations

Vc F c w Score

0.4 0.25 1.5763 0.55579 21

1.6 0.2 1.2588 0.81365 23

1.6 0.4 1.8091 0.15443 24

6.4 0.25 1.7052 0.70415 25

6.4 0.3 1.9633 0.51717 25

Figures 5.24 and 5.25 show typical diversity profiles of the five best performing swarm

configurations. The configuration with the largest variance consistently exhibited higher

diversity than the other configuration, which is expected given that the swarm has larger

Chapter 5. Variance of Particle Positions 82

Figure 5.23: Score of acceleration coefficients and inertia weights produced by frequency and

variance

range of movement. The configuration with Vc = 0.4 never converged to a point, i.e. the

swarm’s diversity never went to zero. In contrast, all four of the other top performing

swarms (all with Vc = 0.1) converged very close to a single point. The diversity of

the best performing strategy, Vc = 0.1 and F = 0.15 decreased more slowly than the

other strategies with Vc = 0.1, while the rest converged prematurely within the first

500 iterations. The c and w of the best configuration were nearly equal, indicating that

the particles struck a nearly equal balance between restricting movement to the current

trajectory and moving in the direction of good solutions.

According to theory, the correlation between particle positions begins to weaken

Chapter 5. Variance of Particle Positions 83

when F = 0.15 as for configuration A. This concurs with the observed behaviour, since

configuration A’s diversity is higher than for F = 0.05 and F = 0.1, indicating more

exploration and more chaotic particle movement. However, it would then be expected

that configuration E’s diversity would be even higher, since its particles’ movement

should be even more chaotic. However, this was not the case. Configuration E had

higher acceleration components and a lower inertia weight than the other configurations

that performed well (c = 1.0965 and w = 0.40746). The base frequency parameter thus

fails to account for the behaviour of all the swarm configurations.

Figures 5.26 and 5.27 both plot the average number of personal best updates per

iteration for configurations A to E. This measure indicates whether the swarm is ac-

tively searching and improving its solutions or the swarm has stagnated. These figures

varied a lot between benchmark functions, which is to be expected since the measure is

highly problem dependent. Generally, configuration A consistently showed improvements

throughout the search, with the number of personal best updates decreasing towards the

end of the search. Such behaviour adheres to the usual recipe of first exploring and

then exploiting, and fits well with the swarm’s diversity profiles (though it should be

noted that exploration takes place in a limited capacity, due to the inertia weight and

acceleration coefficients being nearly equal).

Although configuration B seemed to have converged according to the diversity plot,

the swarm was usually actively improving for most of the search, often displaying higher

update counts than configuration A, especially later in the search. The swarm’s personal

best update counts increased just before its diversity dropped, implying that the swarm

was exhibiting exploitative behaviour.

Configuration C usually exhibited improvement throughout the search, but with the

update counts increasing as the search progressed, showing that the swarm was still

exploring and moving towards more fruitful regions (where the other swarms were al-

ready exhibiting exploitative behaiour). Configuration C’s low acceleration coefficients

may explain why the swarm required so many iterations to begin exploiting: since the

influence of a particle’s attractors was so low, it may take many iterations for a particle’s

trajectory to move in the direction of its updated attractors.

Configuration D’s behaviour varied, sometimes peaking early in the search and then

Chapter 5. Variance of Particle Positions 84

Figure 5.24: Swarm diversity on F7 with

n = 1000 (best 5 configurations)

Figure 5.25: Swarm diversity on F11 with n =

1000 (best 5 configurations)

Figure 5.26: Average number of personal

best updates on F7 with n = 1000 (best 5

configurations)

Figure 5.27: Average number of personal best

updates on F11 with n = 1000 (best 5 configu-

rations)

converging prematurely. Other times, configuration D continued to improve throughout

the search with update counts just below that of configuration B. Lastly, configuration

E’s update counts consistently peaked within the first 500 iterations and then went

almost to zero, indicating premature convergence.

Of the five most successful strategies, most prevented particles from roaming outside

Chapter 5. Variance of Particle Positions 85

the search space. Configuration C, with the largest variance, occasionally failed to return

more than 10% of the swarm’s particles to the search space (see figure 5.28). But in

general, almost all of the particles returned to the search space throughout the search

(see figures 5.29 and 5.30).

From table 5.4, it is apparent that particle movement can be restricted successfully

by having high inertia weights and low acceleration coefficients. Configuration E is the

exception, with a low inertia weight and a relatively large acceleration coefficient (though

still smaller than the values that are generally accepted as “rule of thumb”). It should be

noted that configuration E exhibited worse performance than configuration A to D and

was also more prone to premature convergence. It may be that the swarm moved too

rapidly towards its attractors, not allowing for sufficient exploration on the way. This

prevented the particles from being pulled to and fro between oscillating attractors (and

thus preventing the velocity explosion), but it also caused premature convergence.

Based on the number of high-inertia configurations to low-inertia configurations that

performed well, it may be easier to find a configuration with a high inertia weight that

performs well. The observation that configurations with high inertia weights and low

acceleration components perform well concurs with the observations of section 5.2. In-

corporating the information provided by the corresponding base frequency and variance

values, it can be concluded that swarms with low variance and smooth trajectories per-

form the best in high dimensional spaces.

5.3.3.2 Analysis of Variance

The diversity profiles of each swarm configuration was very similar across all benchmark

functions. Thus, the analysis below for F17 (a randomly selected function) is applicable

to the rest of the benchmark suite.

Figures 5.31 to 5.35 plot swarm diversity for a fixed variance as the base frequency

varies. Observe that for Vc = 0.1, the configurations with F ≥ 0.25 exhibit high diversity

which increases with the frequency. This is not unexpected since F ≥ 0.25 induces

oscillation. The configurations with F ≤ 0.25 exhibited low diversities that went to

zero.

Compare this to figure 5.32 for Vc = 0.4. The configurations with F ≤ 0.3 exhibit

Chapter 5. Variance of Particle Positions 86

Figure 5.28: Fraction of swarm out of

bounds on F8 with n = 1000 (best 5 con-

figurations)

Figure 5.29: Fraction of of swarm out of

bounds on F7 with n = 1000 (best 5 config-

urations)

Figure 5.30: Fraction of of swarm out of bounds on F11

with n = 1000 (best 5 configurations)

low diversities, whereas the configurations with F > 0.3 have high diversities. Thus,

diversity increases with frequency, until F = 0.2, then diversity decreases until F = 0.3.

After this, the diversity suddenly becomes high and again increases with frequency.

Chapter 5. Variance of Particle Positions 87

This behaviour is not predicted by the theory or by previous studies. Further, stronger

theoretical investigation may be required to explain the observed relationship between

the base frequency and swarm diversity.

Figure 5.33 plots the diversity for Vc = 1.6. Even fewer configurations exhibit high

diversities. As for Vc = 0.4, the swarm diversity increases with frequency until F = 0.2,

i.e. once again, the “turning point” is at F = 0.2. After that, increasing frequency

leads to decreasing diversities, until F = 0.4. For F = 0.45, the swarm diversity is

considerably higher than for the other configurations.

This behaviour continues as Vc increases (as shown for Vc = 6.4 in figure 5.34 and

Vc = 25.6 in figure 5.35), until eventually none of the frequencies exhibit high diversities.

For these configurations, diversity increases with frequency until F = 0.2, then decreases

as the frequency increases.

It is unexpected that the swarm diversity should decrease for larger frequencies and

that this behaviour is exacerbated as the variance increases. The opposite makes more

intuitive sense: as the swarm’s range of movement increases and particles exhibit more

oscillatory behaviour, the swarm diversity should become larger.

Since there is no body of theory that provides much information regarding the

swarm’s distribution throughout the search, a plausible but unproven explanation is

provided here. It may be that, in general, the particles are normally distributed. How-

ever, as the variance increases, the distribution becomes wider but also distorted, so

that there is a higher probability of particles being at the very centre of the distribution.

Thus, for small variances, the overwhelming shape of the distribution is still approxi-

mately normal and the diversity increases as the oscillatory behaviour of the particles

increases (i.e. as F increases). However, when the variance increases, the distribution

becomes distorted and the particles oscillate between two positions that are both near

the center (explaining why increasing the frequency decreases the swarm’s diversity). If

the swarm’s oscillatory behaviour is sufficiently large and the variance is not very high,

then particles manage to oscillate between distant positions, again causing the diversity

to be large (as was the case for F ∈ [0.35, 0.45] when Vc = 0.4). But as the variance be-

comes very large (Vc = 6.4 or Vc = 25.6), the shape of the distribution is overwhelmingly

distorted and the diversity decreases as oscillatory behaviour increases. Although the

Chapter 5. Variance of Particle Positions 88

Figure 5.31: Swarm diversity when Vc =

0.1 on F17 with n = 1000

Figure 5.32: Swarm diversity when Vc = 0.4

on F17 with n = 1000

Figure 5.33: Swarm diversity when Vc =

1.6 on F17 with n = 1000

Figure 5.34: Swarm diversity when Vc = 6.4

on F17 with n = 1000

Figure 5.35: Swarm diversity when Vc = 25.6 on F17

with n = 1000

Chapter 5. Variance of Particle Positions 89

discussion above explains the observed diversity profiles, further theoretical investigation

is required.

5.4 Summary

This chapter examined the use of the inertia weight and acceleration coefficients to con-

trol the variance of particle positions. Restricting the variance by a fraction successfully

reduced the swarm’s velocity. As the variance was restricted more severely, the aver-

age velocity magnitude of the swarm decreased, as desired. However, simply decreasing

the variance of positions is not sufficient to guarantee good performance. Even swarms

that were restricted to the same variance on position movements exhibited very differ-

ent behaviour. Unsurprisingly, the chosen values for the inertia weight and acceleration

coefficients were also an important factor.

It was found that swarms with high inertia weights and low acceleration coefficients

performed the best in high dimensions. High inertia weights have the effect of regular-

ising a particle’s trajectory, making it smooth and granular. The particle is less likely

to rapidly divert its direction when its attractors are updated, since the influence of its

momentum is stronger than the influence of its attractors. Thus, if the particle’s at-

tractors change drastically from one iteration to the next, a momentum-focused particle

will be less prone to oscillation and velocity explosion than a particle that has high ac-

celeration coefficients. Configurations with higher inertia weights consistently exhibited

lower velocities than configurations that had high acceleration components (for a fixed

variance).

Although such configurations are not exploitative as such, their movement is re-

stricted because particle trajectories can only change gradually (due to the low weighting

of their social and cognitive components relative to their momentum). Thus, granular

searching and smooth trajectories appear to be the key aspects to searching successfully

in high dimensions.

The effect of different movement patterns was also studied. Inertia weights and

acceleration coefficients that influence the swarm’s range of movement and characteristics

of the particles’ trajectories (such as smoothness, oscillation and degree of correlation

Chapter 5. Variance of Particle Positions 90

between consequent positions) were tested on high dimensional problems.

It was found that small base frequencies and low variance were key factors in the

swarms that performed well. Small base frequencies are associated with smooth, granu-

lar particle trajectories with weak to strong correlation between particle positions. Low

variance is associated with restricted range of movement. These experiments also con-

firmed that swarms with high inertia weights and low acceleration coefficients generally

perform better than those with low inertia weights and high acceleration coefficients.

Chapter 6

Grouping Stochastic Scalars

This chapter examines the effect of the stochastic scaling components on the swarm’s

ability to explore and exploit the search space. The chapter begins by explaining the

difference between scaling the social and cognitive components using component-wise

multiplication of random vectors and using random scalars in section 6.1. Next, section

6.2 proposes a new movement strategy that changes the way in which random vectors are

used to scale the global and local search information by grouping problem dimensions

and applying the same random scaling values to components in the same group. Section

6.3 tests the grouping strategies against a standard inertia weight PSO and compares

the behaviours brought about by each grouping strategy. Section 6.4 summarizes the

observed results and ties it into the overarching discussion of PSO’s behaviour in high

dimensional search spaces.

6.1 Stochastic Scaling: Vector or Scalar

This section explains the difference between scaling the social and cognitive compo-

nents using component-wise multiplication of random vectors and using random scalars.

Section 6.1.1 provides an in-depth discussion and a theoretical proof regarding the lim-

itations imposed on the swarm’s movement when using r1 and r2 as random scalars.

Section 6.1.2 empirically determines the extent to which the swarm is able to escape

its initial subspace when using component-wise random scaling (where r1 and r2 are

91

Chapter 6. Grouping Stochastic Scalars 92

vectors).

6.1.1 Scaling with Scalars

Consider Equation (2.7), the velocity update equation from Chapter 2. Suppose that

instead of r1 and r2 being random vectors, r1 and r2 are random scalars sampled from a

uniform distribution with range (0, 1) as shown below:

vt+1
i = wvti + c1r1(yti − xti) + c2r2(ŷt − xti) (6.1)

The right hand side of Equation (6.1) can be re-written in the standard form of a

linear combination, as illustrated below:

RHS = a1z1 + a2z2 + a3z3

with a1 = w and z1 = vti

a2 = c1r1 and z2 = (yti − xti)

a3 = c2r2 and z3 = (ŷt − xti)

Thus, the velocity of any particle i at iteration t + 1 is simply a linear combination

of its previous velocity, its social component and its cognitive component. In turn, the

social and cognitive components can be expressed as a linear combination of the particle’s

position, its personal best position, and the global best position. A particle’s velocity can

thus be written as a linear combination of its previous velocity, personal best position,

current position, and the global best position, as below:

RHS = b1z̃1 + b2z̃2 + b3z̃3 + b4z̃4

with b1 = w and z̃1 = vti

b2 = c1r1 and z̃2 = yti

b3 = c2r2 and z̃3 = ŷt

b4 = −(c1r1 + c2r2) and z̃4 = xti

Chapter 6. Grouping Stochastic Scalars 93

The position attained by particle i is thus a linear combination of its previous position,

previous velocity, personal best position, and the global best position as shown below:

xt+1
i = xti + vt+1

i

= xti + b1z̃1 + b2z̃2 + b3z̃3 + b4z̃4

= b1z̃1 + b2z̃2 + b3z̃3 + (b4 + 1)z̃4

Any position that can be attained by particle i depends on these four vectors. If

the swarm’s velocity and position initialisation strategy is known, then it is possible to

express exactly which values the particles’ positions may attain, i.e. where the particles

can and can not go within the search space. Particularly, the region of the search space

that can be reached by the particles is contained in the span of their initial velocities,

positions, and personal best positions. This has been proved in literature [55], but a

brief proof by induction is also provided here. For completeness, linear dependence,

linear independence and the span of a set of vectors are defined below.

Definition 6.1. A set of vectors I = {z1, z2, ..., zM} ⊂ Rn is linearly dependent if there

exists a finite number of distinct vectors, z1, z2, ...zK ∈ I, and scalars, a1, a2, ..., aK ∈ R,

not all zero, such that

a1z1 + a2z2 + ...+ aKzK = 0 (6.2)

Since at least one scalar is non-zero, say a1 6= 0, the vector z1 can be expressed as a

linear combination of the other vectors:

z1 = −a2

a1

z2 − ...−
aK
a1

zK (6.3)

Thus, the set I is linearly dependent if and only if at least one element in I can be

written as a linear combination of the other elements in I.

Definition 6.2. A set of vectors I = {z1, z2, ..., zM} ⊂ Rn is linearly independent if the

equation,

a1z1 + a2z2 + ...+ aMzM = 0 (6.4)

can only be satisfied by a1 = a2 = ... = aM = 0. Thus no element in I can be written as

a linear combination of other elements from I.

Chapter 6. Grouping Stochastic Scalars 94

Definition 6.3. Let I be a non-empty set of vectors from Rn (i.e. ∅ 6= I ⊂ Rn). Then

the span I is the smallest subspace W ⊆ Rn that contains I. Thus span(I) = W . The

subspace W consists of all linear combinations of elements of I, given by

span(I) =

{ |I|∑
k=1

akzk

∣∣∣∣ zk ∈ I, ak ∈ R, k ∈ N
}

(6.5)

where |.| denotes set cardinality.

Definition 6.4. A non-empty set of vectors, I = {z1, ..., zM}, is a spanning set for

a subspace W ⊆ Rn if and only if any element in W can be expressed as a linear

combination of elements in I. In other words, for any z ∈ W , there exist scalars

a1, a2, ..., aM with at least one ai 6= 0 such that

z = a1z1 + a2z2 + ...+ aMzM (6.6)

Definition 6.5. A basis for a subspace S of Rn is a set of vectors B in S such that

• B is a spanning set for S, and

• B is linearly independent.

Armed with these definitions, it is proven below that if r1 and r2 are scalars, then the

positions of any particle at any iteration of the search space must be a linear combination

of their initial positions, best positions, and velocities. The theorem below is for a lBest

PSO, since a gBest PSO is simply a local best PSO where the neighbourhood is the

entire swarm.

Theorem 6.1. At any iteration t ≥ 0, the position xti of any particle i is in the span of

I where I = {x0
1,y

0
1,v

0
1, ...,x

0
ns ,y

0
ns ,v

0
ns}.

Proof. Suppose that particle velocities, positions and personal best positions are ini-

tialised randomly within the search space. Let the set of all these initial points be given

by I = {x0
1,y

0
1,v

0
1, ...,x

0
ns ,y

0
ns ,v

0
ns}. Assume that all the elements in I are unique and

nonzero. These are reasonable assumptions: the probability of obtaining a zero vector

from uniform initialisation is zero, since the probability of a continuous random variable

Chapter 6. Grouping Stochastic Scalars 95

being a particular constant is zero. Similarly, the probability of sampling two equal

vectors is zero because the set of such points have zero measure.

Since the position of any particle at t = 0 is in I by the definition of I, the position

of any particle is also in the span of I. Thus the hypothesis holds for the case t = 0.

At iteration t = 1, the position of any particle i is given by

x1
i = x0

i + v1
i (6.7)

Since x0
i ∈ I, it is only necessary to prove that v1

i ∈ span(I) for x1
i to be in the span of

I. According to the velocity update equation,

v1
i = wv0

i + c1r1(y0
i − x0

i) + c2r2(ŷ0
i − x0

i) (6.8)

= wv0
i + c1r1y

0
i + c2r2ŷ

0
i − (r1c1 + r2c2)x0

i (6.9)

By definition, v0
i ,y

0
i ,x

0
i ∈ I. Additionally, the neighbourhood best position is chosen

from among the personal best positions of the other particles in the neighbourhood,

so that ŷ0
i ∈ I. Thus, if particle i is not the neighbourhood best, then v1

i is a linear

combination of four distinct elements from I. If particle i is the neighbourhood best,

then y0
i = ŷ0

i and v1
i is a linear combination of three distinct elements from I. In either

case, v1
i ∈ span(I) by definition 6.3. The fact that v1

i ∈ span(I) will be referred to as

(*). Therefore, since x1
i is the sum of two elements in span(I), x1

i is in the span of I.

Since this is true for any particle i, all the particles’ positions at iteration i must be in

the span of I - this fact will be referred to as (**).

At iteration t = 2, the position of any particle i is given by

x2
i = x1

i + v2
i (6.10)

where x1
i ∈ span(I) as proved for the case when t = 1. It thus remains to prove that v2

i

is in the span of I:

v2
i = wv1

i + c1r1(y1
i − x1

i) + c2r2(ŷ1
i − x1

i) (6.11)

= wv1
i + c1r1y

1
i + c2r2ŷ

1
i − (r1c1 + r2c2)x1

i (6.12)

where v1
i ∈ span(I) by (*) and x1

i ∈ span(I) by (**). It is thus only necessary to prove

that y1
i and ŷ1

i are in the span of I.

Chapter 6. Grouping Stochastic Scalars 96

Between iterations 0 and 1, the personal best position either updated or did not

update. If the personal best position did not update, then y1
i = y0

i ∈ I. If the personal

best position did update, then y1
i = x1

i , since that is the only other position that the

particle has encountered. By (**), x1
i ∈ span(I). Thus, whether the personal best

position updated or not, y1
i ∈ span(I).

Similarly, the neighbourhood best position may or may not have updated. If it did

not update, then ŷ1
i = ŷ0

i ∈ I. If the neighbourhood best position did update, then there

must be a particle j in i’s neighbourhood so that ŷ1
i = x1

j . But by (**), any particle’s

position at iteration t = 1 was in the span of I. Thus ŷ1
i must be in the span of I.

Therefore, v2
i is a linear combination of elements in the span of I, so v2

i must be in

the span of I.

Suppose for all iterations s ≤ t, that the positions of all the particles are in the span

of I. It will now be proved that the positions of all the particles must still be in the

span of I at iteration t+ 1. The argument is similar to the case for t = 2. The position

of any particle i is given by the position update equation:

xt+1
i = xti + vt+1

i (6.13)

where xti ∈ span(I) by virtue of the inductive assumption. It thus remains to prove that

vt+1
i is in the span of I:

vt+1
i = wvti + c1r1(yti − xti) + c2r2(ŷti − xti) (6.14)

= wvti + c1r1y
t
i + c2r2ŷ

t
i − (r1c1 + r2c2)xti (6.15)

where xti ∈ span(I) by the inductive assumption. It thus remains to prove that vti, yti

and ŷti are in the span of I.

According to the position update equation,

xti = xt−1
i + vti (6.16)

=⇒ vti = xti − xt−1
i (6.17)

In other words, vti is a linear combination of xti and xt−1
i , both of which are elements

in the span of I by the inductive assumption. Thus, vti is also in the span of I. The

personal best position of any particle i can only be equal to one of the particle’s previous

Chapter 6. Grouping Stochastic Scalars 97

positions. But, by the inductive assumption, all the particle’s previous positions were

in the span of I. Thus, yti must be in the span of I. Similarly, the neighbourhood best

position must be equal to a previous position of some particle in i’s neighbourhood, all

of which are in the span of I by the inductive assumption. Therefore, the velocity and

also the position of particle i at iteration t+ 1 must be in span(I).

Theorem 6.1 implies that, when r1 and r2 are random scalar values, the positions

of the particles are limited to be in the span of their initial velocities, positions and

personal best positions. If either of the assumptions on I does not hold (e.g. some

vectors are multiples of another or some are zero), then the positions of the particles are

limited further to being linear combinations of all non-zero, linearly independent initial

velocities, positions and personal best positions. The question arises whether any point

in the search space can be expressed in terms of such linear combinations.

If I constitutes a spanning set for the search space (i.e. the span of I is larger than

the search space or equal to), then any point in the search space can theoretically be

reached by the particles. However, if I is not a spanning set of the search space (i.e. the

span of I is a subspace within the search space), then the particles can not reach every

position in the search space. If the global optimum happens to be outside the span of

I, then the particles will never be able to find it. Since initial particle positions and

personal best positions are typically generated randomly, this is a realistic scenario in

high dimensional spaces.

It is a fundamental result of linear algebra that any two bases for some subspace of

Rn must contain the same number of vectors [58]. Observe that if the search space, S,

is a subset of Rn, then the basic unit vectors

e1, e2, ..., en =< 1, 0, 0, ..., 0 >T , < 0, 1, 0, 0, ... >T , ..., < 0, ..., 0, 1 >T (6.18)

form a basis for S. Thus, for I to span S, it must contain at least n linearly independent

vectors. However, the search space S = [L,U]n does not constitute a subspace of Rn,

since it is not closed under addition and scalar multiplication. Theorem 6.4 proves the

required result for this special case. The proof requires the use of the fundamental

Chapter 6. Grouping Stochastic Scalars 98

theorem of invertible matrices [58] (which is given below) and the result is given in

lemma 6.3.

Theorem 6.2 (Fundamental Theorem of Invertible Matrices). Let A be an n-by-m

matrix. Then the following statements are equivalent:

1. A is invertible

2. Ax = 0 has only the trivial solution

3. The column vectors of A are linearly independent

4. The column vectors of A span Rn

Lemma 6.3. Let S = [L,U]n. There exists a set Ẽ that forms a “basis” for S, in the

sense that Ẽ’s elements are linearly independent, any x ∈ S can be expressed as a linear

combination of elements in S and Ẽ ⊂ S.

Proof. Let the center of the search space be denoted by

M =< m1,m2, ...,mn >
T=

〈
L+ U

2
,
L+ U

2
, ...,

L+ U

2

〉T
(6.19)

Since the search space is the same in every dimension, M =< m,m, ...,m >T where

m = L+U
2

.

Let Ẽ = {ẽ1, ẽ2, ..., ẽn} where

ẽ1 =< m+ 0.5m,m, ...,m >T

ẽ2 =< m,m+ 0.5m, ...,m >T (6.20)

...

ẽn =< m,m, ...,m+ 0.5m >T

so that for any ẽi, all coordinates except the i-th coordinate are equal to m. The i-th

coordinate will be equal to 1.5m. Clearly, Ẽ ⊂ S. Let A be the n by n matrix with

column vectors ẽ1, ẽ2, ..., ẽn.

We prove that Ax = 0 has only the trivial solution. Then, by theorem 6.2, it will

follow that:

Chapter 6. Grouping Stochastic Scalars 99

1. A’s column vectors are linearly independent. In other words, Ẽ is linearly inde-

pendent.

2. The column vectors of A span Rn, which means that E spans Rn. Since S ⊂ Rn,

any element in S can thus be expressed as a linear combination of elements from

E.

It will now be proved that Ax = 0 has only the trivial solution, thereby proving the

required properties of Ẽ. The system in Ax = 0 can be written as a system of linear

equations as illustrated below:

(m+ 0.5m)x1 + mx2 + ... + mxn = 0

mx1 + (m+ 0.5m)x2 + ... + mxn = 0

...

mx1 + mx2 + ... + (m+ 0.5m)xn = 0

(6.21)

were the j-th equation is formed from the j component of the system Ax = 0. In turn,

the system of linear equations can be represented in augmented matrix form as below:
1.5m m m ... m 0

m 1.5m m ... m 0

...

m m m ... 1.5m 0

 (6.22)

where the i-th column contains the coefficients of xi. The final column contains the right

hand side of all the equations in the linear system (in this case, the zero vector). The

augmented matrix is manipulated by means of matrix row operations, which take one of

the following forms:

1. Switch the i-th and j-th rows (denoted by Ri ↔ Rj, where Ri denotes the i-th

row).

2. Multiply the i-th row by c, a non-zero constant (denoted by Ri → cRi).

3. Add row j to row i (denoted by Ri → Ri +Rj).

Chapter 6. Grouping Stochastic Scalars 100

From these basic operations, more complex operations can be constructed such as sub-

tracting one row from another (Ri → Ri − Rj). For the sake of brevity, the notation

∀iRi → cRi denotes that for each row i, the row is multiplied by a constant c. Similarly,

∀iRi → Ri −Rj indicates that the j-th row is subtracted from each of the other rows in

turn. The system Ax = 0 will now be solved below.
1.5m m m ... m 0

m 1.5m m ... m 0

...

m m m ... 1.5m 0

∀iRi →
1

m
Ri

1.5 1 1 ... 1 0

1 1.5 1 ... 1 0

...

1 1 1 ... 1.5 0

∀iRi → Ri −Rn

0.5 0 0 ... −0.5 0

0 0.5 0 ... −0.5 0

...

1 1 1 ... 1.5 0

∀iRi → 2Ri

1 0 0 ... −1 0

0 1 0 ... −1 0

...

1 1 1 ... 1.5 0

Rn → Rn −R1 −R2 − ...−Rn−1

1 0 0 ... −1 0

0 1 0 ... −1 0

...

0 0 0 ... 1.5− (−1)(n− 1) 0

Therefore, xn(n+ 0.5) = 0. Since n ≥ 1, the equation can only have the trivial solution,

xn = 0. But then, for every i = 1, ..., n− 1,

xi − xn = 0

=⇒ xi − 0 = 0

=⇒ xi = 0 (6.23)

Therefore, Ax = 0 has only the trivial solution. The existence of the required set Ẽ is

thus proved.

Theorem 6.4. Suppose I contains m linearly independent vectors and S = [L,U]n. If

m < n then span(I) ∩ S (S. Thus I can only be a spanning set of S if it contains at

least n linearly independent elements.

Proof. By lemma 6.3, there exists a set Ẽ that forms a “basis” for S. The set Ẽ will

Chapter 6. Grouping Stochastic Scalars 101

be used to prove that if I contains m linearly independent vectors and m < n, then I
spans only a subset of S.

Let m < n. Towards a contradiction, suppose that I and Ẽ both form “bases” for

S. In other words, span(I) ∩ S = span(Ẽ) ∩ S = S.

Consider the equation,

c1ẽ1 + c2ẽ2 + ...+ cnẽn = 0 (6.24)

where ẽ1, ẽ2, ..., ẽn ∈ Ẽ and c1, c2, ..., cn ∈ R. Since each ẽi ∈ S and any element in S

can be expressed as a linear combination of vectors in I, each ẽi can be written as

ẽ1 = a11z1 + a12z2 + ...+ a1mzm

...

ẽi = ai1z1 + ai2z2 + ...+ aimzm

...

ẽn = an1z1 + an2z2 + ...+ anmzm

Thus, equation (6.24) can be rewritten as follows:

c1(a11z1 + a12z2 + ...+ a1mzm) + ...

+ ci(ai1z1 + ai2z2 + ...+ aimzm) + ...

+ cn(an1z1 + an2z2 + ...+ anmzm) (6.25)

= (c1a11 + c2a21 + ...+ cnan1)z1 + ...

+ (c1a1j + c2a2j + ...+ cnanj)zj + ...

+ (c1a1m + c2a2m + ...+ cnanm)zm

=
n∑
i=1

ciai1z1 +
n∑
i=1

ciai2z2 + ...+
n∑
i=1

ciaimzm (6.26)

Now, z1, z2, ..., zm are linearly independent. Therefore, equation (6.26) has only the

trivial solution and
∑n

i=1 ciaij must equal zero for all j = 1, ...,m. This can be written

as a homogeneous system of m equations, each with n variables, c1, ..., cn. Since m < n,

there are more variables than equations, so there must be infinitely many solutions.

Particularly, there must be a non-trivial solution. But, this gives a non-trivial dependence

Chapter 6. Grouping Stochastic Scalars 102

relation in equation (6.24). By definition, Ẽ must thus be a linearly dependent set of

vectors. But this is a contradiction, since Ẽ is linearly independent. Therefore, I spans

a strict subset of S.

Theorem 6.4 proves that if r1 and r2 are scalars and the optimisation function is high

dimensional, then particles may not be able to reach the optimum solution because the

solution can not even be expressed in terms of their initial positions, personal best posi-

tions, and velocities. If velocities are initialised to zero and the personal best positions

are initialised to be equal to the initial positions, then the portion of the search space that

can be reached by the particles is even smaller. It should also be noted that it is possible

for the swarm to lose degrees of freedom throughout the search. Since the algorithm is

executed on a computer with limited precision, it may occur that some of the vectors in

I are cancelled out further in the search. Though unlikely, the span of the swarm may

in fact decrease as the search progresses. Thus, if the size of the swarm is much smaller

than the dimensionality of the search space, then the swarm will be unable to reach a

large part of the search space. Unfortunately, simply increasing the number of particles

in the swarm is not an adequate solution, because it greatly increases the computational

cost. Additionally, the swarm size parameter influences the swarm’s searching behaviour

in other ways so changing the swarm size drastically may have unintended consequences

[25, 47].

Using scalar values for r1 and r2 should thus only be done if it is known that the

optimal solution lies in the span of the particles’ initial positions. In fact, scalar values

for r1 and r2 have been successfully employed to solve problems with equality constraints

in the form Ax = b [55]. The particles are initialised in the feasible region and since

r1 and r2 are scalars, the particles can not leave the hyperplane in which they were

initialised and are guaranteed to produce feasible solutions.

6.1.2 Component-Wise Scaling with Vectors

The previous section explained the repercussions of choosing scalar values for r1 and r2.

If, instead, the social and cognitive terms are scaled by vectors of random values in a

component-wise manner, the swarm is able to escape its initial subspace and explore the

Chapter 6. Grouping Stochastic Scalars 103

remainder of the search space [24].

Although it is theoretically possible for particles to reach any point in the search

space when r1 and r2 are vectors, it may be unclear that the non-linearity introduced by

stochastic vector scaling is sufficient for the particles to effectively express any solution.

Chen et al. [10] found that although particles do leave the search space within which

they are initialised, the particles focus their search on the subspace within the initial

subspace.

In order to measure a particle’s activity inside and outside the initial subspace, Chen

et al. suggested projecting the particle’s velocity vector onto two components: one

component inside the initial subspace and the other component orthogonal to the initial

subspace. This gives an idea of how much the positions change from one iteration to the

next inside the initial subspace in comparison to outside the initial subspace. The result

of the projection is then scaled according to the number of linearly independent vectors

that formed each subspace. The experiments from [10] are reproduced here, for the PSO

settings used throughout the thesis (see Chapter 3). A particle’s step size within the

initial subspace is measured by

SI =
‖Pvti‖√
|I|

(6.27)

where P is a projection matrix onto the initial subspace. P is given by

P = AAT (6.28)

where A is an n-by-‖I‖ matrix, whose columns form an orthonormal basis for the ini-

tial subspace. The orthonormal basis may be obtained by applying the Gram-Schmidt

method to I, the set of initial particle positions, velocities, and personal best positions.

Note that AT denotes the transpose of the matrix A. Further discussion of the Gram-

Schmidt method is deferred to section 7.2 in Chapter 7.

A particle’s step outside the initial subspace is given by

SO =
‖P ′vti‖√
n− |I|

(6.29)

where P ′ is a projection matrix onto the space orthogonal to the initial subspace. P ′

may be obtained by finding an orthonormal basis for the initial subspace’s orthogonal

Chapter 6. Grouping Stochastic Scalars 104

complement and applying equation (6.28). The step size within a given subspace is

normalized by the square root of the number of basis vectors for that subspace ((
√
|I|

for the initial space and
√
n− |I| for the space orthogonal to the initial space). This

allows direct comparison between SI and SO to determine how much movement took

place in dimensions inside and outside the initial subspace. The square root was used

because distance (i.e. step size) will grow proportionally to
√
k as k increases, where

k is the number of dimensions in the space. Note that the original literature did not

specify how the scaling should be performed, but later results indicate that scaling was

proportional to k (instead of
√
k). The measures proposed in equations (6.27) and (6.29)

are thus slight alterations of the original measures proposed in [10].

The results shown below are not consistent with findings in literature, which found

that step sizes inside the initial subspace are much larger than step sizes outside the

initial subspace. In figure 6.1, the step sizes inside and outside the search space are

both illustrated for a single run of a standard inertia weight PSO. Although the step size

inside the initial space is very large for the first few iterations, the step size decreases

sharply and after the first 50 iterations, the step sizes SI and SO are nearly identical for

the remainder of the search.

Figure 6.1: Step size inside initial subspace vs step size outside initial subspace of standard

PSO on F17

Chapter 6. Grouping Stochastic Scalars 105

The difference between the findings presented here and the results of [10] is likely

due to scaling. The manner in which the projections were scaled was not specified in

[10] and it may be that the step sizes were scaled by k instead of
√
k. This would

unfairly penalize the larger dimensional space. In this case, the space orthogonal to the

initial subspace is much larger than the initial subspace. Scaling by n− |I| would thus

create the impression that movement in the space orthogonal to the initial subspace is

much less than it actually is, because the step sizes were scaled by a number that is too

large. Indeed, upon rescaling the step sizes proportionally to k instead of
√
k (where k

is the number of dimensions in the space, as before), then figure 6.2 is obtained, which

is consistent with literature.

Figure 6.2: Step size inside initial subspace vs step size outside initial subspace of standard

PSO on F17 (incorrect scaling)

Figure 6.2 incorrectly implies that the step size inside the initial subspace is consis-

tently about 2 to 3 times that outside the initial subspace (across all the other benchmark

functions). However, as figure 6.1 showed, this is not the case. The swarm focuses almost

equally on the initial subspace and the subspace orthogonal to the initial subspace. The

step size measure described in this section will be applied again to examine the behaviour

of the grouping strategies in later sections.

Chapter 6. Grouping Stochastic Scalars 106

6.2 Grouping Stochastic Scalars

As discussed in Chapter 2, the search process can be divided into two different stages:

exploration and exploitation. During exploration, the swarm attempts to cover large

parts of the search space in order to find good regions and, hopefully, avoid becoming

trapped in a local optimum. After the swarm has explored sufficiently, it should focus

more on exploitation and search in a more fine-grained fashion so that the accuracy of

the solution may be improved. It is important to balance exploration with exploitation

to ensure that the PSO does not become trapped in local optima, but does still manage

to find an accurate solution.

The choice of using scalars or vectors for r1 and r2 affects the exploration to ex-

ploitation ratio. If r1 and r2 are scalars, the particles are forced to remain inside the

subspace in which they were initialised, effectively limiting the swarm’s exploration abil-

ity and tilting the scale towards exploitation. On the other hand, component-wise vector

scaling allows particles to roam the search space freely, thereby placing more emphasis

on exploration than exploitation. The search space grows exponentially with problem

dimensionality, so at high dimensions it becomes impossible for the swarm to explore the

search space effectively. It may be more effective to bias the swarm towards exploitation

rather than exploration, thereby forcing the swarm to perform granular searching on a

smaller area rather than speed around the search space in search of a global solution.

This section introduces a strategy for reducing the swarm’s degrees of freedom by

grouping the problem variables and applying the same random scalars for all variables

in a group. This constrains the swarm’s movement so that it exploits within a smaller

region rather than attempting to explore large regions. The effect of using vector or

scalar random numbers to scale the cognitive and social components has previously been

considered in [40, 46, 55]. However, these studies performed no further investigation into

the effects of an intermediate approach, where scaling is not performed by component-

wise multiplication nor by scalar multiplication, but instead by means of such a group-

based scaling approach.

Sections 6.2.2 to 6.2.4 discuss strategies for modifying appropriate group sizes, in-

cluding fixed-size groups, increasing the number of groups and decreasing the number of

groups.

Chapter 6. Grouping Stochastic Scalars 107

6.2.1 Groups of Variables

The proposed strategy groups the problem dimensions and applies the same random

number to all of the problem dimensions within the group. If a set of decision variables

are always assigned to the same group, the values of those decision variables will always

be a combination of the swarm’s initial values for those variables. The solution vector’s

values for dimensions within the same group will thus be constrained to the subspace

generated by the initial particle positions (for those dimensions). This forces the swarm

to perform fine-grained searching within each “group subspace”. The more groups there

are, the closer the search is to a canonical PSO in terms of allowed exploration. If fewer

groups are imposed, the space of solutions that can be reached by the swam will become

smaller. The swarm’s behaviour will become increasingly like one using scalar r1 and r2

values, and lean more towards fine-grained searching in a small region or exploitation.

Before introducing the different grouping strategies, the notion of variable grouping

will be formalized. Towards this end, consider the definition of a partition:

Definition 6.6. Let B be any set. Then the family of sets G is a partition of B if and

only if all the following statements hold:

1. The union of the sets in G is equal to B (i.e. ∪G∈GG = B).

2. The intersection of any two sets in G is empty (i.e. ∀G1,G2∈G if G1 6= G2 then

G1 ∩G2 = ∅).

3. G does not contain the empty set (∅ /∈ G).

Thus, G partitions B if every element of B is a member of exactly one set in G and G
does not contain the empty set.

Consider a swarm consisting of ns particles, each of n dimensions. Let P denote a

random permutation of the set {1, 2, ..., n}. A grouping G of the problem variables is

defined as

G = {G1, G2, ..., Gq} (6.30)

where every Gi is a set of integers so that G partitions P into q sets where G1 contains

the first |G1| elements of P , G2 contains the next |G2| elements of P and so forth (where

Chapter 6. Grouping Stochastic Scalars 108

|.| denotes set cardinality). Note that different groups may be of different sizes so that

|Gk| varies across k ∈ {1, 2, ..., q}.
A grouping strategy produces a grouping of the problem variables for every iteration

and q may vary between iterations. A grouping strategy is called static if P is the same

across all iterations of the search and is called dynamic if P is re-generated with every

iteration. Each of the grouping strategies introduced in the following sub-sections can

be dynamic or static.

Upon updating particle i’s velocity, r1 and r2 will be vectors of length q where every

element is drawn from a uniform distribution with range (0, 1) as usual. For every

problem dimension j there exists a partition Gk so that j ∈ Gk. The velocity update

equation for particle i at iteration t+ 1 will then be given by

vt+1
ij = wvtij + c1r1k(y

t
ij − xtij) + c2r2k(ŷj − xtij) (6.31)

6.2.2 Fixed Group Number

The fixed group number strategy depends on a parameter g, which specifies how many

groups the variables will be divided into. Let mod denote the modulus operator. P is

divided into g groups, where the first n mod g groups will contain n
g

+ 1 variables and

the remaining g − (n mod g) groups will contain n
g

variables.

Upon updating the velocity of particle i, the random vectors r1 and r2 will be of

length g, one element for each group. The variables in group 1 will be scaled by the first

elements in r1 and r2, the variables in group 2 will be scaled by the second elements and

so forth so that the variables in group q = g are scaled by the last elements in r1 and r2.

Thus the velocity in the jth dimension will be calculated by using the kth element in r1

and r2 if j ∈ Gk.

The number of groups produced by this strategy is fixed across all iterations by the

parameter g. This strategy and to some extent, the other strategies to be discussed

may be considered as a divide and conquer method. High dimensional search spaces

are generally too large to explore effectively. Restricting the swarm’s movement in this

fashion essentially divides the search space up into smaller sections. Unfortunately, the

selected regions are essentially random and may thus not contain the global optimum

(or even a good local optimum).

Chapter 6. Grouping Stochastic Scalars 109

6.2.3 Decreasing Group Number

The decreasing group number strategy linearly decreases the number of groups from

iteration to iteration. The strategy starts with the largest possible number of groups

and linearly decreases the number of groups to the minimum. The maximum number

of groups is clearly n, where every variable is the only member in its own group. The

first iteration of this strategy will thus produce velocities exactly like those produced by

the normal PSO velocity update equation (2.7). The minimum number of groups is 1,

in which all the variables belong to the same group. The velocities calculated in the last

iteration will thus be a linear combination of the swarm’s positions in the second last

iteration. If the maximum number of iterations is denoted by tmax, then the number of

groups g for iteration t ∈ {1, ..., tmax} is calculated by:

g(t) = n−
⌊

(t− 1)

tmax − 1
(n− 1)

⌋
(6.32)

This strategy attempts to balance the exploration and exploitation of the swarm

by first allowing the particles to move with the maximum degrees of freedom, then

slowly constraining their movement more and more, gradually encouraging a focus on

exploitation within the reachable search space instead.

6.2.4 Increasing Group Number

The increasing group number strategy also varies the number of groups from iteration to

iteration, but in this case the number of groups increases linearly with every iteration.

The number of groups starts at the minimum, namely 1, where all the variables are

members of the same group. The first iteration will thus produce velocities that are in

the subspace generated by the swarm’s initial positions. The number of groups at the

last iteration, tmax will be the n, so that each variable is scaled by a different random

value. The number of groups g for iteration t ∈ {1, ..., tmax} is calculated by:

g(t) =

⌊
(t− 1)

tmax − 1
(n− 1)

⌋
+ 1 (6.33)

Perhaps counter-intuitively, this method initially constrains particle movement to the

subspace within which the swarm was initialised. The particles are slowly allowed more

Chapter 6. Grouping Stochastic Scalars 110

freedom of movement as g increases with t. This strategy can be thought of as a beam

search, where the particles move towards the more promising regions of the reachable

subspace and the reachable subspace is grown with every iteration. In high dimensional

spaces, where the search space grows exponentially with n and exploration is difficult,

directing the search in such a manner may be efficient.

6.3 Results and Discussion

The grouping strategies discussed in the previous section were compared against each

other and a standard inertia PSO to analyze their influence on the swarm’s exploration

behaviour. Section 6.3.1 provides a brief comparison between swarms implementing

the grouping strategy and the standard PSO to prove that the swarm behaviour is

affected positively. Section 6.3.2 considers the difference between the static and dynamic

strategies and provides an in-depth explanation for the difference in behaviour. Next,

section 6.3.3 performs an empirical analysis for the optimal number of groups when

applying the strategy with a fixed number of groups. Finally, section 6.3.4 compares and

analyzes the behaviour of the different grouping strategies.

The experiments were performed in the same manner as those described in Chapter

3, except for the application of variable grouping strategies.

6.3.1 Comparison to Standard Inertia PSO

The swarms that performed group-based stochastic scaling were compared to a standard

PSO with inertia weight, that used the usual velocity update equation as in Equation

(2.7). As before, comparisons were done by applying Friedman tests with a p-value of

0.05 to detect statistically significant differences among the best fitnesses achieved by

the algorithms. If the Friedman test indicated significant differences, further pairwise

comparisons were done by means of Mann-Whitney U tests with a p-value of 0.05.

For the fixed group number strategy, the value g = 10 was used, which was found to

work well empirically. As can be seen from Table 6.1, the swarms with group-based

stochastic scaling almost always performed significantly better than the simple swarm,

except for the dynamic fixed group number strategy (which will be discussed in the

Chapter 6. Grouping Stochastic Scalars 111

following section). As explained in the motivation for these strategies in section 6.2.1,

this is not unexpected in high dimensional search spaces, where grouping the variables

will allow the swarm to employ more of a divide-and-conquer strategy. The swarm will

be able to focus on thoroughly searching the subspaces to which it is restricted, rather

than attempting to explore a very large search space.

Table 6.1: Best fitness comparison of swarm with grouping-based stochastic scaling against

simple swarm

> Simple = < Simple

Static Fixed 20 0 0

Dynamic Fixed 2 18 0

Static Decreasing 20 0 0

Dynamic Decreasing 20 0 0

Static Increasing 20 0 0

Dynamic Increasing 20 0 0

6.3.2 Static vs Dynamic Grouping Strategies

The different grouping strategies were examined and compared amongst one another

(using Friedman and Mann-Whitney U tests on the best fitness achieved by the swarms,

as described in 6.3.1). The investigation began by comparing the static and dynamic

grouping strategies, so that the static version of a given grouping strategy is compared

to its dynamic version. As can be seen in Table 6.2, the static version of a grouping

strategy always performed significantly better than the dynamic version on all of the

benchmark functions.

The static methods fix the permutation of the variable indices, P , at the beginning of

the search. Consider the fixed number strategy and suppose, without loss of generality,

that group 1 is given by G1 = {1, 2, ..., k}. Then every possible value that the first k

variables can attain must be a linear combination of elements from

I|G1 = I|Rk = {PRkz
∣∣z ∈ I} (6.34)

Chapter 6. Grouping Stochastic Scalars 112

Table 6.2: Best fitness comparison between static and dynamic grouping strategies

Dynamic > Static = Dynamic < Static

Fixed 0 0 20

Decreasing 0 0 20

Increasing 0 3 17

where PRkz denotes the vector formed by projecting z onto Rk. This reduces the reach-

able regions of the search space considerably.

By contrast, the dynamic strategy recalculates P randomly with every iteration. So

if, as in the static example, group 1 contains indices 1, 2, ..., k at iteration 0, chances are

that many of those indices will be distributed amongst the other groups in a following

iteration. The values of these variables are thus no longer restricted to some linear

combination of I|Rk and the swarm easily escapes its initial subspaces - defeating the

entire purpose of the proposed strategies. Figure 6.3 provides a typical illustration of

the diversity behaviour of a static grouping strategy against its dynamic version. As

can be seen, the diversity of the dynamic grouping method behaves almost identically to

the standard PSO, supporting the statement that dynamic strategies are not sufficiently

restrictive. Figure 6.4 plots the ratio between the swarm’s average step size inside the

initial subspace and the average step size outside the initial subspace. Clearly, the static

strategy performs more searching inside the initial subspace than the dynamic strategy,

also indicating that the dynamic strategy is less restrictive. This is not unexpected,

given the theoretical justification in section 6.1.

The static increasing and decreasing group number strategies are less strict than the

static fixed group strategy. Since the number of groups changes, every variable is in

its own group for at least one iteration, and there is thus no set of variables that will

always be a combination of their initial values. These strategies thus allow the swarm to

leave the subspace within which it was initialised to a much larger extent than the fixed

group strategy, albeit more gradually than a standard PSO. The discussion above was

for the fixed group strategies. The decreasing and increasing group number strategies

exhibited a less radical difference between the static and dynamic versions. Each strategy

is discussed below.

Chapter 6. Grouping Stochastic Scalars 113

Figure 6.3: Swarm diversity per iteration of standard PSO, static fixed group number and

dynamic fixed group number with g = 10 on F1 for 1000 dimensions over 5000 iterations

Figure 6.4: Ratio of step sizes, SI
SO

inside and outside initial subspaces for static vs dynamic

strategy with fixed number of groups (where g = 10 on F3 for n = 1000, over 5000 iterations,

one run)

Although not immediately clear from figure 6.5, both static and dynamic versions of

the decreasing group number strategy exhibited high initial swarm diversity, which set-

tled to a high value for most of the search. Towards the end of the search, as the number

of groups became very small and swarm movement became strongly constrained, the

diversity of the swarm decreased sharply. Once strongly restrained, the static strategy’s

Chapter 6. Grouping Stochastic Scalars 114

diversity decreased faster and remained lower than the diversity of the dynamic strategy,

confirming the hypothesis that dynamic strategies allow greater freedom of movement.

For most of the search, both the static and dynamic versions of the decreasing group

strategy behaved very similar to a standard PSO (as shown in figure 6.6, which over-

lays the diversity profile of a standard PSO on the diversities of the static and dynamic

decreasing group strategy PSOs). Figure 6.7 shows the ratio of step sizes inside and

outside the initial space for both the static and dynamic decreasing group strategies.

After a large initial spike (similar to that exhibited by the standard PSO), both ver-

sions had a ratio of approximately one for most of the search. Towards the end of the

search, as swarm movement became more strongly constrained, the ratio increased. It

is unexpected that the swarm should focus on the initial subspace at the end of the

search, especially given that the particles escaped the initial subspace and also explored

the orthogonal space for most of the search. This phenomenon is discussed further in

section 6.3.4.

The difference between the static and dynamic version of the increasing group number

strategy is shown in figures 6.8 and 6.9. Figure 6.8 illustrates the typical diversity

profiles of the static and dynamic versions of the increasing group number strategy.

Similar to the fixed group strategy, the decreasing strategy’s static version exhibited lower

diversity than the dynamic version throughout the search. However, unlike the fixed

group strategy, the dynamic version of the increasing group number strategy did exhibit

decreasing diversity, indicating that the dynamic increasing group number strategy was

able to search to some extent, i.e. the swarm’s behaviour was not like a standard PSO.

Figure 6.9 shows that both the dynamic and fixed versions of the increasing group number

strategy exhibited a very high initial spike in step size ratio, which is expected, since

the swarm was strongly constrained during the initial stages of the search. Figure 6.10

plots the step size ratio from iteration 50 onwards to give an indication of the swarm’s

behaviour for the remainder of the search. The mean step size ratio is one for the

majority of the search, indicating that the swarm escaped the initial subspace and also

explored the rest of the search space. The static version of the strategy exhibited slightly

elevated step size ratios in the first thousand iterations of the search, showing that it

was more focused on the initial subspace than the dynamic strategy, as expected (since

Chapter 6. Grouping Stochastic Scalars 115

Figure 6.5: Swarm diversity for static vs

dynamic strategy with decreasing number of

groups on F3 (for n = 1000, over 5000 itera-

tions)

Figure 6.6: Comparison of swarm diversity

profiles of standard PSO and decreasing num-

ber of groups PSO, both static and dynamic

versions on F3 (for n = 1000, over 5000 itera-

tions)

Figure 6.7: Ratio of step sizes, SI
SO

inside and outside initial subspaces for static vs

dynamic strategy with decreasing number of groups on F3 (for n = 1000, over 5000

iterations)

Chapter 6. Grouping Stochastic Scalars 116

the dynamic strategy is less constraining than the static strategy).

Figure 6.8: Swarm diversity for standard

PSO and both static and dynamic versions

of the increasing number of groups strategy

on F3 (for n = 1000, over 5000 iterations)

Figure 6.9: Ratio of step sizes, SI
SO

inside and

outside initial subspaces for standard PSO and

both static and dynamic strategy with increas-

ing number of groups on F3 (for n = 1000, over

5000 iterations)

6.3.3 Fixed Group Numbers

A brief empirical investigation of the g parameter for the fixed group number strategy

now follows. The parameter g determines how many groups the variables are divided

into. A number of different values were tested for g, namely {2, 5, 10, 50, 100, 500}. The

value of g that performed the best was g = 10, as indicated in Table 6.3. Table 6.3

compares the performance of swarms with g = 10 to that of the swarms with other

values for g.

If the value of g is low, then the movement of the swarm is severely restricted, as

discussed in the previous section. As can be seen in figure 6.11, the severe restriction on

the swarm’s movement causes the swarm’s diversity to drop early in the search, possibly

causing premature convergence. As the value of g increases, the swarm becomes more

and more like a standard PSO. This is also illustrated in figure 6.11 where it can be seen

Chapter 6. Grouping Stochastic Scalars 117

Figure 6.10: Ratio of step sizes, SI
SO

inside and outside initial subspaces for standard PSO

and both static and dynamic strategy with increasing number of groups on F3 (for n = 1000,

from iteration 50 onwards)

that, for values of g which are too large, the swarm’s diversity profile becomes almost

identical to that of a standard inertia PSO (to the point where it may be difficult to

distinguish the standard PSO’s diversity from that of g ∈ {50, 100, 500} in the figure).

6.3.4 Comparison of Grouping Strategies

The fixed, increasing and decreasing group number strategies were compared amongst

one another. Upon comparison, the decreasing group number strategy performed sig-

nificantly worse than the fixed and increasing group number strategies, as can be seen

in Table 6.4. Upon comparing the increasing and fixed group number strategies in Ta-

ble 6.5, it is found that the increasing group number strategy is the most effective and

significantly outperformed the fixed group strategy on 85% the benchmark functions.

Consider figure 6.12, which plots the ratio between a swarm’s average step size inside

the initial subspace and outside. The figure allows inferences to be made about a swarm’s

Chapter 6. Grouping Stochastic Scalars 118

Table 6.3: Performance of static fixed group number strategy for varying g-parameter

> g = 10 = < g = 10

g = 2 2 3 15

g = 5 2 4 14

g = 50 0 0 20

g = 100 0 0 20

g = 500 0 0 20

Figure 6.11: Swarm diversity per iteration of static fixed group number PSO with varying g

values on F1 for 1000 dimensions over 2000 iterations

ability to escape the initial subspace and to determine how effective a grouping strategy

is in controlling its exploration or exploitation. Note that the figure omits the first 2

iterations of the search because the ratio between the initial and outside subspaces for the

increasing group number strategy was very high in those iterations, making it impossible

to distinguish the swarms’ behaviour for the remainder of the search. The step sizes of

the swarms in the first few iterations were already discussed in detail in section 6.3.2.

Chapter 6. Grouping Stochastic Scalars 119

Table 6.4: Comparison of decreasing group number strategy with fixed and increasing group

number strategies

> Decreasing = < Decreasing

Fixed 20 0 0

Increasing 20 0 0

Figure 6.12: Ratio of step sizes, SI
SO

inside and outside initial subspaces on F3 (for n = 1000,

from iteration 50 onwards)

The decreasing strategy allows the swarm to escape the initial subspace immediately,

as can be seen in the rapid decrease of step size ratio. The strategy slowly restricts

the swarm’s movement, forcing the particles to exploit rather than explore as the search

progresses. By the time the swarm’s freedom is reduced, the swarm has already left the

initial subspace to the same extent as a standard inertia weight PSO. Thus, the decreas-

ing strategy allows as much initial exploration as a standard PSO, which causes it to

face similar problems to that faced by a standard PSO in high dimensions. The standard

PSO and the decreasing strategy had very similar step size ratios, both exhibiting more

focus outside the initial subspace than the fixed and increasing strategies. Towards the

end of the search, the step size ratios increased sharply, indicating that the swarm was

Chapter 6. Grouping Stochastic Scalars 120

Table 6.5: Comparison of increasing group number strategy with fixed and decreasing group

number strategies

> Increasing = < Increasing

Fixed 0 3 17

Decreasing 0 0 20

taking larger steps within the initial subspace than the rest of the search space. This is

unexpected, since the step size ratio for most of the search indicates that the swarm has

successfully escaped the initial subspace. Since the result plotted in figure 6.12 is for a

single run (due to the computational complexity of measuring the step sizes), it may be

that the space in which the swarm was located contained many components from the

initial subspace, biasing its movement towards the initial subspace once its movement

became increasingly restricted.

For the strategy with a fixed number of groups, every group of variables will only

be able to attain values in the span of the swarm’s initial values for those variables. In

other words, if a group q is such that Gq = {Pr,Pr+1, ...,Ps} where Pr denotes the rth

element in P , then all the positions reachable by the swarm will have values in the span

of IGq = {z[Pr : Ps]|z ∈ I} for all the variables indexed by Gq. Thus, the swarm’s

movement will not be linear (and it will be able to escape the initial subspace), but it

will still be restricted to a large extent. This is reflected in figure 6.12. The initial drop

in step size ratio shows the swarm partially leaving the initial subspace. Due to the

movement restriction, the mean step size ratio remained approximately the same for the

remainder of the search (which supports the theoretical discussion about the possible

values of variables in the same groups).

The increasing strategy intends to impose strong restrictions on particle movement

for the first few iterations, thereby focusing the search strongly inside the initial subspace.

Then as the search progresses, it is expected that the step size ratio will decrease as the

swarm’s degrees of freedom increases. As expected, the increasing strategy showed step

size ratios greater than one in the first 250 iterations of the search. Later, the step size

ratios decreased as the swarm’s movement restrictions relaxed and the swarm was able

to explore regions outside the initial subspace (more so than the fixed grouping strategy,

Chapter 6. Grouping Stochastic Scalars 121

as would be expected).

Other aspects of the swarm’s behaviour for the different grouping strategies are ex-

amined in the remainder of the section. As can be seen in figure 6.13, the decreasing

strategy’s particles left the search space almost immediately and then failed to return to

the search space within the allowed iterations. The decreasing strategy thus “gets lost”

in the large search space, rather than searching within a small region, like the other two

strategies.

Figure 6.13: Fraction of particles out of bounds per iteration on F3 for 1000 dimensions over

5000 iterations

As can be seen in figure 6.14, which illustrates typical swarm diversity profiles on the

benchmark suite, the diversity of the decreasing group number strategy fails to decrease,

similar to the behaviour observed from the standard inertia weight PSO. This is not

unexpected, considering that most of the swarm failed to return to the search space for

the remainder of the search.

The diversity of the fixed group number strategy decreases gradually, exhibiting a

beautiful balance between exploration and exploitation. As can be seen from figure 6.15,

the swarm converged to the best solution that it could find approximately halfway into

the allowed number of iterations. On the other hand, the diversity of the increasing

Chapter 6. Grouping Stochastic Scalars 122

Figure 6.14: Best score per iteration of PSO with fixed, decreasing and increasing group

numbers on F3 for 1000 dimensions over 5000 iterations

Figure 6.15: Swarm diversity per iteration of PSO with fixed, decreasing and increasing group

numbers on F3 for 1000 Dimensions over 5000 Iterations

group number strategy decreases steeply at first, but eventually becomes constant. Even

though the swarm’s diversity did not decrease, figure 6.15 illustrates that the swarm

Chapter 6. Grouping Stochastic Scalars 123

did not converge when its diversity stopped changing. Instead, the swarm continued to

search locally and find better solutions until the very end of the allowed iterations. This

shows that the fixed number strategy converged prematurely, whereas the increasing

group strategy was able to continue improving its solution. Premature convergence from

the fixed strategy could be expected, since the swarm’s movement is limited. The in-

creasing group number strategy continues to perform localized exploration as its degrees

of freedom increases with every iteration, thereby preventing it from getting trapped in

local minima. The increasing group number strategy also does not exhibit the unfortu-

nate behaviour of the simple and decreasing group number swarms, where the particles

immediately leave the search space due to the initial restrictions on the swarm’s move-

ment.

The fixed strategy imposes far more stringent constraints on swarm movement than

the decreasing strategy (at the start of the search). If the initial swarm positions happen

to be unfavourable, the strategy may prevent the swarm from being able to escape the

initial subspace and find a good solution. The increasing group number strategy on the

other hand, will allow the swarm to gradually leave an initial, unfavourable subspace

in search of better solutions elsewhere. This guides the search, allowing more fine-

grained exploration from the start. The increasing grouping strategy thus provides a

good balance between exploration and exploitation in high dimensional search spaces:

exploration is sufficient to escape unfruitful subspaces, but not to the extent that the

swarm wastes time trawling the tremendous search space.

6.4 Summary

This chapter explained the significance of component-wise stochastic scaling in allowing

the particles to reach any point in the search space. It was shown that it may be efficient

to limit the swarm’s reachable space in order to facilitate exploitation. The chapter

introduced variable grouping strategies, which control the swarm’s degrees of freedom

by dividing the problem variables into groups and applying the same stochastic scalars

to each group. Three different grouping strategies were considered: using a fixed number

of groups, linearly decreasing the number of groups and linearly increasing the number

Chapter 6. Grouping Stochastic Scalars 124

of variable groups.

Using a fixed number and linearly increasing the number of groups were both effective

in limiting the swarm’s exploration. Decreasing the number of groups was more efficient

than a standard inertia weight PSO, but its behaviour was generally similar to the

standard PSO. Dynamic strategies that shuffle the variables assigned to a group with

each iteration were tested, but were not found to be particularly effective.

Decreasing the number of groups as the search progresses initially allows particles

to move freely, as in a simple swarm, then slowly restricts swarm movement. Although

this follows the typical profile of exploration and exploitation, it was not effective. The

initial exploration phase failed to identify fruitful regions for further exploitation, as is the

case for a standard inertia PSO. Instead, the strongly restrictive approaches were more

effective. The most effective approach was to restrict the swarm’s movement initially

and then gradually allow more freedom to encourage continued improvement.

The next chapter discusses various particle initialisation strategies. On the one hand,

it seems that initialising for maximum search space coverage will be advantageous, since

it allows the swarm to obtain a more representative sample of the search space. On the

other hand, when considering the counter-intuitive behaviour exhibited by the increasing

groups strategy, it may be efficient to restrict the swarm’s movement, at least initially.

Thus, initialisation that covers only a small part of the search space might perform well

in high dimensional spaces. Swarm initialisation is thus the topic of the next chapter.

Chapter 7

Swarm Initialisation

In low dimensional search spaces, it is advantageous for the particles’ initial positions

to be spread across the search space. If the particles are well distributed throughout

the search space, it decreases the chance of skipping over a good region in which the

global optimum might be located. The position initialisation significantly influences

the likelihood of the optimum being found. On the other hand, if the particles are

distributed unevenly, it may happen that the global optimum lies in a region far from all

the particles’ initial position. The only way in which the particles will be able to locate

the region containing the optimum is if they are carried there by momentum or if the

region lies in the general direction of their local and global best positions.

Usually, search space coverage is achieved by initialising the particles uniformly

throughout the search space so that the initial diversity of the swarm is high. Although

this initialisation approach does not necessarily produce an even spread of particles [66],

it performs well enough for most applications.

However, for high dimensional problems, the region of the search space that can be

effectively covered by the particles’ initial positions is very small because the search space

grows exponentially with dimensionality. Even if the particles are distributed uniformly

throughout the search space, much of the search space remains effectively unseen due to

its sheer size.

Helwig and Wanka [33] have shown that, in high dimensional spaces, particles that

are initialised uniform randomly are located arbitrarily close to the boundary with over-

125

Chapter 7. Swarm Initialisation 126

whelming probability (i.e. becomes almost certain as n→∞). Such particles are likely

to leave the search space in the following iteration. Uniform random initialisation may

thus exacerbate particle roaming behaviour in high dimensional spaces.

This chapter shows that, in high dimensions, it is more effective to initialise the

particles within a small area of the search space rather than attempting to spread the

particles as evenly as possible. A number of initialisation strategies are examined, most of

which attempt to maximize initial search space coverage. These strategies are compared

to a novel strategy which initialises the swarm inside a small subspace of the search

space. The proposed strategy was introduced in [82] and was shown to perform very

well in comparison to other strategies for the high dimensional problems.

The proposed initialisation strategy recognizes that effective exploration in high di-

mensional search spaces is practically impossible. So rather than distributing the swarm

as uniformly as possible throughout the entire search space, the strategy initialises the

swarm in a small subspace of the search space. The swarm does not wander far from

the initialised region and is thus able to find a - potentially local - optimum within that

region. But, as the results show, the local optimum found by such a swarm is usually

better than the optimum found by a swarm that attempts to explore the entire search

space.

The chapter begins by examining a number of existing initialisation strategies from

literature in section 7.1. Next, section 7.2 discusses a new initialisation strategy, which

initialises the swarm within a small initial subspace. Thus, instead of attempting to

promote exploration, the initialisation strategy forces the swarm to focus more on ex-

ploitation or rather, exploration of only a small part of the search space. Section 7.3

provides a quick overview of the experimental method and section 7.4 discusses the

the results of the experiments. Reasons for the observed behaviour are also discussed.

Finally, section 7.5 concludes the chapter.

7.1 Initialisation Methods

This section introduces different swarm initialisation strategies that have been used in

literature. Section 7.1.1 discusses uniform random initialisation. Next, section 7.1.2

Chapter 7. Swarm Initialisation 127

introduces initialisation using the Sobol quasi-random number generator. 7.1.1 discusses

how Voronoi tesselations can be used as a particle initialisation strategy. Lastly, section

7.1.4 discusses the non-linear simplex method and how it can be used to generate particle

positions.

7.1.1 Uniform Random Initialisation

Usually [23], the initial positions of the particles are obtained by sampling from a uniform

distribution as follows:

x0
i ∼ U(L,U)n (7.1)

where n is the dimensionality of the search space and U,L ∈ R denote the upper and

lower bounds of the search space, respectively. A pseudo-random number generator is

usually used to generate these positions. It has been proved theoretically that, as the

problem dimensionality increases, the probability of a particle being initialised arbitrarily

close to the boundary in at least one dimension goes to one (i.e. becomes certain) [33].

Thus, uniform random initialisation may not be the best choice when the problem has

many dimensions.

7.1.2 Sobol Sequences

It has been found by Schoemann and Engelbrecht [66] that using quasi-random number

generators to generate initial particle positions can improve PSO performance. Quasi-

random number generators exhibit low discrepancy: for any given set, the proportion of

points generated by a quasi-random number generator is approximately proportional to

the measure of the set. In other words, the point set generated by such a sequence does

not have gaps or clusters.

In order to provide a formal definition of a low-discrepancy sequence, the notion of

discrepancy must be formalized. Consider the definition of discrepancy below, as in

[17]. Note that the definitions below consider points that are generated in the half-open

interval [0, 1) and can be scaled as necessary.

Definition 7.1. Consider the n-dimensional half-open unit cube, In = [0, 1)n where

n ≥ 1. For s-many points p1,p2, ...,ps ∈ In and a sub-interval J of In, let A(J) count

Chapter 7. Swarm Initialisation 128

the number of points pi ∈ J and let V (J) denote the volume of J . The discrepancy,

D(J, s), is defined as

D(J, s) =

∣∣∣∣A(J)

s
− V (J)

∣∣∣∣ (7.2)

Thus, the discrepancy is the difference between the proportion of points in the subin-

terval J and the volume of J (where the proportion of the points in J is relative to the

total number of points in the unit cube In and the volume of J is relative to the volume

of the unit cube, which has volume of one). Next, consider the definition of worst-case

discrepancy:

Definition 7.2. The worst-case discrepancy of a set of points {p1,p2, ...,ps} ∈ In is

defined as

D∗(s) = max
J
|D(J, s)| (7.3)

The worst-case discrepancy may also be called the star-discrepancy [48]. A low-

discrepancy sequence is defined in terms of the star-discrepancy, as can be seen in the

definition that follows.

Definition 7.3. A low-discrepancy sequence in In minimizes D∗(s). Thus, it is a se-

quence of points p1,p2, ...,ps ∈ In for which the worst case discrepancy is as small as

possible.

Quasi-random number generators thus ensure that the swarm is initially distributed

evenly throughout the search space, providing the swarm with relatively good search

space coverage.

The Sobol sequence is one such quasi-random sequence. In particular, it is a digi-

tal low-discrepancy sequence, meaning that the sequence of numbers is constructed by

performing binary operations on binary expansions. Further information about the im-

plementation of Sobol sequences is provided by Joe and Kuo in [38].

7.1.3 Centroidal Voronoi Tesselations

Richards and Ventura suggested Voronoi tesselations as a particle initialisation strategy

in [61]. Voronoi tesselations partition the search space into a number of small cells.

Chapter 7. Swarm Initialisation 129

These cells should be approximately the same size so that their centers are distributed

uniformly throughout the search space.

Such cells are produced by a set of generators. Each generator is assigned all the

points in the search space that are closer to that generator than to any of the other

generators. In this way, the search space is partitioned into a number of cells, each

around one of the generators. For Centroidal Voronoi Tesselations (CVT), the generators

are at the center of their cells.

The CVTs were calculated as described by Ju et al. [39]. Initially, the set of gen-

erators are chosen randomly within the search space. The positions of the generators

are then adjusted over a number of iterations as follows: At every iteration, a number

of sample points are chosen in the search space. Each sample point is allocated to the

closest generator. Calculate ai, the centroid of the sample points assigned to the ith

generator. Then move every generator gi closer to ai by some fraction of the distance

between gi and ai.

The pseudo-code for CVT is described in algorithm 7.1.

7.1.4 Non-linear Simplex Method

Parsopoulos and Vrahatis [56] used the Non-linear Simplex Method (NSM) to initialise

particle swarms. The NSM was introduced by Nelder and Mead [50] as a means of

function minimization. An n-dimensional simplex is a geometrical figure with n + 1

vertices. The vertices of a simplex are initialised to be points in the search space, each

with a corresponding score according to the fitness function. For a number of iterations,

the simplex “walks” around the search space, each time moving the vertex with the

lowest score to a point with a higher score. Every step that the simplex takes can be

described in terms of reflections, contractions and expansions.

Let p0, . . . ,pn denote the n + 1 vertices of a simplex. Let the vertex with the best

score be denoted by g. Let the vertex with the worst score be denoted by b. Also, let p̄

denote the centroid calculated using all the vertices except b.

A reflection of p is defined by

p∗ = (1 + α)p̄− αp (7.4)

Chapter 7. Swarm Initialisation 130

//Produce s-many vectors in the [L,U]n

for all generators i = 1, 2, 3, ..., s do

Choose gi randomly within search space as ith generator

end for

for all iterations k = 1, 2, 3, ...,MAX ITERATIONS do

Build a set, Q, of sample points by choosing q-many points randomly within

the search space

for all sample points p ∈ Q do

Find gi, the generator closest to p

Add p to Gi, the subset of Q containing the points that are

closer to gi than any other generator

end for

for i ∈ 1, 2, 3..., s do

Calculate ai, the arithmetic mean of all the points in Gi

Move gi closer to ai by some fraction of the distance between gi and ai

end for

end for

return {g1,g2, ...,gs}

Algorithm 7.1: Position generation by centroidal voronoi tessellations

where α is a positive constant known as the reflection coefficient. An expansion of p is

defined by

p∗∗ = γp + (1− γ)p̄ (7.5)

where γ is known as the expansion coefficient and is a constant greater than one. A

contraction of p is defined by

p∗∗∗ = βp + (1− β)p̄ (7.6)

where β is between zero and one and is known as the contraction coefficient.

At every iteration, b is reflected to b∗. There are three possible cases:

1. If the score of the new position is neither better than g nor worse than b, b is

replaced by b∗ and the iteration ends.

Chapter 7. Swarm Initialisation 131

2. If the score of b∗ is better than g, b∗ is expanded to b∗∗. If the score of b∗∗ is

better than g, then b∗∗ replaces b, otherwise the expansion fails, and b∗ replaces

b and the iteration ends.

3. Lastly, if b∗ is worse than all the other points (except possibly b), then b is replaced

by min{b,b∗}. The new b is then contracted to b∗∗∗.

If the score of b∗∗∗ is better than b, b∗∗∗ replaces b. Otherwise, the contraction

fails and all pi are replaced by pi−g
2

and the iteration restarts.

The initial suggestion for using the NSM applied it to problems where the swarm size,

s, was larger than the problem dimension, n. In this case, the simplex was initialised

randomly in the search space and allowed to step s − (n + 1) many times. The points

through which the simplex’s vertices moved were used as the initial particle positions.

However, some of the problems examined in this thesis were of dimensionality far

higher than that of the swarm size. For these problems, the simplex was allowed to

take s steps and the best s points through which the simplex’s vertices had moved were

selected as the initial particle positions. This approach may cause the swarm to converge

prematurely, by essentially initialising the entire swarm in a local optimum. However,

given that an exploitation-focus search is more efficient in high dimensional spaces, this

may be an advantage.

7.2 Proposed Initialisation Strategy

The proposed swarm initialisation technique initialises the swarm in a small subspace of

the entire search space, thereby forcing the swarm to focus on exploitation within the

small subspace rather than attempting to explore the expanse of the search space.

The initialisation strategy makes use of a “seed set”, which is simply a set of u,

randomly generated, n-dimensional orthogonal unit vectors. The seed set is obtained

by means of the Modified Gram-Schmidt (MGS) [53], where the initial set of linearly

independent vectors are generated randomly. The smaller the seed set, the fewer lin-

early independent vectors are used to initialise G, the set of all initial particle positions,

velocities, and personal best positions. As discussed in Chapter 6, the subspace within

Chapter 7. Swarm Initialisation 132

//Given a set of n-dimensional input vectors, {v1, ..., vu}
for i ∈ {1, 2, 3, ..., u} do

ai = vi −
i−1∑
j=1

<vi,aj>
<aj ,aj>

aj

bi = ai
||ai||

end for

return {b1, ...,bu}

Algorithm 7.2: Gram-Schmidt method of orthogonalization

which the swarm is initialised will be small if the seed set contains a small number of

vectors.

For completeness, a brief discussion of the Gram-Schmidt method follows. The Gram-

Schmidt method receives u-many, n-dimensional vectors as input from which it generates

a set of orthogonal vectors. If the input vectors are all linearly independent, then the

Gram-Schmidt method will produce min{u, n} many orthogonal vectors.

The set of orthogonal vectors is generated stepwise. To produce the ith orthogonal

vector bi, the ith input vector vi is projected onto the subspace generated by all of the

orthogonal vectors already calculated, b1,b2, ...,bi−1. The orthogonal vector bi is then

defined to be the difference between vi and its projection. Note that all the bi for i > n

will be zero vectors.

Intuitively, the projection step finds the components of the input vector that is shared

by the orthogonal vectors calculated thus far. The seed vector bi is then found by

removing all the shared components from the input vector. The Gram-Schmidt method

is given in algorithm 7.2.

In the algorithm above, < a,b > denotes the inner product of the two vectors a and

b.

The Gram-Schmidt method as discussed above is susceptible to rounding errors. The

modified Gram Schmidt method computes the projection step differently so that the

process is numerically stable. Usually, ai is calculated in one step as in equation (7.7)

Chapter 7. Swarm Initialisation 133

given below:

ai = vi −
i−1∑
j=1

< vi, aj >

< aj, aj >
aj (7.7)

Instead, the MGS method calculates ai iteratively according to

a
(1)
i = vi −

< vi, a1 >

< a1, a1 >
a1

a
(2)
i = a

(1)
i −

< a
(1)
i , a2 >

< a2, a2 >
a2

...

a
(i−2)
i = a

(i−3)
i −

< a
(i−3)
i , a(i−2) >

< a(i−2), a(i−2) >
a(i−2)

a
(i−1)
i = a

(i−2)
i −

< a
(i−2)
i , a(i−1) >

< a(i−1), a(i−1) >
a(i−1)

The vector, a
(k)
i , generated at step k is orthogonal to the vector generated at the previous

step, a
(k−1)
i , so that a

(k)
i is also orthogonalized against any errors introduced at the

previous step due to limited precision. The implementation of the initialisation technique

thus uses the MGS method instead.

In order to produce the linearly independent seed set, the required number of vectors

were sampled randomly from [L,U]n. If any two of the seed vectors, vi, vj were linearly

dependent (where i < j), then aj = 0. This condition can be tested for and if it occurs, a

new random vector can be sampled to replace vj. In practice, this almost never occurred

since it is unlikely for two randomly sampled vectors to be linearly dependent (even when

considering the loss of precision due to computer representation). There is thus very little

computational cost involved in finding the seed set.

The initialisation strategy generates an n-dimensional point which can be used either

as a particle’s initial position, velocity, or personal best position. The point is selected

randomly on a line, L, that passes through the centre of the search space. The direction,

d, of the line is determined by the seed set.

The direction of the line is a random linear combination of all the vectors in the seed

set, calculated as

d = c1b1 + c2b2 + ...+ cubu (7.8)

Chapter 7. Swarm Initialisation 134

where each ci ∼ U(−1, 1) and each bi is an element from the seed set.

The point, p, is generated on a line with the equation,

p = td + c (7.9)

where c denotes the centre of the search space and t is a scalar. The value for t is

drawn from a uniform distribution with bounds (tmin, tmax). Let the bounds of the j-th

dimension of the search space be (Lj, Uj). Then the bounds for t are calculated according

to algorithm 7.3.

The algorithm is illustrated in figure 7.1 for a 2-dimensional search space centred

at (0, 0). According to the diagram, the algorithm will return bounds (tmin, tmax) =

(ymin
dy
, ymax

dy
).

y

x

(U, ymin)
(L, ymin)

(L, ymax)
(U, ymax)

d

px

qx

py

qy

Figure 7.1: Determining bounds for the scalar t in a 2-dimensional space centred at (0, 0),

given a direction vector d

Since the relative sizes of the direction vector’s components differ, the bounds

(tmin, tmax) may define a very small range that causes the generated positions to be near

the origin in all dimensions except the few for which the direction vector is relatively

large. In order to prevent all of the generated points from being concentrated near the

centre of the search space, the points were allowed to be generated outside of the search

space in a given dimension by a small margin, denoted by ε in algorithm 7.3.

Chapter 7. Swarm Initialisation 135

//Calculate t-Bounds

for each dimension j ∈ {1, 2, 3, ..., n} do

if dj == 0

continue

end if

// Find the point p, the intersection between L and the maximum

boundary of the jth dimension

t1 =
xj,max−cj

dj

p = t1d + c

if !InBounds(p, ε)

continue

end if

// Find the point q, the intersection between L and the minimum

boundary of the jth dimension

t2 =
xj,min−cj

dj

q = t2d + c

if !InBounds(q, ε)

continue

end if

return tmin = min(t1, t2) and tmax = max(t1, t2)

end for

//Where the InBounds function is defined by

function InBounds(p, ε)

for each dimension j ∈ {1, 2, 3, ..., n}
if |pi − xi,max| or |pi − xi,min| > ε

return false

end if

end for

return true

Algorithm 7.3: Algorithm for calculating t-bounds

Chapter 7. Swarm Initialisation 136

7.3 Experimental Procedure

The experiment tested the proposed initialisation strategy against the other strategies

discussed in section 7.1. The experiments followed the same general procedure as outlined

in Chapter 3, except that the particles were initialised using different strategies.

Since the proposed initalization strategy initialises particles on lines that pass through

the centre of the search space, it would not be representative to use benchmark functions

with optima near the centre of the search space. Recall that the benchmark functions

are all shifted by a random vector, sampled from U(L,U)n. The proposed initialisation

method is thus not biased towards the benchmark suite by initialising the particles near

the center of the search space.

Some implementation details for the different initialisation strategies are provided

below:

• The quasi-random number generator used for the Sobol sequence initialisation

strategy was implemented by generating multiple large point sets in Matlab with

skip= 1024 and leap= 100. Skip specifies the how many of the initial points in

the sequence will be ignored. For example, the sequence {5, 3, 8, 2, 6, 7, 1, 6} with

skip = 2 will transform the sequence into {8, 2, 6, 7, 1, 6}. Leap specifies how many

points in the sequence should be ignored for every point that is selected. For

example, the sequence {5, 3, 8, 2, 6, 7, 1, 6} with skip = 2 and leap = 1 will be

emitted as {8, 6, 6}.

• The CVT strategy was allowed to run for 5 iterations. With every iteration, 50,000

sample points were generated as suggested in [61]. Every generator was moved 0.6

of the distance between it and the centroid of the sample points assigned to it.

• The NSM was implemented as described in the previous section with values α =

1.0, γ = 2.0 and β = 0.5 as suggested in [50].

The proposed initialisation strategy was implemented as described in section 7.2.

Particle positions were generated with an ε of one tenth the range of the search space,

(0.1(U − L)). Personal best positions were generated with an ε of zero to ensure that

Chapter 7. Swarm Initialisation 137

the particle’s attractor remains inside the search space. Five different values for the size

of the seed set, u, were tested, namely {1, 5, 25, 50, 100}.

7.4 Results and Discussion

This section provides comparative results of the simulations described in section 7.3, as

well as a detailed discussion of the observed outcomes. Section 7.4.1 discusses the general

behaviour of all the initialisation strategies as the problem dimensionality increases.

Section 7.4.2 examines the influence of the seed set size on the swarm’s behaviour and

performance. Section 7.4.3 observes that the more successful initialisation algorithms

both exhibit very low initial swarm diversity and tests whether low initial swarm spread

is the only factor contributing to their success. Lastly, section 7.4.4 examines the roaming

behaviour exhibited by the two most successful initialisation strategies.

7.4.1 Initialisation and Dimensionality

Figure 7.2 gives an indication of the best-performing initialisation strategies for each

dimension. Figure 7.2 was generated in the same manner as figures 4.2 and 4.3 from

Chapter 4, where the color of a block represents how well the initialisation strategy,

determined by the block’s row, performed on the problem suite with dimensionality n,

determined by the block’s column. The lighter a strategy’s block is, the better the

strategy performed in comparison with the other strategies for the given dimensionality.

Note that it is not possible to have a seed set that contains more vectors than the problem

dimensionality. Thus, for n = 10, there are no simulations for seed sets larger than 5.

Similarly, for n = 50, there are no simulations for u = 100. An interpretation of figure

7.2 follows below. These results are supported by tables 7.1 to 7.6 which show the result

of pair-wise Mann-Whitney U tests, which compare the subspace-based strategy with

the best-performing u for the given dimensionality to all the other strategies.

On the low dimensional problems, i.e. n = 10 and n = 50, the subspace-based initial-

isation strategy shows no advantage. In fact, most of the other initialisation strategies

performed better, including the uniform random method. However, as the dimensionality

increases, the performance of the uniform random, Sobol sequence and NSM strategies

Chapter 7. Swarm Initialisation 138

Table 7.1: Comparison with subspace-based PSO on n = 10

> Subspace u=5 = < Subspace u=5

Uniform Random 2 18 0

Sobol Sequence 2 18 0

NSM 0 18 2

CVT 2 18 0

Table 7.2: Comparison with subspace-based PSO on n = 50

> Subspace u=5 = < Subspace u=5

Uniform Random 4 15 1

Sobol Sequence 1 19 0

NSM 3 16 1

CVT 3 16 1

Table 7.3: Comparison with subspace-based PSO on n = 100

> Subspace u=5 = < Subspace u=5

Uniform Random 0 14 6

Sobol Sequence 0 16 4

NSM 3 10 7

CVT 1 19 0

Table 7.4: Comparison with subspace-based PSO on n = 500

> Subspace u=25 = < Subspace u=25

Uniform Random 0 0 20

Sobol Sequence 0 0 20

NSM 0 0 20

CVT 7 12 1

Table 7.5: Comparison with subspace-based PSO on n = 750

> Subspace u=25 = < Subspace u=25

Uniform Random 0 0 20

Sobol Sequence 0 0 20

NSM 0 0 20

CVT 5 15 0

Chapter 7. Swarm Initialisation 139

Figure 7.2: Performance of different initialisation strategies as dimensionality varies (lighter

is better)

deteriorate and the relative performance of the subspace-based methods increases. The

CVT method consistently provided good results across all dimensions (highlighted with

red) and as n increases, its performance becomes noticeably better in comparison to the

other strategies. 1

For the lowest dimensional case (n = 10), the Sobol sequence strategy performed

better than the uniform random strategy. The Sobol sequence initialisation strategy

ensures that the particle positions are initialised in such a way that the particles do

1Similar experiments have been performed before in [82], but on a smaller range of problem di-

mensionalities with a larger benchmark suite and fewer particles. When comparing CVT and the

subspace-based method, CVT performed significantly better on the benchmark suite used for the thesis

in comparison to the benchmark suite used in [82], where the subspace-based method performed signif-

icantly better. Although the best performing algorithm differs slightly between benchmark suites, the

general trend in algorithm behaviour remains consistent regardless of the chosen benchmark suite. It

may also be noted that the worse performing algorithms remained the same between benchmark suites.

Chapter 7. Swarm Initialisation 140

Table 7.6: Comparison with subspace-based PSO on n = 1000

> Subspace u=50 = < Subspace u=50

Uniform Random 0 0 20

Sobol Sequence 0 0 20

NSM 0 0 20

CVT 4 16 0

not cluster together and that there are no large gaps between them initially. Based

on the Sobol sequence’s performance in comparison with the uniform random strategy,

spreading out evenly is a useful strategy in the lower dimensional cases. But as the

dimensionality increases (from n = 500 onwards), the Sobol sequence did not perform

better than the uniform random strategy and performed almost as poorly as the uniform

random strategy.

As the problem dimensionality increases, the swarms are no longer able to explore the

exponentially growing search space effectively and the swarm’s performance deteriorates.

A typical profile of best score achieved by the swarm thus far in the search is shown in

figure 7.3 for every iteration. The figure shows that the best solution found by the Sobol

sequence was discovered within the first few iterations and then never improved upon

(figure 7.4 supports this assertion, with a plot of the Euclidean distance of the best

solution from the optimum); the good solutions found by the swarm were thus not due

to gradual exploration of the search space, but rather because the solution found by

the swarm was serendipitously near one of the swarm’s initial points. Such propitious

initialisation becomes less likely as the problem dimensionality increases.

The observed behaviour can be explained by the hypothesis that for high dimensional

problems, initialising particles evenly throughout the search space may not be beneficial.

As explained in section 7.2, it is proposed that forcing the swarm to search within a

small part of the search space may yield better results than attempting to explore the

entire search space.

Since the Sobol sequence swarm and the uniform random PSO swarm are initialised

evenly throughout the search space, there will be large distances between the initial

Chapter 7. Swarm Initialisation 141

Figure 7.3: Best score per iteration for F17 with n = 1000

Figure 7.4: Distance of best solution from the optimum for F17 with n = 1000

positions of the particles. Although the NSM is not initialised evenly throughout the

search space, the initial particle positions are the s points with the highest scores through

which the n dimensional simplex passes. In high dimensions, this becomes equivalent

to a brute-force approach for finding a favourable region in the search space, since the

number of points generated by the simplex’s iterative walk is much smaller than the

number of its initial vertices (n+ 1), which are chosen randomly. The distance between

the initial particle positions are thus also quite large. This is supported by figure 7.5.

Chapter 7. Swarm Initialisation 142

Figure 7.5: Swarm diversity per iteration on F17 with n = 2000

The momentum of the particles will thus be fairly large, due to the large initial

distances between the particles. Even if a good solution is found, the particles will be

unable to exploit the surrounding area effectively due to their large velocities, which will

prevent fine-grained searching.

The argument above is supported by figures 7.3 to 7.5. Figure 7.3 shows that for

the uniform random PSO, the Sobol sequence PSO and NSM PSO, the best score per

iteration fails to improve after initialisation. Additionally, figure 7.4 shows that the

distance from the optimum also did not improve after initialisation for uniform random,

Sobol and NSM strategies. As illustrated in figure 7.5, after an initial drop, the average

diversity of the swarm stays relatively high for the remainder of the search. This implies

that the swarms converged to a local minimum that was found within the first few

iterations of the search. However, the sustained high diversity indicates that the swarms

were unable to exploit further within the discovered region.

Both CVT and the subspace-based method exhibited lower swarm diversity than

the other methods, both initially and throughout the search. This may have been an

advantage: for the functions on which the CVT method outperformed the subspace-based

Chapter 7. Swarm Initialisation 143

method, the CVT swarm exhibited lower diversity than the subspace-based swarm. The

inverse also applies: for functions on which the two methods performed similarly, the

diversity profiles of CVT and subspace were very similar (see figures 7.6 to 7.9).

Low initial diversity implies that particles were initialised close together. The mo-

mentum components of the particles’ velocities would thus be smaller (since any possible

attractors are not far away and velocities are initialised to zero), enabling the particles

to perform fine-grained exploration in a selected region.

The subspace method also causes the swarm to have a low initial diversity due to

the way in which the scalar t is chosen. Although t (the scalar by which the direction

vector d is scaled) is chosen randomly, td must still be approximately within the bounds

of the search space. If the value of d is relatively large for only one dimension, this will

force t to be small, thereby confining the particle position to a smaller initial space in

all the other dimensions. The rest of this section is dedicated to examining CVT and

the reasons for its small initial diversity.

The aim of CVT is to distribute its centroids evenly throughout the search space.

Based on the initial swarm diversity, the algorithm certainly does not produce an even

spread of particles. For further investigation, two aspects of the CVT centroids were

measured: the average distance between centroid pairs, PD, and the average component-

wise distance between centroid pairs, PDC , as defined by equations (7.10) and (7.11)

below:

PD =

∑
each unique i,k pair‖Ci −Ck‖

total number of unique pairs

=
1(|C|
2

) |C|∑
i=1

|C|∑
k=i+1

‖Ci −Ck‖

=
2

|C|(|C| − 1)

|C|∑
i=1

|C|∑
k=i+1

‖Ci −Ck‖ (7.10)

where Ci denotes the i-th centroid, |C| denotes the total number of centroids and ‖.‖
denotes Euclidean distance. The total number of unique pairs is denoted by

(|C|
2

)
, which

is the total number of ways in which unique pairs can be chosen from a set of size |C|.

Chapter 7. Swarm Initialisation 144

Figure 7.6: Similar fitness of CVT and

subspace-based PSO on F17 with n=1000

Figure 7.7: Similar diversities of CVT and

subspace-based PSO on F17 with n=1000

Figure 7.8: Dissimilar fitness of CVT and

subspace-based PSO on F6 with n=1000

Figure 7.9: Dissimilar diversities of CVT and

subspace-based PSO on F6 with n=1000

The average component-wise distance between centroid pairs is given by:

PDC =

∑
each unique i,k pair

∑n
j=1 |Ci

j −Ck
j |

n× total number of unique pairs

=
2

n|C|(|C| − 1)

|C|∑
i=1

|C|∑
j=i+1

n∑
j

|Ci
j −Ck

j | (7.11)

Chapter 7. Swarm Initialisation 145

Consider figure 7.10 which shows the average Euclidean distance between every pair

of centroids, for various dimensionalities. The higher dimensional centroids have larger

initial distance, but the distance decreases sharply as the CVT iterations progress. Figure

7.11 plots the ratio between the final and initial inter-centroidal distances for every

dimensionality. As dimensionality increases, the distance between centroids generally

becomes smaller, relative to the initial distances.

Additionally, figure 7.12 shows that the average distance between any two dimensions

is large for low-dimensional problems and small for high dimensional problems, also

suggesting that the centroids are moving closer together.

Recall that the CVT method makes use of sample points to determine the cell cen-

troids and to ensure that they are distributed evenly throughout the search space. How-

ever, the number of sample points remain fixed regardless of the problem dimensionality.

One explanation for the uneven spread is that for high dimensional problems, the chosen

number of sampling points are not enough to ensure even distribution of the cell cen-

troids, particularly if the number of iterations also remains fixed. However, a series of

experiments that used increased sample size did not produce better distributed centroids.

Another possible explanation lies in the random initialisation of the centroids. If

centroids are initially clustered, then centroids far from the cluster will be assigned more

sample points than the centroids in the cluster. The centroids in the cluster will thus

not spread far enough in the limited number of iterations (since no samples far from the

cluster are assigned to it). The hyper-volume of the search space grows exponentially,

while the number of centroids (or particles) remains constant. The probability of the

randomly initialised centroids not being well-spread thus increases as dimensionality

increases, causing disproportional sample point assignment and small inter-centroidal

distances. Disproportionate sample point assignment can be tested for by measuring the

average number of sample points assigned to each centroid. Ideally, the average number

of sample points per centroid should be approximately equal to q
s

= 50000
100

= 500 for the

set of experiments. (The swarm had 50 particles and each particle requires an initial

position and an initial personal best position). Figures 7.13 and 7.14 show the number

of sample points assigned to each centroid, or the “centroid count”, for each of CVT’s

five iterations. Figure 7.13 shows the centroid count for n = 10 and figure 7.14 shows

Chapter 7. Swarm Initialisation 146

Figure 7.10: Average distance between centroid pairs per CVT iter-

ation, (L,U) = (−100, 100)

Figure 7.11: Ratio between final and initial distances between cen-

troid pairs

the centroid count for n = 1000. As expected, when the dimensionality is large, there is

initially a very large range for the centroid counts, due to the uneven distribution of the

randomly generated centroids. As the centroids are adjusted with every iteration, the

range becomes smaller and eventually centers around 500, as desired. For n = 10, the

initial and final ranges are much smaller and the mean becomes 500 much faster. Thus,

Chapter 7. Swarm Initialisation 147

Figure 7.12: Average component-wise distance between centroid pairs per CVT iteration,

(L,U) = (−100, 100)

disproportionate centroid counts does not explain the low initial swarm diversity.

Another explanation may lie in the norm used to assign samples to centroids. The

sum of sufficiently many random samples of x and y will cause ‖x − y‖ to approach

normal as n → ∞ for both the `1 and `2 norms (‖.‖1 and ‖.‖2). This may cause the

centroids to be normally distributed and biased towards the center of the search space.

Future work may try to apply the maximum norm (‖.‖∞) when assigning samples to

centroids.

Regardless of why the CVT strategy causes particles to be initialised close together,

the technique performs well. Unfortunately, the computational cost of essentially per-

forming k-means clustering with 50, 000 samples in high dimensional spaces is not neg-

ligible. For every iteration of CVT, the distance between every sample point and every

centroid must be calculated in order for the sample point to be assigned to the closest cen-

troid, which is particularly expensive in high dimensional spaces. Then, the arithmetic

mean of all samples assigned to a given centroid must be calculated used to transform

the centroid. Using big-O notation, the time complexity of the clustering algorithm is

O(qsin) [32] where q is the number of sample points, s is the number of centroids, i is

Chapter 7. Swarm Initialisation 148

Figure 7.13: Number of sample points assigned to each centroid for

each CVT iteration (n=10)

Figure 7.14: Number of sample points assigned to each centroid for

each CVT iteration (n=1000)

the number of iterations for which CVT is run and n is problem dimensionality, as usual.

By comparison, the subspace-based strategies performed the same as CVT on more than

three-quarters of the benchmark suite and has much lower computational cost.

Chapter 7. Swarm Initialisation 149

7.4.2 Different Seed Set Sizes

This section briefly examines the effect of different seed set sizes on the subspace-

method’s performance.

Figure 7.17 shows the performance of subspace-based PSOs for different values of u,

across varying dimensionality. For the low dimensional problems, it is not possible to

generate u linearly independent vectors if u > n. The combinations of n and u that do

not exist are colored with horizontal lines.

Clearly, u = 1 performed the worst across all dimensionalities. Since all the subspace-

based methods exhibited very similar diversity profiles (see figures 7.15 and 7.16 for

typical examples), the reason for its behaviour cannot simply be the position confinement

brought about by t. (As mentioned previously, the value t by which the direction vector

d is scaled, must be chosen so that td is within the bounds of the search space. If d is

very large in a few dimensions, then t is forced to be small, thereby confining the particle

in all other dimensions).

Figure 7.15: Typical swarm diversity profile

(F10 with n=1000)

Figure 7.16: Typical swarm diversity profile

(F11 with n=1000)

Thus, the difference in performance must be due to the degree of independence among

the particles (brought about by the different u-values). Although the initial range within

which particles are initialised becomes smaller as u increases, the initial subspace within

Chapter 7. Swarm Initialisation 150

which the swarm is initialised becomes larger. initialising it in a larger subspace gives

the swarm more freedom of movement, as described in Chapter 6, decreasing the chances

of premature convergence.

In general, larger seed sets performed better as problem dimensionality increased.

Although u = 100 was never the best performing subspace-strategy, the trend indicates

that it would have performed well on even higher dimensional functions. It is interesting

that the optimal number of seed vectors for a given dimensionality is small relative to

the dimensionality because it implies that a swarm with span much smaller than the

search space can perform well in high dimensions. The ratio between optimal u and

dimensionality becomes smaller as n increases (see figures 7.18 and 7.19).

The trend indicated by figure 7.19 implies that the optimal ratio between u and

dimensionality will converge to a small, constant value.

Figure 7.17: Performance of different seed set sizes as dimensionality varies (lighter is better)

Chapter 7. Swarm Initialisation 151

Figure 7.18: Optimal seed set size for each

dimensionality

Figure 7.19: Ratio of optimal seed set size to

problem dimensionality

7.4.3 Restricted Uniform Random Initialisation

The previous section observed that the best-performing initialisation strategies both

initialise the particles close together, so that the swarm has a low initial diversity (and

thus also low initial velocities). The question arises whether the success of the methods

can be attributed solely to the low spread of initial positions, since the successful methods

invariably had lower diversity than the other methods, both initially and throughout the

search.This section determines whether simply initialising the particles in a very small

area inside the search space is sufficient for good performance.

Table 7.7: Fraction of search space for particle initialisation (τ)

Dimensions τ

10 0.65

50 0.4

100 0.31

500 0.35

750 0.46

1000 0.55

For a given dimensionality, the Maximum Initial Component-wise (MIC) distance

when using the CVT strategy was calculated for each benchmark function (see table 7.8

Chapter 7. Swarm Initialisation 152

Table 7.8: Maximum initial component-wise distance for CVT with n = 10

Function Range MIC τ Function Range MIC τ

F1 200 130 0.65 F11 60 38.9 0.65

F2 10 6.50 0.65 F12 200 130 0.65

F3 60 39.13 0.65 F13 200 130 0.65

F4 200 131 0.65 F14 200 130 0.65

F5 10 6.49 0.65 F15 10 6.56 0.66

F6 60 38.9 0.65 F16 60 39.2 0.65

F7 200 129 0.64 F17 200 129 0.64

F8 200 130 0.65 F18 200 129 0.64

F9 200 131 0.65 F19 200 130 0.65

F10 10 6.51 0.65 F20 200 129 0.64

which provides the MIC distance for n = 10 as an example). The MIC distance is then

expressed as a fraction of [L,U] and averaged across all the benchmark functions. This

produced a measure of the component-wise range exhibited by the CVT strategy for a

given dimensionality. Particles are then initialised uniform randomly within a region at

the center of the search space, where the size of the region is determined by the calculated

component-wise range. The idea is expressed more formally below.

Let the MIC distance for function k be denoted by MICFk , where k ∈ 1, ..., K = 20

for the benchmark suite. Then the fraction of the search space within which a particle

will be initialised (denoted by τ) is given by

τ =
1

K

K∑
k=1

MICFk

Uj − Lj
(7.12)

Particle i will be initialised in each dimension j by

x0
i,j ∼U

(
Uj + Lj

2
− τ(Uj − Lj),

Uj + Lj
2

+ τ(Uj − Lj)
)

(7.13)

=U(Cj − τ(Uj − Lj), Cj + τ(Uj − Lj)) (7.14)

=U(L̃j, Ũj) (7.15)

Chapter 7. Swarm Initialisation 153

Figure 7.20: Maximal initial component-wise distance between centroids for CVT

where Cj denotes the center of the search space in dimension j. This initialisation scheme

will be referred to as Restricted Uniform Random (RUS). The values of τ used for each

dimensionality are given in table 7.7.

Since the new region of initialisation excludes regions near the boundaries, this

method will bias the particles towards solutions near the center of the search space.

However, the benchmark suite shifts the optimum randomly in each dimension, so the

strategy is not biased towards the benchmark suite. Future work may include randomly

choosing the center of the region within which particles are initialised.

It is interesting to observe the MIC distance as a function of dimensionality (see

figure 7.20). The MIC distance is large for low dimensional problems, decreases as n

approaches 100 and then increases again for the remainder of the n range tested. The

maximum distance in any dimension between any pair of particles is less than half of

the search space, which indicates that the centroids are not well distributed (providing

additional support for the observations of the previous section, regarding the spread of

CVT’s centroids).

In small dimensions, the number of samples and iterations work well for the gener-

ated centroids to be spread. However, as dimensionality increases, the component-wise

distance between centroids becomes smaller (as seen in figure 7.12), causing the drop

in MIC distance observed for n = 50 and n = 100. Once the dimensionality becomes

Chapter 7. Swarm Initialisation 154

sufficiently large, the MIC distance increases again because the chance of obtaining two

centroids that are far away from each other in at least one dimension increases as the

problem dimensionality increases. Thus, the maximum component-wise distance even-

tually grows as dimensionality increases.

Figure 7.21 shows the result of comparing the restricted uniform random initialisation

with uniform initialisation (across the entire search space), CVT and the subspace-based

method. Although the restricted uniform random method performed the best for n = 100

(for which its range was the smallest), it did not generally perform better than the other

strategies as dimensionality increased. It did perform better than uniform initialisation

for the higher dimensional problems (n ≥ 100).

Figure 7.21: Performance of restricted uniform random as dimensionality varies (lighter is

better)

Figures 7.22 to 7.25 show that the diversity of RUS was still higher than CVT and the

subspace-based method, especially as problem dimensionality increased. It may be that

using the maximum initial component distance is not restrictive enough. As explained

Chapter 7. Swarm Initialisation 155

before, increasing dimensionality increases the chances of obtaining two centroids that

are far away from each other in one dimension, even though most of the centroids are

not far apart. Thus using the Average Initial Component (AIC) distance may be more

effective in limiting the swarm’s initial diversity. An alternative strategy is to use the

τ for n = 100, but applying it to problems with n = {10, 50, 100, 500, 750, 1000}. Since

n = 100 produced the smallest τ , it may strike a good balance between emulating the

restrictive nature of CVT without being affected by the probability of obtaining large

MIC as n increases.

7.4.4 Roaming Behaviour

This section considers the question of whether the initialisation strategies were successful

in preventing particle roaming. Although the subspace-based methods and the CVT

method were the best performing initialisation strategies, figures 7.26 and 7.27 paint a

dire picture of particle wandering.

Figures 7.26 and 7.27 show the fraction of the swarm that was out of bounds per

iteration of the search. All the initialisation strategies except CVT, subspace and RUS

were out of bounds for almost the entire duration of the search on all the functions. The

RUS strategy consistently exhibited less roaming than uniform random, NSM and Sobol,

but more than CVT and the subspace-based method.

CVT and the subspace method showed particle roaming similar to figure 7.26, for

13 of the 20 benchmark functions, where at least 75% of the swarm was always out of

bounds (in some cases, such as F13, more than 90% of the swarm was out of bounds after

the first 100 iterations). On the more hopeful end of the spectrum, CVT and subspace

showed behaviour similar to figure 7.27 for six of the functions, where at least 75% of

the swarm eventually returned to the search space. Function F5 (figure 7.28) was the

exception, with the subspace-based method following the profile of figure 7.26 and CVT

following figure 7.27’s profile.

Thus, the initialisation strategies were not effective in preventing particle roaming

for more than half of the cases.

Figures 7.29 and 7.30 plot the two typical profiles for the average number of dimen-

sions out of bounds for every iteration. The CVT and subspace-based PSOs have fewer

Chapter 7. Swarm Initialisation 156

Figure 7.22: Swarm diversity of restricted

uniform random on F16 with n = 10

Figure 7.23: Swarm diversity of restricted uni-

form random on F16 with n = 100

Figure 7.24: Swarm diversity of restricted

uniform random on F16 with n = 500

Figure 7.25: Swarm diversity of restricted uni-

form random on F16 with n = 1000

dimensions out of bounds than the other initialisation strategies. Disconcertingly, the

number of violated boundaries increased as the search progressed for a number of the

functions (see figure 7.29). Upon further examination, the functions for which the par-

ticles failed to return to the search space were exactly those for which the number of

violated boundaries increased as the search progressed. This is indicative of an underly-

Chapter 7. Swarm Initialisation 157

ing problem: although roaming is mitigated to some extent, the swarm continues to leave

the search space instead of returning, just at a slower rate. A good choice in initialisation

strategy may thus mitigate particle roaming to some extent, but not reliably. It thus

fails to address the underlying force which drives particles out of the search space.

Figure 7.26: Fraction of swarm out of bounds

on F12 with n = 1000 (profile 1)

Figure 7.27: Fraction of swarm out of bounds

on F3 with n = 1000 (profile 2)

Figure 7.28: Fraction of swarm out of bounds on F15

with n = 1000 (a-typical profile)

Chapter 7. Swarm Initialisation 158

Figure 7.29: Average number of dimensions

out of bounds on F12 with n=1000 (profile 1)

Figure 7.30: Average number of dimensions

out of bounds on F3 with n=1000 (profile 2)

7.5 Conclusion

This chapter examined the effect of the swarm’s initialisation strategy on its performance

in high dimensions. It was found that the choice in initialisation strategy influences the

roaming behaviour and general performance exhibited by the swarm.

The chapter also examined a novel initialisation strategy which restricts the swarm’s

initial positions to a small subspace of the search space. The proposed initialisation

strategy thereby forces the swarm to focus on exploration within a small subspace of the

search space, rather than attempting to explore the entire search space. The optimal

number of basis vectors (i.e. the seed set size) used to generate the initial subspace was

found to depend on the problem dimensionality, with higher dimensional problems re-

quiring more basis vectors for good performance. The ratio between the optimal number

of basis vectors and problem dimensionality was found to be asymptotically decreasing.

The subspace-based strategy outperformed uniform random initialisation, Sobol se-

quence initialisation, and NSM on the high dimensional spaces. The best performing

initialisation strategy was CVT, which differs from previous findings where the subspace-

based initialisation strategy performed better. However, using CVT in high dimensional

spaces becomes prohibitively expensive in high dimensional spaces. Since the subspace-

Chapter 7. Swarm Initialisation 159

based strategy was statistically equivalent to CVT for more than three quarters of the

benchmark suite and is much less computationally complex than CVT, the subspace

strategy remains useful for high dimensional problems.

The chapter proposes that low initial swarm diversity may be beneficial to the swarm’s

searching ability in high dimensional problems because the particles will have lower

momentum, enabling the swarm to perform more fine-grained exploration within the

initialised region.

The chapter also examined the possibility that the reason for CVT and the subspace-

based strategy’s success is due entirely to the low initial particle spread. The theory

was tested by measuring the maximum initial component distance between the particle

positions generated by CVT and using the resulting range to initialise particles uniform

randomly within a restricted region of the search space. The restricted initialisation

method did not perform as well as CVT and the subspace-based method, implying that

there may be some other advantage to the way in which these initialisation strategies

work than simply initialising particles close together.

Chapter 8

Conclusions

This chapter concludes the main part of the thesis. Section 8.1 summarizes the findings

of the thesis and section 8.2 discusses directions of future work.

8.1 Summary

This work considered the behaviour of standard particle swarm optimisation (PSO) al-

gorithms on high dimensional problems. Chapter 3 showed that PSO exhibits unwanted,

continuous roaming as a result of uncontained velocity explosion in the first few itera-

tions. The roaming behaviour was shown to be independent of swarm size and roaming

behaviour was exhibited on all of the benchmark functions.

The remainder of the thesis showed that strategies which emphasized locally exploita-

tive or granular searching performed the best in high dimensional spaces. Rather than

encouraging exploration and attempting to find the optimal solution in a search space

which grows exponentially in hyper-volume, a more feasible approach is to focus on find-

ing a good solution in some smaller region of the search space. Particles were restricted

in a number of different ways such as clamping velocity to force small step sizes, selecting

values for the particles’ inertia weight and acceleration coefficients that result in smooth

movement trajectories and high momentum, introducing coupling between problem di-

mensions to reduce the swarm’s degrees of freedom and initialising the swarm within a

small region of the search space.

160

Chapter 8. Conclusions 161

Chapter 4 showed that velocity clamping can force particles to search in a granular

manner by reducing the step sizes of particles. As problem dimensionality increased, the

optimal maximum velocity decreased, indicating that smaller step sizes perform better in

high dimensional spaces. It was shown that the optimal maximum velocity converges to

a very small positive constant. The roaming behaviour of swarms with small maximum

velocities was reduced, but not entirely. Although the swarms with small maximum

velocities mostly succeeded in confining the particles to the search space, the swarms

were also vulnerable to premature convergence.

The influence of the inertia weight and acceleration coefficients were considered in

Chapter 5. It was shown that restricting the variance of particle positions reduces

the roaming behaviour of the particles. It was also observed that the best performing

combinations had high inertia weights and low acceleration coefficients, which reduces the

influence of updates to particles’ local and global attractors. The particles trajectories are

thus less likely to rapidly change direction, which reduces the magnitude of the velocity

explosion. Chapter 5 also considered the influence of the inertia weight and acceleration

coefficients on the movement patterns of the swarm. It was found that coefficients that

brought about smooth trajectories with highly correlated particle positions performed the

best in high dimensional spaces. Such trajectories generally had small base frequencies

and relatively low variances.

The importance of the stochastic scaling components, r1, r2 was considered in Chapter

6. The chapter provided theoretical analysis that illustrated the importance of applying

component-wise stochastic scaling in the velocity update equation, especially when the

problem dimensionality exceeds the swarm size. The chapter also introduced grouping

strategies, which divide the problem variables into a number of groups and apply the

same stochastic scalar to all components within a given group. This reduces the swarm’s

degrees of freedom by introducing coupling between variable dimensions. The most effec-

tive approach was to restrict the swarm’s movement initially, and then to gradually allow

more freedom to encourage continued improvement. This result is opposite to the typical

behavioural profile, which first performs exploration and then behaves exploitatively.

Chapter 7 examined the influence of the swarm’s initialisation strategy on its perfor-

mance in high dimensional spaces. It was found that the initialisation strategy strongly

Chapter 8. Conclusions 162

affects the swarm’s behaviour. In low dimensional spaces, strategies that maximized the

swarm’s initial spread performed well. However, as the dimensionality increased, strate-

gies that restrict the swarm’s initial positions to a small region within the subspace

performed better.

In high dimensional spaces, initialisation strategies that generate positions within a

small region of the search space perform better than strategies that maximize the swarm’s

initial spread. Such strategies help to prevent the initial velocity explosion because all

the particles are near one another initially.

Chapter 7 also introduced a novel initialisation strategy that restricts the swarm’s

initial positions to a small subspace of the search space. The proposed initialisation

strategy forces the swarm to focus on exploration within a small subspace of the search

space, rather than attempting to explore the entire search space. The optimal number

of basis vectors (i.e. the seed set size) used to generate the initial subspace was found

to depend on the problem dimensionality, where higher dimensional problems could be

better solved by increasing the size of the seed set. The proposed initialisation strategy

performed significantly better on high dimensional problems than the strategies that

maximized the swarm’s initial spread. Although the initialisation strategy employing

centroidal Voronoi tessellations performed better than the proposed strategy on four of

the benchmark problems, the two strategies were tied in performance for the remaining

sixteen problems in the benchmark suite and the proposed strategy is considerably less

computationally expensive.

Chapter 7 also investigated the feasibility of simply initialising the particles within a

smaller, bounded region at the center of the search space based on the initial maximum

spread produced by the centroidal Voronoi tessellation strategy.

8.2 Future Work

The obvious avenue to pursue in future work is the application of boundary handling

techniques, which was beyond the scope of this thesis. Boundary handling techniques ad-

dress particle roaming by preventing particles from leaving the search space or repairing

particle positions that are outside the search space.

Chapter 8. Conclusions 163

Chapter 4 noted that although velocity clamping may be used to mitigate particle

roaming to some extent, swarms with small maximum velocities were vulnerable to

premature convergence. Future work may examine other methods of velocity clamping

such as decreasing the maximum velocity throughout the search. This may address the

problems exhibited by the velocity clamping with premature convergence, since particle

step sizes are initially large which facilitates some exploration. The maximum velocity

becomes smaller as the search progresses, forcing particles to exploit locally towards the

end of the search.

Chapter 5 examined the relationship between the inertia weight and acceleration

coefficients, and swarm movement patterns. Based on these observations, future work

may develop a self-adaptive PSO that calculates the appropriate inertia weight and

acceleration coefficients to bring about a desired movement pattern. The inertia weight

and acceleration coefficients can be recalculated whenever the global and personal best

positions are updated, to maintain the desired variance in particle positions.

The grouping strategies proposed in Chapter 6 were either static, where the dimen-

sions assigned to a group were never changed, or dynamic, where the dimensions assigned

to a group were changed with every iteration. In future, an intermediate approach may

be examined, where the dimensions assigned to a particular group are only shuffled once

every hundred iterations or where shuffles are triggered by some other criteria such as

the number of personal best updates or particle step sizes.

The grouping strategies tested in Chapter 6 included using a fixed number of groups,

linearly increasing the number of groups and linearly decreasing the number of groups.

Future work may include developing different grouping strategies, such as logarithmically

increasing the number of groups. Hybrid grouping strategies, where the number of

dimension groups increases for some members of the swarm and decreases for other

members of the swarm may have applications in dynamic optimisation.

Chapter 7 proposed an initialisation strategy that initialised the swarm within a

small subspace in the search space. Future work may combine the proposed initialisation

strategy with the dimension grouping strategies in Chapter 6 to solve niching problems.

Swarms that are initialised in disjoint subspaces and restricted, at least partially, to the

initial subspace, may be effective in identifying different optima within the search space.

Chapter 8. Conclusions 164

Chapter 7 also examined the idea of initialising the swarm within a small region of the

search space. The calculated bounds for the small region were based on the maximum

spread exhibited by the best-performing initialisation strategy. Future work may extend

the idea and utilize even smaller bounds for initialisation (for instance, by using the

average spread of the best-performing strategy).

In general, the research presented in this thesis indicated that the initial velocity

explosion and unwanted roaming behaviour must be mitigated for PSO to be useful in

the field of Large Scale Optimisation (LSO). Future work that attempts to apply PSO

on high dimensional problems must thus address these two problems.

Bibliography

[1] A. Auger, N. Hansen, N. Mauny, and M. Schoenauer R. Ros. Bio-inspired con-

tinuous optimization: The coming of age. Invited Talk at the IEEE Congress on

Evolutionary Computation. 2007.

[2] M. Bataineh. On chebyshev array design using particle swarm optimization. Journal

of Electromagnetic Analysis and Applications, 3(6):213–219, 2011.

[3] R. Bellman. Dynamic Programming. Rand Corporation research study. Princeton

University Press, 1957.

[4] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest neigh-

bor” meaningful? In Proceedings of the 7th International Conference on Database

Theory, pages 217–235. Springer-Verlag, 1999.

[5] M. R. Bonyadi and Z. Michalewicz. Stability analysis of the particle swarm op-

timization without stagnation assumption. IEEE Transactions on Evolutionary

Computation, 20(5):814–819, Oct 2016.

[6] M. R. Bonyadi and Z. Michalewicz. Impacts of coefficients on movement patterns

in the particle swarm optimization algorithm. IEEE Transactions on Evolutionary

Computation, 21(3):378–390, June 2017.

[7] M. R. Bonyadi and Z. Michalewicz. Impacts of coefficients on movement patterns

in the particle swarm optimization algorithm. IEEE Transactions on Evolutionary

Computation, 21(3):378–390, June 2017.

165

Bibliography 166

[8] D. Bratton and J. Kennedy. Defining a standard for particle swarm optimization.

In Proceedings of the IEEE Swarm Intelligence Symposium, pages 120–127. IEEE

Computer Society, 2007.

[9] S. Chen, J. Montgomery, and A. Bolufé-Röhler. Measuring the curse of dimensional-

ity and its effects on particle swarm optimization and differential evolution. Applied

Intelligence, 42(3):514–526, April 2015.

[10] S. Chen, J. Montgomery, and A. Bolufé-Röhler. Measuring the curse of dimensional-

ity and its effects on particle swarm optimization and differential evolution. Applied

Intelligence, 42(3):514–526, April 2015.

[11] R. Cheng and Y. Jin. A competitive swarm optimizer for large scale optimization.

IEEE Transactions on Cybernetics, 45(2):191–204, Feb 2015.

[12] C. W. Cleghorn and A. P. Engelbrecht. Particle swarm convergence: An empirical

investigation. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 2524–2530, July 2014.

[13] C. W. Cleghorn and A. P. Engelbrecht. Particle swarm convergence: Standardized

analysis and topological influence. In Proceedings of the 9th International Confer-

ence on Swarm Intelligence, pages 134–145. Springer International Publishing, Sept

2014.

[14] C. W. Cleghorn and A. P. Engelbrecht. Particle swarm stability: a theoretical

extension using the non-stagnate distribution assumption. Swarm Intelligence, Sep

2017.

[15] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and conver-

gence in a multidimensional complex space. IEEE Transactions on Evolutionary

Computation, 6(1):58–73, Feb 2002.

[16] V. N. Costa, M. R. Monteiro, and A. C. Zambroni de Souza. Particle swarm op-

timization applied to reactive power compensation. In Proceedings of the 17th In-

ternational Conference on Harmonics and Quality of Power, pages 780–785, Oct

2016.

Bibliography 167

[17] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky. Low discrepancy sequences for

monte carlo simulations on reconfigurable platforms. In 2008 International Confer-

ence on Application-Specific Systems, Architectures and Processors, pages 108–113,

July 2008.

[18] Y. Delice, E. Kızılkaya Aydoğan, U. Özcan, and M. S. İlkay. A modified particle

swarm optimization algorithm to mixed-model two-sided assembly line balancing.

Journal of Intelligent Manufacturing, 28(1):23–36, 2017.

[19] P. Domingos. A few useful things to know about machine learning. Communications

ACM, 55(10):78–87, October 2012.

[20] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, pages 39–43, Oct 1995.

[21] R. C. Eberhart and X. Hu. Human tremor analysis using particle swarm optimiza-

tion. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC),

volume 3, pages 1927 – 1930, 1999.

[22] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in

particle swarm optimization. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 1, pages 84–88 vol.1, 2000.

[23] A. P. Engelbrecht. Computational Intelligence: An Introduction. John Wiley &

Sons, Chichester, England, December 2002.

[24] A. P. Engelbrecht. Roaming behavior of unconstrained particles. In Proceedings

of the 2013 BRICS Congress on Computational Intelligence and 11th Brazilian

Congress on Computational Intelligence, BRICS-CCI-CBIC ’13, pages 104–111.

IEEE Computer Society, 2013.

[25] A. P. Engelbrecht. Fitness function evaluations: A fair stopping condition? In

Proceedings of the IEEE Symposium on Swarm Intelligence, pages 1–8, Dec 2014.

Bibliography 168

[26] A.P. Engelbrecht. Particle swarm optimization: Velocity initialization. In Proceed-

ings of the IEEE Congress on Evolutionary Computation, pages 1–8, June 2012.

[27] A.P. Engelbrecht. Particle swarm optimization: Global best or local best? In Pro-

ceedings of the BRICS Congress on Computational Intelligence and 11th Brazilian

Congress on Computational Intelligence (BRICS-CCI CBIC), pages 124–135, Sept

2013.

[28] H. Fan. A modification to particle swarm optimization algorithm. Engineering

Computations, 19(8):970–989, 2002.

[29] P. Faria, J. Soares, Z. Vale, H. Morais, and T. Sousa. Modified particle swarm

optimization applied to integrated demand response and dg resources scheduling.

IEEE Transactions on Smart Grid, 4(1):606–616, March 2013.

[30] E. Fix and J. L. Hodges. Discriminatory analysis, nonparametric discrimination:

Consistency properties. US Air Force School of Aviation Medicine, Technical Report

4, January 1951.

[31] K. R. Harrison, A. P. Engelbrecht, and B. M. Ombuki-Berman. The sad state of

self-adaptive particle swarm optimizers. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC), pages 431–439, July 2016.

[32] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,

1979.

[33] S. Helwig and R. Wanka. Particle swarm optimization in high-dimensional bounded

search spaces. In Proceedings of the IEEE Swarm Intelligence Symposium, pages

198–205. IEEE Computer Society, 2007.

[34] S. Helwig and R. Wanka. Theoretical analysis of initial particle swarm behavior. In

Proceedings of the 10th International Conference on Parallel Problem Solving from

Nature - Volume 5199, pages 889–898. Springer-Verlag New York, Inc., 2008.

Bibliography 169

[35] K. Ishaque and Z. Salam. A deterministic particle swarm optimization maximum

power point tracker for photovoltaic system under partial shading condition. IEEE

Transactions on Industrial Electronics, 60(8):3195–3206, Aug 2013.

[36] M. Jiang, Y. P. Luo, and S.Y. Yang. Particle swarm optimization - stochastic

trajectory analysis and parameter selection. In F.T.S. Chan and M.K. Tiwari, edi-

tors, Swarm Intelligence, Focus on Ant and Particle Swarm Optimization. InTech,

Shanghai, China, 2007.

[37] M. Jiang, Y.P. Luo, and S.Y. Yang. Stochastic convergence analysis and parame-

ter selection of the standard particle swarm optimization algorithm. Information

Processing Letters, 102(1):8 – 16, 2007.

[38] S. Joe and F. Y. Kuo. Remark on algorithm 659: Implementing sobol’s quasiran-

dom sequence generator. Association for Computing Machinery Transactions on

Mathematical Software, 29(1):49–57, March 2003.

[39] L. Ju, Q. Du, and M. Gunzburger. Probabilistic methods for centroidal voronoi

tessellations and their parallel implementations. Parallel Computing, 28(10):1477 –

1500, 2002.

[40] S.M. Kamalapur and S. Sane. Scalars impact on particle swarm optimization per-

formance. In Proceedings of the International Conference on Recent Trends in In-

formation, Telecommunication and Computing, pages 318–320, March 2010.

[41] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,

1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948,

Nov 1995.

[42] J. Kennedy and R. Mendes. Population structure and particle swarm performance.

In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), vol-

ume 2, pages 1671–1676, 2002.

[43] T. Krink, J. S. Vesterstrom, and J. Riget. Particle swarm optimisation with spatial

particle extension. In Proceedings of the Congres on Evolutionary Computation CEC

- Volume 02, CEC ’02, pages 1474–1479. IEEE Computer Society, 2002.

Bibliography 170

[44] Y. Li, L. Jiao, R. Shang, and R. Stolkin. Dynamic-context cooperative quantum-

behaved particle swarm optimization based on multilevel thresholding applied to

medical image segmentation. Information Sciences, 294:408 – 422, 2015. Innovative

Applications of Artificial Neural Networks in Engineering.

[45] Q. Liu. Order-2 stability analysis of particle swarm optimization. Evolutionary

Computation, 23(2):187–216, June 2015.

[46] Z. Liu. Empirical study of the random number parameter setting for particle swarm

optimization algorithm. In Proceedings of the IEEE Fifth International Conference

on Bio-Inspired Computing: Theories and Applications, pages 246–252, Sept 2010.

[47] K. Malan and A. P. Engelbrecht. Algorithm comparisons and the significance of

population size. Proceedings of the IEEE Congress on Evolutionary Computation

(IEEE World Congress on Computational Intelligence), pages 914–920, 2008.

[48] J. Matoušek. On the l2-discrepancy for anchored boxes. Journal of Complexity,

14(4):527–556, December 1998.

[49] R. Morgan and M. Gallagher. Sampling techniques and distance metrics in high

dimensional continuous landscape analysis: Limitations and improvements. IEEE

Transactions on Evolutionary Computation, 18(3):456–461, June 2014.

[50] J. A. Nelder and R. Mead. A simplex method for function minimization. The

Computer Journal, 7(4):308–313, 1965.

[51] O. Olorunda and A. P. Engelbrecht. Measuring exploration/exploitation in particle

swarms using swarm diversity. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 1128–1134, June 2008.

[52] M. Omran, A. Slaman, and A.P. Engelbrecht. Image classification using particle

swarm optimization. In Proceedings of the Fourth Asia-Pacific Conference on Sim-

ulated Evolution and Learning, pages 270–374, 2002.

Bibliography 171

[53] C. C. Paige, M. Rozlozńık, and Z. Strakos. Modified gram-schmidt (mgs), least

squares, and backward stability of mgs-gmres. Society for Industrial and Applied

Mathematics Journal Matrix Analysis and Applications, 28(1):264–284, May 2006.

[54] S. Pandey, L. Wu, S. M. Guru, and R. Buyya. A particle swarm optimization-based

heuristic for scheduling workflow applications in cloud computing environments. In

Proceedings of the 24th IEEE International Conference on Advanced Information

Networking and Applications, pages 400–407, April 2010.

[55] U. Paquet and A. P. Engelbrecht. Particle swarms for linearly constrained optimi-

sation. Fundamental Informatics, 76(1-2):147–170, Feb 2007.

[56] K. E. Parsopoulos and M. N. Vrahatis. Initializing the particle swarm optimizer

using the nonlinear simplex method. In Advances in Intelligent Systems, Fuzzy

Systems, Evolutionary Computation, pages 216–221. WSEAS Press, 2002.

[57] R. Poli. Mean and variance of the sampling distribution of particle swarm optimizers

during stagnation. IEEE Transactions on Evolutionary Computation, 13(4):712–

721, Aug 2009.

[58] D. Poole. Linear Algebra: A Modern Introduction, Third Edition. Cengage Learning,

Canada, 2011.

[59] M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest

neighbors in high-dimensional data. J. Mach. Learn. Res., 11:2487–2531, December

2010.

[60] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson. Self-organizing hierarchical

particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans-

actions on Evolutionary Computation, 8(3):240–255, June 2004.

[61] M. Richards and D. Ventura. Choosing a starting configuration for particle swarm

optimization. In Proceedings of the IEEE International Joint Conference on Neural

Networks, volume 3, pages 2309–2312, July 2004.

Bibliography 172

[62] J. Riget and J.S. Vesterstrm. A diversity-guided particle swarm optimizer - the

arpso. Technical report, 2002.

[63] D. P. Rini, S. M. Shamsuddin, and S. S. Yuhaniz. Article: Particle swarm opti-

mization: Technique, system and challenges. International Journal of Computer

Applications, 14(1):19–27, January 2011. Full text available.

[64] J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in electromagnetics.

IEEE Transactions on Antennas and Propagation, 52(2):397–407, Feb 2004.

[65] R. Salomon. Re-evaluating genetic algorithm performance under coordinate rotation

of benchmark functions. a survey of some theoretical and practical aspects of genetic

algorithms. Biosystems, 39(3):263 – 278, 1996.

[66] I. Schoeman and A. P. Engelbrecht. Effect of particle initialization on the perfor-

mance of particle swarm niching algorithms. In Swarm Intelligence, volume 6234

of Lecture Notes in Computer Science, pages 560–561. Springer Berlin Heidelberg,

2010.

[67] J.F. Schutte and A.A. Groenwold. Sizing design of truss structures using particle

swarms. Structural and Multidisciplinary Optimization, 25(4):261–269, Oct 2003.

[68] F. Shahzad, A. R. Baig, S. Masood, M. Kamran, and N. Naveed. Opposition-Based

Particle Swarm Optimization with Velocity Clamping (OVCPSO), pages 339–348.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[69] S. Shan and G. G. Wang. Survey of modeling and optimization strategies to solve

high-dimensional design problems with computationally-expensive black-box func-

tions. Structural and Multidisciplinary Optimization, 41(2):219–241, Mar 2010.

[70] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In Proceedings of the

IEEE International Conference on Evolutionary Computation, pages 69–73, May

1998.

[71] Y. Shi and R. C. Eberhart. Parameter selection in particle swarm optimization,

pages 591–600. Springer Berlin Heidelberg, Mar 1998.

Bibliography 173

[72] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimization. In

Proceedings of the IEEE Congress on Evolutionary Computation, volume 3, page

1950 Vol. 3, 1999.

[73] G. D. Smith and S. Ebrahim. Data dredging, bias, or confounding. BMJ (Clinical

research ed.), 325(7378):14371438, December 2002.

[74] P. N. Suganthan. Particle swarm optimiser with neighbourhood operator. In Pro-

ceedings of the IEEE Congress on Evolutionary Computation, volume 3, page 1962

Vol. 3, 1999.

[75] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise. Benchmark functions

for the cec2010 special session and competition on large-scale global optimization.

Technical report, Nature Inspired Computation and Applications Laboratory, 2009.

[76] T. C. Trelea. The particle swarm optimization algorithm: convergence analysis and

parameter selection. Information Processing Letters, 85(6):317 – 325, 2003.

[77] B. Tudu, S. Majumder, K. K. Mandal, and N. Chakraborty. Comparative per-

formance study of genetic algorithm and particle swarm optimization applied on

off-grid renewable hybrid energy system. In Proceedings of the Second International

Conference on Swarm, Evolutionary, and Memetic Computing - Volume Part I,

SEMCCO’11, pages 151–158. Springer-Verlag, 2011.

[78] F. Van Den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, Uni-

versity of Pretoria, Pretoria, South Africa, South Africa, 2002. AAI0804353.

[79] F. van den Bergh and A. P. Engelbrecht. A cooperative approach to particle swarm

optimization. IEEE Transactions on Evolutionary Computation, 8(3):225–239, June

2004.

[80] F. van den Bergh and A. P. Engelbrecht. A study of particle swarm optimization

particle trajectories. Information Science, 176(8):937–971, April 2006.

Bibliography 174

[81] E. van Zyl and A. Engelbrecht. Comparison of self-adaptive particle swarm opti-

mizers. In Proceedings of the IEEE Symposium on Swarm Intelligence, pages 1–9,

Dec 2014.

[82] E. van Zyl and A.P. Engelbrecht. A subspace-based method for pso initialization.

In Proceedings of the IEEE Symposium Series on Computational Intelligence, pages

226–233, Dec 2015.

[83] E.T. van Zyl and A.P. Engelbrecht. Group-based stochastic scaling for pso velocities.

In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pages

1862–1868, 07 2016.

[84] M. Verleysen and D. François. The curse of dimensionality in data mining and

time series prediction. In Joan Cabestany, Alberto Prieto, and Francisco Sandoval,

editors, Proceedings of the 8th International Work-Conference on Artificial Neu-

ral: Networks Computational Intelligence and Bioinspired Systems, pages 758–770.

Springer Berlin Heidelberg, June 2005.

[85] H. Zhang, X. Li, H. Li, and F. Huang. Particle swarm optimization-based schemes

for resource-constrained project scheduling. Automation in Construction, 14(3):393

– 404, 2005. International Conference for Construction Information Technology

2004.

[86] A. Zimek, E. Schubert, and H. Kriegel. A survey on unsupervised outlier detection

in high-dimensional numerical data. Statistical Analysis and Data Mining, 5(5):363–

387, October 2012.

Appendix A

Benchmark Functions

The benchmark suite used throughout the thesis was specifically developed for testing

large-scale global optimisation algorithms by Tang et al. [75]. This appendix provides

a detailed explanation of the benchmark suite’s construction. The first section explains

the concept of separability and its relationship to problem difficulty. The section also

explains how problems of varying separability may be constructed. Section A.2 defines

the basic functions which are used to build the benchmark functions. Section A.3 defines

the benchmark suite. Lastly, section A.4 concludes the appendix with a brief summary

of the benchmark functions’ properties such as modality, domains and separability.

A.1 Separability and Basic Functions

The benchmark suite consists of minimization problems of varying degrees of separability.

Separability of a function as defined in [1] is provided below:

Definition A.1. A function f(x) is separable if and only if there exist functions f1, ..., fn,

each a function of one variable such that

arg min
x1,...,xn

{f(x1, x2, ..., xn)} =

(
arg min

x1
{f1(x1), }, ..., arg min

xn
{fn(xn), }

)
(A.1)

for the entire domain of f .

Thus, if f is a function of n variables, then it is separable with regards to addition

if and only if it can be rewritten as the sum of n, single-variable functions. If f(x) is

175

Appendix A. Benchmark Functions 176

a separable function, then its parameters xi are independent. A function that is not

separable is called nonseparable.

A function may exhibit varying degrees of separability. This is formalized below.

Definition A.2. A nonseparable function is called m-nonseparable if at most m of its

parameters are not independent.

A nonseparable function is called fully-nonseparable if every pair of its parameters are

not independent.

Problem separability is often used as a measure of the problem’s difficulty. Separable

problems considered easy and fully-nonseparable problems are considered difficult. Par-

tially separable problems generally fall between separable and fully-nonseparable prob-

lems on the difficulty scale. The partially separable problems contained in the bench-

mark suite fall into one of three classes. The first class of functions contains a number

of dependent variables with all the remaining variables independent. The second class

consists of multiple independent sub-components, with each sub-component being m-

nonseparable. The third class is a combination of these two and consists of a number

of independent sub-components, some separable and some m-nonseparable. The bench-

mark suite comprises of separable problems, fully-nonseparable problems and partially

separable problems from all three classes.

Functions of varying degrees of separability are constructed by dividing the input

variables into several groups, each of which can be kept independent or made dependent

by means of coordinate rotation [65]. Each group of variables is then evaluated by one

of six basic functions and these values are added together to produce the benchmark

function’s value. The six basic functions are listed below:

1. Sphere Function

2. Rotated Elliptic Function

3. Schwefel’s Problem 1.2

4. Rosenbrock’s Function

5. Rotated Rastrigin’s Function

Appendix A. Benchmark Functions 177

6. Rotated Ackley’s Function

Apart from the Sphere function, the basic functions are nonseparable. The number of

variable groups is determined by specifying m, the number of variables in each group.

The degree of problem separability is thus determined by the m parameter. The authors

proposed a value of m = 50, which is used in this thesis. In order to accommodate

comparisons between performance on high and low dimensional problems, the value of

m = 10 is also used on occasion (when comparing among problem dimensionalities as

small as n = 10).

The random variable grouping may be achieved as follows. Let P be a random

permutation of {1, 2, ..., n − 1, n} and let x be an n-dimensional variable. Then x(P1 :

Pm) = (xP1 , xP2 , ..., xPm−1 , xPm)T is a random group of sizem chosen from the components

of x. The random permutation is used in this manner to index the objective variables

and produce random groups of the desired number and size.

The next section A.2 defines the basic functions used to construct the benchmark

functions.

A.2 Basic Functions

This section provides the definitions of the basic functions mentioned in section A.1.

The notation may be interpreted as follows: n denotes the problem dimensionality, m

denotes the group size and x denotes an input variable or candidate solution.

A.2.1 Sphere Function

The Sphere function is a separable function defined by

Fsphere(x) =
n∑
j=1

x2
j (A.2)

Appendix A. Benchmark Functions 178

A.2.2 Rotated Elliptic Function

The Elliptic function is separable and is defined as:

Felliptic(x) =
n∑
j=1

(106)
j−1
n−1x2

j (A.3)

The Elliptic function is multiplied by an orthogonal matrix to form the nonseparable,

Rotated Elliptic basic function. This is given by

Frot elliptic(x) = Felliptic(Mx) (A.4)

where M is a n× n orthogonal matrix.

A.2.3 Schwefel’s Problem 1.2

Schwefel’s Problem 1.2 is nonseparable and given by

Fschwefel(x) =
n∑
j=1

(j∑
k=1

xj

)2

(A.5)

A.2.4 Rosenbrock’s Function

Rosenbrock’s Function is nonseparable and given by

Frosenbrock(x) =
n−1∑
j=1

(
100(x2

j − xj+1)2 + (xj − 1)2
)

(A.6)

A.2.5 Rotated Rastrigin’s Function

Rastrigin’s function is separable and is defined by

Frastrigin(x) =
n∑
j=1

(
x2
j − 10 cos(2πxj) + 10

)
(A.7)

The nonseparable basic function, Rotated Rastrigin’s function, is obtained from Rastri-

gin’s function by multiplying with an orthogonal matrix for co-ordinate rotation.

Frot rastrigin(x) = Frastrigin(Mx) (A.8)

where M is a n× n orthogonal matrix.

Appendix A. Benchmark Functions 179

A.2.6 Rotated Ackley’s Function

Ackley’s function is separable and is defined by

Fackley(x) = −20 exp

(
− 0.2

√√√√ 1

n

n∑
j=1

x2
j

)
− exp

(
1

n

n∑
j=1

cos(2πxj)

)
+ 20 + exp (A.9)

Ackley’s function is multiplied with an orthogonal matrix M to form the nonseparable

basic function Rotated Ackley’s function.

Frot ackley(x) = Fackley(Mx) (A.10)

where M is a n× n orthogonal matrix.

A.3 Benchmark Functions

The definitions of all the benchmark functions are provided in sub-sections A.3.1 to

A.3.5. The function definitions are grouped according to separability. As before, n

denotes the problem dimensionality, m denotes the group size and x denotes an input

variable or candidate solution. The global optimum of a function is denoted by o and z

denotes the shifted candidate solution z = x − o. P denotes a random permutation of

{1, 2, ..., n− 1, n} as described previously.

A.3.1 Separable Functions

The benchmark suite contains three separable functions, which are defined in table A.1.

The corresponding expressions for the relevant basic functions can be found in section

A.2. As mentioned, z = x− o where o denotes the function’s shifted global optimum.

A.3.2 Single-Group m-Nonseparable Functions

A partially separable benchmark function is called single-group m-nonseparable if it

contains a number of dependent variables with all the rest of the variables independent.

Appendix A. Benchmark Functions 180

Table A.1: Separable functions

Function Name Expression

F1 Shifted Elliptic Function Felliptic(z)

F2 Shifted Rastrigin’s Function Frastrigin(z)

F3 Shifted Ackley’s Function Fackley(z)

These functions fall into the first class of partially separable problems. The general form

of these problems is given in Equation (A.11):

F (x) = Fγ
(
z(P1 : Pm)

)
× 106 + Fα

(
z(Pm+1 : Pn)

)
(A.11)

where Fγ is a nonseparable basic function, Fα is a separable basic function and z is ob-

tained from x and o as described previously. There are five single-group m-nonseparable

functions in the benchmark suite, provided in table A.2 below by specifying Fγ and Fα.

Table A.2: Single-Group m-nonseparable Functions

Function Fγ Fα

F4 Frot elliptic Felliptic

F5 Frot rastrigin Frastrigin

F6 Frot ackley Fackley

F7 Fschwefel Fsphere

F8 Frosenbrock Fsphere

A.3.3 n
2m-Group and m-Nonseparable Functions

A partially separable benchmark function is called n
2m

-group and m-nonseparable func-

tions if it consists of n
2m

+ 1 independent components, where the first n
2m

components

are m-nonseparable and the last component is separable. These functions fall into the

third class of partially separable problems. The general form of these problems is given

in Equation (A.12):

Appendix A. Benchmark Functions 181

F (x) =

n
2m∑
k=1

Fγ
(
z(P(k−1)m : Pkm)

)
+ Fα

(
z(Pn

2
+1 : Pn)

)
(A.12)

where Fγ is a nonseparable basic function and Fα is a separable basic function. There

are five n
2m

-group andm-nonseparable functions in the benchmark suite, provided in table

A.3 below by specifying Fγ.

Table A.3: n
2m -Group and m-nonseparable functions

Function Fγ Fα

F9 Frot elliptic Felliptic

F10 Frot rastrigin Frastrigin

F11 Frot ackley Fackley

F12 Fschwefel Fsphere

F13 Frosenbrock Fsphere

A.3.4 n
m-Group and m-Nonseparable Functions

A partially separable benchmark function is called n
m

-group and m-nonseparable func-

tions if it consists of n
m

independent sub-components, all nonseparable. These functions

fall into the second class of partially separable problems. The general form of these

problems is given in Equation (A.13):

n
m∑
k=1

Fγ
(
z(P(k−1)m : Pkm)

)
(A.13)

where Fγ is a nonseparable basic function. There are five n
m

-group and m-nonseparable

functions in the benchmark suite, provided in table A.4 below by specifying Fγ.

A.3.5 Nonseparable Functions

The benchmark suite contains two nonseparable functions, which are defined in table

A.5. The corresponding expressions for the relevant basic functions can be found in

Appendix A. Benchmark Functions 182

Table A.4: n
m -Group and m-nonseparable functions

Function Fγ

F14 Frot elliptic

F15 Frot rastrigin

F16 Frot ackley

F17 Fschwefel

F18 Frosenbrock

section A.2. As mentioned, z = x − o where o denotes the function’s shifted global

optimum.

Table A.5: Nonseparable functions

Function Name Expression

F19 Shifted Schwefel’s Problem 1.2 Fschwefel(z)

F20 Shifted Rosenbrock’s Function Frosenbrock(z)

A.4 Benchmark Function Summary

The benchmark suite consists of 20 minimization problems, of varying degrees of sepa-

rability. The optimal objective function value is zero for all the functions.

Table A.6 summarizes each benchmark function’s degree of separability, modality and

domain. The class of partially separable functions are specified. The modality column

denotes unimodal functions with “U” and multimodal functions with “M”. The optimal

objective function value for all of the benchmark functions is 0.

Appendix A. Benchmark Functions 183

Table A.6: Benchmark functions

Function Separability Modality Domain

F1 separable U [−100, 100]n

F2 separable M [−5, 5]n

F3 separable M [−32, 32]n

F4 partial class 1 U [−100, 100]n

F5 partial class 1 M [−5, 5]n

F6 partial class 1 M [−32, 32]n

F7 partial class 1 U [−100, 100]n

F8 partial class 1 M [−100, 100]n

F9 partial class 3 U [−100, 100]n

F10 partial class 3 M [−5, 5]n

F11 partial class 3 M [−32, 32]n

F12 partial class 3 U [−100, 100]n

F13 partial class 3 M [−100, 100]n

F14 partial class 2 U [−100, 100]n

F15 partial class 2 M [−5, 5]n

F16 partial class 2 M [−32, 32]n

F17 partial class 2 U [−100, 100]n

F18 partial class 2 M [−100, 100]n

F19 fully nonseparable U [−100, 100]n

F20 fully nonseparable M [−100, 100]n

Appendix B

Acronyms

This appendix lists all the acronyms that were used throughout the thesis. Acronyms

are typeset in bold, with the corresponding meaning alongside. The list of acronyms is

ordered alphabetically.

AIC Average Initial Component.

CVT Centroidal Voronoi Tesselations.

gBest Global Best.

lBest Local Best.

LSO Large Scale Optimisation.

MGS Modified Gram-Schmidt.

MIC Maximum Initial Component-wise.

NSM Non-linear Simplex Method.

PSO Particle Swarm Optimisation.

RUS Restricted Uniform Random.

184

Appendix C

Symbols

This appendix lists the important symbols used throughout the thesis, as well as their

corresponding meanings. The symbols are divided according to the chapter in which the

symbols were first introduced. Each chapter’s list of symbols is ordered alphabetically.

C.1 Chapter 2: Background

c1 Cognitive acceleration coefficient.

c2 Social acceleration coefficient.

i Index of particle within the swarm.

j Index for problem dimension.

L Lower bound of the search space when all dimensions have the same boundary.

Lj The search space’s lower bound in the j-th dimension.

n The number of problem dimensions.

ns The size of the swarm.

Rn The n-dimensional real number space.

r1,j First uniform random stochastic scalar in j-th dimension.

r2,j Second uniform random stochastic scalar in j-th dimension.

t The current iteration of the PSO algorithm.

tmax The maximum number of iterations.

185

Appendix C. Symbols 186

U Upper bound of the search space when all dimensions have the same boundary.

Uj The search space’s upper bound in the j-th dimension.

vti The velocity of the i-th particle at iteration t.

vmax,j Maximum velocity in dimension j.

vmin,j Minimum velocity in dimension j.

w Inertia weight.

xti The position of the i-th particle at iteration t.

yti The i-th particle’s personal best position at iteration t.

ŷti The i-th particle’s neighbourhood best position at iteration t.

C.2 Chapter 3: Symptoms of High Dimensional Prob-

lems

D Swarm diversity.

m Degree of separability parameter (see Appendix A).

V Average particle velocity.

x̂ Swarm centre, the arithmetic mean of all particle positions.

C.3 Chapter 4: Velocity Clamping

δ Fraction of search space to which velocity is clamped.

δ∗ Optimal clamping fraction for a given algorithm configuration.

F Number of functions in benchmark suite.

f A benchmark function.

(g, h) A pair of algorithm configurations.

J Number of algorithm configurations.

Mg Total score of configuration g. [Eq. (4.8), pg. 42]

Rh,f Median of the best score achieved by configuration g on function f .

sg,h,f Win of configuration g over h on function f . [Eq. (4.6), pg. 41]

Appendix C. Symbols 187

zg,h Score of configuration g’s wins over h. [Eq. (4.7), pg. 41]

C.4 Chapter 5: Variance of Particle Positions

γ Fraction to which the variance is restricted.

σj Standard deviation of particle position in the j-th dimension.

σ2 Variance of a particle’s position.

c Social and cognitive acceleration coefficients (c1 = c2 = c).

F Base frequency of particle positions.

Vc Coefficient of variance. [Eq. (5.6), pg. 57]

C.5 Chapter 6: Grouping Stochastic Scalars

B A set of vectors that form a basis for a specified vector space.

G A grouping or partition of P .

Gk The k-th group in a grouping G.

g The number of groups specified by a grouping strategy (may depend on t).

I The set containing the swarm’s initial positions, personal best positions

and velocities.

P A random permutation of {1, 2, ..., n}.

S The search space.

SI A particle’s step size within the initial subspace.

SO A particle’s step size outside the initial subspace.

C.6 Chapter 7: Swarm Initialization

α The reflection coefficient for NSM.

β The contraction coefficient for NSM.

γ The expansion coefficient for NSM.

Appendix C. Symbols 188

τ Fraction of search space within which swarm is initialised using CVT.

ai Arithmetic average of the sample points assigned to generator i.

bi An orthogonalized unit vector generated from the seed set.

Ci The i-th centroid for a given CVT iteration.

c Centre of the search space.

D(J, s) The discrepancy of s-many points w.r.t sub-interval J . [Eq. (7.2), pg. 128]

D∗(s) The worst-case discrepancy of a set of points s-many points. [Eq. (7.3), pg. 128]

d Direction vector, a random linear combination of orthogonal unit vectors.

g Generator, initial centroid position.

In The half open, n-dimensional unit cube.

L Line passing through centre of search space with direction d.

PD Average distance between centroid pairs. [Eq. (7.10), pg. 143]

PDC Average component-wise distance between centroid pairs. [Eq. (7.11), pg. 144]

pj The j-th vertex of a simplex.

Q The set of sample points generated for a given CVT iteration.

q The number of sample points generated for a given CVT iteration.

s The number of required initial positions.

t Scalar that determines the generated initial point’s position on the line L.

tmax Maximum bound for the scalar t.

tmin Minimum bound for the scalar t.

u The number of vectors in the seed set for the subspace-based method.

vi A vector in the seed set.

Appendix D

Derived Publications

The following publications were derived from this dissertation.

• E.T. van Zyl and A.P. Engelbrecht. A Subspace-Based Method for PSO Initializa-

tion. In Proceedings of the IEEE Symposium Series on Computational Intelligence,

pages 226–233, Dec 2015.

• E.T. van Zyl and A.P. Engelbrecht. Group-based Stochastic Scaling for PSO

Velocities. In Proceedings of the IEEE Congress on Evolutionary Computation,

pages 1862–1868, Jul 2016.

• E.T. Oldewage, A.P. Engelbrecht and C. Cleghorn. The Merits of Velocity Clamp-

ing Particle Swarm Optimisation in High Dimensional Spaces In Proceedings of

the IEEE Symposium Series on Computational Intelligence, Dec 2017.

189

	Contents
	List of Figures
	List of Algorithms
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Dissertation Outline

	2 Background
	2.1 Optimisation
	2.2 Particle Swarm Optimisation
	2.2.1 Position and Velocity Update Equations
	2.2.2 Velocity Clamping
	2.2.3 PSO with Inertia Weight Coefficient
	2.2.4 Social and Cognitive Acceleration Coefficients
	2.2.5 Social Structures
	2.2.6 Applications

	2.3 Summary

	3 Symptoms of High Dimensional Problems
	3.1 The Curse of Dimensionality
	3.2 Empirical Illustration
	3.2.1 A Naive Approach
	3.2.2 Swarm Size and the Search Space

	3.3 Particle Roaming
	3.4 Summary

	4 Velocity Clamping
	4.1 Clamping Methods
	4.1.1 Method 1 - Clamping Per Dimension
	4.1.2 Method 2 - Magnitude

	4.2 Experimental Results
	4.2.1 Optimal -Values
	4.2.2 Clamping Method Comparison
	4.2.3 Swarm Behaviour

	4.3 Summary

	5 Variance of Particle Positions
	5.1 A Brief History of Variance
	5.2 Restricting Variance
	5.2.1 Restricting the Variance of Particle Positions
	5.2.2 Experimental Method
	5.2.3 Variance and Dimensionality
	5.2.4 Summary

	5.3 Frequency and Variance of Particle Positions
	5.3.1 Base Frequency and Range of Movement
	5.3.2 Experimental Method
	5.3.3 Movement Patterns in High Dimensions

	5.4 Summary

	6 Grouping Stochastic Scalars
	6.1 Stochastic Scaling: Vector or Scalar
	6.1.1 Scaling with Scalars
	6.1.2 Component-Wise Scaling with Vectors

	6.2 Grouping Stochastic Scalars
	6.2.1 Groups of Variables
	6.2.2 Fixed Group Number
	6.2.3 Decreasing Group Number
	6.2.4 Increasing Group Number

	6.3 Results and Discussion
	6.3.1 Comparison to Standard Inertia PSO
	6.3.2 Static vs Dynamic Grouping Strategies
	6.3.3 Fixed Group Numbers
	6.3.4 Comparison of Grouping Strategies

	6.4 Summary

	7 Swarm Initialisation
	7.1 Initialisation Methods
	7.1.1 Uniform Random Initialisation
	7.1.2 Sobol Sequences
	7.1.3 Centroidal Voronoi Tesselations
	7.1.4 Non-linear Simplex Method

	7.2 Proposed Initialisation Strategy
	7.3 Experimental Procedure
	7.4 Results and Discussion
	7.4.1 Initialisation and Dimensionality
	7.4.2 Different Seed Set Sizes
	7.4.3 Restricted Uniform Random Initialisation
	7.4.4 Roaming Behaviour

	7.5 Conclusion

	8 Conclusions
	8.1 Summary
	8.2 Future Work

	Bibliography
	A Benchmark Functions
	A.1 Separability and Basic Functions
	A.2 Basic Functions
	A.2.1 Sphere Function
	A.2.2 Rotated Elliptic Function
	A.2.3 Schwefel's Problem 1.2
	A.2.4 Rosenbrock's Function
	A.2.5 Rotated Rastrigin's Function
	A.2.6 Rotated Ackley's Function

	A.3 Benchmark Functions
	A.3.1 Separable Functions
	A.3.2 Single-Group m-Nonseparable Functions
	A.3.3 n2m-Group and m-Nonseparable Functions
	A.3.4 nm-Group and m-Nonseparable Functions
	A.3.5 Nonseparable Functions

	A.4 Benchmark Function Summary

	B Acronyms
	

	C Symbols
	C.1 Chapter 2: Background
	C.2 Chapter 3: Symptoms of High Dimensional Problems
	C.3 Chapter 4: Velocity Clamping
	C.4 Chapter 5: Variance of Particle Positions
	C.5 Chapter 6: Grouping Stochastic Scalars
	C.6 Chapter 7: Swarm Initialization

	D Derived Publications

