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ABSTRACT 

The automotive parts supply chain is characterised by expectations of high levels of parts 

availability, as vehicles are designed to be maintained throughout their life cycles.  There 

is, however, a significant level of unpredictability in demand, requiring suppliers to store 

sufficient inventory to service demand associated with planned maintenance and 

unplanned repair events.  In this thesis, a supply chain characterisation framework is 

proposed and confirmed with a series of case studies.  The automotive supply chain is 

characterised as a Class III-P supply chain.  This type of supply chain has products with 

high complexity and long life expectancies, which is augmented through the design of 

maintenance and repair schedules, requiring a supporting parts distribution supply chain. 

Automotive part supply continues for 15 years after production of a model ceases, 

requiring a wide array of items to be available for a significant period of time after the 

end of vehicle production.  The need for parts availability for such a long period results 

in space constraints within the supply chain.  Just-In-Time (JIT) manufacturing results in 

lean supply chains, but it is shown that the cost for post vehicle production can be high 

as the volumes required can decrease significantly.  To implement JIT in the automotive 

parts supply chain a MAX/MAX inventory strategy is most commonly followed.  The 

MAX/MAX inventory strategy is implemented with the Maximum Inventory Position 

(MIP) inventory management method.  Deriving the method theoretically and comparing 

it with the practical implementation shows clear concerns regarding the dimensional 

consistency of the practical implementation.  Using a System Dynamics Simulation 

Model (SDSM), it is shown that while the theoretical version of the method (MIPTheory) 

may minimise inventory, it does not maximise parts availability, as measured by 

allocation fill rate (AFR).  The actual implementation (MIPActual) improves the AFR, but 

increases average inventory levels significantly (as much as 100 times in some cases). 

While it is accepted that stock-on-hand inventory management policies are inherently 

unstable, a stock-on-hand policy, Stock Target Setting (STS) was developed and 

redesigned to be stable.  The SDSM showed that the STS method could result in stable 

behaviour, using the supply chain lead time as a damping factor.  Comparison between 

the three methods in a theoretical set of demand, demand variance, lead time and lead 

time variance scenarios showed that the STS method improves the AFR above that of 

MIPTheory and requires significantly less inventory than the MIPActual method.  Analysis of 

the STS method indicates there are some areas for improving the stock target equation, 
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but this has to be performed with sufficient care.  Extending the SDSM to use vehicle 

sales to generate service parts demand, it is possible to evaluate the inventory 

management methods under non-stationary demand conditions.  The STS method is 

shown to be the preferred method for domestic supplied parts when there is no start-up 

inventory.  For imported parts, the STS method performs better in the long term.  The 

MIPActual method also results in high levels of parts availability.  The MIPActual method, 

however, requires significantly more inventory.  In the case of start-up inventory, the STS 

method is less effective in the short term, but in the long term requires less inventory to 

maintain an AFR of 100.  A practical analysis using actual data show that there are cases 

where the STS method outperforms the MIP methods, but this is dependent on the demand 

and lead time behaviour. 

The study clearly shows that stock-on-hand inventory management policies, such as the 

STS method developed in this study, have the potential to improve the performance of 

the automotive parts supply chain.  With the STS method, inventory levels can be 

reduced, reducing the pressure on storage space requirements resulting from the MIPActual 

results.  At the same time, the AFR levels can be maintained.  The practical problem in 

the automotive parts supply chain has clearly been addressed and solved. 

Significant achievements in the study include the development of a practical supply chain 

characterisation framework that provides guidance on the supply chain design for specific 

product classes.  The SDSM is a powerful generic tool that can be adjusted for alternative 

inventory management methods.  It can be expanded to evaluate any alternative inventory 

management method.  The STS method showed that the assumption that stock-on-hand 

inventory management methods are inherently stable is incorrect, opening up the potential 

to initiate a new research direction towards effective stock-on-hand inventory 

management methods.  The STS method was shown to be a viable alternative for the 

automotive service parts supply chain. 
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1 INTRODUCTION AND OVERVIEW 

Supply chains have existed since the dawn of humanity.  Joseph oversaw a supply chain 

that harvested grain all through Egypt, stored it in centralized warehouses and distributed 

it to citizens during the time of drought.  In modern times, supply chains span the globe, 

with sophisticated management and information systems keeping track of product 

movements, warehousing and sales.  Raw materials and products are sourced globally, 

consolidated in warehouses and distributed globally, when required. 

The purpose of supply chain management is to ensure that products are available to users 

when and where required.  This primary objective of availability results in a need to keep 

sufficient stock at appropriate locations and the need for effective distribution.  At the 

same time, to control costs, it is necessary to minimise the amount of stock carried at any 

point in time.  A key problem in supply chains is the so-called bullwhip effect, where 

small changes in demand results in amplification, which eventually leads to a system that 

oscillates between overstocking and understocking (Forrester, 1958). 

The specific supply chain under study in this thesis is the South African automotive parts 

supply chain.  However, the results are also applicable to other countries, as discussed in 

Chapter 2.  The automotive industry is a basic life cycle management supply chain 

(Blanchard, 2004).  Vehicles are assembled and distributed using a network of 

dealerships.  This part of the business is usually, referred to as the OE (Original 

Equipment) part of the business.  Once the vehicle leaves the dealers’ showroom, life 

cycle management commences.  As part of the design process, regular service intervals 

are stipulated with specific service parts to be replaced at each interval.  Service centres 

also inspect specific wear and tear parts to determine if they are still within specification 

or need to be replaced.  In addition, components can fail for a variety of reasons and need 

to be replaced or repaired.  The final aspect of the life cycle support is the repair and 

replacement of parts due to accidents.  In addition to the standard life cycle elements, 
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there is also the use of recall campaigns to correct design problems identified once the 

vehicles enters the market. 

The automotive parts supply chain includes a variety of demand patterns, such as: fast 

moving service parts, medium moving wear and tear parts and slow and erratic moving 

repair parts.  Each of the groupings has its own specific average demand and demand 

variance.  In the case of fast moving parts, demand is predictable, yet it still includes 

demand variance.  In the case of erratic demand, both the incidence and quantity of items 

required at any point in time is unpredictable. 

1.1 Research Question 

Practical experience shows that the South African automotive parts supply chain 

sometime suffers from stock-outs.  Dealers do not have parts to service or repair vehicles, 

negatively affecting customer experience.  Within the supply chain, the original 

equipment suppliers experience the bullwhip effect with overstocking as well as stock-

outs.  Overstocking places strain on warehouse space, while stock-outs result in client 

dissatisfaction.  To address the problem of the bullwhip effect in the South African 

automotive parts supply chain, the following research questions are addressed: 

 Can a framework based on product characteristics be developed to simply the 

selection of a supply chain design? 

 Is the existing inventory management method, based on a MAX/MAX strategy 

sufficient to manage the bullwhip effect? 

 Can an alternative stock-on-hand inventory management method, be developed to 

manage the bullwhip effect and provide high levels of availability at lower 

average inventory levels? 

1.2 Objectives 

The objectives of this study are:  

 To develop a conceptual supply chain characterisation framework which 

addresses supply chain design from a product and life expectancy point of view. 

 To conduct a theoretical analysis of the current inventory management methods 

(including the ordering algorithms). 

 To confirm that Just-In-Time (JIT) is a feasible solution for the automotive parts 

industry. 
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 To develop an alternative stock-on-hand based inventory management method 

that will not result in the bullwhip effect. 

 To evaluate and compare three inventory management methods (best practice 

practical, best practice theory and new theoretical method) within a theoretical 

domain, using various statistical demand patterns.   

 To evaluate and compare the performance of the three inventory management 

methods against a practical demand dataset that includes a variety of demand 

patterns. 

 To determine appropriate parameters for the recommended inventory 

management methods to obtain the best possible results. 

 

1.3 Contributions 

The thesis provides a number of key contributions to the field of strategic inventory 

management and optimisation.  The contributions include: 

 A conceptual supply chain characterisation framework that simplifies the task of 

practitioners when decisions are to be made regarding the structure and design of 

supply chains.  The framework simplifies the decisions regarding supply chain 

structure. 

 The implications of Just In Time or Lean Supply Chain on parts cost target setting 

are analysed and a standardised strategy for setting cost targets is proposed. 

 Historically the MIP ordering aproach has been treated as a "black box" 

development by consultants and embedded in software for planners to use.  In this 

thesis, the theoretical principles are analysed, allowing inventory controllers to 

better understand why the software provides the results that it does. 

 The Stock Target Setting (STS) method is developed and it is shown that this 

stock-on-hand inventory management method can be adapted to be stable and not 

induce the bullwhip effect.  The development of a stable stock-on-hand method 

opens up a new domain for academics and practitioners to develop stock-on-hand 

inventory management methods.  These methods were previously not pursued due 

to historical assumptions that have now been shown to  be invalid under certain 

conditions. 
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 A System Dynamics Simulation Model (SDSM) is developed, that can be used to 

test alternative inventory management methods, for both local and imported parts 

supply.  The model is sufficiently generic, that it can be adapted to any inventory 

management method.  The model can also be adjusted to address any other supply 

chain and is, therefore, not limited to the automotive spare parts supply chain, 

allowing academics and practitioners to explore the effectiveness of alternative 

inventory management methods.  While the practical analysis was performed on 

South African automotive parts distribution scenarios, the SDSM can be applied 

to scenarios from any country. 

 The SDSM also allows for analysis using simulated stationary and non-stationary 

demand and real data. 

 The most effective inventory management method (from the three methods 

analysed) for achieving effective supply chain performance under various demand 

patterns and supply chain structures, is identified.  The analysis is performed in 

both a theoretical domain, as well as with a specific dataset that reflects the various 

demand patterns experienced in a real automotive parts supply chain.  These 

practical results can provide practitioners with a better understanding of a more 

appropriate inventory management method to apply to the specific case of 

automotive parts supply. 

1.4 Document Structure 

The thesis structure is as follows: 

Chapter 2 focuses on a review of relevant literature.  Areas that are covered in the review 

include the basic definitions of a supply chain, a selection of supply chain frameworks, 

the different methods for analysing supply chains, inventory theory, tools to test supply 

chains and simulation techniques in supply chain analysis.   

Chapter 3 describes the development of a supply chain characterisation framework.  The 

proposed supply chain characterisation framework provides a practical method to 

simplify the design of supply chains based on two key characteristics of the supply chain.  

The framework is evaluated against case studies to confirm its applicability. 

Chapter 4 focuses on the South African automotive parts supply chain.  The concept of 

Just-In-Time (JIT) in the supply chain is also discussed and the economic order quantity 

theory is used to derive a JIT unit cost.  A model for cost target management of automotive 
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parts is developed and discussed in detail.  Finally, a case study is presented to 

demonstrate the practical implications of JIT on parts manufacturing set up costs. 

In Chapter 5 the focus is on the basic elements of the lean supply chain.  The MIP 

inventory management model is derived from basic principles leading to the MIPTheory 

equations.  The implementation of the MIP method in practice is described, providing the 

MIPActual equations.  Finally, the STS inventory management method is derived and the 

appropriate equations developed. 

In Chapter 6 system dynamics modelling concepts are discussed.  The basic methodology 

of SDSM development and testing is presented, including a review of the use of SDSM 

in the supply chain environment.  The development of the specific SDSM used in the 

thesis is discussed.  The SDSM is set up to allow different inventory management 

methods to be tested.  In addition to being able to compare the inventory management 

methods, the SDSM is also used to evaluate the design of the proposed STS method and 

to ensure that the parameters used are such that the method does not lead to the bullwhip 

effect.   

Chapter 7 provides the results of the various simulation runs.  Firstly, the development 

and refinement of the STS method is discussed.  An overview of the proposed theoretical 

framework for analysing the various inventory management methods is provided.  A 

comprehensive theoretical analysis of each of the three methods is presented including 

both stationary and non-stationary demand environments.  The datasets and results for 

the practical comparison of the inventory management methods are also discussed in 

detail.  Finally, the STS method is subjected to a sensitivity analysis to determine if it is 

possible to improve the ordering algorithm.  An analysis using real data is presented and 

discussed. 

Chapter 8 summarises the results and provides conclusions on the study.  It also highlights 

further research opportunities that were identified. 
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2 LITERATURE REVIEW – SUPPLY CHAIN MANAGEMENT AND 

INVENTORY OPTIMISATION 

 

In this chapter, basic supply chain management concepts and frameworks are discussed 

and inventory management and the bullwhip effect is introduced.  The bullwhip results 

in excessive oscillations in inventory, with the subsequent cost implications of over 

stocking or opportunity cost of being out of stock.  As this thesis focuses on inventory 

management models it is also critical to understand the impact of inventory management 

on supply chain behaviour and the stability of the supply chain, these concepts are 

reviewed.  Finally, the various approaches to supply chain modelling and simulation are 

discussed. 

2.1 Supply Chain Definition 

  According to the American Production and Inventory Control Society (APICS) 

Dictionary, 11th edition (APICS, 2005) a supply chain is a “global network used to supply 

products and services from raw materials to end customers through an engineered flow 

of information, physical distribution, and cash.”   

Gattorna (2010) applies a much broader definition to supply chains: “... any combination 

of processes, functions, activities, relationships and pathways along which products, 

services, information and financial transactions move in and between enterprises, in both 

directions.”  Gattorna (2010) focuses on understanding client buying behaviour and 

designing supply chains that meet the client demands. 

The Global Supply Chain Forum (GSCF) is a group of non-competing firms and 

academics who meet regularly to improve the theory and practice of Supply Chain 

Management (GSCF, 2017).  The definition that the GSCF uses is the broadest.  It 

explicitly states that supply chain management should not been seen as logistics only, but 

permeates all processes within the company 

2.2   Challenges in Supply Chain Management 

The most fundamental concern in supply chain management is service to the customer.  

Gattorna (2010) and Holweg and Pil (2001) both state that service to the customer is 

critical.  Holweg and Pil (2001) support build-to-order supply chains, while Gattorna 
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(2010) uses segmentation to identify alternative supply chain designs.  With this 

segmentation in mind, the work of Humair and Willems (2006) on the Guaranteed Service 

(GS) model is of critical importance.  The GS model and its implications are discussed in 

Section 2.6.1. 

The need to effectively provide a service to customers is fundamental in the processes of 

supply chain design and supply chain operations.  To achieve this, a number of issues 

need to be addressed, including location of warehouses, location of inventory, transport 

modes (land, sea or air), daily transport plans and inventory management.  Inventory 

management focuses on how much inventory to hold, when to order and how much to 

order (Winston, 1994).  The details of inventory management are discussed in Section 

2.6.  For the purposes of this study, the focus is on the question of inventory management, 

however, for the sake of completeness, a broad overview of supply chain challenges is 

provided. 

The bullwhip effect in supply chains was identified by Jay Forrester (1958) and has been 

studied extensively.  Despite  the research, customer demand variation still causes the 

bullwhip effect as shown in a number of studies (Morán & Barrar, 2006), as well as 

personal experience gained in the automotive vehicle and parts industry.  \ 

2.3 Contemporary Supply Chain Frameworks 

The purpose of this section is to explore various supply chain management frameworks.  

All the frameworks discussed share a number of fundamental elements.  Each framework 

has certain strengths and weaknesses and was developed with specific needs in mind.  The 

frameworks are compared and gaps are identified as basis for the development of the 

practical supply chain planning and management framework proposed in Chapter 3.  This 

discussion focuses on four contemporary frameworks, as proposed by APICS, The 

Supply Chain Council, Gattorna (2010) and the Global Supply Chain Forum.  These 

frameworks provide a good overview of the current state of the art. 

2.3.1 APICS Supply Chain Framework 

According to APICS (2008), most supply chains consist of a manufacturing entity 

(service supply chains also exist), with a supplier of raw materials or components on the 
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one side and a customer on the other side.  While these elements are sufficient for a supply 

chain to exist, they are not sufficient to describe typical global supply chains. 

The APICS supply chain model suggests that the basic supply chain has three entities and 

four flows.  The entities are: 

 Supplier – “..provides material, energy, services, or components for use in 

producing a product or service.” 

 Producer – “..receives services, materials, supplies, energy, and components to 

use in creating finished products, ..” 

 Retailer – “..receives shipments of finished products to deliver to its customers..” 

The flows are: 

 Physical Material and Services – “...flowing from suppliers through the 

intermediate entities that transform them into consumable items for distribution 

to the final customers.” 

 Money – “..from the customer back towards the raw material supplier.” 

 Information - “..back and forth along the chain (also back and forth within the 

entities and between the chain and external entities) ..” 

 Reverse Flow of Products – “..returned for repairs, recycling, or disposal.” 

These simple entities and flows can be combined to demonstrate complex supply chains, 

as shown in Figure 2-1, where a manufacturing supply chain is shown with distribution 

and two tiers of suppliers. 
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Figure 2-1:  Manufacturing Supply Chain Model (APICS, 2008). 

The APICS framework is simple and flexible and is useful as an introductory training aid.  

The framework does not, however, provide any additional information or utility than 

would be expected from a standard logical approach to supply chains.  From a logistics 

point of view, it is simply flows of goods, information and money.  The framework does 

not provide any insight in terms of operations design, warehouse location and/or 

inventory management methodology.  

 

2.3.2 Supply Chain Operations Reference (SCOR) Framework 

The Supply Chain Council ("a non-profit organization with the aim of being the cross-

industry standard for supply chain management") developed and endorsed the Supply-

Chain Operations Reference (SCOR) framework as a process reference framework for 

supply chain management (Supply Chain Council, 2009). 

The SCOR framework provides a standardized description of the five process types that 

the Supply Chain Council has defined as core to supply chains.  The framework is clearly 
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defined, both in its scope, as well as in its application.  The five processes contained in 

the SCOR framework are: 

 Plan 

 Source 

 Make 

 Deliver 

 Return 

In its standard application, SCOR takes into account the processes in a company, as well 

as the same five processes in two tiers of suppliers and two tiers of clients.  Figure 2-2 

shows a schematic description of the SCOR framework. 

 

 

Figure 2-2:  Supply Chain Overview as Defined in the SCOR Framework (Supply 

Chain Council, 2009). 

Three levels of process detail are contained in the SCOR framework.  At the highest level, 

process types are identified.  At the configuration level, process categories are identified.  

At the third level, the process element level, processes are decomposed.  The 

implementation level and lower, at which process elements are decomposed, is 

organization specific and not included in the SCOR framework.  Figure 2-3 shows the 

levels of detail as contained in the SCOR framework. 
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Figure 2-3:  Levels of the SCOR Framework (Supply Chain Council, 2009). 

The fundamental purpose of the SCOR framework is to be a reference model that can be 

used to design standard processes and benchmark performance.  Level 2 in Figure 2-3 

suggests that a company’s supply chain can be “configured-to-order”.  Level 3 in the 

model mentions performance metrics and “best practice definitions”.  Both of these 

assume that supply chains have standardized processes that can be selected “off the shelf” 

to meet the requirement.  It does not adequately address the complexity of real supply 

chains where non-standard processes may be critical to operations or provide a 

competitive edge.  

Where the APICS framework does consider that extended reverse supply chains exist, 

such as, for example, an iron ore mine using trucks that are constructed using steel made 
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from ore from the mine, SCOR focuses only on two levels of suppliers and two levels of 

customers and does not take into account the total span of the supply chain.  In his original 

work on the bullwhip effect, Forrester (1958, 1961) indicated that every inventory point 

in the supply chain plays a role in how the supply chain behaves overall and not just two 

tiers of suppliers and customers.  As a retailer, lack of awareness of the impact of order 

decisions on the manufacturer shows clearly in the results of playing the “Beer Game” 

(Sterman J. , 1989).  To classify supply chains based on their structure, it is necessary to 

focus on the number of players in the complete supply chain.   

SCOR also provide users with a “check sheet” to manage supply chain activities, 

indicative of a strong mechanistic based approach to supply chain management.  Another 

advantage of SCOR is actual performance data made available from different companies 

that can be used for benchmarking purposes.  SCOR, however, does not consider all 

functional areas such as, for example, marketing. 

2.3.3 Behavioural Based Supply Chain Framework 

Gattorna (2009, 2010) defined four generic aligned supply chain types.  The premise is 

that by understanding customer buying behaviour, a supply chain management approach 

can be developed to address the customer requirements.  This focus ignores the impact of 

the supply chain scope or production process complexity.  It does, however, challenge the 

user to ensure that the customer remains the focus of the supply chain.  The proposed 

framework is based on four forces that drive behaviour: 

 Feeling 

 Intuition 

 Sensing 

 Thinking 

Each buyer is affected by the resultant of these forces when making buying decisions.  

Gattorna (2010) proceeds to identify 16 possible dominant behavioural segments as 

shown in Figure 2-4.   
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Figure 2-4:  General Characteristics of the Four Dominant Behavioural Forces or 

Logics (Gattorna, 2010). 

The 16 dominant behavioural segments can be reduced to four commonly observed 

buying patterns as shown in Figure 2-5.  The figure shows how specific elements in the 

buying environment affect the dominant buying behaviour.  It also identifies four main 

potential supply chain design requirements, namely: 

 Collaborative 

 Efficient 

 Dynamic 

 Innovative Solutions 
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Figure 2-5:  The Four Most Commonly Observed Dominant Buying Behaviours 

(Gattorna, 2010). 

Four types of supply chains are required to address the buying behaviours, as shown in 

Figure 2-6 (Gattorna, 2010). 

Continuous Replenishment Supply Chain – customers and suppliers collaborate to 

keep products flowing as fast as they are consumed. 

Lean Supply Chain – Gattorna (2010) describes lean as a “… push into the marketplace 

and a focus on efficiency by removing waste  ...” The author’s understanding of lean is 

that it focuses on manufacturing only what is needed, when it is needed (Shingo, 1981).  

While this focus requires high efficiency and strives to reduce waste, it requires 

significant collaboration and trust between supplier and customer.  Suppliers and 

customers must collaborate to resolve problems and improve efficiency. 

Agile Supply Chain – a supply chain that “responds to customers in unpredictable 

demand situations...” 

Fully Flexible Supply Chain – this is an extreme example of an agile supply chain and it 

could be argued that it is a required capability to respond to extreme situations.  
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Figure 2-6:  The Four Generic Supply Chain Types – Demand-Side (Gattorna, 

2010). 

The most useful evolution of the Gattorna model is found in Figure 2-7, where Flow 

Types (demand patterns), Types of Supply Chains and Customer Segments are linked.  

The important contribution lies in the identification of different demand patterns requiring 

different supply chain designs. 
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Figure 2-7:  Flow Types and Matching Supply Chain Types (Gattorna, 2010). 

If the Gattorna (2010) model is applied in an alternative manner, not focusing on the 

buying behaviour, but rather the needs or demand drivers, an important application to the 

automotive parts environment exists.  Four different supply chain designs, determined by 

the demand patterns, are required for each of the four types of after-market parts: 

Service Parts – regular and planned, based on number of kilometres driven (flow type: 

base). 

Maintenance or Wear and Tear Parts – regular, but less predictable as it depends not 

only on kilometres driven, but also individual driving style (flow type: semi-wave). 

Accident Repair Parts – unplanned events, but the type of parts involved are usually 

standard (flow type: agile). 

Repair Parts – unplanned breakage of components due to age, operating conditions or 

other unpredictable events (flow type: cavitation). 

2.3.4 Global Supply Chain Forum Framework 

The Global Supply Chain Forum (GSCF) framework is the most comprehensive view of 

supply chain management.  The framework includes the network view proposed by 
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APICS, as well as the process view of SCOR.  GSCF proposes that the total organisation 

and especially customer related functions need to be aligned as part of the supply chain 

perspective.  Supply chain management is thus elevated to the core of the organisation. 

The GSCF framework focuses on identifying the role players in the company’s specific 

network as well as the structural dimensions of the network.  The structural dimension 

considers both horizontal and vertical elements.  The horizontal structure describes the 

number of tiers across the supply chain and the vertical structure the number of suppliers 

or customers in each tier.  The structure for each company is unique and a good 

understanding is required to plan processes that span company boundaries.  The key 

business processes identified by the GSCF are indicated in Figure 2.8. 

The extent of management between the supply chain partners varies from supply chain to 

supply chain:  Managed Process Links – links that the focal company consider important 

to manage. 

 Monitored Process Links – links that are less important, but need to be monitored 

or audited. 

 Non-managed Process Links – links that the focal company does not consider 

sufficiently important to manage or monitor.  The focal company trusts other 

members to manage these links effectively. 

 Non-member Process Links – links where other players’ decisions can affect the 

focal company’s behaviour.  An example includes suppliers who produce 

components for a company as well as its competitors. 

It is notable that the framework does not focus on the traditional elements of transport, 

logistics, warehousing, distribution and technology, but is more global and focuses on 

relationship building and long-term stakeholder value.  
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Figure 2-8:  Supply Chain Management: Integrating and Managing Business 

Processes Across the Supply Chain (Lambert D. M., 2017). 

2.3.5 Fischer’s Two-Axes Framework 

None of the frameworks specifically focuses on the detail impact the product 

characteristics may have on the design elements or effectiveness of the supply chain.  

Fisher (1997) proposed a framework based on two axes.  The first axis categorizes 

products into either Functional Products or Innovative Products.  The second axis 

categorizes either Efficient Supply Chains or Responsive Supply Chains.  The framework 

proposes that Functional Products require Efficient Supply Chains and Innovative 

Products require Responsive Supply Chains.  The analysis of mini-case studies in 

companies by Kaipia and Holmstrom (2007) results in a significantly more complex 

framework extended to include Uncertainty of Demand, Life-Cycle Phase, Capacity 

Utilisation Rate and Flexibility.  This four axis framework, however, seems to be only 

applicable to the specific case studies, rather than focusing on fundamental design 

elements. 

To address these gaps, a supply chain characterisation framework is proposed in Chapter 

3. 
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2.4 Dynamic Behaviour of Supply Chains 

Arguably, the most widely disseminated study on evaluating supply chain performance 

was published by Jay Forrester in 1958, followed by “Industrial Dynamics” in 1961, 

which is still a popular textbook today.  Forrester (1961) addresses two key concepts: 

 System Dynamics Simulation Modelling (SDSM) as a tool to analyse complex 

dynamic problems with feedback loops. 

 Assessing the dynamics of supply chain performance, focusing on lead time and 

inventory behaviour. 

Forrester (1958) used the term “demand amplification” to describe the result of the over 

compensation by decision makers in supply chains, leading to large oscillations, that 

result in excess inventory or stock-out conditions.  As ordering information travels up the 

supply chain, each additional tier experiences an exaggeration of this effect.  In other 

words, small changes in end-user demand results in highly exaggerated oscillations in 

ordering and inventory availability throughout the supply chain (Forrester, 1958). 

Lee, Padmanabhan and Wang (1979) first used the term “bullwhip effect” after studying 

the behaviour of disposable diapers in Proctor and Gamble.   

A number of teaching tools were developed to teach supply chain concepts (Torres & 

Morán, 2006), including the Beer Game and other board games and computer based 

games. 

Torres and Morán (2006) consolidate the work of a number of authors on the subject of 

the bullwhip effect.  These cover three main areas: 

 Causes of the bullwhip effect 

 Controlling the bullwhip effect 

 Measuring the bullwhip effect 

2.4.1 Causes of the Bullwhip Effect 

Lee, Padmanabhan and Wang (1979) identified four forces that contribute to the bullwhip 

effect, namely: 

 Demand Forecast Updating 

 Order Batching 

 Price Fluctuations 

 Rationing 
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Bhattacharya and Bandyopadhyay (2011) also review the various causes of the bullwhip 

effect and include items such as lead time and inventory ordering policy.  Sterman 

(2006)suggest that there are both operational and behavioural causes.  Instability in the 

supply chain arises from the failure to account for feedback, time delays and unfilled 

orders in the system.  Lee and Whang (2006) agree that the bullwhip effect is prevalent 

in many supply chains, but focused their studies on the Beer Game.  Using case studies, 

Lee and Whang (2006) concluded that different solutions addressing different drivers are 

required for different supply chains.  This conclusion is in line with the design proposals 

of Gattorna (2010). 

Morán and Barrar (2006) identify various structural causes for the bullwhip effect.  They 

evaluate the impact of alternative supply chain management strategies using system 

dynamics simulation modelling.  The Advanced Forecast-sharing Coordination Model, 

which takes into account, expected future market conditions to place orders, showed the 

most promise.  Further investigation of “agile” and “lean” supply chains was also 

recommended. 

In the stock target method developed in this thesis, one of the key assessments is to 

confirm that the inventory management method will not be the cause of the bullwhip 

effect. 

2.4.2 Controlling the Bullwhip Effect 

.  Wikner, Towill and Naim (1991) discuss a number of possible solutions for reducing 

the bullwhip effect.  These include among others: 

 Vendor Managed Inventory 

 Co-Managed Inventory or Jointly Managed Inventory 

 Collaborative Planning, Forecasting and Replenishment 

 Collaborative Transport Management 

Disney and Towill (2006) focus on improving replenishment policies to control the 

bullwhip effect.  Their conclusion is that a unique ordering policy should be set for each 

SKU, depending on its demand pattern.  This conclusion is also similar to the proposal 

by Gattorna (2010) which recommended supply chains designed for particular buying 

patterns. 

Towill, Naim and McCullen (2006) studied a supply chain that spans across multiple 

countries to study the impact of elements such as: Time Compression, Information 
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Transparency, Echelon Elimination and Control System Design as means to control the 

bullwhip effect.  Botha (2007) shows with electronic versions of a custom developed 

game, similar to the Beer Game, Echelon Elimination has the biggest impact, followed 

by Time Compression and Control System Design.  The complexity of time delays and 

feedback loops cannot be solved manually.  The propensity of inventory controllers to 

intervene and apply “expertise” to override control system decisions by adjusting orders 

also results in Control System Design being difficult to implement. 

Ouyang, Lago and Daganzo (2006) focus on alternative ordering strategies.  Using a Root 

Mean Square Error calculation, they demonstrate that “order-up-to” (ordering to a target) 

and “generalized kanban” will result in the bullwhip effect.  A simple “order-based” (sell-

one-buy-one) policy will not result in the bullwhip effect for “any realization of demand 

and for chains with any number of stages.”  While this assertion suggests that sell-one-

buy-one is an ideal ordering policy, the analysis does not take into account the levels of 

service provided, does not assess stock-outs and would only be valid for very specific 

cases.  In addition, the analysis method relies on a static calculation of a set of variables, 

rather than the dynamic behaviour of a supply chain. 

Machua and Barajas (2006) discuss the impact of information technology and specifically 

Electronic Data Interchange, on controlling the bullwhip effect.  This approach has the 

benefit that data is transferred faster and more accurately.  The key is that all players must 

be integrated into the data transfer system and there should be no manual interference 

with the data. 

This thesis does not focus on improvements to the supply chain design, but rather focuses 

on the decision algorithms associated with inventory management. 

2.4.3 Measuring the Bullwhip Effect 

The general conclusion is that the extent of the bullwhip effect is unique to each supply 

chain and its circumstances.  No dynamic analysis of supply chain performance is 

complete without taking into account the effect of demand amplification.  Supply chains 

react to disturbances in ways that result in oversupply and undersupply.  In the worst case, 

during out of stock conditions, customers place orders with competitors and the supplier 

may end up needing to do a significant inventory write-off as described in the CISCO 

case study (Torres & Morán, 2006).   
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The key drivers for the bullwhip effect, Time Compression and Echelon Reduction, ties 

back into the premises of the Toyota Production System (TPS) or Lean Manufacturing 

paradigm.  TPS focus on the removal of waste and stable production driven by customer 

demand or pull (Shingo, 1981).  Extending this approach to supply chains, the 

characteristics of a lean supply chain is: 

 Short lead times  Time Compression 

 Removing non value adding steps   Echelon Removal 

 Buy-One-Sell-One (Demand Pull)   Order-up-to 

Demeter and Zsoltmatyusz (2011) found a significant correlation between lean 

management practices and inventory turnover.  Singh, Singh, Mand and Sing (2013) 

provide a broad overview of lean methodologies and their application in supply chain 

management.  As with the introduction of lean principles into manufacturing, introducing 

lean principles into supply chain management will require a long-term commitment and 

a step-by-step approach. 

2.5 Inventory Theory 

Inventory theory is widely taught as part of operations research or purchasing 

management, using textbooks such as Hillier and Liberman (2005), Winston (1994) and 

Benton (2007).  This section discusses inventory placement, forecasting and lean supply 

chains. 

Placing inventory in the supply chain is a critical financial question, which affects cost 

and profitability, but even more importantly, service delivery to the client (Willems, 

2011).  Willems (2011) also states, “not all inventory is of equal consequence.”  Thus, 

not all inventory items have the same priority and that not all inventory levels can be 

adjusted at the same time.  Inventory levels cannot be reduced in an instant.  Inventory 

optimization is, therefore, a continuous process. 

Graves and Willems (2000) evolve a model they call the Guaranteed Service (GS) model.  

The model requires that each node in the supply chain network promise 100% delivery to 

the customer within the promised lead time.  The placement of safety stock throughout 

the supply chain network can then be calculated, using a multi-echelon approach.  Bossert 

and Willems (2007) evaluate the GS model for periodic review supply chains.  They 

extend the methodology to address acyclic networks, stochastic lead time and time phased 
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demand.  They also highlight that the models are becoming ever more complex, affecting 

the solvability of these models.  Neale and Willems (2009) investigate the implications 

of the GS model to supply chains with non-stationary demand.  Non-stationary demand 

is defined as demand for a product that will change over the product life cycle.  They 

identify a number of counter intuitive results.  Firstly, safety stock should be a function 

of backward looking demand.  Secondly, demand forecast accuracy and demand 

uncertainty propagate differently through the supply chain. 

Humair and Willems (2006), Graves and Willems (2008) and Humair and Willems (2011) 

developed improvements in solving the GS model to optimize the location of safety stock 

throughout the network.  Case studies of this work are provided by Billington et al. 

(2004), Farasyn et al. (2011), Wieland, Mastrantonio, Willems and Kempf (2012) and 

Manary and Willems (2008).  In all cases benefits were derived.  Key learning includes: 

 Keep models and processes simple. 

 Make “things” better now. 

 Implement in a phased manner. 

 Be clear about what success is. 

2.5.1 Forecasting to Determine Inventory Levels 

Forecasting forms a standard component of any operations research, supply chain 

management and/or statistical textbook.  Forecasting uses historical information to 

project the future.  In supply chain management, the application is usually focused on the 

demand side.  Demand is not necessarily smooth and simple to forecast.  According to 

Choy and Cheong (2012) three types of demand functions exist, namely: 

 A generic cyclical model with standard demand following a trend, which could 

include seasonal behavior. 

 Stochastic demand with variability. 

 Lumpy demand which is highly irregular. 

If these demand patterns are linked to the buying behaviour identified by Gattorna (2010), 

base demand and semi-wave demand would be covered by the generic cyclical demand 

function.  The surge demand pattern would be a stochastic demand function and cavitation 

would be equivalent to the lumpy demand function. 
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2.5.2 Lean Supply Chain Management 

Lean manufacturing has had a positive impact on many firms.  By reducing waste, costs 

are reduced and profitability increased.  Lambert (2008) provides an overview of lean 

thinking in supply chain management.  The concept of “waste” is extended to include 

waste specific to the supply chain, such as ineffective coordination and misalignment 

across functions.  Supply chain management is seen as a tool that can operate side by side 

with lean thinking.  Benton (2007) provides a superficial overview of JIT in purchasing 

and while suggesting it may have benefits, suggests that the time frames to fully 

implement JIT is such that results are still far in the future. 

One of the key wastes identified in the Toyota Production System is the waste of over 

production (Shingo, 1981).  Extending the concept to inventory management would 

suggest that large amounts of inventory are over production.  Inventory management; on 

the other hand, dictate that an economic order quantity, Q, be ordered.  On arrival, the 

inventory results in a Maximum Inventory Position (MIP) equal to Q, as shown in Figure 

2-9. 

 

 

Figure 2-9:  Inventory Ordering- Economic Order Quantity. 

JIT or lean thinking in the supply chain would suggest that Q is reduced and the order 

frequency increased.  Ultimately, the increase in order frequency translates into a system 

that allows orders to be placed on a continuous basis with an order quantity equal to 
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substitution.  If a supplier can deliver every day, the order quantity should be equal to the 

daily demand.  Figure 2-10 demonstrates the suggested concept. 

 

 

Figure 2-10:  Object of JIT/Lean Supply Chain – Daily Order, Daily Delivery. 

Following a JIT strategy will affect the total cost.  The impact of the total cost is discussed 

in Section 5.1. 

2.6 Supply Chain Management Concepts Summary 

This chapter provided a literature review addressing various introductory supply chain 

management concepts.  A number of popular supply chain management frameworks are 

reviewed and the dynamic behaviour of supply chains and inventory theory is covered in 

detail.  

In summary, the four models all provide useful management tools, applicable at specific 

levels, but not necessarily addressing the detail of the supply chain design or management 

of the dynamic nature of supply chains.  Opportunities exist in extending the body of 

knowledge in the development of improved inventory management approaches and 

supply chain frameworks based on product characteristics.  Chapter 3 focuses on the 

development of such a framework for designing supply chains.   
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3 SUPPLY CHAIN CHARACTERISATION FRAMEWORK  

In this chapter an alternative framework to characterise supply chains is proposed.  The 

framework forms an extension of the simplistic framework model proposed by APICS 

(2008), by developing a specific structure to classify supply chains by the characteristics 

of the product involved. 

Such a framework makes it possible to identify the complexity, nodes, operations strategy 

and supply chain infrastructure that is required to design and operate different types of 

supply chains.  With this information available, the supply chain manager can design a 

supply chain appropriate for that specific class of supply chains.  

The main purpose of this research is to develop a bridge between the academic and 

practitioner’s view of supply chain frameworks by developing a supply chain 

management framework that will address the needs of the practitioner when designing a 

supply chain.  Designing a supply chain will inter alia include the design of: 

 Physical Flow and Location of Product. 

 Process and Logistics Elements 

3.1 Framework Model Development Background 

For the purpose of this study, a two-dimensional matrix is proposed.  This matrix is used 

to identify generic supply chain classes.  The framework is then applied to a series of 

generic supply chains to confirm that the framework sufficiently describes the various 

types of supply chains that can be identified.  The effectiveness of the framework is 

evaluated against the following criteria: 

 Does the framework model support the fundamental design approach for an 

effective supply chain?  This criterion is achieved when the framework can be 

used to derive the fundamental network structure, identify basic process steps and 

identify handling and storage requirements (APICS, 2008). 

 Does the framework model provide guidance for an acceptable management 

strategy?  This criterion is achieved when the framework can be used to identify 

the specific market related supply chain design required (Gattorna, 2010). 
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3.2 Supply Chain Characterisation Framework Development 

Supply chains have many functions, but always include some form of a physical flow of 

a product or service.  This product or service dictates the key parameters for the 

infrastructure that is required.  The infrastructure includes, handling equipment, 

processing equipment, transport equipment, storage requirements, operating environment 

requirements (such as temperature control) and more. 

The characteristics proposed for the supply chain framework are: 

 Product Complexity – A measure of the complexity of the product delivered to 

the user.  Basic raw materials (such as iron ore and fruit) are simple (least 

complex), with products consisting of a variety of components and raw materials 

(such as automobiles and fridges) are complex. 

 Product Life Expectancy – A measure of the length of time a product can be in 

use. This time can range from a matter of days to years. 

Product complexity is selected as it provides a clear indication of the level of processing 

and manufacturing steps required to produce the product.  Increased complexity affects 

the structure and scope of the supply chain network, the infrastructure required as well as 

the need for supplementary supply chains.  As complexity increases, cost and value of 

products also increase.  Increased product value affects the market positioning and 

expectations of the end-user.  This characteristic meets the criteria in Section 3.1 by 

providing insight into the network design. 

Life expectancy is selected as it provides an indication of longevity and identifies the 

potential for maintenance and repair as part of the life cycle management.  Life cycle 

management will indicate the need for supporting supply chains that exist to ensure 

functional maintenance during the use cycle.  The longer a product is expected to last, the 

bigger the need for maintenance facilities and parts provision as part of the overall supply 

chain.  Shorter life expectancy will drive designs to ensure speed to market and 

environment management during the stages of the supply chain.  This criterion will have 

a direct impact on the operational strategy selected for the supply chain.  The proposed 

supply chain framework is depicted in Figure 3-1. 
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Figure 3-1:  Proposed Supply Chain Framework. 

Based on the matrix, it is possible to develop the framework by developing a series of 

generic supply chains for each quadrant. 

3.2.1 Quadrant 1 Overview 

In Quadrant 1 the product complexity is low and the product life expectancy is measured 

in days.  The products in this quadrant move directly from the primary producer to the 

consumer.  Supply chains in this quadrant are called Class I supply chains. 

Class I:  Primary Producer  Consumer 

These are mostly agriculture based supply chains where “products” are produced and 

consumed with no additional processing.  This type of supply chain can also include 

mineral “crops” such as salt. 

Class I supply chains can be divided into three distinct sub-classes. 

Class I-A:  Harvest  Pack  Distribute  Consume 

This type of supply chain requires no further processing other than packaging into 

appropriate containers for transport and distribution.  Examples would include fresh 
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produce such as fruit and vegetables for direct consumption.  In many cases, overflow 

product from these processes is treated as a Class I-B supply chain. 

Class I-B:  Harvest  Process  Pack  Distribute  Consume 

This type of supply chain requires that the produce is processed prior to packing and 

distribution.  Examples include the commercial production of fruit juice and jams.  In this 

case, the fruit is not picked for direct consumption, but is picked, processed and then 

packed for distribution and consumption.  Products such as meat, fish, poultry and dairy 

can be included in this class.  Mineral harvesting can in some cases be included in this 

class.  For example, salt is harvested, refined and packed for distribution and 

consumption. 

Class I-C:  Harvest  Store  Process  Pack  Distribute  Consume 

This particular class of supply chains allows the raw product to be stored for a period of 

time before processing and final consumption.  This class of supply chain would include 

grain that is stored and milled only prior to final distribution and consumption. 

The critical characteristic in Class I supply chains is that the production capacity is 

generally highly dependent on environmental factors.  In general, the amount of land 

under cultivation is well known, but the biomass yield is difficult to predict.  The quality 

and quantity of the crop available is unknown until the crop has finally been harvested.  

In contrast to most production processes, it is not possible to accurately set the upper or 

lower production limits on this type of production.  In an exceptional year, production 

may far exceed a normal year.  An unexpected environmental event can potentially wipe 

out a complete crop hours before harvesting.  In general, these types of goods are also 

highly seasonal in production.  Some exceptions (products with very broad seasonal 

harvesting periods) do exist.  Of course, the seasonality can be counteracted by sourcing 

products globally, given the different seasonal conditions.  Production capacity for the 

crops can also be affected by the availability of equipment and limits in the production 

processes.  However, in general these types of supply chains are also characterised by 

their push nature.  Once the crop is planted, every effort is made to harvest it and deliver 

it to the market. 

3.2.2 Quadrant 2 Overview 

In Quadrant 2 the product complexity is low and the product life expectancy is measured 

in years.  The products in this quadrant move from the primary producer to a secondary 
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producer and only then to the consumer.  There may be significant waiting times in the 

supply chain.  Supply chains in this quadrant are Class II supply chains. 

Class II:  Primary Producer  Secondary Producer  Consumer 

These supply chains focus on processing a single commodity from ore to a pure substance 

to a final product.  These supply chains include the production of steel beams from iron 

ore, refining of oil to petrol and other by-products for consumption and the processing of 

cotton crops to clothing.  The raw materials may move through complex processes, but 

in general, the products constitute of a single base material.  The raw materials, as well 

as the intermediary and final products, can be stored for long periods if suitably treated 

and protected from the elements. 

In these supply chains the maximum production capacity is a design constraint.  

Production targets are usually at 80% to 90% of capacity to effectively utilise equipment 

and optimise returns.  Not running at 100% of capacity allows the production process 

time for maintenance and ensures long-term utilisation of equipment. 

3.2.3 Quadrant 3 Overview 

In Quadrant 3 the product complexity is high and the product life expectancy is measured 

in years.  The products in this quadrant move from the primary producer to a secondary 

producer, then through a combining process and only then to the consumer.  There may 

be significant waiting times in the supply chain.  Supply chains in this quadrant are called 

Class III supply chains. 

Class III:  Primary Producer  Secondary Producer  Combining  Consumer 

Class III supply chains are the most complicated supply chains from a production point 

of view.  In these supply chains, raw materials come from different sources, are refined 

and converted to different product components, which are then combined to form a single 

product.  Class III supply chains consists of complex production facilities. 

Products include items such as white goods.  In the manufacturing of these items, iron ore 

is converted to steel sheets and petro-chemicals are turned into plastic sheets.  The steel 

and plastic sheets are then shaped and combined with a compressor and cooling system 

into a final product that is ready for distribution to the end user.  Supply chains in this 

class usually require some form of life cycle product management.  Life cycle product 

management requires the creation of a maintenance supply chain in parallel to the main 

supply chain.  The parallel supply chain can be a simple supply of components to repair 
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wear and tear items.  It can also be as complicated as the parts and accessories supply 

chain in the automotive sector.  In this case, the parallel supply chain supports 

maintenance, repair and replacement components, as well as components to enhance and 

expand the original product (Elhafsi & Hamouda, 2015, van der Heijden, van Harten, & 

de Smidt-Destombes, 2006 and Kennedy, Wayne Patterson, & Fredenhall, 2002). 

Class III-P:  Primary Producer  Secondary Producer 

                         ↓          ↓ 

                         Distributor  Consumer 

Class III-P supply chains are the parallel supply chains set up to support the life cycle 

management of products in operation.  Life cycle support will include components for 

maintenance, wear and tear, repairs and damage.  A key characteristic of this supply chain 

is that it deals with components, as well as complete sub-assemblies.  For example, a 

vehicle manufacturer, through its dealer network (supply chain Class III) sells a vehicle 

with a complete air-conditioner unit.  When the air-conditioner fails, the dealer can place 

an order for a new air-conditioner, or any of the individual components that exist in the 

bill of materials.  The components could include every O-ring, tube, sensor, compressor, 

radiator and more. 

3.2.4 Quadrant 4 Overview 

In Quadrant 4 the product complexity is high and the product life expectancy is measured 

in days.  This combination is not feasible and no supply chain class can be defined for 

Quadrant 4, since the cost to develop and manufacture a complex product is not justified 

if the product has a limited life expectancy. 

The supply chain framework incorporates a series of general supply chains, however, 

there may be specific cases that have evolved over time that may not be included.  To 

ensure that the supply chain framework adds value to the practitioner who needs to design 

a new supply chain, the model is applied to review the impact on supply chain decision 

making. 

3.3 Supply Chain Characterisation Framework Application 

The evaluation of the model is conducted in two ways.  Firstly, each supply chain type in 

each quadrant is expanded to describe basic product characteristics, production processes, 

demand patterns and supply chain characteristics.  The product characteristics include 
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complexity and life expectancy, while supply chain characteristics include the network 

structure, infrastructure and operating environment.  Examples of products of each class 

are also provided.  Secondly, specific case studies are used as verification of the validity 

of the framework. 

3.3.1 Quadrant 1 Application 

Table 3-1 provides a detailed overview of the Class I supply chain.   

Table 3-1:  Class I Supply Chain Characteristics. 

Class	I:		Primary	Producer		Consumer	

Examples	
Grown	products	of	a	wide	range,	including	fresh	produce	such	as	

vegetables	and	fruits,	flowers,	as	well	as	products	such	as	grain.	

Product	Complexity	
Low	 to	medium complexity,	 direct	 utilisation or	 consumption	 of	

basic	or	processed	product.	

Product	Life	Expectancy	
Short	 life	expectancy,	measured	 in	days	and	weeks,	or	months	 if	

processed.	

Production	Processes	 Plant,	harvest,	supply.

Demand	Patterns	
Mostly	 seasonal,	 with	 exceptions	where	minerals	 are	 harvested.		

Products	are	utilised	or	consumed	with	no	further	processing.	

Network	Structure	
Many	 producers	 linked	 to many	 consumers	 in	 a	 flat	 network	

structure.	

Infrastructure	
Land	 area	 for	 growing	 products.	 	 Farming	 and	 transport	

equipment.	

Operating	Environment	 No	special	operating	environment	is	required.

 

There are a number of case studies where supply chains of type Class I-A, I-B and I-C 

are considered.  Ge, Yang, Proudlove, & Spring (2004) focus on a supermarket supply 

chain.  Fresh produce confirms the need for Class I-A and processed foods confirm the 

need for Class I-B supply chains.  Flour and other milled products represent the Class I-

C supply chain structure.  The overall class in the supermarket supply chain is a 

combination of all three supply chain types.   
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Table 3-2 provides a detailed description of the Class I-A supply chain characteristics. 
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Table 3-2:  Class I-A Supply Chain Characteristics. 

Class	I‐A:		Harvest		Pack		Distribute	 Consume

Examples	
Fresh	 produce	 such	 as	 fruit,	 vegetables	 and	 flowers.	 	 Harvested	

minerals	such	as	salts.	

Product	Complexity	

Low	complexity,	direct	utilisation	or	consumption	of	basic	product.		

Packaging	and	distribution	is	included	in	the	process	of	providing	

the	product	to	the	market.	

Product	Life	Expectancy	

Short	life	expectancy,	measured	in	days	and	weeks. 	Life	expectancy	

can	 be	 extended	 through	 selection	 of	 appropriate	 infrastructure	

and	operating	environment,	such	as	cold	storage	and	transport.	

Production	Processes	

Plant,	 harvest,	 package	 and	 supply. 	 Packaging	 may	 include	 a	

preparation	steps	such	as	cooling	of	fruit.	 	The	pack	quantity	will	

vary	per	end‐user	requirements.	

Demand	Patterns	

Mostly	 seasonal,	 with	 exceptions	where	minerals	 are	 harvested.		

Products	 are	 packaged	 only	 and	 utilised	 or	 consumed	 with	 no	

further	processing.	

Network	Structure	

Many	 producers	 linked	 to	 many	 consumers	 in	 a	 flat	 network	

structure.		Distribution	usually	through	a	retail	chain.		Branding	can	

be	specific	to	supplier	or	retail	distributor.	

Infrastructure	

Land	area	for	growing	products	or	mining	minerals.		Farming	and	

transport	equipment.	 	Some	form	of	cooling	 for	products	coming	

from	the	land.		A	packing	store	where	products	are	packed.	

Operating	Environment	 Cooling	and	packing	requires	temperature	controlled	environment.	

 

Georgiadis, Vlachos, & Iakovou (2005) provide a framework for modelling supply chain 

management of food chains.  The selected case study is from the fast food industry, which 

confirms the need for speed and a direct supply chain for fresh produce.   

Table 3-3 provides a detailed overview of the Class I-B supply chain. 

Table 3-3:  Class I-B Supply Chain Characteristics. 

Class	I‐B:		Harvest		Process		Pack		Distribute	 Consume

Examples	

Fruit	and	vegetables	processed	 for	 longer	 terms	storage	through	

freezing	or	cooking	and	tinning.		Processing	of	fruit	and	vegetables	

by	turning	it	into	juice,	sauces	or	concentrates.	

Product	Complexity	
Low	to	medium	complexity.		Products	go	through	basic	processing	

before	utilisation	or	consumption	of	the	final	product.	



Chapter 3: SUPPLY CHAIN CHARACTERISATION FRAMEWORK 

 

Andries Botha - December 2017     35 

Class	I‐B:		Harvest		Process	 Pack	 Distribute	 Consume

Product	Life	Expectancy	
Short	 to	 medium	 life	 expectancy,	 measured	 in	 days,	 weeks and	

months.	

Production	Processes	

Plant and harvest, followed	by	processing	of	the	product	to	allow	

for	consumption	in	the	processed	for,	as	well	as	extending	the	shelf	

life.		If	not	processed	immediately,	the	product	will	spoil.	

Demand	Patterns	

Demand	 is	 all	 year	 round,	 despite	 the	 fact	 that	 harvesting	 is	

seasonal.	 	 Processed	 and	 packed	 products	 are	 stored	 in	 the	

distribution	centre.	

Network	Structure	

Many	 producers	 can	 be	 linked	 to	 a	 single	 processing	 plant.	

Processing	plants	can	pack	products	for	multiple	or	single	brands.		

The	 network	 structure	 becomes	 more	 complex	 with	 multiple	

suppliers	 linked	 to	 a	 single	 or	 multiple	 processing	 plants.	 	 The	

processing	plants	can	be	linked	to	a	single	distributor	with	one	or	

multiple	brands,	or	multiple	distributors	with	their	own	brands.		A	

retail	network	links	the	product	to	the	consumer.	

Infrastructure	

Land	area	for	growing	products	or	mining	minerals.		Farming	and	

transport	 equipment.	 	 A	 processing	 plant,	 including	 a	 packaging	

facility.	

Operating	Environment	
Food	 preparation	 and	 processing	 which	 require	 an	 operating	

environment	that	ensures	high	levels	of	hygiene.	

 

Ge, Yang, Proudlove and Spring (2004) provide an extensive overview of the Class 

I-B supply chain for processed foods such as tinned food, jams and sauces.  Farasyn 

et al. (2011) discuss the Procter & Gamble supply chain, a Class I-B supply chain 

that includes a wide variety of processed products with short life expectancies.  Once 

processed, the products can be stored after being processed and distributed through 

an extensive retail network.  Minegishi & Thiel (2000) provides a detail study of the 

generic poultry supply chain, a good example of the Class I-B supply chain.  Once 

processed and frozen, the life expectancy of the product is extended, but now 

requires a tightly controlled cold chain to ensure the product is not damaged.  

Nallusamy, Rekha, Balakannan, Chakraaborty, & Majumdar (2015) also study the 

poultry supply chain, focusing on the specific case of India. 
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Table 3-4 provides a detailed description of the Class I-C supply chain. 
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Table 3-4:  Class I-C Supply Chain Characteristics. 

Class	I‐C:		Harvest		Store	 Process	 Pack	 Distribute	 Consume	

Examples	
Grains	 stored	 after	 harvesting,	 until	 milled	 and	 packed	 for	 final	

distribution.	

Product	Complexity	

Low	 to	medium	complexity.	 	Raw	materials	 can	be	 stored	 in	 the	

unprocessed	 format.	 	 Once	 processed,	 distribution	 and	

consumption	take	place.	

Product	Life	Expectancy	

Medium	 life	 expectancy.	 	 Product	 life	 expectancy	 includes	 pre‐

processing	 and	post	processing.	 	 Proper	 storage	 facilities	 ensure	

raw	 material	 availability	 throughout	 the	 year	 and	 allows	 for	

buffering	of	seasonal	variability	in	production.	

Production	Processes	

Production	processes	are	usually	a	simple	process	to	convert	the	

material	from	raw	form	to	consumable	form.		Basic	processes	such	

as	milling	are	required.	

Demand	Patterns	
Demand	 is	 spread	 throughout	 the	 year,	 in	 contrast	 to	 potential	

seasonal	harvesting	seasons.	

Network	Structure	

Many	 raw	material	 producers	 are	 linked	 to	 a	 limited	 number	 of	

storage	 facilities.	 	 Producers	 can	 process	 for	 single	 or	 multiple	

brands,	 distributing	 to	 retail	 off	 set	 points.	 	 The	 retail	 network	

supplies	the	end	product	to	the	consumer.	

Infrastructure	

Land	area	for	growing	products	or	mining	minerals.		Farming	and	

transport	 equipment.	 	 Silos	 for	 storage	 of	 raw	 materials.		

Production	and	packaging	 facility	 to	process	raw	materials	 to	be	

ready	for	consumption.	

Operating	Environment	
Milling	raw	materials	finely	requires a	zero	spark,	dust	suppression	

environment.		Storage	requires	dry	aerated	facilities.	

 

Thakur & Hurburgh (2009) provides a detailed study of the bulk grain supply chain, 

including an overview of the network structure of bulk grain supply in the United States 

of America (USA).  Mogale, Dolgui, Kandhway, Kumar, & Tiwari (2017) provides an 

analysis of the grain supply chain in India, proposing the use of centralised government 

controlled storage facilities for storing excess grain.  Sachan, Sahay, & Sharma (2005) 

use a system dynamics approach to address the cost model in the Indian grain supply 

chain. 
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3.3.2 Quadrant 2 Application 

Table 3-5 provides the detailed description of the Class II supply chain. 

Table 3-5:  Class II Supply Chain Characteristics. 

Class	II:		Primary	Producer		Secondary	Producer	 Consumer

Examples	

Primary	 ores	 that	 are	 processed	 to	 base	 metals	 that	 are	 then	

converted	 into	 products	 for	 direct	 use	 as	 specific	 metal	 based	

products.		Specific	products	include	inter	alia,	railroad	tracks	and	

roof	sheeting.	

Product	Complexity	 Low	to	medium	complexity.

Product	Life	Expectancy	 Life	expectancy	is	measured	in	years.

Production	Processes	

Single	 source	 primary	 distributors extracting	 ores.	 	 Secondary	

producers	may	consolidate	raw	materials	from	various	sources	and	

convert	them	to	final	products.	

Demand	Patterns	
There	is	continuous	production	of	the	raw	materials.		Specific	end	

products	can	be	required	on	a	project	basis	or	continuously.	

Network	Structure	

A	 few	 global	 secondary	 producers	 are	 networked	 to	 a	 global	

market	 of	many	 primary	 producers	 and	many	 end	 users.	 	 Little	

branding	 of	 products	 happen	 and	 most	 demand	 is	 based	 on	

technical	performance	specifications.	

Infrastructure	
Mining	 equipment,	 heavy	 load	 distribution	 equipment	 and	

smelters	for	refining	and	final	product	manufacturing.	

Operating	Environment	

Mining	 activities	 require	 high	 levels	 of	 focus	 on	 safety	 due	 to	

explosive	 use	 and	 other	 risks.	 	 Smelting	 activities	 are	 high	

temperature	high	risk	operating	environments.	 	Storage	does	not	

require	 any	 specific	 operating	 environment,	 but	 protecting	 the	

environment	from	potential	pollution	is	critical.	

Liu, An, Xiao, Yang, Wang, & Wang (2017) provides a comprehensive overview of the 

iron and steel industry supply chain, including the various steps, processes and network 

structure.  Beresford, Pettit, & Liu (2011) focuses on the transport infrastructure required 

to transport the bulk ore from mines to the processing plants. 

3.3.3 Quadrant 3 Application 

The third quadrant contains two supply chain classes.   

Table 3-6 provides a detailed overview of a Class III supply chain. 
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Table 3-6:  Class III Supply Chain Characteristics. 

Class	III:		Primary	Producer	 Secondary	Producer	 Combining	 Consumer	

Examples	

White	goods,	computing	based	products	and	other	items	with	a	life	

expectancy	measured	in	years.		These	goods	may	have	components	

for	 sale	 to	 repair	 and	 upgrade,	 but	 does	 not	 include	 specific	

maintenance	plans	that	require	the	replacement	of	components	at	

regular	intervals.	

Product	Complexity	
High	 complexity. 	 Products	 combine	 various	 components	

manufactured	with	various	raw	materials.	

Product	Life	Expectancy	

Measured	in	years.		In	some	cases	product	enhancements	happen	

faster	 than	 the	 life	 expectancy	 of	 products	 and	 product	

replacement	happens	prior	to	the	end	of	life	cycle.	

Production	Processes	

Production	 processes	 start	with	 the	 production	 of	 raw	material,	

refinement	 to	 material	 level	 and	 conversion	 into	 specific	

components.	 	 Components	 and	 sub‐assemblies	 enter	 a	 final	

assembly	process	before	distribution	to	the	end‐user.		Products	are	

usually	 uniquely	 branded	 by	 the	 manufacturer	 and	 distributed	

through	a	proprietary	network.	

Demand	Patterns	
Demand	 is	 continuous	 and	 usually	 affected	 directly	 by	 global	

economic	factors.	

Network	Structure	

Complex	 network	 structure	with	multiple	 raw	materials such	 as	

plastics,	 metals	 and	 other	 components	 from	 various	 suppliers.		

Component	 suppliers	 may	 brand	 specific	 components	 that	 later	

forms	part	of	products	assembled	and	distributed	by	a	variety	of	

retail	brands.	

Infrastructure	

Each	 supplier	 level	 in	 the	 supply	 chain	 requires	 appropriate	

manufacturing	infrastructure.		The	final	assembly	and	distribution	

is	usually	controlled	by	a	leading	brand.	

Operating	Environment	

Some	 manufacturing	 processes	 require	 specific	 operating	

environments.		Electronic	component	manufacturing	requires	dust	

and	 static	 free	 environments.	 	 Assembly	 of	 electronic	 based	

products	also	require	static	free	operating	environments.	

 

Huang et al. (2007) describes the supply chain of lamp production where multiple raw 

materials are converted into a final product.  Tian, Willems and Kempf (2011) describes 

the supply chain of a semiconductor, which, while a Class III product in its own right, 

forms a basic component of all electronic based products.  Manary and Willems (2008) 

and Wieland, Mastrantonio, Willems and Kempf (2012) describe the detail of the Intel 
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central processing unit supply chain, a complex product that is used in the assembly 

process for desktop and laptop computers.  Graves and Willems (2000) discusess the 

complete supply chain for the manufacture of notebook computers, giving a good 

overview of how the supply chain network narrows down from supply side to assembly 

and widens at the final distribution point.  Billington et al. (2004) discusses the network 

for digital cameras, a complex product with a relatively long life expectancy (two to five 

years) and no need for a parts supply chain as it is more cost effective to replace than to 

repair.  Billington et al. (2004) and Graves and Willems (2000) describe the Hewlett-

Packard printer supply chain.  While printers have the basic characteristics of the Class 

III supply chains and service parts are not the norm, the consumables required for printing 

can be treated as a Class III-P supply chain. 

Table 3-7 provides a detailed overview of the Class III-P supply chain.  This supply chain 

focuses on products where the complex product is supplemented with a parts distribution 

supply chain.  Parts are required to ensure that the product is effective over its planned 

life cycle. 

 

Table 3-7:  Class III-P Supply Chain Characteristics. 

Class	III‐P:		Primary	Producer		Secondary	Producer

																									↓																			↓	

																									Distributor		Consumer	

Examples	 Aircraft,	automobiles,	trains,	etc.

Product	Complexity	

High	complexity	products	designed	specifically	with	maintenance	

as	part	of	 the	 life	 cycle	management.	 	Products	 combine	various	

components	manufactured	with	various	raw	materials.	

Product	Life	Expectancy	
Long	 life	 expectancy	 that	 is	 measured	 in	 multiples	 of	 years.		

Maintenance	and	refurbishment	can	extend	the	life	expectancy.	

Production	Processes	

Production	 processes	 start	with	 the	 production	 of	 raw	material,	

refinement	 to	 material	 level	 and	 conversion	 into	 specific	

components.		Components	and	sub‐assemblies	are	assembled	into	

a	 final	product	before	distribution	to	 the	end‐user.	 	Products	are	

usually	 uniquely	 branded	 by	 the	 manufacturer	 and	 distributed	

through	a	proprietary	network.		An	extensive	spare	parts	operation	

is	provided	by	the	Original	Equipment	Manufacturer	(OEM).	
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Class	III‐P:		Primary	Producer	 Secondary	Producer

																									↓																			↓	

																									Distributor		Consumer	

Demand	Patterns	

Demand	 is	 continuous	 and	 usually	 affected	 directly	 by	 global	

economic	factors.		Spare	parts	for	maintenance	are	continuously	in	

demand.		Demand	for	repair	parts	is	less	predictable.	

Network	Structure	

Complex	 network	 structure	with	multiple	 raw	materials such	 as	

plastics,	 metals	 and	 other	 components	 from	 various	 suppliers.		

Component	 suppliers	 may	 brand	 specific	 components	 that	 later	

forms	part	of	products	assembled	and	distributed	by	a	variety	of	

retail	 brands.	 	 OEM’s	 consolidate	 parts	 and	 sub‐assemblies	 and	

distribute	 them	 for	maintenance	 and	 repairs	 through	 a	 branded	

retail	network.	

Infrastructure	

Each	 supplier	 level	 in	 the	 supply	 chain	 requires	 appropriate	

manufacturing	infrastructure.		The	final	assembly	and	distribution	

is	 usually	 controlled	 by	 a	 leading	 brand.	 	 The	 retail	 network	

includes	 service	 centres	 with	 equipment	 and	 trained	 staff	 to	

perform	maintenance	and	repairs.	

Operating	Environment	
The	 supply	 chain	 does	 not	 require	 a	 specific	 operational	

environment.	

 

El Dabee, Marian and Amer (2013) use the case of electric motor manufacturing, which 

is not only a supply chain on its own, but also includes repair and maintenance 

components to ensure effective life cycle performance.  As previously mentioned, 

Billington et al. (2004) and Graves and Willems (2000) discuss printer supply chains.  To 

operate a printer, ink, toner and drums are required.  The manufacturer, therefore, needs 

to set up a Class III-P to distribute the consumables.  In contrast to the traditional service 

centres, printers are designed specifically so that the user performs the consumable 

replacement.  Graves and Willems (2000) describe both the primary supply chain as well 

as the parts distribution supply chain associated with bulldozers. 

3.4 Summary and Discussion 

This chapter proposes a supply chain framework based on product characteristics.  A 

number of supply chain types were identified and categorized.  Various case studies were 

used to show that it is possible to describe a wide range of practical supply chains using 
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the developed framework.  In Chapter 4 the South African automotive supply chain is 

discussed in detail. 
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4 AUTOMOTIVE SUPPLY CHAIN 

The automotive supply chain has a number of unique characteristics.  Firstly, it consists 

of a vehicle supply chain that is driven by the production cycle of a particular model of 

vehicle.  In most cases, the model is actually a product platform, with a range of options.  

Options include body enhancements, drive trains and trim levels.  The vehicle production 

generally follows a model life cycle, with a model staying in production for a number of 

years in which the tooling is amortised.  Small changes (facelifts) and specification 

enhancements are made throughout the production cycle, which usually spans seven 

years.  The changes and enhancements are aimed at ensuring competitiveness relative to 

new models from competitors. 

Vehicles, however, need to be treated as life cycle products, with support provided for 

the vehicle's entire operational life.  This support refers to all parts and services that are 

required to support the vehicle during its usage life.  There is a distinction between the 

vehicle production period and the use.  Owners may buy and drive the vehicles for any 

period.  The life cycle of the vehicle does not end when the first owner does not require 

it anymore.  The vehicle is sold as a second hand vehicle and continues its life cycle.  

Defining the maximum life expectancy of a vehicle in use is thus not possible.  With 

sufficient care, a vehicle may easily spend 20 years or more on the roads.  There is no 

regulatory requirement in South Africa, but most of the original manufacturers continue 

to supply parts for at least 15 years after the last date of vehicle model manufacture 

(industry norm). 

Effectively, the automotive supply chain consists of three parallel, but interlinked, supply 

chains, as shown in Figure 4-1.  Supply Chain 1 is the main “driver” supply chain, namely 

vehicle production and sales.  This supply chain will include imported and local 

components and subassemblies.  This supply chain includes completely-knocked-down 

(CKD) kits.  The basic kit is packed at a global source and sent to the assembly plant.  
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The kit is supported with local content (parts made by the plant itself or local suppliers) 

and painted and assembled on a local production line.  Semi-knocked-down (SKD) kits 

consist of a full vehicle disassembled and packed in units in a container for assembly, 

usually not even requiring further painting.  The distinction between the two types of kits 

is that the former requires significant additional components, while the latter only requires 

assembly.  The final source of vehicles is completely-built-up (CBU) vehicles.  These are 

complete vehicles imported from a specific source.  CBU vehicles are popular in the 

South African market for bringing in new models and brands through marketing and sales 

organisations that do not have the capacity to manufacture vehicles locally. 

From the vehicles’ manufacturer or distributor, the completed vehicles are distributed via 

a network of dealerships.  Dealerships play the primary role of selling the vehicles to the 

end-user.  This step completes the main vehicle supply chain.  Subsequent sales of the 

vehicle through second-hand dealers, or via the owners, would technically form part of 

this supply chain. 

The second supply chain focuses on parts.  Parts supply focuses on ensuring that once a 

vehicle is sold, it remains on the road in an effective manner, for as long as the owner 

desires to drive it.  Service parts supply forms part of the system life-cycle (Blanchard, 

2004).  While the design may have a target life-cycle in mind, the owner in this case does 

not agree to any specific life-cycle time period. 

Parts required to support the use of a vehicle can be split into the following categories: 

 Service parts:  These are part of the regular maintenance cycle and include oil and 

air filters, as well as spark plugs.  The replacement of these parts is driven by a 

specific service schedule developed by the designer of the vehicle.  While service 

parts are usually supplied by the vehicle manufacturer during the vehicle 

maintenance period, there is a strong market for alternative suppliers especially 

on the higher value, high volume parts. 
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Figure 4-1:  Overview of Three Supply Chains. 

 Maintenance parts:  Also known as wear and tear parts, these parts such as brake 

discs, clutch plates, brake pads and shoes, shock absorbers, will last for a specific 

period, depending on driving conditions and driving styles, but eventually wear 

out and need replacement.  Unlike filters that have a set design life, these parts 

are only replaced once a certain threshold has been reached.  The life of these 

parts varies from vehicle to vehicle and driver to driver.  Brake pads on a small, 

high powered sports car are unlikely to last as long as the brake pads on a small, 

low powered entry level car.  The demand on these parts is driven by user 

behavior and vehicle age.  Parts supply can be through the original vehicle 

manufacturer or specialist suppliers. 



Chapter 4: AUTOMOTIVE SUPPLY CHAIN 

 

Andries Botha - December 2017     46 

 Crash parts:  The demand on these parts depends on the occurrence of accidents 

or other unpredictable events such as hail storms.  These events are highly 

unpredictable, their occurrence, but also the extent of damage and the parts to be 

replaced.  In many cases, items such as body panels have original vehicle 

manufacturer design registrations and are difficult to replace.  It is, however, 

possible to source secondhand parts from various sources. 

 Repair parts:  These parts need to be replaced due to specific failures or vehicle 

age.  For example, a wiring harness might fail due to the aging of the insulating 

material and then needs to be replaced.  Certain elements could be classified as 

wear and tear parts, but with a long operational life, such as pistons and gears 

inside the gear box or differential. 

Parts demand can vary from very high to completely erratic.  The objective of original 

vehicle suppliers is to provide a stable supply of service and maintenance parts.  Crash 

and repair parts tend to be more complicated with huge demand variance, as discussed in 

Section 7.3.  Where common vehicle platforms and similar models exist, parts can be 

shared.  These common platforms allow for economies of scale and continuity of supply. 

The third supply chain focuses on customisation and accessories.  This supply chain has 

an original equipment component that is directly linked to the automotive manufacturer 

and its dealer network.  Accessories are developed and certified by the OEM.  The OEM 

certifies that the accessories will not negatively affect vehicle performance.  Certified 

accessories will not negatively affect the warranty provided by the OEM.  Non-

manufacturer approved accessories are often manufactured and sold to clients, without 

informing the client that installing these accessories would result in a voided warranty.  

Typical examples of customisation and accessory parts for vehicles are tow bars, nudge 

bars, raised suspension, off-road suspension, turbo chargers and sound systems (over and 

above normally offered with a vehicle).  These accessories can be fitted at the factory as 

part of a special edition, at dealerships, or at specialist fitment centres.  In general, 

accessory sales are closely related to vehicle sales.  Customers tend to buy accessories 

when they buy new vehicles. 

Patterson, Fredenhall and Kennedy (2002) focus on the spare parts supply chain, 

indicating that supply chain models should help the practitioner to decide:  When to place 

the order, how much to order and the impact of cost versus availability.  Van der Heijden, 

van Harten and Smidt-Destombes (2009) and van der Heijden, van Harten and de Smidt-
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Destombes (2006) analyse the problem of spare parts supply in the defence systems 

environment where both spare parts supply and repairs are taken into account.  In the 

automotive industry, parts supply for maintenance, repair and replacement is critical.  As 

vehicles age, the need for repairs and replacement increases.  Maintenance is a “designed-

in” function.  Vehicle aging is a reality, with the average age of the vehicles in the USA 

at 11.4 years (Office of the Assistant Secretary for Research and Technology, 2015). 

In the automotive parts industry there are a number of models for inventory placement.  

These vary from single location distribution centres, multiple regional distribution centres 

to consignment inventory at the dealers.  In each case, the decision is global rather than 

local.  The lead time within these chains are affected by a variety of factors, including the 

local versus imported parts mix.  If the problem is analysed from a pure logical 

perspective it would be expected that for very fast moving parts, distributed inventory at 

the dealership would provide the best coverage.  Conversely, slow moving parts demand 

may be distributed throughout the network and it may be that certain dealers will not have 

any demand to service.  Aggregating the demand by centralizing inventory in the supply 

chain will improve the availability, provided the service lead time promise can be 

maintained.  Due to the mix of parts in the automotive supply chain, it is usually not 

possible to maintain a 100% guaranteed service rate.  The industry standard target of 

95.5% is set to allow for stocking and non-stocking parts, as well as parts with different 

demand functions. 

For the purposes of this study, the focus is on a centralized inventory model, with limited 

use inventory at dealerships and all safety stock at the distribution centre.  Investigating 

the distribution of inventory throughout the supply chain falls outside the scope of this 

thesis. 

4.1 South African Automotive Market Structure 

A small number of large international automotive manufacturers, who have production 

facilities located throughout the country, dominate the South African vehicle market.  

These manufacturers (OEMs) manufacture for local and export demand as well as import 

vehicles (CBUs) for local demand.  The South African automotive market is 

representative of a number of countries with similar structures.  Despite OEMs having 

global footprints, local policies often support the establishment of local manufacturing 

capacity.  The South African automotive parts supply chain forms the base of the thesis, 
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as demand data is available.  The level of manufacturing and localisation vary.  The extent 

of localisation results from industry support schemes, such as the Motor Industry 

Development Programme (MIDP) and the Automotive Production and Development Plan 

(APDP).  Both these schemes are specific to South Africa. 

The MIDP was introduced in 1995, providing OEMs with duty free allowances.  The 

main features of the programme, according to Pitot (2011), are: 

 A duty free allowance for OEMs to import components up to 27% of the vehicle 

selling price. 

 A duty credit system for vehicle and component exports up to the value of 14% of 

the local content of the export. 

 A productive asset allowance for OEM and related component investments equal to 

a duty credit of 20%. 

The APDP was introduced in 2013 and is based on the following four pillars namely, 

import duty, vehicle assembly allowance, production incentive and an automotive 

investment scheme.  The main features of the scheme are (Pitot, 2011): 

 Import duties – 25% for CBUs (CBUs from Europe only 18%) and 20% for CKD 

components. 

 Vehicle assembly allowance - will allow plants that manufacture more than 50,000 

units per year to import components duty free.  The basic allowance starts at 20%, 

and reduces on a sliding scale to 18% as production volumes increase. 

 Production incentive – allowance for duty free import of vehicles and components 

equivalent to 55% of the South African supply chain value add, reducing to 50% 

over 5 years, with an additional 5% for vulnerable sub-sectors. 

 Automotive incentive scheme – incentives based on investment and job creation in 

the local manufacturing and component sector. 

The domestic market share of the major automotive suppliers in 2013 is shown in Figure 

4-2.  All other manufacturers had market shares equal to or below 1%. 
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Figure 4-2:  Domestic Market Share of Major Automotive Suppliers (NAAMSA, 

2013). 

Of these manufacturers, only AMH and Honda do not have manufacturing plants in South 

Africa.  Manufacturing plants are distributed throughout the country as shown in Figure 

4-3. 
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Figure 4-3:  Location of Automotive Manufacturing Plants in SA (Pitot, 2011). 

Vehicle distribution for importers only tends to consist of local sales, while manufacturers 

all have export programs.  Figure 4-4 shows the market share the various manufacturers 

have of the export market. 
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Figure 4-4:  Export Market Share of SA Based Automotive Companies (NAAMSA, 

2013). 

None of the other manufacturers exports.  Please note that the Common Customs Union 

Countries (Botswana, Lesotho, Namibia and Swaziland) are considered to be local sales 

and not exports. 

Vehicle sales occur through dealer networks that are owned by the OE companies, 

individually owned franchises or direct imports to company owned facilities.  An example 

of the latter would be AMH that imports and distributes a number of different brands 

through its dealership network. 

Vehicle service, maintenance and repair are usually performed through dealerships.  As 

vehicles age, the share serviced by independent and non-automotive brand franchise 

service centres increase.  Crash repairs are usually performed by specialist panel-beaters 

who are authorised by the OE manufacturers.  Parts supply to the various facilities 

originates either from the OE parts supply operation, or from non-OE manufacturers of 

components.  Where possible, manufacturers patent or trademark components to protect 

their intellectual property.  The parts sales from the various OE operations are driven by 

the vehicle park (total number of manufacturer vehicles registered) they service.  Parts 

are sourced either locally (for locally manufactured vehicles) or imported (for imported 

vehicles, CBU, SKD and CKD kits), depending on the original part’s source.  In certain 

cases, localisation occurs where parts manufacturing for parts that may originally have 

been imported, have been localised.  Conversely, if the local demand is too low, parts 
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may be resourced to import sources where global demand results in manufacturing being 

more viable. 

In South Africa, the commitment by vehicle manufacturers is to provide parts for vehicles 

for 15 years after the model production has stopped (industry norm).  Each manufacturer 

provides parts given their own vehicle life expectancy as well as retention rate.  Retention 

is a basic indication of vehicle owners that use OE parts rather than alternatives. 

4.2 South African Automotive Parts Environment 

Strydom provided the data of an unpublished benchmark study performed in 2013.  The 

data reviewed the parts businesses of a number of OE suppliers including some of the 

large local manufacturers and import exclusive suppliers.  The results are discussed 

below, with permission.  Figure 4-5 shows the relative sales volume and inventory levels 

for the OEs. 

 

 

Figure 4-5:  Relative Parts Sales and Inventory (Data from Strydom, 2013). 

OEM2 carries the most inventory (1.05 times that of the base OEM1), but is only second 

in terms of sales (53% of that of OEM1).  In all cases, except for OEM1, the OEMs have 

more inventory than sales.  This result would suggest that OEM1 is running a lean supply 

chain for parts supply.  

Figure 4-6 shows the frequency of lines in versus lines out (Lines = order lines rather than 

pieces).  This result is an indicator of the orders placed by the OE companies relative to 
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sales order lines they receive from their dealer networks.  Higher lines out per lines in 

would indicate larger or bulk orders, indicative of an economic order quantity ordering 

approach.  Fewer lines out per line in would indicate a lean sell one, buy one approach. 

 

 

Figure 4-6:  Outbound Order Lines versus Receiving Lines (Data from Strydom, 

2013). 

It can be seen that OEM1, OEM3 and especially OEM5, follow a lean strategy for 

ordering, in other words only order to replace what has been sold or items for which an 

order has been received. 

Figure 4-7 shows the sales generated per inventory unit or inventory turns.  Inventory 

turns are an indication of how efficient inventory is managed.  Higher inventory turns 

show a high turnaround time and that inventory does not age significantly. 



Chapter 4: AUTOMOTIVE SUPPLY CHAIN 

 

Andries Botha - December 2017     54 

 

Figure 4-7:  Rand Annual Sales/Rand Inventory or Inventory Turns (Data from 

Strydom, 2013). 

As expected from Figure 4-5, OEM1 has the highest and OEM2, the lowest inventory 

turns.  Figure 4-8 shows the inventory value held per order line.  Again, this result is an 

indicator of inventory management efficiency. 

 

 

Figure 4-8:  Inventory Value per Outbound Order Line (Data from Strydom, 2013). 

Figure 4-9 shows the value of the inventory held per square meter of warehouse space.  

The value of inventory per square meter is an indication of the efficiency of storage. 
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Figure 4-9:  Inventory Density (Data from Strydom, 2013). 

In contrast to all the other efficiencies, OEM1 ranks the lowest on inventory density.  

Figure 4-10 shows the throughput in terms of order lines per square meters of warehouse 

space.  This throughput is an indication of operational efficiency. 

 

 

Figure 4-10:  Throughput per Square Meter of Warehouse Space (Data from 

Strydom, 2013). 

Despite its low inventory density, OEM1 has the highest throughput per square meter, 

while OEM2, OEM5 and OEM6 have the lowest warehouse productivity.  While OEM1 

has the lowest storage density, it has a high inventory turnover and high throughput.  

OEM2 with the highest storage density has poor inventory turnover and low throughput 
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speed.  OEM1, OEM3 and OEM5 seem to follow a sell-one-buy-one strategy, with 

supplier order line matching receiving order lines closely.  OEM2 and OEM4 seem to 

import bulk quantities, supporting the many receiving order lines per supplier order. 

This study gives an interesting insight in the supply chain management of the parts 

operations of six OEMs.  Some of the factors seen are a result of strategic decisions 

regarding vehicle platforms, service level promises and approaches to managing 

inventory.  All the OEMs seem to retain their clients adequately and the various strategies, 

as long as they are in line with service delivery promises, are effective. 

4.3 Parts Market Structure – Supply Side 

Part supply focuses predominantly on component parts, rather than assemblies or sub-

assemblies.  In general, these items would be specific components, which the plant would 

often only see as part of an assembly or subassembly.  For example, engines may be 

imported with the oil filter already installed as part of the drive train assembly.  In the 

parts supply chain, the oil filter is a key service part that is replaced at every service 

interval.  Similarly, repair, crash and maintenance parts tend to be sold at the component 

level.  Only with regard to customisation and accessory parts is it likely for a full assembly 

to be sold.  A specific example would be air conditioners, which can be sold as an after-

market fitment, in which case the full air conditioner unit with all components required 

for installation is sold as a single assembly.  For repair and maintenance purposes, each 

single component of the air conditioner is sold separately.  These components include the 

radiator, hoses, connectors, O-rings, compressors and sensors. 

From a sourcing point of view, parts usually originate with the OE supplier.  For past 

model parts, a process of re-sourcing may mean that an imported part is now produced 

locally (localisation), or a part, previously locally produced, is now imported. 

In general, part sourcing will distinguish between stock and non-stock items, current and 

past model parts, as well as local and imported parts.  The basic structure of the parts 

supply chain is shown in Figure 4-11.  The exact design will vary from OEM to OEM at 

a detail level.  For example, some OEMs do not have local content and all parts are 

imported.  In addition, some OEMs use hubs for sub-distribution, some use dealers to 

carry consignment inventory and some supply directly to the dealers as shown.  In cases 

of emergency, parts are imported by means of airfreight, but this action is a function of 
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the part type (airbags are seen as hazardous and may, for example, not be air freighted) 

and the company policy. 

 

 

Figure 4-11:  Parts Sourcing Supply Chain. 

Lead time depends on distance and contractual arrangements.  Imported parts lead time 

includes production lead time, processing lead time or picking lead time (if it is a stock 

item) shipping lead time, transport to the distribution centre and receiving lead time.  The 

average lead time is approximately 63 days. 

Domestic lead time consists of production lead time, transport to the distribution centre, 

and receiving lead time.  Production lead time could be very short, but is usually 

determined by contractual arrangements.  For current model parts, 7 days lead time is the 

norm and for past models 28 days is the norm.  The latter allows the supplier to plan tool 

changes etc. for out of production part runs. 

Supplier reliability forms a critical aspect of the performance of the automotive parts 

supply chain.  OE suppliers are usually under significantly high pressure to produce parts 

for production lines.  This pressure results in the priority for after-market parts being low.  

Any demand that is not in line with the forecast is treated as an abnormal request and may 

result in doubling of the lead time.  Past model parts create problems of their own.  The 

demand for older model parts seldom justifies continuous production.  To interrupt the 

main production lines to perform a tool change for a short production run is not cost 

effective.  In the case of, for example harnesses, past model parts have to be produced by 

EMERGENCY 
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hand.  Components such as connectors, clips and connecting wire need to be sourced.  

This sourcing activity adds significantly to the production lead time. 

4.4 Parts Market Structure – Demand Side 

The demand side for parts supply in South Africa consists of both domestic demand and 

export demand for all categories of parts.  Supply to the domestic market follows three 

distinct models.  Firstly, there is supply via regional or wholesale operations.  This 

approach allows a relatively small number of players to place consolidated orders.  The 

parts are redistributed to the final retail/dealer for use and sales to end-users.  Secondly, 

there is supply directly to dealers, using a vendor managed inventory model.  In this case, 

parts are sent to dealerships on a consignment basis, as and where required.  Special order 

parts are supplied when required.  Thirdly, there is supplying to dealers based on dealer 

orders for dealer inventory or immediate consumption. 

Demand from export destinations tend to be between distribution centre and distribution 

centre.  The local distribution centre will receive an order from the distribution centre at 

the export destination and send the parts to the export destination.  

End-user demand is driven directly by use or as a result of unplanned incidents.  It would 

be reasonable to assume that service parts and maintenance (wear and tear) parts would 

have reasonably predictable demand patterns.  During the launch of a new model, demand 

would increase in line with vehicles sold.  As the vehicle park grows, demand should 

stabilise as vehicles exit the park and new vehicles enter.  A stable vehicle park should 

be even more predictable for platform level parts where the same part is used in more 

than one vehicle generation.  For low volume, short availability models, the demand 

pattern should follow sales and the life cycle of the product.  The use of service parts are 

a result of vehicle usage and manufacturer design specifications.  A vehicle will require 

an oil and an oil filter change every 10 000 km, an air filter every 20 000 km and new 

spark plugs and a fuel filter every 30 000 km, for example.  The vehicle owner does not 

control the consumption of these parts.  The only variable is the average distance covered 

in a certain period.  If the vehicle park is sufficiently large, aggregate demand should be 

stable. 

Wear and tear parts add additional degrees of freedom to the demand pattern.  Factors 

that affect the variance include driver behaviour, terrain and other environmental factors.  

Dealers inspect brake pads at every service for wear.  If the brake pad set is estimated to 
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last to the next service, they are not replaced.  Replacement is suggested on wear and the 

timing is not fixed by a service schedule.  A vehicle travelling on freeways every day is 

likely to receive more mileage from a set of brake pads than a vehicle operating in a 

regular stop/start environment.  A similar argument exists for suspension parts. 

Mechanical failure requiring repairs can be a result of aging, design flaws, or driver 

behaviour.  In general, when design flaws are identified, recall campaigns are launched 

to replace the defective components.  It is, however, very difficult to accurately forecast 

the expected demand for repair parts.  For some models, failure is more likely e.g. clutch 

systems on high performance vehicles may not last as long as expected when vehicles are 

abused during weekend racing. 

The last and completely unpredictable demand, relates to incidental damages.  Accidents 

tend to be individual events and while unpredictable, do not affect the system extensively.  

Significantly more difficult to process, would be the results of a hailstorm.  Such a storm 

could damage a large number of similar vehicles at the same time, resulting in large 

demand volumes following the event.  As an example, a supplier had 24 imported 

windscreens in inventory for a low volume new model.  Following a single hailstorm, all 

24 units were ordered and dispatched in 24 hours.  When the next customer placed an 

order, he had to be informed that there was no inventory available and the lead time was 

63 days as the weight of the windscreen made it too expensive to airfreight. 

The automotive part supply chain contains examples of all of the different types of 

demand.  With 80% of sales attributed to 3.5% of the parts and 5% of sales attributed to 

80% of the parts, effectively managing this lumpy demand is vital.  

4.5 Summary of the Automotive Parts Market 

In summary, the automotive supply chain consists of three distinct supply chains, each 

with their own characteristics.  For the purposes of this thesis, the focus is on the parts 

supply chain.  The parts supply chain ensures that the vehicle is usable throughout its 

operational life.  The South African automotive parts environment, as well as the supply 

and demand side of the supply chain was described in detail in this chapter.  The next 

chapter explains why Just-In-Time (JIT) inventory management is a good fit for the 

automotive parts supply chain. 
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5 LEAN SUPPLY CHAIN AND INVENTORY MANAGEMENT 

Bhattacharya & Bandyopadhyay (2011) explicitly state an “inventory on-hand policy is 

unstable in practical scenarios in terms of its effect on the order and the inventory 

variability, since small fluctuations in demand may result in uncontrollable order and 

inventory variability.”  In contrast, both base stock policies namely, installation stock 

policies and echelon stock policies, are accepted to result in a stable supply chain.  In this 

chapter the case for JIT inventory management is presented.  A case study is provided to 

demonstrate the impact a lean supply chain in the automotive industry has on setting cost 

targets.  The base stock policy (Maximum Inventory Position – MIP) in the automotive 

parts supply industry is derived theoretically as a concept of lean manufacturing and then 

compared against the practical application of the method.  This analysis highlights the 

changes that had to be made to the pure method to maximise supply chain performance 

while maintaining high levels of parts availability and low inventory levels.  As an 

alternative, a stock-on-hand method, called the Stock Target Setting (STS), is developed.  

This policy includes a damping factor that suppresses the potential for the bullwhip effect 

to occur. 

5.1 Economic Order Quantity to Just In Time (JIT) Cost 

There are a number of fundamental assumptions associated with the economic order 

quantity model: 

 A known and constant demand of d units per unit of time exists. 

 The order quantity, Q, will replenish inventory when inventory levels reach zero.  

The full order quantity will arrive simultaneously and instantaneously.  

 Delivery lead time is constant and the reorder point ensures that inventory arrives 

on time (Reorder Point = demand * lead time). 

 A 100% availability is planned for, with no shortages allowed. 

The total cost per unit time, TC, consists of the following components: 

	࢚࢙	ࢍ࢘ࢋࢊ࢘ࡻ	࢘	࢚ࢉ࢛ࢊ࢘ࡼ ൌ 	ࡷ	  ࢉ ∗  ( 5-1 )  ࡽ

With: 

	ࡷ ൌ 	࢚࢙	࢛࢚ࢋࡿ	

	ࢉ ൌ 	࢚࢙	࢚ࢁ	

	ࡽ ൌ  ࢚࢚࢟ࢇ࢛ࡽ	࢘ࢋࢊ࢘ࡻ	
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The average level of inventory is: 

	ࢋࢉ࢟	࢘ࢋ	࢚࢟࢘ࢋ࢜ࡵ	ࢋࢍࢇ࢘ࢋ࢜ ൌ ሺࡽ	– 	ሻ/ ൌ    ( 5-2 )/ࡽ

Where: 

	ࢋࢉ࢟ ൌ 	.ࢋ࢚	࢚࢛	࢘ࢋ	ࢊ	ࢌ	ࢊࢇࢋࢊ	࢚ࢇ	࢙࢚࢛	ࡽ	ࢋ࢙	࢚	ࢋࢀ	

	ࢋࢀ	ࢋࢉ࢟ ൌ  ࡰ/ࡽ

Therefore: 

	ࢋࢉ࢟	࢘ࢋ	࢚࢙	ࢍࢊࡴ ൌ /ࡽࢎ ∗ ࡰ/ࡽ ൌ  ( 5-3 )  ࡰ/ࡽࢎ

With: 

	ࢎ ൌ  .ࢋ࢚	࢚࢛	࢘ࢋ	࢚࢛	࢘ࢋ	࢚࢙ࢉ	ࢍࢊࢎ	

Therefore: 

	ࢋࢉ࢟	࢘ࢋ	࢚࢙	ࢇ࢚ࢀ ൌ 	ࡷ	  	ࡽࢉ	   ( 5-4 )  ࡰ/ࡽࢎ

The total cost per unit time is: 

	ࢀ ൌ 	 ሺࡷ	  	ࡽࢉ	  ሻࡰ/ࡽሻ/ሺࡰ/ࡽࢎ	 	ൌ 	ࡽ/ࡷࡰ	  	ࢉࡰ	     ( 5-5 )/ࡽࢎ	

The lowest cost occurs where the first derivative of TC to Q is equal to zero, resulting in: 

	ࡽ/ࡷࡰ  	/ࢎ	 ൌ 	  ( 5-6 ) 

So that: 

ࡽ ൌ ሺࢎ/ࡷࡰሻ.  ( 5-7 ) 

Equation 5-7 is the well-known EOQ formula. 

The cycle time now becomes: 

	࢚ ൌ 	ࡰ/ࡽ	 ൌ 	 ሺࢎࡰ/ࡷሻ.  ( 5-8 )	

Equation 5-8 provides the baseline to develop a method for calculating the requirements 

for base cost reduction for a JIT system.  In the Toyota Production System, the elements 

contributing to the setup costs are normally targeted first (Shingo, 1981).  Reducing set 

up time allows manufacturing in a Heijunka (even flow) manner.  Heijunka 

manufacturing prescribes producing small quantities of every product on an on-going 

basis, rather than manufacturing significant quantities of one item.  The ideal embodiment 

of JIT in supply chain management would be:  Sell One – Buy One.  This results in: 

ࢀࡵࡶࡽ 	ൌ 	  ( 5-9 ) 

Therefore: 
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	 ൌ 	 ሺࢎ/ࡷࢊࡰሻ.  ( 5-10 ) 

And therefore the ideal setup cost for JIT must be: 

ࢀࡵࡶࡷ 	ൌ  ( 5-11 )  ࡰ/ࢎ	

An alternative JIT implementation strategy would be:  Daily Order, Daily Delivery:   

ࢇࢀࡵࡶࡽ 	ൌ  ( 5-12 )  ࡰࢊ	

Therefore: 

ࡰ ൌ	 ሺࢎ/ࡷࡰࢊሻ.  ( 5-13 )	

Leading to: 

ࡰ 	ൌ 	( 5-14 )  ࢎ/ࡷࡰ 

Therefore, the ideal setup cost for this implementation of JIT must be: 

ࢇࢀࡵࡶࡷ 	ൌ 	  ( 5-15 )/ࢎࡰ	

In summary, to ensure that JIT is feasible in a supply chain, it is imperative that the setup 

costs are managed.  In Section 5.2 a case is demonstrated to calculate the implications of 

JIT on the automotive supply chain for both current and past models.  The example is also 

used to explain the cost implications on the automotive parts supply chain. 

5.2 JIT Feasibility for Automotive Parts Supply Chain – 
Case Study 

To demonstrate the JIT cost implications in the automotive parts distribution supply 

chain, a specific part, namely a fuel tank, is selected.  A fuel tank is a repair part and the 

demand is inherently complex and difficult to predict. 

The fuel tank was manufactured on an in-house production line, with a specific target 

cost.  For the purpose of this study, the target cost is an index figure of 100.  The line 

produces 200 pieces for an 8 hour shift of vehicle production.  The production is planned 

according to a JIT system.  It takes 20 minutes to set up the machine and 60 minutes to 

complete the production of 200 pieces.  Material cost per unit is 80. 

These assumptions suggest that based on the target cost of 100, the cost equation for an 

8-hour shift, from Section 5.1, is: 

	࢚࢙	ࢇ࢚ࢀ ൌ ࡰ	 ∗ 	ࡽ/ࡷ  ࢊ	 ∗ 	ࢉ  ࢎ	 ∗    ( 5-16 )/ࡽ
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With: 

	ࡰ  ൌ  ࡽ	

Then: 

	࢚࢙	ࢇ࢚ࢀ ൌ 	ࡷ	  ࡰ	 ∗ 	ࢉ  ࢎ	 ∗    ( 5-17 )/ࡽ

Therefore: 

	࢚࢙	ࢇ࢚ࢀ ൌ 		 ∗ 		 ൌ 	ࡷ	  		 ∗ 	ૡ	  	ࢎ	 ∗ 	/ ( 5-18 )	

The holding cost on the line is difficult to estimate.  If the product is fed to the production 

line at the line speed, then ࢎ	 ൌ .  A line-side supply of two hours in the factory is seen 

to have negligible impact, with h approaching 0. 

It is then possible to calculate ࢀࡵࡶࡷ as follows: 

	ࢋࢉ࢟ࢉ	࢛࢘ࢎ		࢘ࢋ	࢚࢙ ൌ 		 ∗ 		 ൌ ࢀࡵࡶࡷ	 	 	ૡ	 ∗ 	 ( 5-19 )	

Therefore: 

ࢀࡵࡶࡷ 	ൌ 	 	

Thus to achieve the target cost, ࢀࡵࡶࡷ must be 2000 or less. 

During vehicle production, the aftermarket demand of one unit per month, which 

increased to one unit per day after five years of production, does not add to the cost.  The 

normal production cycle could produce the required additional unit.  After seven years of 

production, a new vehicle model was introduced.  The new generation fuel tank became 

an imported part.  The past model parts demand, however, remained only one per day.   

With a sell one – buy one strategy in place: 

	ࡰ ൌ 	ࡽ	 ൌ 	 ( 5-20 ) 

ࢎ ൌ  ( 5-21 )	

Therefore: 

	࢚࢙	ࢇ࢚ࢀ ൌ ࡰ	 ∗ 	ࡽ/ࢀࡵࡶࡷ  ࡰ	 ∗ 	ࢉ  ࢎ	 ∗ 	/ࡽ ൌ 	ࢀࡵࡶࡷ	  ࡰ	 ∗  ( 5-22 ) ࢉ

	࢚࢙	ࢇ࢚ࢀ ൌ 		  	ૡ	 ൌ 	ૡ ( 5-23 ) 

This cost is 20 times the previous target cost.  If ࡰ	 ൌ 	ࡽ	 ൌ 	 (demand for 1 week), then: 

	࢚࢙	ࢇ࢚ࢀ ൌ 		  	ૡ ∗ 	 ൌ 	 ( 5-24 ) 

Resulting in a unit cost of 480 or 4.8 times the previous target cost. 
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In a case like this, the revised target cost may be set at 1100, requiring K to be reduced to 

around 1000.  This result affects two aftermarket dilemmas: 

 The cost of low volume past model parts which are now significantly more 

expensive than when the vehicle was in production 

 Suppliers are very reluctant to enter into past model contracts and be tied 

contractually for 15 years after the end of production supply, during the original 

OE contract negotiations. 

In summary, it is feasible to apply just in time principles for the parts supply chain, but 

the end of production has significant price implications for low volume movers. 

5.3 Inventory Management Models for Just In Time (JIT) 

This section aims to analyse and evaluate the generally used inventory management 

method for JIT supply chains.  Inventory management requires the setting of: 

 Reorder point (RP) – at which inventory level is an order placed. 

 Reorder quantity (RQ) – how many units should be ordered.     

The first item to review is the concept of Guaranteed Service (GS) (Graves & Willems, 

2000) in the automotive parts industry.  A vehicle contains between 6 000 and 10 000 

individual components.  Many of these components are never replaced during the life 

cycle of the vehicle.  Service parts are as few as five components per vehicle and wear 

and tear parts are 20 (with varying life expectancies).  The rest of the parts are repair, 

accident damage or “never to be replaced” parts.  While a customer expects 100% 

availability of parts, it is not economically feasible.  It is, therefore, necessary to establish 

an overall GS target.   

Once the service level targets have been defined, an inventory management strategy needs 

to be selected:  

 MIN/MAX – A minimum inventory level triggers replenishment orders.  This 

method requires a reorder point to be set, as well as a reorder quantity.  Where 

there is an economic order quantity, MIN/MAX is the most effective method. 

 MAX/MAX – Every time a sale is processed, a replenishment order is placed to 

replenish the inventory back to the maximum level.  This method only requires 

the setting of the maximum inventory level. 
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MAX/MAX can be interpreted as a form of Just-In-Time ordering, with orders only 

placed to replenish actual demand.   

The current approach to MAX/MAX is to set a Maximum Inventory Position (MIP).  The 

MIP level reflects the demand over a period and accommodates inventory for order cycle, 

supplier lead time, as well as safety stock for lead time variance and safety stock for 

demand variance. 

The basic inventory management model used for JIT parts supply is the Maximum 

Inventory Position (MIP) method.  The MIP method is analysed and discussed in the next 

three sections.  Starting with ideal theory, the theory under stochastic conditions and the 

practical implementation of the method is reviewed and discussed. 

5.3.1 JIT Maximum Inventory Position Order Management Model - 
Theory 

For a JIT supply chain, the inventory strategy is driven by:  Daily Order – Daily Delivery.  

This strategy means that as soon as inventory is consumed, an order is placed for new 

inventory.  The delivery for the next day may not be the order placed today, but an order 

offset by the lead time.  If the supplier can maintain a same day delivery schedule, the 

parts sold today is replenished tomorrow. 

Therefore: 

	ࡼࡾ ൌ 	  

	ࡽࡾ ൌ 	 ࡰ	

With ࡰ the constant daily demand. 

To take the order lead time into account, it is necessary to introduce the concept of 

pipeline inventory.  Pipeline inventory includes all inventory that has been ordered and 

not yet sold.  It consists of both inventory available to sell, as well as orders that have not 

yet been delivered.  Two new variables are required, namely: 

ࡴࡻࡿ 	ൌ  Available inventory – ࢊࢇࡴ		ࢉ࢚ࡿ	

ࡻࡻࡿ 	ൌ  Inventory ordered but not yet available to sell – ࢘ࢋࢊ࢘ࡻ		ࢉ࢚ࡿ	

Therefore: 

	ࢉ࢚ࡿ	ࢋࢋࡼ ൌ ࡴࡻࡿ	 		( 5-25 ) ࡻࡻࡿ 

The Pipeline Stock is the physical embodiment of the Maximum Inventory Position 

(MIP).  If sales are set to zero, the inventory ordered using the MIP method will only 

build up to a maximum of the MIP level.  Therefore: 
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	ࡼࡵࡹ ൌ 	ࢉ࢚ࡿ	ࢋࢋࡼ	 ൌ ࡴࡻࡿ	 		( 5-26 )  ࡻࡻࡿ	

Where: 

ࡴࡻࡿ 	ൌ 	ࡰ	 ∗ 	ࡼࡾ	 ൌ  ( 5-27 )  ࡰ	

ࡻࡻࡿ 	ൌ 	ࡽࡾࢳ	 ൌ 	ࢋࢀ	ࢊࢇࢋࡸ	 ∗  ( 5-28 )  ࡰ	

	ࡽࡾ ൌ 	ࡽ	 ൌ  ( 5-29 )  ࡰ	

Therefore: 

	ࡼࡵࡹ ൌ 	ࡰ	  	ࢋࢀ	ࢊࢇࢋࡸ	 ∗ 	ࡰ	 ൌ 	ࡰ	 ∗ 	ሺ	   ሻ  ( 5-30 )ࢋࢀ	ࢊࢇࢋࡸ	

Equation 5-30 describes the MIP calculation that is applicable under ideal conditions 

where demand is consistent with no variance in demand or lead time.  In the next section, 

the equations are expanded to accommodate demand and lead time variances. 

5.3.2 JIT Maximum Inventory Position Order Management Model 
Under Stochastic Conditions - Theory 

Thus far, it was assumed that d is constant and that there would never be stock-outs.  In a 

real environment, demand is random or stochastic.  Therefore, it can be stated that: 

 ሻࡰሺࡱ average value of = ࣆ a continuous random variable representing daily demand = ࡰ

with ࣌ = standard deviation of ࡱሺࡰሻ. 

 :has a probability density function, namely ࡰ

	ࡰ ൌ 	ƒሺ࢞ሻ  ( 5-31 ) 

Lead time is also random, giving: 

 ሻࡴሺࡱ  = average value ofࣆ a continuous random variable representing lead time = ࡴ

with ࣌ = standard deviation of ࡱሺࡴሻ. 

 :has a probability density function, namely ࡴ

	ࡴ ൌ 	ƒሺ࢟ሻ  ( 5-32 ) 

The equations in Section 5.3.1 can thus be expanded to: 

ࡴࡻࡿ 	ൌ 	ࣆ	 ∗ 	ࡼࡾ	 	ࢂࡰࡿࡿ 	ൌ 	ࣆ	 	( 5-33 )  ࢂࡰࡿࡿ 

Where ࢂࡰࡿࡿ 	ൌ  ࢋࢉࢇ࢘ࢇࢂ	ࢊࢇࢋࡰ	࢘ࢌ	ࢉ࢚ࡿ	࢚࢟ࢋࢌࢇࡿ	

ࡻࡻࡿ 	ൌ 	ࡽࡾࢳ	 ൌ 	 ሺࣆ 		ࢂࢀࡸࡿࡿሻ 	∗  ( 34-5 )  ࣆ	

Where ࢂࢀࡸࡿࡿ 	ൌ  ࢋࢉࢇ࢘ࢇࢂ	ࢋࢀ	ࢊࢇࢋࡸ	࢘ࢌ	ࢉ࢚ࡿ	࢚࢟ࢋࢌࢇࡿ	
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Therefore: 

	ࡼࡵࡹ ൌ 	ࣆ	 ∗ 	ࡼࡾ	 	ࢂࡰࡿࡿ 		ሺࣆ 		ࢂࢀࡸࡿࡿሻ 	∗  ( 35-5 )  ࣆ	

	ࡼࡵࡹ ൌ 	ࣆ	 ∗ 	ሺࡼࡾ	 	ࣆ 		ࢂࢀࡸࡿࡿሻ 		( 5-36 )  ࢂࡰࡿࡿ 

If ƒሺ࢞ሻ and ƒሺ࢟ሻ are normal distributions, the safety stock can be defined in terms of the 

service level to be achieved.  For example, to achieve 95% service level, the safety stocks 

are: 

ࢂࡰࡿࡿ 	ൌ 		 ∗   ( 37-5 )   ࣌	

ࢂࢀࡸࡿࡿ 	ൌ 		 ∗ 	  ( 5-38 )࣌	

Therefore: 

	ࡼࡵࡹ ൌ 	ࣆ	 ∗ 	ሺࡼࡾ	 	ࣆ 	 		 ∗ ሻ࣌	 	 		 ∗ 	( 39-5 )  ࣌	

This leads to: 

	ࡽ ൌ ࡴࡻࡿሺ	–	ࡼࡵࡹ	 		ࡻࡻࡿሻ 	  ( 5-40 )  ࡻ	

	ࡽ ൌ 	ࣆ	 ∗ 	ሺࡼࡾ	 	ࣆ 	 		 ∗ ሻ࣌	 	 		 ∗ ࡴࡻࡿሺ	–	࣌	 		ࡻࡻࡿሻ 	  ( 5-41 ) ࡻ	

With: 

	ࡻ ൌ 	 ࢙࢘ࢋࢊ࢘ࢉࢇ	

This means that for stochastic demand, an order is placed daily.  This order takes into 

account the Maximum Inventory Position, which is a function of order cycle, lead time, 

lead time variance, demand, demand variance and current inventory pipeline status.  

Backorders that have been created are added to the order. 

Three issues arise, namely: 

 How frequently ࡼࡵࡹ is adjusted 

 What values of ࣆ and ࣌ is used 

 What values of ࣆ and ࣌ is used 

5.3.3 JIT Maximum Inventory Position Order Management Model 
Under Stochastic Conditions - Practical Application 

In practice, both of the calculations (safety stock and daily order) can be performed daily 

with a sufficiently capable computer system.  Daily recalculation may, however, affect 

system stability, encouraging the bullwhip effect.  It is therefore the norm to adjust MIP 
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once a month.  The value of ࣆ is calculated as a 6 month moving average demand (MAD) 

calculation.  It is accepted that using a 6 month moving average will smooth day to day 

demand fluctuations and accommodate seasonal behaviour (Toyota, 2003).  The value of 

  is less frequently updated and is treated as a manual intervention.  The required safetyࣆ

stock is obtained as output from the system.  Except for using the MAD and adjusting 

lead time when appropriate, the system is treated as a black box.  

 Toyota (2003) describes the implemented equation set in use as follows: 

	ࡼࡵࡹ ൌ 	ࡰࡹ	 ∗ 	ሺࡻ	  	ࢀࡸ	  	ࢋ࢚	ࢊࢇࢋࡸ	࢘ࢌ	ࡿࡿ	   ሻ  ( 5-42 )ࢊࢇࢋࡰ	࢘ࢌ	ࡿࡿ	

	ࡽࡻࡿ ൌ ࡰࡹ	 ∗ ሺࡻ	  	ࢀࡸ	  	ࢋ࢚	ࢊࢇࢋࡸ	࢘ࢌ	ࡿࡿ	  	ࡴࡻሺ	–	ሻࢊࢇࢋࡰ	࢘ࢌ	ࡿࡿ	 

	ሻࡻࡻ	  ( 5-43 )  ࡻ	

With: 

	ࡽࡻࡿ ൌ 	 ࢚࢚࢟ࢇ࢛	࢘ࢋࢊ࢘	ࢉ࢚ࡿ	

	ࡰࡹ ൌ ࢊࢇࢋࡰ	ࢋࢍࢇ࢘ࢋ࢜	࢟ࢎ࢚ࡹ	 ∗	 	

	ࡻ ൌ 	 ࢋࢉ࢟	࢘ࢋࢊ࢘ࡻ	

	ࢀࡸ ൌ 	 ࢋࢀ	ࢊࢇࢋࡸ	

	ࢋࢀ	ࢊࢇࢋࡸ	࢘ࢌ	ࡿࡿ ൌ 	 ࢋࢀ	ࢊࢇࢋࡸ	࢘ࢌ	ࢉ࢚ࡿ	࢚࢟ࢋࢌࢇࡿ	

	ࢊࢇࢋࡰ	࢘ࢌ	ࡿࡿ ൌ 	 ࢊࢇࢋࡰ	࢘ࢌ	ࢉ࢚ࡿ	࢚࢟ࢋࢌࢇࡿ	

	ࡴࡻ ൌ 	 ࢊࢇࡴ		ࢉ࢚ࡿ	

	ࡻࡻ ൌ 	 ࢘ࢋࢊ࢘ࡻ		ࢉ࢚ࡿ	

	ࡻ ൌ   ࢙࢘ࢋࢊ࢘ࡻ	ࢉࢇ	

*6 month moving average, adjusted to reflect daily demand.   

A six months moving average demand (MAD) calculation is used to smooth day to day 

demand fluctuations and accommodate seasonal behaviour (Toyota, 2003).  The value of 

lead time is less frequently updated and considered a manual intervention.  The required 

safety stock is again obtained as output from the system.  Except for using the MAD and 

adjusting lead time when appropriate, the system is treated as a black box.  

The implementation of the MIP method raises a serious concern with regard to the 

calculation of MIP.  If Equations 5-41 and 5-43 are compared, there is a distinct difference 

in the calculation of order quantity, Q, with regard to the calculation of safety stock for 

demand, SSD.  In the theoretical derivation (Equation 5-41) the safety stock for demand 

considers the demand variance for the reorder period.  Daily order placement suggests 

that the safety stock for demand is equal to the demand variance multiplied by the factor, 
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n, associated with a specific service level.  This approach ensures that both the terms of 

the equation is consistent in its dimensions (pieces * time).  In the practical application 

(Equation 5-43), the safety stock for demand is included in a single term with safety stock 

for lead time.  Both the factors are multiplied by the demand, resulting in a term that does 

not have dimensional consistency (pieces * pieces + pieces * time).  It is suspected that 

the practical solution is an attempt to improve the stock availability.  The result of using 

Equation 5-43 would be an increase in service level, but it would also increase inventory 

levels significantly. 

If the logic as shown in Equation 5-41 is used, the correct equation should be: 

	ࡼࡵࡹ ൌ ሺࡰࡹ ∗	ሻࢊࢇࢋࡰ	࢘ࢌ	ࡿࡿ 	 ሺࡻ	  	ࢀࡸ	   ሻ   ( 5-44 )ࢋ࢚ࢊࢇࢋࡸ	࢘ࢌ	ࡿࡿ	

It is also suspected that the assumption that both lead time and demand have normal 

distributions may be the cause of the MIP method not providing adequate service levels.  

If lead time and demand have other distribution functions, such as log-normal or Gamma 

distributions, the theoretical MIP method will underestimate the amount of safety stock 

required.  With the practical implementation, the inventory in the system is increased, 

allowing the AFR to remain high, even when the demand pattern does not follow a normal 

distribution. 

5.3.4 JIT Stock Target Setting Order Management Model Under 
Stochastic Conditions - Theory 

As an alternative to the MIP method, this thesis proposes a Stock Target Setting (STS) 

method.  The MIP method focuses on inventory in the complete pipeline (stock-on-order 

and stock-on-hand), but does not specify location at which safety stock needs to be held.  

As long as the total inventory in the system is equal to the maximum inventory position, 

no additional action is taken.  The proposed Stock Target Setting method focuses on 

stock-on-hand.  It sets a target for the stock–on-hand, which includes safety stock for 

demand and lead time variance, and focuses on ensuring that this target inventory level is 

maintained. 

In the Stock Target Setting Method two equations are required.  Firstly, the order quantity 

to be placed needs to be calculated. 

	࢘ࢋࢊ࢘ࡻ ൌ 	 ሺࢊࢇࢋࡰ	– ሻ࢙࢘ࢋࢊ࢘ࡻ	ࢉࢇ	 		ሺ࢚ࢋࢍ࢘ࢇࢀ	–  ሻ  ( 5-45 )ࢉ࢚ࡿ	

Similar to the MIP method, back orders are h as having a secondary supply approach and 

they can, therefore, be subtracted from the demand.  In the current format any correction 
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from the ሺܶܽݐ݁݃ݎ െ  ,ሻ term should result in the bullwhip effect.  It is, therefore݇ܿݐܵ

necessary to expand Equation 5-45 to introduce a damping factor for inventory level 

adjustment to overcome the statement by Bhattacharya and Bandyopadhyay (2011) that 

inventory-on-hand policies are inherently unstable.  This adjustment results in: 

࢘ࢋࢊ࢘ࡻ ൌ ሺࢊࢇࢋࡰ	– ሻ࢙࢘ࢋࢊ࢘ࡻ	ࢉࢇ	  ሺ࢚ࢋࢍ࢘ࢇࢀ	–  ሻ࢚࢘ࢉࢇࡲ	ࢍࢇࡰሻ/ሺࢉ࢚ࡿ	

 ( 5-46 ) 

The second equation focuses on how to set the target inventory level. 

	࢚ࢋࢍ࢘ࢇࢀ ൌ 	 ሺ࢟࢘ࢋ࢜ࢋࡰ	ࢋࢉ࢟ሻ 	∗ 	 ሺࢊࢇࢋࡰሻ  ( 5-47 ) 

As shown here, the equation assumes stable demand.  The equation can once again be 

expanded to compensate for stochastic conditions, resulting in Equation 5-48: 

	࢚ࢋࢍ࢘ࢇࢀ ൌ 	 ሺ࢟࢘ࢋ࢜ࢋࡰ	ࢋࢉ࢟	  	 ∗ ሻ࣌ 	∗ 	 ሺࢊࢇࢋࡰ	  	 ∗  ሻ  ( 5-48 )࣌

The STS method therefore consists of Equations 5-46 and 5-48. 

5.4 Lean Supply Chain Inventory Management Models 
Summary 

In this chapter the role of lean supply chain or JIT supply chain was explored.  A cost 

comparison between the traditional EOQ and JIT costing methods was done.  To confirm 

the feasibility of the lean supply chain approach, a cost target method was developed.  

This cost target method provides the practitioner an opportunity to calculate the potential 

cost increase to expect when an automotive model moves from current production to past 

production.  A specific case in the automotive industry was analysed to confirm the cost 

model and cost breakpoint.  The basic MIP model for JIT inventory management was 

described.  Comparison of this model with the practical implementation shows that there 

is a fundamental difference in the theoretical derivation and the practical implementation.  

To address the resulting increase in inventory levels, the STS model was developed.  This 

model aims to improve the AFR without a significant increase in inventory levels.  In the 

next chapter, the development of a SDSM, which is used to evaluate the different 

methods, is described. 
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6 DEVELOPMENT OF A SYSTEM DYNAMICS SIMULATION 

MODEL FOR SUPPLY CHAIN BEHAVIOUR ANALYSIS 

To effectively analyse the impact of an inventory management method, it is essential to 

evaluate the effectiveness of the method in a quantitative manner.  The criteria against 

which to measure performance have been identified as allocation fill rate (AFR) and 

inventory levels.  The automotive part supply chain is dynamic in nature with parts being 

sold and replenished on an on-going basis.  Demand is variable and can move rapidly, or 

very slowly, as discussed in Chapter 4.  Due to the stochastic nature of the demand, a 

dynamic simulation based approach was considered most suitable to evaluate the various 

inventory management approaches.  For the purposes of this study, System Dynamics 

Simulation Modelling (SDSM) was selected. 

In this chapter, the basic elements of decision support and system dynamics are discussed.  

The development of a SDSM to analyse various inventory management methods under 

various conditions is discussed.  The SDSM accommodates the three supply chain 

structures:  Local Current, Local Past and Imported Parts.  Each of these models is set up 

to address the three inventory management methods:  MIPTheory, MIPActual and STS. 

The detail of the statistical methods used to analyse the datasets are not discussed in this 

chapter, but provided in Appendix X.  The basic elements of the statistical analysis are 

described in Section 7.3, given that these are standard methods. 

6.1 Background 

System Dynamics was developed by Jay Forrester.  Starting with “pen and pencil models” 

Forrester expanded the methodology to include the use of computer simulation.  The first 

problems addressed, focused on supply chain dynamics (Forrester, 1961), national 

problems (Forrester, 1969) and global problems (Forrester, 1973).  Working with 

industrialists, politicians and economists, he developed a series of ground breaking 

solutions to short, medium and long-term problems. 

As indicated, system dynamics focus on the dynamic domain where conditions 

continually change and the system adapts to changes.  It also embraces non-linear 

behaviour through feedback loops.  It does however, not attempt to develop a specific 

solution, but rather identify alternative policies (Forrester, 1958). 

The system dynamics process is shown in Figure 6-1. 
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Figure 6-1:  System Dynamics Process from Problem Symptoms to Improvement 

(Forrester, 1994). 

Unlike operations research where there is a clear requirement to formulate the problem 

as a mathematical model, which suggests a certain level of rigor, system dynamics 

requires a description to be converted to level and rate equations.  Sterman (2000) shows 

a stronger focus on the details of model development, while Forrester (1994) and Vennix 

(1996) focus on ensuring that the project results are implemented to resolve the problem 

and improve the system. 

Kampmann (2012) expand on the lack of formal methodology for constructing system 

dynamics models: “formal methods have largely been restricted to simple classroom 

examples as guides to intuition”.  He proposes that the method of system eigenvalues 

(Nathan Forrester (1982, 1983)) be introduced as a method to formally assess the 

important structures in system dynamics models.  This method uses graph theory to 

analyse the feedback in system dynamics models and “may be a step towards a systematic 

analysis of feedback loops in system behaviour.”  (Kampmann, 2012).  Ford (1999) and 

Richardson (1995) also discuss the analysis of feedback dominance as a tool in system 

dynamics. 

A number of authors propose the use of simulation to analyse and optimise supply chains.  

Sahay and Ierapetriou (2013) evaluate the interaction between simulation and 

optimisation requiring an active feedback loop between each solution.  Umeda and Zhang 

(2008) apply a hybrid of discrete simulation, control models and system dynamics to 

solve supply chain problems.  Tako and Robinson (2012) apply a combination of discrete 

event simulation and system dynamics to the supply chain. 



Chapter 6: DEVELOPMENT OF A SYSTEM DYNAMICS SIMULATION MODEL FOR SUPPLY 
CHAIN BEHAVIOUR ANALYSIS 

 

Andries Botha - December 2017     73 

Angerhofer and Angelides (2000) and Akkermans and Dellaert (2005) provide an 

extensive overview from the original industrial dynamics to more recent use of system 

dynamics to address supply chain issues.  System dynamics has been applied in many 

industries to evaluate and solve supply chain issues.  Vlachos, Georgiadis and Iakovou 

(2007) applied system dynamics for capacity planning in a closed-loop supply chain, 

Canella, et al. (2015) focus on a coordinated decentralised supply chain, while Minegishi 

and Thiel (2000) and Georgiadis, Vlachos and Iakovou (2005) focus on applying system 

dynamics in the food supply chain.  Huang, et al. (2007) applied system dynamics to a 

so-called constant work in process controlled supply chain for lamps.  The constant work 

in process system is a hybrid push-pull system. 

As shown above, applying system dynamics to supply chain research is on-going.  In this 

particular case the focus is on studying the performance of a specific inventory 

management method being used in the automotive parts supply chain.  The objective of 

the study is to understand and improve on inventory management in an industry where 

parts move at highly differentiated demand patterns.  It is also an industry where supply 

rate is critical.  Additional complexity in the industry is that space is a constraint and the 

bullwhip effect is difficult to cope with in a practical manner.   

 

6.2 iThink Constructs 

The reality is that the basic constructs of system dynamics, namely, level and rate 

equations, are simply a way of describing the basic approach of using differential 

equations to describe a problem.  Levels are commonly known as stocks and rates as 

flows.  The simple mathematical version of the differential equation structure is given in 

Equation 6-1: 

ሻࢀሺࢉ࢚ࡿ ൌ ࢀሺࢉ࢚ࡿ െ ሻ࢚ࢊ  ሺࡵ࢝ࡲ െ  ሻ  ( 6-1 )࢚࢛ࡻ࢝ࡲ

More mathematically precise, an integral equation or a differential equation (Sterman J. , 

2000) as shown in Equations 6-2 and 6.3, can be used: 

ሻ࢚ሺࢉ࢚ࡿ ൌ  ሺࡵ࢝ࡲሺ࢙ሻ െ ሻሻ࢙ሺ࢚࢛ࡻ࢝ࡲ
࢚
࢚

࢙ࢊ    ሻ  ( 6-2 )࢚ሺࢉ࢚ࡿ

ሻࢉ࢚ࡿሺࢊ

࢚ࢊ
ൌ ࢉ࢚ࡿ		ࢋࢍࢇࢎ	࢚ࢋࡺ ൌ ࡵ࢝ࡲ	 െ  ( 6-3 )  ࢚࢛ࡻ࢝ࡲ



Chapter 6: DEVELOPMENT OF A SYSTEM DYNAMICS SIMULATION MODEL FOR SUPPLY 
CHAIN BEHAVIOUR ANALYSIS 

 

Andries Botha - December 2017     74 

Solving the set of differential equations cycle by cycle, a dynamic picture of the model 

outputs is obtained.  The advantage of SDSM is that it is designed to solve dynamic, time 

bounded problems and does not optimize under static or linear conditions.  By connecting 

stocks and flows, it is possible to create higher order non-linear systems that are solved, 

even if there is no analytical solution.  Changing boundary conditions can be included at 

any point in time during a simulation. 

The tool used for developing the simulation model was iThink® 10.1.1, developed and 

owned by isee systems Inc.   

The primary building block in system dynamics is the stock.  Usually depicted as a 

rectangle (see Figure 6-2), stocks are used to “accumulate” the state of the system.  It 

provides an indication of the level of a particular variable at a specific time.  One of the 

most important attributes of a stock is that it always has an initial value.  As an example, 

in a simple model of a dam, the dam itself is treated as a stock.  It is possible to determine 

the amount of water in the dam, by observing the value of the dam stock. 

 

Figure 6-2:  A Stock as Implemented in iThink® 

The second fundamental building block of system dynamics is the flow.  Usually depicted 

as a pipe with a valve (refer to Figure 6-3), flows are used to adjust the level of stocks.  

The clouds at either end of the flow indicate that there is either an unlimited source (inflow 

side) or an unconstrained sink (outflow side).  In the case of a dam system, the river or 

stream(s) feeding into the dam, as well as the overflow, are flows. 

 

Figure 6-3:  Flow as Implemented in iThink® 

The value of a stock can only change if it receives an inflow or outflow.  The dam can 

only fill up if water flows in and be emptied if water flows out.  Figure 6-4 shows a simple 

inflow-outflow model of a dam.  Stocks can have multiple inflows and outflows. 

 

Figure 6-4:  Simple Inflow and Outflow Model of a Dam 

Stock: eg Dam

Flow: eg Riv er

Riv er Ov erf low

Dam
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Please note that the inflow originates from an infinite source.  The outflow is also a sump 

with infinite capacity.   

Flows (in and out) can be defined as constants or functions.  iThink® uses converters and 

connectors, as shown in Figure 6-5, for this purpose.  Converters can be used to represent 

constants, variables or functions.  Converters, stocks and flows can be connected by 

connectors.  Figure 6-5 shows an inflow that is controlled by a function that includes both 

the value (level) of the stock over time, as well as the constant or function represented by 

the converter. 

 

Figure 6-5:  Converters and Connectors as Implemented in iThink® 

A number of specialized stocks form part of the iThink® implementation.  For the 

purpose of this study, a special stock called a conveyor is required.  A conveyor acts as a 

time delay and is a good representation of lead time.  It is possible to implement a variable 

time control that will speed up or slow down the conveyor.  Figure 6-6 shows the same 

structure as in Figure 6-5, but with the stock changed to a conveyor. 

 

Figure 6-6:  Conveyor as Implemented in iThink®. 

Stock

FlowIn FlowOut

Convertor

Stock Conveyor

FlowIn FlowOut

Convertor
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The figure shows that the stock now is a conveyor with individual slats controlled by the 

time it takes for items to move through the conveyor.  In this particular case, the conveyor 

implementation of the stock requires a transit time (constant or variable), capacity and 

inflow limit.  The outflow is now controlled by the internal mathematics of the conveyor, 

which includes an externally set lead time. 

6.3 Problem Description 

Data from a large multi-national motor manufacturer was used to evaluate the 

performance of the inventory management methods.  This company manufactures and 

sells vehicles in South Africa, as well as to a number of export destinations.  These 

vehicles are provided with parts to support them throughout their life cycle. 

Parts are imported from various international locations and local parts are received from 

various suppliers, including the manufacturing plant.  All parts are received into a central 

distribution centre.  Parts are stocked based on an inventory policy that identifies certain 

parts as stock and others as non-stock.  Non-stock parts are processed through the facility 

when ordered, but not kept in inventory.  Dealers and export distributors place orders on 

a daily basis.  Dealer orders are classified as emergency orders, daily orders or stock 

orders.  The latter orders are parts that dealers are expected to maintain some minimum 

level of inventory.  Emergency orders and daily orders are supplied on a same day basis, 

while stock orders are shipped within two days.  Orders are placed through an electronic 

portal and accumulated on a continuous basis.  The system is available 24 hours per day 

and 7 days a week and allows for automated order loading as well as manually placed 

orders.  In general, a small number of orders (10%) are placed over weekends.  Export 

countries, as well as Botswana, Namibia, Lesotho and Swaziland (treated as local dealers) 

may place orders on South African Public Holidays. 

Inventory management is currently based on a MAX/MAX principle.  Orders are placed 

once a day.  Import orders are assigned an estimated lead time and processed in the 

respective distribution centres and shipped in containers.  Vessels usually depart once a 

week.  Local orders are accepted by suppliers and are based on contractual lead times.  

Current model parts have a 7 day lead time, including delivery, and past model parts can 

be 7 days, if they are high volume, but in general past model parts have a 28 day lead 

time. 
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The maximum inventory position (MIP) is reviewed monthly and adjusted if required.  A 

rolling three month demand forecast is provided to suppliers and a maximum order 

quantity of 20% higher than the forecast is acceptable.  There is no minimum order 

quantity.  The procurement team is measured by means of two key performance 

indicators: 

 Allocation Fill Rate (AFR) 

 Stock Months 

The allocation fill rate is affected by the receiving operation.  Local suppliers deliver daily 

and their deliveries are processed with a target lead time of 0.5 days from truck receiving 

to being confirmed into a storage location.  Containers arrive when the ships dock and are 

received into the facility at a steady pace.  Ship arrivals are usually on Sundays, and it 

takes a week to process the full shipment.  From container receiving to being confirmed 

into a storage location takes one day.  Parts are entered into the system during the 

receiving process.  If a part is not available when an order is place, but arrives at the 

facility 10 minutes later, the AFR score remains zero.  Given that some parts are not kept 

in inventory, the target allocation fill rate is set at 95.5%.  This target implies that on any 

given day, a maximum of 4.5% of parts ordered can have zero availability. 

To effectively manage the inventory, parts are classified by movement type and every 

effort is made to maintain 100% availability of the fast moving parts, which usually are 

service items.  Two different classifications are used by the warehouse management 

system and the inventory forecasting systems.  The results from the two systems are 

combined for order placement.  Table 6-1 shows the classification system used by the 

warehouse management system and  

Table 6-2 shows the classification used by the inventory management system. 

Table 6-1:  Parts Movement Classification Used by the Automotive Parts Warehouse 

Management System. 

Movement Category Calculation 

New Remains in this category for 18 months. 

Fast Greater or equal to 240 bin calls (orders) in last 12 months   

Medium 60 to 239 bin calls in last 12 months 

Slow Between 7 and 59 bin calls per year with 
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Movement Category Calculation 

Bin calls in at least 6 of the last 12 months 

Erratic 1 to 6 bin calls in the last 12 months 

  OR 

Between 7 and 59 bin calls in the last 12 months with 

Bin calls in less than 6 of the last 12 months 

Dying No bin calls in the last 12 months 

Dead No bin calls in the last 24 months 

Superseded Part replaced by new part number 

 

Table 6-2:  Parts Classification Used by the Automotive Parts Inventory 

Management System. 

Pareto Category Calculation 

Pareto A (stocked) Age <= 36 months and hits = 0 in 36 months 

Take off age <= 12 months 

Pareto A (non-stocked) Age <= 24 months, non-consecutive sales in past 3 

months (less than 2 sales in 3 months) 

Pareto B-F (stocked) Take off age > 12 months and hits >= 4 in 24 months 

Pareto B  80% unit contribution 

Pareto C 10% unit contribution 

Pareto D 5% unit contribution 

Pareto E 3% unit contribution 

Pareto F 2% unit contribution 

Pareto M (stocked) Take off age > 12 months and hits < 4 in 24 months 

Pareto F (non-stocked) Take on age > 36 months and hits = 0 in 36 months 

Part status in 1,3,4,5,6,7,10,13,15,16 

All parts in dead and dying movement categories 

Pareto X (non-stocked) Age > 60 months and hits < 2 in 60 months 
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Inventory controllers’ focus on Pareto B and C parts, as achieving a 100% AFR for these 

parts ensures a 90% AFR. 

Stock month is the value of inventory divided by monthly turnover.  This index is an 

indication of the amount of inventory in the system, relative to the monthly turnover.  As 

this index is calculated using all inventory, it is also an indicator of inventory age.  High 

inventory levels with a low AFR is unacceptable.  At the same time, sufficient inventory 

must be available to ensure that the AFR remains high.  Low inventory levels and high 

AFR is ideal.  Considering the number of parts on the parts master relative to non-stocking 

parts, reasonable targets for AFR and stock months need to be set.  The problem is to 

determine the ideal amount of inventory to hold for each part.   

It should be noted that where possible, back orders are treated as emergencies and shipped 

via airfreight.  They do therefore, not feature as part of the MIP calculation used to 

calculate the required inventory level for each part.  Backorders, however, do form part 

of the MAD calculation and the demand variance. 

6.4 Development of the System Dynamics Simulation Model 

The rest of this section describes the feedback loop diagrams and actual construction of 

the SDSM.  The model was deliberately designed to separate information and physical 

flows, which have in the past been simulated as single flows, resulting in outcomes that 

have to be questioned.  Examples include Torres, O.A.C. and F.A.V Morán.  (Editors) 

(2006) and Sterman (2000).  Models developed without fully understanding the 

limitations in design and application domain often generate results that are incorrect. 

6.4.1 Feedback Loop Diagrams 

  Feedback loop diagrams are used as a tool in systems thinking to understand not just the 

linear nature of situations, but also the feedback loops.  Figure 6-7 shows the feedback 

loop of the supply chain under study.    
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Figure 6-7:  Feedback Loop Diagram of the Supply Chain. 

In the diagram an order is received and validated against the system information.  If no 

inventory is available on the system, a back order is generated.  If the inventory is 

available according to the warehouse management system, the inventory is allocated on 

the system.  The order is then supplied from the physical inventory, with a delay resulting 

from the process of supply.  Supplier orders are created based on client orders supplied 

and back orders created.  The supplier has a specific lead time after which the order 

reaches the receiving process.  As orders are supplied from the physical inventory, the 

receiving process provides new physical inventory and updates the system inventory. 

Once the order has been confirmed as supplied, the system inventory is adjusted.  There 

are two reasons for differences between system inventory and physical inventory.  The 

first is the time delays associated with the processing of the order or incomplete processes.  

While the system may have allocated the inventory to an order, the system will only be 

updated when the supply process is completed.  (In most cases this action would take 

place on the generation of an invoice.)  Secondly, there can be a discrepancy between the 

system inventory and physical inventory due to inventory having been misplaced or lost.  
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This gap is usually addressed through processes such as a cycle count (continuous process 

of counting inventory) and stock take activities.  Secondly,  

It should also be noted that this diagram reflects a continuous order system to the supplier.  

If the system has inventory to allocate, the AFR score is 1, otherwise it is zero.  This 

calculation provides a cumulative score of how many orders can be satisfied from system 

inventory.  For the purposes of this study, the focus is on the local distribution centre and, 

therefore, will only focus on supply from a single supplier at a time. 

6.4.2 System Dynamics Model Construction 

Six SDSMs were constructed; one for each each of the three inventory management 

methods for the imported parts suppliers and one for each of the three inventory 

management methods for the local parts suppliers.  Each model was developed to simulate 

a just-in-time environment in which the demand equals the sales.  The two sets of models 

are similar in nature, with the exception that the imported parts supply has an 

accumulation step to simulate weekly shipments. 

The detail set of equations as used in each iThink® model are provided in Appendix II to 

VIII.  Table 6-3 provides a summary of the key model variables, including the different 

algorithms used for each of the three methods. 

 
Table 6-3:  SDSM Variable Overview and Description. 

Variable Description 
Exogenous Variables: 

Demand	
Demand	 is	 the	 actual	 daily	 order	 inflow	 as	 received	 by	 the	 dealer	

network.	

Average	 Demand	 and	

Demand	Variance	

Using	historical	data,	average	demand	and	the	demand	variance	are	

calculated.	 	 These	 variables	 are	 a	 characteristic	 of	 a	 dataset	 over	 a	

period	of	time.	

Lead‐Time	

Lead‐Time is	the	contractual	 lead time agreed	between	the	supplier	

and	automotive	parts	supply	company.		This	lead	time	would	vary	for	

import	 (63	 days)	 and	 domestic	 suppliers	 (7	 days	 for	 current	

production	vehicles	and	28	days	for	past	production	vehicles).	

Average	 Lead‐Time	 and	

Lead‐Time	Variance	

Using	historical	data,	average	lead time and	the	lead	time	variance	are	

calculated.	 	 These	 variables	 are	 characteristic	 of	 a	 dataset	 over	 a	

period	of	time.	
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Variable Description 
Endogenous Variables: 

Inventory	
The	 inventory	 level at	 any	 point	 of	 time. The	 inventory	 level	 is	

calculated	by	means	of	a	key	differential	equation.	

Shipped	
The	number	of	units	of inventory that	can	be	shipped	to	clients	based	

on	the	Accumulated	Orders.	

Accumulated	Orders	

Orders	that	have	been	placed	on	the	supplier	that	have	not	yet	been	

filled.		The	number	of	accumulated	orders	is	a	result	of	orders	placed	

and	shipped	orders.		These	orders	are	calculated	by	means	of	another	

key	differential	equation.	

Orders	en	Route	

These	are	the	orders	that	have	been	shipped	by	the	supplier,	but	not	

yet	received	at	the	distribution	centre.		The	level	of	orders	en	route	is	

calculated	by	means	of	a	key	differential	equation.		The	flow	of	these	

orders	is	managed	so	that	the	shipment	sequence	is	maintained.	

Back	Orders	

Dealer	 orders	 that	 cannot	 be	 supplied	 from	 available	 inventory	 are	

segregated	 as	 back	 orders.	 	 The	 back	 order	 process	 is	 treated	 as	 a	

separate	flow	as	these	orders	will	receive	special	treatment.		Imported	

parts	 are	 shipped	by	 air	with	 lead	 times	of	14	days,	which	 is	much	

lower	than	the	contractual	lead	time.	

Back	Orders	en	Route	

These	backorders have	been	shipped	and	not	supplied.	 	The	level	of	

backorders	 is	 calculated	 by	 means	 of	 a	 differential	 equation.	 	 The	

backorder	 element	 has	 been	 included	 to	 allow	 an	 additional	

calibration	element	 to	balance	order	 inflow	and	supply,	but	 is	not	a	

focus	of	the	study.	

Total	Allocation	and	AFR	

The	AFR	is	an	indication	of	inventory availability	at the	time	of	order.		

It	is	calculated	using	the	Total	Allocation	as	a	dummy	stock	to	ensure	

accumulation	 over	 a	 full	 time	 interval	 is	 used,	 rather	 than	 an	

instantaneous	calculation	that	would	be	susceptible	to	the	calculation	

sequence.		Total	allocation	is	also	calculated	by	means	of	a	differential	

equation.	

Algorithms:		MIPTheory 

Monthly	 Average	

Demand	(MAD)	
Monthly	average	demand,	based	on	a	6	month	moving	average.	

Maximum	 Inventory	

Position	(MIP)	

This	algorithm	calculates	the	total	amount	of	inventory required	in	the	

supply	chain	as	per	the	theoretical	description,	using	Equation	5‐39.	

Supplier	Order	(Q)	 This	algorithm	calculates	the	daily	order,	using	Equation	5‐41.	

Algorithms:		MIPActual 
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Variable Description 
Monthly	 Average	

Demand	(MAD)	
Monthly	average	demand,	based	on	a	6	month	moving	average.	

Maximum	 Inventory	

Position	(MIP)	

This	algorithm	calculates	the	total	amount	of	inventory	required	in	the	

supply	chain	as	per	the	theoretical	description,	using	Equation	5‐42.	

Supplier	Order	(Q)	 This	algorithm	calculates	the	daily	order,	using	Equation	5‐43.

Algorithms: STS 

Stock	Target	
This	 algorithm	 calculates the	 target	 level	 of	 the	 inventory	 required,	

using	Equation	5‐48.	

Supplier	Order	(Q)	 The	algorithm	calculates	the	daily	order quantity,	using	Equation 5‐46.

 
The SDSM solves a series of differential equations: Equations 6.4 to 6.9.  The time 

interval ݐ ൌ 1	day and the integration interval ݀ݐ ൌ 0.25	days.  The differential 

equations are solved sequentially using the Euler method as implemented in iThink® 

10.1.1. 

Key differential equations: 

࢚ࢉ࢚ࡿ	ࡵ ൌ ࢚ࢊି࢚ࢉ࢚ࡿ	ࡵ  ሺࢋ࢜࢘࢘ െ  ( 6-4 ) ࢚ࢊሻࢊࢋࢎࡿ

With: 

݇ܿݐܵ	݊ܫ ൌ  ݁ݎݐ݊݁ܿ	݊݅ݐݑܾ݅ݎݐݏ݅݀	݄݁ݐ	݊݅	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

݁ݒ݅ݎݎܣ ൌ  ݁ݎݐ݊݁ܿ	݊݅ݐݑܾ݅ݎݐݏ݅݀	݄݁ݐ	ݐܽ	݃݊݅ݒ݅ݎݎܽ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

݄݀݁݅ܵ ൌ  ݏݎ݁݀ݎ	ݎ݈݁ܽ݁݀	݈݈݂݈݅ݑ݂	ݐ	ݐ݊݁ݏ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

࢚࢛ࢉࢉ	࢘ࢋࢊ࢘ࡻ ൌ ࢚ࢊି࢚࢛ࢉࢉ	࢘ࢋࢊ࢘ࡻ  ሺࢊࢋࢉ࢛ࢊ࢘ࡼ െ  ( 6-5 ) ࢚ࢊሻ࢚_ࢊࢋࡿ

With: 

݉ݑܿܿܣ	ݎ݁݀ݎܱ

ൌ  ݈݀݁݅ݑݏ	ܾ݁	ݐ	݃݊݅ݐ݅ܽݓ	ݎ݈݁݅ݑݏ	݄݁ݐ	݉ݎ݂	݀݁ݎ݁݀ݎ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

݀݁ܿݑ݀ݎܲ ൌ  ݎ݈݁݅ݑݏ	݄݁ݐ	ݕܾ	݀݁ܿݑ݀ݎ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

ݐ_݀݊݁ܵ ൌ  ݏݎ݁݀ݎ	݈݈݂݈݅ݑ݂	ݐ	ݐ݊݁ݏ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

࢚ࢋ࢚࢛ࡾ_ࢋ_࢙࢘ࢋࢊ࢘ࡻ ൌ ࢚ࢊି࢚ࢋ࢚࢛ࡾ_ࢋ_࢙࢘ࢋࢊ࢘ࡻ  ሺ࢚_ࢊࢋࡿ െ  ( 6-6) ࢚ࢊሻࢋ࢜࢘࢘

With: 

݁ݐݑܴ	݊݁	ݎ݁݀ݎܱ

ൌ  ݀݁ݒ݅݁ܿ݁ݎ	ݐ݊	݀݊ܽ	ݎ݈݁݅ݑݏ	݄݁ݐ	݉ݎ݂	݄݀݁݅ݏ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

ݐ_݀݊݁ܵ ൌ  ݏݎ݁݀ݎ	݈݈݂݈݅ݑ݂	ݐ	ݐ݊݁ݏ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

݁ݒ݅ݎݎܣ ൌ  ݁ݎݐ݊݁ܿ	݊݅ݐݑܾ݅ݎݐݏ݅݀	݄݁ݐ	ݐܽ	݀݁ݒ݅ݎݎܽ	ݐ݄ܽݐ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ
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Secondary differential equations: 

࢚࢛ࢉࢉ	ࡻ ൌ ࢚ࢊି࢚࢛ࢉࢉ	ࡻ  ሺࡻ െ  ( 6-7 ) ࢚ࢊሻ࢚_ࢊࢋࡿ_ࡻ

With: 

݉ݑܿܿܣ	ܱܤ ൌ  ݎ݁݀ݎ	݂	݁݉݅ݐ	݄݁ݐ	ݐܽ	݈ܾ݈݁ܽ݅ܽݒܽ	ݐ݊	݁ݎ݁ݓ	ݐ݄ܽݐ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

ܱܤ ൌ  ݏݎ݁݀ݎ	ܾ݇ܿܽ	ݏܽ	݈݀݁ܿܽ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

ݐ	݀݊݁ܵ	ܱܤ ൌ  ݏݎ݁݀ݎ	ܾ݇ܿܽ	݈݈݂݅	ݐ	݀݁ݒ݅ݎݎܽ	ݐ݄ܽݐ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

࢚ࢋ࢚࢛ࡾ_ࢋ_ࡻ ൌ ࢚ࢊି࢚ࢋ࢚࢛ࡾ_ࢋ_ࡻ  ሺ࢚_ࢊࢋࡿ_ࡻ െ  ( 6-8) ࢚ࢊሻࢊࢋࢎࡿ_ࡻ

With: 

݁ݐݑܴ	݊݁	ܱܤ

ൌ ,ݏݎ݁݀ݎܾ݇ܿܽ	݈݈݂݅	ݐ	݄݀݁݅ݏ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ  ݀݁ݒ݅ݎݎܽ	ݐ݁ݕ	ݐ݊	ݐݑܾ

ݐ	݀݊݁ܵ	ܱܤ ൌ  ݏݎ݁݀ݎ	ܾ݇ܿܽ	݈݈݂݅	ݐ	݀݁ݒ݅ݎݎܽ	ݐ݄ܽݐ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

݄݀݁݅ܵ	ܱܤ ൌ  ݏݎ݁݀ݎ	ܾ݇ܿܽ	݈݈݂݅	ݐ	ݏݎ݈݁ܽ݁݀	ݐ	݄݀݁݅ݏ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

AFR calculation balancing differential equation: 

࢚࢚ࢇࢉ_ࢇ࢚ࢀ ൌ ࢚ࢊି࢚࢚ࢇࢉ_ࢇ࢚ࢀ  ሺ࢝ࡲ_ െ  ( 6-9) ࢚ࢊሻ_࢝ࡲ

With: 

݊݅ݐ݈݈ܽܿܣ	݈ܽݐܶ ൌ  ݎ݁݀ݎ	݂	݁݉݅ݐ	݄݁ݐ	ݐܽ	݈ܾ݈݁ܽ݅ܽݒܽ	݁ݎ݁ݓ	ݐ݄ܽݐ	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

1	ݓ݈ܨ ൌ  ݀݁ݎ݁݀ݎ	ݏݎ݈݁ܽ݁݀	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

2	ݓ݈ܨ ൌ  ݕܽ݀	1	ݕܾ	݀݁ݕ݈ܽ݁݀	݀݁ݎ݁݀ݎ	ݏݎ݈݁ܽ݁݀	ݏ݁ܿ݁݅	݂	ݎܾ݁݉ݑܰ

The difference between imported parts suppliers and local part suppliers are shown in 

Table 6-4. 

Table 6-4:  Differences to Account for in the Simulation Models. 

Factor Local Parts Supplier Imported Parts Supplier 

Supply 

Lead-Time 

7 days for current model and 

high volume past model parts, 

28 days for past model parts 

63 days for all parts 

Shipping 

Cycle 

Daily shipping Pick daily but consolidate weekly for 

shipping 

B/O Normal shipping Can be sent by airfreight (7 to 14 days) 

6.4.2.1 Local Supplier Model 

Figure 6-8 shows the physical flow of parts from the supplier to the end user. 
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Figure 6-8:  Physical Flow for Local Supplier. 

The model contains a stock that reflects the physical parts in inventory.  It also includes 

two conveyors.  The two conveyors shown reflect the supplier lead time from order to 

receiving into inventory and the back order lead time from creation to fulfilment.  For 

simplicity, it is assumed that backorders will not be binned, but rather supplied directly 

to the order in a cross-dock fashion.  Key assumptions in this section are: 

 Suppliers have sufficient capacity to cope with the orders placed 

 Orders will be entered into the supplier system on a continuous basis, with 

daily deliveries 

 Initial inventory in the physical system is allocated using lead time and 

demand 

Figure 6-9 shows the information flow design for the MIP based model.  Please note that 

both the theoretical and implemented MIP models have the same structure.  The only 

difference is the method of calculating MIP. 

 

Figure 6-9:  Information Flow Design for MIP Calculation. 

The information flows have four key elements.  Orders from clients can be simulated 

using a selected distribution, or if required, a specific data stream.  Similarly, the lead 

time from suppliers has been treated as a variable, which can be simulated as a data stream 
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or as a distribution.  The calculation of the allocation fill rate requires a conveyor as a 

normal stock would calculate the average over the period of one month.  The back order 

lead time has been set to a fixed time, as it does not affect the normal ordering process.   

For the MIP calculation, two elements need to be added.  Firstly, the Monthly Average 

Demand (MAD), a 6 month moving average, needs to be calculated.  By using a conveyor, 

sales for each day of the last 6 months are combined, taking into account any day-to-day 

variance.  The conveyor is initialized with 6 months’ worth of average sales at the start 

of the simulation.  The second element is the calculation of MIP, which is recalculated 

once a month with an initial value calculated based on the initial MAD.   

Combining the information flow model (Figure 6-9) with the physical flow (Figure 6-8), 

results in an integrated model.  Figure 6-10 shows the integrated model for the MIP based 

strategy. 

 

Figure 6-10:  Comprehensive Model of MIP Based Strategy for Local Supplier. 

As expected, the information system drives the physical flows.  The two key links 

between the physical elements is the supply of parts that creates equivalent supplier orders 

and the orders not supplied that create equivalent back orders. 

For the purposes of analysis, the current model parts and past model parts are identical, 

with the exception that the base lead time is set at 7 days for the current and 28 days for 

the past model. 
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6.4.2.2 Imported Supplier Model 

The physical model for the imported suppliers differs from that of the local suppliers.  

The information models will in all cases be identical, as electronic portals are used.  From 

an information point of view, transmission of information is immediate, accurate and 

continuous.  The physical process does differ.  When orders are received, there is no 

production lead time as the orders are placed on a distribution centre.  Orders are 

processed and picked within one day, ready for shipment.  Shipment does not happen 

immediately.  Containers are filled and parts are shipped once a week.  This shipping 

cycle is a function of the shipping line being used.  The resultant model of the physical 

flow is shown in Figure 6-11. 

 

 

Figure 6-11:  Physical Inventory Flow from Import Suppliers. 

An additional stock has been added to hold the processed parts until shipment occurs.  It 

is not necessary to show the information components of the model, as these are identical 

to that shown in Figure 6-9.  Figure 6-12 shows the integrated model for the MIP strategy 

for an imported parts supplier. 

 

Figure 6-12:  Integrated Model for Imported Suppliers with MIP Strategy. 
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The significant difference in these models is the shipment cycle that happens weekly, 

rather than on a daily basis.  Please note that both the MIPTheory and MIPActual models use 

the same structures for the import and local supplier supply chains.  Only the order 

decision differs. 

6.4.2.3 Stock Target Setting (STS) Model 

The model for the Stock Target Setting (STS) method does not require the information 

flows required to calculate the MAD or MIP as it is an inventory-on-hand policy.  The 

daily order calculation is based on demand, current inventory and the inventory target.  

Target setting is based on demand, delivery cycle and the damping factor.  Similar to the 

MIP models, the local and import parts supplier model structures differ.  The physical 

components of the model are identical to that used in the MIP method, apart from the STS 

order calculation model.  Figure 6-13 shows the STS method for the import parts supplier. 

 

Figure 6-13:  System Dynamics Model for the Import Parts Supply Chain Using the 

Stock Target Setting Method. 
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To validate and verify the SDSM for the three methods, an ideal environment was 

simulated.  In the ideal environment, demand is constant and lead time shows no variance.  

Both the imported supplied parts and locally supplied parts are simulated as discrete 

delivery events and the results are shown in Figure 6-14.  The status of the In-Stock 

variable is shown for a period of 30 days at every dt interval.  These results confirm that 

the SDSM replicates the daily inventory behaviour properly, especially as daily deliveries 

Orders en Route In Stock
BO en Route

Produced Arrive
Shipped BO

BO Shipped

Order Lead Time
BO Lead Time

Demand

Allocation

Stock Days

Total Allocation

Flow 1
Flow 2

Days per Month

Avg Allocation

Starting Stock Days

Demand Variance

Order Lead Time variance

Base Demand

Base Lead Time

Order Flow

Send to BO Send to

Order Accum

Shipment Cycle

BO Accum

Run Counter

Order Cycle Days

Stock Target

Stock Order

Damping



Chapter 6: DEVELOPMENT OF A SYSTEM DYNAMICS SIMULATION MODEL FOR SUPPLY 
CHAIN BEHAVIOUR ANALYSIS 

 

Andries Botha - December 2017     89 

are taken into account.  In the ideal case, the inventory delivered at the start of the day is 

consumed during the same day until only the safety stock remains.  Similarly, the weekly 

delivery from the imported supplier is consumed over the week.  It is impossible to 

calibrate this level of detail, as the real life stock file is a dynamic file that is updated on 

a continuous basis.  Historical data is not stored, as this will require large amounts of data 

storage space.  In practice, a monthly snapshot is taken of the stock items at 24:00 on the 

last day of the month.  This snapshot considers the inventory that is in the distribution 

centre at that specific time, but not safety stock or inventory that has just arrived or is at 

the end of its consumption period.  For the purposes of analysis, this study will use an 

average inventory level over the period of study, rather than the daily detail.   
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Figure 6-14:  Calibration Results of the SDSM for the Three Inventory Management 

Methods. 
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6.4.2.5 Service Parts Demand Forecast – Non-Stationary Demand 

To replicate the demand of a service part, a SDSM, shown in Figure 6-15 is used.  At the 

time of vehicle model launch, the vehicle sales forecast is made available, based on 

production planning and market forecasts.  This plan is translated into service parts 

demand, using the planned service interval in kilometres and the expected kilometres 

driven over time.  The number of expected kilometres driven per time period is based on 

the market segment in which the vehicle operates.  To simulate a realistic non-stationary 

demand environment, vehicle sales are generated using a normal, log-normal and gamma 

demand pattern, as discussed in Section 7.2.4. 

Vehicles are serviced based on an average elapsed time, calculated using the expected 

time period between services.  It is not guaranteed that all vehicles are serviced through 

the OE dealer network.  However, the emergence of service plans as part of the vehicle 

purchase price ensures that most vehicles with service plans are serviced through the OE 

dealer network.  The SDSM, therefore, uses the first five services as indicator of service 

parts demand.  The MAD is again calculated as a six months moving average and 

converted to a daily demand (DAD). 

 

Figure 6-15:  Service Parts Demand Generation SDSM. 
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distributions, namely: Normal distribution, log-normal distribution and gamma 

distribution. 

6.5 Model Development Summary 

In this chapter, a series of seven SDSMs are described.  These models focus on the 

characteristics of the automotive parts distribution system.  The MIPTheory, MIPActual and 

STS methods were described for two types of suppliers, namely  local suppliers with daily 

shipping and imported suppliers with daily order processing, but weekly shipping.  A 

service parts demand model was also developed to allow for the analysis of the three 

methods for a period of non-stationary demand.  The model details are provided in the 

following appendices: 

 Appendix II – MIPTheory – Domestic 

 Appendix III – MIPTheory – Import 

 Appendix IV – MIPActual – Domestic 

 Appendix V - MIPActual – Import 

 Appendix VI – STS – Domestic 

 Appendix VII – STS – Import 

 Appendix VIII – STS – Import Matrix (This version was later used for sensitivity 

analysis.) 

 Appendix IX – Service Parts Demand 

 

In Chapter 7 these models are applied to confirm the feasibility of the STS method, as 

well as the comparative performance of the three approaches – MIPTheory, MIPActual and 

STS.   
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7 RESULTS AND DISCUSSION 1,2 

The purpose of this chapter is to review the results of the research described in the 

previous chapters.  The chapter will focus on the following main areas: 

 Calibration of the STS method to ensure that the bullwhip effect can be 

effectively controlled through the use of a damping factor. 

 Theoretical and practical analysis of the two supply chain structures (imported 

and locally supplied), using three inventory management models, using the 

SDSM.  The performance is compared by means of a SDSM using actual and 

statistical datasets for demand. The conditions during the launch of a new model 

were also replicated using statistical distributions. 

 Detailed analysis of the structure of the STS method for both domestic and 

import suppliers to ensure the most effective design. 

7.1 Simulation Analysis – Calibrating the STS Method 

 As described in paragraph 5.3.4 the STS method is a stock-on-hand policy, which 

according to Bhattacharya & Bandyopadhyay (2011), is inherently unstable and will 

result in the bullwhip effect.  The purpose of this section is to confirm that the bullwhip 

effect does exist in this on-hand policy and to show that the damping factor proposed, 

controls the impact of the dynamic nature of the supply chain.  An inherent design element 

of the supply chain, namely the lead time, provides an ideal level of damping. 

The first step in this process was to use the model in Figure 6-13 with no damping, 
namely ݃݊݅݉ܽܦ	ݎݐܿܽܨ ൌ 1 in Equation 5-46.  Once the expected bullwhip was 
demonstrated, a series of analyses were completed to confirm an effective value for the 
 The analysis domain, detailed for each of the supplier types, is  .ݎݐܿܽܨ	݃݊݅݉ܽܦ
described in   

1. A	modified	version	of	this	study	was	published	in	the	Journal	for	Transport	and	Supply	

Chain	Management.	

2. 	A	modified	version	of	the	work	focusing	on	the	analysis	of	the	STS	method	was	submitted	

to	Management	Dynamics.	
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Table 7-1. 
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Table 7-1: Analysis Domain for Confirming STS Damping Factor. 

Import Supplier 

Demand 100 per day Variance 10 units     

Lead-Time 63 Days Variance 0 Days     

Damping 

Factor 
1 Day 15 Days 30 Days 

63 Days 

(Lead-Time) 

70 Days 

(Lead-Time 

+ Shipping 

Cycle) 

Domestic Supplier - Current 

Demand 100 per day Variance 10 units     

Lead-Time 7 Days Variance 0 Days     

Damping 

Factor 1 Day 3 Days 

7 Days

(Lead-Time)     

Domestic Supplier - Past 

Demand 100 per day Variance 10 units     

Lead-Time 7 Days Variance 0 Days     

Damping 

Factor 
1 Day 3 Days 

7 Days

(Lead-Time) 
    

 

As the analysis includes only demand variance, only the first 100 time intervals were 

ignored to allow the model to stabilise.  In each case, the model was run 50 times to allow 

for a statistically significant result.   

The results for the inventory behaviour over time (average of 50 runs), with no damping, 

are shown in Figure 7-1, Figure 7-2 and Figure 7-3.  Inventory is measured in pieces and 

time in days. 
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Figure 7-1:  Results (Average for 50 Runs) for No Damping for Imported Parts 

Supply Chain. 

 

Figure 7-2:  Result (Average for 50 Runs) for No Damping for Domestic Current 

Parts Supply. 

 

Figure 7-3:  Results (Average for 50 Runs) for No Damping for Domestic Past Parts 

Supply. 
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The results show clearly that Bhattacharya & Bandyopadhyay (2011) is correct.  A simple 

stock-on-hand policy will clearly result in the bullwhip effect for all three supply chain 

structures. 

Throughout the rest of this section, the analyses of the impact of damping are shown for 

each of the three supply chain structures.  Each result is compared using a scatter plot of 

inventory against AFR and also summarised in tables. 

7.1.1 Damping Analysis – Imported Parts Supply Chain 

The results in Figure 7-4 clearly indicates that by adding the damping factor, the 

significant overreaction characteristic of the bullwhip effect can be reduced.  The 

inventory levels for the imported supply chain are shown over time, with the damping 

factor set to 1 (D1) (no damping), 15 (D15), 30 (D30) and 63 (D63) (lead time).   

 

Figure 7-4:  Effect of Damping Factor on Inventory for Import Parts Supply Chain. 

When the results with no damping is removed, Figure 7-5 clearly shows how the 

simulation replicates the weekly inventory rundown and replenishment, as well as how 

increasing the damping factor reduces the overall variance, even with the demand 

variance introduced as part of the simulation. 
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Figure 7-5:  Imported Parts Supply Chain Inventory Levels, Excluding D=1. 

In Figure 7-6 the impact on AFR and inventory levels is shown.  The no damping (D1) 

situation has a better AFR than the D15 situation, but with significantly higher inventory. 

 

Figure 7-6:  AFR versus Inventory Level for Imported Parts Supply Chain. 
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Figure 7-7: AFR versus Inventory Level for Imported Parts Supply With No 

Damping (D1) Removed. 

The results clearly indicate that no damping (D1) results in high inventory, yet the average 

AFR is only 90.6.  With D15 the inventory is significantly lower and the AFR is only 

84.6.  D30, D63 and D70 all show high AFR at low inventory levels.  The results are 

summarised in Table 7-2. 

Table 7-2:  Results of Various Damping Factors for the Imported Parts Supply 

Chain. 

Damping 

Factor 
1 Day 15 Days 30 Days 

63 Days 

(Lead-Time) 

70 Days (Lead-

Time + Shipping 

Cycle) 

Average 

AFR 90.6 84.6 98.5 99.9 99.9 

Average 

Inventory 21195 861 815 761 755 

 

Based on the results, the benefit from using the lead time of 63 days provides a good 

solution for the damping factor for the imported parts supply chain.  The addition of using 

70 days gives the same AFR result for a saving of only 5 units. 
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7.1.2 Damping Analysis – Domestic Current Parts Supply Chain 

The results in Figure 7-8 clearly show how the bullwhip effect affects inventory levels 

and how the alternative damping factors reduce the impact. 

 

Figure 7-8:  Effect of Damping Factor on Inventory for Domestic Current Parts 

Supply Chain. 

Figure 7-9 clearly shows how the average inventory is reduced as the damping increases.  

The D7 and D3 situation have similar inventory levels, but the D7 case has an AFR equal 

to 100. 

 

Figure 7-9:  AFR versus Inventory for Domestic Current Parts Supply Chain. 

Table 7-3 clearly shows the progression of AFR and the reduction in the inventory 
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Table 7-3:  Results of Various Damping Factors for the Domestic Current Parts 

Supply Chain. 

Damping Factor 1 Day 3 Days 
7 Days 

(Lead-Time) 

Average AFR 76.9 93.2 100.0 

Average 

Inventory 177 120 120 

 

Again, the best case is found where the damping factor is equal to the lead time. 

7.1.3 Damping Analysis – Domestic Past Parts Supply Chain 

 

The results in Figure 7-10 clearly indicates that by adding the damping factor, the 

significant overreaction characteristic of the bullwhip effect can be reduced.  The 

increased lead time (28 days versus 7 days for current parts) increases the size of the 

bullwhip effect as can be seen in the D1 result. 

 

Figure 7-10:  Effect of Damping Factor on Inventory for Domestic Past Parts Supply 

Chain. 
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chain with D1 removed is shown in Figure 7-11.  Again, it is clear that as the damping 

factor is increased towards the lead time, the bullwhip effect is eliminated. 

 

Figure 7-11:  Domestic Past Parts Supply Chain Inventory Results, Excluding D=1. 

 

Figure 7-12 shows the AFR versus inventory and it is clear that the situation with no 

damping requires significantly more inventory, yet does not achieve the same level of 

supply, measured as AFR. 

 

Figure 7-12:  AFR versus Inventory for Domestic Past Parts Supply Chain. 
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Figure 7-13: AFR versus Inventory for Domestic Past Parts Supply With No 

Damping (D1) Removed. 

Table 7-4 clearly shows the progression of AFR and the reduction in the inventory 

required to maintain the AFR. 

Table 7-4:  Results of Various Damping Factors for the Domestic Past Parts Supply 

Chain. 

Damping 

Factor 
1 Day 7 Days 14 Days 

28 Days 

(Lead-Time) 

Average AFR 60.3 93.5 99.2 100.0 

Average 

Inventory 249 123 119 121 

 

While using 14 as the damping factor results in lower average inventory, using the lead 

time of 28 days, gives both a low average inventory and high AFR. 

7.1.4 Damping Analysis – Conclusion 

The damping analysis highlighted two points that hold for all three supply chain 
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2. A supply chain characteristic, namely the lead time, can be used effectively as the 

damping factor. 

Any further analysis discussed in this document, using the STS method, uses the 

appropriate lead time value as the damping factor. 

7.2 Simulation Analysis – Theoretical Environment 

Following the confirmation of the efficacy of the STS method, further simulation analysis 

was conducted on all three inventory management methods.  The objective of this analysis 

was threefold: 

1. Firstly, a theoretical analysis and comparison between the three inventory 

management methods was completed, using three theoretical distributions 

(normal, log-normal and gamma) for demand and lead time.  MIPActual and 

MIPTheory were compared to show that the adaptation from the theoretical model 

(Equation 5.33) to the practical model (Equation 5.35) was performed to improve 

the AFR.  It was shown that the unintended consequence of the adaptation was 

that the inventory levels were increased significantly. 

2. Secondly, the three methods (MIPActual, MIPTheory and STS) were compared to 

show that the properly damped STS method  provides a high level of AFR with 

lower inventory than the implemented MIP method. 

3. Thirdly, the theoretical analysis was concluded by stress testing the STS ordering 

algorithm to determine if it is possible to reduce inventory further, without 

reducing the AFR. 

The first analysis answers five questions: 

1. Does the simulation model work correctly?  Logically it is expected that the 

implemented MIPActual approach will require more inventory than the 

MIPTheory approach. 

2. Do both methods provide adequate levels of service when applied to parts with 

different distributions? 

3. Does the MIPActual implementation outperform the MIPTheory implementation 

for inventory availability? 

4. Does the MIPActual implementation result in significant overstocking? 
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The second analysis answers the question of whether the STS method provides an 

improvement over the MIP methods.  The third analysis provides insight into the potential 

for improving the fundamental design of the STS method. 

7.2.1 Theoretical Analysis – Scenario Setup 

For the theoretical analysis, a scenario with a fast moving part selling 100 pieces per day, 

every working day of the year, is used.  This hypothetical part is analysed in detail using 

the following approach: 

1. The MIPTheory calculation. 

2. The MIPActual calculation. 

3. The STS calculation. 

The three methods are used to calculate the daily order quantity.  In each case the safety 

stock is calculated using the assumption of a normal distribution.  The safety stock for 

demand and lead time are both set to two standard deviations.  

Three sources of parts are analysed for each MIP calculation, namely: 

1. Imported Parts Supplier with a lead time of 63 days, daily order processing, but 

weekly shipment; 

2. Local Current Parts Supplier with a lead time of 7 days, daily order processing 

and daily shipment; and 

3. Local Past Model Parts Supplier with a lead time of 28 days, daily order 

processing and daily shipment 

It is assumed that lead time follows a normal distribution as found in the statistical 

analysis.  The lead time for imported parts has a standard deviation of 0, 7 and 14 days.  

The local suppliers have a lead time variance of 0, 1 and 2 days.  Each of these cases was 

tested for a demand variance of 0, 5 and 10. 

 

For the baseline analysis all distributions were treated as normal distributions.  The 

demand was also subsequently represented as log-normal and gamma distributions.  Choy 

& Cheong (2012) provides a summary of the demand analysis scenarios. 
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Table 7-5:  Scenario Setup for Theoretical Analysis. 

Demand = 100 per day 

Imported Lead-Time = 63 

Days 
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Please note that the simulation for a demand variance of 0 is identical in all cases.  Three 

distribution functions are used, namely: 1. Normal, 2. Log Normal and 3. Gamma. 

7.2.2 Theoretical Analysis - Results 

All simulations were set to run for 500 days.  The first 100 days’ data was ignored, 

allowing the model to stabilise.  Each simulation run was repeated 50 times to obtain a 

statistically representative dataset.  All results were reported as the average of 50 runs.  

While all variables in the SDSM can be accessed, the focus was on availability of parts 

(AFR) and average inventory levels.  The inventory level is measured at the end of each 

day and reported.  As inventory is not a constant, the average inventory levels will provide 

an indicator of the amount of inventory that results due to the application of the ordering 
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algorithm.  The initial inventory was set to the Maximum Inventory Position or Stock 

Target at the start of each simulation. 

The results for each inventory management method (MIPTheory, MIPActual and STS), by 

scenario (normal distribution, log-normal distribution and gamma distribution), for each 

of the three supply chain structures, are shown.   

7.2.2.1 Simulation Results – MIPTheory Method 

Figure 7-14 shows the results for MIPTheory, in the normally distributed environment of 

the imported parts supply chain.  The results show that for the imported parts supply 

chain, under a normal distribution, the theoretical MIP method is ideal for the zero 

variance case.  As demand variance increases, the AFR falls.  As lead time variance 

increases, the average inventory increases.  With a lead time variance of 7 days, the AFR 

is below 100 for all cases.  It is only at a 14 day lead time variance, that the AFR returns 

to 100, but with a significant amount of inventory to cover the lead time variance. 

 

Figure 7-14:  Results MIPTheory Normal Distribution - Imported Parts Supply Chain. 

Figure 7-15 shows the results for MIPTheory, in the normally distributed environment of 

the domestic current parts supply chain.  The results are similar to that of the imported 

parts under the same conditions, although the average inventory is significantly lower.  

The results show that for the domestic current parts supply chain, under a normal 

distribution, the theoretical MIP method is ideal for the zero variance case.  As demand 

variance increase, the AFR falls, although not as much as for the imported parts supply 

chain.  As lead time variance increases, the average inventory increases.  With a lead time 

variance of 1 day, the AFR is below 100 for all cases.  It is only at a 2 day lead time 

variance, that the AFR returns to 100, but with a significant amount of inventory to cover 

the lead time variance. 
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Figure 7-15:  Results MIPTheory Normal Distribution - Domestic Current Parts 

Supply Chain. 

Figure 7-16 shows the results for MIPTheory, in the normally distributed environment of 

the domestic past parts supply chain.  The results are similar to that of the imported and 

domestic parts under the same conditions, with similar inventory levels when compared 

to the domestic current parts supply chain.  The results show that for the domestic current 

parts supply chain, under a normal distribution, the theoretical MIP method is ideal for 

the zero variance case.  As demand variance increases, the AFR falls, although not as 

much as for the imported parts supply chain.  As lead time variance increases, the average 

inventory increases.  With a lead time variance of 1 day, the AFR is below 100 for all 

cases.  It is only at a 2 day lead time variance, that the AFR returns to 100, but with a 

significant amount of inventory to cover the lead time variance. 

 

Figure 7-16:  Results MIPTheory Normal Distribution - Domestic Past Parts Supply 

Chain. 

Figure 7-17 shows the results for MIPTheory, in the log-normally distributed environment 

for the imported parts supply chain.  The results show that for the imported parts supply 

chain, under a log-normal distribution, the theoretical MIP method is ideal for the zero 

variance case.  As demand variance increase, the AFR falls.  As lead time variance 
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increases, the average inventory increases.  With a lead time variance of 7 days, the AFR 

is below 100 for all cases.  It is only at a 14 day lead time variance, that the AFR returns 

to 100, but with a significant amount of inventory to cover the lead time variance. 

 

 

Figure 7-17:  Results MIPTheory Log Normal Distribution - Imported Parts Supply 

Chain. 

Figure 7-18 shows the results for MIPTheory, in the log-normally distributed environment 

for the domestic current parts supply chain.  The results are similar to that of the imported 

parts under the same conditions, although the average inventory is significantly lower.  

The results show that for the domestic current parts supply chain, under a log-normal 

distribution, the theoretical MIP method is ideal for the zero variance case.  As demand 

variance increases, the AFR falls, although not as much as for the imported parts supply 

chain.  As lead time variance increases, the average inventory increases.  With a lead time 

variance of 1 day, the AFR is below 100 for all cases.  It is only at a 2 day lead time 

variance, that the AFR returns to 100, but with a significant amount of inventory to cover 

the lead time variance. 

  

99.7

99.75

99.8

99.85

99.9

99.95

100

100.05

0 500 1000 1500 2000 2500 3000

A
FR

Average Stock

μD = 0, μLT = 0

μD = 0, μLT = 7

μD = 0, μLT = 14

μD = 5, μLT = 0

μD = 5, μLT = 7

μD = 5, μLT = 14

μD = 10, μLT = 0

μD = 10, μLT = 7



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     110 

 

Figure 7-18:  Results MIPTheory Log Normal Distribution - Domestic Current Parts 

Supply Chain. 

Figure 7-19 shows the results for MIPTheory, in the log-normally distributed environment 

for the domestic past parts supply chain.  The results are similar to that of the imported 

and domestic parts under the same conditions, with similar inventory levels to the 

domestic current parts supply chain.  The results show that for the domestic current parts 

supply chain, under a log-normal distribution, the theoretical MIP method is ideal for the 

zero variance case.  As demand variance increases, the AFR falls, although not as much 

as for the imported parts supply chain.  As lead time variance increases, the average 

inventory increases.  With a lead time variance of 1 day, the AFR is below 100 for all 

cases.  It is only at a 2 day lead time variance, that the AFR returns to 100, but with a 

significant amount of inventory to cover the lead time variance. 

 

Figure 7-19:  Results MIPTheory Log Normal Distribution - Domestic Past Parts 

Supply Chain. 
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Figure 7-20 shows the results for MIPTheory, in the gamma distributed environment for the 

imported parts supply chain.  The results show that for the imported parts supply chain, 

under a gamma distribution, the theoretical MIP method is ideal for the zero variance 

case.  As demand variance increases, the AFR falls.  As lead time variance increases, the 

average inventory increases.  With a lead time variance of 7 days, the AFR is below 100 

for all cases.  It is only at a 14 day lead time variance, that the AFR returns to 100, but 

with a significant amount of inventory to cover the lead time variance. 

 

 

Figure 7-20:  Results MIPTheory Gamma Distribution - Imported Parts Supply Chain. 

Figure 7-21 shows the results for MIPTheory, in the gamma distributed environment for the 

domestic current parts supply chain.  The results are similar to that of the imported parts 

under the same conditions, although the average inventory is significantly lower.  The 

results show that for the domestic current parts supply chain, under a gamma distribution, 

the theoretical MIP method is ideal for the zero variance case.  As demand variance 

increases, the AFR falls, although not as much as for the imported parts supply chain.  As 

lead time variance increases, the average inventory increases.  With a lead time variance 

of 1 day, the AFR is below 100 for all cases.  It is only at a 2 day lead time variance, that 

the AFR returns to 100, but with a significant amount of inventory to cover the lead time 

variance. 
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Figure 7-21:  Results MIPTheory Gamma Distribution - Domestic Current Parts 

Supply Chain. 

Figure 7-22 shows the results for MIPTheory, in the gamma distribution environment for 

the domestic past parts supply chain.  The results are similar to that of the imported and 

domestic parts under the same conditions, with similar inventory levels to the domestic 

current parts supply chain.  The results show that for the domestic current parts supply 

chain, under a gamma distribution, the theoretical MIP method is ideal for the zero 

variance case.  As demand variance increases, the AFR falls, although not as much as for 

the imported parts supply chain.  As lead time variance increases, the average inventory 

increases.  With a lead time variance of 1 day, the AFR is below 100 for all cases.  It is 

only at a 2 day lead time variance, that the AFR returns to 100, but with a significant 

amount of inventory to cover the lead time variance. 

 

Figure 7-22:  Results MIPTheory Gamma Distribution - Domestic Past Parts Supply 

Chain. 
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provide an AFR of 100.  The lack of 100% availability of inventory, in all likelihood, 

leads to the adaptations that were made to the basic equation to create the MIPActual 

method.  The MIPActual inventory management method is discussed in the next section. 

7.2.2.2 Simulation Results – MIPActual Method 

In the case of the MIPActual method, similar results are seen for all distributions (normal, 

log-normal and gamma) and all supply chains (imported, domestic current and domestic 

past).  In each case, the no variance scenario has the lowest inventory level.  In all cases 

an AFR of 100 is obtained, except for the case where ߤ ൌ 0 and ߤ் ൌ  The  .7	ݎ	1

results are shown in Figure 7-23 toFigure 7-31. 

 

Figure 7-23:  Results MIPActual Normal Distribution - Imported Parts Supply Chain. 

 

Figure 7-24:  Results MIPActual Normal Distribution - Domestic Current Parts 

Supply Chain. 
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Figure 7-25:  Results MIPActual Normal Distribution - Domestic Past Parts Supply 

Chain. 

 

Figure 7-26:  Results MIPActual Log Normal Distribution - Imported Parts Supply 

Chain. 

 

Figure 7-27:  Results MIPActual Log Normal Distribution - Domestic Current Parts 

Supply Chain. 

99.97

99.98

99.98

99.99

99.99

100.00

100.00

100.01

0 500 1000 1500 2000 2500

A
FR

Average Stock

μD = 0, μLT = 0

μD = 0, μLT = 1

μD = 0, μLT = 2

μD = 5, μLT = 0

μD = 5, μLT = 1

μD = 5, μLT = 2

μD = 10, μLT = 0

μD = 10, μLT = 1

99.97

99.98

99.98

99.99

99.99

100.00

100.00

100.01

0 1000 2000 3000 4000 5000

A
FR

Average Stock

μD = 0, μLT = 0

μD = 0, μLT = 7

μD = 0, μLT = 14

μD = 5, μLT = 0

μD = 5, μLT = 7

μD = 5, μLT = 14

μD = 10, μLT = 0

μD = 10, μLT = 7

99.94

99.95

99.96

99.97

99.98

99.99

100

100.01

0 500 1000 1500 2000 2500

A
FR

Average Stock

μD = 0, μLT = 0

μD = 0, μLT = 1

μD = 0, μLT = 2

μD = 5, μLT = 0

μD = 5, μLT = 1

μD = 5, μLT = 2

μD = 10, μLT = 0

μD = 10, μLT = 1



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     115 

 

Figure 7-28:  Results MIPActual Log Normal Distribution - Domestic Past Parts 

Supply Chain. 

 

Figure 7-29:  Results MIPActual Gamma Distribution - Imported Parts Supply Chain. 

 

Figure 7-30:  Results MIPActual Gamma Distribution - Domestic Current Parts 

Supply Chain. 
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Figure 7-31:  Results MIPActual Gamma Distribution - Domestic Past Parts Supply 

Chain. 

 

The results for the MIPActual inventory management method are similar in all cases.  

Except for the instance with medium lead time variance, all cases have an AFR of 100.  

This result is an improvement over the MIPTheory method and is explored later. 

7.2.2.3 Simulation Results – STS Method 

Figure 7-32 shows the results for the STS in the normally distributed environment for the 

imported parts supply chain.  The results show that for the imported parts supply chain, 

under a normal distribution, the STS method is ideal for the zero variance case.  With no 

lead time variance, the AFR is lower than 100.  The case with a lead time variance of 7 

and a demand variance of 10, the AFR is also less than 100. 

 

Figure 7-32:  Results STS Normal Distribution - Imported Parts Supply Chain. 
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Figure 7-33 shows the results for the STS in the normally distributed environment for the 

domestic current parts supply chain.  The results show that for the domestic current parts 

supply chain, under a normal distribution, the STS method results in an AFR of 100 for 

all cases. 

 

 

Figure 7-33:  Results STS Normal Distribution - Domestic Current Parts Supply 

Chain. 

Figure 7-34 shows the results for the STS in the normally distributed environment for the 

domestic past supply chain.  The results show that for the domestic past parts supply 

chain, under a normal distribution, the STS method is ideal for the zero variance case.  

With no lead time variance, the AFR is lower than 100.  For the case with a lead time 

variance of 7 and a demand variance of 10, the AFR is also less than 100. 

 

Figure 7-34:  Results STS Normal Distribution - Domestic Past Parts Supply Chain. 
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Figure 7-35 shows the results for the STS in the log-normally distributed environment for 

the imported parts supply chain.  The results show that for the imported parts supply 

chain, under a log-normal distribution, the STS method is ideal for the zero variance case.  

With no lead time variance, the AFR is lower than 100.  For the case with a lead time 

variance of 7 and a demand variance of 10, the AFR is also less than 100. 

 

Figure 7-35:  Results STS Log Normal Distribution - Imported Parts Supply Chain. 

Figure 7-36 shows the results for the STS in the log-normally distributed environment for 

the domestic current parts supply chain.  The results show that for the domestic current 

parts supply chain, under a log-normal distribution, the STS method results in an AFR of 

100 for all cases. 

 

Figure 7-36:  Results STS Log Normal Distribution - Domestic Current Parts Supply 

Chain. 
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chain, under a log-normal distribution, the STS method is ideal for the zero variance case.  

With no lead time variance, the AFR is lower than 100.  All other cases show an AFR of 

100. 

 

Figure 7-37:  Results STS Log Normal Distribution - Domestic Past Parts Supply 

Chain. 

Figure 7-38 shows the results for the STS in the gamma distributed environment for the 

imported parts supply chain.  The results show that for the imported parts supply chain, 

under a gamma distribution, the STS method is ideal for the zero variance case.  With no 

lead time variance, the AFR is lower than 100.  With a lead time variance of 7 and a 

demand variance of 5 and 10, the AFR is also less than 100.  With a lead time variance 

of 14 and demand variance 10, the AFR is also less than 100. 

 

Figure 7-38:  Results STS Gamma Distribution - Imported Parts Supply Chain. 
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supply chain, under a gamma distribution, the STS method results in an AFR of 100 for 

all cases. 

 

Figure 7-39:  Results STS Gamma Distribution - Domestic Current Parts Supply 

Chain. 

Figure 7-40 shows the results for the STS in the gamma distributed environment for the 

domestic past parts supply chain.  The results show that for the domestic past parts supply 

chain, under a gamma distribution, the STS method is ideal for the zero variance case.  

With no lead time variance, the AFR is lower than 100.  For the case with a lead time 

variance of 7 and a demand variance of 10, the AFR is also less than 100. 

 

Figure 7-40:  Results STS Gamma Distribution - Domestic Past Parts Supply Chain. 
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particular benefit to the domestic current supply chain.  The method is compared to the 

two base inventory policies in Section 7.2.2.5. 

7.2.2.4 Comparative Simulation Results – MIPTheory vs. MIPActual 

There is no need to discuss each result individually as the same trend is visible in all cases.  

For Figure 7-41 to Figure 7-49 the MIPActual method shows higher AFR values than the 

MIPTheory method.  This result, however, is associated with significantly higher average 

inventory values in all cases. 

 

Figure 7-41:  Results MIPTheory vs. MIPActual Normal Distribution - Imported Parts 

Supply Chain. 

 

Figure 7-42:  Results MIPTheory vs. MIPActual Normal Distribution - Domestic 

Current Parts Supply Chain. 
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Figure 7-43:  Results MIPTheory vs. MIPActual Normal Distribution - Domestic Past 

Parts Supply Chain. 

 

Figure 7-44:  Results MIPTheory vs. MIPActual Log Normal Distribution - Imported 

Parts Supply Chain. 

 

Figure 7-45:  Results MIPTheory vs. MIPActual Log Normal Distribution - Domestic 

Current Parts Supply Chain. 
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Figure 7-46:  Results MIPTheory vs. MIPActual Log Normal Distribution - Domestic 

Past Parts Supply Chain. 

 

Figure 7-47:  Results MIPTheory vs. MIPActual Gamma Distribution - Imported Parts 

Supply Chain. 

 

Figure 7-48:  Results MIPTheory vs. MIPActual Gamma Distribution - Domestic 

Current Parts Supply Chain. 
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Figure 7-49:  Results MIPTheory vs. MIPActual Gamma Distribution - Domestic Past 

Parts Supply Chain. 
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variance case.  The STS method required more inventory for the same case.  As the lead 
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than the MIPActual method.  The MIPTheory method requires less inventory, but does not 
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Figure 7-50:  Results MIPTheory vs. MIPActual vs. STS Normal Distribution - Imported 

Parts Supply Chain. 

Figure 7-51 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the normally distributed environment for the 

domestic current parts supply chain.  The results show that for the domestic current parts 

supply chain, under a normal distribution, the MIPTheory and MIPActual methods are ideal 

for the zero variance case.  The STS method required more inventory for the same case.  

However, the STS method obtained an AFR of 100 for all cases, with less inventory than 

the MIPActual method.  The AFR results for the STS method are higher than the results of 

the MIPTheory method. 

 

Figure 7-51:  Results MIPTheory vs. MIPActual vs. STS Normal Distribution - Domestic 

Current Parts Supply Chain. 
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Figure 7-52 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the normally distributed environment for the 

domestic past parts supply chain.  The results show that for the domestic past parts supply 

chain, under a normal distribution, the MIPTheory and MIPActual methods are ideal for the 

zero variance case.  The STS method required more inventory for the same case.  

However, the STS method results in an AFR of 100 for all cases, with less inventory than 

the MIPActual method.  The AFR results for the STS method are higher than the results for 

the MIPTheory method 

 

Figure 7-52:  Results MIPTheory vs. MIPActual vs. STS Normal Distribution - Domestic 

Past Parts Supply Chain. 

Figure 7-53 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the log-normally distributed environment for the 

imported parts supply chain.  The results show that for the imported parts supply chain, 

under a log-normal distribution, the MIPTheory and MIPActual methods are ideal for the zero 

variance case.  The STS method required more inventory for the same case.  As the lead 

time variance increases, the STS method has a consistently high AFR, with less inventory 

than the MIPActual method.  The MIPTheory method requires less inventory, but does not 

achieve the same level of AFR. 
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Figure 7-53:  Results MIPTheory vs. MIPActual vs. STS Log Normal Distribution - 

Imported Parts Supply Chain. 

Figure 7-54 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the log-normally distributed environment for the 

domestic current parts supply chain.  The results show that for the domestic current parts 

supply chain, under a log-normal distribution, the MIPTheory and MIPActual methods are 

ideal for the zero variance case.  The STS method required more inventory for the same 

case.  However, the STS method results in an AFR of 100 for all cases, with less inventory 

than the MIPActual method.  The AFR results for the STS method are higher than the results 

for the MIPTheory method. 

 

Figure 7-54:  Results MIPTheory vs. MIPActual vs. STS Log Normal Distribution - 

Domestic Current Parts Supply Chain. 
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Figure 7-55 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the log-normally distributed environment for the 

domestic past parts supply chain.  The results show that for the domestic past parts supply 

chain, under a log-normal distribution, the MIPTheory and MIPActual methods are ideal for 

the zero variance case.  The STS method required more inventory for the same case.  

However, the STS method results in an AFR of 100 for all cases, with less inventory than 

the MIPActual method.  The AFR results for the STS method are higher than the results for 

the MIPTheory method. 

 

Figure 7-55:  Results MIPTheory vs. MIPActual vs. STS Log Normal Distribution - 

Domestic Past Parts Supply Chain. 
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STS inventory management methods in the gamma distributed environment for the 

imported parts supply chain.  The results show that for the imported parts supply chain, 

under a gamma distribution, the MIPTheory and MIPActual methods are ideal for the zero 

variance case.  The STS method required more inventory for the same case.  As the lead 

time variance increases, the STS method has a consistently high AFR, with less inventory 

than the MIPActual method.  The MIPTheory method requires less inventory, but does not 

achieve the same level of AFR. 
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Figure 7-56:  Results MIPTheory vs. MIPActual vs. STS Gamma Distribution - Imported 

Parts Supply Chain. 

Figure 7-57 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the gamma distributed environment for the 

domestic current parts supply chain.  The results show that for the domestic current parts 

supply chain, under a gamma distribution, the MIPTheory and MIPActual methods are ideal 

for the zero variance case.  The STS method required more inventory for the same case.  

However, the STS method results in an AFR of 100 for all cases, with less inventory than 

the MIPActual method.  The AFR results for the STS method are higher than the results for 

the MIPTheory method. 

 

Figure 7-57:  Results MIPTheory vs. MIPActual vs. STS Gamma Distribution - Domestic 

Current Parts Supply Chain. 
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Figure 7-58 shows the results for the comparison between the MIPTheory, MIPActual and 

STS inventory management methods in the gamma distributed environment for the 

domestic past parts supply chain.  The results show that for the domestic past parts supply 

chain, under a gamma distribution, the MIPTheory and MIPActual methods are ideal for the 

zero variance case.  The STS method required more inventory for the same case.  

However, the STS method results in an AFR of 100 for all cases, with less inventory than 

the MIPActual method.  The AFR results for the STS method are higher than the results for 

the MIPTheory method. 

 

Figure 7-58:  Results MIPTheory vs. MIPActual vs. STS Gamma Distribution - Domestic 

Past Parts Supply Chain. 

The STS method’s performance lies in between the MIPTheory and MIPActual in terms of 
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However, given space constraints, reducing the inventory further would be highly 

advantageous.  The difference in average inventory between MIPTheory and the STS 

methods is the fact that the base inventory approach to inventory management does not 

consider the inventory location.  It allows the daily inventory to run down to zero at the 

end of the day when the data sampling takes place.  As long as the inventory arrives in 

time for the next day, there is no problem with running the inventory down.  In contrast, 

the STS method aims to have at least the target inventory amount in stock at the end of 

each day.  To optimise the inventory target that the STS method uses, two approaches are 

investigated, namely: 

1. Analysis of the stock target equation structure.  This analysis addresses the 

assumptions within the equation, for example reducing the adjustment for demand 

variance etc.  This analysis is applicable to all the supply chain structures. 

2. Analysis of the impact of the delivery cycle on the stock target.  The question is 

if there is a need to adjust for the full week at the end of the week, or if the target 

can be adjusted dynamically. 

The two different experimental setups are discussed and the results provided and 

discussed below.  Each set of experiments is tested using the testing environment 

scenarios (Normal Distribution, Log Normal Distribution and Gamma Distribution) for 

each supply chain structure (Imported, Domestic Current and Domestic Past). 

7.2.3.1 Stock Target Equation Structure Analysis 

The stock target equation is given in Equation 5-40.  The first set of experiments focuses 

on changes to the structure of the stock target equation.  A base case and 6 alternative 

cases are compared.  Each case is given a name for reference, details are explained and 

the appropriate stock target equation is given below. 

Base – standard stock target equation. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ ሺࢀࡸࣆ  ࢚ࡸ࣌ሻ ∗ ሺࡰࣆ  ࡰ࣌ሻ ( 7-1 ) 

Option 1 - No safety stock – stock target equation with zero variance allowed. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ ሺࢀࡸࣆ  ࢚ࡸ࣌ሻ ∗ ሺࡰࣆ  ࡰ࣌ሻ  ( 7-2 ) 

Option 2 - 1 sigma safety stock – stock target equation with only 1 standard deviation for 

demand and lead time allowed. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ ሺࢀࡸࣆ  ࢚ࡸ࣌ሻ ∗ ሺࡰࣆ  ࡰ࣌ሻ  ( 7-3 ) 
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Option 3 - No lead time safety stock – stock target equation with zero variance for lead 

time allowed. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ ሺࢀࡸࣆ  ࢚ࡸ࣌ሻ ∗ ሺࡰࣆ  ࡰ࣌ሻ  ( 7-4 ) 

Option 4 - No demand safety stock – stock target equation with zero variance for demand 

allowed. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ ሺࢀࡸࣆ  ࢚ࡸ࣌ሻ ∗ ሺࡰࣆ  ࡰ࣌ሻ  ( 7-5 ) 

Option 5 - Half lead time – stock target equation with the average lead time term divided 

by 2. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ ቀࢀࡸࣆ

 ࢚ࡸ࣌ቁ ∗ ሺࡰࣆ  ࡰ࣌ሻ  ( 7-6 ) 

Option 6 - Half target – stock target equation divided by 2. 

ࢀ࢚ࢋࢍ࢘ࢇࢀ	ࢉ࢚ࡿ ൌ
ሺࢀࡸࣆା࢚ࡸ࣌ሻ∗ሺࡰࣆାࡰ࣌ሻ


  ( 7-7 ) 

Figure 7-59 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the normally distributed 

environment for the imported parts supply chain.  The results show that all options reduce 

the average inventory, but in most cases result in a lower AFR.  The exception is option 

2, which suggests that as long as sufficient safety stock is provided for two standard 

deviations of lead time inventory, the AFR is protected. 

 

Figure 7-59:  Stock Target Equation Structural Analysis Results for Imported Parts 

Supply Using a Normal Distribution. 
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environment for the domestic current parts supply chain.  The results show that all options 

reduce the average inventory.  Only option 1 and option 4 results in lower AFR values. 

 

Figure 7-60:  Stock Target Equation Structural Analysis Results for Domestic 

Current Parts Supply Using a Normal Distribution. 

Figure 7-61 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the normally distributed 

environment for the domestic past parts supply chain.  The results show that all options 

reduce the average inventory, but in most cases result in a lower AFR.  The exception is 

option 2, which suggests that as long as sufficient safety stock is provided for two 

standard deviations of lead time inventory, the AFR is protected and option 3, which 

suggests one standard deviation of demand and lead time safety stock is sufficient. 

 

Figure 7-61:  Stock Target Equation Structural Analysis Results for Domestic Past 

Parts Supply Using a Normal Distribution. 

Figure 7-62 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the log-normally distributed 

environment for the imported parts supply chain.  The results show that all options reduce 
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the average inventory, but in most cases result in a lower AFR.  The exception is option 

2, which suggests that as long as sufficient safety stock is provided for two standard 

deviations of lead time inventory, the AFR is protected. 

 

Figure 7-62:  Stock Target Equation Structural Analysis Results for Imported Parts 

Supply Using a Log-Normal Distribution. 

Figure 7-63 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the log-normally distributed 

environment for the domestic current parts supply chain.  The results show that all options 

reduce the average inventory.  Only option 1 and option 4 results in lower AFR values. 

 

Figure 7-63:  Stock Target Equation Structural Analysis Results for Domestic 

Current Parts Supply Using a Log-Normal Distribution. 

Figure 7-64 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the log-normally distributed 

environment for the domestic past parts supply chain.  The results show that all options 

reduce the average inventory, but in most cases result in a lower AFR.  The exception is 

option 2, which suggests that as long as sufficient safety stock is provided for two 
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standard deviations of lead time inventory, the AFR is protected and option 3, which 

suggests one standard deviation of demand and lead time safety stock is sufficient. 

 

Figure 7-64:  Stock Target Equation Structural Analysis Results for Domestic Past 

Parts Supply Using a Log-Normal Distribution. 

Figure 7-65 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the gamma distributed 

environment for the imported parts supply chain.  The results show that all options reduce 

the average inventory, but in most cases result in a lower AFR.  The exception is option 

2, which suggests that as long as sufficient safety stock is provided for two standard 

deviations of lead time stock, the AFR is protected. 

 

Figure 7-65:  Stock Target Equation Structural Analysis Results for Imported Parts 

Supply Using a Gamma Distribution. 

Figure 7-66 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the gamma distributed 

environment for the domestic current parts supply chain.  The results show that all options 

reduce the average inventory.  Only option 1, option 4 and option 5 results in lower AFR 

values. 
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Figure 7-66:  Stock Target Equation Structural Analysis Results for Domestic 

Current Parts Supply Using a Gamma Distribution. 

Figure 7-67 shows the results for the comparison between the various possible 

improvement options for the stock target setting equation in the gamma distributed 

environment for the domestic past parts supply chain.  The results show that all options 

reduce the average inventory, but in most cases result in a lower AFR.  The exception is 

option 2, which suggests that as long as sufficient safety stock is provided for two 

standard deviations of lead time inventory, the AFR is protected and option 3, which 

suggests one standard deviation of demand and lead time safety stock is sufficient. 

 

Figure 7-67:  Stock Target Equation Structural Analysis Results for Domestic Past 

Parts Supply Using a Gamma Distribution. 

The analysis of the various improvement options show that it is possible to address the 

need to reduce inventory while maintaining AFR.  It is however critical to ensure that the 
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7.2.3.2 Stock Target Setting Equation for Imported Parts Delivery Cycle 
Sensitivity Analysis 

The second set of sensitivity analysis experiments focuses on the unique element of the 

imported parts supply chain, namely the weekly shipping cycle.  With daily shipments, 

the stock target setting incorporates one day of shipping, while the imported parts supply 

chain has a seven day delivery cycle.  This delivery cycle suggests that the stock target 

method, as per Equation 5-40, will kick off at seven days of inventory.  The order equation 

will keep filling to the set point that reflects the inventory required at the start of the week.  

However, if the stock target is adjusted throughout the weekly shipment cycle, it may be 

possible to maintain the AFR with reduced inventory levels. 

To achieve this objective, time counter ݅ needs to be introduced, with: 

 ൌ ,ሺ࢘ࢋ࢚࢛ࢉ ૠሻ  ( 7-8 ) 

݅ is reset to zero every time it reaches 7 throughout the simulation time period. 

Two structures of the stock target equation are analysed, namely: 

1. Start the cycle with ߤ் ൌ 7 and reduce ߤ் linearly to a desired minimum, N, as 

shown in Equation 7-9. 

2. Start the cycle with ߤ் ൌ  ் linearly to a 1, as shown in Equationߤ and reduce ܯ

7-10. 

ࢀࡸࣆ ൌ ࢀࡸࣆ െ ቀࡺିࢀࡸࣆ
ࢀࡸࣆ

ቁ ∗  ( 7-9 )  

With: 

 ൌ ሺ, , , , , , ૠ, ૡሻ 

ࡺ ൌ ሺૠ, , , , , , , ሻ 

ࢀࡸࣆ ൌ െࡹ ቀିࡹ
ࢀࡸࣆ

ቁ ∗  ( 7-10 )  

With: 

 ൌ ሺ, , , , , ሻ 

ࡹ ൌ ሺ, , , , , ሻ 

Figure 7-68 graphically demonstrates the values of ߤ் for both sets of experiments.  
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Figure 7-68: Summary of Scenarios for Import Parts Target Setting Analysis 

Domains. 

The analysis is split into two sets of graphs.  Set 1 includes Option A to Option G, while 

set 2 contains Option H to Option M.  This split is implemented to simplify the review 

process.  All results show that when a lead time variance is included, the adjustments will 

maintain the AFR and reduce the inventory.  If there is only demand variance to 

accommodate for, the inventory is at a minimum, but the AFR falls far below 100, as can 

be seen in Figure 7-69 toFigure 7-74. 

 

Figure 7-69:  Sensitivity Analysis of Stock Target Equation to Delivery Cycle Under 

Normal Distribution – Set 1. 
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Figure 7-70:  Sensitivity Analysis of Stock Target Equation to Delivery Cycle Under 

Normal Distribution – Set 2. 

 

Figure 7-71:  Sensitivity Analysis of Stock Target Equation to Delivery Cycle Under 

Log-Normal Distribution – Set 1. 

 

Figure 7-72:  Sensitivity Analysis of Stock Target Equation to Delivery Cycle Under 

Log-Normal Distribution – Set 2. 
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Figure 7-73:  Sensitivity Analysis of Stock Target Equation to Delivery Cycle Under 

Gamma Distribution – Set 1. 

 

Figure 7-74:  Sensitivity Analysis of Stock Target Equation to Delivery Cycle Under 

Gamma Distribution – Set 2. 
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7-6.  Local parts with 28 day lead time are not included as the focus is on newly introduced 

parts only, which by definition, are used in current models. 

Table 7-6:  Demand Scenarios for Non-Stationary Demand Analysis. 

Vehicle	Sales	Demand	=	20	‐ Results	in	Service	Parts	Demand	=	100	

	 Demand	Variance	

Imported	Lead‐Time	=	63	Days 0 5	 10

Domestic	Current	Lead‐Time	=	7	Days 0 5	 10

 

The non-stationary demand simulation runs for 3 600 days.  This simulation duration 

ensures that the service parts demand stabilises and considers the first 5 services.  Using 

vehicle sales of 20 per day and using 5 service intervals, the parts demand stabilises at 

100. 

In the first set of experiments, the new model production is kicked off with no initial 

inventory available.  The purpose of this scenario is to establish the amount of time 

required for the supply chain to reach sufficient levels of inventory to maintain the service 

rate.  The three methods are compared to determine which method achieves the required 

service rate first and how much inventory is required to achieve this. 

In the second set of experiments, an initial amount of inventory is available.  The methods 

are again compared as to the service rate achieved and the average inventory required to 

maintain the service levels.  The initial inventory value is set to the expected demand for 

the first six months of vehicle sales.  This is an arbitrary value used by automotive 

manufacturers. 

7.2.4.1 Comparative Results for Domestic Supplier Parts Under Non-Stationary 
Demand – MIPTheory vs. MIPActual vs. STS - No Starting Inventory 

The zero demand variance case is the same for the various demand patterns.  As shown 

in Table 7-7 and Figure 7-75 the STS method has the highest average AFR overall.  The 

STS method is the first method to achieve an AFR of 100 and does so after 360 days.  The 

MIPActual method achieves an AFR of 100 after 2880 days.  The STS method is, however, 

also the method with the highest average inventory level.  This result is as expected, given 

that the MIP methods will allow inventory to reach zero before the next delivery cycle, 

while the STS method maintains sufficient inventory to cover the next cycle given the 

target setting equation. 
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Table 7-7:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - No Demand Variance. 

	 No	Variance	

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual	 STS MIPTheory MIPActual STS	

Overall	 85.77 89.10	 96.18 28 3 73	

1	to	180	 29.29 27.38	 28.14 1 0 0	

181	to	360	 55.50 55.05	 95.49 4 2 8	

361	to	720	 76.70 77.17	 100.00 9 4 27	

721	to	1080	 87.32 86.91	 100.00 10 8 53	

1081	to	1440	 91.15 92.61	 100.00 21 8 73	

1441	to	1800	 92.37 96.07	 100.00 31 5 87	

1801	to	2160	 93.09 98.11	 100.00 38 2 94	

2161	to	2520	 93.46 99.18	 100.00 41 1 98	

2521	to	2880	 93.67 99.75	 100.00 43 0 100	

2881	to	3240	 93.77 100.00	 100.00 44 0 100	

3241	to	3600	 93.77 100.00	 100.00 44 0 100	

 

Figure 7-75:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - No Demand Variance. 

When a normal distribution with a variance of 5 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-8 and Figure 7-76 show that the STS method 

achieves an AFR of 100 after 180 days, MIPActual after 360 days and MIPTheory after 3240.  

While the STS method has an inventory level 11 times higher than MIPTheory, the 

inventory level for the MIPActual method is 100 times higher.  For a normal distribution 

with a variance of 5, the STS method is the most effective method if both AFR and 

inventory are taken into account. 
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Table 7-8:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 5. 

	 Normal	Distribution	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 91.08	 98.64 99.22 15 726	 83

1	to	180	 58.14	 72.76 84.36 1 1	 9	

181	to	360	 63.32	 99.99 100.00 4 62	 18

361	to	720	 80.12	 100.00 100.00 9 252	 37

721	to	1080	 89.52	 100.00 100.00 12 506	 63

1081	to	1440 91.98	 100.00 100.00 25 715	 83

1441	to	1800 93.19	 100.00 100.00 34 854	 96

1801	to	2160 95.58	 100.00 100.00 29 936	 104

2161	to	2520 99.79	 100.00 100.00 7 976	 108

2521	to	2880 99.93	 100.00 100.00 9 994	 110

2881	to	3240 99.96	 100.00 100.00 10 999	 110

3241	to	3600 100.00	 100.00 100.00 10 999	 110

 

 

Figure 7-76:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 5. 

When a normal distribution with a variance of 10 is used to simulate demand, all three 

methods achieve an AFR of 100.  Table 7-9 and Figure 7-77 show that both the MIPActual 

and STS methods achieve an AFR of 100 after 180 days.  The MIPTheory method only 

achieves an AFR of 100 after 2 160 days.  The STS method only results in 6 times the 

inventory of the MIPTheory method while the MIPActual method results in 100 times the 

amount of inventory.  This result indicates that in the case of a normal demand pattern 
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with a variance of 10, the STS method is the most effective method when taking both 

AFR and inventory required into account. 

Table 7-9:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 10. 

	 Normal	Distribution	‐	Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 93.55	 98.97	 99.22 17 1476 93	

1	to	180	 72.35	 79.31	 84.35 4 23 19	

181	to	360	 71.46	 100.00	 100.00 4 177 28	

361	to	720	 84.00	 100.00	 100.00 9 560 47	

721	to	1080	 90.50	 100.00	 100.00 16 1062 73	

1081	to	1440	 92.85	 100.00	 100.00 29 1465 93	

1441	to	1800	 96.25	 100.00	 100.00 23 1730 107	

1801	to	2160	 99.97	 100.00	 100.00 10 1884 114	

2161	to	2520	 100.00	 100.00	 100.00 16 1962 118	

2521	to	2880	 100.00	 100.00	 100.00 19 1995 120	

2881	to	3240	 100.00	 100.00	 100.00 20 2001 120	

3241	to	3600	 100.00	 100.00	 100.00 20 2000 120	

 

Figure 7-77:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 10. 

When a log-normal distribution with a variance of 5 is used to simulate demand only the 

STS and MIPActual methods achieve an AFR of 100.  Table 7-10 and Figure 7-78 show 

that the STS method achieves an AFR of 100 after 180 days while the MIPActual method 

achieves an AFR of 100 after 360 days.  While the STS method requires 11 times the 
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inventory of the MIPTheory method, the MIPActual method requires nearly 100 times the 

inventory.  This result indicates that in the case of a log-normal demand pattern with a 

variance of 5, the STS method is the most effective method when taking both AFR and 

inventory required into account. 

Table 7-10:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 5. 

	 Log	Normal Distribution	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 91.09	 98.64 99.22 15 727	 83

1	to	180	 58.12	 72.86 84.39 1 1	 9	

181	to	360	 63.26	 99.99 100.00 4 62	 18

361	to	720	 80.14	 100.00 100.00 9 252	 37

721	to	1080	 89.73	 100.00 100.00 11 506	 63

1081	to	1440 91.97	 100.00 100.00 25 716	 83

1441	to	1800 93.14	 100.00 100.00 35 854	 96

1801	to	2160 95.54	 100.00 100.00 29 936	 104

2161	to	2520 99.81	 100.00 100.00 7 978	 108

2521	to	2880 99.98	 100.00 100.00 9 995	 110

2881	to	3240 99.92	 100.00 100.00 10 999	 110

3241	to	3600 99.99	 100.00 100.00 10 999	 110

 

Figure 7-78:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 5. 
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When a log-normal distribution with a variance of 10 is used to simulate demand only the 

STS and MIPActual methods achieve an AFR of 100.  Table 7-11 and Figure 7-79 show 

that both the STS and MIPActual methods achieves an AFR of 100 after 180 days.  While 

the STS method requires 6 times the inventory of the MIPTheory method, the MIPActual 

method requires nearly 100 times the inventory.  This result indicates that in the case of 

a log-normal demand pattern with a variance of 10, the STS method is the most effective 

method when taking both AFR and inventory required into account. 

Table 7-11:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 10. 

	 Log	Normal	Distribution	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 93.49	 98.97	 99.22 17 1472 93	

1	to	180	 72.45	 79.49	 84.49 4 24 19	

181	to	360	 71.61	 100.00	 100.00 4 177 28	

361	to	720	 83.83	 100.00	 100.00 9 560 47	

721	to	1080	 90.36	 100.00	 100.00 17 1061 73	

1081	to	1440	 92.80	 100.00	 100.00 29 1462 93	

1441	to	1800	 96.07	 100.00	 100.00 24 1727 106	

1801	to	2160	 99.92	 100.00	 100.00 11 1877 114	

2161	to	2520	 99.96	 100.00	 100.00 16 1955 118	

2521	to	2880	 99.97	 100.00	 100.00 18 1987 119	

2881	to	3240	 99.99	 100.00	 100.00 20 1996 120	

3241	to	3600	 99.97	 100.00	 100.00 20 1995 120	
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Figure 7-79:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 10. 

When a gamma distribution with a variance of 5 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-12 and Figure 7-80 show that both the STS 

achieves an AFR of 100 after 180 days, the MIPActual method achieves an AFR of 100 

after 360 days and the MIPActual method achieves and AFR of 100 after 2 520 days.  While 

the STS method requires 11 times the inventory of the MIPTheory method, the MIPActual 

method requires nearly 100 times the inventory.  This result indicates that in the case of 

a gamma demand pattern with a variance of 5, the STS method is the most effective 

method when taking both AFR and inventory required into account. 

Table 7-12:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 5. 

	 Gamma	Distribution	(80;0.25)	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 91.08	 98.64 99.22 15 727	 83

1	to	180	 58.05	 72.77 84.40 1 1	 9	

181	to	360	 63.31	 99.99 100.00 4 62	 18

361	to	720	 80.21	 100.00 100.00 9 252	 37

721	to	1080	 89.37	 100.00 100.00 12 506	 63

1081	to	1440 91.97	 100.00 100.00 25 716	 83

1441	to	1800 93.11	 100.00 100.00 35 856	 96

1801	to	2160 95.60	 100.00 100.00 28 937	 104
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	 Gamma	Distribution	(80;0.25)	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

2161	to	2520	 99.92	 100.00	 100.00 6 978 108	

2521	to	2880	 100.00	 100.00	 100.00 8 996 110	

2881	to	3240	 100.00	 100.00	 100.00 10 999 110	

3241	to	3600	 100.00	 100.00	 100.00 10 1000 110	

 

Figure 7-80:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 5. 

When a gamma distribution with a variance of 10 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-13 and Figure 7-81 show that both the STS 

achieves an AFR of 100 after 180 days, the MIPActual method achieves an AFR of 100 

after 180 days and the MIPActual method achieves and AFR of 100 after 2 160 days.  While 

the STS method requires 6 times the inventory of the MIPTheory method, the MIPActual 

method requires nearly 50 times the inventory.  This result indicates that in the case of a 

gamma demand pattern with a variance of 10, the STS method is the most effective 

method when taking both AFR and inventory required into account. 
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Table 7-13:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 10. 

	 Gamma	Distribution	(20;1)	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 93.56	 98.53 99.22 17 736	 93

1	to	180	 72.28	 70.70 84.35 4 9	 19

181	to	360	 71.40	 100.00 100.00 4 80	 28

361	to	720	 84.30	 100.00 100.00 8 265	 47

721	to	1080	 90.53	 100.00 100.00 16 515	 73

1081	to	1440 92.82	 100.00 100.00 29 727	 93

1441	to	1800 96.10	 100.00 100.00 24 871	 106

1801	to	2160 99.99	 100.00 100.00 10 952	 114

2161	to	2520 100.00	 100.00 100.00 16 988	 118

2521	to	2880 100.00	 100.00 100.00 19 999	 120

2881	to	3240 100.00	 100.00 100.00 20 999	 120

3241	to	3600 100.00	 100.00 100.00 20 998	 120

 

Figure 7-81:  Comparative Results Local Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 10. 

In summary, all cases of locally supplied parts under non-stationary demand with zero 

starting inventory show that the STS method not only consistently achieves an AFR of 

100, but also achieves it in the shortest possible time.  The MIPActual method also achieves 

an AFR of 100, but it takes longer than the STS method.  The MIPTheory method performs 

the worst in terms of achieving an AFR of 100.  The MIPTheory has the lowest inventory 

requirements and the MIPActual method requires significantly higher inventory.  The STS 
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method has the best AFR performance with an inventory increase, that is, however, much 

lower than that of the MIPActual method.  For locally supplied parts, the STS method is the 

most effective with the highest AFR and the least amount of inventory, except for the 

ideal case with no demand variance. 

7.2.4.2 Comparative Results for Import Supplier Parts Under Non-Stationary 
Demand – MIPTheory vs. MIPActual vs. STS - No Starting Inventory 

The zero demand variance case is the same for the various demand distributions.  As 

shown in Table 7-14 and Figure 7-82 the STS method has the lowest average AFR overall.  

The STS method is, however, the only method to achieve an AFR of 100 and does so 

after 1800 days.  The MIPActual and MIPTheory methods do not achieve an AFR of 100.  The 

STS method is, however, also the method with the highest average inventory level.  This 

result is as expected, given that the MIP methods will allow inventory to reach zero before 

the next delivery cycle, while the STS method maintains sufficient inventory to cover the 

next cycle given the target setting equation.  The MIP methods however have higher 

inventory levels that the STS method for the first 1440 days.  In this case the STS method 

is the worst when taking AFR and inventory into account. 

Table 7-14:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - No Demand Variance. 

	 No	Variance	

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 87.93	 87.93	 75.06 215 215 371	

1	to	180	 14.61	 14.61	 0.92 1 1 0	

181	to	360	 47.37	 47.37	 7.38 13 13 0	

361	to	720	 74.29	 74.29	 24.46 65 65 5	

721	to	1080	 86.92	 86.92	 50.02 140 140 44	

1081	to	1440	 93.32	 93.32	 75.61 206 206 136	

1441	to	1800	 96.50	 96.50	 96.34 253 253 345	

1801	to	2160	 98.35	 98.35	 100.00 281 281 581	

2161	to	2520	 99.23	 99.23	 100.00 294 294 627	

2521	to	2880	 99.73	 99.73	 100.00 301 301 648	

2881	to	3240	 100.00	 100.00	 100.00 298 298 660	

3241	to	3600	 100.00	 100.00	 100.00 302 302 665	



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     151 

 

Figure 7-82:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - No Demand Variance. 

When a normal distribution with a variance of 5 is used to simulate demand the MIPActual 

and STS methods achieve an AFR of 100.  Table 7-15 and Figure 7-83 show that the STS 

method achieves an AFR of 100 after 1440 days and MIPActual after 1080 days.  While the 

STS method has an inventory level two times higher than the MIPTheory method, the 

inventory level for the MIPActual method is four times higher.  The results indicate that in 

the shorter term the MIPTheory is the better method, while after 1440 days the STS method 

is better when comparing AFR and inventory. 
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Table 7-15:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 5. 

	 Normal	Distribution	‐	Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 88.07	 91.87	 82.22 223 794 438	

1	to	180	 16.57	 16.63	 11.41 1 2 0	

181	to	360	 48.16	 54.27	 27.28 15 18 3	

361	to	720	 74.39	 84.90	 44.21 71 85 21	

721	to	1080	 86.88	 98.32	 67.75 152 213 85	

1081	to	1440	 93.12	 100.00	 90.92 217 559 203	

1441	to	1800	 96.63	 100.00	 100.00 256 884 547	

1801	to	2160	 98.46	 100.00	 100.00 283 1097 643	

2161	to	2520	 99.31	 100.00	 100.00 298 1216 699	

2521	to	2880	 99.71	 100.00	 100.00 311 1272 717	

2881	to	3240	 99.90	 100.00	 100.00 315 1297 727	

3241	to	3600	 99.92	 100.00	 100.00 316 1303 734	

 

Figure 7-83:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 5. 

When a normal distribution with a variance of 10 is used to simulate demand the MIPActual 

and STS methods achieve an AFR of 100.  Table 7-16 and Figure 7-84 show that the STS 

method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  While the 

STS method has an inventory level two times higher than the MIPTheory method, the 

inventory level for the MIPActual method is four times higher.  The results indicate that in 
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the shorter term the MIPTheory is the better method, while after 1440 days the STS method 

is better when comparing AFR and inventory. 

Table 7-16:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 10. 

	 Normal	Distribution	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 88.38	 93.42 87.92 225 1495	 506

1	to	180	 18.49	 18.96 21.46 2 2	 2	

181	to	360	 49.03	 61.02 46.40 17 24	 11

361	to	720	 74.83	 94.21 62.61 71 133	 44

721	to	1080	 87.22	 100.00 83.50 150 655	 132

1081	to	1440 93.45	 100.00 99.17 214 1287	 407

1441	to	1800 96.84	 100.00 100.00 256 1745	 603

1801	to	2160 98.59	 100.00 100.00 284 2038	 709

2161	to	2520 99.39	 100.00 100.00 301 2198	 767

2521	to	2880 99.78	 100.00 100.00 315 2275	 791

2881	to	3240 99.95	 100.00 100.00 321 2299	 798

3241	to	3600 99.96	 100.00 100.00 325 2304	 804

 

Figure 7-84:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Normal Demand With Variance = 10. 

When a log-normal distribution with a variance of 5 is used to simulate demand the 

MIPActual and STS methods achieve an AFR of 100.  Table 7-17 and Figure 7-85 show 

that the STS method achieves an AFR of 100 after 1440 days and MIPActual after 1080 

days.  While the STS method has an inventory level two times higher than the MIPTheory 

method, the inventory level for the MIPActual method is four times higher.  The results 
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indicate that in the shorter term MIPActual is the better method, while after 1440 days the 

STS method is better when comparing AFR and inventory. 

Table 7-17:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 5. 

	 Log	Normal	Distribution	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 88.08	 91.88	 82.22 222 794 438	

1	to	180	 16.60	 16.81	 11.37 1 2 0	

181	to	360	 48.20	 54.36	 27.27 15 18 3	

361	to	720	 74.39	 84.89	 44.21 71 86 21	

721	to	1080	 86.85	 98.36	 67.76 152 211 85	

1081	to	1440	 93.16	 100.00	 90.95 218 563 204	

1441	to	1800	 96.64	 100.00	 100.00 256 884 545	

1801	to	2160	 98.47	 100.00	 100.00 283 1097 644	

2161	to	2520	 99.32	 100.00	 100.00 297 1217 699	

2521	to	2880	 99.71	 100.00	 100.00 309 1274 718	

2881	to	3240	 99.92	 100.00	 100.00 311 1298 727	

3241	to	3600	 99.96	 100.00	 100.00 314 1300 734	

 

Figure 7-85:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 5. 

When a log-normal distribution with a variance of 10 is used to simulate demand the 

MIPActual and STS methods achieve an AFR of 100.  Table 7-18 and Figure 7-86 show 

that the STS method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  
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While the STS method has an inventory level two times higher than the MIPTheory method, 

the inventory level for the MIPActual method is four times higher.  The results indicate that 

in the shorter term the MIPTheory is the better method, while after 1440 days the STS 

method is better when comparing AFR and inventory. 

Table 7-18:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 10. 

	 Log	Normal Distribution	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 88.35	 93.42 87.96 226 1488	 505

1	to	180	 18.47	 18.84 21.72 2 2	 2	

181	to	360	 49.00	 61.09 46.64 17 24	 11

361	to	720	 74.80	 94.21 62.60 71 132	 43

721	to	1080	 87.20	 100.00 83.60 150 652	 132

1081	to	1440 93.42	 100.00 99.25 214 1279	 406

1441	to	1800 96.85	 100.00 100.00 256 1736	 600

1801	to	2160 98.56	 100.00 100.00 285 2027	 710

2161	to	2520 99.36	 100.00 100.00 302 2188	 764

2521	to	2880 99.73	 100.00 100.00 318 2261	 785

2881	to	3240 99.89	 100.00 100.00 322 2285	 800

3241	to	3600 99.92	 100.00 100.00 331 2303	 803

 

Figure 7-86:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Log Normal Demand With Variance 

= 10. 
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When a gamma distribution with a variance of 5 is used to simulate demand the MIPActual 

and STS methods achieve an AFR of 100.  Table 7-19 and Figure 7-87 show that the STS 

method achieves an AFR of 100 after 1440 days and MIPActual after 1080 days.  While the 

STS method has an inventory level two times higher than the MIPTheory method, the 

inventory level for the MIPActual method is four times higher.  The results indicate that in 

the shorter term the MIPTheory is the better method, while after 1440 days the STS method 

is better when comparing AFR and inventory. 

Table 7-19:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 5. 

	 Gamma	Distribution	(80,0.25)	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory	 MIPActual	 STS MIPTheory MIPActual STS	

Overall	 88.09	 91.87	 82.22 222 794 438	

1	to	180	 16.64	 16.75	 11.40 1 2 0	

181	to	360	 48.14	 54.26	 27.23 15 18 3	

361	to	720	 74.40	 84.91	 44.22 72 85 21	

721	to	1080	 86.82	 98.30	 67.75 153 212 85	

1081	to	1440	 93.10	 100.00	 90.89 219 560 203	

1441	to	1800	 96.63	 100.00	 100.00 257 884 547	

1801	to	2160	 98.48	 100.00	 100.00 283 1098 645	

2161	to	2520	 99.33	 100.00	 100.00 297 1218 699	

2521	to	2880	 99.74	 100.00	 100.00 306 1274 718	

2881	to	3240	 99.99	 100.00	 100.00 309 1298 728	

3241	to	3600	 99.98	 100.00	 100.00 313 1301 734	

 

Figure 7-87:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 5. 
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When a gamma distribution with a variance of 10 is used to simulate demand the MIPActual 

and STS methods achieve an AFR of 100.  Table 7-20 and Figure 7-88 show that the STS 

method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  While the 

STS method has an inventory level two times higher than the MIPTheory method, the 

inventory level for the MIPActual method is four times higher.  The results indicate that in 

the shorter term the MIPTheory is the better method, while after 1440 days the STS method 

is better when comparing AFR and inventory. 

 

Table 7-20:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 10. 

	 Gamma	Distribution	(20,1)	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 88.37	 93.43 87.95 224 1491	 506

1	to	180	 18.55	 18.89 21.56 2 2 2	

181	to	360	 48.97	 61.22 46.59 17 24	 11	

361	to	720	 74.88	 94.25 62.67 71 132	 44	

721	to	1080	 87.17	 100.00 83.60 150 653	 132

1081	to	1440 93.40	 100.00 99.20 214 1277	 407

1441	to	1800 96.80	 100.00 100.00 256 1738	 600

1801	to	2160 98.59	 100.00 100.00 285 2034	 709

2161	to	2520 99.42	 100.00 100.00 300 2195	 769

2521	to	2880 99.78	 100.00 100.00 313 2268	 787

2881	to	3240 99.96	 100.00 100.00 321 2297	 800

3241	to	3600 99.97	 100.00 100.00 323 2301	 803
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Figure 7-88:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, No Starting Inventory - Gamma Demand With Variance = 10. 

In summary, under non-stationary demand conditions for imported parts supplied, the 

MIPActual method is the best in the short term.  While it requires the most inventory, it also 

achieves an AFR of 100 sooner than the other methods.  In the long term, the STS method 

also achieves an AFR of 100 with half the amount of inventory.  This result indicates that 

in the longer term the STS method is the better method, except for the ideal case with no 

variance 

7.2.4.3 Comparative Results for Domestic Supplier Parts Under Non-Stationary 
Demand – MIPTheory vs. MIPActual vs. STS - With Starting Inventory 

To compensate for new model launch demand, it is standard industry practice to establish 

an initial baseline of inventory of 6 months demand.  Using the results from the no 

variance case described in Section 7.2.4.1, the value of the required starting inventory is 

calculated as 1060.  For Sections 7.2.4.3 and 7.2.4.4 the initial inventory on hand is set to 

1060. 

The zero demand variance case is the same for the various demand patterns.  As shown 

in Table 7-21 and Figure 7-89 the STS method has the highest average AFR overall.  The 

STS method is the first method to achieve an AFR of 100 and does so after 360 days.  The 

MIPActual method achieves an AFR of 100 after 2880 years.  The STS method is, however, 

also the method with the highest average inventory level.  This result is as expected, given 

that the MIP methods will allow inventory to reach zero before the next delivery cycle, 

while the STS method maintains sufficient inventory to cover the next cycle given the 

target setting equation.  It is interesting to note that even when starting with initial 
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inventory, all methods manage to run to an out of stock condition, before recovering and 

achieving stability. 

Table 7-21:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - No Demand Variance. 

	 No	Variance

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS	

Overall	 88.82	 92.22 98.67 65 39	 110	

1	to	180	 84.44	 84.44 84.44 728 728	 728	

181	to	360	 61.30	 60.36 89.01 3 2	 7	

361	to	720	 76.58	 77.17 100.00 9 4	 27	

721	to	1080	 87.48	 86.90 100.00 10 8	 53	

1081	to	1440 91.15	 92.61 100.00 21 8	 73	

1441	to	1800 92.37	 96.07 100.00 31 5	 87	

1801	to	2160 93.10	 98.11 100.00 38 2	 94	

2161	to	2520 93.46	 99.18 100.00 41 1	 98	

2521	to	2880 93.67	 99.75 100.00 43 0	 100	

2881	to	3240 93.77	 100.00 100.00 44 0	 100	

3241	to	3600 93.77	 100.00 100.00 44 0	 100	

 

Figure 7-89:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, Six Months Initial Inventory - With No Variance. 

When a normal distribution with a variance of 5 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-22 and Figure 7-90 show that the STS method 

achieves an AFR of 100 after 360 days, MIPActual after 180 days and MIPTheory after 3240.  

While the STS method has an inventory level 11 times higher than the MIPTheory, the 
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inventory level for the MIPActual method is 100 times higher.  For a normal distribution 

with a variance of 5, the STS method is the most effective method if both AFR and 

inventory are taken into account. 

Table 7-22:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 5. 

	 Normal	Distribution	‐	Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 92.68	 99.22	 99.07 51 763 119	

1	to	180	 84.42	 84.35	 84.35 729 728 728	

181	to	360	 67.48	 100.00	 96.99 4 62 17	

361	to	720	 80.48	 100.00	 100.00 9 253 37	

721	to	1080	 89.82	 100.00	 100.00 11 507 63	

1081	to	1440	 91.98	 100.00	 100.00 25 716 83	

1441	to	1800	 93.19	 100.00	 100.00 35 855 96	

1801	to	2160	 95.59	 100.00	 100.00 28 936 104	

2161	to	2520	 99.87	 100.00	 100.00 6 977 108	

2521	to	2880	 99.94	 100.00	 100.00 9 995 110	

2881	to	3240	 99.98	 100.00	 100.00 10 999 110	

3241	to	3600	 100.00	 100.00	 100.00 10 999 110	

 

Figure 7-90:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 5. 

When a normal distribution with a variance of 10 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-23 and Figure 7-91 show that the STS method 
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achieves an AFR of 100 after 360 days, MIPActual after 180 days and MIPTheory after 2160, 

although the AFR drops again after 2880 days.  While the STS method has an inventory 

level 6 times higher than the MIPTheory, the inventory level for the MIPActual method is 100 

times higher.  For a normal distribution with a variance of 10, the STS method is the most 

effective method if both AFR and inventory are taken into account. 

Table 7-23:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 10. 

	 Normal	Distribution	‐ Variance	=	10

	 AFR	 Inventory

	 MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 94.41	 99.22 99.15 52 1513	 129

1	to	180	 84.43	 84.46 84.45 728 725	 726

181	to	360	 74.24	 100.00 98.61 4 178	 27

361	to	720	 84.85	 100.00 100.00 7 561	 47

721	to	1080	 90.93	 100.00 100.00 15 1065	 73

1081	to	1440 92.83	 100.00 100.00 29 1468	 93

1441	to	1800 96.20	 100.00 100.00 23 1733	 107

1801	to	2160 99.98	 100.00 100.00 10 1887	 114

2161	to	2520 100.00	 100.00 100.00 15 1963	 118

2521	to	2880 100.00	 100.00 100.00 19 1996	 120

2881	to	3240 99.98	 100.00 100.00 20 2001	 120

3241	to	3600 99.98	 100.00 100.00 20 2000	 120

 

Figure 7-91:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 10. 
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When a log-normal distribution with a variance of 5 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-24 and Figure 7-92 show that the STS method 

achieves an AFR of 100 after 360 days, MIPActual after 180 days and MIPTheory after 3240.  

While the STS method has an inventory level 11 times higher than the MIPTheory, the 

inventory level for the MIPActual method is 100 times higher.  For a log-normal distribution 

with a variance of 5, the STS method is the most effective method if both AFR and 

inventory are taken into account. 

Table 7-24:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 5. 

	 Log	Normal	Distribution	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 92.67	 99.22	 99.07 51 763 119	

1	to	180	 84.37	 84.37	 84.32 729 728 729	

181	to	360	 67.59	 100.00	 96.99 4 62 17	

361	to	720	 80.44	 100.00	 100.00 9 253 37	

721	to	1080	 89.83	 100.00	 100.00 11 506 63	

1081	to	1440	 91.97	 100.00	 100.00 25 715 83	

1441	to	1800	 93.17	 100.00	 100.00 35 854 96	

1801	to	2160	 95.50	 100.00	 100.00 29 936 104	

2161	to	2520	 99.86	 100.00	 100.00 6 977 108	

2521	to	2880	 100.00	 100.00	 100.00 8 996 110	

2881	to	3240	 100.00	 100.00	 100.00 10 999 110	

3241	to	3600	 99.98	 100.00	 100.00 10 998 110	
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Figure 7-92:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 5. 

When a log-normal distribution with a variance of 10 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-25 and Figure 7-93 show that the STS method 

achieves an AFR of 100 after 360 days, MIPActual after 180 days and MIPTheory after 2520.  

While the STS method has an inventory level 6 times higher than the MIPTheory, the 

inventory level for the MIPActual method is 100 times higher.  For a log-normal distribution 

with a variance of 10, the STS method is the most effective method if both AFR and 

inventory are taken into account. 
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Table 7-25:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 10. 

	 Log	Normal	Distribution	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 94.42	 99.21	 99.16 52 1506 129	

1	to	180	 84.43	 84.29	 84.49 728 727 726	

181	to	360	 74.30	 100.00	 98.62 4 177 27	

361	to	720	 84.94	 100.00	 100.00 6 557 47	

721	to	1080	 90.92	 100.00	 100.00 15 1056 73	

1081	to	1440	 92.84	 100.00	 100.00 29 1458 93	

1441	to	1800	 96.30	 100.00	 100.00 23 1720 106	

1801	to	2160	 99.94	 100.00	 100.00 11 1876 114	

2161	to	2520	 99.99	 100.00	 100.00 16 1954 118	

2521	to	2880	 100.00	 100.00	 100.00 19 1989 119	

2881	to	3240	 99.94	 100.00	 100.00 20 1998 120	

3241	to	3600	 99.99	 100.00	 100.00 20 1996 120	

 

Figure 7-93:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 10. 

When a gamma distribution with a variance of 5 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-26 and Figure 7-94 show that the STS method 

achieves an AFR of 100 after 360 days, MIPActual after 180 days and MIPTheory after 3240.  

While the STS method has an inventory level 11 times higher than the MIPTheory, the 
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inventory level for the MIPActual method is 100 times higher.  For a gamma distribution 

with a variance of 5, the STS method is the most effective method if both AFR and 

inventory are taken into account. 

Table 7-26:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 5. 

	 Gamma	Distribution	(80,0.25)	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 92.70	 99.22 99.16 51 764	 119

1	to	180	 84.36	 84.37 84.49 729 729	 729

181	to	360	 67.62	 100.00 98.62 4 62	 17

361	to	720	 80.46	 100.00 100.00 9 252	 37

721	to	1080	 89.81	 100.00 100.00 11 506	 63

1081	to	1440 91.98	 100.00 100.00 25 716	 83

1441	to	1800 93.09	 100.00 100.00 35 855	 96

1801	to	2160 95.72	 100.00 100.00 28 937	 104

2161	to	2520 99.92	 100.00 100.00 6 978	 108

2521	to	2880 100.00	 100.00 100.00 9 996	 110

2881	to	3240 100.00	 100.00 100.00 10 1000	 110

3241	to	3600 100.00	 100.00 100.00 10 1000	 110

 

Figure 7-94:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 5. 
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When a gamma distribution with a variance of 10 is used to simulate demand all three 

methods achieve an AFR of 100.  Table 7-27 and Figure 7-95 show that the STS method 

achieves an AFR of 100 after 360 days, MIPActual after 180 days and MIPTheory after 3240.  

While the STS method has an inventory level 6 times higher than the MIPTheory, the 

inventory level for the MIPActual method is 100 times higher.  For a gamma distribution 

with a variance of 10, the STS method is the most effective method if both AFR and 

inventory are taken into account. 

Table 7-27:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 10. 

	 Gamma	Distribution	(20,1)	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 94.40	 99.22	 99.15 53 1509 129	

1	to	180	 84.37	 84.34	 84.39 729 729 728	

181	to	360	 74.41	 100.00	 98.57 4 177 27	

361	to	720	 84.86	 100.00	 100.00 7 559 47	

721	to	1080	 90.90	 100.00	 100.00 15 1059 73	

1081	to	1440	 92.81	 100.00	 100.00 29 1464 93	

1441	to	1800	 96.08	 100.00	 100.00 24 1730 106	

1801	to	2160	 99.99	 100.00	 100.00 10 1883 114	

2161	to	2520	 100.00	 100.00	 100.00 15 1960 118	

2521	to	2880	 100.00	 100.00	 100.00 18 1991 120	

2881	to	3240	 100.00	 100.00	 100.00 20 1998 120	

3241	to	3600	 100.00	 100.00	 100.00 20 1998 120	
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Figure 7-95:  Comparative Results Domestic Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 10. 

In summary, all cases of locally supplied parts under non-stationary demand with 6 

months initial inventory show that the STS method is the only method that consistently 

achieves an AFR of 100.  The MIPActual method also achieves an AFR of 100 and does so 

in the shortest time period.  The MIPTheory method performs the worst in terms of 

achieving an AFR of 100.  The MIPTheory has the lowest inventory requirements and the 

MIPActual method requires significantly higher inventory.  The STS method has the best 

AFR performance with an inventory increase, that is, however, much lower than that of 

the MIPActual method.  For locally supplied parts, the STS method is the most effective 

with the highest AFR and the least amount of inventory, except for the ideal case with no 

demand variance. 

7.2.4.4 Comparative Results for Import Supplier Parts Under Non-Stationary 
Demand – MIPTheory vs. MIPActual vs. STS - With Starting Inventory 

The zero demand variance case is the same for the various demand distributions.  As 

shown in Table 7-28 and Figure 7-96 the STS method has the lowest average AFR overall.  

The STS method is the first method to achieve an AFR of 100 and does so after 1800 

days.  The MIPActual and MIPTheory methods achieve an AFR of 100 only after 2880 days.  

The STS method is however also the method with the highest average inventory.  This 

result is as expected, given that the MIP methods will allow inventory to reach zero before 

the next delivery cycle, while the STS method maintains sufficient inventory to cover the 

next cycle given the target setting equation.  The MIP methods however have higher 



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     168 

inventory levels that the STS method for the first 1440 days.  In this case the STS method 

is the worst when taking AFR and inventory into account. 

Table 7-28:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Demand With No Variance. 

	 No	Variance	

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 91.41	 91.41	 82.35 253 253 412	

1	to	180	 84.44	 84.44	 84.44 728 728 728	

181	to	360	 47.85	 47.85	 33.40 17 17 4	

361	to	720	 74.01	 74.01	 34.52 72 72 12	

721	to	1080	 86.86	 86.86	 54.75 145 145 54	

1081	to	1440	 93.28	 93.28	 78.15 207 207 145	

1441	to	1800	 96.47	 96.47	 97.14 252 252 367	

1801	to	2160	 98.34	 98.34	 100.00 281 281 575	

2161	to	2520	 99.23	 99.23	 100.00 295 295 627	

2521	to	2880	 99.73	 99.73	 100.00 301 301 649	

2881	to	3240	 100.00	 100.00	 100.00 298 298 660	

3241	to	3600	 100.00	 100.00	 100.00 302 302 665	

 

Figure 7-96:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory – With No Variance. 

When a normal distribution with a variance of 5 is used to simulate demand the STS and 

MIPActual methods achieve an AFR of 100.  Table 7-29 and Figure 7-97 show that the STS 

method achieves an AFR of 100 after 1440 days and MIPActual after 1080 days.  While the 

STS method has an inventory level 2.3 times higher than the MIPTheory, the inventory level 

for the MIPActual method is 4 times higher.  For a normal distribution with a variance of 
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5, the STS method is the most effective method if both AFR and inventory are taken into 

account. 

Table 7-29:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 5. 

	 Normal	Distribution	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 91.53	 95.20 87.31 258 831	 477

1	to	180	 84.36	 84.39 84.36 729 728	 730

181	to	360	 48.59	 53.85 41.23 17 22	 8

361	to	720	 74.46	 84.65 48.75 74 97	 26

721	to	1080	 87.17	 98.22 69.70 151 219	 90

1081	to	1440 93.35	 100.00 91.82 211 559	 209

1441	to	1800 96.53	 100.00 100.00 254 882	 551

1801	to	2160 98.43	 100.00 100.00 282 1097	 643

2161	to	2520 99.33	 100.00 100.00 298 1215	 700

2521	to	2880 99.72	 100.00 100.00 310 1273	 717

2881	to	3240 99.88	 100.00 100.00 315 1297	 728

3241	to	3600 99.93	 100.00 100.00 316 1300	 735

 

Figure 7-97:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 5. 

When a normal distribution with a variance of 10 is used to simulate demand, the STS 

and MIPActual methods achieve an AFR of 100.  Table 7-30 and Figure 7-98 show that the 



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     170 

STS method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  While 

the STS method has an inventory level 2.5 times higher than the MIPTheory, the inventory 

level for the MIPActual method is 7 times higher.  For a normal distribution with a variance 

of 5, the STS method is the most effective method if both AFR and inventory are taken 

into account. 

Table 7-30:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 10. 

	 Normal	Distribution	‐	Variance	=	10

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 91.70	 96.60	 91.24 262 1531 543	

1	to	180	 84.51	 84.26	 84.31 729 729 730	

181	to	360	 49.28	 59.71	 49.70 18 32 12	

361	to	720	 74.86	 93.98	 62.61 75 146 44	

721	to	1080	 87.43	 100.00	 83.56 153 653 133	

1081	to	1440	 93.53	 100.00	 99.25 213 1286 408	

1441	to	1800	 96.67	 100.00	 100.00 256 1744 602	

1801	to	2160	 98.56	 100.00	 100.00 284 2035 710	

2161	to	2520	 99.41	 100.00	 100.00 302 2198 769	

2521	to	2880	 99.74	 100.00	 100.00 317 2267 788	

2881	to	3240	 99.93	 100.00	 100.00 325 2297 798	

3241	to	3600	 99.92	 100.00	 100.00 325 2303 805	

 

Figure 7-98:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Normal Demand With Variance 

= 10. 
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When a log-normal distribution with a variance of 5 is used to simulate demand, the STS 

and MIPActual methods achieve an AFR of 100.  Table 7-31 and Figure 7-99 show that the 

STS method achieves an AFR of 100 after 1440 days and MIPActual after 1080 days.  While 

the STS method has an inventory level 2.3 times higher than the MIPTheory, the inventory 

level for the MIPActual method is 4 times higher.  For a log-normal distribution with a 

variance of 5, the STS method is the most effective method if both AFR and inventory 

are taken into account. 

Table 7-31:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 5. 

	 Log‐Normal Distribution	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 91.55	 95.20 87.30 257 832	 476

1	to	180	 84.38	 84.44 84.34 728 727	 731

181	to	360	 48.57	 53.82 41.38 17 22	 8

361	to	720	 74.49	 84.64 48.75 73 97	 26

721	to	1080	 87.17	 98.24 69.64 149 219	 90

1081	to	1440 93.40	 100.00 91.79 210 560	 209

1441	to	1800 96.58	 100.00 100.00 254 885	 549

1801	to	2160 98.43	 100.00 100.00 282 1097	 643

2161	to	2520 99.32	 100.00 100.00 299 1216	 698

2521	to	2880 99.72	 100.00 100.00 307 1275	 717

2881	to	3240 99.95	 100.00 100.00 312 1296	 729

3241	to	3600 99.96	 100.00 100.00 314 1298	 734
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Figure 7-99:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 5. 

When a log-normal distribution with a variance of 10 is used to simulate demand, the STS 

and MIPActual methods achieve an AFR of 100.  Table 7-32 and Figure 7-100 show that 

the STS method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  

While the STS method has an inventory level 2.5 times higher than the MIPTheory, the 

inventory level for the MIPActual method is 7 times higher.  For a log-normal distribution 

with a variance of 10, the STS method is the most effective method if both AFR and 

inventory are taken into account. 
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Table 7-32:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance = 10. 

	 Log	Normal Distribution	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 91.73	 96.59 91.31 260 1526	 541

1	to	180	 84.37	 84.19 84.39 728 730	 728

181	to	360	 49.25	 59.91 49.94 18 31	 12

361	to	720	 74.99	 93.83 62.89 73 145	 45

721	to	1080	 87.45	 100.00 83.79 149 654	 133

1081	to	1440 93.57	 100.00 99.27 211 1282	 406

1441	to	1800 96.72	 100.00 100.00 254 1739	 598

1801	to	2160 98.58	 100.00 100.00 284 2030	 707

2161	to	2520 99.42	 100.00 100.00 299 2189	 763

2521	to	2880 99.78	 100.00 100.00 313 2252	 789

2881	to	3240 99.97	 100.00 100.00 319 2292	 798

3241	to	3600 99.98	 100.00 100.00 324 2299	 803

 

Figure 7-100:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Log Normal Demand With 

Variance =10. 

When a gamma distribution with a variance of 5 is used to simulate demand, the STS and 

MIPActual methods achieve an AFR of 100.  Table 7-33 and Figure 7-101 show that the 

STS method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  While 

the STS method has an inventory level 2.5 times higher than the MIPTheory, the inventory 
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level for the MIPActual method is 7 times higher.  For a gamma distribution with a variance 

of 5, the STS method is the most effective method if both AFR and inventory are taken 

into account. 

Table 7-33:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 5. 

	 Gamma	Distribution	(80,0.25)	‐ Variance	=	5

	 AFR	 Inventory

Time	(Days)	 MIPTheory MIPActual	 STS MIPTheory MIPActual STS	

Overall	 91.56	 95.20	 87.31 256 832 477	

1	to	180	 84.39	 84.36	 84.39 729 729 728	

181	to	360	 48.58	 53.90	 41.16 17 22 7	

361	to	720	 74.48	 84.65	 48.79 72 97 26	

721	to	1080	 87.16	 98.19	 69.70 147 218 90	

1081	to	1440	 93.41	 100.00	 91.80 209 560 208	

1441	to	1800	 96.57	 100.00	 100.00 254 884 551	

1801	to	2160	 98.47	 100.00	 100.00 283 1098 645	

2161	to	2520	 99.34	 100.00	 100.00 297 1219 699	

2521	to	2880	 99.76	 100.00	 100.00 307 1273 718	

2881	to	3240	 99.98	 100.00	 100.00 309 1297 729	

3241	to	3600	 99.99	 100.00	 100.00 313 1301 734	

 

Figure 7-101:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 5. 
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When a gamma distribution with a variance of 10 is used to simulate demand, the STS 

and MIPActual methods achieve an AFR of 100.  Table 7-30 and Figure 7-98 show that the 

STS method achieves an AFR of 100 after 1440 days and MIPActual after 720 days.  While 

the STS method has an inventory level 2.5 times higher than the MIPTheory, the inventory 

level for the MIPActual method is 7 times higher.  For a gamma distribution with a variance 

of 10, the STS method is the most effective method if both AFR and inventory are taken 

into account. 

Table 7-34:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 10. 

	 Gamma	Distribution	(20,1)	‐ Variance	=	10

	 AFR	 Inventory

Time	(Days) MIPTheory	 MIPActual STS MIPTheory MIPActual	 STS

Overall	 88.37	 96.60 91.28 224 1529	 542

1	to	180	 18.55	 84.38 84.34 2 729	 730

181	to	360	 48.97	 59.80 49.81 17 33	 12

361	to	720	 74.88	 93.92 62.89 71 145	 45

721	to	1080	 87.17	 100.00 83.66 150 650	 133

1081	to	1440 93.40	 100.00 99.22 214 1279	 408

1441	to	1800 96.80	 100.00 100.00 256 1741	 600

1801	to	2160 98.59	 100.00 100.00 285 2035	 709

2161	to	2520 99.42	 100.00 100.00 300 2195	 769

2521	to	2880 99.78	 100.00 100.00 313 2270	 788

2881	to	3240 99.96	 100.00 100.00 321 2295	 798

3241	to	3600 99.97	 100.00 100.00 323 2301	 802
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Figure 7-102:  Comparative Results Import Supplied Parts Under Non-Stationary 

Demand Conditions, 6 Months Initial Inventory - Gamma Demand With Variance 

= 10. 

In summary, all cases of import supplied parts under non-stationary demand with 6 

months initial inventory show that the STS method is the only method that consistently 

achieves an AFR of 100.  The MIPActual method also achieves an AFR of 100 and does so 

in the shortest time period.  The MIPTheory method performs the worst in terms of 

achieving an AFR of 100.  The MIPTheory has the lowest inventory requirements and the 

MIPActual method requires significantly higher inventory.  The STS method has the best 

AFR performance with an inventory increase, that is however much lower than that of 

the MIPActual method.  For locally supplied parts, the STS method is the most effective 

with the highest AFR and the least amount of inventory, except for the ideal case with no 

demand variance. 

Finally, the STS and MIPActual methods consistently achieve an AFR of 100.  The STS 

method does so with the least amount of inventory, as compared to the MIPActual method.  

While the MIPTheory method has the lowest inventory level, it performs worst in terms of 

achieving an AFR of 100.  Based on both the AFR and inventory criteria, the STS method 

is more effective. 

7.3 Statistical Analysis of Historical Data 

The statistical analysis will focus on determining the shape of the two distributions 

highlighted in Chapter 3, namely: 

 Lead-Time 

 Demand 
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In the next section each of these are reviewed, based on 2013 data obtained from one of 

the original equipment manufacturers in South Africa.  The objective of this part of the 

study is to determine the best-fit distribution types for each of the datasets.  The MIP 

method described in Chapter 3 is based on a safety stock calculation.  The safety stock 

calculation is based on a service level.  Given the stochastic nature of real supply chains, 

it is necessary to assume that some distribution is used.  In general, it is assumed that a 

normal distribution is sufficient and that the requisite number of standard deviations can 

be used to ensure a certain service level.  In this section the data is compared to a number 

of distributions to identify the best fit.  The three probability distributions used most 

frequently are:  Normal distribution, log-normal distribution and gamma Distribution.   

For the purposes of this work, a dataset of lead times and a dataset of customer orders 

(demand) are analysed.  The initial focus is on establishing which distribution represents 

the dataset best.  Once the most likely distributions have been identified, it is possible to 

simulate the two MIP and STS methods in a theoretical environment, applying and 

evaluating the impact of the two MIP and STS methods on optimizing inventory and 

achieving the required service levels.  After the completion of the experiments, the focus 

will turn to analysing the real data within the simulation environment. 

7.3.1 Lead-Time Distribution Fit 

Lead time for local suppliers is contractually set.  For current model parts the lead time is 

7 days and for past model parts it is 28 days.  The logic behind this assumption is that 

current model parts are part of current production and the 7 day lead time will allow 

sufficient time to add additional volumes to the daily production and to deliver the parts 

as per schedule.  For past model parts there is a need for more comprehensive production 

planning, as it may require tooling to be changed and machines to be set up.  The 28 day 

target makes it possible to also include it in overtime planning if required.  Intervention 

on the local supplier lead time is very quick.  As soon as a supplier foresees a problem, 

the parts division is informed and alternative arrangements are made.  The lead time data 

for local suppliers was not available for this study.  It was, therefore, necessary to focus 

on the imported parts dataset that was available. 

In contrast to the local lead time, it is very difficult to intervene with the import process.  

The lead time is made up of the following components: 

 Order Processing (Receive Order to Pick Order) 
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 Container Consolidation 

 Shipment Cycle – This cycle depends on the frequency of ships that will dock at the 

import site and in South Africa.  The shipment cycle for the available data was 

weekly. 

 Shipping  

 Docking, Offloading and Customs Clearance 

 Dispatch and Arrival at the Distribution Centre 

 Unloading, Unpacking of Cases and Binning of Parts 

Internal variances in process times can offset or expand the cycle time.  The focus will 

therefore be on the total lead time, which is defined as: 

 Date Parts Are Binned minus Date of Order Placement. 

This approach will provide an overall picture of the lead time (days) that affects the 

inventory and safety stock requirements. 

The dataset that was obtained covered a 9 month period in 2013.  It differentiates the parts 

in four groups: 

 Key Parts from Source A 

 General Parts from Source A 

 All Parts from Source B 

 All Parts from Source C 

Each dataset is analysed separately to determine if there are significant differences 

regarding import source and part classification.  (Key parts are fast moving, service parts.)  

The lead time for each part is calculated.  It is important to distinguish between orders 

and parts.  An order to the supplier will contain many parts.  Parts in the same order may 

have different lead times, depending on part availability and process capacity.  The lead 

time for each order for a particular part is then calculated individually.  The result is a 

series of lead times 

 When combined in the four groups identified above, this information provides a series 
of lead times that describe the behaviour for a group.    
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Table 7-35 provides a summary of the basic statistical measures for the four groups of 

lead times being studied. 
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Table 7-35:  Basic Statistical Measures of Lead-Time Data. 

Basic Statistical Measures 

  Key Parts 

Source A 

General Parts 

Source A 

Source B Source C 

Observations 61588 1232 9120 661 

Location 

Mean 63.60 64.63 57.32 57.00 

Median 62 62 55 54 

Mode 58 50 51 50 

Variability 

Std Deviation 11.07 13.28 14.52 12.23 

Variance 122.48 176.30 210.70 149.54 

Range 138 83 172 79 

 

The bulk of the observation points (61588 out of 7260 or 85%) are from the Key Parts 

from Source A.  While the median lead time for key parts and general parts are the same, 

the general parts have a slightly higher average lead time, as well as a higher standard 

deviation.  This statistic would indicate that key parts are more likely to be immediately 

ready for shipment, while general parts may sometimes require additional time to obtain.  

The difference is, however, not significant.  The lead time results for Source B and Source 

C are quite interesting.  Unlike the key parts and general parts for Source A, Source B 

and Source C are not geographically connected.  Source B shows a slightly higher 

standard deviation. 

With this data available, it is necessary to determine which standard distribution can be 

used to simulate the lead time behaviour of the particular supply chain.  The data was 

analysed by the Statistics Department of the University of Pretoria, using SPSS. 

Three goodness-of-fit tests were performed, namely: 

 Kolmogorov-Smirnov 

 Cramer-von Mises 

 Anderson-Darling 

The results of this analysis are discussed below. 
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7.3.1.1 Lead-Time Analysis – Key Parts, Source A 

Key parts represent fast moving, high volume parts and will in general be typical service 

parts for vehicles with high numbers in use.  Key parts include oil filters, air filters, spark 

plugs, fuel filters and other items that have a planned replacement cycle on the vehicle 

design life cycle. 

Figure 7-103 provides a frequency distribution of the lead times (days) observed for the 

key parts from source A. 

 

Figure 7-103:  Frequency Distribution of Lead-Time for Key Parts from Source A. 

The detailed statistical analysis for the key parts from Source A is given in Appendix IX.  

The basic statistics for 61588 observations is shown in Table 7-36.  Each observation is 

a part order that was placed, shipped and received.  The lead time was calculated from 

the day on which the order was placed, until the day it was received at the warehouse and 

is measured in days. 

Table 7-36:  Basic Statistics for Key Parts from Source A. 

Basic Statistical Measures 

Observations 61588 

Location Variability 

Mean 63.60 Std Deviation 11.07 

Median 62 Variance 122.48 

Mode 58 Range 138 
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Table 7-37 summarises the results of the goodness-of-fit testing for key parts from Source 

A.  The results for the three most promising distributions are shown.  In each case the 

three goodness-of-fit tests shows an acceptable value of p, which indicate that there is a 

fit.  The parameters of the best fit curve were determined, depending on the distribution 

being tested.  Using these parameters, values for the various quintiles were estimated.  

The differences between the observed and estimated values were squared and added to 

provide a method to decide which method had the best fit.  This result, combined with the 

p values for the goodness-of-fit tests provides a simple method to select an appropriate 

distribution. 

Table 7-37:  Goodness-of-Fit Testing Results – Key Parts, Source A. 

Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution 

Parameters 

for 

Distribution 

Sym-

bol 

Estimate Symbol Estimate Sym-

bol 

Estimate 

Threshold Theta 0 Theta 0     

Scale Sigma 68.27 Sigma 1.86     

Shape C 5.57 Alpha 34.23     

Mean   63.07   63.60 Mu 63.60 

StdDev   13.09   10.87 Sigma 11.07 

Test Statisti

c 

p Value Statisti

c 

p Value Statisti

c 

p Value 

Kolmogorov

-Smirnov 

(D) 

N/A     0.07 Pr

> 

D 

<0.00

1 

0.09 Pr> 

D 

<0.01

0 

Cramer-von 

Mises (W-

Sq) 

105.91 Pr

> 

W-

Sq 

<0.01

0 

50.87 Pr

> 

W-

Sq 

<0.00

1 

70.61 Pr> 

W-

Sq 

<0.00

5 
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Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution 

Anderson-

Darling 

(A-Sq) 

857.72 Pr

> 

A-

Sq 

<0.01

0 

295.85 Pr

> 

A-

Sq 

<0.00

1 

437.30 Pr> 

A-

Sq 

<0.00

5 

Quintile Quintiles for Weibull 

Distribution 

Quintiles for Gamma 

Distribution 

Quintiles for Normal 

Distribution 

% Ob-

served 

Esti-

mated 

Differences 

Squared 

Esti-

mated 

Difference

s Squared 

Esti-

mated 

Differ-

ences 

Squared 

1 45 29.88 228.72 41.07 15.44 37.86 51.00 

5 48 40.04 63.36 46.84 1.35 45.40 6.76 

10 50 45.57 19.65 50.13 0.02 49.42 0.33 

25 55 54.58 0.18 55.97 0.95 56.14 1.30 

50 62 63.92 3.68 62.99 0.97 63.60 2.57 

75 71 72.39 1.94 70.56 0.19 71.07 0.00 

90 78 79.30 1.69 77.87 0.02 77.79 0.05 

95 83 83.14 0.02 82.48 0.27 81.81 1.42 

99 92 89.82 4.77 91.59 0.17 89.35 7.02 

    Sum 324.01 Sum 19.38 Sum 70.45 

 

The results indicate that the estimated values for all three distributions are adequate to 

describe the upper quintiles.  The biggest discrepancies lie with the lower 5% for the 

gamma and normal distributions and the lower 10% for the Weibull distribution.  Given 

the goodness-of-fit results and the squared differences calculated, the gamma distribution 

provides the best fit.  Despite the normal distribution showing a worse fit, it is proposed 

that either a normal or a gamma distribution provides an acceptable distribution to use for 

the key parts from Source A.  Using a normal distribution requires less computation and 

will ease further research. 
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7.3.1.2 Lead-Time Analysis – General Parts, Source A, Source B and Source C 

General parts are basically all parts that do not have a specified replacement cycle.  These 

parts include wear and tear parts, repair parts and crash parts.  Orders are placed when 

client orders are received.  Anomalies can appear following region specific events such 

as hail storms, fog and first rain of the season (oil that seeped into the roadway is washed 

out resulting in slippery roads).  All of these factors affect the demand for crash parts.  

Other localized elements could be heavy dust and mining dust environments that add to 

wear and tear.  In many cases the main driver for requiring these parts is time in use and 

driver behaviour. 

Figure 7-104 provides a frequency distribution of the lead times (days) observed for the 

general parts from Source A, Source B and Source C. 
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Figure 7-104:  Frequency Distribution of Lead-Time for General Parts from Source 

A, Source B and Source C. 

The detailed statistical analysis for the general parts from Source A, Source B and Source 

C is given in Appendix IX.  The data from the three sources were analysed together, based 

on the assumption that the focus on general parts will provide similar results.  The general 

parts are expected to have different demand patterns which may influence the availability 

of inventory and hence the lead time. 

The basic statistics for general parts from Source A, 1232 observations, is shown in Table 

7-38.  Each observation is an order that was placed, shipped and received.  The lead time 

was calculated from the day on which the order was placed, until the day it was received 

at the warehouse. 

Table 7-38:  Basic Statistics for General Parts from Source A. 

Basic Statistical Measures 

Observations 1232 

Location Variability 

Mean 64.63 Std Deviation 13.28 

Median 62 Variance 176.30 

Mode 50 Range 83 

 

The number of observations is significantly lower than those for key parts.  This results 

in not all parts being ordered every time.  In contrast to key parts of which most are 

ordered on a daily basis, the general parts may not necessarily be ordered every day.  In 
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addition, quantities may be significantly smaller.  Even though the parts demand is 

significantly different, the lead time is not significantly different. 

Table 7-39 shows the data for the goodness-of-fit testing on the general parts from Source 

A.  The results for the three most promising distributions are shown for this case as well.  

In each case the three goodness-of-fit tests shows an acceptable value of p, which 

indicates that there is a fit.  In this particular case, the test results are slightly less positive, 

but still within acceptable parameters.  The parameters of the best fit curve were 

determined, depending on the distribution being tested.  Using these parameters, values 

for the various quintiles were estimated.  The differences between the observed and 

estimated values were squared and added up to provide a method to decide which method 

had the best fit.  This result, combined with the p values for the goodness-of-fit tests will 

provide a simple method to select an appropriate distribution. 

Table 7-39:  Goodness-of-Fit Testing Results – General Parts, Source A. 

Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution 

Parameters 

for 

Distribution 

Sym-

bol 

Estimate Sym-

bol 

Estimate Sym-

bol 

Estimate 

Threshold Theta 0 Theta 0     

Scale Sigma 70.13 Sigma 2.51     

Shape C 4.73 Alpha 25.78     

Mean   64.18   64.63 Mu 64.63 

StdDev   15.46   12.73 Sigma 13.28 

Test Statis-

tic 

p Value Statis-

tic 

p Value Statis-

tic 

p Value 

Kolmogorov

-Smirnov 

(D) 

N/A     0.09 Pr> 

D 

<0.00

1 

0.11 Pr> 

D 

<0.01

0 

Cramer-von 

Mises (W-

Sq) 

4.11 Pr> 

W-

Sq 

<0.01

0 

1.85 Pr> 

W-

Sq 

<0.00

1 

2.89 Pr> 

W-

Sq 

<0.00

5 
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Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution

Anderson-

Darling 

(A-Sq) 

29.59 Pr> 

A-

Sq 

<0.01

0 

12.14 Pr> 

A-

Sq 

<0.00

1 

19.03 Pr> 

A-

Sq 

<0.00

5 

Quintile Quintiles for Weibull 

Distribution 

Quintiles for Gamma 

Distribution 

Quintiles for Normal 

Distribution 

% Ob-

served 

Esti-

mated 

Diffe-

rences 

Squared 

Esti-

mated 

Diffe-

rences 

Squared 

Esti-

mated 

Diffe-

rences 

Squared 

1 46.00 26.52 379.49 38.74 52.72 33.74 150.28 

5 49.00 37.43 133.89 45.21 14.36 42.79 38.57 

10 50.00 43.58 41.20 48.95 1.11 47.61 5.69 

25 54.00 53.89 0.01 55.65 2.72 55.67 2.80 

50 62.00 64.90 8.42 63.80 3.23 64.63 6.92 

75 73.00 75.14 4.59 72.70 0.09 73.59 0.34 

90 81.00 83.65 7.03 81.39 0.15 81.65 0.42 

95 89.00 88.44 0.32 86.89 4.43 86.47 6.40 

99 106.00 96.85 83.68 97.87 66.12 95.52 109.86 

    Sum 658.63 Sum 144.93 Sum 321.28 

 

The results indicate that the estimated values for all three distributions are adequate to 

describe the quintiles between 25% and 95%.  The biggest discrepancies lie with the lower 

10% for the gamma and normal distributions and the lower 25% for the Weibull 

distribution.  In all cases the 99% quintile shows a significant difference.  Given the 

goodness-of-fit results and the squared differences calculated, the gamma distribution 

provides the best fit.  Despite the normal distribution showing a worse fit, it is proposed 

that either a normal or a gamma distribution provides an acceptable distribution to use for 

the general parts from Source A.  Using a normal distribution requires less computation 

and will simplify further research. 

The basic statistics for general parts from Source B, 9120 observations, is shown in Table 

7-40.  Each observation is an order that was placed, shipped and received.  The lead time 
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was calculated from the day on which the order was placed, until the day it was received 

at the warehouse. 

Table 7-40:  Basic Statistics for General Parts from Source B. 

Basic Statistical Measures 

Observations 9120 

Location Variability 

Mean 57.32 Std Deviation 14.52 

Median 55 Variance 210.70 

Mode 51 Range 172 

 

The number of observations is significantly lower than those for key parts, but 

significantly higher than that of the other two sources of general parts.  This particular 

source provides a significant number of crash parts in the parts mix it supplies.  Similar 

to other general parts, not all parts are being ordered every time.  In contrast to key parts 

of which most are ordered on a daily basis, the general parts may not necessarily be 

ordered every day.  In addition, quantities may be significantly smaller.  The lead time 

from Source B differ significantly from Source A and this difference is expected due to 

their geographic location. 

Table 7-41 shows the data for the goodness-of-fit testing on the general parts from Source 

B. 

Table 7-41:  Goodness-of-Fit Testing Results – General Parts, Source B. 

Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution 

Parameters 

for 

Distribution 

Sym-

bol 

Estimate Sym-

bol 

Estimate Sym-

bol 

Estimate 

Threshold Theta 0 Theta 0     

Scale Sigma 62.83 Sigma 3.06     

Shape C 3.54 Alpha 18.75     

Mean   56.56   57.32 Mu 57.32 

StdDev   17.72   13.24 Sigma 14.52 
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Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution 

Test Statis-

tic 

p Value Statis-

tic 

p Value Statis-

tic 

p Value 

Kolmogoro

v-Smirnov 

(D) 

N/A     0.08 Pr> 

D 

<0.00

1 

0.11 Pr> 

D 

<0.01

0 

Cramer-von 

Mises (W-

Sq) 

55.50 Pr> 

W-

Sq 

<0.01

0 

13.62 Pr> 

W-

Sq 

<0.00

1 

32.23 Pr> 

W-

Sq 

<0.00

5 

Anderson-

Darling 

(A-Sq) 

366.64 Pr> 

A-

Sq 

<0.01

0 

91.13 Pr> 

A-

Sq 

<0.00

1 

198.67 Pr> 

A-

Sq 

<0.00

5 

Quintile Quintiles for Weibull 

Distribution 

Quintiles for Gamma 

Distribution 

Quintiles for Normal 

Distribution 

% Ob-

served 

Esti-

mated 

Diffe-

rences 

Squared 

Estima-

ted 

Diffe-

rences 

Squared 

Estima-

ted 

Diffe-

rences 

Squared 

1 39 17.13 478.19 31.07 62.92 23.55 238.79 

5 41 27.15 191.81 37.42 12.85 33.44 57.16 

10 42 33.27 76.17 41.14 0.74 38.71 10.80 

25 47 44.19 7.91 47.92 0.85 47.53 0.28 

50 55 56.65 2.72 56.30 1.69 57.32 5.36 

75 63 68.90 34.81 65.60 6.78 67.11 16.86 

90 76 79.52 12.38 74.80 1.45 75.92 0.01 

95 82 85.65 13.35 80.68 1.74 81.19 0.65 

99 110 96.72 176.46 92.51 305.97 91.08 357.81 

    Sum 993.79 Sum 394.98 Sum 687.72 

 

The results indicate that while the test for goodness of fit are acceptable, the estimated 

values for all three distributions differ from the observed values.  The gamma distribution 

shows the best fit, but shows especially large differences at the 99% quintile.  Similarly, 
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the normal distribution shows large differences for the 1 to 5% quintiles, as well as the 

99% quintile.  Given the observed fit for both general parts and key parts from Source A, 

Source B has significant worse performance.  Using either a normal or a gamma 

distribution for calculating safety stock will provide inadequate results. 

The basic statistics for general parts from Source C, 661 observations, is shown in Table 

7-42.  Each observation is an order that was placed, shipped and received.  The lead time 

was calculated from the day or order, until the day it was received at the warehouse. 

 

Table 7-42:  Basic Statistics for General Parts from Source C. 

Basic Statistical Measures 

Observations 661 

Location Variability 

Mean 57.00 Std Deviation 12.23 

Median 54 Variance 149.54 

Mode 50 Range 79 

 

The number of observations is the lowest from Source C.  This particular source provides 

parts for some of the lower volume models in the South African market.  Even key parts 

for these vehicles are unlikely to be ordered every day, or in large quantities.  Even though 

the lead times for Source B and Source C are identical, it is not a significant finding, as 

the two sources are not geographically linked at all.  The travel distances are similar and 

the only element to read into this similarity is that the process component of the lead time 

is similar.  Given that this is part of a global supply chain, it is a likely outcome.  Table 

7-43 shows the data for the goodness-of-fit testing on the general parts from Source B. 

Table 7-43:  Goodness-of-Fit Testing Results – General Parts, Source C. 

Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution 

Parameters 

for 

Distribution 

Symbo

l 

Estimate Symbo

l 

Estimate Symbo

l 

Estimate 

Threshold Theta 0 Theta 0     
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Goodness-

of-Fit Tests 

for: 

Weibull Distribution Gamma 

Distribution 

Normal Distribution

Scale Sigma 62.05 Sigma 2.21     

Shape C 4.28 Alpha 25.81     

Mean   56.46   57.00 Mu 57.00 

StdDev   14.89   11.22 Sigma 12.23 

Test Statis-

tic 

p Value Statis-

tic 

p Value Statis-

tic 

p Value 

Kolmogorov

-Smirnov 

(D) 

N/A     0.16 Pr> 

D 

<0.00

1 

0.19 Pr> 

D 

<0.01

0 

Cramer-von 

Mises (W-

Sq) 

4.11 Pr> 

W-

Sq 

<0.01

0 

4.15 Pr> 

W-

Sq 

<0.00

1 

6.15 Pr> 

W-

Sq 

<0.00

5 

Anderson-

Darling 

(A-Sq) 

29.59 Pr> 

A-

Sq 

<0.01

0 

23.47 Pr> 

A-

Sq 

<0.00

1 

34.02 Pr> 

A-

Sq 

<0.00

5 

Quintile Quintiles for Weibull 

Distribution 

Quintiles for Gamma 

Distribution 

Quintiles for Normal 

Distribution 

% Observ

ed 

Esti-

mated 

Diff-

erences 

Squared 

Esti-

mated 

Diffe-

rences 

Squared 

Esti-

mated 

Diffe-

rences 

Squared 

1 42 21.19 432.96 34.18 61.15 28.56 180.76 

5 44 31.01 168.77 39.88 16.93 36.89 50.57 

10 45 36.69 69.14 43.18 3.32 41.33 13.46 

25 49 46.38 6.85 49.09 0.01 48.76 0.06 

50 54 56.96 8.75 56.27 5.15 57.00 9.02 

75 60 66.97 48.52 64.12 16.96 65.25 27.57 

90 76 75.39 0.37 71.77 17.87 72.67 11.06 

95 82 80.17 3.36 76.63 28.87 77.12 23.84 

99 99 88.64 107.40 86.30 161.32 85.45 183.58 

    Sum 846.11 Sum 311.57 Sum 499.92 
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The results indicate that while the test for goodness of fit are acceptable, the estimated 

values for all three distributions differ significantly from the observed values.  The 

gamma distribution shows the best fit, but shows especially large differences at the 99% 

quintile.  Similarly, the normal distribution shows large differences for the 1 to 5% 

quintiles, as well as the 99% quintile.  Given the observed fit for both general parts and 

key parts from Source A, Source C has significant worse performance.  Using either a 

normal or gamma distribution for calculating safety stock provided inadequate results. 

The goodness-of-fit testing for the import lead times clearly shows that the gamma 

distribution is the better fit in all cases.  The normal distribution is the second best fit in 

all cases.  The best fit between observed and estimated values was for the key parts from 

Source A.  This result was followed by the results from general parts from Source A.  The 

biggest discrepancy was shown between the observed values and estimated values of the 

general parts from Source B.  Even with significant fewer data points, both the general 

parts from Source A and the general parts from Source C show smaller differences. 

Based on these results it can be concluded that Source A and Source C have better control 

over the process component of their lead time.  The local process lead times are identical 

(parts from all sources are processed on a first-in-first-out basis) and the shipping lead 

times for Source B and Source C are similar.  The lead time from Source B has lower 

predictability. 

In order to perform simulation analysis, it is necessary to select a set of appropriate 

parameters.  Given that the bulk of the observations come from Source A, it was decided 

to focus on Source A to establish the basic parameters.  It was decided to use a normal 

distribution for the simulation analysis as this is the computationally least complex 

method. 

For the analysis of imported supplier parts, source A is used as a basis with the lead time 

set at 63 days and a normal distribution used in all simulations. 

7.3.2 Demand Distribution Fit 

In order to effectively calculate the safety stock requirements, it is necessary to 

understand the demand pattern effectively.  If the base assumption is that the demand 

pattern is normal, the proposed safety stock calculation in the theoretical calculation 

described in Chapter 5 is acceptable.  If the demand pattern differs significantly from this 
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assumption, it may explain why the non-optimal implemented method is being used.  This 

assumption does not suggest that the implemented method is correct, but make it possible 

to propose an alternative solution that may achieve both objectives of minimizing average 

inventory and providing the required levels of service. 

A dataset describing demand data for 31 parts was obtained.  The dataset cover 

approximately one year’s actual daily order pattern.  The data includes all orders received 

from local and export clients.  Table 7-44 provides the basic statistic for the 31 parts.  

These parts were selected as they were perceived to be parts that required special attention 

to achieve the levels of client service required.  The group was selected as they covered 

parts from all movement categories. 

Table 7-44:  Basic Demand Statistics for Selected Parts. 

Part 
Obser-

vations 
Mean Median Mode

Std 

Deviation 
Variance Range 

Part 01 160 25.47 23 17 13.74 188.85 78.00 

Part 02 160 1.99 2 1 1.24 1.53 6.00 

Part 03 55 33.44 13 2 48.72 2374.00 213.00 

Part 04 226 62.40 57 57 30.64 938.84 252.00 

Part 05 69 20.54 5 4 34.95 1221.00 199.00 

Part 06 71 3.13 2 4 2.14 4.60 11.00 

Part 07 223 19.03 16 12 10.89 118.52 55.00 

Part 08 224 19.43 18 14 11.03 121.70 64.00 

Part 09 51 29.49 20 10 27.64 763.77 98.00 

Part 10 23 4.09 3 1 3.37 11.36 12.00 

Part 11 37 21.49 10 2 26.66 710.53 110.00 

Part 12 93 24.58 10 1 32.30 1043.00 160.00 

Part 13 226 8.54 8 7 4.59 21.03 27.00 

Part 14 230 965.04 936 1069 301.90 91147.00 2383.00

Part 15 226 42.94 40.5 41 23.22 539.37 194.00 

Part 16 221 5.93 5 4 3.61 13.01 23.00 

Part 17 225 5.16 5 3 2.76 7.60 13.00 

Part 18 210 3.73 3 3 2.12 4.50 15.00 

Part 19 219 5.16 5 3 2.92 8.54 19.00 
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Part 
Obser-

vations 
Mean Median Mode

Std 

Deviation 
Variance Range 

Part 20 222 5.62 5 6 2.75 7.58 12.00 

Part 21 170 2.01 2 1 1.08 1.16 4.00 

Part 22 89 10.17 8 10 8.91 79.30 57.00 

Part 23 203 3.14 2 2 2.49 6.20 21.00 

Part 24 107 9.21 6 2 9.97 99.45 62.00 

Part 25 227 350.37 320 260 181.64 32994.00 1440.00 

Part 26 66 16.58 10 10 17.46 304.96 99.00 

Part 27 1 16.00 16 16 . . 0.00 

Part 28 80 8.45 9 10 7.72 59.62 37.00 

Part 29 231 2210.13 2180 2020 647.05 418678.00 4320.00 

Part 30 228 515.36 480 392 208.22 43355.00 1628.00 

Part 31 230 345.95 304 2 180.64 32629.00 1232.00 

 

As can be seen in Table 7-44 the parts do not present any specific shared characteristics.  

Order events (observations) vary from 1 to 231.  Average daily demand varies from 2 to 

2210, and median demand varies from 2 to 2180.  In general the standard deviation is a 

significant fraction of the average demand, as can be seen in Table 7-45. 

Table 7-45:  Standard Deviation as Fraction of the Mean. 

Part Observations Mean Std Deviation Std Deviation / Mean 

Part 01 160 25.47 13.74 0.54 

Part 02 160 1.99 1.24 0.62 

Part 03 55 33.44 48.72 1.46 

Part 04 226 62.40 30.64 0.49 

Part 05 69 20.54 34.95 1.70 

Part 06 71 3.13 2.14 0.69 

Part 07 223 19.03 10.89 0.57 

Part 08 224 19.43 11.03 0.57 

Part 09 51 29.49 27.64 0.94 

Part 10 23 4.09 3.37 0.82 

Part 11 37 21.49 26.66 1.24 
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Part Observations Mean Std Deviation Std Deviation / Mean 

Part 12 93 24.58 32.30 1.31 

Part 13 226 8.54 4.59 0.54 

Part 14 230 965.04 301.90 0.31 

Part 15 226 42.94 23.22 0.54 

Part 16 221 5.93 3.61 0.61 

Part 17 225 5.16 2.76 0.53 

Part 18 210 3.73 2.12 0.57 

Part 19 219 5.16 2.92 0.57 

Part 20 222 5.62 2.75 0.49 

Part 21 170 2.01 1.08 0.54 

Part 22 89 10.17 8.91 0.88 

Part 23 203 3.14 2.49 0.79 

Part 24 107 9.21 9.97 1.08 

Part 25 227 350.37 181.64 0.52 

Part 26 66 16.58 17.46 1.05 

Part 27 1 16.00 .   

Part 28 80 8.45 7.72 0.91 

Part 29 231 2210.13 647.05 0.29 

Part 30 228 515.36 208.22 0.40 

Part 31 230 345.95 180.64 0.52 

 

Part 29, with a ratio of 0.29 is the lowest, while part 05 has a ratio of 1.7.  This basic 

information is indicative that it is unlikely that any of the parts in the selection will have 

a normal distribution.  Before looking at the various distributions, it is necessary to look 

at the parts from a client demand side.  The parts have therefore been classified in 

movement categories, namely: 

 Fast – Ordered for more than 200 times in the time period 

 Medium – Ordered for less than 200 times, but at least 80 times in the time period 

 Slow – Ordered less than 80 times, but at least 10 times in the time period 

 Erratic – Ordered less than 10 times in the time period 
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The data furthermore shows that not all parts that are ordered with the same frequency 

were ordered in the same quantities.  To this end a second movement category was 

assigned, namely: 

 Fast, High – Average order above 100 

 Fast, Medium – Average order below 100, but at least 29 

 Fast, Low – Average order below 20 

 Medium, Medium – Average order above 10 

 Medium, Low – Average order below 10  

 Slow, Medium – Average order above 10 

 Slow, Low – Average order below 10 

The single erratic part in the selection had an order quantity of 16.  Table 7-46 shows the 

parts, sorted by movement category. 

Table 7-46:  Parts Sorted by Movement Category 1 and 2. 

Part 

Move-

ment 

Category 

Movement 

Category 

2 

Observations Mean 
Std 

Deviation

Std 

Deviation/ 

Mean 

Part 27 Erratic Medium 1 16.00    

Part 29 Fast High 231 2210.13 647.05 0.29 

Part 14 Fast High 230 965.04 301.90 0.31 

Part 30 Fast High 228 515.36 208.22 0.40 

Part 25 Fast High 227 350.37 181.64 0.52 

Part 31 Fast High 230 345.95 180.64 0.52 

Part 08 Fast Low 224 19.43 11.03 0.57 

Part 07 Fast Low 223 19.03 10.89 0.57 

Part 13 Fast Low 226 8.54 4.59 0.54 

Part 16 Fast Low 221 5.93 3.61 0.61 

Part 20 Fast Low 222 5.62 2.75 0.49 

Part 19 Fast Low 219 5.16 2.92 0.57 

Part 17 Fast Low 225 5.16 2.76 0.53 

Part 18 Fast Low 210 3.73 2.12 0.57 
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Part 

Move-

ment 

Category 

Movement 

Category 

2 

Observations Mean 
Std 

Deviation 

Std 

Deviation/ 

Mean 

Part 23 Fast Low 203 3.14 2.49 0.79 

Part 04 Fast Medium 226 62.40 30.64 0.49 

Part 15 Fast Medium 226 42.94 23.22 0.54 

Part 24 Medium Low 107 9.21 9.97 1.08 

Part 28 Medium Low 80 8.45 7.72 0.91 

Part 21 Medium Low 170 2.01 1.08 0.54 

Part 02 Medium Low 160 1.99 1.24 0.62 

Part 01 Medium Medium 160 25.47 13.74 0.54 

Part 12 Medium Medium 93 24.58 32.30 1.31 

Part 22 Medium Medium 89 10.17 8.91 0.88 

Part 10 Slow Low 23 4.09 3.37 0.82 

Part 06 Slow Low 71 3.13 2.14 0.69 

Part 03 Slow Medium 55 33.44 48.72 1.46 

Part 09 Slow Medium 51 29.49 27.64 0.94 

Part 11 Slow Medium 37 21.49 26.66 1.24 

Part 05 Slow Medium 69 20.54 34.95 1.70 

Part 26 Slow Medium 66 16.58 17.46 1.05 

 

Given the sequence showed in Table 7-46, the demand pattern of each part will now be 

analysed to identify the best-fit distribution.  Given the ratio of the standard deviation to 

the mean, it was decided not to even attempt to test for a normal distribution, as it is highly 

unlikely to be present.  The analysis therefore focused on the gamma distribution and the 

log normal distribution.  The parts are discussed in the sequence shown in Table 7-46 to 

make it possible to compare the various demand patterns.  The demand patterns proposed 

by Gattorna (2010) are very theoretical.  Figure 7-105 provides a view of fast moving 

automotive parts.  Figure 7-106 shows the patterns for medium moving automotive parts 

and Figure 7-107 show the pattern for slow moving automotive parts. 
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Figure 7-105:  Demand Profiles for Fast Moving Automotive Parts. 

 

Figure 7-106:  Demand Profiles for Medium Moving Automotive Parts. 

 

Figure 7-107:  Demand Profiles for Slow Moving Automotive Parts. 

As can be seen in the above graphs, it is difficult to confirm a specific demand pattern 

purely from observation.  Each of the selected parts is analysed, within its demand group.  
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Part 27 is ignored as it is impossible to fit a distribution to a single observation.  The rest 

of the parts are discussed in terms of their movement classification. 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the log normal distribution is more effective in estimating demand.  The squared 

differences are significantly lower for the log normal distribution.  Table 7-47 provides a 

summary of the parts and the appropriate distributions. 

 

Table 7-47:  Overview of Parts and Appropriate Distribution. 
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Part 27 1 16 . Erratic Medium 0.00 0.00 Gamma 

Part 29 231 2210 647 Fast High 2768468 30630211 Gamma 

Part 14 230 965 301 Fast High 398319 4437725 Gamma 

Part 30 228 515 208 Fast High 43854 92885 Gamma 

Part 25 227 350 181 Fast High 5390 135506 Gamma 

Part 31 230 345 180 Fast High 49348.25 65639 Gamma 

Part 08 224 19 11 Fast Low 10 595 Gamma 

Part 07 223 19 10 Fast Low 11 441 Gamma 

Part 13 226 8 4 Fast Low 2 54 Gamma 

Part 16 221 5 3 Fast Low 1 21 Gamma 

Part 20 222 5 2 Fast Low 4 38 Gamma 

Part 19 219 5 2 Fast Low 5 38 Gamma 

Part 17 225 5 2 Fast Low 4 34 Gamma 

Part 18 210 3 2 Fast Low 1 9 Gamma 

Part 23 203 3 2 Fast Low 6 1 

Log 

Normal 

Part 04 226 62 30 Fast Medium 245 3405 Gamma 

Part 15 226 42 23 Fast Medium 57 1372 Gamma 

Part 24 107 9 9 Medium Low 25 241 Gamma 
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Part 28 80 8 7 Medium Low 88 252 Gamma 

Part 21 170 2 1 Medium Low 1 1 Gamma 

Part 02 160 1 1 Medium Low 1 1 

Log 

Normal 

Part 01 160 25 13 Medium Medium 32 1139 Gamma 

Part 12 93 24 32 Medium Medium 401 31974 Gamma 

Part 22 89 10 8 Medium Medium 599 223 

Log 

Normal 

Part 10 23 4 3 Slow Low 5 64 Gamma 

Part 06 71 3 2 Slow Low 8 1 

Log 

Normal 

Part 03 55 33 48 Slow Medium 3221 27623 Gamma 

Part 09 51 29 27 Slow Medium 798 3516 Gamma 

Part 11 37 21 26 Slow Medium 898 7436 Gamma 

Part 05 69 20 34 Slow Medium 8137 2470 

Log 

Normal 

Part 26 66 16 17 Slow Medium 952 155 

Log 

Normal 

 

Most of the fast moving parts exhibit a gamma distribution, with the exception of Part 23.  

However, the Fast, High parts category does not show a very good fit to either 

distribution.  Despite the fact that large volumes are ordered very regularly, the demand 

is not smooth as proposed by Gattorna (2010).  This result means that even though these 

are service parts and the demand should be predictable, the market is not behaving 

rationally.  It would be interesting to determine the root cause of this behaviour as part of 

future research.  The parts in the category Fast, Low seem to be the most predictable.  

This result indicates parts that are ordered regularly, but without exceptional variance in 

the orders.  Parts in the Medium, Medium category also has high variance.  Again, the 

Medium, Low group seems to be more predictable.  Parts in the Slow, Medium category 
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show a large level of unpredictability as might be expected.  Again, the parts in the Slow, 

Low category seem to be more predictable.  In the medium and slow moving parts, the 

demand can be described by both the gamma and log normal distribution, with no specific 

predictor as to what distribution is most likely to provide the best fit. 

The full detailed statistical analysis of the demand patterns are given in Appendix IX. 

7.4 Simulation Analysis – Practical Environment 

The results, does however then also confirm that the parts with a normal demand 

distribution will have too high levels of inventory.  An assessment at a part level is 

required to select the optimum safety stock policy.  Due to the extent and detailed nature 

of the stocked items (over 100000 parts move every month and the parts master contains 

over 600000 parts), it will not form part of this study.  The launch period for new vehicle 

models discussed in Section 7.2.4 will also not form part of the practical analysis, as data 

is not readily available. 

7.4.1 Practical Analysis – Scenario Result 

The same SDSM was used to analyse the dataset that was analysed statistically.  The 

following changes were made: 

1. The simulation duration was changed to 283 days to cover the available dataset. 

2. The simulation was run only once per part. 

3. The lead time variance was set to zero. 

4. The actual average and variance of the dataset was read into the model and used 

for the MIPTheory, MIPActual and STS calculations. 

5. The actual demand for each day was read into the simulation. 

6. It is not possible to identify current and past model parts with the available data 

and all local parts were simulated as if they were for current models. 

The simulations were run and the availability (AFR) and average inventory data compiled 

for both the import sourced parts and the local parts.  The results of the MIPTheory method 

is used as the base to compare improved results. 

7.4.1.1 Import Source Results – Set 1 

Table 7-48 provides a summary of the results of the three inventory management methods 

for imported parts from selection 1. 
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Table 7-48:  Comparative Results for Imported Parts – Selection 1. 

 
MIPTheory MIPActual Improvement STS Improvement 
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Part 04 100 1028 100 4772 0 3744 100 932 0 -96 

Part 05 100 1180 100 2546 0 1365 100 1408 0 228 

Part 06 100 179 100 189 0 9 100 155 0 -25 

Part 07 100 378 100 765 0 387 100 327 0 -51 

Part 08 100 378 100 782 0 404 100 326 0 -51 

Part 15 100 700 100 2961 0 2261 100 766 0 66 

Part 12 100 1438 100 2621 0 1184 100 1650 0 213 

Part 22 100 552 100 714 0 162 100 515 0 -37 

Part 24 100 421 100 581 0 160 100 459 0 39 

Part 25 100 4145 100 

13041

7 0 

12627

2 100 5217 0 1072 

Part 26 100 963 100 1498 0 535 100 930 0 -33 

Part 28 100 463 100 577 0 114 100 433 0 -30 

 

The results clearly show that all three methods are effective, relative to AFR, for this 

group of parts.  In all cases an AFR of 100 is achieved.  The MIPActual method requires 

more inventory in all cases.  In most cases the inventory levels are 50% to 100% higher.  

The STS method requires more inventory in 5 out of 12 cases and less in the other 7 cases.  

Where more inventory is required, it is still significantly less than what is required for the 

MIPActual method.  This result suggests that for this group of parts the MIPTheory and STS 

methods are more effective than the MIPActual method.  The STS method is also a better 

solution than the MIPTheory method in 7 cases. 

7.4.1.2 Local Source Results – Set 1 

Table 7-49 provides a summary of the results of the three inventory management methods 

for imported parts from selection 1. 
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Table 7-49:  Comparative Results for Local Parts – Selection 1. 
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Part 01 

78.9

2 60 82.1 700 3.2 640 79.13 64 0.21 4 

Part 02 

54.7

7 10 55.2 12 0.4 2 52.01 9 

-

2.76 -1 

Part 03 

22.5

3 279 23.0 3523 0.5 3244 22.27 266 

-

0.26 -13 

Part 09 

17.2

9 241 17.3 1757 0.0 1516 16.33 116 

-

0.96 -125 

Part 10 9.58 36 9.8 56 0.3 21 9.83 153 0.26 118 

Part 11 

11.9

7 190 13.8 1203 1.9 1013 12.19 173 0.23 -17 

Part 13 

81.2

4 31 82.6 188 1.4 157 80.72 30 

-

0.52 0 

Part 14 

93.7

0 2733 96.8 

205746

6 3.1 

205473

3 94.29 4028 0.59 1295

Part 16 

78.8

4 39 79.9 231 1.0 192 76.06 39 

-

2.77 0 

Part 17 

82.9

9 13 83.8 36 0.8 22 81.83 13 

-

1.16 0 

Part 18 

80.2

3 23 83.1 95 2.8 73 78.76 27 

-

1.47 5 

Part 19 

79.3

5 20 83.0 64 3.6 45 78.92 20 

-

0.42 0 

Part 20 

80.3

0 17 82.5 62 2.2 45 80.47 17 0.18 0 
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MIPTheory MIPActual Improvement STS 
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Part 21 

63.1

7 10 63.4 14 0.2 4 61.22 6 

-

1.95 -4 

Part 23 

75.6

9 17 78.8 46 3.1 29 75.96 19 0.27 2 

Part 29 

93.2

9 3053 94.1 

356390

3 0.8 

356085

0 93.61 4308 0.31 1254 

Part 31 

91.9

3 673 93.4 122691 1.5 122018 91.21 800 

-

0.72 127 

 

Either of the three inventory management methods does not effectively manage these 

locally sourced parts.  The MIPActual method manages to improve the AFR in all cases, 

but the average inventory is higher in all cases.  In some cases the average inventory is 

more than 10 times as high as that required by the MIPTheory method.  The STS method 

shows mixed results.  Six of 17 cases show an improvement in AFR, with 5 increasing 

inventory and one keeping it the same.  Four cases reduce inventory for the same AFR 

and four cases reduce inventory and AFR.  The parts in this dataset do not have consistent 

demand and it is likely that a completely alternative inventory management approach may 

be required, using a more sophisticated statistical model to describe demand. 

7.4.2 Practical Analysis II – Scenario and Results 

For the second practical analysis, the sample of parts was selected in a different manner.  

Fifteen local sourced and fifteen imported source parts were selected based on meeting 

the requirement of a MAD value in the system of 440.  The same simulation setup was 

used, with the exception that 346 data points (order days) were available. 

7.4.2.1 Import Source Results – Set 2 

Table 7-50 provides the basic data on the 15 imported parts selected for the second 

practical analysis set.  All the parts adhere to the selection criteria described above. 
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Table 7-50:  Descriptive Statistics of the Imported Parts Adhering to the Selection 

Criteria Set 2. 

Part 

Frequency 

(346) 

Orders/ 

Opportunity 

Average 

Demand Stdev 

Avg Demand/ 

Stdev 

Part 1 236 0.68 27.71 22.74 0.82 

Part 2 209 0.60 37.95 38.64 1.02 

Part 3 287 0.83 17.47 11.04 0.63 

Part 4 297 0.86 19.41 23.50 1.21 

Part 5 280 0.81 20.85 16.00 0.77 

Part 6 291 0.84 17.69 11.76 0.66 

Part 7 310 0.90 19.49 10.54 0.54 

Part 8 306 0.88 18.86 10.27 0.54 

Part 9 287 0.83 19.20 16.13 0.84 

Part 10 287 0.83 17.47 10.23 0.59 

Part 11 250 0.72 24.41 17.62 0.72 

Part 12 269 0.78 25.45 18.34 0.72 

Part 13 304 0.88 20.97 10.10 0.48 

Part 14 275 0.79 19.53 15.84 0.81 

Part 15 226 0.65 32.64 28.47 0.87 

 

Table 7-51 provides a summary of the results of the three inventory management methods 

for imported parts from selection 2. 

Table 7-51:  Comparative Results for Imported Parts – Selection 2. 
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Part 2 

100.0

0 1404

100.0

0 4366 0.00 2962 

100.0

0 1332 0.00 -72 

Part 3 99.54 195 

100.0

0 559 0.46 364 95.72 169 

-

3.82 -26 

Part 4 96.54 367 

100.0

0 1282 3.46 915 94.73 446 

-

1.81 79 

Part 5 99.51 304 

100.0

0 907 0.49 603 95.53 248 

-

3.98 -56 

Part 6 98.33 214 

100.0

0 575 1.67 361 92.24 187 

-

6.09 -27 

Part 7 99.10 234 

100.0

0 641 0.90 407 

100.0

0 332 0.90 98 

Part 8 

100.0

0 232 

100.0

0 629 0.00 397 

100.0

0 312 0.00 80 

Part 9 97.38 246 

100.0

0 694 2.62 448 94.59 198 

-

2.79 -48 

Part 

10 98.63 223 

100.0

0 541 1.37 318 96.21 178 

-

2.43 -45 

Part 

11 

100.0

0 657 

100.0

0 1532 0.00 875 

100.0

0 509 0.00 -147 

Part 

12 

100.0

0 516 

100.0

0 1448 0.00 933 

100.0

0 483 0.00 -32 

Part 

13 98.52 262 

100.0

0 661 1.48 399 98.28 339 

-

0.24 77 

Part 

14 95.46 317 

100.0

0 844 4.54 527 95.12 241 

-

0.34 -76 

Part 

15 

100.0

0 1064

100.0

0 3001 0.00 1937 

100.0

0 875 0.00 -188 



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     207 

 

For this dataset the MIPActual method achieves an AFR of 100 for all cases, but with 

significantly higher inventory levels.  Inventory levels are two to three times as high as 

that needed for the MIPTheory method.  The STS method again has mixed results.  Five of 

15 cases require less inventory for the same AFR, 6 cases require less inventory, but also 

have lower AFR values, 2 cases require more inventory for lower AFR values, 1 case 

increases the AFR, requiring more inventory and 1 case maintains the AFR with increased 

average inventory.  The results suggest that the MIPTheory model will not provide ideal 

levels of AFR, but the MIPActual method requires significantly more inventory to achieve 

it.  In a case like this, the addition of some lead time variance in the STS calculation may 

result in the best solution. 

7.4.2.2 Local Source Results 

Table 7-52 provides the basic data on the 15 local parts selected for the second practical 

analysis set.  All the parts adhere to the selection criteria described above. 

Table 7-52:  Descriptive Statistics of the Domestic Parts Adhering to the Selection 

Criteria Set 2. 

Part 

Frequency 

(346) 

Orders/ 

Opportunity 

Average 

Demand Stdev 

Avg Demand/ 

Stdev 

Part 1 281 0.81 28.16 22.59 0.80 

Part 2 300 0.87 22.03 11.17 0.51 

Part 3 198 0.57 16.05 19.42 1.21 

Part 4 290 0.84 18.14 12.56 0.69 

Part 5 286 0.83 22.97 12.42 0.54 

Part 6 291 0.84 17.77 15.40 0.87 

Part 7 276 0.80 15.22 11.45 0.75 

Part 8 300 0.87 19.43 13.41 0.69 

Part 9 286 0.83 20.69 11.72 0.57 

Part 10 300 0.87 20.09 10.17 0.51 

Part 11 306 0.88 17.13 8.73 0.51 

Part 12 277 0.80 19.62 11.08 0.56 

Part 13 294 0.85 19.71 11.29 0.57 
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Part 

Frequency 

(346) 

Orders/ 

Opportunity 

Average 

Demand Stdev 

Avg Demand/ 

Stdev 

Part 14 278 0.80 19.58 11.58 0.59 

Part 15 256 0.74 22.40 24.33 1.09 

 

Table 7-53 provides a summary of the results of the three inventory management methods 

for local parts from selection 2. 

Table 7-53:  Comparative Results for Local Parts – Selection 2. 
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Part 1 78.28 109 80.09 1326 1.72 467 79.29 166 1.01 57 

Part 2 84.81 55 87.39 518 2.58 463 86.73 96 1.93 41 

Part 3 55.36 86 56.34 666 0.98 580 56.20 120 0.83 34 

Part 4 81.26 47 84.09 471 2.83 423 83.79 92 2.53 45 

Part 5 81.40 62 82.65 605 1.25 542 81.51 110 0.10 47 

Part 6 77.83 62 82.44 563 4.61 501 80.22 114 2.39 51 

Part 7 76.16 43 79.89 359 3.73 316 79.08 83 2.92 40 

Part 8 84.45 47 87.02 534 2.57 487 86.92 96 2.47 48 

Part 9 81.25 58 82.13 517 0.88 459 81.48 96 0.23 37 

Part 10 85.47 47 86.52 432 1.05 385 86.37 86 0.90 39 

Part 11 87.73 29 89.74 307 2.02 278 89.74 72 2.02 43 

Part 12 78.15 56 80.22 463 2.06 408 79.19 91 1.04 35 

Part 13 84.17 51 86.03 470 1.86 420 85.73 86 1.57 35 

Part 14 78.01 56 80.22 482 2.21 426 78.92 98 0.91 42 

Part 15 72.42 97 74.13 1122 1.71 1025 73.13 159 0.71 62 

 

None of the methods achieves an AFR of 100 for any of the scenarios.  This result would 

suggest that even given the selection criteria, demand is obviously not normally 

distributed and more attention needs to be given to the demand model.  However, both 
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the MIPActual and the STS methods outperform the MIPTheory method on the AFR values.  

The MIPActual requires around 10 times as much inventory as the MIPTheory method, while 

the STS method only requires double the inventory. 

7.4.3 Practical Analysis III – Sensitivity Analysis 

For the purposes of repeating the sensitivity analysis with real data, a single imported and 

single domestic part number was selected.  Table 7-54 shows the results of simulating the 

inventory and AFR for a locally sourced part over a 280 day period for the different STS 

structures described in Equations 7-1, 7-2, 7-3, 7-4, 7-5, 7-6 and 7-7.  Figure 7-50 shows 

the results of simulating a local part for various STS equation structures. 

Table 7-54:  Results of STS Equation Changes for a Locally Supplied Part. 
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Stock	

Half	
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Half	

Target	

AFR	 89.5	 84.5	 87.5 89.5 84.5 84.9	 84.9	

Inventory	 6166	 4532	 5395 6166 4532 4532	 4532	

 

Figure 7-108:  Graphical Representation of the Results of the Various Versions of 

the STS Equation for a Local Part. 

The results indicate that the structural changes to the STS equation reduce the inventory, 

but it also reduces the AFR.  As there is no lead time variance, the options with no lead 

time variance are the same as those with lead time variance.  The demand variance in the 
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real case suggests that the base equation is the best format of the equation to use for local 

parts where the delivery cycle is one day. 

Table 7-55 shows the results of simulating the inventory and AFR for a locally sourced 

part over a 280 day period for the different STS structures described in Equations 7-1, 7-

2,7-3, 7-4, 7-5, 7-6 and 7-7.  Figure 7-109 shows the results of simulating a local part for 

various STS equation structures. 

Table 7-55:  Results of STS Equation Changes to an Import Sourced Part. 
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Target	

AFR	 83.8	 71.9 78.2	 83.8 71.9 71.1 71.1	

Inventory	 21409	 11807	 15366	 21409 11807 11176 11176	

 

Figure 7-109: Graphical Representation of the Results of the Various Versions of 

the STS Equation for an Import Part. 

The results indicate that the structural changes to the STS equation reduce the inventory, 

but it also reduces the AFR.  As there is no lead time variance, the options with no lead 

time variance are the same as those with lead time variance.  The demand variance in the 

real case suggests that the base equation is the best format of the equation to use for local 

parts where the delivery cycle is seven days, with daily order placement.  Table 7-56 

shows the results of simulating the inventory and AFR for a locally sourced part over a 

280 day period for the different STS structures described in Equations 7-9 and 7-10.  
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Figure 7-110 shows the results of simulating a local part for various STS equation 

structures. 

Table 7-56:  Summarised Results of Various Adjustments to the Delivery Cycle 

Structure. 

		 Baseline	 A	 B C D E	 F	

AFR	 83.8	 82.4	 80.6 78.9 76.8 75.1	 73.3	

Stock	 21409	 18982 17391 15859 14574 13493	 12470

		 G H	 I J K L	 M	

AFR	 71.5	 71.4	 69.4 67.4 65.3 63.1	 60.8	

Inventory	 11447	 11367 10293 9266 8426 7695	 7025	

 

Figure 7-110: Graphical Representation of the Results of a Real Imported Part. 

The results indicate that the proposed changes to the delivery cycle terms of the STS 

equation reduce the inventory, but it also reduces the AFR.  As there is no lead time 

variance, the options with no lead time variance are the same as those with lead time 

variance.  The demand variance in the real case suggests that the base equation is the best 

format of the equation to use for local parts where the delivery cycle is seven days, with 

daily order placement. 

7.5 Summary 

This section focused on analysing the various premises and hypothesis made in the 

document using a SDSM, as well as statistical analysis tools. 

Firstly, the structure of the STS method is confirmed and shown to be stable, contrary to 

popular belief that stock-on-hand inventory management methods are inherently unstable.  

60.0

65.0

70.0

75.0

80.0

85.0

90.0

0 5000 10000 15000 20000 25000

A
FR

Average Stock

Baseline A B C D E F G H I J K L M



Chapter 7: RESULTS AND DISCUSSION 1,2 

 

Andries Botha - December 2017     212 

It is shown that using a damping factor equal to the lead time, stabilises the output.  This 

result holds for all 3 supply chain structures (current model domestic sourced, past mode 

domestic sourced and import sourced). 

Secondly, the three inventory management methods, MIPTheory, MIPActual and STS are 

compared in a set of simulated demand distribution scenarios to compare their 

performance relative to AFR and average inventory.  MIPTheory proves to be the solution 

requiring the least inventory, but also has the lowest AFR.  MIPActual shows why it is the 

preferred solution with the highest AFR.  However, it requires the highest amount of 

inventory.  The STS method is positioned between the two, with improvement in AFR 

over the MIPTheory, but with more inventory.  It however requires less inventory than 

MIPActual.  In the case of domestic current parts, the STS method provides an AFR of 100 

and less inventory than MIPActual, making it ideal for a true JIT supply chain. 

Thirdly, the STS method is subjected to a detailed sensitivity analysis to confirm the 

validity of the method and identify if there are options to improve.  This is driven by the 

fact that the STS method has significantly higher average inventory results for the case 

where no variance exists in demand. 

Fourthly, the three methods are compared under non-stationary demand conditions, 

similar to those experienced during the launch of a new vehicle model.  When the system 

starts with no inventory, the STS method is clearly superior with the highest AFR and 

lowest amount of inventory throughout the analysis period for domestic sourced parts.  

For imported parts the MIPActual method performs better in the short term, but increase 

inventory significantly in the long term, while the STS method also achieves and AFR of 

100, with less inventory required.  When the system has start-up inventory, the STS and 

MIPActual methods perform similarly.  The MIPActual method does have the highest AFR 

in the initial launch period.  In the long run the STS method achieves AFR of 100 earlier 

with significantly less inventory than the MIPActual method. 

Fifthly, the lead time of parts is subjected to statistical analysis, using a dataset for parts 

from import suppliers.  The lead time depends on process times, shipping cycles and 

shipping times.  (Given that local suppliers are close and adjustments to shipments can 

be made easily, the lead time study focused on import suppliers only.)  There are four 

unique subsets in the data, namely: 

 Key Parts from Source A; 

 General Parts from Source A; 
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 General Parts from Source B; and 

 General Parts from Source C. 

Three goodness-of-fit tests are done, testing three different distributions, namely:  

Weibull, Gamma and Normal.  While the tests provide conclusive results, a squared 

differences test is also applied.  Based on this test, all the parts from all the sources are 

best described by a gamma distribution, although the normal distribution will also 

adequately describe the lead times.  The gamma distribution does pose computational 

challenges, and it was decided to accept the normal distribution to describe lead times in 

the simulation environment. 

The parts are individually analysed as to their demand distribution to determine the best-

fit distribution.  In a number of cases even the best fit proves to be not very good when 

the sum of the squared differences between the observed values and estimated values 

were calculated.  The following was established: 

 Fast, High – 5/5 Gamma Distribution 

 Fast, Medium – 2/2 Gamma Distribution 

 Fast, Low – 8/9 Gamma Distribution and 1/9 Log Normal Distribution 

 Medium, Medium – 2/3 Gamma Distribution and 1/3 Log Normal Distribution 

 Medium, Low –3 /4 Gamma Distribution and 1 /4 Log Normal Distribution 

 Slow, Medium – 3/5 Gamma Distribution and 2/5 Log Normal Distribution 

 Slow, Low – 1 Gamma and 1 Log Normal Distribution. 

This result indicates that although it has been established that there are no normally 

distributed parts in the sample, there is also no predictor as to what the best-fit distribution 

will be. 

Finally, the SDSM is applied to the practical problem of parts inventory management.  A 

stream of real sales data (same dataset used for statistical analysis) was used as input and 

the simulation was allowed to place orders according to the theoretical and practical MIP 

method implementations. 

The results indicate that for imported source parts both MIPTheory, MIPActual and STS 

methods are adequate in terms of inventory availability.  The AFR was 100% in all cases.  

The MIPTheory method requires less inventory, although the STS method requires less 

inventory than the MIPTheory method in some cases. 
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For local parts the results are different.  In this case neither method achieves 100% AFR.  

The MIPActual method manages to add a maximum of 3.6% to the AFR with the addition 

of more safety inventory.  Results for the STS method vary. 

Next, 15 import source parts and 15 local source parts are selected, based on an average 

monthly demand of 440.  This result translates into sales of about 20 units every day.  

Again, the import source parts showed 100% availability.  The MIPActual method results 

in significantly higher inventory holding.  None of the methods achieves an AFR of 100.  

The MIPActual and STS methods provide improved AFR values.  Both methods require 

increased inventory, with the MIPActual method requiring significantly more inventory. 

Finally, the STS sensitivity analysis is repeated on a specific part, with similar results as 

the theoretical sensitivity analysis. 

In conclusion, the STS method is a viable solution as an inventory management method.  

The STS method is an improvement over the MIPTheory method in terms of AFR, with less 

inventory required than for the MIPActual method.  The demand patterns for parts do not 

exhibit any simple statistical distribution to make it easy to manage inventory. 



Chapter 8: CONCLUSIONS AND FUTURE RESEARCH 

 

Andries Botha - December 2017     215 

8 CONCLUSIONS AND FUTURE RESEARCH 

Supply chain management is complex and receives significant attention from various 

researchers, as evidenced by the large body of literature on the subject.  Addressing the 

bullwhip effect is one of the most important aspects of effective supply chain and 

inventory management.  However, it is often still out of control and overstock and 

understock conditions still occur frequently.  This thesis aimed to address this issue.  The 

chapter summarizes the key contributions and conclusions of the thesis and provides a 

number of ideas for future research. 

8.1 Conclusions on Conceptual Analysis 

One of the first contributions of the thesis is a supply chain characterisation framework 

that was developed to bridge the gap between theory and practice.  The four quadrant 

model is based on two axes, namely:  Product complexity and product life expectancy.  

Quadrant 1 supply chains processes products with low complexity and life expectancies 

measured in days to months.  Quadrant 1 contains three supply chain types, focused on 

crops harvested for quick consumption or processing to extend the product life cycle.  

Quadrant 2 supply chains processes products with low complexity and life expectancies 

measured in years.  Quadrant 2 contains one supply chain type, focusing on ores 

processed to simple material products such as iron ore to steel.  Quadrant 3 supply chains 

processes products of high complexity and long life expectancies.  Quadrant 3 contains 

two supply chain types.  The automotive supply chain can be categorized into Quadrant 

3.  It was classified as a Class III-P supply chain where complex, long life expectancy 

products are designed to operate most effectively if products are serviced and maintained 

according to a schedule, throughout their product life.  The automotive parts supply chain 

was selected for further study given its importance in vehicle life cycle maintenance.   

The automotive parts supply chain is characterised by expectations of high levels of parts 

availability, as vehicles are designed to be maintained throughout their life cycles.  There 

is, however, a large level of unpredictability in demand patterns, requiring suppliers to 

store sufficient inventory to service demand associated with planned maintenance and 

unplanned repair events.  Automotive part supply continues for 15 years after production 

of a model ceases, requiring a wide array of items to be available.  This results in space 

constraints within the supply chain.  Just-In-Time (JIT) manufacturing results in lean 
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supply chains, but the cost for post vehicle production can be high as the volumes required 

can drop significantly. 

8.2 Inventory Management Methods 

To implement JIT in the automotive parts supply chain a MAX/MAX inventory strategy 

is currently followed.  This method is implemented with the Maximum Inventory Position 

(MIP) inventory management method.  Deriving the method theoretically (MIPTheory) and 

comparing it with the practical implementation (MIPActual) shows clear concerns 

regarding the dimensional consistency of the practical implementation.  A stock target 

setting (STS) method was subsequently developed which directly tested the assumption 

that stock-on-hand inventory management methods are inherently unstable. 

8.3 SDSM Based Analysis 

A SDSM model was developed to allow the evaluation of various inventory management 

methods in a dynamic environment.  The model is set up to allow for testing any proposed 

inventory management method, only requiring the calculation method to be adjusted for 

each alternative. 

Using the SDSM, the STS method was comprehensively tested.  The base structure of the 

model confirms the assumption that this stock-on-hand method is unstable.  It was, shown 

however, that by applying a damping factor the method can be made stable.  Setting the 

damping factor equal to the delivery lead time, leads to a sufficiently stable stock-on-

hand method.  This result indicates that there may be other stock-on-hand methods that 

are deemed to be unstable, that could be stabilised using different methods to damp the 

bullwhip effect. 

Using the SDSM it was shown that the theoretical version of the method (MIPTheory) may 

minimise inventory, but it does not maximise parts availability as measured by allocation 

fill rate (AFR).  The actual implementation (MIPActual) improves the AFR, but increases 

average inventory significantly.  The STS method improves AFR, while maintaining 

inventory levels higher than the MIPTheory method does, but significantly less than the 

MIPActual method.  Comparison between the three methods using a theoretical dataset of 

demand, demand variance, lead time and lead time variance scenarios showed that the 

STS method improves the AFR above that of MIPTheory and requires significantly less 

inventory than the MIPActual method. 
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A sensitivity analysis of the STS method indicated there are some areas for improving the 

stock target equation, but it has to be performed with sufficient care, taking into account 

the operating environment.  The STS method, as derived, is sufficient for use under 

expected demand conditions. 

The SDSM was extended to include vehicle sales to generate future vehicle demand.  This 

extension was required to compare the three methods under non-stationary demand 

conditions, which occur when a new vehicle model is launched.  The STS method was 

shown to be the preferred method for domestic supplied parts when there is no start-up 

inventory.  For imported parts, the STS method performs better in the long term, while 

the MIPActual method also achieves an AFR of 100.  The MIPActual method, however, 

requires significantly more inventory.  With start-up inventory the STS method is less 

effective in the short term, but in the long term requires less inventory to maintain an AFR 

of 100. 

8.4 Main Conclusions 

The major conclusions to draw from the evaluation of the three methods are: 

 The STS method is a viable solution for inventory management in the automotive 

parts supply chain under JIT conditions. 

 The STS method is a more effective method than the MIPTheory method as it 

achieves higher AFR levels which is the key performance indicator. 

 The STS method is a more effective method than the MIPActual method as it 

requires significantly less inventory for similar AFR levels. 

Analysis of an extensive dataset of parts lead time and demand data showed no specific 

trends.  Various statistical distributions can be used to approximate various parts and 

groups of parts.  Some parts effectively showed random behaviour, supporting the case 

for the complexity of inventory management in the automotive parts distribution supply 

chain. 

Despite the fact that large volumes are ordered very regularly, the demand is not smooth 

as proposed by Gattorna (2010).  This result means that even though these are service 

parts and the demand should be predictable, the market is not behaving rationally.  It 

would be interesting to determine the root cause of this behaviour as part of future 

research. 
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A practical analysis using actual data showed that there are cases where the STS method 

outperforms the MIP methods, but this result is dependent on the demand behaviour.  The 

demand patterns in the actual data are highly variable and in some cases completely 

random.  In the high volume cases where there is reasonable variance, the STS method 

will ensure a significant reduction in inventory, while maintaining high AFR levels.  The 

main conclusions of this section are: 

 The demand patterns are critical to selecting the appropriate inventory 

management method. 

 The STS method can be used to reduce inventory levels and maintain AFR levels 

under appropriate demand conditions. 

Application of the sensitivity analysis of the STS method to an actual case showed similar 

result to the theoretical case. 

It can be concluded that the STS method is a viable solution for the automotive parts 

supply chain.  The STS method will address both the need for high parts availability as 

measured in AFR, at the same time reducing the inventory levels required by the current 

MIPActual method that is currently in use in the automotive parts supply chain. 

8.5 Future Research 

Based on this thesis, it is possible to identify a number of directions for future research.  

This research can either use the SDSM model to assess other inventory management 

methods or extend the application of the STS method to better address the complexity in 

demand variance.  Future research areas could include: 

 Applying the supply chain framework to the detail design of green fields and 

existing supply chains.  This application can be done to confirm the following 

three items for the purposes of designing a supply chain: a.) Location of 

facilities; b.) Inventory management approach; and c.) Operations strategy.  

 Expansion of the SDSM to include multi-echelon supply chain analysis.  The 

current version of the SDSM only addresses a single tier of supplier, distribution 

centre and dealer network.  There are cases where the automotive parts supply 

chain includes tier 2 or even tier 3 suppliers.  The SDSM can be extended and 

used to determine if the inventory management methods at each tier supports the 

need for high service levels (AFR) while maintaining a reasonable amount of 

inventory in the supply chain.  Various combinations of inventory management 
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methods can be tested.  For example: If only one player in the supply chain adopts 

the STS method, the impact on the overall AFR and inventory levels can be 

established.  Alternatively, the results of all players utilizing the STS method, can 

be determined. 

 Integration of the STS method into demand forecasting methods.  The current 

study focuses on the assumption that demand has a normal distribution.  Actual 

data proved that this is not true for all cases.  The non-stationary demand analysis 

also showed that the STS method is less effective in the early part of the start-up 

period for import supplier parts.  The STS method uses the average demand to 

date to set its stock level target.  If this stock level target is set to use a demand 

forecast, rather than only history, it could potentially overcome this limitation and 

prove to be an effective method for all scenarios.  This theory could again be tested 

through an extension of the SDSM. 

 Expansion of the SDSM to include EOQ analysis to allow for analysis of 

alternative types of supply chains. 

 Expasion of the application of the STS method to other areas where JIT is in use, 

such as the manufacturing environment. 

 Using performance metrics from the field of multi-objective optimisation to 

compare different inventory management models.  E.g. the S-metric which 

provides a numerical value to describe the trade off curve (AFR vs Inventory). 

Based on this thesis, it is clear that there is significant potential to perform future research 

in the area of demand simulation and integrating statistical demand models in the 

inventory management sphere.  With the proof that stock-on-hand policies can be 

stabilised and that appropriate policies can be developed, the path has been opened to 

develop a next generation set of inventory management policies for complex demand 

distributions. 
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APPENDIX I – VARIABLES USED IN EQUATIONS 

Variables	 Used	 in	

Equations	
Definition	

µ	 Average	demand	

µ2	 Average	lead	time

BO	 Back	orders	

c	 Unit	cost	

d	 Known	and	constant	demand	in	units	per	unit	of	time

D	 Total	demand	over	a	given	period	of	time

Damping	Factor	
Factor	 used	 to	 reduce	 the	 variance	 in	 orders	 to	 ensure	 the	 bullwhip	

effect	is	controlled	

EOQ	 Economic	order	quantity

h	 Holding	cost	per	unit	per	unit	time

H	 Lead	time	

K	 Setup	cost	

KJIT	 Setup	costs	for	JIT	manufacturing

KJITα	 Ideal	setup	costs	for	a	sell	one	– buy	one	strategy

Lead‐Time	 Time	it	takes	for	units	to	move	from	one	location	to	the	next	location	

MAD	
Monthly	 average	 demand	 – calculated	 as	 a	 6	month	moving	 average,	

converted	to	daily	demand	for	calculation	purposes	

MIP	 Maximum	inventory	position,	effectively	the	total	pipeline	inventory	

OC	 Order	cycle	

OH	 Inventory	on	hand

OO	 Inventory	on	order

Q	 Order	quantity	in	units

QJIT	 Order	quantity	for	a	JIT	inventory	strategy

QJITα	 Ideal	order	quantity	for	a	sell	one	– buy	one	strategy

RP	 Reorder	point	

RQ	 Reorder	quantity	

SOH	 Inventory	on	hand

SOO	 Inventory	on	order

SOQ	 Inventory	order	quantity

SS	for	Demand	 Safety	stock	for	demand

SS	for	Lead‐time	 Safety	stock	for	lead	time

SSDV	 Safety	stock	for	demand	variance

SSLTV	 Safety	stock	for	lead	time variance

Target	 Target	stock	level	set	for	the	STS	method

TC	 Total	cost	per	unit	time



Chapter 10: APPENDICES 

 

Andries Botha - December 2017     229 

Variables	 Used	 in	

Equations	
Definition	

σ	 Standard	deviation	of	demand

σ2	 Standard	deviation	of	lead	time
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APPENDIX II – SDSM EQUATIONS FOR MIPTHEORY – DOMESTIC 

Appendix II provides a full listing of the iThink® SDSM equations for the MIPTheory model 

for domestic suppliers. 

 

In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt 

INIT In_Stock = Starting_Stock_Days*Demand 

INFLOWS: 

Arrive = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped = Demand 

MIP(t) = MIP(t - dt) + (MIP_New - MIP_Refresh) * dt 

INIT MIP = MIP_Calculation 

INFLOWS: 

MIP_New = if MIP_Refresh>0 then MIP_Calculation/dt else 0 

OUTFLOWS: 

MIP_Refresh = if time/28 = int(time/28) then MIP/dt else 0 

BO_en_Route(t) = BO_en_Route(t - dt) + (BO - BO_Shipped) * dt 

INIT BO_en_Route = 0 

 TRANSIT TIME = 1 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

BO = Demand-Shipped 

OUTFLOWS: 

BO_Shipped = CONVEYOR OUTFLOW 

Orders_en_Route(t) = Orders_en_Route(t - dt) + (Produced - Arrive) * dt 

INIT Orders_en_Route = 0 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Produced = if time = int(time) then MIP_Based_Order/dt else 0 

OUTFLOWS: 
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Arrive = CONVEYOR OUTFLOW 

Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt 

INIT Total_Allocation = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Flow_1 = Allocation 

OUTFLOWS: 

Flow_2 = CONVEYOR OUTFLOW 

Allocation = Shipped/Demand 

Avg_Allocation = Total_Allocation/Days_per_Month*100 

Base_Demand = 100 

Base_Lead_Time = 7 

BO_Lead_Time = 7 

Days_per_Month = 30 

Demand = normal(Base_Demand,Demand_Variance) 

Demand_Variance = 0 

MIP_Based_Order = MIP-Orders_en_Route-In_Stock-BO_en_Route 

MIP_Calculation = 

Base_Demand*((Order_Cycle_Days)+Base_Lead_Time+2*Order_Lead_Time_varianc

e)+2*Demand_Variance 

Order_Cycle_Days = 1 

Order_Flow = Produced+BO 

Order_Lead_Time = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance = 0 

Starting_Stock_Days = 7 

Stock_Days = In_Stock/Demand 
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APPENDIX III – SDSM EQUATIONS FOR MIPTHEORY – IMPORT 

Appendix III provides a full listing of the iThink® SDSM equations for the MIPTheory 

model for import suppliers. 

 

BO_Accum(t) = BO_Accum(t - dt) + (BO - BO_Send_to) * dt 

INIT BO_Accum = 0 

INFLOWS: 

BO = Demand-Shipped 

OUTFLOWS: 

BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt 

else 0 

In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt 

INIT In_Stock = Starting_Stock_Days 

INFLOWS: 

Arrive = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped = Demand 

MIP(t) = MIP(t - dt) + (MIP_New - MIP_Refresh) * dt 

INIT MIP = MIP_Calculation 

INFLOWS: 

MIP_New = if MIP_Refresh>0 then (MIP_Calculation)/dt else 0 

OUTFLOWS: 

MIP_Refresh = if time/28 = int(time/28) then MIP/dt else 0 

Order_Accum(t) = Order_Accum(t - dt) + (Produced - Send_to) * dt 

INIT Order_Accum = 0 

INFLOWS: 

Produced = MIP_Based_Order 

OUTFLOWS: 

Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 

0 

BO_en_Route(t) = BO_en_Route(t - dt) + (BO_Send_to - BO_Shipped) * dt 

INIT BO_en_Route = 0 

 TRANSIT TIME = 1 
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 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt 

else 0 

OUTFLOWS: 

BO_Shipped = CONVEYOR OUTFLOW 

Orders_en_Route(t) = Orders_en_Route(t - dt) + (Send_to - Arrive) * dt 

INIT Orders_en_Route = 0 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 

0 

OUTFLOWS: 

Arrive = CONVEYOR OUTFLOW 

Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt 

INIT Total_Allocation = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Flow_1 = Allocation 

OUTFLOWS: 

Flow_2 = CONVEYOR OUTFLOW 

Allocation = Shipped/Demand 

Avg_Allocation = Total_Allocation/Days_per_Month*100 

Base_Demand = 100 

Base_Lead_Time = 63 

BO_Lead_Time = 7 

Days_per_Month = 30 

Demand = normal(Base_Demand,Demand_Variance) 

Demand_Variance = 0 
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MIP_Based_Order = max(0,MIP-Orders_en_Route-In_Stock-BO_en_Route-

Order_Accum-BO_Accum) 

MIP_Calculation = 

Base_Demand*(Shipment_Cycle+(Order_Cycle_Days)+Base_Lead_Time+2*Order_Le

ad_Time_variance)+2*Demand_Variance 

Order_Cycle_Days = 1 

Order_Flow = Produced+BO 

Order_Lead_Time = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance = 0 

Run_Counter = 50 

Shipment_Cycle = 7 

Starting_Stock_Days = MIP_Calculation 

Stock_Days = In_Stock/Demand 
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APPENDIX IV – SDSM EQUATIONS FOR MIPACTUAL – DOMESTIC 

Appendix IV provides a full listing of the iThink® SDSM equations for the MIPActual 

model for domestic suppliers. 

 

In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt 

INIT In_Stock = Starting_Stock_Days*Demand 

INFLOWS: 

Arrive = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped = Demand 

MIP(t) = MIP(t - dt) + (MIP_New - MIP_Refresh) * dt 

INIT MIP = MIP_Calculation 

INFLOWS: 

MIP_New = if MIP_Refresh>0 then MIP_Calculation/dt else 0 

OUTFLOWS: 

MIP_Refresh = if time/28 = int(time/28) then MIP/dt else 0 

BO_en_Route(t) = BO_en_Route(t - dt) + (BO - BO_Shipped) * dt 

INIT BO_en_Route = 0 

 TRANSIT TIME = 1 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

BO = Demand-Shipped 

OUTFLOWS: 

BO_Shipped = CONVEYOR OUTFLOW 

Orders_en_Route(t) = Orders_en_Route(t - dt) + (Produced - Arrive) * dt 

INIT Orders_en_Route = 0 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Produced = if time=int(time) then MIP_Based_Order/dt else 0 

OUTFLOWS: 
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Arrive = CONVEYOR OUTFLOW 

Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt 

INIT Total_Allocation = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Flow_1 = Allocation 

OUTFLOWS: 

Flow_2 = CONVEYOR OUTFLOW 

Allocation = Shipped/Demand 

Avg_Allocation = Total_Allocation/Days_per_Month*100 

Base_Demand = 100 

Base_Lead_Time = 7 

BO_Lead_Time = 7 

Days_per_Month = 30 

Demand = normal(Base_Demand,Demand_Variance) 

Demand_Variance = 0 

MIP_Based_Order = MIP-Orders_en_Route-In_Stock-BO_en_Route 

MIP_Calculation = 

Base_Demand*((Order_Cycle_Days)+Base_Lead_Time+2*Order_Lead_Time_varianc

e+2*Demand_Variance) 

Order_Cycle_Days = 1 

Order_Flow = Produced+BO 

Order_Lead_Time = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance = 0 

Starting_Stock_Days = 7 

Stock_Days = In_Stock/Demand 
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APPENDIX V - SDSM EQUATIONS FOR MIPACTUAL – IMPORT 

Appendix V provides a full listing of the iThink® SDSM equations for the MIPActual model 

for import suppliers. 

 

BO_Accum(t) = BO_Accum(t - dt) + (BO - BO_Send_to) * dt 

INIT BO_Accum = 0 

INFLOWS: 

BO = Demand-Shipped 

OUTFLOWS: 

BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt 

else 0 

In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt 

INIT In_Stock = Starting_Stock_Days 

INFLOWS: 

Arrive = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped = Demand 

MIP(t) = MIP(t - dt) + (MIP_New - MIP_Refresh) * dt 

INIT MIP = MIP_Calculation 

INFLOWS: 

MIP_New = if MIP_Refresh>0 then (MIP_Calculation)/dt else 0 

OUTFLOWS: 

MIP_Refresh = if time/28 = int(time/28) then MIP/dt else 0 

Order_Accum(t) = Order_Accum(t - dt) + (Produced - Send_to) * dt 

INIT Order_Accum = 0 

INFLOWS: 

Produced = MIP_Based_Order 

OUTFLOWS: 

Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 

0 

BO_en_Route(t) = BO_en_Route(t - dt) + (BO_Send_to - BO_Shipped) * dt 

INIT BO_en_Route = 0 

 TRANSIT TIME = 1 
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 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt 

else 0 

OUTFLOWS: 

BO_Shipped = CONVEYOR OUTFLOW 

Orders_en_Route(t) = Orders_en_Route(t - dt) + (Send_to - Arrive) * dt 

INIT Orders_en_Route = 0 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 

0 

OUTFLOWS: 

Arrive = CONVEYOR OUTFLOW 

Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt 

INIT Total_Allocation = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Flow_1 = Allocation 

OUTFLOWS: 

Flow_2 = CONVEYOR OUTFLOW 

Allocation = Shipped/Demand 

Avg_Allocation = Total_Allocation/Days_per_Month*100 

Base_Demand = 100 

Base_Lead_Time = 63 

BO_Lead_Time = 7 

Days_per_Month = 30 

Demand = normal(Base_Demand,Demand_Variance) 

Demand_Variance = 0 
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MIP_Based_Order = max(0,MIP-Orders_en_Route-In_Stock-BO_en_Route-

Order_Accum-BO_Accum) 

MIP_Calculation = 

Base_Demand*(Shipment_Cycle+(Order_Cycle_Days)+Base_Lead_Time+2*Order_Le

ad_Time_variance+2*Demand_Variance) 

Order_Cycle_Days = 1 

Order_Flow = Produced+BO 

Order_Lead_Time = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance = 0 

Run_Counter = 50 

Shipment_Cycle = 7 

Starting_Stock_Days = MIP_Calculation 

Stock_Days = In_Stock/Demand 



Chapter 10: APPENDICES 

 

Andries Botha - December 2017     240 

APPENDIX VI – SDSM EQUATIONS FOR STS – DOMESTIC 

Appendix VI provides a full listing of the iThink® SDSM equations for the STS model 

for domestic suppliers. 

 

In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt 

INIT In_Stock = Starting_Stock_Days 

INFLOWS: 

Arrive = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped = Demand 

BO_en_Route(t) = BO_en_Route(t - dt) + (BO - BO_Shipped) * dt 

INIT BO_en_Route = 0 

 TRANSIT TIME = 1 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

BO = Demand-Shipped 

OUTFLOWS: 

BO_Shipped = CONVEYOR OUTFLOW 

Orders_en_Route(t) = Orders_en_Route(t - dt) + (Produced - Arrive) * dt 

INIT Orders_en_Route = Order_Lead_Time*Demand 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Produced = Stock_Order 

OUTFLOWS: 

Arrive = CONVEYOR OUTFLOW 

Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt 

INIT Total_Allocation = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 
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INFLOWS: 

Flow_1 = Allocation 

OUTFLOWS: 

Flow_2 = CONVEYOR OUTFLOW 

Allocation = Shipped/Demand 

Avg_Allocation = Total_Allocation/Days_per_Month*100 

Base_Demand = 100 

Base_Lead_Time = 7 

BO_Lead_Time = 7 

Damping = Order_Cycle_Days*0+Order_Lead_Time 

Days_per_Month = 30 

Demand = normal(Base_Demand,Demand_Variance) 

Demand_Variance = 0 

Order_Cycle_Days = 1 

Order_Flow = Produced+BO 

Order_Lead_Time = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance = 0 

Starting_Stock_Days = Stock_Target 

Stock_Days = In_Stock/Demand 

Stock_Order = (Demand-BO)+(Stock_Target-In_Stock)/Damping 

Stock_Target = 

Demand*Order_Cycle_Days+2*Demand_Variance*Order_Cycle_Days+2*Order_Lead

_Time_variance*(Demand+Demand_Variance) 
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APPENDIX VII – SDSM EQUATIONS FOR STS – IMPORT 

Appendix VII provides a full listing of the iThink® SDSM equations for the STS model 

for import suppliers. 

 

BO_Accum(t) = BO_Accum(t - dt) + (BO - BO_Send_to) * dt 

INIT BO_Accum = 0 

INFLOWS: 

BO = Demand-Shipped 

OUTFLOWS: 

BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt 

else 0 

In_Stock(t) = In_Stock(t - dt) + (Arrive - Shipped) * dt 

INIT In_Stock = Stock_Target 

INFLOWS: 

Arrive = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped = Demand 

Order_Accum(t) = Order_Accum(t - dt) + (Produced - Send_to) * dt 

INIT Order_Accum = 0 

INFLOWS: 

Produced = Stock_Order 

OUTFLOWS: 

Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 

0 

BO_en_Route(t) = BO_en_Route(t - dt) + (BO_Send_to - BO_Shipped) * dt 

INIT BO_en_Route = 0 

 TRANSIT TIME = 1 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

BO_Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then BO_Accum/dt 

else 0 

OUTFLOWS: 
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BO_Shipped = CONVEYOR OUTFLOW 

Orders_en_Route(t) = Orders_en_Route(t - dt) + (Send_to - Arrive) * dt 

INIT Orders_en_Route = Demand*Order_Lead_Time 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Send_to = if time/Shipment_Cycle=int(time/Shipment_Cycle) then Order_Accum/dt else 

0 

OUTFLOWS: 

Arrive = CONVEYOR OUTFLOW 

Total_Allocation(t) = Total_Allocation(t - dt) + (Flow_1 - Flow_2) * dt 

INIT Total_Allocation = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Flow_1 = Allocation 

OUTFLOWS: 

Flow_2 = CONVEYOR OUTFLOW 

Allocation = Shipped/Demand 

Avg_Allocation = Total_Allocation/Days_per_Month*100 

Base_Demand = 100 

Base_Lead_Time = 63 

BO_Lead_Time = 7 

Damping = Order_Cycle_Days*0+Order_Lead_Time 

Days_per_Month = 30 

Demand = normal(Base_Demand,Demand_Variance) 

Demand_Variance = 0 

Order_Cycle_Days = 1+Shipment_Cycle 

Order_Flow = Produced+BO 

Order_Lead_Time = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance = 0 
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Run_Counter = 50 

Shipment_Cycle = 7 

Starting_Stock_Days = Stock_Target 

Stock_Days = In_Stock/Demand 

Stock_Order = (Demand-BO)+(Stock_Target-In_Stock)/Damping 

Stock_Target = 

Demand*Order_Cycle_Days+2*Demand_Variance*Order_Cycle_Days+2*Order_Lead

_Time_variance*(Demand+Demand_Variance) 
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APPENDIX VIII – SDSM EQUATIONS FOR STS – IMPORT MATRIX (THIS VERSION WAS 

USED FOR SENSITIVITY ANALYSIS) 

Appendix VIII provides a full listing of the iThink® SDSM equations for the STS model 

that was used for testing the structure of the STS equation. 

 

BO_Accum[Dimension_1](t) = BO_Accum[Dimension_1](t - dt) + (BO[Dimension_1] 

- BO_Send_to[Dimension_1]) * dt 

INIT BO_Accum[Dimension_1] = 0 

INFLOWS: 

BO[Dimension_1] = Demand-Shipped 

OUTFLOWS: 

BO_Send_to[Dimension_1] = if time/Shipment_Cycle=int(time/Shipment_Cycle) then 

BO_Accum/dt else 0 

In_Stock[Dimension_1](t) = In_Stock[Dimension_1](t - dt) + (Arrive[Dimension_1] - 

Shipped[Dimension_1]) * dt 

INIT In_Stock[Dimension_1] = Starting_Stock_Days 

INFLOWS: 

Arrive[Dimension_1] = CONVEYOR OUTFLOW 

OUTFLOWS: 

Shipped[Dimension_1] = Demand 

Order_Accum[Dimension_1](t) = Order_Accum[Dimension_1](t - dt) + 

(Produced[Dimension_1] - Send_to[Dimension_1]) * dt 

INIT Order_Accum[Dimension_1] = Demand*Shipment_Cycle*0 

INFLOWS: 

Produced[Dimension_1] = Stock_Order 

OUTFLOWS: 

Send_to[Dimension_1] = if time/Shipment_Cycle=int(time/Shipment_Cycle) then 

Order_Accum/dt else 0 

BO_en_Route[Dimension_1](t) = BO_en_Route[Dimension_1](t - dt) + 

(BO_Send_to[Dimension_1] - BO_Shipped[Dimension_1]) * dt 

INIT BO_en_Route[Dimension_1] = 0 

 TRANSIT TIME = 1 

 CAPACITY = INF 

 INFLOW LIMIT = INF 
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INFLOWS: 

BO_Send_to[Dimension_1] = if time/Shipment_Cycle=int(time/Shipment_Cycle) then 

BO_Accum/dt else 0 

OUTFLOWS: 

BO_Shipped[Dimension_1] = CONVEYOR OUTFLOW 

Orders_en_Route[Dimension_1](t) = Orders_en_Route[Dimension_1](t - dt) + 

(Send_to[Dimension_1] - Arrive[Dimension_1]) * dt 

INIT Orders_en_Route[Dimension_1] = Demand*Order_Lead_Time 

 TRANSIT TIME = Order_Lead_Time 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Send_to[Dimension_1] = if time/Shipment_Cycle=int(time/Shipment_Cycle) then 

Order_Accum/dt else 0 

OUTFLOWS: 

Arrive[Dimension_1] = CONVEYOR OUTFLOW 

Total_Allocation[Dimension_1](t) = Total_Allocation[Dimension_1](t - dt) + 

(Flow_1[Dimension_1] - Flow_2[Dimension_1]) * dt 

INIT Total_Allocation[Dimension_1] = 0 

 TRANSIT TIME = Days_per_Month 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Flow_1[Dimension_1] = Allocation 

OUTFLOWS: 

Flow_2[Dimension_1] = CONVEYOR OUTFLOW 

Allocation[Dimension_1] = Shipped/Demand 

Avg_Allocation[Dimension_1] = Total_Allocation/Days_per_Month*100 

Base_Demand[Dimension_1] = 100 

Base_Lead_Time[Dimension_1] = 63 

BO_Lead_Time[Dimension_1] = 7 

Damping[Dimension_1] = Order_Cycle_Days*0+Order_Lead_Time 

Days_per_Month[Dimension_1] = 30 

Demand[Dimension_1] = normal(Base_Demand,Demand_Variance) 
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Demand_Variance[Dimension_1] = 0 

Order_Cycle_Days[Dimension_1] = Shipment_Cycle*0+Target_Step 

Order_Flow[Dimension_1] = Produced+BO 

Order_Lead_Time[Dimension_1] = 

max(Base_Lead_Time,normal(Base_Lead_Time,Order_Lead_Time_variance)) 

Order_Lead_Time_variance[Dimension_1] = 0 

Run_Counter = 50 

Shipment_Cycle[Dimension_1] = 7 

Starting_Stock_Days[Dimension_1] = Stock_Target 

Stock_Days[Dimension_1] = In_Stock/Demand 

Stock_Order[Dimension_1] = (Demand-BO)+(Stock_Target-In_Stock)/Damping 

Stock_Target[Dimension_1] = 

(Order_Cycle_Days+2*Order_Lead_Time_variance)*(Demand+0*Demand_Variance) 

Target_Step = GRAPH(counter(1, 8)) 

(1.00, 7.00), (2.00, 7.00), (3.00, 7.00), (4.00, 7.00), (5.00, 7.00), (6.00, 7.00), (7.00, 7.00), 

(8.00, 7.00) 
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APPENDIX IX – SDSM EQUATIONS FOR SERVICE PARTS DEMAND MODEL 

 

Appendix IX provides a full listing of the iThink® SDSM equations for the service parts 

demand model that was used for testing the performance of the three inventory methods 

under non-stationary demand. 

Cars_Driving_1[Dimension_1](t) = Cars_Driving_1[Dimension_1](t - dt) + 

(Cars_Sold[Dimension_1] - Service_1[Dimension_1]) * dt 

INIT Cars_Driving_1[Dimension_1] = 0 

INFLOWS: 

Cars_Sold[Dimension_1] = Daily_Sales 

OUTFLOWS: 

Service_1[Dimension_1] = int(Cars_Driving_1/Days_Between_Services) 

Cars_Driving_2[Dimension_1](t) = Cars_Driving_2[Dimension_1](t - dt) + 

(Service_1[Dimension_1] - Service_2[Dimension_1]) * dt 

INIT Cars_Driving_2[Dimension_1] = 0 

INFLOWS: 

Service_1[Dimension_1] = int(Cars_Driving_1/Days_Between_Services) 

OUTFLOWS: 

Service_2[Dimension_1] = int(Cars_Driving_2/Days_Between_Services) 

Cars_Driving_3[Dimension_1](t) = Cars_Driving_3[Dimension_1](t - dt) + 

(Service_2[Dimension_1] - Service_3[Dimension_1]) * dt 

INIT Cars_Driving_3[Dimension_1] = 0 

INFLOWS: 

Service_2[Dimension_1] = int(Cars_Driving_2/Days_Between_Services) 

OUTFLOWS: 

Service_3[Dimension_1] = int(Cars_Driving_3/Days_Between_Services) 

Cars_Driving_4[Dimension_1](t) = Cars_Driving_4[Dimension_1](t - dt) + 

(Service_3[Dimension_1] - Service_4[Dimension_1]) * dt 

INIT Cars_Driving_4[Dimension_1] = 0 

INFLOWS: 

Service_3[Dimension_1] = int(Cars_Driving_3/Days_Between_Services) 

OUTFLOWS: 

Service_4[Dimension_1] = int(Cars_Driving_4/Days_Between_Services) 
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Cars_Driving_5[Dimension_1](t) = Cars_Driving_5[Dimension_1](t - dt) + 

(Service_4[Dimension_1] - Service_5[Dimension_1]) * dt 

INIT Cars_Driving_5[Dimension_1] = 0 

INFLOWS: 

Service_4[Dimension_1] = int(Cars_Driving_4/Days_Between_Services) 

OUTFLOWS: 

Service_5[Dimension_1] = int(Cars_Driving_5/Days_Between_Services) 

MAD[Dimension_1](t) = MAD[Dimension_1](t - dt) + (Demand_In[Dimension_1] - 

Demand_Out[Dimension_1]) * dt 

INIT MAD[Dimension_1] = 0 

 TRANSIT TIME = 180 

 CAPACITY = INF 

 INFLOW LIMIT = INF 

INFLOWS: 

Demand_In[Dimension_1] = int(Service_Demand) 

OUTFLOWS: 

Demand_Out[Dimension_1] = CONVEYOR OUTFLOW 

Average_Sales = 20 

DAD[Dimension_1] = if time <=181 then MAD/time else MAD/180 

Daily_Sales[Dimension_1] = logNORMAL(Average_Sales, 

Demand_Variance)*0+GAMMA(Shape, Scale) 

Days_Between_Services = 270 

Demand_Variance = 5 

Scale = 1 

Service_Demand[Dimension_1] = 

int(Service_1+Service_2+Service_3+Service_4+Service_5) 

Shape = 20 
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APPENDIX X – STATISTICAL ANALYSIS OF PARTS DEMAND 

Appendix X provides the detail statistics for all the parts used in the practical assessments. 

 

All of the parts are discussed in terms of their movement classification. 

 Fast, High – Average order above 100 

 

This group includes Parts 29, 14, 30, 25 and 31. 

The basic statistics and Goodness-of-Fit tests data for part 29 is shown in Table 10-1. 
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Table 10-1:  Basic Statistics and Goodness-of-Fit Test Results for Part 29. 

Part 29:  Basic Statistical Measures 

Observations 231 

Location Variability 

Mean 2210.13 Std Deviation 647.05 

Median 2180 Variance 418678.00 

Mode 2020 Range 4320 

Goodness-of-Fit Tests 

for: Part 29 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 407.86 Zeta 7.61 

Shape Alpha 5.42 Sigma 0.62 

Mean   2210.13   2438.18 

StdDev   949.43   1675.03 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.20 Pr > 

D 

<0.001 0.26 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

2.84 Pr > 

W-

Sq 

<0.001 5.37 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

16.37 Pr > 

A-Sq 

<0.001 29.49 Pr > 

A-Sq 

<0.005 

 

 

 

  

Quintiles for Part 29 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 80 605.99 276665.48 473.07 154507.17 
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5 1260 911.70 121313.59 722.69 288697.74 

10 1560 1113.70 199185.48 905.85 427908.30 

25 1920 1518.50 161205.46 1321.25 358507.55 

50 2180 2075.77 10864.73 2009.64 29024.23 

75 2540 2755.96 46638.29 3056.69 266963.39 

90 2920 3480.46 314113.17 4458.38 2366600.72 

95 3300 3967.31 445303.97 5588.30 5236316.89 

99 3900 4992.33 1193178.27 8536.99 21501685.53 

    Sum 2768468.44 Sum 30630211.52 

 

While all three of the goodness-of-fit tests indicate clearly that the gamma distribution 

has the best fit, the differences squared would indicate that any estimation done by either 

method will be wrong.  Given that these are the fastest moving, high volume part, it 

indicates that the chances of achieving the guaranteed service levels may be small. 

The basic statistics and Goodness-of-Fit tests data for part 14 is shown in Table 10-2. 
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Table 10-2:  Basic Statistics and Goodness-of-Fit Test Results for Part 14. 

Part 14:  Basic Statistical Measures 

Observations 230 

Location Variability 

Mean 965.04 Std Deviation 301.90 

Median 936 Variance 91147.00 

Mode 1069 Range 2383 

Goodness-of-Fit Tests 

for: Part 14 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 175.13 Zeta 6.78 

Shape Alpha 5.51 Sigma 0.60 

Mean   965.04   1053.06 

StdDev   411.11   694.94 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.19 Pr > 

D 

<0.001 0.26 Pr > D <0.010 

Cramer-von Mises (W-

Sq) 

2.44 Pr > 

W-

Sq 

<0.001 4.88 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

14.69 Pr > 

A-Sq 

<0.001 27.43 Pr > 

A-Sq 

<0.005 

 

 

 

  

Quintiles for Part 14 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 25 268.30 59194.89 217.01 36868.61 
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5 625 401.76 49834.31 326.92 88853.47 

10 699.5 489.73 44003.87 406.73 85714.86 

25 809 665.66 20547.50 585.90 49773.16 

50 936 907.33 821.85 878.92 3258.01 

75 1069 1201.80 17634.78 1318.49 62243.26 

90 1360 1515.03 24033.06 1899.30 290847.73 

95 1494 1725.34 53516.81 2362.99 755138.41 

99 1809 2167.79 128732.42 3559.72 3065027.52 

    Sum 398319.49 Sum 4437725.03 

 

While all three of the goodness-of-fit tests indicate clearly that the gamma distribution 

has the best fit, the differences squared would indicate that any estimation done by 

either method will be wrong.  Compared to part 29, the gamma distribution does have 

a significant improvement in the accuracy of its estimation.  In the lower 50 quintile 

the gamma distribution will understate demand and in the upper understate. 

The basic statistics and Goodness-of-Fit tests data for part 30 is shown in Table 10-3. 
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Table 10-3:  Basic Statistics and Goodness-of-Fit Test Results for Part 30. 

Part 30:  Basic Statistical Measures 

Observations 228 

Location Variability 

Mean 515.36 Std Deviation 208.22 

Median 480 Variance 43355.00 

Mode 392 Range 1628 

Goodness-of-Fit Tests 

for: Part 30 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 86.61 Zeta 6.16 

Shape Alpha 5.95 Sigma 0.48 

Mean   515.36   529.21 

StdDev   211.27   266.36 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.10 Pr > 

D 

<0.001 0.12 Pr > D <0.010

Cramer-von Mises (W-

Sq) 

0.55 Pr > 

W-

Sq 

<0.001 1.05 Pr > 

W-Sq 

<0.005

Anderson-Darling 

(A-Sq) 

4.14 Pr > 

A-Sq 

<0.001 7.41 Pr > 

A-Sq 

<0.005

 

 

  

Quintiles for Part 30 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 56 152.36 9284.29 156.50 10099.45 

5 300 223.48 5855.92 216.34 6998.49 
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10 324 269.83 2934.06 257.11 4474.41 

25 392 361.73 916.09 343.08 2392.97 

50 480 486.79 46.10 472.71 53.17 

75 596 637.97 1761.23 651.31 3059.20 

90 744 797.82 2896.81 869.10 15649.01 

95 876 904.76 826.91 1032.86 24606.00 

99 1268 1128.96 19332.96 1427.85 25552.66 

    Sum 43854.37 Sum 92885.36 

 

While all three of the goodness-of-fit tests indicate clearly that the gamma distribution 

has the best fit, the differences squared would indicate that any estimation done by either 

method will be wrong.  Compared to part 29, the gamma distribution does have a 

significant improvement in the accuracy of its estimation.  In the lower 50 quintile the 

gamma distribution will understate demand and in the upper will understate the demand. 

The basic statistics and Goodness-of-Fit tests data for part 25 is shown in Table 10-4. 
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Table 10-4:  Basic Statistics and Goodness-of-Fit Test Results for Part 25. 

Part 25:  Basic Statistical Measures 

Observations 227 

Location Variability 

Mean 350.37 Std Deviation 181.64 

Median 320 Variance 32994.00 

Mode 260 Range 1440 

Goodness-of-Fit Tests 

for: Part 25 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 93.57 Zeta 5.72 

Shape Alpha 3.74 Sigma 0.60 

Mean   350.37   364.23 

StdDev   181.07   238.38 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.08 Pr > 

D 

0.002 0.12 Pr > D <0.010

Cramer-von Mises (W-

Sq) 

0.28 Pr > 

W-

Sq 

<0.001 0.69 Pr > 

W-Sq 

<0.005

Anderson-Darling 

(A-Sq) 

1.83 Pr > 

A-Sq 

<0.001 4.39 Pr > 

A-Sq 

<0.005

 

 

  

Quintiles for Part 25 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 20 67.07 2215.44 75.98 3134.06 

5 130 114.15 251.23 114.14 251.57 
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10 170 147.41 510.15 141.79 795.87 

25 240 217.64 500.07 203.73 1315.33 

50 320 319.72 0.08 304.76 232.14 

75 420 449.91 894.43 455.90 1288.57 

90 570 593.12 534.40 655.07 7236.07 

95 710 691.26 351.17 813.75 10764.79 

99 890 901.57 133.82 1222.40 110487.63 

    Sum 5390.80 Sum 135506.04 

 

 

While all three of the goodness-of-fit tests indicate clearly that the gamma distribution 

has the best fit, the differences squared would indicate that any estimation done by either 

method will be wrong.  Compared to part 29, the gamma distribution does have a 

significant improvement in the accuracy of its estimation.  In the lower 50 quintile the 

gamma distribution will understate demand and in the upper understate. 

The basic statistics and Goodness-of-Fit tests data for part 31 is shown in Table 10-5. 
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Table 10-5:  Basic Statistics and Goodness-of-Fit Test Results for Part 31. 

Part 31:  Basic Statistical Measures 

Observations 230 

Location Variability 

Mean 345.95 Std Deviation 180.64 

Median 304 Variance 32629.00 

Mode 216 Range 1232 

Goodness-of-Fit Tests 

for: Part 31 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 93.07 Zeta 5.71 

Shape Alpha 3.72 Sigma 0.61 

Mean   345.95   362.82 

StdDev   179.44   245.24 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.10 Pr > 

D 

<0.001 0.14 Pr > D <0.010

Cramer-von Mises (W-

Sq) 

0.59 Pr > 

W-

Sq 

<0.001 1.14 Pr > 

W-Sq 

<0.005

Anderson-Darling 

(A-Sq) 

3.90 Pr > 

A-Sq 

<0.001 7.35 Pr > 

A-Sq 

<0.005

 

 

  

Quintiles for Part 31 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 20 65.68 2086.39 72.15 2719.75 

5 148 112.10 1288.49 109.60 1474.85 



Chapter 10: APPENDICES 

 

Andries Botha - December 2017     260 

10 188 144.96 1852.63 136.96 2605.52 

25 240 214.40 655.35 198.75 1701.72 

50 304 315.47 131.50 300.60 11.56 

75 404 444.49 1639.71 454.65 2565.19 

90 570 586.52 272.96 659.78 8060.11 

95 676 683.90 62.34 824.48 22047.68 

99 1096 892.63 41358.87 1252.38 24453.27 

    Sum 49348.25 Sum 65639.64 

 

While all three of the goodness-of-fit tests indicate clearly that the gamma distribution 

has the best fit, the differences squared would indicate that any estimation done by either 

method will be wrong.  Compared to part 29, the gamma distribution does have a 

significant improvement in the accuracy of its estimation.  It does however have a lower 

accuracy of estimation than part 25.  The lognormal result is also much closer to the 

gamma result.  In this case the over- and under-statement does not seem to have a pattern.  

In this particular case, Figure 10-1 shows that there a specific instances of very high order 

quantities that distort the demand pattern. 

 

 

Figure 10-1:  Demand Pattern for Part 31. 
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 Fast, Medium – Average order below 100, but at least 29 

 

This group includes Parts 04 and 15. 

The basic statistics and Goodness-of-Fit tests data for part 04 is shown in Table 10-6. 
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Table 10-6:  Basic Statistics and Goodness-of-Fit Test Results for Part 04. 

Part 4:  Basic Statistical Measures 

Observations 226 

Location Variability 

Mean 62.40 Std Deviation 30.64 

Median 57 Variance 938.84 

Mode 57 Range 252 

Goodness-of-Fit Tests 

for: Part 4 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 14.94 Zeta 4.01 

Shape Alpha 4.18 Sigma 0.54 

Mean   62.40   63.77 

StdDev   30.53   37.17 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.05 Pr > 

D 

0.137 0.09 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.09 Pr > 

W-

Sq 

0.182 0.33 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

0.51 Pr > 

A-Sq 

0.2 1.94 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 4 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 11 13.44 5.93 15.66 21.71 

5 21 21.95 0.91 22.64 2.68 
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10 29 27.84 1.35 27.55 2.10 

25 41 40.05 0.90 38.26 7.53 

50 57 57.49 0.24 55.10 3.63 

75 79 79.43 0.19 79.34 0.12 

90 100 103.32 11.01 110.18 103.56 

95 115 119.59 21.06 134.09 364.61 

99 140 154.27 203.56 193.85 2899.68 

    Sum 245.15 Sum 3405.61 

 

While these parts are also sold with high frequency, the amounts are significantly lower.  

The goodness-of-fit tests indicate clearly that the log normal distribution has the best fit; 

the differences squared would indicate that the gamma distribution is more effective in 

estimating demand.  The squared differences are significantly lower for the gamma 

distribution. 

The basic statistics and Goodness-of-Fit tests data for part 15 is shown in Table 10-7. 
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Table 10-7:  Basic Statistics and Goodness-of-Fit Test Results for Part 15. 

Part 15:  Basic Statistical Measures 

Observations 226 

Location Variability 

Mean 42.94 Std Deviation 23.22 

Median 40.5 Variance 539.37 

Mode 41 Range 194 

Goodness-of-Fit Tests 

for: Part 15 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 12.00 Zeta 3.61 

Shape Alpha 3.58 Sigma 0.59 

Mean   42.94   44.15 

StdDev   22.70   28.49 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.06 Pr > 

D 

0.07 0.10 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.15 Pr > 

W-

Sq 

0.025 0.48 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

0.92 Pr > 

A-Sq 

0.021 2.69 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 15 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 6 7.80 3.24 9.40 11.57 

5 14 13.52 0.23 14.06 0.00 
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10 18 17.60 0.16 17.42 0.34 

25 28 26.29 2.93 24.92 9.50 

50 40.5 39.01 2.22 37.10 11.58 

75 53 55.34 5.46 55.23 4.98 

90 67 73.37 40.64 79.02 144.48 

95 86 85.77 0.05 97.91 141.87 

99 114 112.39 2.60 146.37 1048.04 

    Sum 57.53 Sum 1372.36 

 

 

The goodness-of-fit tests indicate clearly that the log normal distribution has the best fit; 

the differences squared would indicate that the gamma distribution is more effective in 

estimating demand.  The squared differences are significantly lower for the gamma 

distribution.  The gamma distribution will therefore provide a better estimation of 

demand. 

 Fast, Low – Average order below 20 

 

This group includes Parts 08, 07, 13, 16, 20, 19, 17, 18 and 23. 

The basic statistics and Goodness-of-Fit tests data for part 08 is shown in Table 10-8. 
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Table 10-8:  Basic Statistics and Goodness-of-Fit Test Results for Part 08. 

Part 8:  Basic Statistical Measures 

Observations 224 

Location Variability 

Mean 19.43 Std Deviation 11.03 

Median 18 Variance 121.70 

Mode 14 Range 64 

Goodness-of-Fit Tests 

for: Part 8 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 6.66 Zeta 2.79 

Shape Alpha 2.92 Sigma 0.66 

Mean   19.43   20.21 

StdDev   11.37   15.02 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.06 Pr > 

D 

0.037 0.10 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.12 Pr > 

W-

Sq 

0.066 0.48 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

0.72 Pr > 

A-Sq 

0.065 2.78 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles Part 8 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 2 2.72 0.52 3.47 2.15 

5 6 5.17 0.69 5.45 0.31 
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10 7 7.01 0.00 6.93 0.00 

25 12 11.07 0.86 10.37 2.67 

50 18 17.27 0.54 16.22 3.18 

75 25 25.45 0.20 25.37 0.13 

90 33 34.68 2.82 37.94 24.45 

95 42 41.10 0.81 48.28 39.50 

99 53 55.04 4.17 75.88 523.53 

    Sum 10.60 Sum 595.92 

 

 

The goodness-of-fit tests indicate clearly that the log normal distribution has the best fit; 

the differences squared would indicate that the gamma distribution is more effective in 

estimating demand.  The squared differences are significantly lower for the gamma 

distribution.  The gamma distribution will therefore provide a better estimation of 

demand. 

The basic statistics and Goodness-of-Fit tests data for part 07 is shown in Table 10-9. 
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Table 10-9:  Basic Statistics and Goodness-of-Fit Test Results for Part 07. 

Part 7:  Basic Statistical Measures 

Observations 223 

Location Variability 

Mean 19.03 Std Deviation 10.89 

Median 16 Variance 118.52 

Mode 12 Range 55 

Goodness-of-Fit Tests 

for: Part 7 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 6.52 Zeta 2.77 

Shape Alpha 2.92 Sigma 0.65 

Mean   19.03   19.59 

StdDev   11.14   14.16 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.05 Pr > 

D 

>0.250 0.07 Pr > 

D 

0.011 

Cramer-von Mises (W-

Sq) 

0.06 Pr > 

W-

Sq 

>0.250 0.26 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

0.41 Pr > 

A-Sq 

>0.250 1.82 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles Part 7 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 2 2.66 0.44 3.51 2.29 

5 5 5.06 0.00 5.47 0.22 
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10 7 6.86 0.02 6.92 0.01 

25 11 10.84 0.02 10.25 0.56 

50 16 16.91 0.82 15.88 0.01 

75 25 24.92 0.01 24.59 0.17 

90 32 33.97 3.87 36.45 19.81 

95 38 40.26 5.11 46.13 66.14 

99 53 53.92 0.84 71.76 352.09 

    Sum 11.14 Sum 441.31 

 

 

The goodness-of-fit tests indicate clearly that the log normal distribution has the best fit.  

However, the differences squared would indicate that the gamma distribution is more 

effective in estimating demand.  The squared differences are significantly lower for the 

gamma distribution.  The gamma distribution will therefore provide a better estimation 

of demand. 

The basic statistics and Goodness-of-Fit tests data for part 13 is shown in Table 10-10. 
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Table 10-10:  Basic Statistics and Goodness-of-Fit Test Results for Part 13. 

Part 13:  Basic Statistical Measures 

Observations 226 

Location Variability 

Mean 8.54 Std Deviation 4.59 

Median 8 Variance 21.03 

Mode 7 Range 27 

Goodness-of-Fit Tests 

for: Part 13 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 2.59 Zeta 1.99 

Shape Alpha 3.30 Sigma 0.61 

Mean   8.54   8.79 

StdDev   4.70   5.93 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.09 Pr > 

D 

<0.001 0.13 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.22 Pr > 

W-

Sq 

0.004 0.55 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

1.32 Pr > 

A-Sq 

0.002 3.37 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles Part 13 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 1.41 0.17 1.75 0.57 

5 2 2.53 0.28 2.66 0.44 
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10 4 3.34 0.44 3.32 0.46 

25 5 5.09 0.01 4.82 0.03 

50 8 7.70 0.09 7.29 0.51 

75 11 11.08 0.01 11.02 0.00 

90 14 14.85 0.72 15.98 3.93 

95 17 17.45 0.20 19.97 8.80 

99 24 23.06 0.89 30.31 39.86 

    Sum 2.80 Sum 54.59 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 16 is shown in Table 10-11. 
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Table 10-11:  Basic Statistics and Goodness-of-Fit Test Results for Part 16. 

Part 16:  Basic Statistical Measures 

Observations 221 

Location Variability 

Mean 5.93 Std Deviation 3.61 

Median 5 Variance 13.01 

Mode 4 Range 23 

Goodness-of-Fit Tests 

for: Part 16 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 2.01 Zeta 1.60 

Shape Alpha 2.95 Sigma 0.63 

Mean   5.93   6.03 

StdDev   3.45   4.18 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.09 Pr > 

D 

<0.001 0.12 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.27 Pr > 

W-

Sq 

<0.001 0.36 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

1.63 Pr > 

A-Sq 

<0.001 2.40 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles Part 16 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.84 0.03 1.15 0.02 

5 2 1.59 0.17 1.77 0.05 
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10 2 2.15 0.02 2.22 0.05 

25 4 3.39 0.37 3.25 0.57 

50 5 5.27 0.07 4.96 0.00 

75 8 7.76 0.06 7.56 0.19 

90 10 10.56 0.31 11.07 1.14 

95 13 12.50 0.25 13.90 0.80 

99 17 16.72 0.08 21.30 18.49 

    Sum 1.35 Sum 21.31 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 20 is shown in Table 10-12. 
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Table 10-12:  Basic Statistics and Goodness-of-Fit Test Results for Part 20. 

Part 20:  Basic Statistical Measures 

Observations 222 

Location Variability 

Mean 5.62 Std Deviation 2.75 

Median 5 Variance 7.58 

Mode 6 Range 12 

Goodness-of-Fit Tests 

for: Part 20 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 1.52 Zeta 1.59 

Shape Alpha 3.69 Sigma 0.57 

Mean   5.62   5.75 

StdDev   2.93   3.59 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.10 Pr > 

D 

<0.001 0.13 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.31 Pr > 

W-

Sq 

<0.001 0.55 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

1.88 Pr > 

A-Sq 

<0.001 3.55 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles Part 20 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 1.06 0.00 1.29 0.08 

5 2 1.81 0.04 1.90 0.01 
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10 2 2.35 0.12 2.34 0.12 

25 3 3.48 0.23 3.31 0.10 

50 5 5.12 0.02 4.88 0.01 

75 7 7.23 0.05 7.18 0.03 

90 9 9.54 0.30 10.18 1.38 

95 10 11.13 1.29 12.53 6.42 

99 13 14.54 2.38 18.53 30.56 

    Sum 4.41 Sum 38.72 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 19 is shown in Table 10-13. 
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Table 10-13:  Basic Statistics and Goodness-of-Fit Test Results for Part 19. 

Part 19:  Basic Statistical Measures 

Observations 219 

Location Variability 

Mean 5.16 Std Deviation 2.92 

Median 5 Variance 8.54 

Mode 3 Range 19 

Goodness-of-Fit Tests 

for: Part 19 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 1.65 Zeta 1.47 

Shape Alpha 3.13 Sigma 0.61 

Mean   5.16   5.26 

StdDev   2.92   3.53 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.09 Pr > 

D 

<0.001 0.11 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.27 Pr > 

W-

Sq 

<0.001 0.40 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

1.70 Pr > 

A-Sq 

<0.001 2.64 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 19 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.79 0.04 1.06 0.00 

5 1 1.46 0.21 1.60 0.36 
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10 2 1.95 0.00 2.00 0.00 

25 3 3.02 0.00 2.89 0.01 

50 5 4.63 0.14 4.36 0.40 

75 7 6.73 0.07 6.59 0.17 

90 9 9.08 0.01 9.54 0.29 

95 11 10.71 0.08 11.91 0.83 

99 12 14.23 4.99 18.05 36.65 

    Sum 5.55 Sum 38.72 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 17 is shown in Table 10-14. 
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Table 10-14:  Basic Statistics and Goodness-of-Fit Test Results for Part 17. 

Part 17:  Basic Statistical Measures 

Observations 225 

Location Variability 

Mean 5.16 Std Deviation 2.76 

Median 5 Variance 7.60 

Mode 3 Range 13 

Goodness-of-Fit Tests 

for: Part 17 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 1.55 Zeta 1.48 

Shape Alpha 3.34 Sigma 0.59 

Mean   5.16   5.26 

StdDev   2.82   3.41 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.11 Pr > 

D 

<0.001 0.11 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.35 Pr > 

W-

Sq 

<0.001 0.44 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

2.11 Pr > 

A-Sq 

<0.001 2.96 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 19 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.86 0.02 1.11 0.01 

5 2 1.54 0.21 1.66 0.11 
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10 2 2.03 0.00 2.06 0.00 

25 3 3.09 0.01 2.96 0.00 

50 5 4.65 0.12 4.41 0.35 

75 7 6.69 0.10 6.58 0.18 

90 9 8.95 0.00 9.43 0.19 

95 10 10.51 0.26 11.70 2.88 

99 12 13.87 3.49 17.53 30.54 

    Sum 4.21 Sum 34.27 

 

 

The gamma distribution and the log normal distribution fit the data adequately.  The 

differences squared clearly indicate that the gamma distribution is more effective in 

estimating demand.  The squared differences are significantly lower for the gamma 

distribution. 

The basic statistics and Goodness-of-Fit tests data for part 18 is shown in Table 10-15. 
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Table 10-15:  Basic Statistics and Goodness-of-Fit Test Results for Part 18. 

Part 18:  Basic Statistical Measures 

Observations 210 

Location Variability 

Mean 3.73 Std Deviation 2.12 

Median 3 Variance 4.50 

Mode 3 Range 15 

Goodness-of-Fit Tests 

for: Part 18 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 1.16 Zeta 1.15 

Shape Alpha 3.22 Sigma 0.60 

Mean   3.73   3.79 

StdDev   2.08   2.48 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.13 Pr > 

D 

<0.001 0.16 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.50 Pr > 

W-

Sq 

<0.001 0.71 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

3.16 Pr > 

A-Sq 

<0.001 4.72 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 18 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.60 0.16 0.79 0.04 

5 1 1.08 0.01 1.19 0.03 
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10 1 1.44 0.19 1.47 0.22 

25 2 2.20 0.04 2.12 0.01 

50 3 3.35 0.12 3.17 0.03 

75 5 4.85 0.02 4.74 0.07 

90 7 6.51 0.24 6.81 0.04 

95 7 7.67 0.44 8.46 2.13 

99 10 10.16 0.02 12.71 7.33 

    Sum 1.25 Sum 9.91 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 23 is shown in Table 10-16. 
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Table 10-16:  Basic Statistics and Goodness-of-Fit Test Results for Part 23. 

Part 23:  Basic Statistical Measures 

Observations 203 

Location Variability 

Mean 3.14 Std Deviation 2.49 

Median 2 Variance 6.20 

Mode 2 Range 21 

Goodness-of-Fit Tests 

for: Part 23 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 1.31 Zeta 0.92 

Shape Alpha 2.41 Sigma 0.65 

Mean   3.14   3.11 

StdDev   2.03   2.27 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.18 Pr > 

D 

<0.001 0.15 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.87 Pr > 

W-

Sq 

<0.001 0.79 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

5.26 Pr > 

A-Sq 

<0.001 5.18 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 23 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.33 0.45 0.55 0.20 

5 1 0.69 0.09 0.86 0.02 
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10 1 0.98 0.00 1.09 0.01 

25 2 1.65 0.12 1.62 0.14 

50 2 2.72 0.52 2.52 0.27 

75 4 4.18 0.03 3.91 0.01 

90 6 5.86 0.02 5.81 0.04 

95 7 7.04 0.00 7.36 0.13 

99 12 9.63 5.60 11.47 0.28 

    Sum 6.84 Sum 1.09 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the log normal distribution is more effective in estimating demand.  The squared 

differences are significantly lower for the log normal distribution. 

 

 Medium, Medium – Average order above 10 

 

This group includes Parts 01, 12 and 22. 

The basic statistics and Goodness-of-Fit tests data for part 01 is shown in Table 10-17. 

 

 

Table 10-17:  Basic Statistics and Goodness-of-Fit Test Results for Part 01. 

Part 1:  Basic Statistical Measures 

Observations 160 

Location Variability 

Mean 25.47 Std Deviation 13.74 

Median 23 Variance 188.85 

Mode 17 Range 78 

Goodness-of-Fit Tests 

for: Part 1 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 
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Threshold Theta 0 Theta 0 

Scale Sigma 8.50 Zeta 3.06 

Shape Alpha 2.99 Sigma 0.67 

Mean   25.47   26.69 

StdDev   14.72   20.01 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.07 Pr> 

D 

0.04 0.11 Pr> D <0.010 

Cramer-von Mises (W-

Sq) 

0.10 Pr> 

W-

Sq 

0.122 0.41 Pr> 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

0.73 Pr> 

A-Sq 

0.063 2.72 Pr> 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 1 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 3 3.69 0.48 4.52 2.30 

5 6 6.93 0.87 7.12 1.25 

10 10 9.34 0.43 9.07 0.86 

25 16 14.65 1.81 13.61 5.71 

50 23 22.70 0.09 21.36 2.71 

75 34.5 33.29 1.47 33.51 0.99 

90 42.5 45.20 7.30 50.26 60.15 

95 49 53.48 20.04 64.05 226.64 

99 72 71.41 0.34 100.97 839.38 

    Sum 32.83 Sum 1139.98 

 

 

The goodness-of-fit tests indicate clearly that the log normal distribution has the best fit.  

However, the differences squared would indicate that the gamma distribution is more 
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effective in estimating demand.  The squared differences are significantly lower for the 

gamma distribution.  The gamma distribution will therefore provide a better estimation 

of demand. 

The basic statistics and Goodness-of-Fit tests data for part 12 is shown in Table 10-18. 

 

  



Chapter 10: APPENDICES 

 

Andries Botha - December 2017     286 

Table 10-18:  Basic Statistics and Goodness-of-Fit Test Results for Part 12. 

Part 12:  Basic Statistical Measures 

Observations 93 

Location Variability 

Mean 24.58 Std Deviation 32.30 

Median 10 Variance 1043.00 

Mode 1 Range 160 

Goodness-of-Fit Tests 

for: Part 12 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 40.11 Zeta 2.20 

Shape Alpha 0.61 Sigma 1.56 

Mean   24.58   30.35 

StdDev   31.40   97.80 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

      0.12 Pr > D <0.010 

Cramer-von Mises (W-

Sq) 

      0.25 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

      1.88 Pr > 

A-Sq 

<0.005 

 

 

 

  

Quintiles for Part 12 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.02 0.96 0.24 0.58 

5 1 0.25 0.56 0.69 0.09 
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10 1 0.79 0.04 1.22 0.05 

25 2 3.69 2.85 3.14 1.30 

50 10 13.13 9.78 9.00 1.01 

75 37 33.41 12.92 25.76 126.42 

90 62 63.63 2.65 66.38 19.19 

95 100 87.78 149.35 116.98 288.24 

99 161 146.09 222.36 338.59 31537.22 

    Sum 401.47 Sum 31974.10 

 

The goodness-of-fit tests indicate clearly that the log normal distribution has the best fit, 

to the extent that the gamma distribution tests failed.  However, the differences squared 

would indicate that the gamma distribution is more effective in estimating demand.  The 

squared differences are significantly lower for the gamma distribution.  The gamma 

distribution will therefore provide a better estimation of demand. 

The basic statistics and Goodness-of-Fit tests data for part 22 is shown in Table 10-19. 
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Table 10-19:  Basic Statistics and Goodness-of-Fit Test Results for Part 22. 

Part 22:  Basic Statistical Measures 

Observations 89 

Location Variability 

Mean 10.17 Std Deviation 8.91 

Median 8 Variance 79.30 

Mode 10 Range 57 

Goodness-of-Fit Tests 

for: Part 22 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 5.24 Zeta 2.04 

Shape Alpha 1.94 Sigma 0.76 

Mean   10.17   10.27 

StdDev   7.30   9.08 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.18 Pr > 

D 

<0.001 0.13 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.25 Pr > 

W-

Sq 

0.002 0.24 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

1.38 Pr > 

A-Sq 

0.002 1.32 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 22 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.71 0.08 1.31 0.10 

5 2 1.74 0.07 2.20 0.04 
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10 2 2.62 0.39 2.90 0.81 

25 5 4.81 0.04 4.60 0.16 

50 8 8.48 0.23 7.69 0.10 

75 10 13.72 13.83 12.84 8.06 

90 20 19.92 0.01 20.37 0.14 

95 20 24.36 18.99 26.85 46.92 

99 58 34.22 565.65 45.08 167.00 

    Sum 599.29 Sum 223.33 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the log normal distribution is more effective in estimating demand.  The squared 

differences are significantly lower for the log normal distribution. 

 Medium, Low – Average order below 10 

 

This group includes Parts 24, 28, 21 and 02. 

The basic statistics and Goodness-of-Fit tests data for part 24 is shown in Table 10-20. 
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Table 10-20:  Basic Statistics and Goodness-of-Fit Test Results for Part 24. 

Part 24:  Basic Statistical Measures 

Observations 107 

Location Variability 

Mean 9.21 Std Deviation 9.97 

Median 6 Variance 99.45 

Mode 2 Range 62 

Goodness-of-Fit Tests 

for: Part 24 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 7.75 Zeta 1.74 

Shape Alpha 1.19 Sigma 0.98 

Mean   9.21   9.27 

StdDev   8.45   11.83 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.18 Pr > 

D 

<0.001 0.19 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.49 Pr > 

W-

Sq 

<0.001 0.45 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

3.22 Pr > 

A-Sq 

<0.001 3.01 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 24 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.17 0.68 0.58 0.18 

5 2 0.70 1.69 1.13 0.75 
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10 2 1.30 0.49 1.62 0.14 

25 2 3.11 1.23 2.94 0.89 

50 6 6.79 0.62 5.71 0.08 

75 13 12.72 0.08 11.09 3.64 

90 21 20.32 0.47 20.15 0.73 

95 30 25.97 16.25 28.80 1.44 

99 41 38.93 4.27 56.29 233.90 

    Sum 25.78 Sum 241.75 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 28 is shown in Table 10-21. 
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Table 10-21:  Basic Statistics and Goodness-of-Fit Test Results for Part 28. 

Part 28:  Basic Statistical Measures 

Observations 80 

Location Variability 

Mean 8.45 Std Deviation 7.72 

Median 9 Variance 59.62 

Mode 10 Range 37 

Goodness-of-Fit Tests 

for: Part 28 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 6.21 Zeta 1.72 

Shape Alpha 1.36 Sigma 0.97 

Mean   8.45   8.95 

StdDev   7.24   11.15 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.19 Pr > 

D 

<0.001 0.23 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.44 Pr > 

W-

Sq 

<0.001 0.51 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

2.46 Pr > 

A-Sq 

<0.001 2.77 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 28 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.25 0.57 0.59 0.17 

5 1 0.84 0.03 1.14 0.02 
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10 1.5 1.45 0.00 1.62 0.01 

25 2 3.19 1.41 2.92 0.85 

50 9 6.49 6.28 5.61 11.51 

75 10 11.62 2.64 10.77 0.59 

90 20 18.03 3.88 19.38 0.39 

95 30 22.74 52.68 27.54 6.05 

99 38 33.45 20.72 53.26 232.72 

    Sum 88.19 Sum 252.31 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 21 is shown in Table 10-22. 
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Table 10-22:  Basic Statistics and Goodness-of-Fit Test Results for Part 21. 

Part 21:  Basic Statistical Measures 

Observations 170 

Location Variability 

Mean 2.01 Std Deviation 1.08 

Median 2 Variance 1.16 

Mode 1 Range 4 

Goodness-of-Fit Tests 

for: Part 21 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 0.51 Zeta 0.57 

Shape Alpha 3.94 Sigma 0.51 

Mean   2.01   2.01 

StdDev   1.01   1.10 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.24 Pr > 

D 

<0.001 0.25 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

1.73 Pr > 

W-

Sq 

<0.001 1.86 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

10.73 Pr > 

A-Sq 

<0.001 11.45 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 21 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.41 0.35 0.54 0.22 

5 1 0.68 0.10 0.76 0.06 
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10 1 0.87 0.02 0.91 0.01 

25 1 1.27 0.07 1.25 0.06 

50 2 1.84 0.02 1.76 0.06 

75 3 2.57 0.18 2.49 0.26 

90 4 3.37 0.40 3.39 0.37 

95 4 3.92 0.01 4.09 0.01 

99 5 5.08 0.01 5.79 0.63 

    Sum 1.16 Sum 1.66 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

both the gamma and log normal distribution is more effective in estimating demand.  The 

squared differences are slightly lower for the gamma distribution. 

The basic statistics and Goodness-of-Fit tests data for part 02 is shown in Table 10-23. 
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Table 10-23:  Basic Statistics and Goodness-of-Fit Test Results for Part 02. 

Part 2:  Basic Statistical Measures 

Observations 160 

Location Variability 

Mean 1.99 Std Deviation 1.24 

Median 2 Variance 1.53 

Mode 1 Range 6 

Goodness-of-Fit Tests 

for: Part 2 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 0.62 Zeta 0.53 

Shape Alpha 3.24 Sigma 0.55 

Mean   1.99   1.98 

StdDev   1.11   1.18 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.28 Pr> 

D 

<0.001 0.29 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

1.94 Pr> 

W-

Sq 

<0.001 2.00 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

11.88 Pr> 

A-Sq 

<0.001 12.25 Pr > 

A-Sq 

<0.005 

 

 

  

Quintiles for Part 2 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.32 0.46 0.47 0.28 

5 1 0.58 0.18 0.68 0.10 
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10 1 0.77 0.05 0.83 0.03 

25 1 1.18 0.03 1.17 0.03 

50 2 1.79 0.04 1.70 0.09 

75 2.5 2.59 0.01 2.46 0.00 

90 4 3.48 0.27 3.45 0.31 

95 4.5 4.09 0.17 4.21 0.08 

99 6 5.42 0.34 6.14 0.02 

    Sum 1.55 Sum 0.94 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

both the gamma and log normal distribution is more effective in estimating demand.  The 

squared differences are slightly lower for the log normal distribution. 

 Slow, Medium – Average order above 10 

 

This group includes Parts 03, 09, 11, 05 and 26. 

The basic statistics and Goodness-of-Fit tests data for part 03 is shown in Table 10-24.  
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Table 10-24:  Basic Statistics and Goodness-of-Fit Test Results for Part 03. 

Part 3:  Basic Statistical Measures 

Observations 55 

Location Variability 

Mean 33.44 Std Deviation 48.72 

Median 13 Variance 2374.00 

Mode 2 Range 213 

Goodness-of-Fit Tests 

for: Part 3 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 49.12 Zeta 2.62 

Shape Alpha 0.68 Sigma 1.43 

Mean   33.44   37.89 

StdDev   40.53   97.62 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

      0.08 Pr > D >0.150 

Cramer-von Mises (W-

Sq) 

      0.03 Pr > 

W-Sq 

>0.500 

Anderson-Darling 

(A-Sq) 

      0.28 Pr > 

A-Sq 

>0.500 

 

 

 

  

Quintiles for Part 3 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.05 0.90 0.50 0.25 

5 1 0.52 0.23 1.31 0.10 
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10 2 1.47 0.28 2.21 0.04 

25 5 5.94 0.89 5.24 0.06 

50 13 19.13 37.63 13.71 0.51 

75 36 45.84 96.88 35.88 0.02 

90 106 84.48 463.05 85.25 430.52 

95 159 114.96 1939.54 143.11 252.61 

99 214 187.88 682.07 378.13 26939.35 

    Sum 3221.47 Sum 27623.46 

 

 

The goodness-of-fit tests indicate clearly that the log normal distribution does not fit the 

data adequately.  The tests did not provide any feedback on the gamma distribution.  This 

result means that both distributions are inadequate.  The differences squared clearly 

indicate that the gamma distribution is more effective in estimating demand.  The squared 

differences are significantly lower for the gamma distribution.  This result indicates that 

even though there are 55 observations, the quantities ordered are not consistent and it 

would be very difficult to estimate the correct safety stock required. 

The basic statistics and Goodness-of-Fit tests data for part 09 is shown in Table 10-25. 
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Table 10-25:  Basic Statistics and Goodness-of-Fit Test Results for Part 09. 

Part 9:  Basic Statistical Measures 

Observations 51 

Location Variability 

Mean 29.49 Std Deviation 27.64 

Median 20 Variance 763.77 

Mode 10 Range 98 

Goodness-of-Fit Tests 

for: Part 9 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 19.81 Zeta 3.01 

Shape Alpha 1.49 Sigma 0.88 

Mean   29.49   29.92 

StdDev   24.17   32.31 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.15 Pr > 

D 

0.007 0.14 Pr > 

D 

<0.010 

Cramer-von Mises (W-

Sq) 

0.25 Pr > 

W-

Sq 

0.002 0.15 Pr > 

W-Sq 

0.024 

Anderson-Darling 

(A-Sq) 

1.59 Pr > 

A-Sq 

<0.001 0.95 Pr > 

A-Sq 

0.017 

 

 

  

Quintiles for Part 9 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 2 1.11 0.80 2.63 0.40 

5 5 3.42 2.51 4.79 0.05 
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10 9 5.69 10.95 6.59 5.81 

25 10 11.86 3.45 11.24 1.53 

50 20 23.21 10.32 20.33 0.11 

75 35 40.40 29.17 36.78 3.17 

90 70 61.57 71.14 62.72 53.02 

95 100 77.02 528.29 86.32 187.17 

99 100 111.92 142.06 157.15 3265.63 

    Sum 798.69 Sum 3516.88 

 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data, but less adequately.  The differences squared clearly 

indicate that the gamma distribution is more effective in estimating demand.  The squared 

differences are significantly lower for the gamma distribution.  In both cases the estimates 

of the 95 and above quintile are not very accurate. 

 

The basic statistics and Goodness-of-Fit tests data for part 11 is shown in Table 10-26.  

 

 

  



Chapter 10: APPENDICES 

 

Andries Botha - December 2017     302 

Table 10-26:  Basic Statistics and Goodness-of-Fit Test Results for Part 11. 

Part 11:  Basic Statistical Measures 

Observations 37 

Location Variability 

Mean 21.49 Std Deviation 26.66 

Median 10 Variance 710.53 

Mode 2 Range 110 

Goodness-of-Fit Tests 

for: Part 11 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 24.77 Zeta 2.39 

Shape Alpha 0.87 Sigma 1.24 

Mean   21.49   23.60 

StdDev   23.07   45.21 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

      0.08 Pr > 

D 

>0.150 

Cramer-von Mises (W-

Sq) 

      0.03 Pr > 

W-Sq 

>0.500 

Anderson-Darling 

(A-Sq) 

      0.21 Pr > 

A-Sq 

>0.500 

 

 

 

  

Quintiles for Part 11 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.12 0.78 0.61 0.15 

5 1 0.75 0.06 1.42 0.17 
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10 2 1.71 0.09 2.22 0.05 

25 5 5.29 0.08 4.73 0.08 

50 10 14.01 16.08 10.92 0.84 

75 29 29.76 0.58 25.22 14.25 

90 50 51.23 1.51 53.60 12.94 

95 97 67.70 858.20 84.15 165.23 

99 111 106.37 21.45 196.10 7242.50 

    Sum 898.83 Sum 7436.22 

 

The goodness-of-fit tests indicate clearly that the log normal distribution does not fit the 

data adequately.  The tests did not provide any result for the gamma distribution.  The 

differences squared clearly indicate that the gamma distribution is more effective in 

estimating demand.  The squared differences are significantly lower for the gamma 

distribution.  The gamma distribution will under estimate the demand over the 95 quintile, 

while the log normal distribution will overestimate the demand over the 95 quintile. 

 

The basic statistics and Goodness-of-Fit tests data for part 05 is shown in Table 10-27. 
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Table 10-27:  Basic Statistics and Goodness-of-Fit Test Results for Part 05. 

Part 5:  Basic Statistical Measures 

Observations 69 

Location Variability 

Mean 20.54 Std Deviation 34.95 

Median 5 Variance 1221.00 

Mode 4 Range 199 

Goodness-of-Fit Tests 

for: Part 5 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 28.18 Zeta 2.20 

Shape Alpha 0.73 Sigma 1.22 

Mean   20.54   19.04 

StdDev   24.06   35.49 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

      0.22 Pr > D <0.010 

Cramer-von Mises (W-

Sq) 

      0.51 Pr > 

W-Sq 

<0.005 

Anderson-Darling 

(A-Sq) 

      2.65 Pr > 

A-Sq 

<0.005 

 

 

 

  

Quintiles for Part 5 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.04 0.91 0.52 0.23 

5 1 0.41 0.35 1.20 0.04 
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10 4 1.08 8.52 1.88 4.51 

25 4 4.04 0.00 3.94 0.00 

50 5 12.24 52.37 9.00 16.02 

75 22 28.27 39.37 20.55 2.09 

90 64 51.06 167.37 43.21 432.09 

95 71 68.89 4.43 67.41 12.86 

99 200 111.32 7864.22 155.25 2002.58 

    Sum 8137.54 Sum 2470.43 

 

 

The goodness-of-fit tests indicate clearly that the log normal distribution fits the data 

adequately.  The tests for the gamma distribution did not return results.  The differences 

squared clearly indicate that the log normal distribution is more effective in estimating 

demand.  The squared differences are significantly lower for the log normal distribution.  

It should be noted, that the demand has a significant spike in demand, as can be seen in 

Figure 10-2. 

 

 

Figure 10-2:  Demand Pattern for Part 05. 
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The basic statistics and Goodness-of-Fit tests data for part 26 is shown in Table 10-28. 
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Table 10-28:  Basic Statistics and Goodness-of-Fit Test Results for Part 26. 

Part 26:  Basic Statistical Measures 

Observations 66 

Location Variability 

Mean 16.58 Std Deviation 17.46 

Median 10 Variance 304.96 

Mode 10 Range 99 

Goodness-of-Fit Tests 

for: Part 26 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 13.84 Zeta 2.34 

Shape Alpha 1.20 Sigma 1.02 

Mean   16.58   17.40 

StdDev   15.15   23.55 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.17 Pr > 

D 

<0.001 0.17 Pr > 

D 

<0.010

Cramer-von Mises (W-

Sq) 

0.22 Pr > 

W-

Sq 

0.005 0.22 Pr > 

W-Sq 

<0.005

Anderson-Darling 

(A-Sq) 

1.23 Pr > 

A-Sq 

0.004 1.15 Pr > 

A-Sq 

<0.005

 

 

  

Quintiles for Part 26 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.32 0.46 0.96 0.00 

5 2 1.28 0.52 1.93 0.01 
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10 2 2.37 0.13 2.79 0.63 

25 4 5.64 2.69 5.19 1.42 

50 10 12.26 5.10 10.34 0.11 

75 20 22.91 8.44 20.57 0.33 

90 40 36.50 12.22 38.22 3.17 

95 50 46.62 11.44 55.37 28.86 

99 100 69.80 911.84 111.00 120.96 

    Sum 952.83 Sum 155.48 

 

The goodness-of-fit tests indicate clearly that both the gamma distribution and the log 

normal distribution fit the data adequately.  The differences squared clearly indicate that 

the log normal distribution is more effective in estimating demand.  The squared 

differences are significantly lower for the log normal distribution. 

 Slow, Low – Average order below 10 

 

This group includes Parts 10 and 06. 

The basic statistics and Goodness-of-Fit tests data for part 10 is shown in Table 10-29. 
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Table 10-29:  Basic Statistics and Goodness-of-Fit Test Results for Part 10. 

Part 10:  Basic Statistical Measures 

Observations 23 

Location Variability 

Mean 4.09 Std Deviation 3.37 

Median 3 Variance 11.36 

Mode 1 Range 12 

Goodness-of-Fit Tests 

for: Part 10 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 2.42 Zeta 1.08 

Shape Alpha 1.69 Sigma 0.84 

Mean   4.09   4.21 

StdDev   3.14   4.26 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.15 Pr > 

D 

0.239 0.16 Pr > D 0.115 

Cramer-von Mises (W-

Sq) 

0.08 Pr > 

W-

Sq 

0.214 0.07 Pr > 

W-Sq 

0.236 

Anderson-Darling 

(A-Sq) 

0.60 Pr > 

A-Sq 

0.125 0.59 Pr > 

A-Sq 

0.113 

 

 

  

Quintile for Part 10 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.21 0.62 0.42 0.34 

5 1 0.58 0.18 0.74 0.07 
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10 1 0.92 0.01 1.01 0.00 

25 1 1.79 0.62 1.68 0.46 

50 3 3.32 0.10 2.96 0.00 

75 6 5.56 0.19 5.21 0.62 

90 9 8.27 0.53 8.68 0.10 

95 11 10.23 0.59 11.77 0.60 

99 13 14.62 2.63 20.87 61.92 

    Sum 5.47 Sum 64.11 

 

 

The goodness-of-fit tests indicate that both the gamma distribution the log normal 

distribution does not fit the data adequately.  The differences squared clearly indicate that 

the gamma distribution is more effective in estimating demand.  The squared differences 

are significantly lower for the gamma. 

The basic statistics and Goodness-of-Fit tests data for part 06 is shown in Table 10-30.  
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Table 10-30:  Basic Statistics and Goodness-of-Fit Test Results for Part 06. 

Part 6:  Basic Statistical Measures 

Observations 71 

Location Variability 

Mean 3.13 Std Deviation 2.14 

Median 2 Variance 4.60 

Mode 4 Range 11 

Goodness-of-Fit Tests 

for: Part 6 Gamma Distribution Log Normal Distribution 

Parameters for 

Distribution 

Symbol Estimate Symbol Estimate 

Threshold Theta 0 Theta 0 

Scale Sigma 1.28 Zeta 0.92 

Shape Alpha 2.44 Sigma 0.68 

Mean   3.13   3.16 

StdDev   2.00   2.40 

Test Statistic p Value Statistic p Value 

Kolmogorov-Smirnov 

(D) 

0.17 Pr > 

D 

<0.001 0.19 Pr > 

D 

<0.010

Cramer-von Mises (W-

Sq) 

0.41 Pr > 

W-

Sq 

<0.001 0.44 Pr > 

W-Sq 

<0.005

Anderson-Darling 

(A-Sq) 

2.55 Pr > 

A-Sq 

<0.001 2.83 Pr > 

A-Sq 

<0.005

 

 

  

Quintiles for Part 6 Quintiles for Gamma 

Distribution 

Quintiles for Log Normal 

Distribution 

Percentage Observed Estimated Differences 

Squared 

Estimated Differences 

Squared 

1 1 0.33 0.44 0.52 0.23 

5 1 0.70 0.09 0.83 0.03 
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10 1 0.99 0.00 1.06 0.00 

25 1 1.66 0.43 1.59 0.35 

50 2 2.71 0.51 2.51 0.26 

75 4 4.15 0.02 3.96 0.00 

90 6 5.81 0.04 5.97 0.00 

95 8 6.97 1.06 7.63 0.14 

99 12 9.53 6.12 12.09 0.01 

    Sum 8.71 Sum 1.02 

 


