

DETERMINING THE PERFORMANCE COSTS IN ESTABLISHING

CRYPTOGRAPHY SERVICES AS PART OF A SECURE ENDPOINT

DEVICE FOR THE INDUSTRIAL INTERNET OF THINGS

by

Lehlogonolo P.I. Ledwaba

Submitted in partial fulfilment of the requirements for the degree

Master of Science (Applied Sciences)

in the

Department of Electrical, Electronic and Computer Engineering

Faculty of Engineering, Built Environment and Information Technology

UNIVERSITY OF PRETORIA

November 2017

SUMMARY

DETERMINING THE PERFORMANCE COSTS IN ESTABLISHING

CRYPTOGRAPHY SERVICES AS PART OF A SECURE ENDPOINT DEVICE

FOR THE INDUSTRIAL INTERNET OF THINGS

by

Lehlogonolo P.I. Ledwaba

Supervisor: Dr. G.P. Hancke

Department: Electrical, Electronic and Computer Engineering

Co-Supervisor: Prof. H.S. Venter

Department: Computer Science

University: University of Pretoria

Degree: Master of Science (Applied Sciences)

Keywords: Cryptography, Cyber-Physical Systems, Industrial Internet of

Things, Security, Endpoint security, Performance evaluation

Endpoint devices are integral in the realisation of any industrial cyber-physical system

(ICPS) application. As part of the work of promoting safer and more secure industrial

Internet of Things (IIoT) networks and devices, the Industrial Internet Consortium (IIC)

and the OpenFog Consortium have developed security framework specifications detailing

security techniques and technologies that should be employed during the design of an IIoT

network. Previous work in establishing cryptographic services on platforms intended for

wireless sensor networks (WSN) and the Internet of Things (IoT) has concluded that

security mechanisms cannot be implemented using software libraries owing to the lack of

memory and processing resources, the longevity requirements of the processor platforms,

and the hard real-time requirements of industrial operations. Over a decade has passed

since this body of knowledge was created, however, and IoT processors have seen a vast

improvement in the available operating and memory resources while maintaining minimal

power consumption.

This study aims to update the body of knowledge regarding the provision of security

services on an IoT platform by conducting a detailed analysis regarding the performance of

new generation IoT platforms when running software cryptographic services. The research

considers execution time, power consumption and memory occupation and works towards

a general, implementable design of a secure, IIoT edge device. This is realised by

identifying security features recommended for IIoT endpoint devices; identifying currently

available security standards and technologies for the IIoT; and highlighting the trade-offs

that the application of security will have on device size, performance, memory

requirements and monetary cost.

LIST OF ABBREVIATIONS

3DES Triple DES

AES Advanced Encryption Standard

CBC Cipher Block Chaining

CC Common Criteria

CCM Counter with CBC-MAC

CMAC Cipher-based Message Authentication Code

CPS Cyber-Physical System

CPU Central Processing Unit

CSP Critical Security Parameters

CTR Counter Mode

DARPA Device Attestation Resilient to Physical Attacks

DES Data Encryption Standard

DH Diffie-Hellman

DoS Denial of Service

DPA Differential Power Analysis

DSA Digital Signature Algorithm

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

ECQV Elliptic Curve Qu-Vanstone

FIPS Federal Information Processing Standard

FW Firmware

GCM Galois Counter Mode

GMAC Galois Message Authentication Code

GPIO General Purpose Input Output

HMAC Hash-based Message Authentication Code

HSM Hardware Security Module

HW-RoT Hardware Root of Trust

ICPS Industrial Cyber-Physical System

ICT Information and Communications Technology

IDE Integrated Development Environment

IIC Industrial Internet Consortium

IIoT Industrial Internet of Things

IoT Internet of Things

MCU Microcontroller Unit

MPU Memory Protection Unit

NDA Non-Disclosure Agreement

NIST National Institute of Standards and Technology

OS Operating System

PC Personal Computer

PCB Printed Circuit Board

PLCs Programmable Logic Controllers

PP Protection Profiles

PRNG Pseudo Random Number Generator

PUF Physical Unclonable Function

RAM Random Access Memory

RAS Reliability-Availability-Serviceability

RC5 Rivest Cipher 5 algorithm

RC6 Rivest Cipher 6 algorithm

RNG Random Number Generator

ROM Read Only Memory

RSA Rivest-Shamir-Adleman algorithm

RTOS Real-Time Operating System

SEDA Scalable Embedded Device Attestation

SHA Secure Hashing Algorithm

SHA-2 SHA with digest values of 224, 256, 384 or 512 bits

SMART Secure and Minimal Architecture for (establishing a dynamic) Root of

Trust

SoC Systems on Chip

STM STMicroelectronics

SW Software

TCG Trusted Computing Group

TEA Tiny Encryption Algorithm

TEE Trusted Execution Environment

TOE Target of Evaluation

TPM Trusted Platform Module

TRNG True Random Number Generator

WSN Wireless Sensor Network

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 PROBLEM STATEMENT .. 1

1.1.1 Context of the problem .. 1

1.1.2 Research gap .. 2

1.2 RESEARCH OBJECTIVE AND QUESTIONS .. 2

1.3 APPROACH ... 3

1.4 RESEARCH GOALS ... 4

1.5 RESEARCH CONTRIBUTION .. 5

1.6 RESEARCH OUTPUTS .. 5

1.7 OVERVIEW OF STUDY .. 5

CHAPTER 2 LITERATURE STUDY .. 7

2.1 CHAPTER OBJECTIVES ... 7

2.2 SECURITY STANDARDS AND FRAMEWORKS FOR THE INDUSTRIAL

INTERNET OF THINGS ... 8

2.2.1 The Industrial Internet Consortium Reference and Security Architecture .. 11

2.2.2 The OpenFog Reference Architecture for Fog Computing 16

2.3 DESIGNING A SECURE MOTE FOR THE IIOT ... 18

2.3.1 Physical Security .. 18

2.3.2 Secure and Trusted Execution ... 23

2.3.3 Isolation.. 27

2.3.4 Attestation .. 28

2.3.5 Cryptography ... 34

2.4 TRADE-OFFS IN ESTABLISHING SECURITY FOR THE IIOT 45

2.4.1 Physical Security .. 45

2.4.2 Secure and Trusted Execution ... 46

2.4.3 Isolation.. 46

2.4.4 Attestation .. 47

2.4.5 Cryptography ... 47

2.5 CHAPTER SUMMARY .. 54

CHAPTER 3 METHODS ... 56

3.1 CHAPTER OBJECTIVES ... 56

3.2 AIM .. 56

3.3 CRYPTOGRAPHIC ALGORITHMS ... 57

3.4 EQUIPMENT AND TOOLS ... 58

3.4.1 The ARM Cortex-M Processor Family.. 58

3.4.2 STM Cube MX and X-Cube Cryptographic library 61

3.4.3 Atollic TrueSudio... 62

3.5 EXPERIMENT METHODOLOGY .. 63

3.5.1 Determining cryptography execution time .. 63

3.5.2 Determining cryptography power consumption .. 66

3.5.3 Determining memory occupation .. 68

3.6 CHAPTER SUMMARY .. 69

CHAPTER 4 RESULTS ... 71

4.1 CHAPTER OBJECTIVES ... 71

4.2 EXECUTION PERFORMANCE .. 72

4.2.1 AES128-CTR ... 72

4.2.2 ECDSA .. 77

4.2.3 SHA256.. 80

4.3 POWER CONSUMPTION .. 85

4.3.1 AES128-CTR ... 85

4.3.2 ECDSA .. 88

4.3.3 SHA256.. 92

4.4 MEMORY OCCUPATION ... 93

4.4.1 RAM .. 94

4.4.2 Flash ... 96

4.5 CHAPTER SUMMARY .. 98

CHAPTER 5 DISCUSSION ... 99

5.1 CHAPTER OBJECTIVES ... 99

5.2 PERFORMANCE OF SOFTWARE-IMPLEMENTED CRYPTOGRAPHY 100

5.3 TOWARDS DESIGNING A SECURE MOTE FOR THE IIOT 111

5.4 CHAPTER SUMMARY .. 114

CHAPTER 6 CONCLUSION .. 115

6.1 SUMMARY OF CONCLUSIONS .. 115

6.2 RESEARCH CONTRIBUTION .. 117

6.3 FUTURE WORK ... 119

REFERENCES... ... 120

LIST OF FIGURES

Figure 2.1 Industrial internet reference architecture structure .. 13

Figure 2.2 Energy consumption of Mica2 node as a function of operating time 42

Figure 2.3 Memory occupation of cryptographic algorithms in a Mica2 node as a function

of operating time .. 43

Figure 3.1 STM32 Development boards ... 60

Figure 3.2 Release timeline and operating frequencies of Cortex-M series processors 60

Figure 3.3 STM CubeMX graphic configuration for the STM32F767-Nucleo144 61

Figure 3.4 Execution time experiment setup ... 64

Figure 3.5 Execution time waveforms for a single run of AES128-CTR experiment on

STM32F0Discovery .. 65

Figure 3.6 Physical setup of the power consumption experiment 67

Figure 3.7 Execution time and bounded voltage waveform for SHA256 running on the

STM32VLDiscovery ... 68

Figure 3.8 Memory occupation of AES128-CTR on the STM32F4Discovery 69

Figure 4.1 Execution time of Cortex-M series processors running AES128-CTR 73

Figure 4.2 Execution time of Cortex-M series processors running AES128-CTR

(encryption only) ... 73

Figure 4.3 Execution time of Cortex-M series processors running AES128-CTR

(decryption only) ... 74

Figure 4.4 Execution time of Cortex-M series processors running ECDSA (Sign-Verify) 77

Figure 4.5 Execution time of Cortex-M series processors running ECDSA (Key Gen-Sign-

Verify) ... 78

Figure 4.6 Execution time of Cortex-M series processors running SHA256 81

Figure 4.7 Execution time of Cortex-M series processors running SHA256 (hash

generation only) ... 81

Figure 4.8 Execution time of Cortex-M series processors running SHA256 (message digest

checking only) ... 82

Figure 4.9 Power consumption of Cortex-M series processors running AES128-CTR 86

Figure 4.10 Power consumption of Cortex-M series processors running ECDSA (Sign-

Verify) ... 88

Figure 4.11 Power consumption of Cortex-M series processors running ECDSA (Key Gen-

Sign-Verify) ... 89

Figure 4.12 Power consumption of Cortex-M series processors running SHA256 92

Figure 4.13 Comparison of the percentage RAM occupation of cryptographic algorithms

loaded onto Cortex-M processors .. 95

Figure 4.14 Comparison of the percentage Flash occupation of cryptographic algorithms

loaded onto Cortex-M processors .. 97

Figure 5.1 Average execution times of cryptographic algorithms on Cortex-M processors

 ... 101

Figure 5.2 Average power consumption of cryptographic algorithms on Cortex-M

Processors .. 103

Figure 5.3 Average power consumption per MHz of cryptographic algorithms on Cortex-M

processors .. 104

Figure 5.4 Overall performance of cryptographic algorithms on Cortex-M processors ... 106

Figure 5.5 Energy consumption and execution time comparison for Atmega128L and

Cortex-M processors ... 108

Figure 5.6 Energy consumption per MHz comparison for Atmega128L and Cortex-M

processors .. 109

Figure 5.7 Memory occupation comparison for Atmega128L and Cortex-M processors . 109

Figure 5.8 Energy consumption and execution time comparison for Cortex M0 and M4

processors .. 112

LIST OF TABLES

Table 2.1 FIPS 140-2 security level definitions .. 10

Table 2.2 Industrial Internet Consortium security objective breakdown for IIoT endpoint

protection ... 15

Table 2.3 OpenFog Consortium security mechanism recommendations for node security 17

Table 2.4 FIPS 140-2 physical security requirements ... 21

Table 2.5 Tamper resistance levels for physical security solutions 22

Table 2.6 Specifications for the most common trusted platform modules for IoT

applications .. 24

Table 2.7 Sensor network device configurations .. 34

Table 2.8 Energy consumption of cryptographic algorithms implemented on Mica nodes 37

Table 2.9 Operating time requirements for cryptographic algorithms on a Mica2 node 39

Table 2.10 Memory occupation for cryptographic algorithms on Mica2 node 40

Table 2.11 Summary of security solutions and trade-offs ... 48

Table 2.12 Current secure MCUs for IIoT applications .. 51

Table 3.1 GPIO pins used for cryptographic algorithm timing ... 64

Table 3.2 Summary of jumper pin numbers for the current consumption module 66

Table 4.1 Execution Time Mean, Standard Deviation and Standard Error for MCUs

running AES128-CTR ... 75

Table 4.2 Execution time mean, standard deviation and standard error for MCUs running

AES128-CTR (encryption only) .. 75

Table 4.3 Execution time mean, standard deviation and standard error for MCUs running

AES128-CTR (decryption only) .. 76

Table 4.4 Execution time mean, standard deviation and standard error for MCUs running

ECDSA (Sign-Verify) ... 79

Table 4.5 Execution time mean, standard deviation and standard error for MCUs running

ECDSA (Key Gen- Sign-Verify) ... 79

Table 4.6 Execution time mean, standard deviation and standard error for MCUs running

SHA256 ... 83

Table 4.7 Execution time mean, standard deviation and standard error for MCUs running

SHA256 (hash generation only) .. 83

Table 4.8 Execution time mean, standard deviation and standard error for MCUs running

SHA256 (message digest checking only) .. 84

Table 4.9 Power consumption mean, standard deviation and standard error for MCUs

running AES128-CTR ... 87

Table 4.10 Power consumption mean, standard deviation and standard error for MCUs

running ECDSA (Sign-Verify) .. 90

Table 4.11 Power consumption mean, standard deviation and standard error for MCUs

running ECDSA (Key Gen- Sign-Verify) ... 90

Table 4.12 Power consumption mean, standard deviation and standard error for MCUs

running SHA256 .. 93

Table 4.13 RAM Occupation of cryptographic algorithms loaded onto Cortex-M series

processors .. 94

Table 4.14 Flash occupation of cryptographic algorithms loaded onto Cortex-M series

processors .. 96

CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

The concept of the industrial internet represents the incorporation of the IoT, machinery

control and operational techniques, Information and Communications Technology (ICT) as

well as people within a larger ICPS to realise the use of advanced data analytics as an

effort to improve business outcomes [1]. Industrial systems connected using the industrial

internet typically operate in mission-critical environments and have high standards of

safety, security and resilience – beyond those demanded of the consumer and commercial

sectors – for all components within the network architecture [1]. While new generation

devices have improved over the years, securing these endpoint devices is still seen as

difficult, owing to a variety of constraints including: limited device energy, memory and

processing resources, communication latencies, constrained maintenance windows, real-

time or near real-time operation and size restrictions [2]. An endpoint device is defined as a

device that can be found at the edge of the IIoT network, such as gateways and sensor

motes forming a WSN [2]. Covering the spectrum of devices at the IIoT network edge,

endpoints include sensors, programmable logic controllers (PLCs), and large, high

computing cloud servers. Consequently, endpoints may be used as parts of control

networks, between multi-communication streams, or as traffic routers inside a cloud

infrastructure [2]. Given the broad definition of what constitutes an IIoT endpoint, for the

purposes of this research, the definition of an endpoint device is restricted to an embedded

IIoT mote, to which sensing capability could be added.

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 2

University of Pretoria

With the development of security frameworks for and the improvement to IIoT endpoint

devices, the problem occurs in determining the extent to which security can be

implemented onto the endpoint devices without reducing their performance to the point

where they are no longer capable of operating mission-critical applications. Focusing

further, the question under consideration of this research is whether cryptographic

algorithms, providing encryption and decryption services, can be implemented on an IIoT

endpoint device without resulting in significant losses in performance and longevity.

1.1.2 Research gap

This study aims to determine the performance trade-offs associated with applying

cryptographic services on new generation IIoT devices and highlight a security scheme that

is appropriate to use towards securing the low-power, resource-constrained endpoints

found at the edge of an industrial cyber-physical network. Currently, a prevailing belief

exists, formed approximately a decade ago, that endpoints are limited so severely in

available resources that the application of cryptography services on the device is

incapacitating. This research wishes to revisit that viewpoint with consideration given to

the advances in embedded hardware intended for deployment in the IIoT.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Given the large scope of the work required to design a secure endpoint efficiently for the

IIoT edge, as a starting point, one needs to establish the current capabilities available on

platforms intended for the IoT and IIoT. To that end, the following questions will form the

focus of this research:

 Can encryption/decryption services be implemented successfully on new

generation, low power, IIoT edge devices without significant impact to their

operation?

o What are the time costs associated with applying encryption/decryption

services on low power devices?

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 3

University of Pretoria

o What are the associated power consumption and memory utilisation costs in

applying encryption/decryption services on IIoT endpoint devices?

In line with the aforementioned research focus established, over the course of the research,

this work aims to meet the following objectives:

 Identify the security requirements of IIoT endpoint nodes.

 Identify general purpose and security enabled new-generation IIoT platforms

 Identify open source, standard cryptographic algorithms best suited for application

onto an IIoT endpoint node.

 Determine possible performance trade-offs – e.g. power, memory, throughput, or

cost – in applying cryptographic techniques, such as encryption and decryption, on

an IIoT node.

 Determine the best-suited cryptography scheme for securing a low power, IIoT

node.

 Identify the best method to integrate cryptography services as part of the

construction of a secure IIoT mote.

1.3 APPROACH

In order to address the research question and meet the research objectives adequately, a

systematic approach, which utilises the material covered in the previous steps for

progression, was required. The approach taken towards the completion of this research is

given below:

 Conduct a state of the art survey and literature review for a prospective conference

or journal paper:

o Determine essential security features for IIoT endpoint

o Establish the current state of trusted execution and side channel resistance.

o Determine the best hardware MCU for the construction of 32-bit test mote.

 Identify standard cryptographic algorithms to test on mote and implement.

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 4

University of Pretoria

 Determine device cryptographic communication delays and execution times for

encryption/decryption activities using a selected group of representative endpoints:

o Hardware-implemented cryptography.

o Software-implemented cryptography.

 Identify the least invasive cryptography implementation for IIoT endpoints based

on observed trade-offs.

 Implement cryptography as part of a security framework design for a secure IIoT

endpoint device.

 Summarise findings and prepare paper submission to an identified journal.

1.4 RESEARCH GOALS

The vulnerability of ICPSs to security attacks is a continuous concern as more

deployments are being established globally. Network endpoint devices are areas of high

security concern and vulnerability as the typical scale of industrial deployments means that

the devices are left unattended for extended periods of time, making them vulnerable to

physical tampering and malicious attacks as mechanisms to access and compromise the

wider ICPS.

It is the broader goal of this research to provide a security implementation design for IIoT

endpoint devices that would form a base from which the wider industrial sector can adjust

and improve, depending on the specific application requirements. This would result in the

formation of secure IIoT network deployments from the onset of the adoption of the

Industrie 4.0 paradigm, instead of the deployment of unsecured devices for which security

needs to be established retrospectively. The targeted goal of the research conducted within

this study is to establish the operating capabilities of currently available IIoT platforms in

supporting software cryptographic services; as a starting point towards the hardware

selection processes required for the initial design of a secure endpoint device.

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 5

University of Pretoria

1.5 RESEARCH CONTRIBUTION

Current work in determining the performance costs of applying cryptographic algorithms

on motes used in the IIoT has primarily focused on older generation, 8 or 16-bit platforms.

With technology for the IoT having improved over the years, this study aims to determine

the performance costs associated with applying cryptographic services, such as encryption

and decryption, on new generation, 32-bit platforms and to highlight an appropriate

security scheme that could be used to secure the low power, resource-constrained devices

found at the edge of an industrial cyber-physical network without a significant loss of their

operational capability.

1.6 RESEARCH OUTPUTS

The following publications have been derived from the research conducted within this

study:

L.P.I. Ledwaba, G.P. Hancke, H.S. Venter, S.J. Isaac. “Trade-Offs in Securing an Industrial

Internet of Things Endpoint Device,” to be published.

L.P.I. Ledwaba, G.P. Hancke, H.S. Venter, S.J. Isaac. “Performance Costs towards

Securing New-Generation Industrial Internet-of-Energy Endpoint Devices,” to be

published.

L.P.I. Ledwaba, G.P. Hancke, H.S. Venter, S.J. Isaac. “Designing Secure Endpoint Devices

for the Smart Mine Fog,” to be published.

1.7 OVERVIEW OF STUDY

A literature study on the current state of the art was performed and is reflected in Chapter

2. Open security architectures for the industrial internet were identified and detailed

research was conducted into the security recommendations made by the architectures.

CHAPTER 1 INTRODUCTION

Department of Electrical, Electronic and Computer Engineering 6

University of Pretoria

Technologies and platforms currently available for the IIoT towards implementing the

recommendations were identified alongside the associated trade-offs seen with the

establishment of security in the IIoT.

In Chapter 3, the equipment and tools used in conducting this research are listed, and the

main research methodology is introduced and discussed.

In Chapter 4, the results obtained for the execution times, power consumption and memory

occupation for the software-secured Cortex-M series processors, are provided.

In Chapter 5, the results presented in Chapter 4 are analysed in further detail and the main

observations and recommendations for the use of software cryptographic services with the

Cortex-M series are given.

In Chapter 6, concluding remarks regarding the ability of new generation processors to

provide security services are made, and areas of future work are identified.

CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OBJECTIVES

The addition of computing capability to industrial processes brings a variety of challenges.

Standardisation for the production of IoT devices, their communication protocols, and the

degree of security that the devices are capable of providing is essential for deployment into

industrial processes with strict safety guidelines.

In this chapter, an overview of the current literature for security architectures,

requirements, mechanisms and trade-offs for the IIoT is provided.

In Section 2.2 an introduction to the open security architectures developed by the IIC and

the OpenFog Consortium is given. The recommendations made by both organisations

regarding the design of a secure IIoT endpoint device are highlighted.

In Section 2.3 a detailed look is taken into the recommendations made by the architectures;

highlighting the technologies currently available for use in the IIoT sector and identifying

areas in which further development is required.

In Section 2.4 the chapter is concluded and serves to identify the trade-offs associated with

the application of security on an IIoT endpoint node.

Section 2.5 provides a brief summary of the points covered in the literary review and

serves to conclude the chapter.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 8

University of Pretoria

2.2 SECURITY STANDARDS AND FRAMEWORKS FOR THE INDUSTRIAL

INTERNET OF THINGS

Building the IIoT is based on the use of cyber-physical systems (CPSs) [3]. A CPS

represents a joining of physical processes, such as actuation, control and sensing, with

cyber processing through the use of technologies equipped with ICT capability [4], [5].

The idea behind the CPS paradigm is one of interconnecting processes and equipment that

have previously operated in isolation to form a single self-aware, self-actuating and self-

healing network capable of determining the optimal conditions for operation in real time

[5]. In the context of smart factories, the production lines will be aware of their own health,

processing specification, and identity within the larger process chain [3]. This serves to

increase the efficiency of production processes and the reduction of excessive waste;

improving the carbon footprint of production processes. The scale at which IIoT

deployments are usually conducted requires that future solutions developed for the IIoT

should be highly scalable [3]. The availability and integrity of the IIoT network should

always be preserved to be able to meet strict, real-time deadlines and to prevent cascading

failures, which could result in physical harm to humans or to the operating environment

[3]. The constraint of resources such as available power, processing and memory, as well

as a required operational period of months or years, means that developed IIoT solutions

should be able to support low power operations, and to occupy and use a small portion of

the memory and processor resources [3].

The challenges seen with IIoT devices also extend into the domain of security. IIoT

devices are vulnerable to physical attacks, such as tampering and theft as large-scale

deployments are often unmonitored [3]. The devices are also subject to eavesdropping,

man-in-the-middle, denial-of-service, and masquerade attacks as the peer-to-peer nature of

an IIoT network means that wireless communications take the form of open, broadcast

networks without few mechanisms to verify the authenticity of the data received [3], [6].

Implementing traditional IT security techniques fails to secure these devices as the delays

introduced often compromise the availability of the system for security, which is

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 9

University of Pretoria

unacceptable for industrial contexts. Specially designed security solutions for the IIoT

context capable of securing networks while minimising trade-offs in power consumption,

processing capacity and memory footprint are high priorities in order to be able to meet the

strict safety standards required by the industrial sector.

Security standards, frameworks and architectures can be used to aid in meeting the safety

requirements of the industrial sector by defining what security is expected for an IIoT

endpoint and the depth to which the security should be provided. Standards can also be

used to validate the security mechanisms and solutions designed to secure IIoT endpoints

and further allow for vendor culpability. One such example is the Federal Information

Processing Standard (FIPS) 140-2 Security Requirements for Cryptographic Modules

standard [7]. Table 2.1 gives a brief definition of the security levels identified by the FIPS

standard and their minimum requirements for a cryptographic module. It defines four (4)

levels for which security can be established across the various entities of a module

implementing cryptographic processes, such as the physical security, operating

environment, and user and device authentication. For each increasing level of security, the

requirements of the previous level should be met, unless they are superseded by the

requirements of the current level. Certain areas of FIPS 140-2 can also be combined with

the Common Criteria (CC) Protection Profiles (PP) for further certification.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 10

University of Pretoria

Table 2.1 FIPS 140-2 security level definitions

 Requirements

Security

Level 1

Lowest level of security

No specific physical security mechanisms required beyond production-grade

components

Software (SW) and Firmware (FW) can be executed on unevaluated operating

system (OS)

Security

Level 2

Tamper-evidence mechanisms for module

Role-based authentication mechanisms

SW and FW only executable on OS that meets functional requirements from CC PP

list

OS evaluated at CC evaluation assurance level (EAL) EAL2 or higher

Security

Level 3

Tamper detection and zeroization response when removable cover/doors are opened

Identity-based authentication

Entry and output of plaintext CSPs should be performed by physically separated

ports or using a logically separated, trusted path

SW and FW only executable on OS meeting functional requirements in the PP list

with additional Trusted Path (FTP_TRP.1) requirement

OS is evaluated at CC evaluation assurance level EAL3 or higher with additional

assurance requirement of Informal Target of Evaluation (TOE) Security Policy

Model (ADV_SPM.1)

Equivalently evaluated trusted OS may be used

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 11

University of Pretoria

 Requirements

Security

Level 4

Highest level of security

Physical security provides a complete envelope of protection with detection of and

immediate zeroization during tamper events

Protect against security compromise owing to environmental conditions or

fluctuations outside normal operation ranges

Undergo rigorous environment failure testing

SW and FW only executable on OS that meets functional requirements specified in

Level 3

OS is evaluated at CC evaluation assurance level EAL4 or higher

Equivalently evaluated trusted OS may be used

Useful for operation in physically unprotected environments

Source: Security Requirements for Cryptographic Modules. FIPS 140-2. 2001 [7].

In addition to the standard for cryptographic modules, the Industrial Internet Consortium

(IIC) and the OpenFog Consortium have developed frameworks detailing the security

requirements of an IIoT and fog computing network. The framework requirements

complement each other and serve to give a detailed guideline as to which security features

and capabilities are needed at the edge of the IIoT/Fog space. The following sections serve

to introduce the security frameworks and take a detailed look into the requirements and

recommendations made towards the design of a secure IIoT endpoint device.

2.2.1 The Industrial Internet Consortium Reference and Security Architecture

The IIC is a collaboration between various businesses and academic institutions working

towards improving and accelerating the move towards the IIoT. The consortium conducts

work in five of the main IIoT industries, namely healthcare, manufacturing, smart cities,

transportation and energy. In an effort towards standardising the manner in which IIoT

networks are developed and deployed, a general and security architecture was published

after heavy input from the many member organisations.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 12

University of Pretoria

The reference architecture proposed by the IIC aims to make the industrial internet easily

understandable and supported by “widely applicable, standard-based, open architecture

frameworks and reference architectures” [1] regardless of vendor in order to ensure that

future technologies can be easily integrated and are interoperable, allowing for the faster

expansion of industrial internet networks into key and stressed application areas.

The architecture defines four main viewpoints- business, usage, functional and

implementation – which can be further decomposed to address various domains in the

construction of an IIoT network [1].

The business viewpoint represents the beginning of the network design process and serves

to identify the relevant stakeholders within the system and their business vision, values and

objectives in the establishment of the industrial internet system, in both business and

regulatory contexts [1].

The usage viewpoint serves to address the concerns in the use of the IIoT system and

typically consists of activity sequences involving human or logical users [1].

The implementation viewpoint focuses on the technologies that would be needed to

implement the functional components of the IIoT system, their required communication

schemes and their lifecycle procedures [1].

The functional viewpoint gives focus to the functional components within an industrial

internet system: how they interrelate with other components, how they are to be structured,

what interfaces are needed; which interactions are required between them; and what the

relations and interactions of the system are with external elements in the environment [1].

This viewpoint is the most important regarding the development of a successful security

solution for IIoT systems and will form part of the main focus of this research. The full

architecture details may be found at [1], [2].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 13

University of Pretoria

The functional viewpoint can be decomposed further, giving the control, operations,

information, application and business domains. Each functional domain operates under a

different degree of granularity and runs on different temporal cycles. As one moves up the

domains, the coarseness seen within domain interactions increases; the temporal cycles

become longer and the scope of impact for the network becomes larger. As information

moves up the functional domains, the scope of information becomes richer and broader, as

new information and intelligence emerge from the larger contexts [1]. The control domain

presents the representation of the functions that are performed by the industrial control

systems, ranging from fine-grained, closed loops, sensing, which is the data retrieval from

sensor nodes, application of control rules and logic as well as the excursion of control over

physical systems through actuators, also known as actuation [1]. It is within this domain

that the security of IIoT endpoints is to be applied. To visualise the structure of the main

reference architecture more clearly, Figure 2.1 provides a graphical breakdown of the

highlighted portions of the architecture with a focus on the areas applicable to the security

of IIoT endpoint devices. Double arrows are used to illustrate the duplex nature of

information flow between the various viewpoints and domains.

Figure 2.1 Industrial internet reference architecture structure

Business
Viewpoint

Usage Viewpoint
Implementation

Viewpoint
Functional
Viewpoint

Control Domain

Sense

Actuation

Operational
Domain

Information
Domain

Application
Domain

Business Domain

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 14

University of Pretoria

The security requirements for an industrial internet network development are given in a

complementary security framework, which is to be used in conjunction with the reference

framework. Six inter-operational building blocks, organised within three layers, form the

functional viewpoint of the security framework. The top layer comprises four (4)

foundations, namely “endpoint protection, communication and connectivity protection,

security monitoring and analysis and security configuration management” [2]. The

foundations are then “supported by a data protection layer and a system-wide security

model and policy layer” [2].

Endpoint protection exists to implement defensive capabilities on devices typically found

at the edge of an industrial network and in the cloud. The primary security concerns for

this portion of the network include “physical security functions, cyber security techniques,

and authoritative identity” [2]. This protection alone is insufficient for protecting the whole

industrial network as the endpoints must have the ability to communicate with each other

and with other network devices, and these communications may become a source of

vulnerability; however, it provides a solid base upon which further security can be built

[2]. Without this base, the deployment would still be highly vulnerable to security attacks

despite how much security is applied to other parts of the network.

Table 2.2 provides a summary of the functions and techniques recommended for endpoint

security in the IIoT security framework. Also highlighted are the security concerns that the

security functions aim to address, given in terms of the Availability-Integrity-

Confidentiality triad of security.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 15

University of Pretoria

Table 2.2 Industrial Internet Consortium security objective breakdown for IIoT endpoint protection

Functions and

Techniques

Security Objectives

Description

Availability Integrity Confidentiality

Physical Security X X X

Trust X

Identity X X X

Access Control X X X

Integrity Protection X

Data Protection X X X

Monitoring and analysis X X X

Configuration and

Management

X X X

Cryptographic techniques X X

Isolation techniques X X X

Source: Industrial Internet Consortium. (2017, January) Industrial Internet Security Framework.

[Online]. [2]

The main problem with the establishment of any security mechanism is the resulting trade-

offs that occur as a result of allocating additional resources towards protecting the device

from malicious activities. These trade-offs are of great concern in the context of IIoT

devices as these devices are often more highly resource-constrained as compared to

traditional ICT devices, and are required to operate at low power for months or years after

their initial deployment. Adding security capability has the potential to deplete the

endpoint resources or introduce delays such that the device becomes unsuitable for the

real-time, mission-critical contexts in which it is required to operate. A more detailed look

into the trade-offs associated with the identified security functions is given in Section 2.3

of this work.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 16

University of Pretoria

2.2.2 The OpenFog Reference Architecture for Fog Computing

The OpenFog Reference Architecture for Fog Computing was developed by the OpenFog

Consortium in respect of the need for an open, fog computing architecture capable of

ensuring interoperable and secure systems, and one that is independent of but fully

supported by the wider vendor space [8]. As defined by the OpenFog Consortium, fog

computing architectures are used to “selectively move comput[ing], storage,

communication, control and decision making closer to the network edge where data is

being generated in order to solve the limitations in current infrastructure to enable mission-

critical, data-dense use cases” [8], essentially allowing for the IIoT edge to interface with

wider cloud services as fog computing maintains the benefits of a cloud computing scheme

[8].

The reference architecture defines eight main pillars– “security, scalability, openness,

autonomy, RAS (reliability-availability and serviceability), agility, hierarchy and

programmability” [8] – as well as the relevant stakeholders and their roles in the wider fog

value chain. These include silicon manufacturers, application developers, operating

systems, etc. [8]. As with the IIC reference architecture, this study will focus on the

security pillar defined by the OpenFog architecture, looking more specifically into the

requirements of node security. The full architecture details may be found in [8].

The security pillar describes the functions and mechanisms that could be applied to secure

a fog node, from the silicon utilised in the node design to the software applications used on

and with the node. Privacy, anonymity, integrity, trust, attestation, verification and

measurement are identified by the architecture as key security attributes which should be

guaranteed on a node to the best of one’s ability [8]. As a basis for a secure design, a

secure node must provide an immutable root of trust, preferably hardware-based. The root

of trust should then be attestable by the software agents running within and throughout the

fog infrastructure. Edge nodes should provide the first point of access control and

encryption within the wider network in addition to providing contextual integrity, isolation

and control aggregation of privacy-sensitive data prior to their departure from the network

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 17

University of Pretoria

edge. Should there be any network components that cannot be attestable, they should be

prevented from participating within and with the fog nodes and should be deemed to

provide data that is not fully trustworthy [8].

A detailed breakdown of the security mechanism recommendations made within the

architecture is given in Table 2.3.

Table 2.3 OpenFog Consortium security mechanism recommendations for node security

Functions and Techniques Security Mechanisms

Physical Security and Anti-

Tamper mechanisms

Tamper resistance, evidence, detection and response

Trusted Computing Base Hardware root of trust (HW-RoT), secure or verified boot,

trusted or measured boot, secure boot processes

Identification Immutable identifier with attestation

Attestation Remote attestation across multiple interfaces

Cryptographic Functions AES with at least 128-bit keys, 3DES, DH, RSA, DSA,

ECDH, ECDSA, ECQV, SHA-2 to SHA-5, True RNG, CCM,

GCM, GMAC, CMAC, HMAC

Integrity Run-time integrity checking and introspection

Source: OpenFog Consortium. (2017, February). OpenFog Reference Architecture for Fog

Computing. USA. [Online]. [8]

Comparing the architectures developed by the IIC and the OpenFog Consortium, one can

see that they are complementary in the recommendations made for node security by both

organisations. Where the IIC provides a more general guideline as to what functions should

be included and the objectives that they should meet, the OpenFog Consortium provides a

recommendation as to the mechanisms that could be used in order to provide those

functions. Combining the two architectures gives a solid, standard base design upon which

a secure endpoint can be derived, as the uncertainty associated with the required functions

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 18

University of Pretoria

for node security and the tools that are to be used in order to meet the objectives set for the

functions have been removed with the publication of the two open architectures. A more

detailed exploration of the capabilities of the security mechanisms recommended by the

OpenFog Consortium is provided in the following section.

2.3 DESIGNING A SECURE MOTE FOR THE IIOT

A variety of security mechanisms and techniques for IIoT endpoint devices can address the

security concerns and recommendations highlighted by the two IIoT frameworks. The

following sections take a detailed look into the existing security technologies currently

available in an effort to identify the trade-offs that occur once a security structure is

implemented on an endpoint node.

2.3.1 Physical Security

One of the main challenges with the deployment of large-scale IIoT networks is securing

the endpoints physically against attack. Endpoints can easily be removed, damaged, or

tampered with as vast deployments result in no possibility for continuous monitoring.

Endpoints can also be exposed to the outside elements and damage can occur to the interior

electronics should there be any water leakage, excessive dust, or connection interruptions

by small animals.

To safeguard the endpoints physically, the use of tamper-resistant hardware components

and secure devices should be employed [2]. Mechanisms to detect tampering may be built

into the device casing and changes to the device hardware should be reported, with the

compromised endpoint being isolated from interaction with the remainder of the network

[2]. Essential components should ideally be tagged to enable tracing and deactivation of

the components when used outside of their configured contexts, providing a deterrent from

component theft [2].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 19

University of Pretoria

IIoT endpoint devices are vulnerable to four (4) main types of attack which arise as a result

of compromised physical security: invasive, non-invasive, fault injection and software

attacks [9]. Invasive attacks require the physical capture of the endpoint and often involve

physical intrusion at device level; where physical intrusion occurs to the product enclosure,

or at chip level; where intrusion occurs to the chip packaging [9], [10]. Non-invasive

attacks do not include physical intrusion or damage to the endpoint device but are the

result of observing the behaviour of the endpoint as security operations are carried out [9].

Side-channel attacks, such as timing analysis attacks, electromagnetic analysis and power

analysis attacks, are examples of common endpoint non-invasive attacks [9]. Fault

injection attacks occur when the attacker alters the environment or operating conditions of

the IIoT endpoint in order to initiate a malfunction that compromises device security [9].

Over-or under-voltage attacks, over-or under-temperature attacks and timing attacks are

common examples of fault injection attacks [9]. Software attacks are typically launched

through the communication interfaces of the device, such as debug interfaces,

programming interfaces and communication interfaces [9].

The vastness of IIoT endpoint deployments means that it is highly infeasible to completely

prevent node capture [10]. Tamper protection mechanisms, therefore, need to be employed

to improve the physical security of isolated network devices as the first building block

towards securing the entire IIoT network. Complete physical security solutions require the

inclusion of tamper detection, tamper response, tamper resistance, if possible, and tamper

evidence logging [9].

Starting at the outside, device enclosures should be tamper protected. This can be achieved

through the use of enclosure monitoring sensors such as light, temperature, pressure or

vibration sensors, which can be connected to tamper input pins on the MCU [9]. On-Off

switches embedded within the product enclosure and connected to a tamper detection pin

on the MCU can provide a low-power monitoring solution [9]. Printed circuit board (PCB)

tamper mesh can be employed for active tamper monitoring of the MCU packaging but is

typically only employed on MCUs that are marketed as secure or security hardened and

cannot be incorporated on an existing MCU. On- or off-chip voltage and temperature

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 20

University of Pretoria

sensors can be employed for monitoring of voltage- or temperature-based fault injection

attacks, generating a tamper event for the device should the sensed device conditions fall

into predetermined tamper event thresholds [9]. On-chip sensors are typically very low

power and can remain in an enabled state for continuous monitoring [9]. Counteracting

power analysis attacks may also occur in a variety of ways, either through the use of

hardware or software solutions. Electromagnetic leakage shields could be incorporated

within the device or chip enclosure. The addition of amplitude or temporal noise to side

channels could be done in order decrease signal to noise ratios, or physical unclonable

functions (PUFs) may be employed using the characteristics and fluctuations of the

physical device; making the functions unique to the chip and more difficult for an attacker

to duplicate [11]. The technology of PUFs was employed by Microsemi in addition to

other tamper protection mechanisms, such as anti-tamper mesh, for securing their low-

power, field programmable devices such as the IGLOO2 [11]. Having secured the

endpoints against tampering, it is important to be able to log and respond to tamper events

as they occur. This includes having the device enter a safe, non-operational mode to

prevent it being used to infiltrate the wider network, sending a highly visible notice of

tampering to the main system with event timestamps and source logs and immediately

erasing sensitive security data, such as a master key, from the device [9].

Various efforts are being made to standardise what physical security measures are needed

for embedded solutions. Standardisation, licensing or certification specifications are

mechanisms which can be used as guidelines in the design of a security solution and to test

for compliance. Table 2.4 gives the requirements for physical security, as defined in the

FIPS 140-2 standard, for the four (4) security levels given in Table 2.1.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 21

University of Pretoria

Table 2.4 FIPS 140-2 physical security requirements

General Requirements

Multiple-Chip Embedded Cryptographic

Modules

Security Level

1

Production-grade components

with standard passivation

Production-grade enclosure or removable

cover Plaintext keys and unprotected

CPS should be zeroized during

physical maintenance

Security Level

2
Evidence of tampering

Opaque tamper evident encapsulating

material or enclosure with tamper evident

seal or pick-resistant locks for doors or

removable covers

Security Level

3

Automatic zeroization when

accessing the maintenance

interface

Hard opaque potting material encapsulation

of multiple chip circuitry embodiment or

applicable multiple chip standalone security

level requirements
Tamper response and

zeroization circuitry

Protected vents preventing

undetected physical probing

Security Level

4

EFP or EFT for temperature and

voltage

Tamper detection envelope with tamper

response and zeroization circuitry

Source: Security Requirements for Cryptographic Modules. FIPS Standard 140-2. 2001 [7].

Table 2.5 gives the six levels of physical security protection as defined by IBM, which also

have the possibility of intermediary levels [12]. The levels were developed in an effort to

have a standardised method by which to quantify the degree to which a device is tamper-

resistant [12].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 22

University of Pretoria

Table 2.5 Tamper resistance levels for physical security solutions

Tamper

Resistance

Level

Definition

ZERO
No security features have been used on the system. Components are easily

accessible and open to inspection. No cost associated with tampering.

LOW
Some security features have been used, but they are compromised with

minimal tools, time and at low cost less than $1 000 (~ R14 000) in total.

MODL

Security features are capable of protecting against most low-cost attacks.

Specialist knowledge and more costly tools, up to approximately $10 000

(approx. R140 000) are required.

MOD
Specialised tools, up to approximately $100 000 (~ R1 400 000), and

knowledge are required in order to defeat the security features implemented.

MODH

Customised security protection means that highly specialised equipment, up

to approximately $1 000 000 (~ R14 000 000), skills and knowledge is

required for equipment use and attack. Group of skilled, specialised

attackers may be required to perform attack sequences.

HIGH

All known attacks are defeated by the security features, and research is

required to find new attacks capable of defeating the security features. Very

highly specialised equipment in excess of $1 000 000 (in excess of

~ R14 000 000) is required, which may need to be built; however, success of

the attack is not guaranteed. Attacks most likely to be carried out by

government-funded organisations.

Source: Reproduced from [12] with permission of Springer in the format Thesis/Dissertation

via Copyright Clearance Center.

Most recently, Rambus Incorporated has begun licensing cryptographic modules compliant

with their defined standard for protection against side channel attacks. The testing process,

which is conducted as part of their validation program at accredited, independent testing

labs, looks for the implementation of security countermeasures against side-channel

attacks, such as leakage reduction, noise introduction, obfuscation, protocol level

countermeasures and the incorporation of randomness [13], [14]. Certified solutions are

then identified by the DPA Security lock logo with current licensees including Atmel,

Infineon, Microsemi, NXP Semiconductors and ST Microelectronics, amongst others [14].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 23

University of Pretoria

2.3.2 Secure and Trusted Execution

For an industrial internet application, it is essential to define metrics of trust for network

components, communications, and maintenance installations. Trust, for computing

purposes, can be identified as either static or dynamic. Static trust is based on “evaluations

against a specific set of security requirements” such as the multiple international standards

for security [15]. Dynamic trust is highly dependent on the continued running state of the

system under consideration, with trust being measured throughout the lifecycle of the

system. Here, fundamentally, trust is determined through the existence of a secure and

reliable means within the system capable of providing evidence that the trust state is

unchanged; with the system remaining in an expected, secure state [15]. With

consideration of the definition of trust in computing, the IIC framework recommends

establishing a root of trust from which mechanisms for identification and integrity

checking can be derived. The root of trust exists to establish initial confidence within the

system operations, which then further support the establishment of confidence in knowing

that entities requesting network access are both authorised to access network resources and

that they cannot access resources for which they do not have access permission [2]. The

root of trust also aids with establishing network integrity by providing a baseline for

identifying and preventing unauthorised access attempts [2].

To create a secure network root of trust, the security framework recommends the use of a

HRoT mechanism such as a hardware security module (HSM) [2]. HSMs are Systems on

Chip (SoC) solutions that can be used to provide minimum cryptographic functions such as

encryption, decryption, key generation, digital signing, and hashing [16]. The chips also

offer a measure of physical tamper resistance to prevent key capture [16]. Employing the

use of an HSM provides a number of advantages and disadvantages. A validated HSM is

ensured as trusted as it has passed a baseline security standard as a result of various

security tests performed at accredited testing facilities. The devices utilise widely accepted

and open, secure cryptographic algorithms; they provide strong random number generation

that is critical for many cryptographic functions and, in the event of detected physical

tampering, the device will erase all sensitive data [16]. One of the main drawbacks in the

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 24

University of Pretoria

use of an HSM, in general, is the difficulty in employing future upgrades. As security is

provided by a physical device in the IoT endpoint circuitry, in the event where a weakness

is exposed in a cryptographic algorithm, a new upgrade would not be possible unless the

chip is changed for a newer, backwards-compatible chip which addresses the exposed

weakness [16].

One example of an HSM is the Trusted Platform Module (TPM) designed according to the

TPM standard created by the Trusted Computing Group. A TPM is capable of storing

security artefacts used to authenticate a platform as well as to store platform measurements

securely that help ensure its trustworthiness [17]. Version 1.2 of the TPM standard

provides widely known cryptographic algorithms such as RSA, SHA-1 and HMAC as

these algorithms have been thoroughly tested and gradually improved over the period

during which they have been released into the public domain [17]. TPMs would serve to

isolate security and cryptographic functions physically away from the normal operations of

an IoT endpoint as these functions occur on a separate chip from the endpoint CPU. Brief

specifications for the three most popular TPMs, with their vendors, for IoT applications,

are highlighted in Table 2.6.

Table 2.6 Specifications for the most common trusted platform modules for IoT applications

Chip Supplier

TCG

Std Security

Key

Size Speed

Cost

($)

AT97SC3205

[18]
Atmel

1.2

RSA

AES

SHA-1

SHA-2

2048

2048 RSA: 200ms

64-byte SHA-1:

20μs

4.00

SLB9665XQ2.0

[19]

Infineon
1.2

2.0

RSA 2048

ECC256

SHA-256

2048 Not Given

2.00

ST33TPM12LPC

[20]

STM 1.2
RSA 512-

2048

AES128

SHA-1

SHA-256

2048
64- byte SHA-1:

155μs

2048 Sign: 150ms

1024 Sign: 30ms

Not

Given

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 25

University of Pretoria

Looking at the specifications, several metrics immediately stand out. Price-wise, the cost

of an individual TPM chip is competitive when compared to the prices of other integrated

chips with the individual prices per chip dropping as the number of chips ordered

increases.

Of the three TPMs, only the Infineon module gives an estimate of expected current

consumption with 2.5 mA used for the chip’s Active mode, 0.9 mA used for the chip’s

Sleep mode, and 150μA used for the chip’s Sleep Mode with a stopped clock [19]. The

Atmel and STM datasheets only indicate that both TPMs support low power modes of

operation [18], [20]. The speed at which cryptographic operations are performed could

have a detrimental effect on the usefulness of the IoT endpoint. While SHA-1 calculations

can be done within microseconds, RSA calculations average out at hundreds of

milliseconds. This added delay to the transmission of information from the endpoint has

the potential to be unacceptably long in mission-critical applications where the

transmission of and actuation on endpoint readings is required in real or near real time.

Additional care would need to be taken into researching the maximum accepted

transmission delay tolerance for the applications in which the TPM-secured endpoint is to

be used to ensure that the cryptographic function selected does not infringe upon the

maximum threshold time.

After having established trust in the network operation, establishing trust in network users

is the next challenge to be handled. The use of credentials verifies the identity of the

various endpoints communicating within the network and can be used to establish varying

levels of trust and, consequently, varying levels of access privilege [2]. Choosing an

appropriate credential scheme to be applied to endpoints is highly dependent on the

uniqueness and strength of the credentials and the context in which the endpoint will be

operating [2]. Care needs to be taken to ensure that the credentials offer sufficient

uniqueness and strength so as to prevent the falsification of an endpoint’s identity [2].

ISO/IEC 24760-1 [21] provides detailed guidelines in determining the three levels of trust

– identity, unique identity and secure identity – for endpoint identities, and the Industrie

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 26

University of Pretoria

4.0 documentation [22], provides additional information on the requirements of a secure

identity technology that is to be used in industrial contexts.

Sometimes, MCUs implementing a trusted environment do so through the use of a trusted

execution environment (TEE). A TEE is “a tamper resistant processing environment that

runs on a separation kernel. It guarantees the authenticity of the executed code, the

integrity of the runtime states and the confidentiality of its code, data and runtime states

stored on a persistent memory” [15]. A TEE implements a trusted environment in a similar

manner to that of a TPM but is usually achieved within the software of an enabled device.

The goals of a TEE are to achieve “isolated execution, secure storage, remote attestation,

secure provisioning and a trusted path” [23]. In alignment with the definition of trust given

in Section IV, trust for a TEE can be categorised as a hybrid of static and dynamic trust; as

certification of the TEE is required prior to its deployment, but trust is maintained by the

separation kernel once the TEE is in operation [15]. At its core, a TEE provides secure

booting, secure scheduling, inter-environment communication, secure storage and a trusted

I/O path [15]. The most prevalent example for IIoT applications is ARM’s TrustZone,

from which multiple TrustZone-based TEE derivatives are forming; many of which are

being defined for smartphone use, such as Nokia’s ObC, NVida’s TLK, Trustonic’s

<t-base and Microsoft’s TLR [15].

ARM’s TrustZone is a virtualization-based technology, which provides support for

memory, Input/Output operations (I/O), and interrupt-virtualisation within the hardware of

the TrustZone capable device [15]. Hardware and software resources are split between a

‘normal’ world and a ‘secure’ world with a 33rd processor bit used to indicate the current

execution world for the processor [24]. The TrustZone API suite specifies how interactions

between the non-secure and secure world are to occur [24]. MCUs utilising ARMv6 or

later processors come already equipped with TrustZone; however, in its native form,

TrustZone operation has been found lacking in its adherence to the real-time processing

requirements seen within an IIoT network [24]. The authors in [24] have attempted to

improve upon the technology by implementing the basis of the TEE architecture as a low-

priority thread in a real-time operating system (RTOS). Called, IIoTEED, the TrustZone-

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 27

University of Pretoria

based solution was developed for implementation on IIoT edge devices, with the current

incarnation targeting IIoT gateway devices [24]. The author found that, when compared to

an unaltered RTOS, the modified operating system produced negligible performance

overhead and determinism variance [24]. When evaluating the interrupt latency, the

authors found that a worst-case scenario occurred when a fast interrupt request arrived, as a

switch from the secure to non-secure world began executing. The handling of the interrupt

had to wait for two world switches to occur, resulting in an interrupt latency of 8.11ms

[24]. Security-wise, the authors found that IIoTEED preserved only partial system

confidentiality through “TrustZone’s strong spatial isolation mechanisms” [24]. A lack of

resource access authentication meant that the solution was subject to “man-in-the-middle

attacks and the interception and manipulation of messages transferred through the

communication channel” [24]. Integrity was found to be preserved only at boot time and

not for data over time while a high level of availability was seen, owing to the temporal

isolation guaranteed by an asymmetric scheduling policy and the use of privileged and

unprivileged interrupt sources [24].

In general, despite TEEs being purported to be the ‘silver bullet’ solution for embedded

security, there remain a number of flaws compromising the security provided by a TEE.

One such flaw is the non-disclosure agreements which prevent security experts from

conducting thorough testing of TEE solutions, thereby preventing checks for compliance

with security standards. Others are the software exceptions, hardware exceptions, shared

memory interfaces, peripherals, and TEE-specific calls which present vulnerabilities that

may provide an opening to an attacker capable of code execution using kernel privileges

[15].

2.3.3 Isolation

Isolation techniques can be used to shelter parts of an endpoint device to prevent the

cascade of undesirable effects caused by the failure of other parts of the device [2]. In this

manner, minimum operation of the device can be guaranteed even during the event of a

malicious attack. Physical isolation techniques may also be used to provide security

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 28

University of Pretoria

separately from the endpoint device by employing the use of a separate device. One such

example is the use of a dedicated security gateway for endpoint security. This technique is

often employed for older, legacy systems where device firmware cannot be upgraded to

provide security according to updated security policies owing to insufficient resources or a

lack of legacy support in the new security firmware [2]. Isolation can be achieved through

the use of the operating system to isolate business and operational processes from security

processes (process isolation); or the use of boundaries as determined by hardware, software

or a hybrid implementation (container isolation); or through a hypervisor configured to

isolate each running instance on an endpoint device (virtual isolation) [2].

Isolation practices can be seen in some of the solutions already highlighted. HSMs, such as

a TPM, provide physical isolation of security processes by implementing security functions

on a separate, physical device. Security modes, such as those implemented by a TEE,

provide a form of virtual isolation through the separation of security processes and security

resources by making them unavailable to normal operations functioning outside of the

secure world.

Currently, hypervisor and container-based technologies remain heavily focused on

securing traditional ICT technologies and operating systems. Solutions for the IIoT are

slowly emerging with implementations focusing on the development of container

technologies for IoT cloud services or Linux-based embedded operating systems designed

to support gateway functions.

2.3.4 Attestation

Assuring the integrity of the endpoint data is often achieved by using a digital signature.

The signature key is to be protected in storage using an HRoT and the signing operation

would be conducted in a trusted execution environment such as within a trusted platform

module [2]. In using a digital signature, an endpoint device would be able to validate the

integrity of firmware updates prior to installation and configuration, and log files could be

signed to ensure their integrity for future use [2].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 29

University of Pretoria

Attestation is another technique that is utilised towards the assurance of device integrity.

The basis of attestation is that “the entity that is to be tested, called the prover, sends a

status report of its current configuration to another party, called the verifier, to demonstrate

that it is in a known and thus trustworthy state” [25], [26]. To provide attestation, a trusted

third party needs to be provided, along with a mechanism to provide provable information

fields that can be bound together with a digital signature, called an attest [27]. A variety of

attestation methods have been previously used to provide trust and integrity within IIoT

networks, with varying degrees of success and shortcomings.

Remote attestation schemes assume that the prover is provided with a trusted mechanism

such as a TPM, with integrity measurements being taken and securely stored during the

secure boot process [26]. When conducting the attestation, the verifier sends a request for

the device configuration measurements. Then the prover retrieves and signs the

measurements, through the use of a digital signature algorithm or a digital certificate from

a trusted third party, before sending them to the verifier [26]. The verifier then verifies the

signature and compares the measurements against expected measurements for that device

configuration [26]. Various shortcomings have been seen with the remote attestation

scheme when applied to an IoT/CPS configuration. Firstly, as it is best suited for single-

provers settings, it is infeasible for the verifier to know every possible device configuration

in the network, especially given large-scale IIoT deployments [26], [28]. Secondly, with

IIoT endpoints that are being left largely unattended and in remote deployments, the

assumption about no physical attacks occurring on the devices can no longer be considered

valid [27].

Software-based attestation was typically targeted for the resource-constrained devices at

the edge of a WSN. Differing from the HRoT-based remote attestation, software attestation

uses challenge-response techniques which allow for the verifier to check the integrity of

the prover’s memory contents against modification, relying on checking the computation

time of the prover in responding to the attestation challenge as an indicator of whether the

device has been compromised [25]. Traditionally, the technique is heavily reliant on the

assumption that an attacker is not actively attacking the network during the attestation

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 30

University of Pretoria

period [25]. Again, previous implementations of software-based attestation focused on

single-prover scenarios, making existing commercial attestation solutions unsuitable for

use in WSN/IoT applications.

Seshadri et al. [29] developed a software attestation solution for embedded devices using

the challenge-response protocol. The solution was designed such that a correct response to

the attestation challenge sent could only be produced if the memory contents of the

embedded device corresponded to the verifier’s locally computed answer [29]. The

verification procedure used to answer the challenge was to be “pre-programmed into the

device memory or downloaded from the verifier prior to verification” [29]. The main

problem identified by the authors with previous attestation protocols using MAC addresses

was that an attacker could move the memory contents– from which the verification

procedures are based – into an empty memory space on the device. The attacker could then

compute the MAC attestation functions from these contents during the device verification,

effectively subverting the attestation process [29]. The use of checksums on the memory

contents as part of the SWATT process attempted to guard against the reply-type attack as

the checksum process failed with a high probability when the memory contents of the

device differed from the expected checksum [29].

When designing the SWATT attestation procedure, the authors assume that the verification

procedure is either pre-loaded or can be downloaded onto the embedded device. They also

assume that the verifier is aware of the specific architecture for the hardware device and of

the memory contents of the contesting device [29]. To verify the device, the SWATT

protocol requires “pseudo-random memory traversal, resistance to pre-computation and

replay attacks, high probability of single-byte changes, small code sizes, efficient

implementation and non-parallelization” [29]. The attacker is assumed to have full control

of the compromised device without having modified its hardware. The protocol is designed

so that, should the attacker insert an ‘if’ statement to circumvent the verification procedure,

there is a detectable increase in the procedure run-time.

Having implemented a genuine and attacker version of SWATT on an 8-bit Harvard

architecture with 16kB of program memory and 1kB of data memory, the authors show

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 31

University of Pretoria

that the time differences between the attacker and legitimate verification code increases as

the number of memory locations included in the checksum procedures increased, making

the detection of a compromised device easier [29]. The authors note, however, that the

main vulnerability seen with the SWATT procedure is that the time at which memory

verification is conducted may not be the time at which the device is used on the network

and during the intermediate time interval, it is possible that an attacker could change the

memory contents of the device [29].

The attestation scheme developed by Asokan et al. [25] for large-scale device swarms also

rules out the possibility of physical attacks on the devices in the design of the attestation

protocol; however, the authors propose various mitigation techniques, acknowledging that

physical attack is not completely out of the realm of possibility. The Scalable Embedded

Device Attestation (SEDA) protocol is required to be able to “remotely verify integrity as a

whole” [25]; be more efficient than individual device attestation; not require the verifier to

know the detailed configuration of the prover; support parallel or overlapping attestation

instances; and be independent of the integrity measurement used by the network devices

[25]. The protocol is implemented in two phases; one where devices are introduced into the

device swarm, known as the offline phase; and another where attestation is performed,

known as the online phase. The offline phase consists of device initialisation and

registration and is only executed once [25]. The online phase is executed multiple times,

servicing every attestation request made by the verifier. Each device in the swarm is

attested as an individual, with an accumulation of the attestations being reported to the

verifier [25]. Global session indicators are used for each attestation instance, which is then

used to construct a spanning tree for the swarm. Each swarm device attests all its children

in the spanning tree, accumulating the results reported by the children into a report, which

is then sent along with the attestation report for itself to its parent device [25]. Attestation

for the swarm is achieved when the verifier receives an attestation report from the root

device in the spanning tree, generating an output bit 1 if attestation was successful and a 0

otherwise [25].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 32

University of Pretoria

To test the efficiency of the attestation protocol, two implementations based on the 8 MHz

Secure and Minimal Architecture for (establishing a dynamic) Root of Trust (SMART)

[30] and 24 MHz TrustLite [31] architectures were considered. Communication overhead

for the root device was found to be 48g + 176 bytes per send operation and 20 + 56g bytes

per receive operation where g represents the number of neighbours for the root device [25].

The memory costs for the network nodes were found to be 20g + 168 bytes with g

representing the number of neighbours for the node under consideration [25]. The runtime

for the SMART architecture was found to be 56, 900 +256g ms for the initiating device

and 96 + 256(g-1) ms for the other network devices [25]. On the TrustLite architecture, the

runtime was found to be 347.2 + 4.4g ms for the initiating device and 0.6 + 4.4(g-1) ms

for the other network devices [25]. The result, however, is not surprising as TrustLite, with

more computing power available, was seen by the authors to run SEDA significantly faster

than the SMART architecture [25]. The authors also found that energy consumption for

SEDA grew linearly in relation to the number of device neighbours, allowing an even

energy consumption across the swarm should each device have the same number of

neighbours [25]. Energy consumption for the initiating device was, however, to be higher

than the other swarm devices owing to the computational intensity of computing the

attestation sign procedure [25]. SEDA’s main shortcomings are in that it is incapable of

attesting the swarm topologies. It merely reports the number of devices that have passed

attestation and only considers “remote software-based attacks” [28]; however, the authors

note that extensions of the protocol could be made to allow for the identification of

compromised devices, the assignment of different attestation priorities, support for

dynamic swarms with changing topologies and mitigation of Denial of Service type attacks

[25].

Ibrahim, Sadeghi and Tsudik improved upon previously seen attestation protocols in [28]

by proposing the Device Attestation Resilient to Physical Attacks (DARPA) scheme. The

main assumption behind DARPA is that the network under consideration has been left

mostly unattended since deployment and, as a result, is highly susceptible to physical

attack. The protocol requires devices to broadcast a “secure heartbeat” [28] to its neighbour

to prove its continued presence in the network. The heartbeat is then forwarded by the

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 33

University of Pretoria

neighbouring devices to their own neighbours along with their own heartbeat signals [28].

Each device collects, verifies and logs the heartbeats it receives, which are then collated by

a verifier during the next attestation cycle, performing a collective attestation scheme

similar to that implemented by SEDA [28]. DARPA considers three types of adversary

scenarios for its adversary model: remote software compromise, physical capture and a

hybrid device compromise [28]. The scope of attack is limited to the assumption that there

is no omnipotent advisory, meaning that all but one of the network devices can be

compromised, no non-invasive physical attacks are employed, and no DoS attacks are

employed [28].

To protect against physical attacks, DARPA assumes that an adversary cannot compromise

any device that they (the adversary) have not captured. As an uncaptured device’s

heartbeat signal cannot be forged and is tied to a particular time instance of the heartbeat

protocol, and every device supposedly emits its own time-based heartbeat signal at set

intervals while collecting the heartbeat signals of its neighbouring devices, within the next

attestation time period, the signal log of at least one uncaptured device will be missing at

least one other device’s heartbeat signal for at least one heartbeat protocol instance [28].

This is owing to the fact that an adversary will not be able to extract secrets from a

captured device in order to forge a missing heartbeat within the heartbeat attestation time

period [28]. To protect against software attacks, the attestation protocol needs to be able to

verify the software integrity of the entire network. To do this, it is assumed that each

network device has, at a minimum, read-only memory (ROM) for the storage of attestation

code and cryptographic keys and a memory protection unit (MPU) [28]. The MPU is then

responsible for ensuring that the integrity measurements in attestation code are immune to

software attacks by limiting access to the cryptographic key to attestation code; ensuring

that executing attestation code is not interrupted; and that registers and other temporary

storage used by attestation code are flushed at the end of execution [28].

It can be seen that, in spite of the benefits achieved by the scheme, DARPA is still subject

to various limitations, impractical assumptions and costly operations. The authors found

that the use of a reliable clock was insufficient to protect against a hybrid adversary, thus

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 34

University of Pretoria

requiring the use of a reliable read-only clock or secure writable memory, accessible only

by the ROM, on each device [28]. Other areas of improvement include the generation of

false positives in the event of device failures and temporary network unreachability, a

remaining lack of identification for compromised devices, and the relatively high

overheads in heartbeat protocol as a result of heavy digital signing usage [28].

2.3.5 Cryptography

Cryptographic techniques are to be used on endpoint devices in order to establish and

maintain integrity and confidentiality in the ICPS. Under the guidelines given in [2], IIoT

endpoints should use standard cryptographic algorithms with regularly maintained and

updated libraries [2]. The framework recommends the use of hardware RNG to ensure the

randomness and uniqueness of cryptographic keys and a key revocation scheme should the

invalidation of a key be required prior to its expiration [2].

In the past, performing cryptographic operations on IoT endpoint devices has been a

continuous challenge owing to their resource-constrained nature. The sensor node

configurations that are given in Table 2.7 highlight the resource limits that endpoint

devices have had available for sensing, transmission, and processing purposes in previous

years. More recently, endpoint devices are being fitted with 32-bit MCU processors, but

the Random Access Memory (RAM) and Read-Only Memory (ROM) available on these

devices are still much less than what can be found on a traditional personal computer (PC).

Table 2.7 Sensor network device configurations

Device Name CPU RAM ROM/

Flash

TelosB

[32]
16-bit MSP430 10kB 48kB

Mica2

[33]
8-bit Atmega128L 4kB 128kB

MicaZ

[34]
8-bit Atmega128L 4kB 128kB

Ember EM2420

[35]
8-bit Atmega128L 4kB 128kB

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 35

University of Pretoria

Previous work ([36], [37], [38], [39]) has been done in attempting to use algorithms such

as RC5 [40], RC6 [41], AES [42], DES [43], SkipJack [44], SHA-1 [45] and TEA [46] as

mechanisms for securing sensor nodes. Energy consumption, memory utilisation and

execution time were determined in the four studies using the Mica2 mote, which has the

ATmega128L microprocessor, as the testing platform, with the exception of [36] which

utilised the similar MicaZ mote.

Antonopoulos et al. [36] utilised AES, RC5 and SkipJack as their cryptographic algorithms

of choice in order to determine the effect of security processes on the ATmega128L

processor. Using Omnet++ 4.2 and the MiXiM framework for WSNs, network simulation

was conducted in order to determine the execution time and energy consumption of the

processor at the end of the key setup, packet encryption, and packet decryption phases

[36]. Summation of these measured values then provided the total execution time and

energy consumption for the cryptographic algorithms. In the study, the authors

acknowledge that while the key setup phases of the algorithms could be optimised to give a

better result for the algorithm performance, such techniques were found to impose

increased memory requirements on the sensor node and potentially compromised the

security level provided by the algorithms [36].

The study conducted by Chang, Meftic and Nagel [37] determined the energy consumption

of RC5, DES with cipher block chaining (CBC), AES and SHA1 and operation times for

only DES-CBC on the Mica2 and Ember motes. Owing to the size of the available memory

resources, the size of the algorithm code and the algorithm’s use of system resources, the

authors were unable to load the cryptographic algorithms directly into the microprocessor.

Instead, a divide and conquer technique was utilised in order to re-use portions of the

processor memory during the execution of the cryptographic algorithm [37]. Even with the

use of the divide and conquer technique, AES was not capable of running on the EM2420

node as the compiler utilised too much of the processor ROM [37]. The energy

consumption of the running algorithm was determined using the voltages measured over a

shunt resistor circuit. The measured voltages were used to calculate the current from

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 36

University of Pretoria

Ohm’s law, and the current results with the supply voltage of the node batteries were used

to calculate the power consumed during the operation of the cryptographic algorithm [37].

Guimarães et al. [38] tested the energy utilisation and execution time of SkipJack, RC5,

RC6, REA and DES. Measurement of the processor in active mode without the inclusion

of security processes gave the authors a CPU current of 8mA and an operational voltage of

3V; which was used in combination with the energy equation E= V x I x ΔT in order to

determine a control energy consumption of 0.4104 mJ for the processor [38]. After having

determined the base energy consumption measurements for the processor prior to the

inclusion of the cryptographic algorithms, the authors noted that the increase in energy

consumption would be determined by the added execution and transmission time as a

result of the cryptographic processes [38]. An oscilloscope was used to obtain the

execution time interval of the algorithms by monitoring the logical change in a general

purpose input/output pin (GPIO) connected to the ATmega128 processor [38].

Trad, Bahattab and Othman [39] analysed AES, RC5 and RC6 in terms of the energy

consumption, operational time and memory occupation on the ATmega processor. As in

[37] and [38], to calculate the energy consumption of the cryptographic algorithms, the

authors measured the voltage drop across two resistors using an oscilloscope [39]. The

execution times of the key setup, encryption and decryption processes were measured with

repeated execution of the cryptographic processes used to generate an average, estimate

operational time value for the total algorithm. Both measurements were then used, in

conjunction with the PowerTOSSIM tool, to calculate the energy consumption of the

processor [39].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 37

University of Pretoria

Table 2.8 Energy consumption of cryptographic algorithms implemented on Mica nodes

AES

Source [36]
 [37]

[39]

Block Size
16B

16B

16B

Energy (μJ)
191.3

339

191.3

RC5

Source [36] [37] [37] [39] [37] [38]

Block Size 8B 8B 16B 16B 32B 29B

Energy (μJ)
783.05 111 124 139.44 150 36

RC6

Source [38]

[39]

[39]

Block Size 29B

16B

32B

Energy (μJ)
258.72

189.4

203.96

SkipJack

Source [36]

[36] [38]

Block Size 8B

32B Est.

29B

Energy (μJ)
11.04

44.16

51.84

DES

Source [37]

[38]

Block Size 32B

29B

Energy (μJ)

 126

14,592

Table 2.8 summarises the results of the obtained energy consumptions observed by the

authors in the four (4) studies, Table 2.9 summarises the operating times observed in

studies [36] and [39], for the implementations of the RC5, AES, RC6 and SkipJack

algorithms, and [37], for the implementation of DES. The observed operation times

included key setup, encryption, and decryption of the data payload on a Mica2 node. Table

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 38

University of Pretoria

2.10 summarises the observed memory occupations for RC5, RC6, SkipJack, DES and

AES as recorded in studies [38] and [39]. In the instances that the relevant cryptographic

algorithm was not tested by a study, the column has been greyed out.

From the cryptographic algorithms studied, SkipJack gives the lowest, average energy

consumption, with 35.68μJ observed over two studies, when implemented on the Mica2,

followed by DES and RC5, with 126μJ and 139,36μJ observed over one and three studies

respectively. It can also be observed that the energy consumptions observed over the four

(4) studies are similar. Differences in the implementations of the algorithms, the testing

techniques and environments, and the block size used for the algorithms could be the cause

of some of the fluctuations seen in the observed energy consumptions, including those

cases which provided outlier consumption results when compared to similar studies;

however, without the detailed implementation and testing details for the experiments

conducted, a comparison of techniques cannot be done. These outlier values, however, are

still useful as boundary values for any future testing that may be conducted on this topic.

Using the results of these four (4) studies it is shown that under typical operating

conditions, the Mica2 CPU could be expected to consume, as an average, over four

different message lengths, 3.75μJ of energy [37].

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 39

University of Pretoria

Table 2.9 Operating time requirements for cryptographic algorithms on a Mica2 node

RC5

Source
[36] [39] [37]

Block size
8B 16B

Operating Time

(ms)
30.64 6.81

AES

Block size 16B

Operating Time

(ms)
7.49 7.54

RC6

Block size

16B

Operating Time

(ms)
14.78

SkipJack

Block size 8B

Operating Time

(ms)
0.44

DES

Block size

32B

Operating Time

(ms)
6.30

SkipJack once again prevailed with the fastest operating time of 0.44ms. This is due to the

algorithm not having to perform key setup operations. DES was seen to have the second

best operating time at 6.30ms, the fastest of the algorithms, which includes a key setup

phase, followed by AES at an average of 7.52ms observed over two studies. RC5 and RC6

were observed as the slowest performing algorithms with averages of 18.73ms and

14.78ms respectively.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 40

University of Pretoria

Table 2.10 Memory occupation for cryptographic algorithms on Mica2 node

RC5

Source
[38] [39]

Block Size
29B 32B

ROM (kB) 18.5 3

RAM (kB) 0.86 0.15

% Occupied

(ROM)
14.45 2.34

% Occupied

(RAM)
21.5 3.75

RC6

Block Size 29B 32B

ROM (kB) 18.5 4.45

RAM (kB) 0.88 0.05

% Occupied

(ROM)
14.45 2.82

% Occupied

(RAM)
22 1.25

SkipJack

Block Size 29B

ROM (kB) 19.5

RAM (kB) 0.69

% Occupied

(ROM)
15.23

% Occupied

(RAM)
17.25

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 41

University of Pretoria

DES

Block Size 29B

ROM (kB) 30.5

RAM (kB) 0.79

% Occupied

(ROM)
23.83

% Occupied

(RAM)
19.75

AES

Block Size 32B

ROM (kB) 9.00

RAM (kB) 2.14

% Occupied

(ROM)

7.03

% Occupied

(RAM)

53.5

The results from the studies observing the memory occupation of the cryptographic

algorithms were interesting. On average, the percentages of ROM occupied by the

cryptographic algorithms were very similar; with the percentage average for the algorithms

using a 29-byte payload at 16.99% memory occupation and for the algorithms using a 32-

byte payload at 4.063% memory occupation. RAM occupation was also relatively small for

both payload sizes with the exception of AES, which occupied 53.5% of the RAM, more

than half of the memory available to the device. This would lead to the slower processing

of other device processes, compromising the performance of the sensor device.

In each of the four (4) studies, the authors noted that the application of cryptography did

serve to compromise the performance of the sensor nodes. They further noted that the

compromise in performance could worsen as the number of nodes observed during testing

was to be increased to the scale of a typical sensor network deployment. Using the

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 42

University of Pretoria

averages calculated from the results given in the four studies, an estimation was made

regarding the performance of the Mica2 when encrypting a packet generated using the

IEEE 802.15.4 protocol.

Figure 2.2 shows the estimated energy consumption of the Mica2 node as a function of the

time taken for a cryptographic algorithm to run to completion. The results for the plotted

points are derived using the mean energy consumptions measured in [36] — [39] in order

to estimate the operating times and energy consumptions that would be required to encrypt

and decrypt packet size of 127 bytes. Figure 2.3 shows the estimated memory occupation,

that would be required to encrypt and decrypt a packet size of 127 bytes.

Figure 2.2 Energy consumption of Mica2 node as a function of operating time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250 300

En
er

gy
 C

o
n

su
m

ed
 [

m
J]

Operating time [ms]

Estimated energy consuption over time for securing an 802.15.4
packet on a Mica2 sensor node

RC5

RC6

AES

SkipJack

DES

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 43

University of Pretoria

Figure 2.3 Memory occupation of cryptographic algorithms in a Mica2 node as a function of

operating time

Looking at Figure 2.2, it could be seen that the longer a cryptographic algorithm ran on the

Mica2, the more energy was consumed. For a 127-byte packet, SkipJack gave the shortest

operating time along with the least energy consumption; followed by DES. AES and RC6

performed similarly, with AES operating in less time but consuming more energy and RC6

giving a longer operating time but consuming less energy. A large spike was then seen in

the operating time of RC5, which gave the longest operating time, and consumed the most

energy. This would make the algorithm a less suitable candidate for long-term, time

sensitive network deployments.

Figure 2.3 shows the memory occupation of the cryptographic algorithms over the

occupation time. Boundary lines are given in order to illustrate the maximum available

memory resources on the Mica2’s processor. Looking at the RAM scatter, one could see

that the memory occupation estimated for AES exceeded the amount of RAM available on

the Mica2 while the occupation estimated for DES exceeded the amount of ROM

available. This means that the node would not be able to successfully encrypt and decrypt

RC5RC6
AES

DES

SkipJack

4 kB

128 kB

132 kB

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300

M
em

o
ry

 O
cc

u
p

at
io

n
 [

kB
]

Operating Time [ms]

Estimated ROM and RAM occupation over time for securing an 802.15.4
packet on a Mica2 node

ROM Occ. [kB]

RAM Occ. [kB]

Total Occ. [kB]

Max RAM

Max ROM

Max Memory

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 44

University of Pretoria

the 127-byte packet owing to the depletion of resources. Considering the scatter again, the

remaining algorithms occupied more than half of the available RAM. DES, as the second

largest RAM consumer, occupied nearly all of the available RAM on the processor.

Looking at the ROM scatter, one could see that, apart from DES, which depleted the

available ROM resources, SkipJack was the largest ROM consumer, with AES consuming

the least ROM.

As some of the algorithm occupation heavily favour either RAM or ROM memory, the

total memory occupied was plotted in order to provide a better comparison point across the

algorithms. As available ROM largely exceeds available RAM, the scatter for the total

memory largely follows the ROM scatter pattern. From that, one could see that DES

consumed the largest amount of the available memory resources, although it gave one of

the shortest operating time of the four algorithms. RC5 and RC6 utilised similar amounts

of the available memory resources however, RC6 gave a significantly faster performance

than RC5. AES consumed the least amount of memory resources and had a relatively short

operating time at near 60ms. This was still seen to be a relatively long delay that could

cascade in larger network operations however, as its memory requirements exceed the

available RAM in the processor, AES cannot be used to secure a 127-byte packet without

additional RAM.

The results from the studies provide a good indication of the capability of older generation

sensor nodes to handle cryptographic algorithms; however, a number of things can be

noted which compromise the application of the conclusions drawn to the current IIoT

sector. Of the six algorithms tested, four (4) may not be the most appropriate to use

towards safeguarding an IIoT endpoint. SkipJack is an old cryptographic algorithm and

was withdrawn from use by the NIST in 2016 [47]. DES is both an old and weak algorithm

that was withdrawn in 2005 when it was superseded by AES [43]. RC6 is a non-standard

algorithm, which was developed as a candidate for AES [48], while RC5, as a proprietary

algorithm of RSA Data Security Laboratories, may not be as freely available as an open-

source standard for public modification and use [40]. As a result, it may not be available

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 45

University of Pretoria

for public use or be an acceptable candidate for use in the industrial sector where the use of

standardised, safety-tested equipment and software is required.

2.4 TRADE-OFFS IN ESTABLISHING SECURITY FOR THE IIOT

Security for an IIoT endpoint unfortunately comes at the cost of a variety of trade-offs in

the overall endpoint design. These trade-offs may be in the form of the device

performance, cost or in the device size. To be able to design a secure IIoT endpoint, it is

important to identify where compromise will occur and to choose security solutions with a

trade-off that does not impact the device’s usefulness to the application for which it is

intended. By considering the trade-offs given in line with the industrial standards of safety

and security, a secured endpoint device can be designed in compliance with the different

industry regulations. Designers are also able to choose solutions that are future-upgradable,

preventing the need for physical redesigning as security solutions improve.

To that end, the trade-offs for the security solutions discussed in previous sections of this

work are identified and discussed with a brief summary of the main points being

highlighted in Table 2.11.

2.4.1 Physical Security

While it is vital that physical security measures be designed and included from the design

stage of a secure mote, they come at a variety of costs, which also need to be factored into

the design of the mote. External tamper sensing protections such as enclosure monitoring

sensors and electromagnetic leakage shields will need to be provided with sufficient space

and ventilation; leading to possible increases in enclosure sizes. Should the size increase

not be constrained, situations will arise in which the enclosure size becomes a limitation in

the application areas where the mote is used. Other considerations for external tamper

sensing protection include the consideration of power sources for the sensing circuitry; the

impact the additional drain may have on the lifetime of the mote’s power source; and the

design of maintenance accesses and strategies can that allow for upgrade work while not

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 46

University of Pretoria

introducing exploitable weak points that can be used by a malicious attacker. Physical

security measures for the mote processor such as anti-tamper mesh and physical

unclonable functions require careful design in order to disguise properly the signal and

wiring patterns that are of interest to malicious attackers, so not to impact the performance

of the processor. These measures also need to be implemented during the design phase of

the MCU, making their inclusion on legacy devices expensive or very difficult to achieve.

2.4.2 Secure and Trusted Execution

The use of HSM to implement a root of trust brings with it a variety of trade-offs in terms

of the power consumption and upgradability of the secure mote. The use of hardware

security chips as a security device shortens the security lifetime of the secure mote. As the

Trusted Computing Group (TCG) is continually working to upgrade the standard for TPM,

one may find that the standard on the HSM employed to provide a RoT may be superseded

by the newer standard sooner than expected, decreasing the level of trust that the secure

mote provides. As the chips are hard-soldered into the mote design, they would be difficult

to replace, and with large network deployments, such an operation would be highly

expensive and infeasible. The use of a separate hardware module could also lead to an

increase in the power consumption for the secure mote, both while active and while asleep.

Testing would need to be conducted in order to determine the factor by which the added

power drain reduces the effective lifetime of the mote’s power source. Addition of a

separate chip also serves to increase the possible PCB size for the mote in order to

accommodate the chip and could introduce delay in the MCU start-up and processing

times, as communication would now need to be routed through to the security module and

back. Again, tests would need to be conducted to determine the added delay time and

adjust the network operations to accommodate it within the application area requirements.

2.4.3 Isolation

The main problem facing the use of isolation techniques with the IIoT is the lack of

appropriate solutions. Hypervisor use is still primarily within tradition ICT systems.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 47

University of Pretoria

Although isolation is provided by within the ARM TrustZone TEE, the use of TrustZone is

currently limited to ARM MCU solutions and even then, to ARM MCUs with an

architecture that is TrustZone capable. Another trade-off with the use of TrustZone is that

the solution cannot be independently tested by developers for security compliance as a

result of a non-disclosure agreement. One is then limited to trusting the manufacturer’s

claims of compliance with security standards. The inability for independent compliance

verification may also negate the use of the TrustZone solution in safety-critical

applications where additional standards of safety may be required.

2.4.4 Attestation

As with isolation, the use of attestation in the IIoT lacks appropriate solutions that can be

implemented in a secure mote design. Commercially available solutions for attestation

remain primarily focused on single-prover methods, which are inappropriate for the peer-

to-peer nature of an IIoT network deployment. Academic solutions for attestation attempt

at designing multi-prover methods; however, these are still subject to a wide variety of

shortcomings that are to be handled as future work and lack overall consensus on

methodology, making the choice of a standard methodology with which to provide

attestation most difficult. In addition, academic solutions would need to be taken regarding

a lengthy, commercial development cycle in which verification and testing against industry

standards would still be required.

2.4.5 Cryptography

With any cryptographic solution, a number of trade-offs will occur, starting with the need

to ensure continuously that standard cryptography algorithms are in use and to check that

deprecations have not occurred for implemented algorithms. As with the HSM, a hardware

crypto accelerator would be difficult to upgrade in the event of the provided algorithm’s

deprecation. Additional care would also need to be taken to protect the communication

paths between the MCU and the crypto accelerator to ensure that no security information is

leaked. With the use of software cryptographic algorithm implementations, large increases

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 48

University of Pretoria

in memory occupation, large computation delays and increased power consumptions were

observed when implemented on older generation devices. Although these observed

performances may improve with the use of new generation IoT processors, software-

implementations of cryptography are unsuitable for use on legacy devices. This would then

either require a redeployment of the endpoint devices with newer, more future-proof

solutions or result in a network with a mixture of secure and insecure devices, which fails

to address adequately the security requirements of the network. In such instances, the use

of a security gateway may be able to provide a cryptographic ability for communications

originating from legacy, but these result in an increase in the overall network size. Also,

care would need to be taken to adjust the network with appropriate routing protocols in

order to prevent communication delays as a result of message queuing or instances of

message dropping should multiple devices try to communicate with the gateway at once.

Table 2.11 Summary of security solutions and trade-offs

Existing Solution Trade-Off

Physical Security

Enclosure Monitoring

Sensors

Increase in enclosure size to accommodate tamper sensors

Electromagnetic leakage

shields

Increase in IIoT mote size to accommodate shields

Physical Unclonable

Functions

Increased delay, decrease in available ROM and RAM

Anti-Tamper Mesh

Inclusion needed at design phase

Careful pattern design needed

Expensive/Difficult to include on legacy devices

Secure and Trusted Execution

Hardware Security

Modules

Increased device power requirements

Not upgradable in future

Increased PCB size to accommodate new integrated circuit

Added delay to transmit encrypted data

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 49

University of Pretoria

Existing Solution Trade-Off

Isolation

TEEs and ARM

TrustZone

Requires use of ARM MCU

Untested for security compliance because of non-disclosure

agreement

Attestation

Commercial Solutions Remain focussed on single-prover attestation

Academic Solutions

Still subject to a wide variety of shortcomings and lack of consensus

on methodology

Would still need to be verified and tested against industry standards

Cryptography

Software

Implementations

Large increase in memory occupation owing to large code sizes

Long computation delays introduced into network

Increased power consumption by endpoints

Need to use standard cryptography algorithms and constantly check

for algorithm deprecations

Hardware Crypto

Accelerators

Difficult to upgrade if algorithm is deprecated

Need to ensure protection of communication between accelerator and

MCU

From the trade-offs given, a general design for a secure mote can be made. By considering

the trade-offs given in line with the industrial standards of safety and security, a secured

endpoint device can be designed in compliance with the different industry regulations.

Designers are also able to choose solutions that are future-upgradable, preventing the need

for physical redesigning as security solutions improve.

Although a good number of solutions have been identified to create an implementation of

the IIC security framework, there are still gaps that have yet to be filled. Data loss

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 50

University of Pretoria

prevention techniques, hypervisor and container isolation techniques are still largely

focused on implementations for the traditional ICT devices such as PCs, and existing

solutions are highly unsuitable for use on an IIoT device. Device monitoring solutions such

as intrusion detection are still largely academic with no commercial, standard solutions

available for implementation on IIoT endpoints. Cryptographic functionality in secure

MCUs still exists as primary hardware-based implementations, although vendors are very

slowly beginning to offer cryptographic libraries for use on MCUs that do not have

dedicated security hardware included. This serves to make those solutions more ideal for

endpoint use as they are more easily upgradeable should cryptography algorithm standards

change. Further work would need to be conducted to determine the impact that the use of

vendor cryptographic libraries have on the MCU performance as compared to user-defined

software implementation of cryptographic algorithms and secure MCUs with

cryptographic functionality. The biggest gap prevalent is in the lack of open, standard

security solutions for the IIoT. One example of this is in the available software TEEs for

IoT devices, which is currently limited to ARM’s TrustZone implementation. The use of

vendor solutions means that configurations cannot be altered easily to suit design needs, or

new solutions cannot be created based on existing design structures without a possible

violation of the terms of use. It has also been previously identified that closed vendor

solutions cannot be tested for compliance owing to non-disclosure agreements. This means

that, even if a security device had been utilised on an IIoT endpoint, there is no guarantee

that the level of security provided is at the level required for compliance with industrial

regulations.

With the increasing concern towards securing the IoT, more MCUs and FPGAs are

providing a basis of security from which additional changes can be made when designing a

secure IIoT endpoint. Typically, this is achieved through the inclusion of a crypto engine

and hardware accelerated cryptology within the MCU or open libraries of cryptographic

standards, in addition to the inclusion of packaging and device sensors that provide for the

detection of hardware tampering.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 51

University of Pretoria

Table 2.12 Current secure MCUs for IIoT applications

Device

Name

Manu-

facturer CPU
Anti-

Tamper RoT

Digital

Sign.

Data

Inte-

grity

HW

Crypto. Isolation

SW

Crypto.

Smart

Fusion

2 SoC

FPGA

[49]

Microsemi

32-bit

ARM

Cortex

M3

Yes Yes ? Yes Yes ? Yes

A710x

family

[50]

NXP

MX51

security

CPU

Yes Yes Yes Yes Yes ? Yes

MAXQ

1852

[51]

Maxim

32-bit

MAXQ

30 RISC

Core

Yes ? Yes Yes Yes Yes ?

TM4C

12x

[52]

TI

32-bit

ARM®

Cortex®

-M4

with

FPU

Yes - - Yes Yes Yes Yes

MAXQ

1050

[53]

Maxim

32-bit

MAXQ

30 RISC

Core

Yes ? Yes Yes Yes ? ?

MAXQ

1061

[54]

Maxim

32-bit

MAXQ

30 RISC

Core

Yes Yes Yes Yes Yes ? ?

ST

SAFE-

A100

[55]

STM

Not

Disclo-

sed

? ? Yes Yes Yes ? Yes

ST

SAFE-

J100

[56]

STM

32-bit

ARM

SecurCo

-re

RISC

Yes ? Yes Yes Yes ? Yes

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 52

University of Pretoria

Zynq

Ultra

Scale
MPSoC

CG

[57]

Xilinx

32-bit or

64-bit

Dual-

core

ARM®

Cortex

A53

MPCore

- Yes Yes Yes Yes Yes ?

AM335

x

(Sitara)

[58]

TI

32-bit

ARM

Cortex-

A8

- Yes - Yes Yes Yes -

PIC32

MZ-

EF/EC

[59]

Microchip
32-bit

PIC
- - - Yes Yes Yes -

The symbols used in Table 2.12 serve to indicate the following; Yes = Security feature explicitly stated as

being included by manufacturer, ? = Insufficient or contradictory information from manufacturer regarding

the inclusion of this feature, - = Feature not included on device

Table 2.12 gives a brief list of MCUs that can be utilised in low power, IoT applications.

These MCUs typically employ the use of 32-bit processors, an improvement on the 8-bit

and 16-bit processors that had been used in the past. Those have had some combinations of

security measures added as an effort to provide more secure device operation, such as

cryptography, secure key storage, tamper resistance, tamper monitoring, authentication

through hashing and, in the cases of the TrustZone-enabled ARM devices, a trusted

environment. The implementations are done to minimise the overall delay and power

consumption of the resultant IIoT endpoint. In some of the devices, not all the features

identified for device security are implemented and in others, where it is unclear in the

device datasheet whether a feature has been implemented on the device, a question mark is

used as an indicator for that security feature.

Although a good number of solutions have been identified to create an implementation of

the IIC and OpenFog security frameworks, there are still gaps which have yet to be filled.

Looking at Table 2.12, with MCUs such as the NXP A710x [50], the Maxim MAXQ1852

[51] and hybrid implementations such as Microsemi’s SmartFusion2 [49], one can see that

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 53

University of Pretoria

manufacturers are capable of providing many of the required security features; however,

none of the secure MCUs have provided all the features required for a secure mote,

highlighting the need for multi-layer security solutions. Some techniques require design

and manufacturing in different engineering sectors from MCU design, such as PCB board

and enclosure design for the inclusion of external tamper detection, and some features,

such as data loss prevention techniques, hypervisor and container isolation techniques,

remain largely focused on implementations for the traditional ICT devices such as PCs. As

a result, existing solutions for these features are highly unsuitable for use on an IIoT

device, and in-depth design and development is needed in order to push for the inclusion of

these security features within the IoT. This requires increased collaboration across various

fields in engineering and computer science along with increased collaborative development

efforts between academia, as well as private and public sectors. Also linking to the

increasing need for collaboration, device monitoring solutions for the IIoT, such as

intrusion detection, are still largely academic and a larger push needs to be made towards

the development and verification of usable, commercial, standard solutions based on

research efforts already concluded. Cryptographic functionality in secure MCUs still exists

as primary hardware-based implementations although vendors are very slowly beginning to

offer cryptographic libraries for use on MCUs that do not have dedicated security hardware

included. The software libraries offered by STMicroelectronics [60] and Texas Instruments

[61] are two such examples. The release of verified, software cryptographic libraries serves

to make the inclusion of encryption and decryption services easier and more ideal for

endpoint use; as software has been seen to be more easily implemented and upgradable

than hardware cryptography chip implementations in cases where algorithm standards

change, extending the lifetime of network deployments. Further work would need to be

conducted to determine the impact that the use of vendor cryptographic libraries have on

the MCU performance as compared to a user-defined software implementation of

cryptographic algorithms and secure MCUs with cryptographic functionality.

The biggest challenge facing the IIoT at the moment is in the lack of open, standard

security solutions for the IIoT. One example of this is in the available software TEEs for

IoT devices, which is currently limited to ARM’s TrustZone implementation. The use of

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 54

University of Pretoria

vendor solutions means that configurations cannot be altered easily to suit design needs, or

new solutions cannot be created based on existing design structures without a possible

violation of the terms of use. It has also been previously identified that closed vendor

solutions cannot be tested for compliance owing to non-disclosure agreements. This means

that, even if a security device had been utilised on an IIoT endpoint, there is no guarantee

that the level of security provided is at the level required for compliance with industrial

regulations. Another instance in the limitations imposed by non-disclosure agreements and

the lack of standard security offerings can be seen by considering Table 2.12 once more.

Ambiguity is created in the true feature offerings for some of the MCUs, indicated with a

question mark, where the information provided by manufacturers is vague or cannot be

confirmed owing to provisions of non-disclosure. This hampers the ability for one to

compare adequately solution offerings between manufacturers in order to select the device

most appropriate for an application.

While there is some work currently being done to remedy the lack of standards for the

IIoT, seen in the recent security frameworks developed by the IIC [2] and the OpenFog

Consortium [8] and the standard for TPMs developed by the Trusted Computing Group

[17], more standards need to be developed as a preventative and protective strategy for the

IIoT sphere; allowing for accountability and verifiability to be placed on manufacturer

designs and preventing a situation in which the IIoT could end up being flooded with

designs that, ultimately, are incompatible with others and serve to open the already existing

security holes further.

2.5 CHAPTER SUMMARY

In this chapter, a detailed introduction to the topic of security for the IIoT was presented,

highlighting the characteristics of emerging and existing security frameworks and the

previous work completed in trying to secure IIoT edge devices. Emphasis was placed on

the specific security requirements proposed for devices at the edge of an IIoT network, as

they are to form the basis of the design of a secure IIoT endpoint device.

CHAPTER 2 LITERATURE STUDY

Department of Electrical, Electronic and Computer Engineering 55

University of Pretoria

In Section 2.2 an introduction to the open security architectures developed by the IIC and

the OpenFog Consortium was given. The recommendations made by both organisations

regarding the design of a secure IIoT endpoint device were highlighted.

In Section 2.3 a detailed look was taken into the recommendations made by the

architectures; highlighting the technologies currently available for use in the IIoT sector

and identifying areas in which further development is required.

In Section 2.4 the chapter was concluded and served to identify the trade-offs associated

with the application of security on an IIoT endpoint node.

The following chapter serves to introduce the experiment design for this research,

identifying the equipment chosen to conduct the testing and the experiment procedures

used.

CHAPTER 3 METHODS

3.1 CHAPTER OBJECTIVES

This chapter serves to introduce the experimental setup and methodology used towards

answering the research questions posed at the beginning of this work. The chapter gives a

detailed insight into the experiment aims, equipment, tools, setup and methodology used

during the testing of the identified cryptographic algorithms.

In Section 3.2 the aim of the experiments conducted in this research is given.

In Section 3.3 the cryptographic algorithms chosen for the experiments are identified with

a brief motivation for their selection.

In Section 3.4 the equipment used to conduct the experiments is given along a brief

motivation for their selection.

In Section 3.5 the experiment methodology is presented, detailing the steps taken towards

determining the execution time, memory occupation and power consumption of each

cryptographic algorithm running on the selected evaluation boards.

Section 3.6 provides a brief summary of the main topics covered and serves to conclude

the chapter.

3.2 AIM

To date, studies regarding cryptography in the Internet of Things have been primarily

focused on older generation platforms such as the Atmega128L. This has resulted in the

prevailing view that IoT processors are incapable of supporting cryptographic operations in

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 57

University of Pretoria

software owing to the additional operational strain that cryptographic algorithms put on

already resource-constrained devices. Over the last decade, however, processors for the

IoT have progressed and expanded their resource offerings; subsequently moving from 8-

bit and 16-bit processor architectures to 32-bit and 64-bit processor architectures. The aim

of this experiment is to determine the performance of a new generation IoT microprocessor

series when loading and running software-implemented cryptographic algorithms capable

of encryption, decryption and key generation using pseudo random number generation.

The experiment considers three (3) main metrics:

 Algorithm Execution Time: defined as the time taken for key generation (if utilised

by the algorithm), encryption, and decryption.

 Algorithm Power Consumption: defined as the power utilised by the MCU while

executing the cryptographic algorithm.

 Memory Occupation: defined as the amount of MCU Flash and RAM memory

utilised by the cryptographic implementation.

In the following sections, the equipment, tools and methodology used over the duration of

the experiment are described.

3.3 CRYPTOGRAPHIC ALGORITHMS

The OpenFog security reference architecture [8] defines a list of cryptographic algorithms

that are to be incorporated into the design of a secure mote for the IIoT. For the purposes

of this research, three were chosen from the extensive list: the Advanced Encryption

Standard (AES) as the symmetric algorithm, the Elliptic Curve Digital Signature

Algorithm (ECDSA) as the public key algorithm, and the Secure Hashing Algorithm

(SHA) as the hash generation algorithm. As published standards, the full implementation

details of the algorithms are readily available from the NIST as FIPS PUB 197 for AES

[42], FIPS PUB 186-4 for ECDSA [62], and FIPS PUB 180-4 for SHA [45]. As the chosen

algorithms are also often to be found implemented as hardware accelerated chips, this

allows for performance comparisons between the software and hardware implementations

to be made in future studies.

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 58

University of Pretoria

From the chosen algorithms, a variety of key length and operation modes can be chosen,

some of which are more appropriate for use in the IIoT than others, and some of which are

purported to be more secure than others. The smallest secure key lengths for AES and

SHA, as identified by the OpenFog architecture, were chosen in order to demonstrate the

performance capabilities of the IoT processors as they implemented the minimum

requirement for node security. This resulted in the use of AES128 and SHA256 for this

research. In future studies, longer key expansions will be tested in order to determine the

longest length supportable by the processors without significant impact on their processing

resources. For AES, Counter Mode (CTR) was chosen for its simplicity, proven security

and overall efficiency when running on software and hardware.

3.4 EQUIPMENT AND TOOLS

A wide variety of hardware and software tools were used over the course of this research.

This section gives a brief description of the equipment used and the motivation behind

their selection towards answering the research question proposed.

3.4.1 The ARM Cortex-M Processor Family

As some of the foremost modern processor series for the Internet of Things, the ARM

Cortex-M family were the processors of choice for the testing cryptographic algorithms.

The family currently consists of seven processors– M0, M0+, M3, M4, M7, M23 and

M33– although the most recent processors, the M23 and M33, have yet to be available on

development or prototyping boards. Within the processor family, M0, M0+ and M23 are

intended for applications which require minimal monetary cost, power, and area [63]; the

M3, M4, and M33 are intended as mid-range choices, balancing performance and energy

efficiency [63]; and the M7 is intended to provide maximum performance, making it ideal

for high processing applications [63].

A variety of ARM architectures have been implemented across the M-series. The M0+ and

M3 have implemented the ARMv6 architecture; the M0, M4 and M7 have implemented

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 59

University of Pretoria

the ARMv7 architecture and the new M23 and M33 will implement ARM’s latest ARMv8

architecture and will be ARM TrustZone capable; allowing for the establishment of a RoT

and TEE in the processors [63]-[67].

As ARM does not physically produce silicon, there are a number of vendors from whom

the processors can be purchased. As a result, variations in processing speed and available

peripherals can occur. For the purposes of this research, the STM32 development boards

were chosen after taking into consideration the availability of the boards in South Africa,

cost, processing speeds, development tools and available peripherals on the evaluation

boards. Figure 3.1 shows the STM32F0Discovery [68], STM32VLDiscovery [69],

STM32F4Discovery [70] and STM32F767-Nucleo144 [71] evaluation boards used for this

research, which are distributed with the M0 [64], M3 [65], M4 [66], [67] and M7 [67]

processors. The processors chosen cover a wide spectrum of operating frequencies

available in the processor series while two of the three architectures available across the

series are represented. The operating frequency of the M3 distributed on the STM32VL

comes close to the minimum available frequency at 24MHz [69] while the M7 distributed

on the STM32767-Nucleo comes close to the maximum available frequency for the

processor at 216MHz [71]. The processors were also able to represent the improvements

made by ARM in the development of IoT processors in recent years, as the announcement

dates for the chosen processors cover the ten (10) year period between 2004 and 2014.

Figure 3.2 gives an illustration of the development timeline and the respective clocking

frequencies of the STM32 development board processors as compared to the known

general maximum operating frequencies for the specific M-series processor [72].

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 60

University of Pretoria

Figure 3.1 STM32 Development boards

Figure 3.2 Release timeline and operating frequencies of Cortex-M series processors

STM32F1 (M3)

STM32F4 (M4)

STM32F0 (M0)

STM32F7 (M7)

M3 Max

M4 Max

M0 Max

M7 Max

0

50

100

150

200

250

300

350

400

450

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

O
p

er
at

in
g

fr
eq

u
en

cy
 (

M
H

z)

Year

Maximum STM32 operating frequencies vs known maximum
processor operating frequencies

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 61

University of Pretoria

3.4.2 STM Cube MX and X-Cube Cryptographic library

STMicroelectronics has provided a variety of software tools to aid in the faster

development of projects for their solution chains. One such tool is the CubeMX graphical

microcontroller configuration tool, seen in Figure 3.3.

Figure 3.3 STM CubeMX graphic configuration for the STM32F767-Nucleo144

CubeMX provides a graphic interface that developers can use in order to select clocks,

GPIO pins, peripherals and startup configurations easily for their MCU [73]. Conflict

resolution for pin-outs, clock configuration validation, and power estimations are built

within the configurator, helping to diminish the development time spent debugging

incorrect user microcontroller configurations [73]. Once the developer is satisfied with the

MCU configuration, the tool is then capable of generating the C initialisation code

according to the specifications of one’s preferred development environment, implementing

the use of hardware abstraction layers to improve code portability [73]. CubeMX also

allows for easier installation of various firmware libraries, leading to a shortened

development lifecycle.

One such firmware library is the cryptographic library X-CUBE-CRYPTOLIB used over

the course of this research. The library implements a variety of standard and non-standard

cryptographic algorithms. Some of the algorithms within the library, which in this research

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 62

University of Pretoria

was AES 128-CTR, SHA-256 and ECDSA, have been certified for industrial use by the

NIST Cryptographic Algorithm Validation Program [60]. The program provides

independent, accredited “validation testing of FIPS approved and NIST recommended

cryptographic algorithms” [74] with the aim of providing assurance to various agencies

and industrial sectors that the cryptographic algorithms validated have been implemented

correctly according to the official standards and of providing confidence that the

algorithms do provide their claimed level of security [74]. The certification of the

algorithms tested was the main decider in the use of the cryptographic library as opposed

to a general C implementation of the algorithms as the code tested can be implemented

directly in an industrial application without the need to go through an independent

validation and certification process. The performance, memory occupation and

consumption results seen within this research may be used as a guideline for product

estimations to be used in industrial applications given that the algorithms tested have been

pre-approved for use.

The X-Cube library is supported by the entire Cortex-M series; with implementations

given in pure software and with support for hardware accelerated MCUs. Runnable

implementations for specific MCU models from the series are provided for IAR Embedded

Workbench, Keil and TrueStudio with templates available for easy porting to the other

MCU models in the Cortex-M series. A drawback seen in the use of the cryptographic

library with CubeMX is the current incompatibility of the library and the configuration

tool. As at the writing of this dissertation, CubeMX was unable to load the X-CUBE-

CRYPTOLIB firmware directly into the MCU configuration. A simple workaround, which

is fully documented in [75], did, however, allow for the use of CubeMX and the

cryptographic library.

3.4.3 Atollic TrueSudio

Atollic TrueStudio is an Eclipse-based integrated development environment (IDE) focused

on the development of ARM-based projects [76]. The IDE provides a GCC compiler,

C/C++ assembler and linker with support for debug probes such as ST-Link, SEGGER and

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 63

University of Pretoria

P&E micro [76]. Other features include support for integrated bug tracking, code editing,

project management and version control tools [76]. The IDE is available in a Lite version,

which is free to download, and a Pro version, which adds many additional features to the

Lite version including a build/memory analyser, stack analyser and multi-core debugging

[76]. For this research, the inbuilt ST-Link debugger, and the build/memory analyser were

used, respectively, to enable MCU development and the determination of the memory

occupation for each cryptographic algorithm.

3.5 EXPERIMENT METHODOLOGY

To determine the performance of the cryptographic algorithms on the Cortex-M

processors, three (3) main metrics were considered: execution time, power consumption

and memory occupation. Each experiment was repeated twenty (20) times in order to

average out possible variations that may occur in single readings and to provide a more

accurate estimation of execution time and power consumption. The following sections give

a more detailed breakdown of the experiment setup followed for each metric.

3.5.1 Determining cryptography execution time

Execution time measurements were taken by toggling a chosen GPIO pin and using a

Tektronix TDS3012B oscilloscope to measure the waveform width time between the

falling and rising edges as the algorithm runs to completion. The physical experiment setup

is seen in Figure 3.4 (a) and (b). The GPIO output pins of the blue LED were chosen for

measurement in order to provide an additional visual indicator of successful execution.

Table 3.1 gives a summary of the GPIO pin numbers that were used for timing as given for

the different development boards.

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 64

University of Pretoria

Table 3.1 GPIO pins used for cryptographic algorithm timing

Development Board Processor GPIO Pin

STM32F0Discovery Cortex M0 PC8

STM32VLDiscovery Cortex M3 PC8

STM32F4Discovery Cortex M4 PD15

STM32F767Nucleo-144 Cortex M7 PB7

 (a) (b)

Figure 3.4 Execution time experiment setup

(a) Oscilloscope setup shown using the STM32F0Discovery. (b) Close-up of probe

connections.

Different pin toggling points were set within the cryptography code in order to determine

the execution time for (a) the entire cryptographic algorithm, (b) the encryption portion of

the algorithms, and (c) the decryption portion of the algorithm. During the default

initialisation of the variables and methods used by the algorithm, the GPIO pin was set to

high. Prior to the start of the cryptographic processes, the GPIO pin was pulled low. Once

the algorithm had finished running, the GPIO pin was pulled high again. The subsequently

square waveform was shown on the oscilloscope, which was set to trigger once the

measured voltage on the probe surpassed 50% of the pin voltage. The width measurement

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 65

University of Pretoria

of the waveform, given by the oscilloscope, determined the execution time of the

algorithm.

After having captured the waveform, the debugger was terminated and reset to ensure that

the MCU was erased of the previous instance of the algorithm. The sequence of events was

then repeated over twenty (20) runs, before changing the toggling points in order to

measure the execution times of the next portions of the algorithm. The timestamps visible

on each waveform were used to match the captured waveform, as well as the measured

execution time, with its relevant run number. Figure 3.5 (a) - (c) gives the waveform

captures seen for AES128-CTR when run on the STM32F0Discovery. These show the

execution times measured during the first runs when toggling the pin for the entire

algorithm, the encryption portion of the algorithm, and the decryption portion of the

algorithm.

(a) (b)

(c)

Figure 3.5 Execution time waveforms for a single run of AES128-CTR experiment on

STM32F0Discovery

(a) Full algorithm, (b) Encryption only and (c) Decryption only

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 66

University of Pretoria

After concluding the necessary runs for the three algorithms under consideration, the

boards were switched out and the test sequence started from the beginning using the new

board.

3.5.2 Determining cryptography power consumption

To determine the power consumption of the cryptographic algorithms, the current

consumption module (IDD) found on the development boards was used in conjunction with

a 1.2 Ω shunt resistor in order to measure the voltage drop seen across the resistor during

the execution of the cryptographic algorithms. With the resistance of the 1.2 Ω resistor

confirmed as 1.3 Ω, when measured using a multi-meter; this was the resistance value used

in the power calculations within this study. The measured voltage was then used in

conjunction with Ohm’s Law and the Power Equation to calculate the power consumption

of the MCU seen when executing the identified algorithms.

The current consumption module is available on the Discovery and Nucleo boards and is

activated by the removal of the IDD jumper. Table 3.2 gives a summary of the different

jumper numbers for IDD across the different development boards, as given in the relevant

user manuals.

Table 3.2 Summary of jumper pin numbers for the current consumption module

Development Board Processor IDD Module Jumper

No.

STM32F0Discovery Cortex M0 JP2

STM32VLDiscovery Cortex M3 JP1

STM32F4Discovery Cortex M4 JP1

STM32F767Nucleo-144 Cortex M7 JP5

For the experiment, two channels were used with a Rigol DS1104Z oscilloscope. Channel

one (1) was used to measure the voltage drop across the resistor while channel two (2) was

used to visualise the execution time waveform generated when toggling the GPIO pins.

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 67

University of Pretoria

Having the two waveforms on-screen, the voltage drop waveform was matched with the

execution time waveform, allowing for the identification of the portion of the MCU

consumption that occurred as a result of the execution of the cryptographic algorithms. As

only one power source may be used at a time with the development boards [70], power was

provided to the boards using the USB connection, as opposed to an external power source,

in order also to enable loading the cryptographic algorithms onto the MCUs through the

debugger. The physical experiment setup for current measurement, following the

measurement method described in [77], can be seen in Figure 3.6 (a) and (b).

(a) (b)

Figure 3.6 Physical setup of the power consumption experiment

(a) Entire setup and (b) Close-up of development board connections

As with the execution time experiments, the GPIO pin was toggled LOW during the

instantiation of the variables and methods. Prior to the execution of the cryptography

algorithm, the pin was toggled HIGH. Once the pin was pulled LOW again, the algorithm

had successfully concluded. In order to isolate the voltage consumed during the execution

of the cryptographic algorithms, measurement boundaries equal to the width of the

execution time waveform were set using the cursor feature on the oscilloscope. The

average voltage of the bounded portion of the waveform was then given by the

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 68

University of Pretoria

oscilloscope, which can be identified from the sample waveform in Figure 3.7 as the VPP

measurement.

Figure 3.7 Execution time and bounded voltage waveform for SHA256 running on the

STM32VLDiscovery

For this experiment, the power consumption was only measured for the whole

cryptographic algorithm as a worst-case scenario. The experiment was again repeated

twenty (20) times for each board, terminating and restarting the debugger to ensure the

erasure of the MCU between runs.

3.5.3 Determining memory occupation

The memory occupation of the cryptographic algorithms was determined using the

Build/Memory analyser feature of Atollic TrueStudio Pro. The build/memory analyser

utilised the elf file generated for the use of the debugger in order to give a detailed

breakdown of the memory utilization for each algorithm build in RAM and Flash [78].

This can be seen in Figure 3.8 (a) and (b), which shows the memory occupation of

AES128-CTR on the STM32F4Discovery. The analyser can be switched also to view the

stack utilisation of the algorithms; however, that was beyond the scope of this research.

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 69

University of Pretoria

(a)

(b)

Figure 3.8 Memory occupation of AES128-CTR on the STM32F4Discovery

(a) Summary version (b) Detailed expansion version

While conducting the experiments to determine the memory occupation, it was discovered

that a rebuild of the program had no effect on changing the memory occupation of the

algorithms. The inclusion of the GPIO toggling instructions also had minimal effect on the

resulting memory occupation of the algorithms.

3.6 CHAPTER SUMMARY

This chapter served to detail the hardware and software tools and experiment methodology

used towards the completion of this research. The STMicroelectronics development boards

were chosen in addition to the AES128-CTR, ECDSA and SHA256 algorithms from the

CHAPTER 3 METHODS

Department of Electrical, Electronic and Computer Engineering 70

University of Pretoria

X-Cube cryptographic library. An oscilloscope was used in measuring the execution time

and power consumption of the Cortex-M series MCUs, while the Atollic TrueStudio

Build/Memory analyser was used to determine the memory occupation of the algorithms.

In Section 3.1 the chapter objectives and overview were presented.

In Section 3.2 the aim of the experiments conducted in this research were given.

In Section 3.3 the cryptographic algorithms chosen for the experiments were identified

with a brief motivation for their selection.

In Section 3.4 the equipment used to conduct the experiments was given along a brief

motivation for their selection.

In Section 3.5 the experiment methodology was presented, detailing the steps taken

towards determining the execution time, memory occupation and power consumption of

each cryptographic algorithm running on the selected evaluation boards.

The following chapter serves to report and give a brief analysis of the results from the

experiments conducted in this chapter.

CHAPTER 4 RESULTS

4.1 CHAPTER OBJECTIVES

This chapter presents the graphical and statistical results of the execution performance,

memory occupation and power consumption experiments conducted in Chapter 3. It begins

to answer the research question proposed at the beginning of this study. The chapter is

intended to serve as an introduction to the full discussion of the results presented in

Chapter 5.

In Section 4.2 the results of the execution time experiments are given for AES128-CTR,

ECDSA and SHA256; giving the mean execution time, standard deviation and standard

mean error for the Cortex-M processors.

In Section 4.3 the results of the power consumption experiments are given for AES128-

CTR, ECDSA and SHA256; giving the mean power consumption, standard deviation and

standard mean error for the Cortex-M processors.

In Section 4.4 the results of the memory occupation experiments are given for AES128-

CTR, ECDSA and SHA256; giving the RAM and Flash consumed by the algorithms on

the Cortex-M processors.

Section 4.5 provides a brief summary of the main topics covered and serves to conclude

the chapter.

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 72

University of Pretoria

4.2 EXECUTION PERFORMANCE

The experimental procedure calculating the execution time for each of the cryptographic

algorithms across the Cortex-M family was presented in Section 3.5.1 of Chapter 3.

Twenty (20) individual runs were conducted, with the previous instance of the program

being erased from the MCU through the instantiation of a new debugger session between

each run. The time taken to execute the entire algorithm was measured, with additional

encryption and decryption execution times being measured as separate experiments for the

symmetric algorithms, AES128-CTR and SHA256. The results of the experiments have

been collated and presented in the following sections, rounded to three decimal points.

To determine the statistical error of the measured results over the number of runs N, the

mean (𝑋̅), standard deviation (𝜎𝑋) and standard error of the mean (𝜎𝑋̅) were determined

using (4.1) to (4.3).

𝑋̅ =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖=1 (4.1)

𝜎𝑋 = √
1

𝑁
∑ (𝑋𝑖 − 𝑋̅)2𝑁

𝑖=1 (4.2)

𝜎𝑋̅ =
1

√𝑁
𝜎𝑋 (4.3)

4.2.1 AES128-CTR

As a symmetric algorithm, three execution time measurements were taken during the

AES128-CTR experiments: the execution time for the cryptographic algorithm as a whole,

the time taken only for encryption operations, and the time taken only for decryption

operations. Figure 4.1 gives the results of the execution of the full algorithm while Figures

4.2 and 4.3 give the results of the execution times for the encryption and decryption

operations respectively.

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 73

University of Pretoria

Figure 4.1 Execution time of Cortex-M series processors running AES128-CTR

Figure 4.2 Execution time of Cortex-M series processors running AES128-CTR (encryption only)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[µ

s]

Run number

Cortex-M family AES128-CTR execution time

M0

M3

M4

M7

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[µ

s]

Run number

Cortex-M family AES128-CTR execution time (encryption)

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 74

University of Pretoria

Figure 4.3 Execution time of Cortex-M series processors running AES128-CTR (decryption only)

Looking at the three figures, it could be seen that very little deviation occurred over the

twenty (20) runs. With an operating frequency of 24 MHz, the M3 had the longest running

times while the M7, with the largest operating frequency of 216 MHz, had the shortest

running times. Surprisingly, the performance of the M4, with an operating frequency of

168 MHz, was close to the performance of the M7, which ran approximately 140.334 µs

faster than the M4 with a 22.222% speed increase over processor. Comparing the

execution times seen in Figures 4.2 and 4.3, one could see that the time spent for

encryption or decryption in AES128-CTR was nearly identical

To confirm mathematically the trends visible in the graphs, the results from the runs were

used to calculate the mean, standard deviation and standard error for execution time

estimates for each of the MCU, which are given in Tables 4.1 to 4.3:

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[µ

s]

Run number

Cortex-M family AES128-CTR execution time (decryption)

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 75

University of Pretoria

Table 4.1 Execution Time Mean, Standard Deviation and Standard Error for MCUs running

AES128-CTR

Using the result above, the total execution time for AES128-CTR on the Cortex-M

processors was estimated as follows:

M0: 486.470 µs ± 0.039 µs

M3: 1578.500 µs ± 0.199 µs

M4:193.870 µs ± 0.047 µs

M7: 80.667 µs ± 0.005 µs

Table 4.2 Execution time mean, standard deviation and standard error for MCUs running AES128-

CTR (encryption only)

Similarly, using the results in Table 4.2, the execution time for the encryption operations

could be estimated as:

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[µs] [µs] [µs]

M0 486.470 0.175 0.039

M3 1578.500 0.889 0.199

M4 193.870 0.208 0.047

M7 80.667 0.021 0.005

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[µs] [µs] [µs]

M0 243.385 0.075 0.017

M3 786.175 0.210 0.047

M4 96.984 0.068 0.015

M7 44.000 0.000 0.000

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 76

University of Pretoria

M0: 243.385 µs ± 0.017µs

M3: 786.175 µs ± 0.047 µs

M4: 96.984 µs ± 0.015 µs

M7: 44.000 µs ± 0.000 µs

Table 4.3 Execution time mean, standard deviation and standard error for MCUs running AES128-

CTR (decryption only)

The execution time for the decryption operations was estimated from the results in Table

4.3 as:

M0: 243.735 µs ± 0.021µs

M3: 792.670 µs ± 0.042 µs

M4:96.704 µs ± 0.015 µs

M7:37.071 µs ± 0.003 µs

From the estimations, it could be seen that, indeed, very little deviation occurred over the

course of the execution time experiments and that equal periods of time were spent on the

individual encryption and decryption operations; confirming the trends visible in the

graphs. From the four (4) processors, the M3 presented the largest, observed deviation for

the total execution time, encryption time and decryption time, while the M7 presented the

least amount of deviation; with an instance of no deviation being observed over the twenty

(20) runs measuring time spent on encryption operations.

It was also observed that, on three of the four (4) Cortex-M processors, AES128-CTR was

capable of running within microseconds while the M3 ran AES128-CTR at an average

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[µs] [µs] [µs]

M0 243.735 0.093 0.021

M3 792.670 0.187 0.042

M4 96.704 0.067 0.015

M7 37.071 0.014 0.003

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 77

University of Pretoria

execution time of 1.578ms. Dependent on the allowed delay tolerance for a particular

application, the observed execution times of AES128-CTR on the Cortex-M processors

may be sufficiently fast for the algorithm to be considered for use, without introducing

significant delay into the network, on IIoT nodes used in hard real-time operations.

4.2.2 ECDSA

The STM Cryptographic library implements two versions of ECDSA: one version that only

implements signature generation and verification from pre-loaded public and private keys

– identified within this study as ECDSA (Sign-Verify), and another version that utilises a

pseudo random number generator (PRNG) for key generation – identified within this study

as ECDSA (Key Gen- Sign-Verify). The execution times for both algorithms on the

Cortex- M processors were determined over twenty (20) runs. Figure 4.4 gives the

observed results of ECDSA without key generation while Figure 4.5 gives the results for

ECDSA with key generation:

Figure 4.4 Execution time of Cortex-M series processors running ECDSA (Sign-Verify)

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[s

]

Run number

Cortex-M family ECDSA (Sign and Verify) execution time

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 78

University of Pretoria

Figure 4.5 Execution time of Cortex-M series processors running ECDSA (Key Gen-Sign-Verify)

As with AES128-CTR, very little deviation was observed over the course of the execution

time experiments. Interestingly, the performances of the M4 and M7 when running both

versions of the public key algorithm were nearly identical. This was seen where the graph

illustrating the performance of the M4 was almost completely obscured by the graph

illustrating the performance of the M7. Also interesting to note was that the inclusion of

key generation had, in essence, doubled the execution time of ECDSA on the processors as

opposed to the use of pre-loaded keys. This resulted in delays that were seconds long;

particularly in the case of the M3, where the execution time could add a delay that was

nearly half a minute long.

Mathematically, the visible trends were confirmed using the results to calculate the mean,

standard deviation and standard error for the execution time estimates for each of the

MCU. These are given in Tables 4.4 to 4.7:

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[s

]

Run number

Cortex-M family ECDSA (Key Gen, Sign and Verify) execution time

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 79

University of Pretoria

Table 4.4 Execution time mean, standard deviation and standard error for MCUs running ECDSA

(Sign-Verify)

Using the mean and standard error the estimated execution time for ECDSA without key

generation was given as follows:

M0: 7.101 s ± 0.000 s

M3: 12.342 s ± 0.001 s

M4: 0.572 s ± 0.000 s

M7: 0.471 s ± 0.000 s

Table 4.5 Execution time mean, standard deviation and standard error for MCUs running ECDSA

(Key Gen- Sign-Verify)

Similarly, the estimated execution time for ECDSA including key generation was given as:

M0: 16.600 s ± 0.000 s

M3: 29.284 s ± 0.001 s

M4: 1.362 s ± 0.000 s

M7: 1.141 s ± 0.000 s

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[s] [s] [s]

M0 7.101 0.002 0.000

M3 12.342 0.004 0.001

M4 0.572 0.000 0.000

M7 0.471 0.000 0.000

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[s] [s] [s]

M0 16.600 0.000 0.000

M3 29.284 0.005 0.001

M4 1.362 0.000 0.000

M7 1.141 0.000 0.000

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 80

University of Pretoria

Apart from the very small deviation seen in the results for the M3, the estimated execution

mean times for ECDSA on the Cortex-M series, both with and without key generation,

show no deviation. This could allow for the employment of delay tolerance strategies using

a pre-set delay estimate. However, with the longer estimated execution times, ECDSA may

not be suited for hard real-time industrial applications. The use of the PRNG for key

generation only served in nearly doubling the execution time of the algorithm. This

observation did not provide much confidence in the performance of other public key

cryptography algorithms or the inclusion of public key cryptography at the edge of the IIoT

network. In this instance, should a public key algorithm need to be used on an edge node,

the use of a hardware accelerator with true random number generation may be needed to be

employed to avoid the introduction of long delays into the network.

4.2.3 SHA256

As in the experiment with AES128-CTR, three execution time measurements were taken

during the SHA256 experiments: the execution time for the hashing algorithm as a whole,

the time taken for only hash generation operations, and the time taken for operations

confirming the validity of the message digest.

Figure 4.6 gives the results of the execution time for the full algorithm, while Figures 4.7

and 4.8 give the results of the execution time for hash generation and digest verification

operations respectively.

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 81

University of Pretoria

Figure 4.6 Execution time of Cortex-M series processors running SHA256

Figure 4.7 Execution time of Cortex-M series processors running SHA256 (hash generation only)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[µ

s]

Run number

Cortex-M family SHA256 execution time

M0

M3

M4

M7

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[µ

s]

Run number

Cortex-M family SHA256 execution time (hash generation)

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 82

University of Pretoria

Figure 4.8 Execution time of Cortex-M series processors running SHA256 (message digest

checking only)

Quite interestingly, the observed performances of the M4 and M7 for the total execution

time, hash generation and digest verification were, once again, close to identical. In the

three (3) figures, the graph illustrating the observed performance of the M4 had been

obscured owing to an overlap with the graph illustrating the performance observed for the

M7 processor. Another observation of interest was that the majority of the execution time

observed for SHA256 was utilised in the generation of the hash function. In comparison,

the time spent during the validity checking of the generated message digest was minimal.

Once again, in order to confirm mathematically the trends observed from the graphs, the

results from the experiment runs were used to calculate the mean, standard deviation and

standard error for the execution time estimates of each of the MCU. They are given in

Tables 4.6 to 4.8:

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec

u
ti

o
n

 t
im

e
[µ

s]

Run number

Cortex-M family SHA256 execution time (message digest check)

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 83

University of Pretoria

Table 4.6 Execution time mean, standard deviation and standard error for MCUs running SHA256

Using the results above, the total execution times for SHA256 on the Cortex-M processors

were estimated as follows:

M0: 397.000 µs ± 0.046 µs

M3: 1124.000 µs ± 0.000 µs

M4: 57.361 µs ± 0.008 µs

M7: 56.029 µs ± 0.004 µs

Table 4.7 Execution time mean, standard deviation and standard error for MCUs running SHA256

(hash generation only)

From the results given in Table 4.7, the execution times for the hash generation operations

could be estimated as:

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[µs] [µs] [µs]

M0 397.000 0.205 0.046

M3 1124.000 0.000 0.000

M4 57.361 0.035 0.008

M7 56.029 0.018 0.004

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[µs] [µs] [µs]

M0 384.040 0.123 0.028

M3 1075.750 0.444 0.099

M4 55.102 0.017 0.004

M7 50.438 0.006 0.001

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 84

University of Pretoria

M0: 384.040 µs ± 0.028 µs

M3: 1075.750 µs ± 0.099 µs

M4: 55.102 µs ± 0.004 µs

M7: 50.438 µs ± 0.001 µs

Table 4.8 Execution time mean, standard deviation and standard error for MCUs running SHA256

(message digest checking only)

Similarly, the execution times for the digest verification operations were estimated from

the results in Table 4.8 as:

M0: 13.086 µs ± 0.002 µs

M3: 48.371 µs ± 0.003 µs

M4: 2.363 µs ± 0.000µs

M7: 2.491 µs ± 0.001 µs

The foregoing estimations gave a better illustration of how close the observed execution

times for the M4 and M7 were. With the estimated mean for the full execution time, only a

difference of 1.332 µs was seen between the two processors while a difference of 0.128 µs

was observed for the execution time of the digest check. The largest difference was

observed for the execution time of the hash generation process at 4.664 µs. As with the

previous two cryptographic algorithms, very little deviation was observed in the execution

times; illustrating that the processors were capable of running the cryptographic algorithms

within a predictable time period. This could allow for easier planning and adjustments

when determining the allowed delay tolerance in an IIoT network.

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[µs] [µs] [µs]

M0 13.086 0.008 0.002

M3 48.371 0.016 0.003

M4 2.363 0.001 0.000

M7 2.491 0.006 0.001

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 85

University of Pretoria

4.3 POWER CONSUMPTION

The power consumed by the MCUs was determined using the measured voltage drop,

VMCU, taken across a shunt resistor of resistance R. The current consumed by the MCU

during the execution of the cryptographic algorithms, IMCU, was calculated according to

Ohm’s Law using (4.4):

IMCU = VMCU ÷ R Amperes (A) (4.4),

where the resistance of the shunt resistor R was measured to equal 1.3 ohms (Ω).

Equation (4.5) was then used to calculate the power consumption of the MCU:

PMCU = VS x IMCU Watts (W) (4.5),

where the supply voltage from the ST-Link/USB connection, VS, was given as 5.0 Volts

(V).

The final consumption results were converted to milliwatts (mW) and rounded to three

decimal places.

To determine the statistical error of the measured results over the number of runs N, the

mean (𝑋̅), standard deviation (𝜎𝑋) and standard error of the mean (𝜎𝑋̅) were determined

using (4.1) to (4.3).

4.3.1 AES128-CTR

As in the execution time experiments, the power consumption experiments were conducted

using the CTR mode of AES128 on the Cortex-M processors. The experiment measured

the consumption of the algorithm from the start of the AES algorithm at encryption to its

conclusion after a successful decryption. Twenty (20) runs were conducted on each

development board, the results of which have been illustrated in Figure 4.9:

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 86

University of Pretoria

Figure 4.9 Power consumption of Cortex-M series processors running AES128-CTR

Looking at Figure 4.9, it could be seen that, apart from the M3, the consumption of the

processors was capable of fluctuating widely. The M7 presented the largest fluctuation,

with its lowest consumption at approximately 50mW and its highest consumption at just

over 200mW. From the figure, it also appeared that the power consumption of the

processors and the amount of fluctuation in consumption increased with the increase in

operating frequency of the processors.

In order to determine mathematically the true extent of deviation illustrated in Figure 4.9,

the mean, standard deviation, and standard error were calculated on the results from the

twenty (20) runs.

0.000

50.000

100.000

150.000

200.000

250.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
o

w
er

 c
o

n
su

m
ed

 (
m

W
)

Run number

Power consumption of AES128-CTR on Cortex-M series processors

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 87

University of Pretoria

Table 4.9 Power consumption mean, standard deviation and standard error for MCUs running

AES128-CTR

Using the calculated mean and standard error presented in Table 4.9, the consumption of

the processors running AES128-CTR could be estimated as follows:

M0: 72.462 mW ± 8.339 mW

M3: 37.885 mW ± 1.622 mW

M4:106.154 mW ± 5.443 mW

M7: 143.385 mW ± 9.579 mW

It could be seen that while the M3 did consume the least power and offered the least

deviation, the M4 presented a smaller deviation than the M0, despite having a larger

operating frequency. The larger deviation seen in the M0, however, was insufficient for the

upper bound power consumption estimate to match the lower bound consumption of the

M4, which could be seen as one of the larger power consumers in the series. The M7

presented the largest consumption and the largest deviation from the processor series; with

a mean consumption of 143.385mW and an estimated standard error of 9.579mW.

With the large deviation ranges presented by the processors, should software-implemented

AES be required on an edge node, care would need to be taken during the design and

consideration of external power sources to ensure that (a) the sources were capable of

supporting the node operations at both the minimum estimated consumption and the

maximum estimated consumption over the deployment lifecycle, and that (b) surge

detection and protection circuitry was capable of distinguishing a legitimate, anomalous

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[mW] [W] [mW] [W]
[mW] [W]

M0 72.462 0.072 37.292 0.037 8.339 0.008

M3 37.885 0.038 7.254 0.007 1.622 0.002

M4 106.154 0.106 24.341 0.024 5.443 0.005

M7 143.385 0.143 42.838 0.043 9.579 0.010

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 88

University of Pretoria

power consumption deviation from the regular, large deviations seen in the power

consumption profile of each particular MCU.

4.3.2 ECDSA

The power consumption of the two (2) versions of the public key cryptographic algorithm

ECDSA was tested on the M-series processors. Figure 4.10 compares the power

consumption of the MCUs running ECDSA (Sign-Verify) over the course of twenty (20),

independent runs, while Figure 4.11 compares the power consumption of the MCUs

running ECDSA (Key Gen-Sign-Verify) over twenty (20) runs.

Figure 4.10 Power consumption of Cortex-M series processors running ECDSA (Sign-Verify)

0.000

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
o

w
er

 c
o

n
su

m
ed

 (
m

W
)

Run number

Power consumption of ECDSA (Sign and Verify) on Cortex-M series
processors

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 89

University of Pretoria

Figure 4.11 Power consumption of Cortex-M series processors running ECDSA (Key Gen- Sign-

Verify)

It could be seen that, for ECDSA (Sign-Verify), the M0 and M4 MCUs consumed the least

power. For ECDSA (Key Gen-Sign-Verify), the M0 was, once more, the least power

consumption heavy MCU, whereas the performances of the M3 and M4 were very similar.

In both instances, the M7 MCU consumed the most power.

Overall, the amount of deviation seen in the graph patterns for both Sign-Verify ECDSA

and Key Gen-Sign-Verify ECDSA was relatively stable; however, ECDSA without key

generation appeared to give a more stable power consumption profile for the MCUs than

ECDSA with key generation.

In order to provide mathematical confirmation for the aforementioned observations, using

the mean and standard error given in Table 4.10, the consumption of the processors

running ECDSA (Sign-Verify) was estimated as follows:

0.000

50.000

100.000

150.000

200.000

250.000

300.000

350.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
o

w
er

 c
o

n
su

m
ed

 (
m

W
)

Run number

Power consumption of ECDSA (Key Gen, Sign and Verify) on Cortex-M
series processors

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 90

University of Pretoria

Table 4.10 Power consumption mean, standard deviation and standard error for MCUs running

ECDSA (Sign-Verify)

M0: 121.538 mW ± 2.982 mW

M3: 202.308 mW ± 2.746 mW

M4:178.923 mW ± 4.887 mW

M7: 277.538 mW ± 4.280 mW

Similarly, the consumptions of ECDSA (Key Gen- Sign-Verify) were estimated using the

figures given in Table 4.11:

Table 4.11 Power consumption mean, standard deviation and standard error for MCUs running

ECDSA (Key Gen- Sign-Verify)

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[mW] [W] [mW] [W] [mW] [W]

M0 121.538 0.122 13.337 0.013 2.982 0.003

M3 202.308 0.202 12.278 0.012 2.746 0.003

M4 178.923 0.179 21.855 0.022 4.887 0.005

M7 277.538 0.278 19.140 0.019 4.280 0.004

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[mW] [W] [mW] [W] [mW] [W]

M0 132.308 0.132 36.461 0.036 8.153 0.008

M3 203.077 0.203 11.723 0.012 2.621 0.003

M4 194.038 0.194 29.129 0.029 6.513 0.007

M7 253.692 0.254 18.285 0.018 4.089 0.004

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 91

University of Pretoria

M0: 132.308 mW ± 8.153 mW

M3: 203.077 mW ± 2.621 mW

M4: 194.038 mW ± 6.513 mW

M7: 253.692 mW ± 4.089 mW

Looking at the standard errors, one could see that the observed deviation for ECDSA

without key generation was contained within a smaller range than the deviations observed

for ECDSA with key generation; with ECDSA (Sign-Verify) giving a range of 2.141mW

and ECDSA (Key Gen-Sign-Verify) giving a range of 5.532mW. Between the two (2)

versions of ECDSA, the M0 and M4 MCUs saw an increase slightly over 8% in power

consumption with key generation. The M0 was observed to have had a 173.407% increase

in deviation and the M4 was shown to have had a 33.271% increase in deviation with the

inclusion of key generation. These figures showed that, in addition to an increase in power

consumption, the inclusion of key generation had the effect of increasing the variability in

the power consumed by the M0 and M4; highlighting that adequate surge detection trigger

rules would need to be created and adjusted for any surge detection circuitry should it be

required that key generation be utilised with the end nodes running ECDSA. The

variability seen with the inclusion of key generation to ECDSA may also be indicative of

the performance that may be observed from these two processors with other cryptographic

algorithms requiring key generation using a PRNG.

The performance of the M3 and M7 were of particular interest. With the inclusion of key

generation to the ECDSA algorithm, the M3 experienced only a 0.380% increase in power

consumed and a 4.552% decrease in standard error. This showed that, while the power

consumed between both algorithms was very similar, the inclusion of key generation gave

a more stable power consumption profile in M3, over the twenty (20) run experiment. The

M7 experienced decreases in both power consumed and deviation; with a decrease of

8.592% in power consumed and a decrease of 4.463% in observed deviation. This showed

that the inclusion of key generation using a PRNG led to improved performance for

ECDSA when run on the M7. The improvements observed with the inclusion of PRNG on

these two processors raised the question of their possible performance when a PRNG is

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 92

University of Pretoria

used for key generation with other cryptographic algorithms. This will be considered for

future work on this topic.

4.3.3 SHA256

Power consumption experiments for SHA256 were conducted over twenty (20) runs on

each MCU. As in the consumption experiments for the other cryptographic algorithms, the

power was measured from the start of the hashing algorithm to the conclusion of the

algorithm. The graphical results of the power consumption observed in the MCUs over the

course of the experiment are given in Figure 4.12.

Figure 4.12 Power consumption of Cortex-M series processors running SHA256

The power consumption observed in the four (4) processors was surprisingly unstable, with

the M3 showing the least amount of deviation. The power consumed by the M0 and M3

was seen to be very similar; however, the M0 displayed spikes in power consumption that

would match, near match or exceed the observed consumption of the M4 processor.

0.000

50.000

100.000

150.000

200.000

250.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
o

w
er

 c
o

n
su

m
ed

 (
m

W
)

Run number

Power consumption of SHA256 on Cortex-M series processors

M0

M3

M4

M7

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 93

University of Pretoria

Utilising the values given in Table 4.12, the power consumption of the M-series processors

was estimated as follows:

Table 4.12 Power consumption mean, standard deviation and standard error for MCUs running

SHA256

M0: 57.538 mW ± 6.019 mW

M3: 58.231 mW ± 3.848 mW

M4: 114.615 mW ± 4.480 mW

M7: 164.462 mW ± 3.752 mW

The results of the estimations showed that; while the M0 and M3 did display highly similar

power consumption averages, the M0 had a larger, observed deviation than the M3

processor. More precisely, the M0 processor displayed the largest observed deviation from

the processor series. The deviations observed from the remaining three processors were

within range of the others while the M7 gave the largest, observed power consumption on

average.

4.4 MEMORY OCCUPATION

The Build/Memory analyser tool built into Atollic TrueStudio allowed for a detailed

analysis to be given of the RAM and Flash memory occupation for the debugger elf file

which was generated for the selected processor. An analysis of the RAM and Flash

occupation was conducted across the M-series processors for each of the cryptographic

 𝑿̅ 𝝈𝑿 𝝈𝑿̅

[mW] [W] [mW] [W] [mW] [W]

M0 57.538 0.058 26.919 0.027 6.019 0.006

M3 58.231 0.058 17.211 0.018 3.848 0.004

M4 114.615 0.115 20.037 0.020 4.480 0.004

M7 164.462 0.164 16.778 0.017 3.752 0.004

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 94

University of Pretoria

algorithms in order to determine the extent to which memory resources are consumed by

the security algorithms.

4.4.1 RAM

The detailed results of the RAM occupation analysis conducted for each cryptographic

algorithm on the M-series processors are summarised in Table 4.13. A graphical

representation of the percentage of RAM used by the algorithms is presented in Figure

4.13:

Table 4.13 RAM Occupation of cryptographic algorithms loaded onto Cortex-M series processors

M0 M3 M4 M7

RAM

[8kB]

RAM

[8kB]

RAM

 [128kB]

RAM

[512kB]

Free

(kB)

Used

(kB)

Used

(%)

Free

(kB)

Used

(kB)

Used

(%)

Free

(kB)

Used

(kB)

Used

(%)

Free

(kB)

Used

(kB)

Used

(%)

AES128-

CTR 6.33 1.67 20.85 6.36 1.64 20.51 124.38 3.62 2.83 509.15 2.85 0.56

ECDSA-

S-V 6.43 1.57 19.63 6.46 1.54 19.29 124.48 3.52 2.75 510.43 1.57 0.31

ECDSA-

G-S-V 6.43 1.57 19.63 6.46 1.54 19.29 124.48 3.52 2.75 510.43 1.57 0.31

SHA256 6.39 1.61 20.12 6.42 1.58 19.78 124.44 3.56 2.78 509.21 2.79 0.54

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 95

University of Pretoria

Figure 4.13 Comparison of the percentage RAM occupation of cryptographic algorithms loaded

onto Cortex-M processors

It could be seen that, for the four (4) algorithms tested, the space occupied in RAM for the

M0 and M3, both of which have 8kB of available RAM, was very similar; with AES128-

CTR and SHA256 occupying the most RAM at slightly above 20% each, and ECDSA

occupying the least RAM at slightly above 19%. Even with the cryptographic algorithms

occupying a fair portion of RAM, approximately 80% of RAM was still available for the

use of the MCUs in other applications and processes. This, however, would decrease

relatively quickly as more algorithms are loaded onto the processors.

The observed RAM occupation significantly drops when considering the M4 and M7

processors, where the available RAM was 128kB and 512kB respectively. The M4

observed a very similar RAM occupation across the four (4) algorithms with AES128-CTR

occupying slightly more RAM at 2.83%. The occupation of the cryptographic algorithms

on the M7 could be considered almost insignificant, with not one of the algorithms

occupying at least 1% of the available RAM. In this instance, the MCU had nearly all the

RAM available to it for other applications and processes and could easily support the

inclusion of multiple cryptographic algorithms. In all the cases, however, it was observed

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

M0 M3 M4 M7

P
er

ce
n

ta
ge

 o
cc

u
p

at
io

n

Processor

Percentage of RAM occupation of cryptographic algorithms across the Cortex-M
family

AES128-CTR

ECDSA-S-V

ECDSA-G-S-V

SHA256

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 96

University of Pretoria

that the inclusion of the cryptographic algorithms did not serve to deplete the available

RAM resources to a point where further operations could be compromised.

4.4.2 Flash

As with the RAM occupation, analysis of the occupation of the cryptographic algorithms in

Flash was conducted using the Atollic TrueStudio Build/Memory analyser. The detailed

results of the analysis are presented in Table 4.14 with a graphical presentation of the

percentage occupation given in Figure 4.14:

Table 4.14 Flash occupation of cryptographic algorithms loaded onto Cortex-M series processors

M0 M3 M4 M7

Flash

[64kB]

Flash

[128kB]

Flash

 [1024kB]

Flash

 [2048kB]

Free

(kB)

Used

(kB)

Used

(%)

Free

(kB)

Used

(kB)

Used

(%)

Free

(kB)

Used

(kB)

Used

(%)

Free

(kB)

Used

(kB)

Used

(%)

AES128-

CTR 55.72 8.28 12.93 119.92 8.08 6.31 1004.69 19.31 1.89 2037.16 10.84 0.53

ECDSA-

S-V 46.27 17.73 27.70 110.66 17.34 13.55 995.36 28.64 2.80 2028.46 19.54 0.95

ECDSA-

G-S-V 38.96 25.04 39.13 103.59 24.41 19.07 988.31 35.69 3.49 2021.87 26.13 1.28

SHA256 57.68 6.32 9.88 121.85 6.15 4.80 1006.2 17.8 1.74 2039.43 8.57 0.42

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 97

University of Pretoria

Figure 4.14 Comparison of the percentage Flash occupation of cryptographic algorithms loaded

onto Cortex-M processors

Unlike the RAM, a larger variation in space occupation occurred in Flash. From the four

(4) processors, ECDSA with key generation occupied the most Flash memory across the

M-Series processors, with ECDSA sans key generation being the next largest algorithm. Of

the four (4) processors, the cryptographic algorithms had the largest percentage occupation

on the M0, which had the least amount of available Flash memory at 64kB. As the amount

of available Flash in the processor increased, the percentage occupation of the

cryptographic algorithms decreased, with the M7 displaying the smallest percentage

occupation of its 2048kB Flash. It was noted, however, that the largest percentage

occupation was observed from the smallest available Flash at just below 40%, leaving

approximately 60% of the remaining Flash available. While this is a significantly larger

occupation than that observed in RAM, a total depletion of resources had not occurred, and

sufficient resources would still be available for other MCU applications and processes.

Due care and planning may need to be taken when utilising larger algorithms with the M0

processor to ensure that any additional processes that may be required to run would have

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

M0 M3 M4 M7

P
er

ce
n

ta
ge

 o
cc

u
p

at
io

n

Processor

Percentage of Flash occupation of cryptographic algorithms across the
Cortex-M family

AES128-CTR

ECDSA-S-V

ECDSA-G-S-V

SHA256

CHAPTER 4 RESULTS

Department of Electrical, Electronic and Computer Engineering 98

University of Pretoria

sufficient Flash memory. In such instances, the use of an alternative but smaller algorithm

providing a similar level of security and performance trade-off may prove to be beneficial.

4.5 CHAPTER SUMMARY

This chapter served to present the results observed from the execution time, power

consumption and memory occupation experiments presented in Chapter 3. A brief analysis

of the results was conducted after presenting the mean and average estimations of the

execution time and power consumption alongside the estimated error observed from the

mean results. The space occupation by the cryptographic algorithms was determined to

allow the majority of the available memory resources to remain unoccupied for additional

MCU processes and applications, unlike the total depletion of resources that was feared to

occur in older generation processors.

In Section 4.1 the overview and objectives for the chapter were presented.

In Section 4.2 the results of the execution time experiments were given for AES128-CTR,

ECDSA and SHA256; giving the mean execution time, standard deviation and standard

mean error for the Cortex-M processors.

In Section 4.3 the results of the power consumption experiments were given for AES128-

CTR, ECDSA and SHA256; giving the mean power consumption, standard deviation and

standard mean error for the Cortex-M processors.

In Section 4.4 the results of the memory occupation experiments were given for AES128-

CTR, ECDSA and SHA256; giving the RAM and Flash consumed by the algorithms on

the Cortex-M processors.

The following chapter provides a detailed analysis of the overall performance of software-

implemented cryptography on new generation processors. The analysis is based on the

results presented in this chapter and highlights the viability of software solutions within the

construction of a secure IIoT endpoint node.

CHAPTER 5 DISCUSSION

5.1 CHAPTER OBJECTIVES

Chapter 4 served to provide a report on the results of the experiments conducted and

presented in Chapter 3 of this study; looking at the individual performances of the

algorithms on each of the Cortex-M series processors. It was seen that the performance of

the algorithms varied between the processors, dependent on the operating frequency. It was

also seen that the degree of deviation that could be seen in the time and power estimates

changed dependent on the algorithm; with some processors executing the algorithms more

consistently than other processors in the series. This chapter serves to give a detailed

analysis of the reported results and to answer the research question posed at the beginning

of this study.

In Section 5.2 a detailed discussion on the performance of the processors running software-

implemented cryptography is provided; comparing the performances seen between the four

processors and comparing the performances of the new-generation Cortex-M processors

against the performances seen in the older-generation Atmega128L processor.

In Section 5.3 the best performing of the four (4) Cortex-M processors is selected based on

the overall performance given while running the cryptographic algorithms.

Section 5.4 provides a brief summary of the main topics covered and serves to conclude

the chapter.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 100

University of Pretoria

5.2 PERFORMANCE OF SOFTWARE-IMPLEMENTED CRYPTOGRAPHY

To try to determine the viability of software-implemented cryptography as a tool towards

the design of a secure mote for the IIoT, one needs to consider the performance of the

algorithms in terms of execution time, power consumption and memory resource

consumption. An IIoT network has a variety of different operational requirements, one of

which may be real-time operation. Real-time operation is highly dependent on the ability

of the system to meet a pre-determined deadline while generating a correct response.

Industrial control systems and safety or mission-critical systems typically utilise hard

deadlines, where a missed deadline can constitute complete system failure, as predictability

is a main requirement of a real-time system. Within these parameters, the addition of

cryptographic operations should not impede upon the ability of the system to meet its

deadlines. Considering the results given in Chapter 4, software-implemented cryptography

appeared to be a good candidate for use in hard real-time operations. It was seen that, over

the course of the twenty (20) runs, very little deviation in the execution time of the

algorithms occurred. This showed that the Cortex-M processors were capable of running

the cryptographic algorithms within a predictable time period and with a relatively low

chance of a sudden, large jump in operating time between executions. Figure 5.1 gives the

average execution time performances determined for the identified cryptographic

algorithms.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 101

University of Pretoria

(a) (b)

(c) (d)

Figure 5.1 Average execution times of cryptographic algorithms on Cortex-M processors

(a) AES128-CTR, (b) ECDSA (Sign-Verify), (c) ECDSA (Key Gen-Sign-Verify) and (d) SHA256

Looking at the average execution times, one could see that, as could be expected, the

performance of the processors was directly related to their operating frequency. The M3,

with the smallest operating frequency, consistently gave the slowest execution time;

followed by the M0, with the next smallest operating frequency. The performance of the

M4 was surprising in that, apart from AES128-CTR, it showed a very similar execution

time to the M7 processor, in spite of its slower operating frequency. For the four (4)

algorithms tested, it could be seen that there was little benefit to the more powerful M7

processor when executing cryptographic algorithms, as the M4 was capable of delivering a

similar performance.

0

250

500

750

1 000

1 250

1 500

1 750

M0 M3 M4 M7

Ti
m

e
[u

s]

Processor

Cortex M family average execution times
(AES)

0

2

4

6

8

10

12

14

M0 M3 M4 M7

Ti
m

e
[s

]

Processor

Cortex M family average execution times
(ECDSA [Sign and Verify])

0

5

10

15

20

25

30

35

M0 M3 M4 M7

Ti
m

e
[s

]

Processor

Cortex M family average execution times
(ECDSA [Key Gen, Sign and Verify])

0

200

400

600

800

1000

1200

M0 M3 M4 M7

Ti
m

e
[u

s]

Processor

Cortex M family average execution times
(SHA256)

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 102

University of Pretoria

The specific trends seen in the execution times of the processors were also interesting to

note. The M0, M4, and M7 were capable of running the symmetric algorithms in a time

period that may be considered sufficiently fast for use as part of hard real-time tasks; as

their addition to the processing time would be within the realm of microseconds. In these

cases, it appeared that the processors were capable enough themselves to run cryptographic

algorithms without the need of adding a hardware crypto accelerator. The same could not

be said for the public key cryptographic algorithm. The fastest execution times, as given by

the M7 processor, were 471.02ms for ECDSA without key generation and 1.141s for

ECDSA with key generation. These execution times, especially in the case where key

generation is used, would be sufficiently long to increase the possibility of introducing

cascading delay into the IIoT network and, with that, missed operation deadlines.

Depending on the deadline definitions for the IIoT network, some of the symmetric

cryptography algorithms could be run on the M3 without the need for hardware

acceleration; as AES128-CTR and SHA256 gave average execution times at 1.578ms and

1.124ms respectively. As with the more powerful processors, the added delay for the tested

public key algorithm was sufficiently long that the addition of the algorithm to hard real-

time tasks would possibly cause missed operation deadlines. Should public key

cryptography be required as a part of the network security architecture, a number of

alternative possibilities could be used in the place of software-implemented libraries. One

option would be the use of a hardware crypto accelerator with the standard Cortex-M

processors. In addition to providing acceleration in the execution of cryptographic

processes, one might be able to establish a root of trust from which node operations are

verified. Extra care would need to be taken, however, to ensure that security information

was not leaked within the communications between the MCU and the hardware

accelerator. Another option is the use of a security-enabled MCU, such as those given in

Table 2.11 in Chapter 2. Security-enabled MCUs are specifically designed to provide a

variety of security operations, quickly and efficiently, in addition to cryptography services.

A comparison of the abilities of a security MCU and a standard MCU running a software

cryptographic library will be conducted in the future in order to determine an exact speed-

up factor that could be seen through the use of a security MCU.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 103

University of Pretoria

In addition to the processors being able to meet the hard deadline requirements of real-time

operation, the power consumption of the processors needed to be determined as part of

maximising the operational lifetime of the node power supply. IIoT network deployments

can be large and in areas where regular maintenance activities would be difficult and costly

to complete. One would, therefore, want to maximise the time between maintenances and

minimise as much power consumed during operational activities as possible, so as not to

drain the power supply to the network endpoint too quickly. Figure 5.2 gives a comparison

of the power consumption for the four (4) cryptographic algorithms run on the Cortex M

processors.

Figure 5.2 Average power consumption of cryptographic algorithms on Cortex-M Processors

Of the tested algorithms, AES128-CTR gave the lowest power consumption while ECDSA

gave the highest consumption. It was interesting to note that the power consumption of the

ECDSA algorithm was very similar whether key generation was utilised or not utilised.

Comparing the four (4) MCUs, one could see that different algorithms performed better on

the different processors. Looking at Figure 5.2, one could see that the M3 processor was

the lowest consumer for AES128-CTR; the M0 gave the lowest power consumption for

both versions of ECDSA; and the M0 and M3 gave similar power consumptions for

0.000

50.000

100.000

150.000

200.000

250.000

300.000

M0 M3 M4 M7

P
o

w
er

 c
o

n
su

m
ed

 [
m

W
]

Processor

Average power consumed during execution of cryptographic
algorithms on Cortex-M rocessors

AES128-CTR ECDSA-G-S-V ECDSA-S-V SHA256

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 104

University of Pretoria

SHA256. The power consumptions from the M4 processor were varied; especially when

compared to the consumptions of the other three (3) Cortex-M processors. With the

symmetric algorithms, it gave the second largest power consumption, whereas when

running the public key algorithm, it gave the second lowest power consumption, with the

power consumption of the M3 preceding it. Throughout the experiments, the M7, as the

most powerful processor, gave the largest power consumptions for the four (4) algorithms.

Figure 5.3 Average power consumption per MHz of cryptographic algorithms on Cortex-M

processors

Should the operating temperature of the processor be a higher concern for the IIoT network

than average power consumed, the identification of a more power-efficient processor may

be of greater interest. To determine the power efficiency of the MCUs independent of the

differing operating frequencies, the consumption per MHz for each MCU was calculated

and is given in Figure 5.3. Opposed to the average consumptions seen in Figure 5.2, it

could be seen that, with the normalisation of the power consumption, the Cortex-M3 was,

on average, the least power efficient processor; giving highest power consumption per

MHz when executing the cryptographic algorithms. The Cortex-M0 was seen to be the

second highest consumer per MHz available to the processor. The high consumptions per

MHz could result in warmer processors when running cryptographic processes; thus,

0

1

2

3

4

5

6

7

8

9

M0 M3 M4 M7

P
o

w
er

 c
o

n
su

m
ed

 (
m

W
/M

H
z)

Processor

Comparison of Cortex-M series power consumed per MegaHertz
during execution of cryptographic algorithms

AES128-CTR

ECDSA-G-S-V

ECDSA-S-V

SHA256

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 105

University of Pretoria

adequate cooling mechanisms in the enclosure design would need due consideration to

prevent node failure owing to overheating.

Interestingly, the power consumption per MHz of the Cortex-M4 and the Cortex-M7 were

very similar across the four cryptographic algorithms. This showed that, despite its higher

clocking speed, the Cortex-M7 was capable of achieving similar power efficiency per MHz

to its less powerful predecessor. This bodes well for IIoT edge applications, such as

network gateways, which may require a more powerful processor for local processing

activities, as upgrades to more intensive cooling mechanisms may not be required after the

addition of software cryptographic operations.

The estimated consumption per MHz seen in Figure 5.3 could also be used as a guide

towards generating a power consumption profile in cases where more powerful MCU

versions of the Cortex processors may need to run cryptographic algorithms. Developers

could extrapolate the results given in order to make the power consumption estimates for

the more powerful processors running software cryptographic algorithms. This would

allow for the incorporation of the necessary power allowances required for a security

implementation during the initial design of the IIoT network as opposed to making support

alterations for the additional power consumption after the deployment of the network.

To determine the best overall performer in the execution of the cryptographic algorithms,

the average consumption and execution times seen for the processors needed to be

considered as a single unit. Figure 5.4 compares the power consumption and execution

times seen for the tested cryptographic algorithms using a combination of a split column

and scatter plot in order to display the overall performance of the four (4) processors.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 106

University of Pretoria

(a) (b)

(c) (d)

Figure 5.4 Overall performance of cryptographic algorithms on Cortex-M processors

(a) AES128-CTR, (b) ECDSA (Sign-Verify), (c) ECDSA (Key Gen-Sign-Verify) and (d) SHA256

Figures 5.1 and 5.2 showed that the M7’s performances in execution time and power

consumption were extreme. It consistently gave the fastest execution time for the four (4)

cryptographic algorithms; however, that came at the cost of giving the highest power

consumptions. As power consumption was determined for the total execution time, the M7

gave a situation where, when implemented in a secure node, the processor would have a

high power draw, but over a very short period of time. It also gave one of the best power

consumptions per MHz, over the four algorithms tested. Looking at Figure 5.4, one could

see that the combination of the metrics averaged out for the symmetric algorithms;

0

250

500

750

1000

1250

1500

1750

0

25

50

75

100

125

150

175

M0 M3 M4 M7

Ex
ec

u
ti

o
n

 T
im

e
[u

s]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

Processors

Cortex M-Family Average Overall Performance
(AES)

Power Consumption Execution Time

0

2

4

6

8

10

12

14

0

50

100

150

200

250

300

M0 M3 M4 M7

Ex
ec

u
ti

o
n

 T
im

e
[s

]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

Processors

Cortex M-Family Average Overall Performance
(ECDSA [Sign and Verify])

Power Consumption Execution Time

0

5

10

15

20

25

30

35

0

50

100

150

200

250

300

M0 M3 M4 M7

Ex
ec

u
ti

o
n

 T
im

e
[s

]

P
o

w
er

 C
o

n
su

m
p

to
n

 [
m

W
]

Processors

Cortex M-Family Average Overall Performance
(ECDSA [Key Gen, Sign and Verify])

Power Consumption Execution Time

0

200

400

600

800

1000

1200

0

25

50

75

100

125

150

175

M0 M3 M4 M7

Ex
ec

u
ti

o
n

 T
im

e
[u

s]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

Processors

Cortex M-Family Average Overall Performance
(SHA256)

Power Consumption Execution Time

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 107

University of Pretoria

resulting in the processor producing a performance similar to that of the M4. For public

key algorithms, the high power consumption could not be tempered by the fast execution

time and good power efficiency; making the M7 the worst overall performing processor for

ECDSA. The M3 processor provided another case of extremes as it consistently gave the

longest execution time and worst power consumption per MHz of the four (4) processors;

however, for the symmetric algorithms, the M3 gave the lowest power consumption. The

extremes served to push the overall performance of the M3 up; making it the worst or

second to worst performing processor in the execution of the cryptographic algorithms.

The M0 and M4 changed in giving the best or second to best overall performances in

running the cryptographic library, regardless of the power efficiency of the processor. The

M4’s best performances were given when running the symmetric algorithms, with a

performance close to that given by the M7 processor. The M0 gave the best overall

performance when running both versions of ECDSA, giving the second to best

performance with the symmetric algorithms, however, as was previously mentioned, a

hardware accelerator would need to be employed; as the M0 executed the algorithm within

seconds as opposed to milliseconds or microseconds. This could potentially push the

power consumption of the resultant node up but, given that the addition of the accelerator

was recommended for all the Cortex-M processors, the resultant increased power

consumption could still possibly give a better overall performance result than that of the

M4 processor.

In addition to determining the best overall performer across the Cortex-M series, a

comparison of the performance of the new generation processors against the old generation

processors was needed to illustrate the improvements that had been made in IoT processors

in the past decade. The results of attempts made at implementing software cryptography on

the 8-bit Atmega128L processor, as found on the Mica2, were presented in [36], [37], [38],

and [39]; however, of the many algorithms tested, only AES could still be used to secure

an industrial network deployment. As a result, the comparison between the old and new

generation processors was limited to the results observed for AES. The comparisons for

execution time, energy consumption, energy consumption per megaHertz and memory

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 108

University of Pretoria

occupation are given in Figures 5.5 to 5.7. To provide an equivalent dataset for the

comparison, the results for AES, as given in the previous works, were averaged and used to

calculate an estimated energy consumption, execution time, and memory occupation. The

Atmega128L was used to determine the processor’s performance in encrypting and

decrypting a 64-byte block size, as this was the block size used in STMicroelectronic’s

AES128 software implementation. The energy consumption of the Cortex-M processors

was calculated from the measured power consumptions and execution times using (5.1):

Energy (J) = Power (W) x time (s) (5.1)

Figure 5.5 Energy consumption and execution time comparison for Atmega128L and Cortex-M

processors

0

5

10

15

20

25

30

35

0

10

20

30

40

50

60

70

M0 M3 M4 M7 Atmega128L

Ex
ec

u
ti

o
n

 T
im

e
[m

s]

En
er

gy
 C

o
n

su
m

p
ti

o
n

 [
m

J]

Processors

Comparison of Energy Consumption and Execution Time of AES on New
and Old Generation IoT Processors

Energy Consumed [mJ] Total Execution Time [ms]

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 109

University of Pretoria

Figure 5.6 Energy consumption per MHz comparison for Atmega128L and Cortex-M processors

Figure 5.7 Memory occupation comparison for Atmega128L and Cortex-M processors

0.734

2.492

0.123 0.054 0.120

0.000

0.500

1.000

1.500

2.000

2.500

3.000

M0 (48 MHz) M3 (24 MHz) M4 (168 MHz) M7 (216 MHz) Atmega128L (8 MHz)

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
m

J/
M

H
z)

Processors

Average energy consumption per MHz of AES on new and old
generation IoT processors

0.00

20.00

40.00

60.00

80.00

100.00

120.00

P
er

ce
n

ta
ge

 O
cc

u
p

at
io

n
 (

%
)

Processors

Comparison of the average percentage use of AES in RAM and Flash for
new and old generation IoT processors

RAM Occupied

Flash Occupied

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 110

University of Pretoria

Comparing the energy consumption performance of the Atmega to those of the Cortex

processors, as shown in Figure 5.5, one could see that the 8-bit Atmega gave a very low

energy consumption compared to the 32-bit Cortex processors, consuming approximately

twelve (12) times less energy than the best performing Cortex processor– the M7– at

0.962mJ. Looking at the overall energy efficiency of the processors in Figure 5.6, however,

one could see that the more powerful Cortex-M7 consumed less energy per MHz amongst

the processors under consideration – making it more energy efficient than the Atmega

processor – while the M4 achieved an energy efficiency similar to that of the Atmega. The

execution time of the Atmega was far greater than the execution times seen on any of the

Cortex processors, executing AES approximately nineteen (19) times slower than the worst

performing Cortex-M processor, with an average execution time of 30ms as compared to

1.579ms from the M3. In comparing the overall performance of the Atmega, one could see

that it appeared to give a better performance than the M0 and M3 processors; however,

with the length of the execution time and its heavy contribution towards the processor’s

performance profile, a hardware accelerator would be required with the Atmega to ensure

that the processor was capable of meeting the hard real-time deadline requirements of an

IIoT network.

In spite of a fairly promising performance profile, when looking at the memory resource

consumption of AES in Figure 5.7, one could see that, for a 64-byte packet, the Atmega

would be incapable of running the algorithm as the memory requirement exceeds the

available resources of the processor, requiring 4.28kB of RAM where only 4kB of RAM

would be available. This complete depletion of the available RAM would mean that, even

if the required RAM had been equivalent to the available RAM, the processor would only

be able to execute the cryptographic algorithm and could not run other processor

operations for the execution and transmission time duration. This is would result in a

situation where the entire network essentially would have paused while the endpoint nodes

completed their cryptographic operations. In comparison, the Cortex-M processors were

capable of running AES efficiently for a 64-byte packet with very little memory resource

consumption. The worst case consumptions, seen with the M0 and M3, still left the

majority of the RAM resources available for the use of other processor operations.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 111

University of Pretoria

The consumption of the non-volatile memory resources improved upon the consumption

seen for the volatile memory resources. The Atmega gave a similar consumption of non-

volatile memory as the Cortex M0, consuming 14.063% of its available ROM as compared

to the M0’s 12.93% consumption of its available Flash memory. In this respect, the

Atmega gave a comparable performance to a processor seven (7) years newer.

Considering the foregoing results presented, despite the areas in which the Atmega was

capable of performing as well as or better than the newer Cortex processors, its long

execution time and lack of sufficient volatile memory made it unsuitable to run AES

cryptographic processes without the inclusion of additional hardware, such as a hardware

crypto accelerator and additional RAM. The Cortex processors, on the other hand, were

capable of running the AES cryptographic services easily and quickly without additional

hardware requirements or without requiring the algorithm to be optimised and scaled down

to fit within their available memory. Their weakest point was in the processor energy

consumption; where the Atmega was shown to be vastly superior. This, however, may be

seen as a sufficient trade-off for the ability to be able to implement upgradable software

cryptography services at the edge of the IIoT network without requiring additional

hardware components and upgrades.

5.3 TOWARDS DESIGNING A SECURE MOTE FOR THE IIOT

Considering the performances seen for the four (4) processors, the M0 and M4 gave the

best performances in running the cryptographic algorithms. A closer look at the

performance profiles needed to be taken to identify the best, overall performer from the

Cortex-M processors. Having removed the results for the M3 and the M7, Figure 5.8 gives

a comparison of the performance profiles for the M0 and the M4.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 112

University of Pretoria

Figure 5.8 Energy consumption and execution time comparison for Cortex M0 and M4 processors

Comparing the performances of the M0 and M4, one could see that, even though the M0

performed better with the public key cryptographic algorithm, the jumps seen in its

performance between the public key and symmetric algorithms were much larger than the

jumps seen in the M4’s performance with the public key and symmetric algorithms,

highlighting the M4 as the more stable and consistent processor. Although the M4’s main

weakness was in its power consumption, as a processor for an edge node, it would spend

approximately 99% of its time within sleep mode, where its power consumption would be

minimal. The shorter execution times could also result in longer time periods that the

processor is able to spend in sleep mode; as it would be capable of finishing the work

required in active mode quickly and return to a low power consumption state faster than

the M0 processor.

Although the M4 gave the best overall performance profile for use at the edge, depending

on the requirements of the IIoT network, any one of the Cortex-M series processors would

be suitable for use in a secure mote design. The versions tested within this work were

-1

1

3

5

7

9

11

13

15

17

AES128 ECDSA
(KG-S-V)

ECDSA
(S-V)

SHA256 AES128 ECDSA
(KG-S-V)

ECDSA
(S-V)

SHA256

M0 M4

0

20

40

60

80

100

120

140

160

180

200

Ex
ec

u
ti

o
n

 T
im

e

P
o

w
er

 C
o

n
su

m
p

ti
o

n

Comparison of Cortex M0 and M4 Overall Cryptogrpahic Algorithm
Performances

Power Consumption Execution Time

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 113

University of Pretoria

found to be capable of running software-implemented cryptography quickly at reasonably

low power consumptions without the depletion of the processor resources, as opposed to

the older Atmega128L which would require additional hardware resources to be able to

support standard cryptographic operations for large packet sizes. In this respect, having

seen the progress made over the last decade towards improving processors for the IoT, it

would no longer be accurate to state that low power processors designed for the IoT and

WSNs are incapable of supporting cryptographic processes, more specifically software

cryptographic processes. This study has shown that even the oldest of the Cortex-M

processors has been capable of running software-implemented cryptography without the

depletion of its available resources. One may also find alternative versions of the

processors tested within this study from different vendors who may produce designs which

are faster, more power-efficient or which may be implemented with additional security

features.

With regard to designing a secure endpoint device; depending on the application area, the

expected lifetime of the network or the rate of deprecation of cryptographic algorithms for

industrial use, verified software cryptography libraries may be a viable solution in addition

to hardware cryptographic components. In cases where the security provided by the

hardware components was compromised, one would be able to conduct update procedures

that switch to the use of a software cryptography library to preserve the secure network

state. In such cases, adjustments would need to be made within the network to compensate

for the introduction of a new delay and the possible increase in power consumption. In

other cases, where the size of the endpoint node may need to be minimised and if the

inclusion of cryptography hardware were infeasible, software libraries could be used to

provide cryptographic services on the endpoint as opposed to leaving them unprotected.

Also, with the inclusion of TrustZone capability on the new M23 and M33 processors,

software cryptographic operations could be conducted with the added security of having

originated from and being processed within an isolated, trusted space.

CHAPTER 5 DISCUSSION

Department of Electrical, Electronic and Computer Engineering 114

University of Pretoria

5.4 CHAPTER SUMMARY

Previously, owing to the limited resources available, processors for WSNs and the IoT

were left insecure and without security processes, resulting in large network deployments

that were vulnerable to a wide variety of cyber-physical attacks. It could be seen, however,

that with the improvements made in new generation processors over the last decade, low

power processors designed for use with the IoT were easily able to run cryptographic

operations quickly without the depletion of memory and power resources. This showed

that processors for the IoT were no longer incapable of implementing security processes

and that software cryptographic libraries could be a viable resource in designing a secure,

endpoint node; either as a tool to extend the effective lifetime of a network deployment or

as a security tool on nodes with very tight size restrictions.

In Section 5.1 the chapter objectives and overview were provided.

In Section 5.2 a detailed discussion on the performance of the processors running software-

implemented cryptography was given; comparing the performances seen between the four

(4) processors and comparing the performances of the new-generation Cortex-M

processors against the performances seen in the older-generation Atmega128L.

In Section 5.3 the best performing of the four Cortex-M processors was selected based on

the overall performance, as determined using the three (3) metrics tested, in running the

cryptographic algorithms.

The following chapter serves to conclude this study and provides a summary of the research

question and objectives posed, as well as the extent to which these have been addressed by this

study and to highlight areas in the topic where additional work will be conducted in the future.

CHAPTER 6 CONCLUSION

Chapter 6 serves to summarise the ideas, results and recommendations presented as part of

this research. The author presents the conclusions in terms of the original research

objectives and in terms of the contributions made to the field of security for the IIoT.

Future research directions regarding the incorporation of the research conducted into the

broader IIoT security field are briefly highlighted, and additional fields in which the author

intends to conduct further work are identified.

6.1 SUMMARY OF CONCLUSIONS

Prior to commencing this research, the author posed the problem asking whether

cryptographic algorithms capable of providing encryption and decryption services could be

implemented on an IIoT endpoint device without resulting in significant losses in device

performance and longevity. Specifically, the research aimed to answer the following:

 What are the time costs associated with the application of encryption/decryption

services on low power devices?

 What are the associated power consumption and memory utilisation costs for

applying encryption/decryption services on IIoT endpoint devices?

The research objectives for this work were as follows:

1. Identify the security requirements of IIoT endpoint nodes.

2. Identify general purpose and security enabled new-generation IIoT platforms.

3. Identify open source, standard cryptographic algorithms best suited for application

onto an IIoT endpoint node.

CHAPTER 6 CONCLUSION

Department of Electrical, Electronic and Computer Engineering 116

University of Pretoria

4. Determine possible performance trade-offs – e.g. power, memory, throughput, or

cost – in applying cryptographic techniques, such as encryption and decryption, on

an IIoT node.

5. Determine the best-suited cryptography scheme for securing a low power, IIoT

node.

6. Identify the best method by which to integrate cryptography services as part of the

construction of a secure IIoT mote.

In meeting objectives one (1) and two (2), a detailed literature review was conducted in

Chapter 2; focusing on the identification of security standards for the IIoT and the relevant

recommendations made for the security of an IIoT endpoint device. Technologies currently

available for the IIoT and their associated trade-offs were highlighted alongside a lack of

security application technologies able to implement and provide security attestation and

isolation within an IIoT network. Work conducted towards the end of Chapter 2 and in

Chapter 3 served towards meeting objective three (3). Table 2.12 introduced security

enabled MCUs for the IIoT, highlighting the features provided on the MCUs and the areas

still lacking in the full realisation of the security recommendations made by the IIC and

OpenFog Consortium. Chapter 3 also served to detail the experimental setup and

procedures used in the completion of this research; introducing the general purpose Cortex-

M series processors and the STMicroelectronics cryptographic library. As the Cortex-M

processors are commonly used for IoT applications and were without embedded security

features, they made good candidates for testing the capabilities of new generation

processors in running software cryptographic services. The detailed experimental

procedures used for the measurement of the execution time of the algorithms, memory

occupation and power consumptions were given; with relevant images showing an instance

of one of the multiple results seen for each experiment. Chapters 4 and 5 served towards

meeting objectives four (4) through six (6). Chapter 4 reported the results seen from the

experiments conducted in Chapter 3, giving average estimations for execution time,

memory occupation and power consumption. An estimate for the deviation that could be

expected in each of the algorithms and processors was provided for each measurement. An

in-depth analysis conducted in Chapter 5 illustrated the performance differences seen

CHAPTER 6 CONCLUSION

Department of Electrical, Electronic and Computer Engineering 117

University of Pretoria

across the M-series processors as they ran the four (4) cryptographic algorithms used in

this work. It was seen that, despite having identified the Cortex M4 as the best-suited

general purpose processors for running software cryptographic services, the new

generation processors chosen were capable of running the algorithms without the depletion

of their memory resources and excessive power consumption. It was also seen that the use

of a hardware cryptographic module could be required for the Cortex-M series should an

implementation of public key cryptography be needed in an IIoT network; as the resulting

execution times for ECDSA were sufficiently long as to increase the probability of missed

deadlines in a hard real-time network application. A comparison was made of the Cortex-

M performance results seen in this research with the performance results seen on previous

applications of AES on the Mica2 platform. This served to illustrate the improvements

made in the capabilities of MCU platforms for the IoT over the past decade. At the

conclusion of Chapter 5, it was noted that, dependent on the specific network application

requirements, verified software cryptographic services were a more than adequate option to

provide a security base when used on new generation IoT processors; allowing for the

extension in the security lifetime of long-term node deployments or an alternative to the

inclusion of hardware cryptographic modules when securing size-constrained edge mote

designs.

6.2 RESEARCH CONTRIBUTION

By conducting this research, it was found that new generation IoT/WSN processors are

more than capable of implementing software cryptographic services. efficiently Thus, the

previous rhetoric that IoT devices are incapable of running cryptographic solutions is no

longer universally true of technologies intended for the IoT and WSNs. This has various

implications in how security in the IIoT would be established and regarding the

expectations that could be made of IIoT network applications, some of which are briefly

highlighted.

CHAPTER 6 CONCLUSION

Department of Electrical, Electronic and Computer Engineering 118

University of Pretoria

It was important to update the IoT/WSN knowledge to reflect the current state of the

available technology as there is a fast-growing need for the adoption of security policies,

standards and frameworks that protect the availability, integrity and confidentiality of IoT

applications. The physical isolation of devices from Internet-capable areas of the network

is no longer adequate as a protection strategy for industrial applications. By illustrating the

capability of new generation processors, the inability to support cryptographic services can

no longer be used as an excuse for the non-implementation of security services for IoT

devices. Combining the updated viewpoint into a standard for device security would aid in

establishing culpability and consequences for non-compliance at both a vendor and

network design level for future IIoT applications that are found to be insecure. Hopefully,

this will result in more secure IIoT networks and will pre-empt a large, dangerous security

failure in current and future Industrie 4.0 deployments.

The improved capability seen in the processors means that verified software libraries can

be utilised as tools to extend the secure lifetime of a network. This would result in shorter,

zero-day exploitations and the introduction of multiple, overlapping points of redundancy

in an IIoT network security scheme.

Finally, the basic security requirements for the IIoT can include the implementation of

cryptographic services as mandatory in order to preserve integrity and confidentiality in the

network devices. Software libraries can be used as an alternative solution to hardware

acceleration devices providing symmetric cryptography in cases where the size of the mote

device needs to be minimised. The combination of hardware and software solutions could

greatly increase the number of cryptographic algorithms provided and supported by IIoT

edge nodes; again providing multiple points of redundancy within a security scheme and

improving the interoperability of devices without resulting in a compromise in network

security.

CHAPTER 6 CONCLUSION

Department of Electrical, Electronic and Computer Engineering 119

University of Pretoria

6.3 FUTURE WORK

In the author’s opinion, this research has met with all the stated objectives and has

answered adequately the questions identified in the research problem statement. The

research has provided a detailed analysis regarding the capabilities of new generation IoT

processors when running software cryptographic services and has found that symmetric

and hashing cryptographic services can be implemented on the processors with minimal

costs to the processor performance. The inclusion of a hardware accelerator is

recommended for the implementation of public key cryptographic services owing to the

long execution times seen for the processors.

After concluding this research, it is the author’s opinion that verified software

cryptographic services could be used as a viable option towards securing new generation

processors where the inclusion of hardware services may not be viable or where the

network security may have been compromised.

As part of future studies, the author aims to continue work towards a general,

implementable design for a secure endpoint device at the IIoT edge. In particular, the

author aims to expand upon the research conducted within this study and to compare the

performances of the software-implemented cryptography algorithms to their hardware-

implemented counterparts; to revisit the experiments conducted in this study having

expanded the list of cryptographic algorithms under consideration; to test the performance

of the Cortex-M processors when running the algorithms used within this work with longer

key expansions, and to test for the performance differences that could be seen when a

TRNG is used for key generation as opposed to a PRNG. Finally, the author aims to

conduct an evaluation comparing the performance of software-secured MCUs to the

performance of security-enabled MCUs to the performance of a softcore secured

FPGA/MCU hybrid platform in order to determine which configuration would provide the

fastest, least power-intensive security services for the IIoT edge while maintaining good

longevity and maintainability.

REFERENCES

[1] Industrial Internet Consortium. (2015). Industrial Internet Reference Architecture

[Online]. Available: http://www.iiconsortium.org/IIRA-1-7-ajs.pdf [Accessed: Jan. 30,

2017].

[2] Industrial Internet Consortium. (2016). Industrial Internet Security Framework Volume G4

[Online]. Available: http://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB-3.pdf [Accessed:

Jan. 30, 2017].

[3] A.R. Sadeghi, C. Wachsmann, and M. Waidner, "Security and privacy challenges in

industrial Internet of Things," Proc. of 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), San Francisco, 2015, pp. 1-6.

[4] Unknown. (2011). An Introduction to Cyber-Physical Systems [Online]. Available:

http://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h11/undervisningsmateriale/2011

0830_CPS-WSN-Overview.pdf [Accessed: Jan. 30, 2017].

[5] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, "Cyber-physical systems: The next

computing revolution," Proc. of Design Automation Conference, Anaheim, 2010, pp. 731-

736.

[6] D. Gollmann and M. Krotofil, "Cyber Physical System Security," in The New

Codebreakers, 1st ed., P. Ryan, D. Naccache and J. J. Quisquater, Ed. Berlin, Heidelberg:

Springer, 2016, pp. 195-204.

[7] Security Requirements for Cryptographic Modules, FIPS Standard 140-2, 2001.

[8] OpenFog Consortium. (2017). OpenFog Reference Architecture for Fog

Computing [Online]. Available: https://www.openfogconsortium.org/wp-

content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf [Accessed:

Jul. 5, 2017].

[9] B. Nisarga and E. Peeters. (2016). System-Level Tamper Protection Using MSP MCUs

[Online]. Available: http://www.ti.com/lit/an/slaa715/slaa715.pdf [Accessed: May 11,

2017].

http://www.iiconsortium.org/IIRA-1-7-ajs.pdf
http://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB-3.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h11/undervisningsmateriale/20110830_CPS-WSN-Overview.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5910CPS/h11/undervisningsmateriale/20110830_CPS-WSN-Overview.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
http://www.ti.com/lit/an/slaa715/slaa715.pdf

REFERENCES

Department of Electrical, Electronic and Computer Engineering 121

University of Pretoria

[10] Y.M. Yussoff, H. Hashim, R. Rosli, and M.D. Baba, "A Review of Physical Attacks

and Trusted Platforms in Wireless Sensor Networks," Procedia Engineering, vol. 41,

pp.580-587, Jan. 2012.

[11] Digi-Key European Editors. (2015). Developing Anti-Tamper Protection for

Wireless Hardware [Online]. Available:

https://www.digikey.com/en/articles/techzone/2015/may/developing-anti-tamper-

protection-for-wireless-hardware [Accessed: May 12, 2017].

[12] S. Skorobogatov, "Physical Attacks and Tamper Resistance," in Introduction to

Hardware Security and Trust, 1st ed., M. Tehranipoor and Cliff Wang, Ed. New York,

NY: Springer Verlag, 2012, pp. 143-173.

[13] Rambus Incorporated. (2017). Security Licensed Countermeasures [Online].

Available: https://www.rambus.com/security/dpa-countermeasures/licensed-

countermeasures/ [Accessed: Jun. 6, 2017].

[14] Rambus Incorporated. (2017). DPA Countermeasures Validation Program [Online].

Available: https://www.rambus.com/security/dpa-countermeasures/dpa-countermeasures-

validation-program/ [Accessed: Jun. 6, 2017].

[15] M. Sabt, M. Achemlal, and A. Bouabdallah, "Trusted Execution Environment: What

It is, and What It is Not," Proc. of IEEE Trustcom/BigDataSE/ISPA, Helsinki, 2015, pp.

57-64.

[16] J. Attridge. (2002). An Overview of Hardware Security Modules [Online]. Available:

https://www.sans.org/reading-room/whitepapers/vpns/overview-hardware-security-

modules-757 [Accessed: May 11, 2017].

[17] Trusted Computing Group. (2008). Trusted Platform Module (TPM) Summary

[Online]. Available: https://trustedcomputinggroup.org/wp-content/uploads/Trusted-

Platform-Module-Summary_04292008.pdf [Accessed: May 11, 2017].

[18] Atmel Corporation. (2014). Atmel Trusted Platform Module AT97SC3204 /

AT97SC3205 [Online]. Available: http://csrc.nist.gov/groups/STM/cmvp/documents/140-

1/140sp/140sp2014.pdf [Accessed: May 11, 2017].

[19] Infineon Technologies. (2015). Trusted Platform Module TPM SLB 9665 TCG Family 2

Level 00 Rev. 01.16 Datasheet [Online]. Available: http://www.infineon.com/dgdl/Infineon-

TPM+SLB+9665-DS-v10_15-EN.pdf?fileId=5546d4625185e0e201518b83d9273d87

[Accessed: May 11, 2017].

[20] STMicroelectronics. (2013). ST33TPM12LPC - Trusted Platform Module with LPC

interface based on 32-bit ARM SecurCore SC300 CPU [Online]. Available:

http://www.st.com/content/ccc/resource/technical/document/data_brief/6b/d2/76/50/a4/46/

https://www.digikey.com/en/articles/techzone/2015/may/developing-anti-tamper-protection-for-wireless-hardware
https://www.digikey.com/en/articles/techzone/2015/may/developing-anti-tamper-protection-for-wireless-hardware
https://www.rambus.com/security/dpa-countermeasures/licensed-countermeasures/
https://www.rambus.com/security/dpa-countermeasures/licensed-countermeasures/
https://www.rambus.com/security/dpa-countermeasures/dpa-countermeasures-validation-program/
https://www.rambus.com/security/dpa-countermeasures/dpa-countermeasures-validation-program/
https://www.sans.org/reading-room/whitepapers/vpns/overview-hardware-security-modules-757
https://www.sans.org/reading-room/whitepapers/vpns/overview-hardware-security-modules-757
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Trusted-Platform-Module-Summary_04292008.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp2014.pdf
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp2014.pdf
http://www.infineon.com/dgdl/Infineon-TPM+SLB+9665-DS-v10_15-EN.pdf?fileId=5546d4625185e0e201518b83d9273d87
http://www.infineon.com/dgdl/Infineon-TPM+SLB+9665-DS-v10_15-EN.pdf?fileId=5546d4625185e0e201518b83d9273d87
http://www.st.com/content/ccc/resource/technical/document/data_brief/6b/d2/76/50/a4/46/44/86/DM00037936.pdf/files/DM00037936.pdf/jcr:content/translations/en.DM00037936.pdf

REFERENCES

Department of Electrical, Electronic and Computer Engineering 122

University of Pretoria

44/86/DM00037936.pdf/files/DM00037936.pdf/jcr:content/translations/en.DM00037936.p

df [Accessed: May 11, 2017].

[21] SANS ISO/IEC 24760-1:2011: Information technology. Security techniques. A

framework for identity management. Terminology and concepts, ISO/IEC 24760-1-2011,

2011.

[22] Plattform Industrie4.0. (2016). Technical Overview: Secure Identities [Online]. Available:

https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/secure-

identities.pdf?__blob=publicationFile&v=7 [Accessed: Jan. 30, 2017].

[23] Liwenhao. (2014). A Technical Report on TEE and ARM TrustZone [Online].

Available: https://community.arm.com/processors/b/blog/posts/a-technical-report-on-tee-

and-arm-trustzone [Accessed: May 11, 2017].

[24] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares, "IIoTEED: An Enhanced,

Trusted Execution Environment for Industrial IoT Edge Devices," IEEE Internet

Computing, vol. 21, no. 1, pp.40-47, Jan. 2017.

[25] N. Asokan, F. Brasser, A. Ibrahim, A. Sadeghi, M. Schunter, G. Tsudik, and C.

Wachsmann, "SEDA: Scalable Embedded Device Attestation," Proc. of 22nd ACM

SIGSAC Conference on Computer and Communications Security, Denver, 2015, pp. 964–

975.

[26] J. Valente, C. Barreto, and A.A. Cárdenas, "Cyber-Physical Systems Attestation,"

Proc. of IEEE International Conference on Distributed Computing in Sensor Systems,

Marina Del Rey, 2014, pp. 354-357.

[27] A. Fongen and F. Mancini, "Integrity attestation in military IoT," Proc. of IEEE 2nd

World Forum on Internet of Things (WF-IoT), Milan, 2015, pp. 484-489.

[28] A. Ibrahim, A. Sadeghi, G. Tsudik, and S. Zeitouni, "DARPA: Device Attestation

Resilient to Physical Attacks," Proc. of 9th ACM Conference on Security & Privacy in

Wireless and Mobile Networks, Darmstadt, 2016, pp. 171–182.

[29] A. Seshadri, A. Perrig, L.v. Doorn, and P. Khosla, "SWATT: softWare-based

attestation for embedded devices," Proc. of IEEE Symposium on Security and Privacy,

Berkeley, 2004, pp. 272-282.

[30] K. El Defrawy, A. Francillon, D. Perito, and G. Tsudik, "SMART: Secure and

minimal architecture for (establishing a dynamic) root of trust," Proc. of 19th Annual

Network and Distributed Systems Security Symposium, San Diego, 2012, pp. 1-15.

[31] P. Koeberl, S. Schulz, A. Sadeghi, and V. Varadharajan, "TrustLite: A Security

Architecture for Tiny Embedded Devices," Proc. of 9th European Conference on

Computer Systems, Amsterdam, 2014, pp. 10:1–10:14.

http://www.st.com/content/ccc/resource/technical/document/data_brief/6b/d2/76/50/a4/46/44/86/DM00037936.pdf/files/DM00037936.pdf/jcr:content/translations/en.DM00037936.pdf
http://www.st.com/content/ccc/resource/technical/document/data_brief/6b/d2/76/50/a4/46/44/86/DM00037936.pdf/files/DM00037936.pdf/jcr:content/translations/en.DM00037936.pdf
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/secure-identities.pdf?__blob=publicationFile&v=7
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/secure-identities.pdf?__blob=publicationFile&v=7
https://community.arm.com/processors/b/blog/posts/a-technical-report-on-tee-and-arm-trustzone
https://community.arm.com/processors/b/blog/posts/a-technical-report-on-tee-and-arm-trustzone

REFERENCES

Department of Electrical, Electronic and Computer Engineering 123

University of Pretoria

[32] Moteiv Corporation. (2004). Telos- Ultra low power IEEE 802.15.4 compliant

wireless sensor module Revision B : Humidity, Light, and Temperature sensors with USB

[Online]. Available: http://www4.ncsu.edu/~kkolla/CSC714/datasheet.pdf [Accessed: May

11, 2017].

[33] Crossbow Technology Incoporated. (2004). Mica2: Wireless Measurement System

[Online]. Available:

https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf

[Accessed: May 11, 2017].

[34] Crossbow Technology Incorporated. (2004). MicaZ: Wireless Measurement System

[Online]. Available:

http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf [Accessed: May

11, 2017].

[35] Ember Corporation. (2004). EM2420: 2.4 GHz IEEE 802.15.4 / ZigBee RF

Transceiver [Online]. Available:

http://media.digikey.com/pdf/Data%20Sheets/Ember%20PDF%27s/EM2420.pdf

[Accessed: May 11, 2017].

[36] C.P. Antonopoulos, C. Petropoulos, K. Antonopoulos, V. Triantafyllou, and N.S.

Voros, "The effect of symmetric block ciphers on WSN performance and behaviour,"

Proc. of IEEE 8th International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), Barcelona, 2012, pp. 799-806.

[37] C.C. Chang, S. Muftic, and D.J. Nagel, "Measurement of Energy Costs of Security in

Wireless Sensor Nodes," Proc. of 16th International Conference on Computer

Communications and Networks, Honolulu, 2007, pp. 95-102.

[38] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner, "Evaluation of security mechanisms

in wireless sensor networks," Proc. of Systems Communications (ICW'05, ICHSN'05,

ICMCS'05, SENET'05), Montreal, 2005, pp. 428-433.

[39] A. Trad, A.A. Bahattab, and S.B. Othman, "Performance trade-offs of encryption

algorithms for Wireless Sensor Networks," Proc. of World Congress on Computer

Applications and Information Systems (WCCAIS), Hammamet, 2014, pp. 1-6.

[40] R.L. Rivest, "The RC5 Encryption Algorithm," in Fast Software Encryption: Second

International Workshop Leuven, Belgium, December 14–16, 1994 Proceedings, B. Preneel.

, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 86-96.

[41] R.L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. (1998). The RC6 Block Cipher

[Online]. Available: https://people.csail.mit.edu/rivest/pubs/RRSY98.pdf [Accessed: Sep. 5,

2015].

[42] Advanced Encryption Standard (AES), FIPS Standard 197, 2001.

http://www4.ncsu.edu/~kkolla/CSC714/datasheet.pdf
https://www.eol.ucar.edu/isf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://media.digikey.com/pdf/Data%20Sheets/Ember%20PDF%27s/EM2420.pdf
https://people.csail.mit.edu/rivest/pubs/RRSY98.pdf

REFERENCES

Department of Electrical, Electronic and Computer Engineering 124

University of Pretoria

[43] Data Encryption Standard (DES), FIPS Standard 46-3, 1999.

[44] SkipJack and KEA Algorithm Specification, FIPS Standard 185, 1998.

[45] Secure Hash Standard (SHS), FIPS Standard 180-4, 2015.

[46] D.J. Wheeler and R.M. Needham, "TEA, a tiny encryption algorithm," Proc. of Fast

Software Encryption, Berlin, 1994, pp. 363-366.

[47] E. Barker. (2016). Guideline for Using Cryptographic Standards in the Federal

Government: Cryptographic Mechanisms [Online]. Available:

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175B.pdf [Accessed:

Sep. 4, 2017].

[48] EMC Corporation. (2017). RSA Laboratories - RC6® Block Cipher [Online]. Available:

https://www.emc.com/emc-plus/rsa-labs/historical/rc6-block-cipher.htm [Accessed: Sep, 4,

2017].

[49] Microsemi Corporation. (2017). SmartFusion2 SoC FPGA Family [Online]. Available:

https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#overview [Accessed:

May 11, 2017].

[50] NXP Semiconductors. (2017). A7101CGT1: Secure authentication microcontroller

[Online]. Available: http://www.nxp.com/products/identification-and-security/secure-

authentication-and-anti-counterfeit-technology/secure-authentication-

microcontroller:A7101CGT1 [Accessed: May 11, 2017].

[51] Maxim Integrated. (2017). MAXQ1852 DeepCover Secure Microcontroller with Fast

Wipe Technology and Cryptography [Online]. Available:

https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1852.html

[Accessed: May 11, 2017].

[52] Texas Instruments Incorporated. (2016). ARM Cortex-M4F Microcontroller -

Overview - TM4C12x [Online]. Available: http://www.ti.com/lsds/ti/microcontrollers-16-

bit-32-bit/c2000-performance/control-automation/tm4c12x/overview.page [Accessed: May

11, 2017].

[53] Maxim Integrated. (2017). MAXQ1050 DeepCover Secure Microcontroller with USB

and Hardware Cryptography [Online]. Available:

https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1050.html

[Accessed: May 11, 2017].

[54] Maxim Integrated. (2017). MAXQ1061 DeepCover Cryptographic Controller for

Embedded Devices [Online]. Available:

https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1061.ht

ml [Accessed: May 11, 2017].

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175B.pdf
https://www.emc.com/emc-plus/rsa-labs/historical/rc6-block-cipher.htm
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#overview
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A7101CGT1
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A7101CGT1
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A7101CGT1
https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1852.html
http://www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/c2000-performance/control-automation/tm4c12x/overview.page
http://www.ti.com/lsds/ti/microcontrollers-16-bit-32-bit/c2000-performance/control-automation/tm4c12x/overview.page
https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1050.html
https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1061.html
https://www.maximintegrated.com/en/products/digital/microcontrollers/MAXQ1061.html

REFERENCES

Department of Electrical, Electronic and Computer Engineering 125

University of Pretoria

[55] STMicroelectronics. (2017). STSAFE-A100 - Authentication and Brand protection

secure solution [Online]. Available: http://www.st.com/content/st_com/en/products/secure-

mcus/authentication-secure-iot/stsafe-a100.html [Accessed: May 11, 2017].

[56] STMicroelectronics. (2017). STSAFE-J100 - Flexible secure solution for Gateway

[Online]. Available: http://www.st.com/content/st_com/en/products/secure-

mcus/authentication-secure-iot/stsafe-j100.html [Accessed: May 11, 2017].

[57] XILINX INC. (2017). Zynq UltraScale+ MPSoC [Online]. Available:

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

[Accessed: May 11, 2017].

[58] Texas Instruments Incorporated. (2016). AM335x | Cortex-A8 | Overview | Sitara [Online].

Available: http://www.ti.com/lsds/ti/processors/sitara/arm_cortex-a8/am335x/overview.page

[Accessed: May 11, 2017].

[59] Microchip Technology Inc. (2017). Hardware Crypto Engine - Technology |

Embedded Security [Online]. Available: http://www.microchip.com/design-

centers/embedded-security/reference-designs/hardware-crypto-engine [Accessed: May 11,

2017].

[60] STMicroelectronics. (2017). X-CUBE-CRYPTOLIB - STM32 cryptographic firmware

library software expansion for STM32Cube (UM1924) [Online]. Available:

http://www.st.com/en/embedded-software/x-cube-cryptolib.html [Accessed: Sep. 5, 2017].

[61] Texas Instruments. (2017). CRYPTO Cryptography for TI Devices [Online].

Available: http://www.ti.com/tool/CRYPTO [Accessed: Sep. 8, 2017].

[62] Digital Signature Standard (DSS), FIPS Standard 186-4, 2013.

[63] Arm Limited. (2017). Cortex-M [Online]. Available:

https://www.arm.com/products/processors/cortex-m [Accessed: Aug. 30, 2017].

[64] Arm Limited. (2017). Cortex-M0 [Online]. Available:

https://developer.arm.com/products/processors/cortex-m/cortex-m0 [Accessed: Aug.

30, 2017].

[65] Arm Limited. (2017). Cortex-M3 [Online]. Available:

https://developer.arm.com/products/processors/cortex-m/cortex-m3 [Accessed: Aug.

30, 2017].

[66] Arm Limited. (2017). Cortex-M4 [Online]. Available:

https://developer.arm.com/products/processors/cortex-m/cortex-m4 [Accessed: Aug.

30, 2017].

http://www.st.com/content/st_com/en/products/secure-mcus/authentication-secure-iot/stsafe-a100.html
http://www.st.com/content/st_com/en/products/secure-mcus/authentication-secure-iot/stsafe-a100.html
http://www.st.com/content/st_com/en/products/secure-mcus/authentication-secure-iot/stsafe-j100.html
http://www.st.com/content/st_com/en/products/secure-mcus/authentication-secure-iot/stsafe-j100.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.ti.com/lsds/ti/processors/sitara/arm_cortex-a8/am335x/overview.page
http://www.microchip.com/design-centers/embedded-security/reference-designs/hardware-crypto-engine
http://www.microchip.com/design-centers/embedded-security/reference-designs/hardware-crypto-engine
http://www.st.com/en/embedded-software/x-cube-cryptolib.html
http://www.ti.com/tool/CRYPTO
https://www.arm.com/products/processors/cortex-m
https://developer.arm.com/products/processors/cortex-m/cortex-m0
https://developer.arm.com/products/processors/cortex-m/cortex-m3
https://developer.arm.com/products/processors/cortex-m/cortex-m4

REFERENCES

Department of Electrical, Electronic and Computer Engineering 126

University of Pretoria

[67] Arm Limited. (2017). Cortex-M7 [Online]. Available:

https://developer.arm.com/products/processors/cortex-m/cortex-m7 [Accessed: Aug.

30, 2017].

[68] STMicroelectronics. (2017). STM32F0 - ARM Cortex-M0 Microcontrollers

[Online]. Available: http://www.st.com/en/microcontrollers/stm32f0-
series.html?querycriteria=productId=SS1574 [Accessed: Sep. 4, 2017].

[69] STMicroelectronics. (2017). STM32F1 - ARM Cortex-M3 Microcontrollers

[Online]. Available: http://www.st.com/en/microcontrollers/stm32f1-
series.html?querycriteria=productId=SS1031 [Accessed: Sep. 4, 2017].

[70] STMicroelectronics. (2017). STM32F4 - ARM Cortex-M4 High-Performance

MCUs [Online]. Available: http://www.st.com/en/microcontrollers/stm32f4-

series.html?querycriteria=productId=SS1577 [Accessed: Sep.4, 2017].

[71] STMicroelectronics. (2017). STM32F7 - ARM Cortex-M7 Microcontrollers

[Online]. Available: http://www.st.com/en/microcontrollers/stm32f7-
series.html?querycriteria=productId=SS1858 [Accessed: Sep. 4, 2017].

[72] I. Johnson. (2015). ARM’s Cortex-M and Cortex-R Embedded

Processors [Online]. Available:

https://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.p
df [Accessed: Aug. 30, 2017].

[73] STMicroelectronics. (2017). STM32CubeMX - STM32Cube initialization code

generator [Online]. Available: http://www.st.com/en/development-

tools/stm32cubemx.html [Accessed: Sep. 5, 2017].

[74] S. Keller. (2009). Cryptographic Algorithm Validation Program [Online]. Available:

https://www.nist.gov/programs-projects/cryptographic-algorithm-validation-program

[Accessed: Sep. 5, 2017].

[75] E. Granados. (2017). One way to use the X-CUBE-CRYPTOLIB with CubeMX

[Online]. Available: https://community.st.com/docs/DOC-1557-one-way-to-use-the-x-

cube-cryptolib-with-cubemx-and-system-workbench [Accessed: Sep. 5, 2017].

[76] Atollic. (2017). TrueSTUDIO [Online]. Available: https://atollic.com/truestudio/

[Accessed: Sep. 4, 2017].

[77] M. Mielke. (2017). Using the IDD Current Measurement Feature on the STM32L053

Discovery Board [Online]. Available:
https://eewiki.net/display/microcontroller/Using+the+IDD+Current+Measurement+Feature+on+the

+STM32L053+Discovery+Board [Accessed: Sep. 5, 2015].

[78] Atollic. (2017). TrueSTUDIO Pro - ARM Development Tools - Subscription FAQ

[Online]. Available: http://info.atollic.com/pro-upgrade-faq [Accessed: Sep. 4, 2017].

https://developer.arm.com/products/processors/cortex-m/cortex-m7
http://www.st.com/en/microcontrollers/stm32f0-series.html?querycriteria=productId=SS1574
http://www.st.com/en/microcontrollers/stm32f0-series.html?querycriteria=productId=SS1574
http://www.st.com/en/microcontrollers/stm32f1-series.html?querycriteria=productId=SS1031
http://www.st.com/en/microcontrollers/stm32f1-series.html?querycriteria=productId=SS1031
http://www.st.com/en/microcontrollers/stm32f4-series.html?querycriteria=productId=SS1577
http://www.st.com/en/microcontrollers/stm32f4-series.html?querycriteria=productId=SS1577
http://www.st.com/en/microcontrollers/stm32f7-series.html?querycriteria=productId=SS1858
http://www.st.com/en/microcontrollers/stm32f7-series.html?querycriteria=productId=SS1858
https://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.pdf
https://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.pdf
http://www.st.com/en/development-tools/stm32cubemx.html
http://www.st.com/en/development-tools/stm32cubemx.html
https://www.nist.gov/programs-projects/cryptographic-algorithm-validation-program
https://community.st.com/docs/DOC-1557-one-way-to-use-the-x-cube-cryptolib-with-cubemx-and-system-workbench
https://community.st.com/docs/DOC-1557-one-way-to-use-the-x-cube-cryptolib-with-cubemx-and-system-workbench
https://atollic.com/truestudio/
https://eewiki.net/display/microcontroller/Using+the+IDD+Current+Measurement+Feature+on+the+STM32L053+Discovery+Board
https://eewiki.net/display/microcontroller/Using+the+IDD+Current+Measurement+Feature+on+the+STM32L053+Discovery+Board
http://info.atollic.com/pro-upgrade-faq

