School for Information Technology
Computer Science Technical Report

Research Group for System Specifications and Formal Methods (SSEM)
Technical Report TR-SSFM-01-08-2018: Pretoria, 1st of August, 2018

Three-Valued Bounded Model Checking with
Cause-Guided Abstraction Refinement: Proofs

Nils Timm
Stefan Gruner

University of Pretoria

Three-Valued Bounded Model Checking
with Cause-Guided Abstraction Refinement —
Proofs

Nils Timm, Stefan Gruner, and Dewald de Jager

Department of Computer Science, University of Pretoria, South Africa
{ntimm, sgruner}@cs.up.ac.za

Abstract. In this technical report we prove Theorem 1 of the article Three-Valued Bounded Model
Checking with Cause-Guided Abstraction Refinement submitted to the journal Science of Computer
Programming SI: SBMF 2016.

Proof of Theorem 1

In the following we present the proof of Theorem 1 from Section 4. The proof was originally introduced in
our SBMF 2016 conference paper ”A Bounded Model Checker for Three-Valued Abstractions of Software
Systems” [1].

Theorem 1. Let M be a three-valued Kripke structure representing the state space of an abstracted concur-
rent system Sys, let ¥ be an LTL formula and b € N Then:

true if SAT([Sys,¥]s[L — false]) = true
M Egp] = (false if SAT([Sys,¥]s[L — true]) = false
L else

Proof of Theorem 1.

We prove Theorem 1 by showing that for each b-bounded path 7w in M there exits an assignment o :
Atomsy y) — {true, false} that exactly characterises 7 in [Sys]s, i.e. the transition values along 7 and
ax ([Sys]s) are identical and the labellings along 7 and a; ([Sys]s) are identical as well (Lemma 2). Moreover,
we show that the evaluation of an LTL property ¢ on 7 yields the same result as o ([]5) (Lemma 3). Note
that the encoding of states (Definitions 8 and 9) always yields a conjunction of literals. Hence, for each state
encoding enc({l, s))i (resp. enc(l); and enc(s)y) there exists exactly one assignment to its atoms that makes
the encoding true. We denote such an assignment characterising a state (I, s) by a5y (resp. a; and a):

Definition 16. (Assignments Characterising States) Let (I, s) be a state of a Kripke structure M and
let k € N arbitrary but fized. The encodings enc(l)y and enc(s)y are conjunctions of literals. Hence, there
exists exactly one satisfying assignment to its atoms. We denote these satisfying assignment as oy resp.
and we have by definition that the following holds:

aj(enc(l)y) = true and as(enc(s)y) = true.
Such assignments can be generalised to pairs of states, i.e.

apr(enc(l)k Aenc()g+1) = ai(enc(s)k) Aap(enc(l')g41) = true,
o s (enc(s)y Aenc(s)gt1) = as(enc(s)r) N ag(enc(s)gy1) = true

where we assume that such a pair is encoded with consecutive position values k and k + 1.

This notion of assignments characterising states can be straightforwardly transferred to sub-states (e.g.
ay(enc(ly)r) = true with I = (lh,...,l,...,1,)) and to compound states (e.g ay s (enc(l)r) = true and
a,sy(enc(s)y) = true). Our fist step towards proving Theorem 1 is to establish a relation between states
and transitions of an explicit Kripke structure, and assignments characterising states and transitions in a
corresponding encoding. For this we prove Lemma 2:

Lemma 2. Let M = (S5, {ly, s0), R, L) over AP be a three-valued Kripke structure representing the state
space of an abstracted concurrent system Sys and let k € N. Moreover, let (I,s) and (I',s’") be a pair of

arbitrary states of M and let p; and (loc; = 21) be atomic predicates in AP. Then the following equivalences
hold:

(A) aqiy,se) (Inity) = true
(B) R((L,s),{l',s")) = aqsw,s)(Trans k1)
(C) L({l: 5):pj) = aq,s)(enc(pi)r)

(D) L({l,s), (loc; = 1)) = . (enc(ls)r)

Proof of Lemma 2.

(A) We have that Inity = enc({l, 50))o. Moreover, a;, s (enc({l, s0))o) = true holds by definition of cv;,)
(Definition 16), which completes this part of the proof.

(B) According to Definition 4, R((l, s), (I’,s’)) can be rewritten as

Vi (6: (4, 10 A Nirzi liv = Ui A s(choice(a, b)) A /\J 1 5'(pj) = s(choice(a;, bj)))

assuming that [= (i, ..., 0,), ' = (lf,..., 1)) and 7;(l;,) = assume(choice(a,b)) : p1 := choice(ar, b1),...,Dm :

choice(am, by,). In order to prove Part (B) of the Lemma we show that the following equivalences hold:

- 0i(ls) ANz i = 1 = Vg, e, (on(enc(ls) k) Aaw (enc(I]) k1) AN\ ss /\;121 ar(lir[jle) o (U [5]k+1))

2. s(choice(a, b)) = ag(enc(choice(a,b))y)

3. s'(pj) = (chozce(aj,bj)) = ag«((enc(aj)i A enc(p; = true), + 1) V (enc(bj)i A enc(p; = false) +1) V

(enc(—a; A —b;)g[L/true] A enc(p; = L)g + 1))

We start with proving the '=-’-direction of Equivalence 1. From the first part of the premise we can derive
the following:

8;(1;, 1f) = true,
(Premise)
ay(enc(ly)y) = true,
ap(enc(ll)p1) = true
(Definition 16)

= (Vi ines, ai(enc(l)y) A o (enc(l'3)jq1)) = true
(Deduction)

Moreover, from the second part of the premise we can derive the following:

Niri(lir = 1))
(Premise)
= Nirzi(enc(lin)x [k/k + 1] = enc(ll)k+1)
with enc(li)r = A7y (b [l A by () V (5[] A =by, (5))
and enc(lji k41 = /\Jd (B l]k A by, (5)) V(28 (k1 A =be, (5)))
(Definition 8)

= Aozl A (eallie i) = aw (U [lk41))) = true
(Definition 16)

=N\ /#z(/\ (Lo lgle) < ar(li[ile+1))) = true

(Equivalent transformation)

Together we get &; (L,) AN 4l = 1, = V(?z,i{)eéz (al(enc(ii)k)/\ozl/(enc(zg)kﬂ)/\/\i,# /\;i:'1 (I [f]x) <

ay (Zl’, [7]k+1))- Next, we prove the '<’-direction by showing that if the left side of the equivalence evaluates to
false then also the right side evaluates to false. A false on the left side means &;(l;, I[j) = false or \/;,_;(lir #
Il,). We show that in both cases the right side will evaluate to false as well. We start with the first case:

0;(1;,11) = false (which is equivalent to (I;,1!) & 6;),
(Premise)

ai(enc(li)) = true A Ny, ay(enc(ly)y) = false,
ap(enc(ll)p41) = true A /\l,ﬁél{ al(enc(l'i)kﬂ) = false,
(Definition 16)

= (\/(zz,z{)E(Sl Oél(enc(zi)k) A al/(enc([’i)k+1)) = false
(Deduction)

Next, we consider the second case:

Vigi(lis # 1)
(Premise)
= Virgi(enc(li)i[k/k +1] # enc(li)k41)
with enc(li)x :/\ 1 (i [A iy, () V (Sl [A =0, (5)))

and enc(ll,)k+ /\
(Definition 8)

= \/i’yéi(\/jd 1(aa(lir[f]k) # av (Il [jlrs1))) = true

(Definition 16)

2y (5 ler A by, (5)) V(28 [0 A —by, (5)))

= A (AN (el) < aw (1 [f]41))) = false

(Equivalent transformation)

Hence, 0;(Li, ;) A Npvyi lir = 1, <= V(imVZ;)GJ’(al(enc(zi)k) A ap(enc(ll)gs1) A /\Z-,;‘éi/\(-ii1 a(lo[jle) <
ay (Il [7]k+1)) holds as well, which completes the proof of Equivalence 1.

Next we prove Equivalence 2. We show that s(choice(a, b)) = as(enc(choice(a,b))y) holds. We distinguish
the following cases:

2.1. s(choice(a,b)) = true

= as(enc(choice(a, b))y) = true
2.2. s(choice(a,b)) = false =

as(enc(choice(a, b))y) = false

2.3. s(choice(a, b)) = L = ag(enc(choice(a, b)) = L

In all three cases we start with the transformation of enc(choice(a,bd))r. The following equivalence holds:
enc(choice(a, b)) = enc((aV-b)A(aVbV L)), = (enc(a)rVenc(=b)g) A(enc(a)rVenc(b), VL) (Definition
10). Case 2.1: We show s(choice(a, b)) = true = as((enc(a)rVenc(—b)g) A(enc(a)rVenc(b)y VL)) = true.
From the semantics of the choice expression we get s(choice(a,b)) = true = s(a) = true. Hence, it is
sufficient to show that s(a) = true = as((enc(a)r V enc(—bd)i) A (enc(a)i V enc(b)y V L)) = true holds.
The logical expression a is defined over Pred and we can assume that a has been transferred into negation
normal form. Now Case 2.1 can be proven by induction over the structure of a. We distinguish the following
cases:

2.1.1. a = p; with p; € Pred,
2.1.2. a = —p; with p; € Pred,
2.1.3. a = eV ¢ with e, ¢ logical expressions in NNF over Pred,

2.1.4. a = e ¢ with e, ¢ logical expressions in NNF over Pred.

Case 2.1.1:
s(p;) = true = o« (enc(choice(pj, b))x) = true

We start with the '=’-direction. Hence, we have to show that s(p;) = true implies o (enc(choice(p;, b))r) =
true. For this, we firstly derive a fact from the premise s(p;) = true, which we can then use for proving that
as(enc(choice(p;, b)) = true holds.

s(p;) = true, (Premise)
as(enc(s)y) = true (Definition 16)

= s(p;) = true,

@s(Ape prea €nc(p = $(p))x) = true (Definition 9)
= as(enc(p; = true)y) = true (Deduction)
= a(—p;uli A piltlk) = true (Definition 9)
= as(p;[ulk) = false, (Deduction)

as(p;[tle) = true

Hence, we have proven that s(p;) = true implies o (p;[u]r) = false and o (p;[t]x) = true, which we denote
as Fact 1. Now we can prove that s(p;) = true also implies a,(enc(choice(p;,b))r) = true. For this, we

transform o (enc(choice(p;, b))r) and make use of Fact 1:

o (enc(choice(pj, b))

as(enc((p; Vb)) A(p; V bV L))k)
(Deﬁmtlon 10)

= (as(enc(p)r) V as(enc(—d)r)) A (as(enc(pj)r) V as(enc(b)) V L)
(Definition 10)
= (as((pjlule A L)V (=ps[ulk A p;[tle)) V as(enc(=b)k))
A (as((pilule A L)V (5p;[ulk A ps[tle)) V as(enc(b)r) V L)
(Deﬁmtlon 10)
= ((as(psluli) A L)V (mas(py[ulk) Aas(pi[te)) V as(enc(=b)x))
A ((as(pilul) A L)V (mes(ps[ulk) A as(ps[t]e) V as(enc(b)r) V L)
(Equlvalent transformation)
= ((false A L)V (true A true) V ag(enc(—b)y))
A ((false N L)V (true A true) V ags(enc(b)g) V L)
(Fact 1)
= (true V as(enc(—bd)k)) A (true V as(enc(b);) V L)
(Equivalent transformation)
= true
(Equivalent transformation)

Consequently, s(p;) = true = «s(enc(choice(p;j,b))r) = true holds. Next we prove the ’<=’-direction.
Hence, we have to show that a;(enc(choice(p;, b))r) = true implies s(p;) = true. For this, we firstly derive
a fact from the premise o, (enc(choice(p;, b))r) = true, which we can then use for proving that s(p;) = true
holds.

a(enc(choice(pj, b)) = true

(s ((pslule A L)V (=psluli A pi[tk)) V s (enc(=b)1))
A (as((pjlule A L)V (—pjlulk A pi[tlk)) V as(enc(b)g) V L) = true
(Compare transformations for ’=’-direction)

= as((pi[ulk A L)V (-p;[ulk A pj[t]k)) = true
(Fact that as(enc(b)y) and as(enc(—b)y) are complementary)

= as(pjlulx) = false,
s (pj[tle) = true
(Deduction)

Hence, we have proven that s (enc(choice(p;, b))x) = true implies as(p;[uli) = false and as(p;[t]x) = true,
which we denote as Fact 2. We now prove that this also implies s(p;) = true. For this, we firstly show that
as(enc(p; = s(pj))x) = true holds:

as(enc(s)y) = true
(Definition 16)

= as(Apeprea enc(p = s(p))k) = true
(Definition 9)

= as(enc(pj = s(p;))k) = true
(Deduction)

Hence, we have shown that a,(enc(p; = s(p;))r) = true, which we denote as Fact 3. Now we can prove that
from Fact 2 and Fact 3 we can deduce that s(p;) = true holds. We have that s(p;) € {true, L, false}. We now
show that only s(p,) = true is conform with Fact 3: Let s(p;) = true. Then enc(p; = s(p;))x = —pi[u]sApi[t]k
(Definition 9). Combining this with Fact 2 gives us as(enc(p; = s(p;))x) = true, which is conform with
Fact 3. Let s(p;) = false. Then enc(p; = s(p;))x = —pi[ulx A —pi[t]x (Definition 9). Combining this with
Fact 2 gives us as(enc(p; = s(pj))x) = false, which is a contradiction to Fact 3. Let s(p;) = L. Then
enc(p; = s(pj))k = pi[u]r (Definition 9). Combining this with Fact 2 gives us a(enc(p; = s(p;))x) = false,
which is a contradiction to Fact 3. Consequently, s(p;) = true follows from Fact 2 and Fact 3. Hence, we
have proven that also the <=’-direction a;(enc(choice(p;,b))r) = true = s(p;) = true holds. Altogether
we get

s(p;) = true = as(enc(choice(p;j, b))x) = true
which completes the proof of Case 2.1.1.

The proof of Case 2.1.2 is analogous to the proof of Case 2.1.1. Thus, next we consider Case 2.1.3:
s(eVe)=true = as(enc(choice(eV €',b))y) = true
The following equivalences hold:

s(eVe') = true
(Premise)

= s(e) = true
V s(e') = true
(Equivalent transformation)

= as(enc(choice(e, b)) = true
V as(enc(choice(e’, b)) = true
(Induction)

= as(enc((eV-bd)A(eVbV L)) = true
V as(enc((e' V=b)A (e VbV L)) = true
(Definition 10)

= (as(enc(e)r) Vas(enc(—bd)r)) A (as(enc(e)r) V as(enc(b)y) V L) = true
V (as(enc(e')) V as(enc(—b)k)) A (as(enc(e’)r) V as(enc(b)y) V L) = true
(Definition 10)
= as(enc(e)g) = true
V as(enc(e')y) = true
(Fact that as(enc(b)g) and as(enc(—b)g) are complementary)

as(enc(e V e')y) = true

(Definition 10, Equivalent transformation)

(as(enc(e Ve)k) V as(enc(=b)i)) A (as(enc(e V e')i) V as(enc(b)y) V L) = true
(Equivalent transformation, Fact that a,(enc(b);) and as(enc(—b)y) are complementary)

as(enc((eVe' Vab)A(eVe VbV L)) = true
(Definition 10, Equivalent transformation)

as(enc(choice(e Ve, b)) = true
(Definition 10)

Hence,

s(eVe)=true = as(enc(choice(eV €', b));) = true

which completes the proof of Case 2.1.3. The proof of Case 2.1.4 is analogous to the proof of Case 2.1.3. Hence,
we have completed the proof of Case 2.1. The proofs of Case 2.2 and Case 2.3 are again analogous to the proof
of Case 2.1. We only have to start with different premises: (s(a) = falseVs(a) = L)A(s(b) = true) (Case 2.2)
resp. (s(a) = false V s(a) = L) A (s(b) = false V s(b) = L) (Case 2.3) and show that a(enc(choice(a,b))r)
is equivalent to false (Case 2.2) resp. L (Case 2.3).

For the proof of Case 3 we have to show that the following equivalence holds:

/\m=1 (8'(pj) = s(choice(ay, b;)))
=N O (as (enCE Jk) A asr(enc(p; = true)i+1))
(

S

S,

V (au(enc bf)) A (enelyy = b))
V (as(enc(—a bj)k[L/true]) A ag (enc(p; = L)g+1)))

For this it is sufficient to show that

s'(pj) = s(choice(a;, b))
= (as(enc(a;)i) A ay(enc(p; = true)ii1))

c(a
V (ars (enc(b))Aas (enc(p; = false)11))
V (as(ene(~a; A b)) [L/true]) A (enclp; = L)ei1))

holds for an arbitrary but fixed j € {1,..., m}. The following table lists the cases that we have to consider
(Columns 1 and 2). Moreover, is shows the result of the corresponding equation (Column 3).

s'(p;)|s(choice(a;, b;))||s'(p;) = s(choice(a;, b;))
true true true
false false true
1 1 true
true 1 1
1 true 1
false il i
1 false 1
true false false
false true false

Fig. 1. Proof Cases.

Hence, we have to show that in all cases the result of the equation is equivalent to the result of the encoding
under the assignments as and ag. For each case the proof is similar. Here we show the proof of the most

complex case
s'(pj) = L, s(choice(aj, bj)) =L, (s'(pj) = s(choice(a;, b;))) = true
i.e. we show that under this premise

(as(enc(a;)i) A ag(enc(p; = true)ky1))
V (as(enc(bj)i) A ag (enc(p; = false)ry1))
V (as(enc(—a; A —bj)i[L/true]) A ag (enc(pj = L)k41))

is equivalent to true. The proof goes by induction over the structure of a; and b;. We show the case a; = ¢
and b; = r with ¢, € Pred. The proof of the other cases via induction is based on the same argumentation
as the proof of Case 2 (e.g. compare proof of Case 2.1.3). We start with the '=’-direction. For this, we firstly

derive a fact with regard to a, and ag from the premise.

s(choice(q,r)) = L, (Premise)
s'(pj) =L, (Premise)
as(enc(s)y) = true, (Definition 16)
ag(enc(s)g41) = true (Definition 16)
= s(q) = false V s(q) = L1, (Definition 10)
s(r) = false VvV s(r) =1, (Definition 10)

s'(pj) = L,

as(/\pepred enc(p = s(p))k) = true,

as'(/\pePred enc(p = s'(p))k+1) = true
= a,(enc(q = false)) = true V ag(enc(q = 1)) = true, Deduction)

as(enc(r = false)y) = true V ag(enc(r = L)) = true, Deduction)

(Definition 9)
(
(
(
ag(enc(p; = L)gy1) = true (Deduction)
(
(
(
(
(

Definition 9)

= as(-qulk A —qft]k) = Definition 9)
ulp A —rft]y) = Definition 9)
Ulp41) = true Definition 9)
Equivalent transformation)
Equivalent transformation)

true V as(qluly) = true,
as(-r true V as(rulg) = true,

Qg (pj

as(qlu)g) = false A as(q[t]r) = false) V as(qlu]i) = true,
((rlulk) = false N as(r[t]i) = false) V ag(rluy) = true,

k+1) = true

(Equivalent transformation)
(Equivalent transformation)

]

) = false V as(qlulk) = true,
k) = false V as(r[uly) = true,
(pjlulrt1) = true
vV ogft]e) A

ulp41) = true

(rlu]g V —r[tle)) = true, (Equivalent transformation)

Hence, we have proven that s(choice(g, 7)) = L A §'(p;) = L implies the above fact about a,; and «,/, which
we denote as Fact 4. By making use of Fact 4 we now can prove that s(choice(q,7)) =L A §'(p;) = L also
implies that (o (enc(q)r) Aas (enc(p; = true)ry1))V (as(enc(r)g) Ao (enc(p; = false)r11)) V (s (enc(—p A

=q)g[L/true]) Aag (enc(p

; = L)kx41)) is equivalent to true. For this, we transform this expression as follows:

rluli A =rlt]g))[L/true]) A as (psluli+1))

s (pjlulk+1))

(as(enc(q)r) A asr(enc(p; = true)g41))
V (as(enc(r)y) A oy (enc(p; = false)ii1))
V (as(enc(—g A —r)i[L/true]) A ag (enc(p; = L)gps1))

= (as((qlulr A L)V (2qlule A qlt]k)) A as (2p; [u]err A pj[He+1))
V (as((rlule A L) v (=rfule A r[Ele) A as (5p; [u]era A =pi[Elke)
V (s (((qlulk A L)V (=glule A =qlt]e)) A ((rlule A L)V (5
(Definition 10)

= (as((qlulr A L)V (mqlule A qlt]r) A as (2p; [u]a A pjt]e+1))
V (as((rlule A L)V (=rule A r[tlk) Aas (ﬁpg[Je+1 A =p;(tlke1))
V (s ((glulk vV (mglule A =qlt]e)) A (rluli V (=r{ule A -r(E))) A
(Application of the substitution)

= (as((gqlulx A L)V (mqlu]e A qlt]r) A as (2p; [u]ka A pj[t]e+1))
V (s ((rule A L) V (=r[u]kAT[J6)) A s (=p; [ulks A =p5[t] k)
V(s ((glulr v =g[tli) A (rlule Vv =r[te) A as (p[ulk41)
(Equivalent transformation)

= (as((qlulx A L)V (mglulk A qli]x)) A false)
V(s ((rlule A L)V (=rfuli A r[t]k) A false)
V (true A true)
(Fact 4)

= true

(Equivalent transformation)

This completes the '=’-direction of the proof. Next we prove the ’<=’-direction.

(as(enc(q)r) A g (enc(p; = true)g41))
V (as(enc(r)r) A ag(enc(p; = false)ky1))
V (as(enc(—g A —r)i[L/true]) A ag(enc(p; = L)gy1))
= true
= (as((qlu]le A L)V (mqlu]e A q[t]r)) A o (—pj[u)es1 A pjlte+1)
V (as((rlule A L)V (2rfulp A r[tle)) A s (mp;[ulks1 A —pi[tk+1))
V (as((qulr V —g(tle) A (rlule V =rte) A s (pi[ulk+1)
= true
(Compare transformations for ’=’-direction)
= (as(qlulk) = false A as(q[t]r) = true A ag (pjlulps1) = false A o (p;[tle+1) = true) (I
V (as(rulg) = false A as(r[t]r) = true A ag (pjlulps1) = false A oy (p;[t]k+1) = false) (II)
V (as(qlulr) = true A as(rlu]y) = true A oy (pjlulp41) = true) (I11)
V (as(—qtle) = false A as(r[u]r) = true A ag (pjlulps1) = true) (IV)
V (as(qlulk) = true A as(r[t]i) = false A agr (pj[u]k+1) = true) (V)
V (as(—qtle) = false A as(r]t]) = false A agr (pj[u]g+1) = true) (VI)
(Deduction)
Hence, we have shown that if (s (enc(q)r)Aas (enc(p; = true)p41))V(as(enc(r)r) Ao (enc(p; = false)ry1))V

(as(enc(—p A =q)k[L/true]) A agr(enc(p; = L)k41)) is equivalent to true then the definition of the assign-

ments o, and ay must be conform with one of the above lines (I)

to (VI). We now show that if we take

any of these lines as a constraint with regard to «, and ay then for the corresponding states s and s’ the

equation s'(p;) = s(choice(q, r)) yields true as well.
Under Constraint (I):

For the left side of the equation we get:
ag(enc(p; = s'(p;))kt1) = true
(Deduction from Definition 16)
vy (mps[ulpt1 A pj[tes1) = true
(Deduction from Constraint (I))

= enc(p; = ' (pi)kr1 = —pjilulesr A pjltler
(Definition 9)

= s'(pj) = true
(Definition 9)

For the right side of the equation we get:

as(enc(q = s(q))x) = true
(Deduction from Definition 16)
as(—qlulk A qt]g) = true
(Deduction from Constraint (I))

= enc(qg=15(¢9)r = —qlulr A q[t]r
(Definition 9)

= s(q) = true
(Definition 9)

= s(choice(q,r)) = true
(Definition 10)

Hence, the equation s’(p;) = s(choice(q, r)) yields true under Constraint (I). The proofs under the other
constraints are analogous. (Note that the abstraction technique that we apply guarantees that for an expres-
sion choice(a, b) the expressions ¢ and b are never true at the same time. Hence, s(a) = true allows us to
conclude that s(b) is not ¢rue and vice versa.) This completes the proof of the '<’-direction. The proofs of
the remaining cases from the table in Figure 2 are analogous.

(C) L({l,5),pj) = s (enc(p;)r) can be proven by showing that the following implications hold:

1. L({l,s8),p;) = true = o s (enc(p;)r) = true

2. L((l,s),pj) = false = o s (enc(p;)r) = false

3. L({l,s),pj) = L = aqq(enc(pj)r) = L

10

We prove the first case. The proofs of the remaining cases are analogous.

L(<17 5>7p]‘) = true
(Premise)
as(enc(s)y) = true
(Definition 16)

= 8(]7]-) = true
(Definition 4)
Oés(enc(pj = S(Z)j))k) = true
(Definition 9)

= as(enc(pj = true)k) = true
(Deduction)

= as(—pj[ulk A piltk) = true
(Definition 9)

= as(p;lulr) = false, s (p;[t]r) = true
(Deduction)

= as((pjlule A L)V (=pj[ulk A pi[t]k)) = true
(Deduction)

= as(enc(p;)k) = true
(Definition 10)

(D) L({1, s), (loc; = 1)) = a<l’s>(enc(zi)k) can be proven by showing that the following implications hold:

1. L((l, s), (loc; = 1)) = true = a<l,s>(enc(2¢)k) = true
2. L((l, s), (loc; = 1)) = false = a<l’s>(enc(2i)k) = false

We prove the first case. The proofs of the remaining case are analogous.

L((1, s), (loc; = 1)) = true
(Premise)

a(enc(l)) = true
(Definition 16)

= [, = Zi
(Definition 4)
ar(A\;_; enc(l;)y) = true
(Definition 8)

= as(enc(l;)y) = true
(Deduction)

This completes the proof of Lemma 2.
[m]

We now have that for each b-bounded path m = (1°,s%),..., (1%, s%), in a Kripke structure M, corresponding
to an abstracted system Sys, the assignment «, characterises a b-bounded path in the encoding [Sys], with
the same transition and labelling values as 7, and vice versa. For the correctness of Theorem 1 we still have
to show that the evaluation of an LTL property ¢ on ¢ yields the same result as o ([1]5):

Lemma 3. Let 7 be a b-bounded path and o, the assignment characterising w. Moreover, let v be an LTL
formula and Y]y its encoding. Then

[m b vl = ax([¥lh)

11

Proof of Lemma 3.
Induction on the structure of ¥). We only present some cases. The remaining ones are proven analogously.

[m EY pj] = L(z*, pj) = ax(enc(p;)r) = ax([¥]s)
(Definition 7, Lemma 2, Definition 12)
[r =5 ol = Vi_[m) v] = Vi_p ax([W]) = an(Vi_ [¥1}) = ax([Fy]})

(Definition 7, Induction, Definition 12)
O

The correctness of Theorem 1 now follows from Lemma 2 and Lemma 3 together.
O

References
1. Timm, N., Gruner, S., Harvey, M.: A Bounded Model Checker for Three-Valued Abstractions of Concurrent

Software Systems, pp. 199-216. Springer International Publishing, Cham (2016), http://dx.doi.org/10.1007/
978-3-319-49815-7_12

12

