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Abstract. T hree-valued abstraction is an established technique in soft-

ware m odelchecking. It proceeds by generating a state space m odelover

the values true, false and unknown, where the latter value is used to rep-

resent the loss of inform ation due to abstraction. T em porallogic proper-

ties can then be evaluated on such m odels. In case of an unknown result,

the abstraction is iteratively refined. In this paper, we introduce parame-

terised three-valued model checking. In our new type of m odels, unknown

parts can be either associated with the constant value unknown or with

expressions over boolean param eters. O ur param eterisation is an alterna-

tive way to state that the truth value of certain predicates or transitions

is actually not known and that the checked property has to yield the

sam e result under each possible param eter instantiation. A novel fea-

ture of our approach is that it allows for establishing logicalconnections

between param eters: W hile unknown parts in pure three-valued m odels

are never related to each other, our param eterisation approach enables

to represent facts like ’a certain pair of transitions has unknown but

com plem entary truth values’, or ’the value of a predicate is unknown

but rem ains constant along all states of a certain path’. W e dem on-

strate that such facts can be autom atically derived from the system to

be verified and that covering these facts in an abstract m odel can be

crucial for the success and efficiency of checking tem poral logic proper-

ties. M oreover, we introduce an autom atic verification fram ework based

on counterexam ple-guided abstraction refinem ent and param eterisation.

1 Introduction

Predicate abstraction [2]is an established technique for reducing the com plexity
of tem poral logic m odel checking. It proceeds by generating a state space m odel
of the softw are system to be analysed. In this m odel,concrete states of the sys-
tem are m apped to abstract states over a finite set of predicates,and adm issible
executions of the system are represented by sequences of transitions betw een
states. T raditional predicate abstraction techniques are based on a boolean do-
m ain for predicates and on an over-approxim ation of the concrete state space.
T hus,only universal properties are preserved under this form of abstraction. If
checking a universal property for an abstractm odel yields false,itcannotbe con-
cluded that the original system violates this property as w ell. In this case,m odel
checking additionally returns an abstract counterexam ple - a path in the m odel
that refutes the property. In order to gain certainty about w hether this coun-
terexam ple is spurious or corresponds to a real path,it has to be sim ulated on



the original system. T he simulation of counterexamples involves a partial explo-
ration of the concrete state space, and thus, can be exceedingly costly. Spurious
counterexamples are typically ruled out via counterexam ple-guided abstraction

refinem ent (CE G AR) [4]: Further predicates over the variables of the system
are iteratively added to the model until a level of abstraction is reached where
the property can be either definitely proved or a real counterexample can be
found. T he application of CE G AR does, however, not guarantee that eventually
a model can be constructed that is both precise enough for a definite outcome
and small enough to be manageable with the available computational resources.

M ore recent approaches [3, 18, 13]to abstraction refinement for model check-
ing are based on a domain for predicates with the truth values true, false and
unknow n. Corresponding three-valued models with the additional value unknow n
enable to explicitly model the loss of information due to abstraction. In compar-
ison to boolean abstractions, the three-valued approach is capable of preserving
universal and existential properties. Hence, all definite results in three-valued
model checking can be directly transferred to the original system. O nly an un-

know n result necessitates iterative refinement. In the latter case, an unconfirm ed

counterexam ple – a potential error path in the model with unknow n transitions
and predicates – is returned. Unconfirmed counterexamples directly hint at nec-
essary refinement steps. T hus, the costly simulation of counterexamples on the
original system is not required in the three-valued setting. M odel checking three-
valued abstractions can be conducted at the same cost as checking boolean ab-
stractions, but it additionally comes along with the aforementioned advantages.

Continuative work in this field has shown that the precision of model checking
three-valued abstractions can be increased by the concept of generalised m odel

checking (G M C) [7]. W hile standard three-valued model checking (3M C) [3, 18,
13] is based on a special three-valued semantics that enables the direct evalu-
ation of temporal logic formulae on three-valued models, the idea of G M C is
to construct all boolean concretisations of a three-valued model. T hen classical
two-valued model checking is applied to each concretisation and it is checked
whether the results are consistent, i.e. whether either all results are true or
whether all are false. In case of consistency, the result can be transferred to the
original system. G M C generally yields more definite results than 3M C. Hence,
the application of G M C instead of 3M C can reduce the number of necessary re-
finement iterations in abstraction-based verification. However, the 3M C problem
is P SPACE -complete, whereas the G M C problem is even EXP -complete:Num-
ber and size of concretisations can be exponential in the size of the three-valued
model. T hus, G M C is rather of theoretical than of practical interest. M ost exist-
ing three-valued abstraction-based verification frameworks, e.g. [13, 8, 14], rely
on standard 3M C and try to compensate the lack of precision with additional
refinement steps.

Here, we introduce param eterised three-valued m odel checking (P M C) which
is a hybrid of three-valued and generalised model checking. P redicates and tran-
sitions in our parameterised three-valued models can be either associated with
the values true, false or unknow n – or with expressions over boolean parame-



ters. Our parameterisation is an alternative w ay to state that the truth value
of certain predicates or transitions is actually not know n and that the checked
property has to yield the same result under each parameter instantiation. P M C
is thus conducted via evaluating a temporal logic formula under all parameter
instantiations and checking w hether the results are consistent. In contrast to
G M C,parameterised three-valued model checking reduces to multiple instances
of standard three-valued model checking,since the instantiation only affects pa-
rameters but not the explicit truth value unknow n. Sizes of instantiations are
alw ays linear in the size of the parameterised three-valued model. M oreover,pa-
rameterisation particularly allow s to establish logical connections betw een un-

know ns in the abstract model: W hile unknow n parts in 3M C and G M C are
never related to each other,our parameterisation approach enables to represent
facts like ’a certain pair of transitions has unknow n but complementary truth
values’,or ’the value of a predicate is unknow n but remains constant along all
states of a certain path’. W e demonstrate that such facts can be automatically
derived from the softw are system to be verified and that covering these facts
in an abstract model can be crucial for the success and efficiency of checking
temporal logic properties. In particular,w e introduce an automatic verification
framew ork for concurrent systems based on parameterised three-valued model
checking: Starting w ith pure three-valued abstraction, in each iteration either
classical refinement or parameterisation of unknow n parts is applied until a def-
inite result in verification can be obtained. T he decisions for refinement or pa-
rameterisation are automatically made based on unconfirmed counterexamples.
For several verification tasks our hybrid approach can significantly outperform
the pure three-valued approach. Our w ork includes the definition of parameter-
isation rules for three-valued abstractions and a proven theorem w hich states
that P M C is sound if parameterisation is applied according to the rules.

2 Background: T hree-V alued Model C hecking

W e start w ith a brief introduction to three-valued state space models,here three-
valued K ripke structures, and the evaluation of temporal logic properties on
them. T he key feature of these K ripke structures is a third truth value ⊥ (i.e.
unknow n) for transitions and labellings,w hich can be used to model uncertainty.

Definition 1 (Three-V alued K ripke Structure). A three-valued K ripke
structure over a set of atom ic predicates AP is a tuple K = (S ,R,L,F) w here

– S is a finite set of states,

– R : S × S → {true,⊥, false} is a transition function w ith ∀ s ∈ S : ∃ s ′ ∈ S :
R(s, s ′) ∈ {true,⊥},

– L : S × AP → {true,⊥, false} is a labelling function that associates a truth

value w ith each predicate in each state,

– F ⊆ P(R−1({true,⊥})) is a set of fairness constraints w here each constraint

F ∈ F is a set of non-false transitions.



An exam ple for a K ripke structure K over a set A P = {p} is depicted below.

s1K ::

s2

s3

p = false

p = true

p = ⊥

⊥

⊥

A path π of a three-valued K ripke structure K is an infinite sequence of states
s1s2s3 . . . with R(si , si+1) ∈ {true,⊥}. πi denotes the i -th state of π, whereas πi

denotes the i -th suffix πiπi+1πi+2 . . . of π. A path π is fair if it takes infinitely
often a transition from every fairness constraint F ∈ F. By Π(K , s) we denote
the set of all fair paths of K starting in s ∈ S . P aths are considered for the
evaluation of tem poral logic properties of K ripke structures. Here we use the
linear tem poral logic (LT L) for specifying properties.

Definition 2 (Syntax of LTL ). Let A P be a set of atom ic predicates and

p ∈ A P . T he syntax of LT L form ulae ψ is given by

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | Fψ | Gψ | ψUψ.

D ue to the extended dom ain for truth values in three-valued K ripke structures,
the evaluation of LT L form ulae is not based on classical two-valued logic. In
three-valued m odel checking we operate under the three-valued K leene logic K3

[6] whose sem antics is given by the truth tables below.

∧ true ⊥ false

true true ⊥ false

⊥ ⊥ ⊥ false

false false false false

∨ true ⊥ false

true true true true

⊥ true ⊥ ⊥

false true ⊥ false

¬
true false

⊥ ⊥

false true

For K3 we have a reflexive inform ation ordering ≤K3
(in words: ’less or equal

definite than’) with ⊥ ≤K3
true, ⊥ ≤K3

false, and true, false incom parable.
Based on K3, linear tem poral logic form ulae can be evaluated on paths of three-
valued K ripke structures according to the following definition.

Definition 3 (Three-V alued E valuation ofLTL ). Let K = (S ,R,L,F) over
A P be a three-valued Kripke structure. T hen the evaluation of an LT L form ula

ψ on a fair path π ofK, w ritten [π |= ψ], is inductively defined as follow s

[π |= p] := L(π1, p)

[π |= ¬ψ] := ¬ [π |= ψ]

[π |= ψ ∨ ψ′] := [π |= ψ] ∨ [π |= ψ′]

[π |= Xψ] := R(π1,π2) ∧
[

π2 |= ψ
]

[π |= Gψ] :=
∧

i∈N

(

R(πi ,πi+1) ∧
[

πi |= ψ
])

[π |= Fψ] :=
∨

i∈N

(

[

πi |= ψ
]

∧
∧

0≤j<i R(πi ,πi+1)
)

[π |= ψUψ′] :=
∨

i∈N

(

[πi |= ψ′] ∧
∧

0≤j<i

(

R(πj ,πj+1) ∧ [πj |= ψ]
)

)



The evaluation ofLTL form ulae on entire three-valued K ripke structures is w hat

we call three-valued m odelchecking [3].

Definition 4 (Three-V alued LTL M odel C hecking). Let K = (S ,R,L,F)
over AP be a three-valued Kripke structure. M oreover, let ψ be an LT L form ula

over AP . T he value of ψ in a state s of K , w ritten [K , s |= ψ], is defined as

[K , s |= ψ] :=
∧

π∈Π(K ,s) [π |= ψ]

In three-valued m odel checking there exist three possible outcom es: true, false
and ⊥. T hree-valued m odel checking reduces to classical two-valued m odel check-
ing if the K ripke structure K is actually two-valued, i.e. R−1(⊥) = ∅ and
L−1(⊥) = ∅. In this case, only the outcom es true and false are possible. For
our exam ple K ripke structure [K , s1 |= Gp] yields false, whereas [K , s1 |= GF p]
yields unknow n. Gp is a tem poral logic form ula that characterises a typical
safety property, while GF p characterises a liveness property. Safety and live-
ness are the m ost vital requirem ents in software verification. In our approach,
we therefore particularly focus on these two kinds of properties.

For the sake of com pleteness, we also briefly review generalised m odel check-
ing (for m ore details see [7]). Under G M C , [K , s |= ψ] yields true iff [K ′

, s |= ψ]
is true for all concretisations K ′ of K , where a concretisation is a two-valued K ′

such that [K , s |= ψ] ≤K3
[K ′

, s |= ψ] for all LT L form ulae ψ. T he definition of
[K , s |= ψ] = false is analogous. In all rem aining cases [K , s |= ψ] yields ⊥.

3 Parameterised Three-V alued Model C hecking

State space m odels constructed by three-valued abstraction techniques [13, 8,
14] are typically represented as (pure) three-valued K ripke structures. Here we
introduce a generalisation called param eterised three-valued Kripke structures,
and we define m odel checking for these structures. Later we will see that param -

eterised three-valued m odel checking (P M C ) for three-valued abstractions can
significantly enhance the precision of verification.

Definition 5 (P aram eterised Three-V alued K ripke Structure). A pa-
ram eterised three-valued K ripke structure over AP and a set of boolean param -

eters X = {x1, ..., xm} is a param eterised tuple K (
m

x ) = (S ,R(
m

x ),L(
m

x ),F(
m

x ))
w here

– S is a finite set of states,

– R(
m

x ) : S × S → {true,⊥, false} ∪ B E (X ) is a transition function w ith ∀ s ∈

S : ∃ s ′ ∈ S : R(
m

x )(s, s ′) ∈ {true,⊥}∪ B E (X ) w here B E (X ) denotes the set

of boolean expressions over X ,

– L(
m

x ) : S × AP → {true,⊥, false} ∪ B E (X ) is a labelling function that as-

sociates a truth value or a param eter expression w ith each predicate in each

state,

– F(
m

x ) ⊆ P(R−1(
m

x )({true,⊥}∪B E (X ))) is a set of fairness constraints w here

each constraint F ∈ F(
m

x ) is a set of non-false transitions.



Note that (
m

x) is an abbreviation for the param eter tuple (x1, . . . , xm). An instan-
tiation of a parameterised three-valued K ripke structure K (

m

x ) is a pure three-
valued K ripke structure K (

m

a) where (
m

a) ∈ {true, false}m . Hence, allparameters
are substituted by boolean truth values. However, predicates and transitions that
were not parameterised in K (

m

x ) may still hold the value unknow n in K (
m

a). If
the current tuple of parameters or truth values is clear from the context, we
will not explicitly mention it, i.e. we will just refer to R, L and F. An exam-
ple for a parameterised three-valued K ripke structure together with allits pure
three-valued instantiations is shown in the figure below.

s1K (x1) ::

s2

s3

p = false

p = true

p = ⊥

¬x1

x1

s1K (true) ::

s2

s3

p = false

p = true

p = ⊥

s1K (false) ::

s2

s3

p = false

p = true

p = ⊥

For evaluating temporal logic formulae on parameterised three-valued K ripke
structures we consider allpossible instantiations.

Definition 6 (P aram eterised Three-V alued LTL M odel C hecking). Let
K (

m

x ) = (S ,R(
m

x ),L(
m

x ),F(
m

x )) be a param eterised three-valued Kripke structure

over A P and X = {x1, . . . , xm}. M oreover, let ψ be an LT L form ula over A P .

T he value of ψ in a state s of K (
m

x ), w ritten [K (
m

x ), s |= ψ], is defined as

[

K (
m

x ), s |= ψ
]

:=



















true if
∧

(
m
a)∈{t,f }m

([

K (
m

a), s |= ψ
]

= true
)

false if
∧

(
m
a)∈{t,f }m

([

K (
m

a), s |= ψ
]

= false
)

⊥ else

T hus, if checking a temporallogic property yields true for allinstantiations, the
result is transferred to the parameterised K ripke structure. T he same holds for
false results for allinstantiations. In allother cases P M C returns unknow n. For
our recent example, we get [K (x1), s1 |= G F p] = true since G F p holds for both
K (true) and K (false). In contrast to our example from Section 2, the two outgo-
ing transitions of state s2 are no longer unknow n but parameterised. M oreover,
we capture the fact that the associated transition values are com plem entary,
which gives us the necessary precision for a definite result in verification.

Subsequently, we willsee that such facts can be automatically derived from
the controlflow and program code of the modelled system in the sense that the
corresponding parameterisation gives us a sound abstraction. Furthermore, we
willshow how parameterised three-valued modelchecking can be effectively in-
tegrated into an automatic abstraction refinement-based verification procedure.

4 Application to T hree-V alued Abstractions

T hree-valued modelchecking [3] is used in many abstraction-based verification
frameworks for software systems [13, 10, 8, 1]. An effective state space reduction



technique for concurrent software systems is three-valued spotlight abstraction

[12,14,15]. In previous works [16,17],we have demonstrated that verifying con-
current systems via spotlight abstraction and three-valued model checking can
significantly outperform approaches based on boolean predicate abstraction [2].
In this section,we give a brief introduction to concurrent systems and spotlight
abstraction (for more details see [12]). M oreover, we show how param eterisa-

tion can be applied to three-valued K ripke structures constructed by spotlight
abstraction and how this can increase the efficiency of verification.

4.1 Sp otlight A bstraction for C oncurrent System s

A concurrent system Sys consists of a number of asynchronous processes com-
posed in parallel: Sys = ‖ni=1 Proci . It is defined over a set of variables V ar =
V ars ∪

⋃n

i=1 V ari w here V ars is a set of shared variables and V ar1, . . . , V arn
are sets of localvariables associated w ith the processes Proc1, . . . ,Procn , respec-
tively. A process corresponds to a finite sequence of locations w here each location
is associated w ith an operation op on the variables in V ars ∪ V ari . O perations
are of the form op = assum e(e) :v1 := e1, . . . , vk := ek w here e, e1, . . . , ek are
expressions over V ars ∪ V ari = {v1, . . . , vk}. Hence, an operation consists of an
assume part, also called guard, and a list of assignments. E xecuting the guard
blocks the execution of the assignments untilthe expression e evaluates to true.
W e omit the guard if e is constantly true. T he current location of a process Proci
can be regarded as the value of an additionallocalcounter variable pci over the
process’ locations Loci = {1i , . . . ,Li}. Locations may also be associated w ith
compound operations, w hich consist of one or more sub-operations nested inside
a control structure. C ompound operations in our systems are, amongst others,
if-then-else and w hile-do. An example for a concurrent system is depicted below .

v1, . . . , vk : in teger

P roc1 ::



















1 :
[

. . .
]

2 : w h ile (v1 > 0) d o

3 :
[

. . .
]

4 : progress

5 :
[

. . .
]



















‖ P roc2 ::









1 :
[

. . .
]

2 : v1 := f (v2, . . . , vk )

3 :
[

. . .
]









‖ . . . ‖ P rocn

Here w e have a composition of n processes operating on the shared variables
v1, . . . , vk . A liveness property to verify might be w hether Proc1 alw ays repeat-
edly reaches progress, w hich w e assume is an arbitrary assertion over Proc1’s
variables. Subsequently, w e show how this verification task can be approached
by three-valued spotlight abstraction.

Spotlight abstraction involves the partition of the processes of the system
into a spotlight and a shade. P redicate abstraction is applied to the spotlight,
w hile the shade processes are abstracted aw ay by summarising them in one ap-
proximative component. T he state space of the resulting abstract system can be
straightforw ardly modelled as a (pure) three-valued K ripke structure. In our cur-
rent verification task, the relevant process for the property of interest is Proc1,



which we put into the spotlight: Spot(P roc) = {P roc1}, whereas the remain-
ing system is for now kept in the shade: Shade(P roc) = {P roc2, . . . , P rocn}.
Next, a set of so-called spotlight predicates over the system variables is selected,
here we choose Spot(P red) = {progress, (v1 > 0)}. B y applying three-valued
predicate abstraction to the spotlight processes, we obtain an abstract process
P roca

1
with the same controlflow as P roc1 but with operations abstracted over

Spot(P red). T he processes in the shade are summarised to one approximative
process P rocShade . D ue to the loss of information about the shade, P rocShade
might set predicates over shared variables to the value ⊥. O ur abstract system
now looks as follows: Sysa = P roca

1
‖ P rocShade . T he state space of Sysa can be

modelled as a pure three-valued K ripke structure over A P = Spot(P red)∪{(pci =
j ) | P roci ∈ Spot(P roc), j ∈ Loci} where (pci = j ) refers to the program counter
of P roci , and each definite modelchecking result obtained for this structure can
be transferred to the concrete system [12]. A three-valued K ripke structure K

corresponding to Sysa is depicted in part (a) of the figure below. For simplicity,
we only show the program counter predicates that are currently true.

(a) (b)

s1K :: s2

s3

s4

s5

(pc1=1)
(v1>0)=⊥
progress=f

(pc1=2)
(v1>0)=⊥
progress=f

(pc1=4)
(v1>0)=f

progress=t

(pc1=5)
(v1>0)=f

progress=f

(pc1=3)
(v1>0)=t

progress=f

⊥

⊥
s1K (x1) :: s2

s3

s4

s5

(pc1=1)
(v1>0)=⊥
progress=f

(pc1=2)
(v1>0)=⊥
progress=f

(pc1=4)
(v1>0)=f

progress=t

(pc1=3)
(v1>0)=t

progress=f

(pc1=5)
progress=f

(v1>0)=f
x1

¬x1

Note that the controlflow of spotlight processes is always preserved under spot-
light abstraction. Hence, each transition of K associated with the spotlight
matches with a specific operation of the spotlight process P roc1. For K and its
set of atomic predicates A P = {progress, (v1 > 0)} ∪ {(pc1 = j ) | j ∈ Loc1} we
can formalise our property of interest as the LT L formula GFprogress and then
apply standard three-valued model checking, i.e. check [K , s1 |= GFprogress].
T he current abstraction is not precise enough for a definite result in verification.
Since there exist processes in the shade that operate on the shared variable v1,
the value of the predicate (v1 > 0) in the states s1 and s2 is ⊥. T hus, it is also
unknown whether the body of the w hile-loop can be executed via the transition
(s2, s3), or whether the loop can be eventually left via (s2, s4). T he automatic
abstraction refinement procedure introduced in [17]would now iteratively shift
processes from the shade to the spotlight untilit can be definitively shown w hich

branch of the w hile-loop can be actually taken. However, due to transitive de-
pendencies – P roc2 modifies v1, but in turn depends on v2, . . . , vk which may be

modified by other shade processes as well – such a refinement can be exceed-

ingly costly orcan even lead to a failure of verification because of state explosion.

A closer look at our simple example structure tell us that, regardless of which

branch of the loop willbe ever taken, progress willnever hold repeatedly. Hence,

the evaluation of GFprogress on K should yield false. However, the standard



three-valued LT L sem antics (com pare Section 2) does not allow us to draw this
conclusion. In the follow ing w e w ill see that autom ated parameterisation can
give us the necessary precision for a definite verification result – at considerably
less cost than classical abstraction refinem ent.

4.2 P aram eterisation of Three-V alued A bstractions

As w e just have seen, [K , s1 |= G F progress] yields ⊥. Nevertheless, a ⊥-result
in 3M C alw ays com es along w ith an unconfirmed counterexample – a potential
error path in the K ripke structure w ith som e unknow n transitions or predicates.
Four our running exam ple the path π = s1s2s4s5s5 ...is an unconfirm ed coun-
terexam ple. Such a path is typically used for counterexample-guided abstraction

refinement (C E G AR) [4]: In our case, the⊥-transition (s2, s4) w ould be identified
as the reason for uncertainty, and shade processes that m odify the if-condition
(v1 > 0) associated w ith (s2, s4) w ould be iteratively shifted to the spotlight.
Now w e w ill show that counterexam ples can also be exploited for the param e-
terisation of three-valued K ripke structures. W e first illustrate param eterisation
based on our running exam ple and then provide the general rules for it.

O ur m ethod detects that the reason for uncertainty, the ⊥-transition (s2, s4)
along π, is associated w ith a complementary branch in the original system : a
branch of the control flow of a single process w ith com plem entary branching
conditions – here (v1 > 0) and ¬(v1 > 0). Instead of applying classical C E G AR,
a fresh boolean param eter x1 is introduced and the transition is param eterised
as follow s: R(s2, s4) := x1. Next, the com plem entary transition (s2, s3) is iden-
tified and param eterised by R(s2, s3) := ¬x1. T he corresponding param eterised
three-valued K ripke structure K (x1) is depicted in part (b) of the figure on the
previous page. Applying param eterised three-valued m odel checking, i.e. verify-
ing [K (x1), s1 |= G F progress] im m ediately returns false. T hus, for our running
exam ple a definite result in verification only requires the introduction of a single
param eter and the consideration of the tw o instantiations K (true) and K (false)
of K (x1). In contrast, a corresponding pure three-valued approach w ould require
a large num ber of additional refinem ent steps and thus w ould m ost likely fail
due to state explosion. Also the application of the com putationally m ore expen-
sive G M C w ould not be successful, since it cannot establish the com plem entary
relation betw een (s2, s4) and (s2, s3). T he follow ing rule generalises the param e-
terisation of com plem entary branches in three-valued K ripke structures.

R ule I (P aram eterisation of C om plem entary Branch Transitions). Let
Sys = ‖n

i=1
Proci be a concurrent system and Spot = Spot(Proc) ∪ Spot(Pred)

be a spotlight abstraction for Sys. Let K be a three-valued KS over A P =
Spot(Pred) ∪ {(pci = j ) | Proci ∈ Spot(Proc) ∧ j ∈ Loci} that models the

abstract state space corresponding to Sys and Spot, and let s1 be a state of K .

M oreover, let ψ be a safety or liveness LT L formula and checking [K , s1 |= ψ]
yields ⊥. Let π be the unconfirmed counterexample returned by model checking

w hich runs through a finite number ofdifferent transitions. T he transitions ofK

can be parameterised as follow s:



For each transition (s, s ′) along π w ith R(s, s ′) = ⊥, check if (s, s ′) is part

of a com plem entary branch, i.e.: (s, s ′) is associated w ith a guard operation

assum e(e) of a spotlight process Proci, w here e is a boolean expression – and

m oreover, there exists a state s ′′ such that (s, s ′′) is associated w ith a com ple-

m entary guard operation assum e(¬e) of Proci . T hen introduce a fresh param eter

xj and set R(s, s ′) = xj and R(s, s ′′) = ¬xj .

T his rule allow s to parameterise complementary branches (e.g. if - or w hile-
operations) in three-valued abstractions. As w e have seen in our running exam-
ple, this can lead to substantial savings in the number of necessary refinement
steps for a definite result in verification. In fact,any verification task w here the
property of interest turns out to be independent from certain branches can profit
from such a parameterisation in a similar manner. At the end of this section w e
w illpresent a theorem w hich states that the application of Rule I leads to sound
abstractions of concurrent systems. B eforehand,w e introduce another rule that
allow s the parameterisation of predicates in three-valued abstractions.

In order to illustrate how the parameterisation of predicates w orks,w e consider
a second example, the concurrent system Sys depicted below . O ur property of
interest is now m utual exclusion, i.e. w hether the flag variables flag1 and flag2
are never true at the sam e tim e.

v1, . . . , vk : in teger;

fl ag1, fl ag2, init : b o olean w h ere fl ag1 = false , fl ag2 = false , init = false ;

P roc1 ::















1 : fl ag1 := f (v1, . . . , vk )

2 : init := true

3 : fl ag1 := ¬fl ag2

4 :
[

. . .

]















‖ P roc2 ::















1 : fl ag2 := false

2 : aw a it(init)

3 : fl ag2 := ¬fl ag1

4 :
[

. . .

]















‖ . . . ‖ P rocn

Applying three-valued spotlight abstraction w ith classicalrefinem ent yields the
follow ing spotlightafter a num ber of iterations: Spot(P roc) = {P roc1, P roc2} and
Spot(P red) = {flag1,flag2, init}. Next,a corresponding pure three-valued K ripke
structure K over A P = {flag1,flag2, init} ∪ {(pci = j ) | P roci ∈ Spot(P roc) ∧
j ∈ Loci} is constructed, and the m utual exclusion property form alised by the
safety LT L form ula G¬(flag1 ∧ flag2) is checked for K . M odelchecking returns
unknow n, since the assignm ent to flag1 at location 1 of P roc1 depends on the
shared variables v1, ..., vk w hich are potentially m odified by a large num ber
of processes that are currently in the shade. T hus, w ith classical abstraction
refinem entw e have to expecta large num ber of further refinem entsteps necessary
for a definite result in verification: P redicates over the variables v1, ..., vk as
w ellas processes m odifying these variables have to be draw n into the spotlight.
Nevertheless,the m odelchecking run based on the current spotlight also returns
the unconfirm ed counterexam ple π depicted in part (a) of the figure below .

(a) (b)

s1π :: s2 s3 s4 s5 s6

(pc1=1)
(pc2=1)
flag1=f

flag2=f

init=f

(pc1=2)
(pc2=1)
flag1=⊥

flag2=f

init=f

(pc1=3)
(pc2=1)
flag1=⊥

flag2=f

init=t

(pc1=3)
(pc2=2)
flag1=⊥

flag2=f

init=t

(pc1=3)
(pc2=3)
flag1=⊥

flag2=f

init=t

(pc1=3)
(pc2=4)
flag1=⊥

flag2=⊥

init=t

s1π(x1) :: s2 s3 s4 s5 s6

(pc1=1)
(pc2=1)
flag1=f

flag2=f

init=f

(pc1=2)
(pc2=1)
flag1=x1
flag2=f

init=f

(pc1=3)
(pc2=1)
flag1=x1
flag2=f

init=t

(pc1=3)
(pc2=2)
flag1=x1
flag2=f

init=t

(pc1=3)
(pc2=3)
flag1=x1
flag2=f

init=t

(pc1=3)
(pc2=4)
flag1=x1
flag2=¬x1
init=t



The reason for uncertainty isthe reachable state s6 w here flag1 and flag2 are both
⊥.The predicate flag1 issetto ⊥ by transition (s1, s2),since there are notenough
predicates and processes in the spotlight in order to abstract the associated
operation flag1 := f (v1, ..., vk) properly. The predicate flag2 is set to ⊥ by
(s5, s6) because the associated operation flag2 := ¬flag1 modifies this predicate
in relation to the already unknow n predicate flag1. In our simple example it
is easy to see that flag1 and flag2 must have complementary values in state s6
– w hich w ould rule out the unconfirmed counterexample π. How ever, this fact
cannot be captured by pure three-valued abstraction since it does not allow to
establish connections betw een predicates that are associated w ith the value ⊥.

O ur concept of parameterisation enables us to establish such connections.
For our running example w e proceed as follow s: W e backtrack to the state s2
w here flag1 w as initially associated w ith ⊥. Next, w e introduce a fresh param-
eter x1 and set L(s2,flag1) := x1. B ased on the operations associated w ith the
succeeding transitions along π w e update the labellings ofthe states s3 to s6. As
a consequence, w e now can capture that flag1 constantly keeps the value x1 along
π, flag2 keeps the value false untils5, and in particular, flag1 and flag2 have com-
plementary values in s6. T he resulting path π(x1), w hich is depicted in part (b)
on the previous page, is no longer an unconfirmed counterexample. T hus, check-
ing G¬(flag1 ∧ flag2) on a corresponding parameterised K ripke structure K (x1)
w ill immediately return that no counterexample exists, i.e. that the property is
satisfied for the modelled system. Again w e have seen that parameterisation –
here w ith regard to predicates – can lead to substantial savings in the number
of necessary refinement steps for a definite result in verification. T he follow ing
rule generalises the parameterisation ofpredicates in three-valued abstractions.

R ule II (Param eterisation of Predicates along C ounterexam ples). Let

Sys, Spot, K, s1 and A P be as in R ule I. M oreover, let ψ = G¬(
∧m

i=1 pi)
be a safety LT L formula w ith {p1, ..., pm} ⊆ Spot(P red) and model check-

ing [K , s1 |= ψ] yields ⊥. Let π = s1 ...sk be the unconfirmed counterexam-

ple returned by model checking w hich is a path prefix that ends in a state sk
w here allpredicates from {p1, ..., pm} are associated w ith either the value ⊥ or

true. K can be parameterised along π according to the follow ing procedure:

for s := s1 to sk d o

for each pi ∈ {p1, . . . , pm} w ith L(sk , pi ) = ⊥ d o

if L(s, pi ) = ⊥ th en

if s = s1, i.e. s is the initial state th en

introduce a fresh param eter xj and set L(s, pi ) := xj
else

let s′ b e the d irect predecessor of s along π, and let op b e the op eration
associated w ith the transition (s′, s)
if op is not associated w ith a process in Spot(P roc) or none of the

atomic predicates occurring in the w eakest precondition1 w pop(pi ) are

contained in Spot(P red) th en

introduce a fresh param eter xj and set L(s, pi ) := xj
else

set L(s, pi ) :=
w pop(pi )

[

p/L(s′, p) |p ∈ Spot(P red)
]

[p/⊥ |p #∈ Spot(P red)],

i.e. up date L(s, pi ) w rt. param eterisations in predecessor s′

1 Let op = assum e(e) :x1 := e1, . . . , xm := em then wpop(p)= e∧p[x1/e1,...,xm/em].



Parameterisation of predicates is applied in a similar w ay for model checking

liveness formulae, i.e. [K , s1 |= GF(
∨

m

i=1
pi)] w ith {p1, ..., pm} ⊆ Spot(Pred).

In case of an unknow n result, the modelchecker additionally returns an uncon-

firmed counterexample π of the form (s1 ...sl−1) ◦ (sl ...sk )
ω and in all states

sl ...sk each predicate from {p1, ..., pm} is associated w ith either the value ⊥

or false. T he finite prefix (s1 ...sl−1) of π is then parameterised in the same

manner as in the case of modelchecking safety formulae.

T he following theorem establishes the soundness,with respect to the informa-
tion ordering ≤K3

(compare Section 2), of parameterised three-valued model
checking,provided that parameterisation is applied according to Rule I and II.

Theorem 1. Let Sys and Spot be as before. Let K over A P be a tw o-valued KS

modelling the concrete state space of Sys and let K⊥ over A P⊥ = Spot(Pred)∪
{(pci = j ) | Proci ∈ Spot(Proc) ∧ j ∈ Loci} w ith A P⊥ ⊆ A P be a pure three-

valued KS modelling the abstract state space corresponding to Spot. M oreover,

let s1 and s⊥
1

be states representing the initial configuration of Sys in K resp.

K⊥. T hen for any parameterisation K⊥(
m

x ) of K⊥ obtained by applying the rules

I and II, and for any safety or liveness LT L formula ψ2 over A P⊥ the follow ing

holds:

[K⊥(
m

x ), s⊥
1

|= ψ] ≤K3
[K , s1 |= ψ]

Proof. See http://www.cs.up.ac.za/cs/ntimm/proof.pdf

Hence, every definite result in verification obtained for [K⊥(
m

x ), s⊥
1

|= ψ] can
be directly transferred to the concrete system modelled by K,whereas an un-

know n result for [K⊥(
m

x ), s⊥
1

|= ψ] tells us that further abstraction refinement
or parameterisation of K⊥(

m

x ) is required. In the next section,we will show how
we have implemented the application of the parameterisation rules within an
automatic abstraction refinement procedure for the verification of concurrent
systems and how verification can benefit from our parameterisation approach.

5 Autom atic C ounterexam ple-G uided Refinem ent and

P aram eterisation

W e have prototypically implemented a verification framework for concurrent
systems based on spotlight abstraction with counterexample-guided refinement
and parameterisation. O ur framework 3Spot works on top of the three-valued
symbolic model checker χC hek [5]. 3Spot takes a concurrent system Sys over a
variable set V ar and a safety or liveness temporal logic formula ψ over Sys as
input. T he initial spotlight Spot is defined by the processes that are referenced
in ψ and the atomic predicates over V ar that are subformulae of ψ. Next, a
parameterised three-valued K ripke structureK⊥(

m

x ) = (S ,R,L,F) corresponding
to Sys and Spot is constructed with a state s1 ∈ S representing the initial
configuration of Sys . T he parameter tuple (

m

x ) of K⊥(
m

x ) is initially empty. In

order to check [K⊥(
m

x ), s1 |= ψ],the following procedure is executed:

2 ψ is either of the form G¬(
∧

m

i=1
pi) or GF (

∨
m

i=1
pi) w ith {p1, . . . , pm} ⊆ A P ⊥.



1. check [K⊥(
m
a), s1 |= ψ] for all valuations (

m
a) ∈ {t, f }m

if ∀(
m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = t or ∀(

m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = f then

prop erty ψ is successfu lly proved resp . d isproved for the concurrent system S ys; stop

if ∀(
m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] ∈ {⊥, t} or ∀(

m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] ∈ {⊥, f }

then
still some un know n resu lts; further refinement or parameterisation requ ired ; go to 2.

if ∃(
m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = t and ∃(

m
a) ∈ {t, f }m : [K⊥(

m
a), s1 |= ψ] = f then

current parameterisation not exp ed ient; revoke last parameterisation ; go to 2.

2. fo r each valuation (
m
a) ∈ {t, f }m with [K⊥(

m
a), s1 |= ψ] = ⊥ d o

generate unconfi rmed counterexample π⊥ for [K⊥(
m
a), s1 |= ψ]

select unconfi rmed counterexample π⊥ with the fewest un know n transitions and pred icates
if R u le I is app licab le along π⊥ then

app ly R u le I to the corresp ond ing branch in K⊥(
m
x )

else if R u le II is app licab le along π⊥ then

app ly R u le II to the corresp ond ing path prefix in K⊥(
m
x )

else
determine cause of indefin ite resu lt along π⊥ and derive corresp ond ing refinement cand i-
date r (see our previous work [17] for an example techn ique for deriving refinement can-
d idates from unconfi rmed counterexamples), which can b e a shade process or a pred icate;
add r to S pot

if r is a pred icate then

revoke parameterisation for parameterised branches in K⊥(
m
x ) where the value of r

affects the branch ing cond ition

u p d ate K⊥(
m
x ) accord ing to changes in 2. and go to 1.

Hence,the procedure terminates if for allinstantiations of the current parame-

terised K ripke structure the same definite result in verification can be obtained.

If model checking yields true for som e instantiations and false for others, the
last param eterisation step w as not expedient: T he property of interest is then
obviously not independent from the m ost recent param eterisation. T hus, this
step is revoked, w hich also includes that the sam e param eterisation w illnot be
adm issible in future iterations. In case m odelchecking returns unknow n for som e
instantiations, the abstraction has to be further param eterised or refined based
on unconfirm ed counterexam ples obtained for these instantiations. For this pur-
pose w e alw ays apply Rule I or II if possible, or use classicalrefinem ent (see our
previous w ork [17]) otherw ise. Adding a new predicate p to the abstraction m ay
affect param eterised branches: An abstract state s that is the starting point
of a com plem entary branch m ay be split into tw o new states sa and sb w ith
L(sa , p) = true and L(sb , p) = false. T hus, in the general case, the param eter-
isation of the com plem entary branch starting in s has to be revoked. How ever,
if the branch condition is independent from the value of p then the param e-
terisation can be kept. Alternatives to the revocation of param eterisations are:
K eeping the param eterisation for only one state, either sa or sb . O r, introducing
a fresh param eter xj for the second branch starting in sb . E ach iteration ends
w ith the update of the param eterised three-valued K ripke structure according
to new param eterisations or additionalrefinem ents. In case a new predicate has
been added to the abstraction, this update also involves the recalculation of the
param eterisation of predicates (com pare last step of Rule II).

So far, param eterisation resp. refinem ent is perform ed based on the uncon-
firm ed counterexam ple w ith the few est unknow n transitions and predicates. T he
intention behind this is to m inim ise the expected effort to confirm or elim inate
the counterexam ple. M oreover, the attem pt to apply the param eterisation rules



or classicalrefinement is so far always conducted in the fixed order Rule I, Rule

II, refinem ent. In the future,we intend to use heuristic guidance for selecting the
unconfirmed counterexample and for deciding which rule application or which
refinement step is currently most promising in order to achieve a definite result in
verification within a smallnumber of iterations. Similar to our previous work on
heuristics for pure refinement [17],we plan to base this heuristic approach on the
structure of the underlying concurrent system,i.e. on the variable dependencies
between the processes of the system.

In preliminary experiments,we applied our procedure to multiple-resource al-
location systems3 with up to 25 processes and 140 variable dependencies,and we
checked safety as wellas liveness properties. W e compared verification under the
pure three-valued approach (which has proven to be generally successfulfor con-
current systems in [17,14,15]) with verification under our novelapproach with
parameterisation. In several cases where the pure three-valued approach failed
due to an out-of-memory exception,our new technique was capable of returning
a definite verification result. T he additionalcomputations for parameterisation
particularly paid off when the property of interest turned out to be indepen-
dent from certain branches in the system, and the costs for concretising these
branches via classicalrefinement were high. In fact,such cases are very common
for systems with many if-,w hile-,and similar operations. W e also observed ver-
ification tasks (primarily where the system only exhibited very few branches,or
where the property was dependent on most of the branches) that did not profit
from the application of parameterisation rules. Here verification under the new
approach was slower but did not fail, since parameterisation only increases the
number of checks per iteration, but not the size of the abstraction (spotlight
processes and predicates). T hus, so far it is a good strategy to apply the pure
three-valued approach first and in case of failure the approach with parameteri-
sation subsequently. Nevertheless,with our intended heuristic approach,we aim
at directly discovering the best possible combination of refinement and param-
eterisation for each verification task. A more extensive experimentalevaluation
of such an enhanced approach is also planned as future work.

6 Related Work

O r research is situated in the field of model checking temporal logic proper-
ties on partial system models. T he idea of evaluating temporal logic formulae
on three-valued K ripke structures was initially proposed in [3] and is now es-
tablished under the name three-valued m odel checking (3M C ). O ur new concept
param eterised three-valued m odel checking (P M C )is an extension of 3M C . In our
approach,unknown parts of the modelled system cannot only be represented by
the constant ⊥,but also by expressions over boolean parameters. T he evaluation
of temporallogic formulae is then performed for each possible parameter instan-
tiation. T he idea of considering possible instantiations resp. concretisations of
a partialmodelis adopted from generalised m odel checking (G M C ) [7]. In con-
trast to the concretisations in G M C , our instantiations only affect parameters

3 A detailed description of these system s can be found in [14].



but do not concern the constant ⊥. M oreover, our instantiations are alw ays of
the same size as the partial model, w hereas the concretisations in G M C can be
exponentially larger. Neither 3M C nor G M C offer a concept for draw ing con-
nections betw een unknow n parts. W hile 3M C and G M C are general concepts
for the verification of partial models, our approach is application-oriented and
takes advantage from the consideration of the system structure w hen applying
the parameterisation rules w ithin our automated verification procedure.

Another w ork related to ours is that of Herbstritt et al. [9]w ho combine three-
valued logic and quantified boolean parameters for representing unspecified parts
of a hardw are model w ith different precision. T heir technique is geared tow ards
equivalence checking of circuits. In contrast to our approach, [9]do not introduce
a concept for establishing connections betw een parameters in the model. M ore-
over, the decision for modelling an unspecified part via the third truth value ⊥ or
via a boolean parameter has to be done by hand and not based on automatable
rules. [9] encode their hardw are verification tasks as bounded model checking
problems that can be efficiently solved via SAT /Q B F -solvers. T he definition of
such encodings for our parameterised three-valued model checking is another
interesting direction for future research. A similar approach to the verification
of hardw are circuits, but in the context of B D D -based symbolic model check-
ing w as introduced in [11]. T heir method supports the verification of full C T L
properties based on models w ith a flexible representation of unknow ns. T his
approach necessitates the manual selection of the type of modelling unknow n
parts. E stablishing logical relations betw een parameters is not possible here.

7 Conclusion

W e developed a concept for modelling unknow n parts of an abstract softw are
system w ith different types of approximation:In our parameterised three-valued
K ripke structures the loss of information about a predicate or a transition can
be either represented by the constant ⊥ or by an expression over boolean param-
eters. A novel feature of our modelling approach is that it allow s for establishing
logical connections betw een unknow n parameters, like equality or complemen-
tarity – and thus, to preserve more details under abstraction that can be crucial
for the success and efficiency of verification. W e introduced temporal logic model
checking for parameterised three-valued K ripke structures and show ed that this
method is sound if the models are constructed w ith regard to parameterisation
rules that w e defined. T hese rules take the branching structure and the program
code of the modelled system into account and arrange the connections betw een
parameters in the model. W e then presented an automatic verification procedure
based on iterative abstraction refinement and parameterisation. For several veri-
fication tasks, particularly for verifying systems w ith many conditional branches,
our new approach w ith parameterisation can significantly outperform verification
based on classical modelling techniques that are not capable of characterising
connections betw een unknow n parts. W e are convinced that our concept for pa-
rameterisation can be easily and effectively adapted to other types of systems
and verification tasks, w hich w e intend to investigate in our future research.
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