Parameterisation of Three-Valued Abstractions

Nils Timm and Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa
{ntimm, sgruner}@cs.up.ac.za

Abstract. Three-valued abstraction is an established technique in soft-
ware model checking. It proceeds by generating a state space model over
the values true, false and unknown, where the latter value is used to rep-
resent the loss of information due to abstraction. Temporal logic proper-
ties can then be evaluated on such models. In case of an unknown result,
the abstraction is iteratively refined. In this paper, we introduce parame-
terised three-valued model checking. In our new type of models, unknown
parts can be either associated with the constant value unknown or with
expressions over boolean parameters. Our parameterisation is an alterna-
tive way to state that the truth value of certain predicates or transitions
is actually not known and that the checked property has to yield the
same result under each possible parameter instantiation. A novel fea-
ture of our approach is that it allows for establishing logical connections
between parameters: While unknown parts in pure three-valued models
are never related to each other, our parameterisation approach enables
to represent facts like ’a certain pair of transitions has unknown but
complementary truth values’, or ’the value of a predicate is unknown
but remains constant along all states of a certain path’. We demon-
strate that such facts can be automatically derived from the system to
be verified and that covering these facts in an abstract model can be
crucial for the success and efficiency of checking temporal logic proper-
ties. Moreover, we introduce an automatic verification framework based
on counterexample-guided abstraction refinement and parameterisation.

1 Introduction

Predicate abstraction [2] is an established technique for reducing the complexity
of temporal logic model checking. It proceeds by generating a state space model
of the software system to be analysed. In this model, concrete states of the sys-
tem are mapped to abstract states over a finite set of predicates, and admissible
executions of the system are represented by sequences of transitions between
states. Traditional predicate abstraction techniques are based on a boolean do-
main for predicates and on an over-approximation of the concrete state space.
Thus, only universal properties are preserved under this form of abstraction. If
checking a universal property for an abstract model yields false, it cannot be con-
cluded that the original system violates this property as well. In this case, model
checking additionally returns an abstract counterexample - a path in the model
that refutes the property. In order to gain certainty about whether this coun-
terexample is spurious or corresponds to a real path, it has to be simulated on

the original system. The simulation of counterexamples involves a partial explo-
ration of the concrete state space, and thus, can be exceedingly costly. Spurious
counterexamples are typically ruled out via counterexample-guided abstraction
refinement (CEGAR) [4]: Further predicates over the variables of the system
are iteratively added to the model until a level of abstraction is reached where
the property can be either definitely proved or a real counterexample can be
found. The application of CEGAR does, however, not guarantee that eventually
a model can be constructed that is both precise enough for a definite outcome
and small enough to be manageable with the available computational resources.

More recent approaches [3, 18, 13] to abstraction refinement for model check-
ing are based on a domain for predicates with the truth values true, false and
unknown. Corresponding three-valued models with the additional value unknown
enable to explicitly model the loss of information due to abstraction. In compar-
ison to boolean abstractions, the three-valued approach is capable of preserving
universal and existential properties. Hence, all definite results in three-valued
model checking can be directly transferred to the original system. Only an un-
known result necessitates iterative refinement. In the latter case, an unconfirmed
counterexample — a potential error path in the model with unknown transitions
and predicates — is returned. Unconfirmed counterexamples directly hint at nec-
essary refinement steps. Thus, the costly simulation of counterexamples on the
original system is not required in the three-valued setting. Model checking three-
valued abstractions can be conducted at the same cost as checking boolean ab-
stractions, but it additionally comes along with the aforementioned advantages.

Continuative work in this field has shown that the precision of model checking
three-valued abstractions can be increased by the concept of generalised model
checking (GMC) [7]. While standard three-valued model checking (3MC) [3, 18,
13] is based on a special three-valued semantics that enables the direct evalu-
ation of temporal logic formulae on three-valued models, the idea of GMC is
to construct all boolean concretisations of a three-valued model. Then classical
two-valued model checking is applied to each concretisation and it is checked
whether the results are consistent, i.e. whether either all results are true or
whether all are false. In case of consistency, the result can be transferred to the
original system. GMC generally yields more definite results than 3MC. Hence,
the application of GMC instead of 3MC can reduce the number of necessary re-
finement iterations in abstraction-based verification. However, the 3MC problem
is PSPACE-complete, whereas the GMC problem is even EXP-complete: Num-
ber and size of concretisations can be exponential in the size of the three-valued
model. Thus, GMC is rather of theoretical than of practical interest. Most exist-
ing three-valued abstraction-based verification frameworks, e.g. [13,8,14], rely
on standard 3MC and try to compensate the lack of precision with additional
refinement steps.

Here, we introduce parameterised three-valued model checking (PMC) which
is a hybrid of three-valued and generalised model checking. Predicates and tran-
sitions in our parameterised three-valued models can be either associated with
the values true, false or unknown — or with expressions over boolean parame-

ters. Our parameterisation is an alternative way to state that the truth value
of certain predicates or transitions is actually not known and that the checked
property has to yield the same result under each parameter instantiation. PMC
is thus conducted via evaluating a temporal logic formula under all parameter
instantiations and checking whether the results are consistent. In contrast to
GMC, parameterised three-valued model checking reduces to multiple instances
of standard three-valued model checking, since the instantiation only affects pa-
rameters but not the explicit truth value unknown. Sizes of instantiations are
always linear in the size of the parameterised three-valued model. Moreover, pa-
rameterisation particularly allows to establish logical connections between wun-
knowns in the abstract model: While unknown parts in 3MC and GMC are
never related to each other, our parameterisation approach enables to represent
facts like ’a certain pair of transitions has unknown but complementary truth
values’, or 'the value of a predicate is unknown but remains constant along all
states of a certain path’. We demonstrate that such facts can be automatically
derived from the software system to be verified and that covering these facts
in an abstract model can be crucial for the success and efficiency of checking
temporal logic properties. In particular, we introduce an automatic verification
framework for concurrent systems based on parameterised three-valued model
checking: Starting with pure three-valued abstraction, in each iteration either
classical refinement or parameterisation of unknown parts is applied until a def-
inite result in verification can be obtained. The decisions for refinement or pa-
rameterisation are automatically made based on unconfirmed counterexamples.
For several verification tasks our hybrid approach can significantly outperform
the pure three-valued approach. Our work includes the definition of parameter-
isation rules for three-valued abstractions and a proven theorem which states
that PMC is sound if parameterisation is applied according to the rules.

2 Background: Three-Valued Model Checking

We start with a brief introduction to three-valued state space models, here three-
valued Kripke structures, and the evaluation of temporal logic properties on
them. The key feature of these Kripke structures is a third truth value L (i.e.
unknown) for transitions and labellings, which can be used to model uncertainty.

Definition 1 (Three-Valued Kripke Structure). A three-valued Kripke
structure over a set of atomic predicates AP is a tuple K = (S, R, L,F) where

— S is a finite set of states,

— R: S xS — {true, L, false} is a transition function withVs € S:3s' € S :
R(s,s") € {true, L},

L:S x AP — {true, L, false} is a labelling function that associates a truth
value with each predicate in each state,

F C P(R™Y({true, L})) is a set of fairness constraints where each constraint
F € F is a set of non-false transitions.

An example for a Kripke structure K over a set AP = {p} is depicted below.

p = true
1L

p = false
n \é‘

p=2L1

A path 7 of a three-valued Kripke structure K is an infinite sequence of states
518283 ... with R(s;, s;11) € {true, L}. m; denotes the i-th state of 7, whereas 7
denotes the i-th suffix m;m; 1742 ... of 7. A path 7 is fair if it takes infinitely
often a transition from every fairness constraint F' € F. By II(K, s) we denote
the set of all fair paths of K starting in s € S. Paths are considered for the
evaluation of temporal logic properties of Kripke structures. Here we use the
linear temporal logic (LTL) for specifying properties.

Definition 2 (Syntax of LTL). Let AP be a set of atomic predicates and
p € AP. The syntax of LTL formulae v is given by

Yu=pl [VY [AY [X |FY [Gy | 9U.

Due to the extended domain for truth values in three-valued Kripke structures,
the evaluation of LTL formulae is not based on classical two-valued logic. In
three-valued model checking we operate under the three-valued Kleene logic K3
[6] whose semantics is given by the truth tables below.

A ‘true 1 false \Y ‘tme 1 false

true |true L false true |true true true

L L L false L Jtrue L L

false|false false false false|true L false false|true

For K3 we have a reflexive information ordering <g, (in words: ’less or equal
definite than’) with L <y, true, L <g, false, and true, false incomparable.
Based on Kj, linear temporal logic formulae can be evaluated on paths of three-
valued Kripke structures according to the following definition.

Definition 3 (Three-Valued Evaluation of LTL). Let K = (S, R, L, F) over
AP be a three-valued Kripke structure. Then the evaluation of an LTL formula
Y on a fair path m of K, written |1 |=], is inductively defined as follows

[= p] = L(m,p)

e (At

rEy V] = [reyl VT]

[m =Xyl = R(m,m)A[7®] '

mEGY = N (Rlmimin) A [r = 9])

mEFY = View ([0 9] A Nogyes R i)

r =60 = View (17 91 A Aogyes (RO, mi00) A [0 1 0)))

The evaluation of LTL formulae on entire three-valued Kripke structures is what
we call three-valued model checking [3].

Definition 4 (Three-Valued LTL Model Checking). Let K = (S, R, L,F)
over AP be a three-valued Kripke structure. Moreover, let 1 be an LTL formula
over AP. The value of ¥ in a state s of K, written [K, s =], is defined as

[K,s E Y] = /\TI'GH(K75) [m = ¢

In three-valued model checking there exist three possible outcomes: true, false
and L. Three-valued model checking reduces to classical two-valued model check-
ing if the Kripke structure K is actually two-valued, i.e. R7!1(1) = @ and
L7Y(L) = 2. In this case, only the outcomes true and false are possible. For
our example Kripke structure [K, s; = Gp] yields false, whereas [K, s; = GFp]
yields unknown. Gp is a temporal logic formula that characterises a typical
safety property, while GFp characterises a liveness property. Safety and live-
ness are the most vital requirements in software verification. In our approach,
we therefore particularly focus on these two kinds of properties.

For the sake of completeness, we also briefly review generalised model check-
ing (for more details see [7]). Under GMC, [K, s |=] yields true iff [K', s = 1]
is true for all concretisations K’ of K, where a concretisation is a two-valued K’
such that [K,s = 9¢] <k, [K',s |] for all LTL formulae ¢. The definition of
[K, s 1] = false is analogous. In all remaining cases [K, s |= 9] yields L.

3 Parameterised Three-Valued Model Checking

State space models constructed by three-valued abstraction techniques [13,8,
14] are typically represented as (pure) three-valued Kripke structures. Here we
introduce a generalisation called parameterised three-valued Kripke structures,
and we define model checking for these structures. Later we will see that param-
eterised three-valued model checking (PMC) for three-valued abstractions can
significantly enhance the precision of verification.

Definition 5 (Parameterised Three-Valued Kripke Structure). A pa-
rameterised three-valued Kripke structure over AP and a set of boolean param-
eters X = {a1,...,%m} is a parameterised tuple K(z) = (S, R(z), L(z),F(z))
where

— S is a finite set of states,

— R(7): 8 x 8 = {true, L, false} U BE(X) is a transition function with Vs €
S:3s" € S: R(T)(s,s") € {true, L} U BE(X) where BE(X) denotes the set
of boolean expressions over X,

— L(z) : S x AP — {true, L, false} U BE(X) is a labelling function that as-
sociates a truth value or a parameter expression with each predicate in each
state,

— F(z) C P(R~Y(z)({true, L}UBE(X))) is a set of fairness constraints where

each constraint F € F(z) is a set of non-false transitions.

Note that (z) is an abbreviation for the parameter tuple (21, ..., 7). An instan-
tiation of a parameterised three-valued Kripke structure K (z) is a pure three-
valued Kripke structure K (a) where (a) € {true, false}™. Hence, all parameters
are substituted by boolean truth values. However, predicates and transitions that
were not parameterised in K (7) may still hold the value unknown in K(a). If
the current tuple of parameters or truth values is clear from the context, we
will not explicitly mention it, i.e. we will just refer to R, L and F. An exam-
ple for a parameterised three-valued Kripke structure together with all its pure
three-valued instantiations is shown in the figure below.

p = true p = true p = lrue

p = false p = false p = false
K(z) \éh K (true) :: \@ K (false) :: \@

p=1 p=1 p=1

For evaluating temporal logic formulae on parameterised three-valued Kripke
structures we consider all possible instantiations.

Definition 6 (Parameterised Three-Valued LTL Model Checking). Let
K(z) = (S, R(z), L(7),F(z)) be a parameterised three-valued Kripke structure
over AP and X = {x1,...,2,}. Moreover, let ¢ be an LTL formula over AP.

The value of ¥ in a state s of K(x), written [K (), s = 1], is defined as

true if A('Z?)e{t,f}m ([K(Z),s = 1/1} = true)

[K(@)s 9] =2 fase i Nyerey ([K ()5 0] = fulse)
L else

Thus, if checking a temporal logic property yields true for all instantiations, the
result is transferred to the parameterised Kripke structure. The same holds for
false results for all instantiations. In all other cases PMC returns unknown. For
our recent example, we get [K(z1), s1 E GFp] = true since GFp holds for both
K (true) and K (false). In contrast to our example from Section 2, the two outgo-
ing transitions of state s are no longer unknown but parameterised. Moreover,
we capture the fact that the associated transition values are complementary,
which gives us the necessary precision for a definite result in verification.
Subsequently, we will see that such facts can be automatically derived from
the control flow and program code of the modelled system in the sense that the
corresponding parameterisation gives us a sound abstraction. Furthermore, we
will show how parameterised three-valued model checking can be effectively in-
tegrated into an automatic abstraction refinement-based verification procedure.

4 Application to Three-Valued Abstractions

Three-valued model checking [3] is used in many abstraction-based verification
frameworks for software systems [13, 10, 8,1]. An effective state space reduction

technique for concurrent software systems is three-valued spotlight abstraction
[12,14, 15]. In previous works [16,17], we have demonstrated that verifying con-
current systems via spotlight abstraction and three-valued model checking can
significantly outperform approaches based on boolean predicate abstraction [2].
In this section, we give a brief introduction to concurrent systems and spotlight
abstraction (for more details see [12]). Moreover, we show how parameterisa-
tion can be applied to three-valued Kripke structures constructed by spotlight
abstraction and how this can increase the efficiency of verification.

4.1 Spotlight Abstraction for Concurrent Systems

A concurrent system Sys consists of a number of asynchronous processes com-

posed in parallel: Sys = ||7_; Proc;. It is defined over a set of variables Var =
Vars U U?:l Var; where Var, is a set of shared variables and Vary,..., Var,
are sets of local variables associated with the processes Procy, ..., Proc,, respec-

tively. A process corresponds to a finite sequence of locations where each location
is associated with an operation op on the variables in Vars U Var;. Operations
are of the form op = assume(e) : vi:=e1, ..., vy :=e; where e, ey,..., e, are
expressions over Vars U Var; = {v,..., v }. Hence, an operation consists of an
assume part, also called guard, and a list of assignments. Executing the guard
blocks the execution of the assignments until the expression e evaluates to true.
We omit the guard if e is constantly ¢rue. The current location of a process Proc;
can be regarded as the value of an additional local counter variable pc; over the
process’ locations Loc; = {1;,...,L;}. Locations may also be associated with
compound operations, which consist of one or more sub-operations nested inside
a control structure. Compound operations in our systems are, amongst others,
if-then-else and while-do. An example for a concurrent system is depicted below.

v1,...,0; :integer
1:[... }
2 : while (v; > 0) do e[...]
Procy :: 3:[.. || Procs :: 2: vpi=f(vz,e) || ... || Procy
4 : progress 3:[”_
5:[... }

Here we have a composition of n processes operating on the shared variables
U1, ..., V. A liveness property to verify might be whether Proc; always repeat-
edly reaches progress, which we assume is an arbitrary assertion over Proc;’s
variables. Subsequently, we show how this verification task can be approached
by three-valued spotlight abstraction.

Spotlight abstraction involves the partition of the processes of the system
into a spotlight and a shade. Predicate abstraction is applied to the spotlight,
while the shade processes are abstracted away by summarising them in one ap-
proximative component. The state space of the resulting abstract system can be
straightforwardly modelled as a (pure) three-valued Kripke structure. In our cur-
rent verification task, the relevant process for the property of interest is Procy,

which we put into the spotlight: Spot(Proc) = {Procy}, whereas the remain-
ing system is for now kept in the shade: Shade(Proc) = {Procs,..., Proc,}.
Next, a set of so-called spotlight predicates over the system variables is selected,
here we choose Spot(Pred) = {progress,(v; > 0)}. By applying three-valued
predicate abstraction to the spotlight processes, we obtain an abstract process
Proc with the same control flow as Proc; but with operations abstracted over
Spot(Pred). The processes in the shade are summarised to one approximative
process Procspade. Due to the loss of information about the shade, Procsnade
might set predicates over shared variables to the value L. Our abstract system
now looks as follows: Sys® = Proc{ || Procspade. The state space of Sys® can be
modelled as a pure three-valued Kripke structure over AP = Spot(Pred)U{(pc; =
J) | Proc; € Spot(Proc),j € Loc;} where (pc; = j) refers to the program counter
of Proc;, and each definite model checking result obtained for this structure can
be transferred to the concrete system [12]. A three-valued Kripke structure K
corresponding to Sys® is depicted in part (a) of the figure below. For simplicity,
we only show the program counter predicates that are currently true.

a b

() (per=4) () (pe1=4)
(01>0)=f (0>0)=f
progress=t progress=t

(per=1) (pe1=2) (pe1=5) (pe1=1) (pc1=2) (pe1=5)
(0,>0)=L (0 >0)=1 (0 >0)=f (0 >0)=1L (01>0)=L progress=f
progress=f progress=f progress=f progress=f progress=f . (0 >0)=f

K K(zy) = : b
1 T
(per1=3) (pc1=3)
(0 >0)=t (0 >0)=t
progress=f progress=f

Note that the control flow of spotlight processes is always preserved under spot-
light abstraction. Hence, each transition of K associated with the spotlight
matches with a specific operation of the spotlight process Proc;. For K and its
set of atomic predicates AP = {progress, (v, > 0)} U{(pc1 =J) | j € Loci} we
can formalise our property of interest as the LTL formula GFprogress and then
apply standard three-valued model checking, i.e. check [K,s; = GFprogress].
The current abstraction is not precise enough for a definite result in verification.
Since there exist processes in the shade that operate on the shared variable vy,
the value of the predicate (v; > 0) in the states s; and sy is L. Thus, it is also
unknown whether the body of the while-loop can be executed via the transition
(82, 83), or whether the loop can be eventually left via (sq,s4). The automatic
abstraction refinement procedure introduced in [17] would now iteratively shift
processes from the shade to the spotlight until it can be definitively shown which
branch of the while-loop can be actually taken. However, due to transitive de-
pendencies — Proce modifies v1, but in turn depends on vs, . .., vy which may be
modified by other shade processes as well — such a refinement can be exceed-
ingly costly or can even lead to a failure of verification because of state explosion.
A closer look at our simple example structure tell us that, regardless of which
branch of the loop will be ever taken, progress will never hold repeatedly. Hence,
the evaluation of GFprogress on K should yield false. However, the standard

three-valued LTL semantics (compare Section 2) does not allow us to draw this
conclusion. In the following we will see that automated parameterisation can
give us the necessary precision for a definite verification result — at considerably
less cost than classical abstraction refinement.

4.2 Parameterisation of Three-Valued Abstractions

As we just have seen, [K, sy = GFprogress| yields L. Nevertheless, a L-result
in 3MC always comes along with an unconfirmed counterexample — a potential
error path in the Kripke structure with some unknown transitions or predicates.
Four our running example the path m = $152848555 ... is an unconfirmed coun-
terexample. Such a path is typically used for counterexample-guided abstraction
refinement (CEGAR) [4]: In our case, the L-transition (s3, s4) would be identified
as the reason for uncertainty, and shade processes that modify the if-condition
(v1 > 0) associated with (sg, s4) would be iteratively shifted to the spotlight.
Now we will show that counterexamples can also be exploited for the parame-
terisation of three-valued Kripke structures. We first illustrate parameterisation
based on our running example and then provide the general rules for it.

Our method detects that the reason for uncertainty, the L-transition (s, s4)
along 7, is associated with a complementary branch in the original system: a
branch of the control flow of a single process with complementary branching
conditions — here (v; > 0) and —(v; > 0). Instead of applying classical CEGAR,
a fresh boolean parameter x; is introduced and the transition is parameterised
as follows: R(s2,84) := 21. Next, the complementary transition (sq, s3) is iden-
tified and parameterised by R(ss, s3) := —z1. The corresponding parameterised
three-valued Kripke structure K (z;) is depicted in part (b) of the figure on the
previous page. Applying parameterised three-valued model checking, i.e. verify-
ing [K(z1), s1 E GFprogress] immediately returns false. Thus, for our running
example a definite result in verification only requires the introduction of a single
parameter and the consideration of the two instantiations K (true) and K (false)
of K(z1). In contrast, a corresponding pure three-valued approach would require
a large number of additional refinement steps and thus would most likely fail
due to state explosion. Also the application of the computationally more expen-
sive GMC would not be successful, since it cannot establish the complementary
relation between (s2, s4) and (sg, s3). The following rule generalises the parame-
terisation of complementary branches in three-valued Kripke structures.

Rule I (Parameterisation of Complementary Branch Transitions). Let
Sys = ||, Proc; be a concurrent system and Spot = Spot(Proc) U Spot(Pred)
be a spotlight abstraction for Sys. Let K be a three-valued KS over AP =
Spot(Pred) U {(pc; = j) | Proc; € Spot(Proc) Aj € Loc;} that models the
abstract state space corresponding to Sys and Spot, and let s; be a state of K.
Moreover, let 1 be a safety or liveness LTL formula and checking [K,s1 | 1]
yields 1. Let m be the unconfirmed counterexample returned by model checking
which runs through a finite number of different transitions. The transitions of K
can be parameterised as follows:

For each transition (s,s’) along m with R(s,s") = L, check if (s,s’) is part
of a complementary branch, i.e.: (s,s') is associated with a guard operation
assume(e) of a spotlight process Proc;, where e is a boolean expression — and
moreover, there exists a state s” such that (s,s") is associated with a comple-
mentary guard operation assume(—e) of Proc;. Then introduce a fresh parameter
z; and set R(s,s’) = z; and R(s,s") = ;.

This rule allows to parameterise complementary branches (e.g. if- or while-
operations) in three-valued abstractions. As we have seen in our running exam-
ple, this can lead to substantial savings in the number of necessary refinement
steps for a definite result in verification. In fact, any verification task where the
property of interest turns out to be independent from certain branches can profit
from such a parameterisation in a similar manner. At the end of this section we
will present a theorem which states that the application of Rule I leads to sound
abstractions of concurrent systems. Beforehand, we introduce another rule that
allows the parameterisation of predicates in three-valued abstractions.

In order to illustrate how the parameterisation of predicates works, we consider
a second example, the concurrent system Sys depicted below. Our property of
interest is now mutual exclusion, i.e. whether the flag variables flag; and flago
are never true at the same time.

v1,..., U : integer;

flagi, flaga, init : boolean where flag) = false, flags = false, init = false;

1: flagy = f(vr, ..., v) flags := false

await(init)
flagr := —flagz flagz := —flaga

[] []

Applying three-valued spotlight abstraction with classical refinement yields the
following spotlight after a number of iterations: Spot(Proc) = {Proc;, Procs} and
Spot(Pred) = {flag1, flaga, init}. Next, a corresponding pure three-valued Kripke
structure K over AP = {flagi, flags, init} U {(pc; = j) | Proc; € Spot(Proc) A
J € Loc;} is constructed, and the mutual exclusion property formalised by the
safety LTL formula G—(flag; A flags) is checked for K. Model checking returns
unknown, since the assignment to flag; at location 1 of Proc; depends on the
shared variables wvq,..., vy which are potentially modified by a large number
of processes that are currently in the shade. Thus, with classical abstraction
refinement we have to expect a large number of further refinement steps necessary
for a definite result in verification: Predicates over the variables vy,...,v; as
well as processes modifying these variables have to be drawn into the spotlight.
Nevertheless, the model checking run based on the current spotlight also returns
the unconfirmed counterexample 7 depicted in part (a) of the figure below.

init 1= true

1:

2: 2:

Procy :: | 3. || Procz :: | 3. | ... || Procy
4: 4:

(a) (b)
(per=1) (per=2) (per=3) (par=3) (pcr=3) (pc1=3) (per=1) (per=2) (per=3) (pcr=3) (pc1=3) (pc1=3)
(pe2=1) (pc2=1) (pea=1) (pca=2) (pc2=3) (pc2=4) (pe2=1) (pca=1) (pca=1) (pca=2) (pc2=3) (pca=4)
flagi=f flagi=1L flagi=1 flagi=1 flagi=_L flagi=_1 flagi=f flagi=m1 flagi=m flagi=2 flagi=21 flagi=m
flage=f flago=f flago=f flago:=f flago=f flago=1 flaga=f flago=f flago=f flago=f flago=f flagos=-m

init=f init=f init=t init=t init=t init=t init=f init=f init=t init=t init=t init=t

OO OO O ORI O e O O O O

The reason for uncertainty is the reachable state ss where flag; and flago are both
L. The predicate flag is set to L by transition (si, s2), since there are not enough
predicates and processes in the spotlight in order to abstract the associated
operation flagy := f(v1,...,v;) properly. The predicate flags is set to L by
(85, 86) because the associated operation flags := —flag; modifies this predicate
in relation to the already unknown predicate flag;. In our simple example it
is easy to see that flag; and flags must have complementary values in state sg
— which would rule out the unconfirmed counterexample 7. However, this fact
cannot be captured by pure three-valued abstraction since it does not allow to
establish connections between predicates that are associated with the value L.
Our concept of parameterisation enables us to establish such connections.
For our running example we proceed as follows: We backtrack to the state s,
where flag; was initially associated with 1. Next, we introduce a fresh param-
eter 1 and set L(sq, flagr) := x1. Based on the operations associated with the
succeeding transitions along m we update the labellings of the states s3 to sg. As
a consequence, we now can capture that flag; constantly keeps the value z; along
7, flags keeps the value false until s5, and in particular, flag; and flago have com-
plementary values in sg. The resulting path m(z;), which is depicted in part (b)
on the previous page, is no longer an unconfirmed counterexample. Thus, check-
ing G- (flagi A flaga) on a corresponding parameterised Kripke structure K ()
will immediately return that no counterexample exists, i.e. that the property is
satisfied for the modelled system. Again we have seen that parameterisation —
here with regard to predicates — can lead to substantial savings in the number
of necessary refinement steps for a definite result in verification. The following
rule generalises the parameterisation of predicates in three-valued abstractions.

Rule II (Parameterisation of Predicates along Counterexamples). Let
Sys, Spot, K, s; and AP be as in Rule I. Moreover, let ¢ = G-(A\i~, p;)
be a safety LTL formula with {p1,...,pm} C Spot(Pred) and model check-
ing [K,s1 |] yields L. Let m = s1...s8; be the unconfirmed counterexam-
ple returned by model checking which is a path prefix that ends in a state sy
where all predicates from {p1,...,pm} are associated with either the value L or
true. K can be parameterised along m according to the following procedure:

for s := s1 to s do
for each p; € {p1,...,pm} with L(s;,p;) = L do
if L(s,p;) = L then
if s = 51, i.e. s is the initial state then
| introduce a fresh parameter z; and set L(s, p;) := z;
else
let s’ be the direct predecessor of s along 7, and let op be the operation
associated with the transition (s’, s)
if op is not associated with a process in Spot(Proc) or none of the
atomic predicates occurring in the weakest precondition' wpop(pi) are
contained in Spot(Pred) then
| introduce a fresh parameter z; and set L(s, p;) := g;
else
set L(s,p;) :=
wpop (pi) [p/L(s",p) | p € Spot(Pred)] [p/L|p & Spot(Pred)],
i.e. update L(s, p;) wrt. parameterisations in predecessor s’

! Let op = assume(e) : &1 := e1,..., Ty := ey then wpop(p) = eApz/er, ..., Tm/em].

Parameterisation of predicates is applied in a similar way for model checking
liveness formulae, i.e. [K,s1 = GF(\/2, p;)] with {p1,...,pm} C Spot(Pred).
In case of an unknown result, the model checker additionally returns an uncon-
firmed counterexample m of the form (s1...s1-1) o (s;...s,)¥ and in all states
S;...8; each predicate from {p1,...,pm} is associated with either the value L
or false. The finite prefix (s1...8-1) of ™ is then parameterised in the same
manner as in the case of model checking safety formulae.

The following theorem establishes the soundness, with respect to the informa-
tion ordering <k, (compare Section 2), of parameterised three-valued model
checking, provided that parameterisation is applied according to Rule I and II.

Theorem 1. Let Sys and Spot be as before. Let K over AP be a two-valued KS
modelling the concrete state space of Sys and let K+ over AP+ = Spot(Pred) U
{(pe; = j) | Proc; € Spot(Proc) Aj € Loc;} with AP+ C AP be a pure three-
valued KS modelling the abstract state space corresponding to Spot. Moreover,
let s1 and si- be states representing the initial configuration of Sys in K resp.
K*. Then for any parameterisation K*(z) of K+ obtained by applying the rules
I and II, and for any safety or liveness LTL formula v> over APL the following
holds:

[KL(%)vle_ |:¢] <K, [Kvsl):w}

Proof. See http://www.cs.up.ac.za/cs/ntimm/proof . pdf

Hence, every definite result in verification obtained for [K+(z),s{ = 9] can
be directly transferred to the concrete system modelled by K, whereas an un-
known result for [K+(z), si- |= 9] tells us that further abstraction refinement
or parameterisation of K (z) is required. In the next section, we will show how
we have implemented the application of the parameterisation rules within an
automatic abstraction refinement procedure for the verification of concurrent

systems and how verification can benefit from our parameterisation approach.

5 Automatic Counterexample-Guided Refinement and
Parameterisation

We have prototypically implemented a verification framework for concurrent
systems based on spotlight abstraction with counterexample-guided refinement
and parameterisation. Our framework 3Spot works on top of the three-valued
symbolic model checker yChek [5]. 3Spot takes a concurrent system Sys over a
variable set Var and a safety or liveness temporal logic formula i over Sys as
input. The initial spotlight Spot is defined by the processes that are referenced
in ¥ and the atomic predicates over Var that are subformulae of 1. Next, a
parameterised three-valued Kripke structure K+(7) = (9, R, L, F) corresponding
to Sys and Spot is constructed with a state s; € S representing the initial

m

configuration of Sys. The parameter tuple (7) of K+ (z) is initially empty. In
order to check [K*(7),s; = 1], the following procedure is executed:

2 4 is either of the form G—(AL, pi) or GF(V/2, pi) with {p1,...,pm} C AP+,

i

m

1. check [K™'(@),s1 = 9] for all valuations (@) € {¢t,f}™
if V(@) e {t,f3m: K (@),s1 Ey] =t or V(a) € {t,f}" : [K-(a),s1 =] =f then
property v is successfully proved resp. disproved for the concurrent system Sys; stop

if V(a) € {t,f}" : [K(a),s1 =) € {L,t} or V(a) € {t,f}": [K*(a),s1 =] € {L,f}
then
still some unknown results; further refinement or parameterisation required; go to 2.

if 3(a) € {t,f}": [Kt(a),s1 E¢] =t and 3(a) € {t,f}™ : [K-(a),s1 =] =Ff then

current parameterisation not expedient; revoke last parameterisation; go to 2.
2. for each valuation (a) € {t,f}™ with [K+(a),s1 =¢] =1L do

generate unconfirmed counterexample n1 for [K* (@), s1 = 9]

select unconfirmed counterexample 7 with the fewest unknown transitions and predicates

if Rule I is applicable along 7t then
apply Rule I to the corresponding branch in K (%)

else if Rule I is applicable along 7t then

apply Rule II to the corresponding path prefix in KL(Z,})

else
determine cause of indefinite result along w1 and derive corresponding refinement candi-
date r (see our previous work [17] for an example technique for deriving refinement can-
didates from unconfirmed counterexamples), which can be a shade process or a predicate;
add 7 to Spot
if r is a predicate then

m

revoke parameterisation for parameterised branches in KJ'(I) where the value of r
affects the branching condition
update KJ‘(.:;:L) according to changes in 2. and go to 1.

Hence, the procedure terminates if for all instantiations of the current parame-
terised Kripke structure the same definite result in verification can be obtained.
If model checking yields true for some instantiations and false for others, the
last parameterisation step was not expedient: The property of interest is then
obviously not independent from the most recent parameterisation. Thus, this
step is revoked, which also includes that the same parameterisation will not be
admissible in future iterations. In case model checking returns unknown for some
instantiations, the abstraction has to be further parameterised or refined based
on unconfirmed counterexamples obtained for these instantiations. For this pur-
pose we always apply Rule I or IT if possible, or use classical refinement (see our
previous work [17]) otherwise. Adding a new predicate p to the abstraction may
affect parameterised branches: An abstract state s that is the starting point
of a complementary branch may be split into two new states s, and s, with
L(sa,p) = true and L(sp,p) = false. Thus, in the general case, the parameter-
isation of the complementary branch starting in s has to be revoked. However,
if the branch condition is independent from the value of p then the parame-
terisation can be kept. Alternatives to the revocation of parameterisations are:
Keeping the parameterisation for only one state, either s, or s;. Or, introducing
a fresh parameter z; for the second branch starting in s,. Each iteration ends
with the update of the parameterised three-valued Kripke structure according
to new parameterisations or additional refinements. In case a new predicate has
been added to the abstraction, this update also involves the recalculation of the
parameterisation of predicates (compare last step of Rule II).

So far, parameterisation resp. refinement is performed based on the uncon-
firmed counterexample with the fewest unknown transitions and predicates. The
intention behind this is to minimise the expected effort to confirm or eliminate
the counterexample. Moreover, the attempt to apply the parameterisation rules

or classical refinement is so far always conducted in the fixed order Rule I, Rule
11, refinement. In the future, we intend to use heuristic guidance for selecting the
unconfirmed counterexample and for deciding which rule application or which
refinement step is currently most promising in order to achieve a definite result in
verification within a small number of iterations. Similar to our previous work on
heuristics for pure refinement [17], we plan to base this heuristic approach on the
structure of the underlying concurrent system, i.e. on the variable dependencies
between the processes of the system.

In preliminary experiments, we applied our procedure to multiple-resource al-
location systems® with up to 25 processes and 140 variable dependencies, and we
checked safety as well as liveness properties. We compared verification under the
pure three-valued approach (which has proven to be generally successful for con-
current systems in [17,14,15]) with verification under our novel approach with
parameterisation. In several cases where the pure three-valued approach failed
due to an out-of-memory exception, our new technique was capable of returning
a definite verification result. The additional computations for parameterisation
particularly paid off when the property of interest turned out to be indepen-
dent from certain branches in the system, and the costs for concretising these
branches via classical refinement were high. In fact, such cases are very common
for systems with many if-, while-, and similar operations. We also observed ver-
ification tasks (primarily where the system only exhibited very few branches, or
where the property was dependent on most of the branches) that did not profit
from the application of parameterisation rules. Here verification under the new
approach was slower but did not fail, since parameterisation only increases the
number of checks per iteration, but not the size of the abstraction (spotlight
processes and predicates). Thus, so far it is a good strategy to apply the pure
three-valued approach first and in case of failure the approach with parameteri-
sation subsequently. Nevertheless, with our intended heuristic approach, we aim
at directly discovering the best possible combination of refinement and param-
eterisation for each verification task. A more extensive experimental evaluation
of such an enhanced approach is also planned as future work.

6 Related Work

Or research is situated in the field of model checking temporal logic proper-
ties on partial system models. The idea of evaluating temporal logic formulae
on three-valued Kripke structures was initially proposed in [3] and is now es-
tablished under the name three-valued model checking (3MC). Our new concept
parameterised three-valued model checking (PMC) is an extension of 3MC. In our
approach, unknown parts of the modelled system cannot only be represented by
the constant |, but also by expressions over boolean parameters. The evaluation
of temporal logic formulae is then performed for each possible parameter instan-
tiation. The idea of considering possible instantiations resp. concretisations of
a partial model is adopted from generalised model checking (GMC) [7]. In con-
trast to the concretisations in GMC, our instantiations only affect parameters

% A detailed description of these systems can be found in [14].

but do not concern the constant L. Moreover, our instantiations are always of
the same size as the partial model, whereas the concretisations in GMC can be
exponentially larger. Neither 3MC nor GMC offer a concept for drawing con-
nections between unknown parts. While 3MC and GMC are general concepts
for the verification of partial models, our approach is application-oriented and
takes advantage from the consideration of the system structure when applying
the parameterisation rules within our automated verification procedure.
Another work related to ours is that of Herbstritt et al. [9] who combine three-
valued logic and quantified boolean parameters for representing unspecified parts
of a hardware model with different precision. Their technique is geared towards
equivalence checking of circuits. In contrast to our approach, [9] do not introduce
a concept for establishing connections between parameters in the model. More-
over, the decision for modelling an unspecified part via the third truth value L or
via a boolean parameter has to be done by hand and not based on automatable
rules. [9] encode their hardware verification tasks as bounded model checking
problems that can be efficiently solved via SAT/QBF-solvers. The definition of
such encodings for our parameterised three-valued model checking is another
interesting direction for future research. A similar approach to the verification
of hardware circuits, but in the context of BDD-based symbolic model check-
ing was introduced in [11]. Their method supports the verification of full CTL
properties based on models with a flexible representation of unknowns. This
approach necessitates the manual selection of the type of modelling unknown
parts. Establishing logical relations between parameters is not possible here.

7 Conclusion

We developed a concept for modelling unknown parts of an abstract software
system with different types of approximation: In our parameterised three-valued
Kripke structures the loss of information about a predicate or a transition can
be either represented by the constant | or by an expression over boolean param-
eters. A novel feature of our modelling approach is that it allows for establishing
logical connections between unknown parameters, like equality or complemen-
tarity — and thus, to preserve more details under abstraction that can be crucial
for the success and efficiency of verification. We introduced temporal logic model
checking for parameterised three-valued Kripke structures and showed that this
method is sound if the models are constructed with regard to parameterisation
rules that we defined. These rules take the branching structure and the program
code of the modelled system into account and arrange the connections between
parameters in the model. We then presented an automatic verification procedure
based on iterative abstraction refinement and parameterisation. For several veri-
fication tasks, particularly for verifying systems with many conditional branches,
our new approach with parameterisation can significantly outperform verification
based on classical modelling techniques that are not capable of characterising
connections between unknown parts. We are convinced that our concept for pa-
rameterisation can be easily and effectively adapted to other types of systems
and verification tasks, which we intend to investigate in our future research.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alfaro, L., Roy, P.: Solving games via three-valued abstraction refinement. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007, LNCS, vol. 4703, pp. 74-89.
Springer-Verlag Berlin Heidelberg (2007)

. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-

straction of C programs. In: ACM SIGPLAN 2001. pp. 203-213. PLDI ’01, ACM,
New York, NY, USA (2001)

Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. pp. 274-287. LNCS,
Springer-Verlag Berlin Heidelberg, London, UK (1999)

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000, LNCS, vol.
1855, pp. 154-169. Springer-Verlag Berlin Heidelberg (2000)

Easterbrook, S.M., Chechik, M., Devereux, B., Gurfinkel, A., Lai, A.Y.C., Petro-
vykh, V., Tafliovich, A., Thompson-Walsh, C.: xChek: A model checker for multi-
valued reasoning. In: ICSE 2003. pp. 804-805 (2003)

. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-

icae 20(1-3), 113-131 (Mar 1994)

Godefroid, P., Piterman, N.: LTL generalized model checking revisited. In: Jones,
N.D., Mueller-Olm, M. (eds.) VMCAI 2009, LNCS, vol. 5403, pp. 89-104. Springer
Berlin Heidelberg (2009)

Grumberg, O.: 2-valued and 3-valued abstraction-refinement in model checking.
In: Logics and Languages for Reliability and Security, pp. 105-128. 10S Press,
Incorporated (2010)

Herbstritt, M., Becker, B.: On combining 01X-logic and QBF. In: Moreno Diaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) Comp. Aided Systems Theory - EU-
ROCAST 2007, LNCS, vol. 4739, pp. 531-538. Springer Berlin Heidelberg (2007)
Katoen, J.P., Klink, D.; Leucker, M., Wolf, V.: Three-valued abstraction for prob-
abilistic systems. Logic and Algebraic Programming 81(4), 356 — 389 (2012)
Nopper, T., Scholl, C.: Symbolic model checking for incomplete designs with flex-
ible modeling of unknowns. IEEE Trans. Computers 62(6), 1234-1254 (2013)
Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009: Formal Methods, LNCS, vol. 5850,
pp. 106-122. Springer-Verlag Berlin Heidelberg (2009)

Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In-
formation and Computation 206(11), 1313 — 1333 (2008)

Timm, N.: Three-Valued Abstraction and Heuristic-Guided Refinement for Veri-
fying Concurrent Systems. Phd thesis, University of Paderborn (2013)

Timm, N.: Spotlight abstraction with shade clustering — automatic verification of
parameterised systems. In: 8th International Symposium on Theoretical Aspects
of Software Engineering, IEEE Computer Society (to appear) (2014)

Timm, N., Wehrheim, H.: On symmetries and spotlights — verifying parameterised
systems. In: Dong, J., Zhu, H. (eds.) ICFEM 2010, LNCS, vol. 6447, pp. 534-548.
Springer, Heidelberg (2010)

Timm, N., Wehrheim, H., Czech, M.: Heuristic-guided abstraction refinement for
concurrent systems. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012, LNCS, vol. 7635,
pp. 348-363. Springer Berlin Heidelberg (2012)

Wei, O., Gurfinkel, A., Chechik, M.: On the consistency, expressiveness, and pre-
cision of partial modeling formalisms. Information and Computation 209(1), 20 —
47 (2011)

