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Abstract

Optimizing network performance is a challenging task. Network links may become

under-utilized or over-utilized. It is important to find routes that will ensure a good

balance between utilization and congestion. One approach to find the routes in the

network is the open shortest path first (OSPF) routing protocol. The open shortest

path first weight setting problem (OSPFWS) is an approach to find the best routes

by finding a set of numerical weights that will achieve optimal routing. The OSPFWS

problem, an NP-hard problem, is a multi-objective optimization problem, with the

following conflicting objectives: to minimize the maximum utilization, to minimize

the number of congested links, and to minimize the number of unused links. In order

to solve this multi-objective optimization problem, a fuzzy operator is used to ag-

gregate the sub-objectives into one objective function. A number of nature-inspired

iterative heuristic algorithms are adapted in this thesis to solve the OSPFWS prob-

lem. These algorithms are simulated annealing (SA), simulated evolution (SimE),

and particle swarm optimization (PSO). Moreover, a hybrid version of PSO, namely,

fuzzy evolutionary PSO (FEPSO), is proposed and studied. A sensitivity analysis of

the control parameters of these algorithms is presented. The proposed algorithms are

i



compared with some well-established multi-objective optimization algorithms such

as the non-dominating sorting genetic algorithm (NSGA-II), weighted aggregation

particle swarm optimization (WAPSO), and Pareto-dominance particle swarm opti-

mization (PDPSO).

Keywords: Optimization, Open shortest path first routing, Fuzzy logic, Simu-
lated annealing, Simulated evolution, Swarm intelligence, Particle swarm optimiza-
tion, Multi-objective optimization.
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Chapter 1

Introduction

The Internet has become an integral part of our lives. Internet users demand un-

interrupted and smooth functioning of various applications. One important element

of this smooth functioning is to ensure that data loss should be minimized, if not

totally eliminated. This demands utilization of network resources such as network

bandwidth and the number of available links at their best, or rather, at optimal lev-

els. The challenge lies in how such optimal levels can be achieved. For example, if the

flow of data is optimally mapped or distributed onto the available network resources,

then the data packets will not be dropped, thus achieving optimal performance with

respect to data flow. This concern about optimal utilization of network resources is

the primary focus of the ideas and methods presented in this work.

Optimization is a significant topic of research in various research domains including

1



2

science, medicine, engineering, business, and humanities. In many of these disciplines,

optimization simply refers to “doing better”. However, in the context of this thesis,

optimization refers to a process of providing the best possible (optimal) solution to

an NP-hard problem under the constraint of a limited computational budget.

The specific problem considered herein is known as the open shortest path first

weight setting (OSPFWS) problem, which is classified as an NP-hard problem [47].

The OSPFWS problem is related to the open shortest path first (OSPF) routing

protocol [119], which is widely used in Internet Protocol (IP) networks. In this thesis,

the terms “network” and “graph” are used interchangeably and these terms represent

a communication network. The term “link” is used under the context of the term

“network” and the term “arc” or “edge” is used under the context of the term “graph”.

In the context of the OSPFWS problem, a node represents a network router and an

edge represents a network link. The focus of this thesis is on adapting and applying a

number of optimization techniques and their variants to the OSPFWS optimization

problem, modelled as a multi-objective optimization problem. These sub-objectives

have to be simultaneously optimized, namely to minimize “maximum utilization”, to

minimize the number of congested links, and to minimize the number of unused links.

In the context of the OSPFWS problem, the ratio of load on the link to the capacity

of the link is referred to as the “utilization” of that link. The maximum utilization

value amongst all the network links is termed as “maximum utilization”. Note that



3

these objectives are in conflict with one another, because minimizing one objective

may increase or decrease the other two objectives and vice versa. An optimal solution

is thus required, which provides a balance among the objectives.

This thesis applies various optimization techniques, including SA [91], SimE [93],

and PSO [78] to solve the multi-objective OSPFWS problem.

This chapter provides the motivation of the thesis followed by objectives and

methodology adopted in the thesis. The contributions of this thesis are then summa-

rized. The organization of the thesis is discussed in the last section of this chapter.

1.1 Motivation

In practice, network administrators often aim to use network resources efficiently.

Routing is an important factor in enhancing the efficiency of a network. OSPF

routing is widely used by large organizations, both as an open standard and a mature

protocol. It is also supported by most vendors of routing hardware and software.

The OSPF routing protocol assigns a weight to each link, where a weight represents a

numeric integer value. The weights are then used to find the shortest paths for each

destination node from other nodes. The OSPF routing protocol does not take the

capacities of the links into consideration when these shortest paths are determined.

Consequently, some links are left unused while others become congested depending

on traffic demands. To balance the distribution of traffic demands onto the existing
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network links is therefore a challenge.

In its simplest form, the OSPFWS problem can be described as finding a weight

setting that leads to an efficient distribution of traffic demands onto the network.

There are different mechanisms that guide the setting of these weights. Cisco sets the

default weights of links as inversely proportional to the links’ capacities [45]. However,

Cisco does not take traffic demands into consideration, which may result in congested

or unutilized links. Thus, Cisco’s policy of assigning weights may not always be

optimum. Another possibility is to assign the unity weight to all the links. However,

this will lead to inefficient utilization of the links. This inefficiency will happen

because links with less capacity might be used frequently to obtain the shortest paths

between source and destination nodes. Contrary to this, higher capacity links might

not be selected for shortest paths and thus might not be used at all.

As the size of a network grows (which depends on the number of nodes and

links), the solution space for the OSPFWS problem grows exponentially. Under such

circumstances, intelligent heuristics are good candidates to be explored for better

performance. The reason for being good candidates is that the intelligent heuristics

explore the promising regions of the search space, instead of the whole search space.

Literature has shown that well-established heuristics, such as SA, SimE, and PSO,

have been successfully applied to several NP-hard problems similar to the OSPFWS

problem [6, 71, 102, 104, 106, 109, 148, 157, 163, 164, 167, 170]. In addition, research
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has revealed that hybridization of heuristics has generally shown to be more efficient

and effective [90, 129, 161, 168, 176, 177] on other problems. This particular aspect

provides the motivation to develop hybrid heuristics for the OSPFWS problem. The

motivation for the research work undertaken in this study therefore stems from the

complexity of the problem, utilizing nature-inspired algorithms to optimize the OSPF

weights, and designing hybrid versions of the algorithms specifically to solve the multi-

objective OSPFWS problem.

The OSPFWS problem is a multi-objective problem, where the objectives are in

conflict with one another. Minimizing one objective may increase or decrease the other

two objectives and vice versa. A great deal of research has been dedicated to address

issues related to multi-objective optimization [28, 69, 87, 117, 148]. Amongst many

other approaches [18, 22, 27, 54, 55, 63, 74, 113, 122, 179], fuzzy logic [180, 181] has

been used as an approach to solve multi-objective optimization problems. Therefore,

the motivation also arises to utilize fuzzy logic in the above algorithms to address the

conflicting multi-objective nature of the OSPFWS problem.

1.2 Objectives

The primary objectives of this thesis are summarized as follows:

1. To model the OSPFWS problem as a multi-objective optimization problem
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using fuzzy logic operators.

2. To formulate the fuzzy logic based cost function for the multi-objective OSPFWS

problem.

3. To propose and analyze a multi-objective fuzzy simulated annealing (FSA) algo-

rithm for the OSPFWS problem, and to study the performance of the algorithm.

4. To propose and analyze a multi-objective fuzzy simulated evolution (FSimE)

algorithm for the OSPFWS problem, and to study the performance of the al-

gorithm.

5. To propose a multi-objective fuzzy particle swarm optimization (FPSO) al-

gorithm and its hybrid variants for the OSPFWS problem, and to study the

performance of these algorithms. Furthermore, a sub-objective of the study

is to compare the proposed PSO algorithms with two well-known PSO vari-

ants, namely WAPSO [133] and PDPSO [2]. This is to compare the proposed

fuzzy logic approach with another single-objective function approach (weighted-

aggregation) and with a Pareto-dominance approach.

6. To perform mutual comparisons of the proposed algorithms in order to de-

termine which performs best, as well as to compare these algorithms with a

well-established multi-objective optimization algorithm, such as NSGA-II.
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1.3 Methodology

The following methodology is adopted for this research work:

1. A detailed review of the OSPFWS problem is done to understand the complexity

of the problem. Limitations of the existing approaches to solve the OSPFWS

problem are also reviewed.

2. A literature review of related work with respect to the OSPFWS problem is

done.

3. The OSPFWS problem is formulated as a multi-objective problem using fuzzy

logic.

4. Each proposed algorithm is described in detail, its control parameters optimized,

and its efficiency in solving the OSPFWS problem is empirically analyzed.

5. Archiving of non-dominated solutions is performed for all the implemented al-

gorithms in order to obtain a set of non-dominated solutions that balances the

trade-off amongst the objectives of the OSPFWS problem. Multi-objective op-

timization (MOO) performance measures, namely overall non-dominated vector

generation (ONVG), spacing and hypervolume [38, 68, 152] are used to compare

the performance of the implemented algorithms.

6. All the implemented algorithms are evaluated on a number of test cases, and
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their performances are compared amongst one another and to other start-of-

the-art multi-objective algorithms.

7. Following the standard practice for evaluating the performance of any non-

deterministic algorithm, the results are statistically validated through non-

parametric testing using the Wilcoxon ranked-sum test [65].

1.4 Contributions

As discussed above, Internet traffic load balancing refers to the distribution of incom-

ing network traffic across the available network links. This thesis studies the problem

of obtaining optimal load balancing in a network when the OSPF routing protocol is

used. Earlier work on the OSPFWS problem has considered only a single objective.

This thesis modelled the OSPFWS problem as a multi-objective problem, and devel-

ops a number of heuristics to solve this multi-objective problem. Accordingly, the key

contributions of this thesis are a more realistic model of the OSPFWS problem, as

well as adaptation and improvement of algorithms to solve the problem. The specific

contributions in terms of artifacts are enumerated as follows:

1. The OSPFWS problem is formulated as a multi-objective optimization problem

consisting of three objectives. These objectives are to minimize maximum uti-

lization, to minimize the number of congested links, and to minimize the number
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of unused links. The aforementioned formulation has not been attempted in any

previous studies.

2. Fuzzy logic is used to develop the cost function for the multi-objective OSPFWS

problem.

3. SA, SimE, and PSO algorithms are developed to solve the multi-objective

OSPFWS problem. In addition, Pareto-dominance PSO, weighted sum PSO

and NSGA-II are used to compare the performance of the new algorithms to

existing approaches.

4. A hybrid variant of PSO incorporating the characteristics of the SimE algorithm

is developed.

5. The performance of all the implemented algorithms is empirically analyzed and

mutually compared to assess which algorithm has the best performance amongst

the tested algorithms.

The following are the contributions to the field of multi-objective optimization:

1. Developing an objective function involving the third objective, namely the num-

ber of unused links in the network besides the existing two objectives, namely

maximum utilization and the number of congested links for a communication

network problem.
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2. Developing a set-based fuzzy hybridized evolutionary PSO algorithm, called

FEPSO.

3. A first application and study of FEPSO on the OSPFWS problem.

4. Comparing the performance of FEPSO with six other algorithms, namely FSA,

FSimE, FPSO, WAPSO, PDPSO and NSGA-II to determine which approach

performs best.

5. The proposed algorithms and methodology can be applied on any traffic load

balancing problem modelled as graphs.

1.5 Organization of Thesis

Chapter 2 provides a general overview of optimization methods. The chapter starts

with a short discussion of optimization. This is followed by a more focused dis-

cussion of multi-objective optimization and multi-objective aggregation techniques.

Another focus of this chapter is the background on fuzzy logic, relating to its use in

multi-objective optimization. Some well-known fuzzy operators are discussed, with

an emphasis on the unified and-or fuzzy operator which has been utilized in this the-

sis. This is followed by a discussion of the iterative optimization algorithms used in

this thesis. In this context, detailed discussions of SimE, SA, and PSO are provided.
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Chapter 3 provides a discussion on routing in general, followed by the discus-

sion of two well-known routing protocols, namely the routing information protocol

(RIP) and the open shortest path first protocol (OSPF). The chapter also provides a

comprehensive literature review on the OSPFWS problem.

Chapter 4 reviews the multi-objective OSPFWS problem addressed in this the-

sis in sufficient detail. It includes a formal description of the problem, notation,

assumptions, objective functions, and test cases used.

Chapter 5 provides the details of the multi-objective fuzzy SA algorithm developed

for the OSPFWS problem. The proposed fuzzy logic based objective function is

incorporated into the fuzzy SA algorithm. A detailed sensitivity analysis of the control

parameters is done and the performance of the algorithm is evaluated. An empirical

analysis and comparison with an existing objective function proposed by Sqalli et al.

[149, 160] is done to evaluate the effectiveness of the fuzzy objective function in the

context of the SA algorithm.

Chapter 6 follows an approach similar to that adopted in Chapter 5, but with

respect to the SimE algorithm. The chapter first provides details of the implemen-

tation of the multi-objective fuzzy SimE algorithm for the OSPFWS problem, using

the fuzzy logic based objective function. A sensitivity analysis of the bias parameter,

which is the only control parameter of the SimE algorithm, is performed. Further-

more, the performance of the proposed fuzzy SimE algorithm is evaluated through
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empirical analysis and comparison with the objective function proposed by Sqalli et

al. [149, 160].

Chapter 7 discusses the implementation of five algorithms namely FPSO, FEPSO,

WAPSO, PDPSO and NSGA-II for the OSPFWS problem. For each algorithm,

control parameters are also tuned in this chapter.

Chapter 8 summarizes and compares the results obtained in Chapters 5 to 7. A

comprehensive comparison of all the proposed algorithms is presented. The focus of

this chapter is to determine which of the proposed algorithms performs the best.

Chapter 9 highlights the conclusions of this thesis and provides directions for

future research.

The appendices provide lists of symbols and terminology used in this thesis, as

well as a list of publications derived from the work discussed in this thesis.



Chapter 2

Optimization and Optimization

Approaches

This chapter provides a brief overview of optimization and concepts used in the the-

sis. The chapter covers both single-objective and multi-objective optimization, with

emphasis on the latter. Since fuzzy logic is used to develop the multi-objective func-

tion, the necessary concepts of fuzzy logic are reviewed. The chapter also includes

the details of iterative heuristics, with a focus on those used in this thesis. It ends

with the discussion of MOO performance measures.

The outline of the chapter is as follows: Section 2.1 provides a brief discussion

of optimization. This section also discusses scalarized and non-dominance based

approaches for solving MOO problems. Fuzzy logic is discussed in Section 2.2. Op-

13
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timization algorithms used in this thesis are discussed in Section 2.3. Section 2.4

discusses MOO performance measures used in this thesis to evaluate the performance

of MOO algorithms.

2.1 Optimization

Optimization is the process of modifying a system such that some features of the

system work more efficiently or use fewer resources. The main idea of optimization is

to determine a solution that represents the values of a set of parameters in such a way

that the objective function is maximized or minimized, subject to certain constraints

[7]. A solution is a feasible solution if it satisfies all the design constraints. Thus the

optimal solution is the best solution amongst all available feasible solutions.

Many real-world problems are optimization problems. Disciplines such as engi-

neering, science, medicine, and business employ optimization algorithms on problems

such as structural design, resource allocation, and planning.

With respect to constraints, there are three kinds of optimization problems: un-

constrained, boundary constrained and constrained. Unconstrained problems do not

have any type of predefined conditions or restrictions on the values that can be as-

signed to variables of the problem. Boundary constrained problems are also uncon-

strained problems with an exception. The values that can be assigned to decision

variables are constrained to be in a certain range. Contrary to this, constrained
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problems have one or more predefined conditions on the values that can be assigned

to variables of the problem. The aim for unconstrained, boundary constrained and

constrained problems, is to minimize or maximize an objective function. A formal

definition of unconstrained maximization is given below [124]:

Given f : R
N → R

Find x∗ ∈ R for which f(x∗) ≥ f(x)

(2.1)

The vector x∗ in Equation (2.1) is referred to as a global maximizer. The global

maximum value of f is given by f(x∗). The maximum value within the complete

search space is referred to as the global maximum, while the maximum value within

a small region of search space is referred to as a local maximum. One characteristic

that is used to classify optimization problems is the modality of the search space.

A unimodal problem has only one optimum, while a multi-modal problem has many

optima.

Constrained optimization problems have certain predefined conditions to be satis-

fied while optimizing the objective function. A solution that does not satisfy all of the

conditions or constraints is referred to as an infeasible solution. A formal definition

of a constrained maximization problem is given below:
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Given f : R
N → R

Find x∗ ∈ R for which f(x∗) ≥ f(x) ∀ x ∈ R
′
⊆ R

n

Subject to gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = ng + 1, · · · , ng + nh

(2.2)

where gm and hm are the inequality and equality constraints, and ng and nh are

respectively the number of inequality and equality constraints.

A next level of categorization of optimization problems are based on the number

of objectives. If only one objective is to be optimized, then the problem is referred to

as a single objective optimization (SOO) problem. Contrary to this, a multi-objective

optimization problem has more than one objective. In some cases of multiple objec-

tives, optimizing one objective automatically optimizes the others. Such problems

are considered as SOO problems. Contrary to this, for some problems optimizing one

objective degrades at least one other objective. MOO algorithms have been developed

to solve optimization problems with such conflicting objectives. A MOO algorithm

has to find solutions that provide a trade-off between conflicting objectives. The set

of solutions that achieve such a balance is referred to as the Pareto front [151].

Mathematically, a MOO problem is defined as follows:
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Optimize : f(x) = (f1(x), f2(x), · · · , fno
(x))

Subject to gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = ng + 1, · · · , ng + nh

x ∈ [xmin, xmax]
nx

(2.3)

where no is the number of objectives and nx is the number of decision variables. The

boundary constraints are represented by x ∈ [xmin, xmax]
nx . There are at least two

conflicting objective functions (i.e. no ≥ 2). Here, x = (x1, x2, ..., xnx
) is called the

vector of decision variables. In multi-objective optimization, vectors are regarded as

optimal if their components can not be improved without deterioration of any one

of the other components [113]. This is referred to as Pareto optimality. The output

of a multi-objective optimization algorithm is a set of optimal solutions known as

Pareto-optimal solutions. Pareto-optimal solutions are also known as non-dominated,

non-inferior, or Pareto-efficient. A non Pareto-optimal solution is a solution where

one optimization criterion can be improved without degrading any others.

One way to solve a multi-objective optimization problem is to scalarize multiple

objectives into a single-objective function and then to optimize this single-objective

function. Thus each candidate solution to the problem during the search will be

evaluated using this scalarized single-objective function. The second way is to handle

individual objectives separately and judge the candidate solution using the domi-
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nance relation. The following sub-sections discuss a number of popular approaches to

scalarize a MOO problem. The section also discusses the dominance based approach.

2.1.1 Weighted Sum Method

The weighted sum method [54, 179] is one of the first methods used to solve MOO

problems. The constrained MOO problem [3, 158] is reformulated as a constrained

SOO problem as follows:

Maximize
∑no

k=1 λkfk(x)

Subject to gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = ng + 1, · · · , n + nh

x ∈ [xmin, xmax]
nx

(2.4)

where λk ≥ 0 for all k = 1, ..., no, and
∑no

k=1 λk = 1. A solution to the above problem

is weakly Pareto-optimal. A weak Pareto-optimal solution refers to a solution in

which all criteria can not simultaneously be improved. It is Pareto-optimal if λk > 0

for all k = 1, ..., no, or if the solution is unique [113]. The values of λk are usually

set by the user and are problem dependent. The above weight values need to be

tuned for each new problem to obtain the best results. These weights are used to

scale the objectives to be in the same range with respect their output values. The

purpose of these weights is also to define the relative importance of the individual

objectives during the optimization process. A larger weight assigned to one objective
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with respect to other objectives would guide the search into a region where this

specific objective results in relatively better objective function values than the other

objectives.

2.1.2 ε-Constraint Method

The ε-constraint approach [63] to solve a MOO problem optimizes with respect to one

of the objectives while considering the other objectives as constraints. The decision-

maker identifies the most important objective to optimize. The optimization problem

is formulated as:

Maximize fk∗(x)

Subject to fk(x) ≤ εk for all k = 1, ..., no, k 6= k∗

gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = n + 1, · · · , ng + nh

x ∈ [xmin, xmax]
nx

(2.5)

where k∗ ∈ {1, ..., no}, and εk are upper bounds for the objectives fk 6= fk∗ . The

solution to Equation (2.5) is weakly Pareto-optimal, because the main objective is

optimized while satisfying other objectives within a certain bound. These bounds are

user defined. However, a solution x∗ is Pareto-optimal if and only if Equation (2.5)

is solved for every k∗ = 1, ..., no, where εk = fk(x
∗) for k = 1, ..., no, and k 6= k∗

[113]. To ensure Pareto optimality with this method, no different problems have to
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be solved to optimize each of the no objectives.

2.1.3 Lexicographic Ordering

Lexicographic ordering ranks the objectives in order of their importance [22]. The

decision maker assigns the importance to various objectives. The optimum solution,

x∗, is then obtained by optimizing the objective functions individually in order of

their importance. The solution found by the current objective is fed into the next

objective.

The subscripts of the objectives denote the objective function number as well as

the priority of the objective. Therefore, f1(x) and fno
(x) represent the most and

least important objective functions, respectively. Consequently, the first problem is

formulated as follows:

Maximize f1(x)

Subject to gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = ng + 1, · · · , n + nh

x ∈ [xmin, xmax]
nx

(2.6)

The solution of Equation (2.6) is referred to as x∗
1. Then, the second problem is

formulated as:
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Maximize f2(x)

Subject to gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = ng + 1, · · · , n + nh

x ∈ [xmin, xmax]
nx

and f1(x) = x∗

(2.7)

The solution of Equation (2.7) is referred to as x∗
2. This procedure is then continued

until solutions to all no objectives are found. The solution, x∗
no

, obtained at the end

is the desired solution, x∗.

2.1.4 Goal Programming

Goal programming [18, 74] is one of the first methods exclusively developed for MOO

[113]. The ideal values of the objectives are defined as targets. These ideal values

could be maximum or minimum attainable values depending on the type of objec-

tive. These targets are then incorporated into the optimization problem [22]. The

decision-maker specifies the ideal values Tk (k = 1, ..., no) of the objectives. Absolute

deviations from these target values are minimized as much as possible [113]. For a

maximization problem, goals are of the form fk(x) ≥ Tk. The simplest form of goal

programming [35] is formulated as follows:
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Maximize
∑no

k=1 |fk(x) − Tk|

Subject to gm(x) ≤ 0, m = 1, · · · , ng

hm(x) = 0, m = ng + 1, · · · , ng + nh

x ∈ [xmin, xmax]
nx

(2.8)

2.1.5 Dominance-based Approach

When simultaneously optimizing all of the objectives of a MOO problem, an approach

is needed to determine if one solution is better than another with reference to all the

objectives. The dominance relation provides such a relational operator. A formal

definition of domination by considering the MOO problem defined in Equation (2.3)

is as follows.

Domination: A decision vector x1 dominates a decision vector x2 (denoted by

x1 ≺ x2) if and only if

1. x1 is not worse than x2 in all objectives, i.e. fk(x1) ≥ fk(x2),∀ k = 1, ..., no,

and

2. x1 is strictly better than x2 in at least one objective, i.e. ∃ k = 1, ..., no :

fk(x1) > fk(x2).

Similarly, an objective vector f1 dominates another objective vector f2 if f1 is not

worse than f2 in all objective values, and f1 is better than f2 in at least one of the
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objective values. Objective vector dominance is denoted by f1 ≺ f2. Thus, solution

x1 is better than solution x2 if x1 ≺ x2 (i.e. x1 dominates x2), which happens when

f1 ≺ f2. Amongst a set of solutions Q
′
, the non-dominated set of solutions Q are

those that are not dominated by any member of the set Q′. MOO algorithms that

evaluate the candidate solution based on the dominance relation produce a set of

non-dominated solutions. The task of a MOO algorithm is to find and maintain

a diverse set of non-dominated solutions. Two dominance-based MOO algorithms

namely Pareto-dominance PSO (PDPSO) [2] and NSGA-II [28] are used in this thesis.

A description of NSGA-II is presented in Section 2.3.3 and PDPSO is described in

Section 7.4.

2.2 Fuzzy Logic and Multi-objective Optimization

In addition to the aforementioned multi-objective aggregation techniques, fuzzy logic

has also been used for multi-objective optimization. A number of studies have re-

ported the use of fuzzy logic for MOO applications in a variety of domains [20, 76,

127, 130]. Since one of the focuses of this thesis is on fuzzy logic, an overview of fuzzy

logic is provided in this section.

The theory of fuzzy sets [180, 181] is based on multi-valued logic wherein a state-

ment can be partly true and partly false at the same time. Fuzzy logic expresses the

degree of truthfulness of a statement by a membership function, µ, in the range [0,1].
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A value of µ = 1 indicates that the statement is true, whereas µ = 0 indicates that

the statement is false. One distinction between fuzzy logic and binary logic is that

the latter allows a statement to be only completely false or completely true, which is

not the case with fuzzy logic.

Fuzzy logic approaches to MOO replace the vector-based objective function with

a fuzzy scalar function [155]. This approach is useful to determine solutions for the

problems with uncertainties. For example, if the target is to optimize the utilization of

network, then the terms such as “low utilization” or “high utilization” are uncertain.

Such uncertain situations can be formulated in optimization algorithms to optimize

multiple objectives of the problem. A framework for reflecting such uncertainties is

conveniently provided by fuzzy logic, thus giving a strong motivation for considering

a fuzzy logic approach to MOO problems.

Most MOO problems, many of which are also combinatorial optimization problems

are constrained or unconstrained. These problems have been shown to be NP-hard

in nature [155]. To solve these NP-hard problems, heuristics are employed, which

are based on human knowledge acquired through experience and understanding of

problems. Such human knowledge can be expressed in natural language of fuzzy

logic. The fuzzy logic includes numerical information (examples like traffic flow on

each link and delay on each link) and linguistic information (examples like maximum

utilization of network and non-congestion). This natural language representation of
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the problem further supports the use of fuzzy logic for solving MOO problems.

The outline of subsequent sub-sections is as follows: Section 2.2.1 discusses fuzzy

sets. A brief discussion of fuzzy reasoning is presented in Section 2.2.2. Section 2.2.3

defines the linguistic variable. Fuzzy rules and fuzzy logic systems are discussed in

Sections 2.2.4 and 2.2.5 respectively. Lastly, some commonly used fuzzy operators

are described in Section 2.2.6.

2.2.1 Fuzzy Set Theory

A crisp set, C, is usually defined as a set of elements or objects, c ∈ C, that can

be finite, countable, or uncountable. Each element either belongs to a set or not.

However, for most practical problems, objects do not have crisp (1 or 0) membership

to sets. Fuzzy set theory (FST) aims to represent uncertain information, such as “low

utilization” or “high utilization”. Such vague information is difficult to represent in

classical (crisp) set theory.

A fuzzy set is characterized by a membership function which provides a measure

of the degree that each element belongs to the fuzzy set [112, 185]. A fuzzy set, Y , of

a universe of discourse, C, is defined as Y = {(c, µY (c))| ∀ c ∈ C}, where µY (c) is a

membership function of c with respect to fuzzy set Y . Figure 2.1 shows an example

of a membership function.

Set operations such as union, intersection, and complement, which are used in
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Figure 2.1: Membership function for a fuzzy set Y .

crisp sets, are also defined on fuzzy sets. A number of operators exist to represent

fuzzy union and fuzzy intersection. Fuzzy union operators are known as s-norm op-

erators. The s-norm operators are commonly known as “ORing” functions since they

implement the OR operation between the membership functions under consideration.

In terms of their mathematical properties, an s-norm operator satisfies the commu-

tativity, monotonicity, associativity, and µY
⋃

{0} = µY properties. Some examples

of s-norm operators are given below (where Y and Z are fuzzy sets of universe of

discourse, C) [112]:

• Maximum operator: µY
⋃

Z(c) = max{µY (c), µZ(c)}.

• Bounded sum operator: µY
⋃

Z(c) = min{1, µY (c) + µZ(c)}.
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• Algebraic sum operator: µY
⋃

Z(c) = {µY (c) + µZ(c) − µY (c)µZ(c)}.

• Drastic sum operator: µY
⋃

Z(c) = µY (c) if µZ(c) = 0, µY
⋃

Z(c) = µZ(c) if

µY (c) = 0, or µY
⋃

Z(c) = 1 if µY (c), µZ(c) > 0.

Fuzzy intersection operators are known as t-norm operators. The t-norm operators

represent the “ANDing” function since they implement the AND operation between

the membership functions under consideration. t-norms also satisfy the commuta-

tivity, monotonicity, associativity, and µY
⋂

{1} = µY properties. Examples of fuzzy

intersection operators are [112]:

• Minimum operator: µY
⋂

Z(c) = min{µY (c), µZ(c)}.

• Algebraic product operator: µY
⋂

Z(c) = {µY (c)µZ(c)}.

• Bounded product operator: µY
⋂

Z(c) = max{0, µY (c) + µZ(c) − 1}.

• Drastic product operator: µY
⋂

Z(c) = µY (c) if µZ(c) = 1, µY
⋂

Z(c) = µZ(c) if

µY (c) = 1, or µY
⋂

Z(c) = 0 if µY (c), µZ(c) < 1.

The membership function for the fuzzy complement operator is defined as

µZ(c) = 1 − µZ(c)
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2.2.2 Fuzzy Reasoning

Fuzzy logic [181] is a mathematical discipline that was exclusively developed to map

the reasoning to mathematical representation. In contrast to classical reasoning,

where a proposition is either true or false, fuzzy logic establishes an approximate

truth value for a proposition based on linguistic variables and inference rules. A

linguistic variable represents a variable whose values are words or sentences in natural

or artificial language [180]. A domain expert creates rules with linguistic variables

by using hedges, e.g. “more”, “less”, “few”, and connectors such as AND, OR, and

NOT. These rules are then used by an inference engine to facilitate decision-making.

2.2.3 Linguistic Variables

A linguistic variable is characterized by a quintuple (Ω, T (Ω), C, R, ℵ), where

• Ω is the name of the linguistic variable,

• T (Ω) is the term-set of Ω, i.e. the collection of its linguistic values,

• C is a universe of discourse,

• R is a syntactic rule which generates the terms in T (Ω), and

• ℵ is a semantic rule which associates a meaning with each linguistic value.
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ℵ(κ) denotes a fuzzy subset of C for each κ ∈ T (Ω). To clarify the meaning of

a linguistic variable, consider the following example: Let C be the universe of link

utilization, U is the fuzzy subset link utilization near 0.5, and µU(•) is the membership

function for U . Here, link utilization is a linguistic variable, i.e. Ω = link utilization.

The linguistic values of link utilization can be defined as T (Ω) = {very low utilization,

low utilization, utilization near 0.5, high utilization, very high utilization}. Each

linguistic value is related with a membership function which associates a meaning to

that value. The universe of discourse, C, is a possible range of link utilization. ℵ(κ)

defines a fuzzy set for each linguistic value, κ ∈ T (Ω).

2.2.4 Fuzzy Rules

A major component of a fuzzy logic system are rules. The rules are expressed as

logical implications, constructed as “IF-THEN” rules. The rules define relations

between linguistic values of outcome (i.e. the consequent) and linguistic values of

condition (i.e. the antecedent) [1]. For example, IF link utilization is low and number

of congested links is low and number of unused links is low THEN the solution is good.

Here link utilization, number of congested links, number of unused links, and solution

are linguistic variables and low and good are linguistic values.

Rules are generally formed by domain experts, but can also be extracted from

numerical data, depending on the nature of the problem. While constructing a rule,
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the following important aspects should be considered [1]:

• understanding of linguistic variables,

• quantifying linguistic variables by using fuzzy membership functions,

• logical connections for linguistic variables,

• implications, i.e. “IF A THEN B”, and

• how different rules can be combined together to form other rules.

2.2.5 Fuzzy Logic System

A fuzzy logic system (FLS) [112] is a model of fuzzy based decision making in various

applications, such as in the engineering domain, as illustrated in Figure 2.2. A FLS

consists of three components: a fuzzifier, inference engine, and a defuzzifier. The

fuzzifier converts crisp input data into fuzzy input sets. The fuzzifier is needed to ac-

tivate rules, which are expressed in terms of linguistic variables. The inference engine

is governed by the rules which are stored in a knowledge base. The inference engine

carries out the decision-making process. The output of the decision-making process

is fuzzy sets. A defuzzifier converts fuzzy output to crisp values. The defuzzifier is

used if an application requires crisp output data. In many optimization applications,

crisp output is not required, in which case the defuzzifier is not used.
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�

Figure 2.2: Fuzzy logic system.

2.2.6 Common Fuzzy Operators

t-norms play an important role in fuzzy logic and many other areas [5]. Since multi-

objective optimization problems require simultaneous optimization of all objectives

under consideration, the “AND” operator in a fuzzy rule plays a crucial role in defin-

ing that rule. Consequently, a need arises to develop t-norm operators that will

effectively handle the multi-objective nature of a problem by efficiently incorporat-

ing the characteristics of different objectives (through their membership functions)

into one fuzzy rule. Furthermore, since the OSPFWS problem also deals with simul-

taneous optimization of objectives, it is necessary to elaborate on different t-norm

operators. A number of t-norm operators have been proposed in the literature, in-
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cluding Dombi’s operator [31, 32], Einstein’s operator [105], Hamacher’s operator [64],

Frank’s operator [49], Weber’s operators [171], Dubois and Prade’s operator [33, 34],

Schweizer’s operators [153], Mizumoto’s operators [114, 115], Werners operator [105],

and the unified and-or operator [86]. These operators are defined below:

Dombi : D(µY , µZ) =
1

1 +

(

(

1
µY

− 1
)δ

+
(

1
µZ

− 1
)δ

)
1

δ

, δ > 0 (2.9)

Einstein : E(µY , µZ) =
µY µZ

2 − (µY + µZ − µY µZ)
(2.10)

Hamacher : H(µY , µZ) =
µY µZ

δ + (1 − δ)(µY + µZ − µY µZ)
, δ ≥ 0 (2.11)

Frank : F (µY , µZ) = logδ

(

1 +
(δµY − 1)(δµZ − 1)

δ − 1

)

, δ > 0, δ 6= 1 (2.12)

Weber 1 : W1(µY , µZ) = max

{

0,

(

µY + µZ − 1 + δµY µZ

1 + δ

)}

, δ > −1 (2.13)

Weber 2 : W2(µY , µZ) =

max {0, (1 + δ)µY + (1 + δ)µZ − δµY µZ − (1 + δ)}, δ > −1 (2.14)

Dubois and Prade : DP (µY , µB) =
µY µZ

max{µY , µZ , δ}
, 0 ≤ δ ≤ 1 (2.15)

Schweizer 1 : S1(µY , µZ) = δ

√

max
{

0, (µδ
Y + µδ

Z − 1)
}

, δ > 0 (2.16)
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Schweizer 2 : S2(µY , µZ) =

1 - δ
√

(1 − µY )δ + (1 − µZ)δ − (1 − µY )δ(1 − µZ)δ , δ > 0 (2.17)

Werners : Y (µY , µZ) = δ × min {µY , µZ} + (1 − δ) ×
1

2
(µY + µZ), 0 ≤ δ ≤ 1

(2.18)
Unified and-or (UAO):

U(µY , µZ) =
µY µZ + ν max{µY , µZ}

ν + max{µY , µZ}
=















I? = µY ∪Z(c) if ν > 1

I∗ = µY ∩Z(c) if 0 ≤ ν ≤ 1

(2.19)

In Equation (2.19), µY represents the membership value of set Y , µZ represents

the membership value of set Z, and U(µY , µZ) represents the value of the overall

objective function; I∗ represents the AND operation using the UAO operator, and

I? denotes the OR operation using the UAO operator. There are certain limitations

for many of the above operators. For example, the Einstein, Hamacher, and Dubois

and Prade operators result in a zero overall membership value if the membership

value of any one of the objectives is zero, thus totally negating the impact of the

membership values of other objectives. This is due to the multiplication between the

membership values of the objectives in the numerator. For the operators of Dombi,

Frank, Weber 1, Weber 2, Schweizer 1, and Schweizer 2, the parameter δ is bounded

by a lower limit, but there is no upper limit defined. This makes it quite difficult

to find an appropriate value of δ. The same concern also exists for Dombi’s and
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Frank’s operators. The above issues, however, are not found with Werners’ operator

and the unified and-or operator, which make them appealing for applications with

multi-criteria decision-making. Furthermore, in comparison to the Werners’ operator

(and all other operators mentioned above), the UAO operator has a unique feature:

The UAO operator has the capability to behave as a t-norm or an s-norm by using

a single equation. This is in contrast to all other operators mentioned above, which

maintain two different equations for t-norm and s-norm representation. The behavior

of the UAO operator is controlled by a variable ν ≥ 0, whose value decides whether

the function would behave as AND or OR. The UAO operator has been used in

a number of applications in the domain of fuzzy multi-objective optimization and

decision-making [83, 85, 86, 87, 88, 89].

2.3 Optimization Algorithms

For an optimization problem, a set of possible solutions may exist. In combinatorial

optimization (CO) as well as in non-CO, the best solution is a candidate solution

selected from a set of possible, feasible solutions. CO has a strong relationship with

discrete mathematics, probability theory, algorithmic computer science, and complex-

ity theory [131].

CO algorithms can be grouped into two broad categories of algorithms, namely

exact algorithms and approximation algorithms. Exact algorithms try to reach an ex-
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act solution. Approximation algorithms try to reach an approximate solution closer

to the best (or rather optimal) solution. Approximation algorithms may use either

a deterministic or a random (stochastic) search strategy. Examples of exact algo-

rithms include linear programming, dynamic programming, branch-and-bound, and

backtracking [67]. Examples of approximation algorithms include local search, con-

structive greedy methods, and many general iterative algorithms.

Many CO problems are NP-hard. Due to their complexity, NP-hard problems can

not be solved by exact techniques. Instead, approximation algorithms, also known as

heuristics, are rather used. A heuristic explores only a sub-region of the total search

space [150]. A heuristic aims to obtain “excellent” feasible solutions instead of the

best solution. Because of this feature, the execution time for a heuristic, in general,

is remarkably less than that of an exact algorithm.

Heuristic algorithms which attempt to improve a complete solution by making

controlled stochastic moves are called iterative heuristics. Heuristic algorithms which

attempt to construct a solution in a piecewise manner are called constructive heuris-

tics. Constructive heuristics are faster than iterative heuristics, but may produce

solutions of lower quality when compared to iterative heuristics [150]. For highly

constrained problems, constructive heuristics may even fail to find a feasible solu-

tion [150]. Esau-William’s algorithm [41], Prim’s algorithm [138], and Kruskal’s

algorithm [97] are examples of constructive heuristics. Contrary to this, iterative
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heuristics have proven to be effective for a variety of NP-hard problems in the field

of engineering [13, 14, 37, 82, 98] and science [25, 144, 178].

The subsequent sections provide an overview of a number of heuristic algorithms,

namely SA [121], SimE [92, 94], NSGA-II [28], and PSO [79].

2.3.1 Simulated Annealing

SA is a popular heuristic algorithm proposed by Kirkpatrick et al. [91]. It is derived

from the analogy of the physical annealing process of metals. SA operates on a

single solution. The neighborhood solution of the candidate (or current) solution is

generated by randomly selecting an element and changing its value, which is known

as a move or perturbation. If a move results in an improvement in objective function

value, then such a move is referred to as a good move. Consequently, if a move

does not result in an improvement in objective function value, then such a move is

referred to as a bad move. All good moves are accepted. However, bad moves are

stochastically accepted. The probability of accepting bad moves is controlled by a

cooling schedule. In the early stage of the search, bad moves are accepted with high

probability. However, as the search progresses, a decrease in temperature leads to a

decrease in the probability of accepting bad moves. In the last part of the search, SA

behaves as a greedy search algorithm, accepting only good moves.

A general outline of the SA algorithm is given in Algorithm 2.1. SA takes an initial
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solution, S0, initial temperature, T0, cooling rate, α, and the length of the Markov

chain, M , as inputs. The Markov chain M represents the amount of time for which

the annealing must be applied at a particular temperature. The temperature, T , is

reduced per iteration by the cooling rate. The value of M increases as the temperature

decreases, allowing the algorithm to perform more moves when the probability of

selecting bad moves is low. This increase in the value of M is controlled by a constant

β.

Algorithm 2.1 Simulated annealing (S0, T0, α, β,M, Tmax) [150]

1: (*S0 is the initial solution *)
2: (*BestS is the best solution *)
3: (*T0 is the initial temperature *)
4: (*α is the cooling rate *)
5: (*β a constant *)
6: (*Tmax is the total allowed time for the annealing process *)
7: (*M represents the time until the next parameter update *)
8: begin
9: T = T0;

10: CurS = S0;
11: BestS = CurS; /* BestS is the best solution seen so far */
12: CurCost = Cost(CurS);
13: BestCost = Cost(BestS);
14: T ime = 0;
15: repeat
16: Call Metropolis(CurS, CurCost, BestS, BestCost, T , M);
17: T ime = T ime + M ;
18: T = αT ;
19: M = βM ;
20: until (T ime ≥ Tmax);
21: return (BestS)
22: end

The core function of the SA algorithm is done in the Metropolis procedure (see
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Algorithm 2.2 Metropolis (CurS, CurCost, BestS, BestCost, T , M) [150]

1: begin
2: repeat
3: NewS = Neighbor(CurS);
4: NewCost = Cost(NewS);
5: ∆Cost = (NewCost − CurCost);
6: if (∆Cost > 0) then
7: CurS = NewS;
8: if (NewCost > BestCost) then
9: BestS = NewS;

10: end if
11: else
12: if (r < e−∆Cost/T ) then
13: CurS = NewS;
14: end if
15: end if
16: M = M − 1;
17: until (M = 0)
18: end (* of Metropolis *)

Algorithm 2.2), which simulates the annealing process at a given temperature T . It

takes the current solution CurS, current temperature T , and a value of M . In each

iteration, a neighbor solution, NewS, of the current solution, CurS, is generated. If

the cost of NewS, i.e. NewCost assuming maximization, is greater than the cost of

CurS, i.e. CurCost, then CurS is replaced by NewS. If NewCost is also greater

than the BestCost, then the best solution, BestS, found so far is replaced by CurS.

If NewCost is greater than CurCost then a random number r is sampled from

a uniform distribution in the range (0, 1). If r < e−∆/T , where ∆Cost = CurCost -

NewCost, then the current solution is replaced by the new solution. The probability

of accepting bad moves is given by P (r < e−∆/T ).
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The aforementioned control parameters have an impact on the convergence and

quality of solutions produced by the SA algorithm [150]. Therefore, it is necessary

that appropriate values of these parameters are determined for best results. One

parameter that affects the convergence of SA is the initial temperature, T0. The

initial temperature should be appropriately set, so that all transitions (i.e. moves) are

accepted initially. A very high initial temperature increases the algorithm’s execution

time, since the algorithm would extensively navigate the search space in a haphazard

manner (thus increasing exploration). In contrast, a very low value of T0 favors too

much exploitation, leading to premature convergence, because the algorithm rejects

bad solutions even in the early steps of the search. A number of approaches have

been reported in the literature to find a suitable value for T0 [21, 75, 110, 135].

With reference to the cooling rate, α, a high value causes the temperature to

decrease slowly. This may help the algorithm to escape from local minima, since the

capability of the algorithm for accepting bad solutions would persist for a considerable

amount of time. In other words, the algorithm is inclined towards more exploration.

Contrary to this, a very low value of α forces the algorithm to quickly lose the tendency

of accepting a bad solution, thus causing the algorithm to become stuck in a local

minimum. Since small changes in the solution are desired, the value of α is typically

chosen in the range of 0.8 to 0.99 [100].

The length of the Markov chain, denoted by M , is also an important parameter.
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The Markov chain represents the number of times that the algorithm makes pertur-

bations at a particular temperature. An appropriate value of M is determined so as

to accept a minimum number of transitions in each iteration. A very high value of

M increases the execution time, since the algorithm performs more transitions than

necessary. If M is too small, the solution might not be perturbed enough to search

for better solutions in the current neighborhood. Thus, M controls a balance between

exploration and exploitation.

Parameter β (where β > 1) is used to increase the value of M as temperature

is decreased to allow the algorithm to make more moves at lower temperatures. In

the early stages of the algorithm execution, a few moves are performed as these are

sufficient to escape local minima. As the temperature is decreased, the algorithm’s

tendency to accept bad moves is reduced, thus reducing the chances of escaping local

minima. In this scenario, more moves are desired at a particular temperature to

escape local minima, thus requiring a higher value of M.

Some applications of simulated annealing in multi-objective optimization

Suppapitnarm [163] proposed a SA algorithm for multi-objective optimization where

an archive of non-dominated solutions are maintained amongst the competing ob-

jectives. When the search ends, the designer chooses a particular solution from the

obtained Pareto-optimal solutions. A weighted sum approach was used to aggregate
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the objectives into a single objective function. Bandyopadhyay [6] attempted a sim-

ilar approach as that of Suppapitnarm [163], and tested it on many mathematical

problems. Bandyopadhyay evaluated the new solution on domination status against

the current solution and the solutions present in the archive. Smith [157] proposed

a multi-objective SA algorithm for optimizing code division multiple access (CDMA)

mobile telecommunication networks. Venanzy and Materazzi [170] designed a multi-

objective optimization approach based on SA for optimizing wind-excited structures.

Li and Landa-Silva [104] implemented an evolutionary multi-objective SA algorithm

incorporating both local and evolutionary search. They found improved results on

bi-objective travelling salesman problem instances.

2.3.2 Simulated Evolution

SimE is a search strategy proposed by Kling and Banerjee in 1987 [95]. It is de-

rived from the analogy of a biological evolution process, which results in heritable

changes over many generations. SimE operates on a single solution, where this solu-

tion is known as the population as per the terminology used in [95]. Each population

consists of elements or individuals. Pseudo-code for the SimE algorithm is given in Al-

gorithm 2.3. The algorithm iteratively carries out three steps: Evaluation, Selection

and Allocation. These steps are explained below.
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Algorithm 2.3 Simulated Evolution(M, L) [150]

1: /* M : Set of movable elements; */
2: /* L: Set of locations; */
3: /* B: Selection bias; */
4: /* Stopping criteria and selection bias can be automatically adjusted; */
5: INITIALIZATION ;
6: repeat
7: EV ALUATION :
8: ForEach m ∈ M Do gm = Om

Cm
EndForEach;

9: SELECTION :
10: ForEach m ∈ M Do
11: If Selection(m,B) Then Ps = Ps ∪ {m}
12: Else Pr = Pr ∪ {m}
13: EndIf
14: EndForEach;
15: Sort the elements of Ps;
16: ALLOCATION :
17: ForEach m ∈ Ps Do Allocation(m) EndForEach;
18: until A stopping criterion is met;
19: Return (BestSolution);
20: End Simulated Evolution
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Evaluation

In the evaluation step, the goodness of each element is calculated. The goodness lies

in the range [0, 1]. Goodness is defined as follows [150]:

gi =
Oi

Ci

(2.20)

where Oi is an estimate of the optimal cost of individual i, and Ci is the actual cost

of i in its current location. The goodness measure quantifies the closeness of the

element to its optimal value. A higher goodness value means that the element is near

to its optimal value.

Selection

Selection is the process of selecting those elements which have low goodness in the

current solution. These elements are referred to as bad elements. In this step, for each

element, a uniform random number r, in the range (0, 1) is generated. If r ≤ 1 −

gm + B, then the element is selected for change. gm is the goodness of a movable

element. B is a selection bias used to control the number of individuals selected. A

high value of B allows more individuals to be selected for relocation, thus allowing

more changes in the current solution. A low value of B indicates small changes in the

current solution. A typical range for B is [−0.2, 0.2]. Inputs to the selection process
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are elements of population P and their respective goodness values, whereas outputs

are a selection set Ps and the set of remaining elements Pr of population P . The

whole process is illustrated in Algorithm 2.4.

Algorithm 2.4 Selection(m, B) [150]

1: /* m: is a particular movable element; */
2: /* B: Selection Bias; */
3: If r ≤ 1 − gm + B Then Return True
4: Else Return False
5: EndIf
6: End Selection

Allocation

After selection, the next step is to re-allocate the bad elements. Therefore, input to

the allocation step is the elements from selection set Ps. Each element from Ps is

considered individually and trial alterations are made (different random values are

assigned to the element). The trial that leads to the best population with respect to

the objective being optimized is accepted and made part of the solution. After the

allocation step, the solution is always accepted, irrespective of whether the solution

is of higher quality or lower quality than the one from which it was generated. This

allows the algorithm to perform up-hill and down-hill moves through the search space,

thus enabling the algorithm to escape local minima.
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Some applications of simulated evolution in multi-objective optimization

A multi-objective SimE algorithm was proposed to improve a manufacturing cell in

the design of aircraft and gas turbine engines [164]. Tang et al. discussed several SimE

based multi-objective techniques [166]. Lee et al. [102] proposed a multi-objective

SimE algorithm and applied it to a multi-objective aircraft spare parts allocation

problem to find a set of non-dominated solutions. Sait et al. [148] solved a multi-

objective VLSI cell placement problem by proposing a multi-objective fuzzy SimE

algorithm.

2.3.3 Genetic Algorithms

Genetic algorithms (GAs) are the most frequently used and oldest iterative opti-

mization algorithms. GAs emulate the natural process of evolution as a means of

progressing toward an optimum. Initially suggested by Fraser [50], Fraser and Bur-

nell [51], and Crosby [24], and popularized by Holland [66], the GA was inspired by

Darwinian theory [26]. The foundation of GAs is based on the theory of natural selec-

tion, whereby individuals having certain positive characteristics have a better chance

to survive and reproduce, and hence transfer their characteristics to their offspring.

A GA operates on a set of solutions, referred to as a population. Each solution in

this population is referred to as a chromosome, comprised of individual elements called

genes. In every iteration, a new set of solutions is generated. These new solutions
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are known as offspring. To generate offspring, a GA performs three operations in an

iterative manner. These operations are selection, crossover, and/or mutation. The

mutation operation is optional.

One crucial element of a GA is efficient representation of candidate solutions

in the form of a chromosome. Furthermore, a suitable fitness function needs to be

formulated to reflect the quality of each chromosome, or solution. It is important that

the fitness function is an accurate reflection of the problem domain. An improper

selection of fitness function and representation may lead to poor performance. As the

search progresses, better quality solutions are expected to be produced.

An overview of the main operators of GAs, namely, selection, crossover, and mu-

tation is presented below.

Selection

A pair of chromosomes (called parents) is selected to generate offspring. Generation

of high-quality offspring is dependent on the choice of parents. The selection process

usually favors chromosomes with high fitness values (though chromosomes with low

fitness also have a non-zero probability of being selected as parents), because these

chromosomes are more likely to produce stronger offspring. The selection operator

is also used to select the new population. A number of selection methods such as

roulette-wheel selection [61], rank-based selection [62], tournament selection [61], and
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elitism [62] have been proposed in the literature.

Crossover

The primary function of crossover is to provide an inheritance mechanism whereby

offspring inherit characteristics of both the parents. Crossover facilitates diversifi-

cation in the search only with respect to the finite values assigned to genes during

initialization. Crossover is applied at a user-defined probability, with values typically

varying between 0.4 and 0.8 [172]. Many crossover mechanisms have been reported

in the literature such as simple [61], cyclic [126], order [61], partially mapped [60],

uniform [165], arithmetic [61], and heuristic crossover [173], amongst others.

Mutation

The key purpose of mutation is to perturb chromosomes in order to introduce char-

acteristics which are absent in the parent population. The purpose of mutation is to

increase population diversity so as to favor the exploration. Mutation is performed

on the offspring produced by the crossover operator. The mutation operation is also

applied at a user-specified probability, referred to as the mutation rate, pm. The most

suitable value of pm is problem-dependent [128].
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2.3.4 Non-dominating sorting genetic algorithm II

To solve multi-objective optimization problems, a number of variants of GA have

been developed. One such variant is NSGA-II which is by far the most successful GA

approach exclusively developed to solve MOO problems [28]. The NSGA-II algorithm

was used in this thesis to compare with other implemented algorithms. NSGA-II

produces a set of Pareto-optimal solutions.

NSGA-II employs the concept of non-domination between two solutions in order

to determine if one solution is better than another. NSGA-II uses crowding distance

to ensure that a diverse set of non-dominated solutions are found. The steps involved

in the NSGA-II algorithm is summarized in Figure 2.3. These steps are described

below.

1. This step initializes the population using uniformly distributed random num-

bers.

2. All the objective function values are calculated in this step.

3. The population is ranked in this step according to non-dominating criteria.

The first non-dominating front is generally assigned a rank of one. Similarly

the second non-dominating front has a rank of two and so on.

4. Parents are selected and the crossover operation is applied to generate the off-

spring solutions. The mutation operator is then applied to these offspring solu-
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tions.

5. The offspring and parent populations are combined together in order to imple-

ment elitism and non-dominating sorting is applied on the combined population.

6. The crowding distance of each solution is calculated in this step. The crowding

distance is measured as the distance of the biggest cuboid containing the two

neighboring solutions of the same non-dominating front in the objective space

(see Figure 2.4). The higher the value of the crowding distance, the higher

is the probability of the solution to be selected for the next generation. The

solutions at the extremes of the non-dominating front are assigned a large value

of crowding distance so as to incorporate the extremities of the non-dominating

front.

7. Selection is done according to the crowding distance operator. The crowding

distance operator functions as follows: a solution x wins the tournament with

another solution y if (a) solution x has a better rank than solution y, or, (b) if

the solutions x and y have the same rank, but solution x has a larger crowding

distance than solution y.

8. Replace the old parent population by the better members of the combined pop-

ulation. The solutions of the lower ranking fronts are selected initially to replace

the parent population. If all the solutions of a front can not be accommodated
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in the parent population, the solutions having large crowding distance will have

preference to replace the parent solutions.

Some applications of genetic algorithms in multi-objective optimization

There are a huge number of applications of NSGA-II in a variety of disciplines. Only a

few of them are discussed here. Fonseca [42] developed a multi-objective optimization

genetic algorithm for controller design and non-linear system identification. Abdullah

et al. [96] presented several approaches related to the development of multi-objective

genetic algorithms for multi-objective problems in the field of reliability design and

optimization. Murata et al. [120] applied a multi-objective genetic algorithm to a

flowshop scheduling problem to optimize three objectives, namely makespan, tardi-

ness, and flowtime. Rabbani et al. [139] used NSGA-II combined with a clustering

approach to solve the bi-objective location routing problem for waste collection. Hu

et al. [70] used NSGA-II for multi-objective optimization for combined gas and elec-

tricity network expansion planning.

2.3.5 Particle Swarm Optimization

PSO is a population-based iterative heuristic, inspired by the flocking behavior of

birds. It was proposed by Kennedy and Eberhart [79]. PSO maintains a swarm of

candidate solutions. Each candidate solution is referred to as a particle, and possesses



51

�

����������	
�
�������	�
	����	��

���������	���	���	���������	

���������

����	���	
�
�������	���������	
��	��������������	���������

����������

����������

� ��������

���������	���������	
�������	�
	
���	���	
�
��������

�������	���	���	���	

�
��������

��������������	�������	��	���	
��������	
�
��������

���������	��������	��������	�
	
���	���	����������

���	���	�	������	
��� 	���	
��������	
�
�������	��	���	
�����	�
	����	���	��������	

���������

��
����	
�����	
�
�������	� 	
���	������	�������	�
	���	
��������	
�
��������

!����������	

��������"�

#�������
�����	
���������

	 ��


���

Figure 2.3: NSGA-II algorithm [28].
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Figure 2.4: Crowding distance of a solution [28].

a memory to hold the neighborhood best position and the particle’s personal best

position.

PSO is initialized with a group of random particles. In every iteration, each

particle position is updated by following two “best” vectors. The first vector is the

best solution that the particle has achieved so far. This vector is referred to as the

personal best position. Another “best” vector that is tracked by the PSO is the best

vector obtained so far by particles in a neighborhood. This best vector is referred to

as the neighborhood best position.

Each particle in the swarm maintains the following information:

1. xi: the current position of the particle;
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2. vi: the current velocity of the particle;

3. yi: the personal best position of the particle; and

4. ŷi: the neighborhood best position of the particle.

The velocity update step is specified separately for each dimension, j = 1, ..., nd,

where vij represents the jth dimension of the velocity vector associated with the ith

particle. The velocity or step size of each particle i is updated using

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t) − xij(t)] + c2r2j(t)[ŷj(t) − xij(t)] (2.21)

where w is the inertia weight, c1 and c2 are acceleration coefficients, and r1j, r2j ∼

U(0,1) are two independent random values. These random values induce a stochastic

component in the search process. Apart from vij, Equation (2.21) has two other main

components: the cognitive component, c1r1[yi(t) − xi], and the social component,

c2r2[ŷi(t) − xi]. These components represent a stochastic weighting between the

particle position and personal best position. The position xi of particle i is updated

using xi(t + 1) = xi(t) + vi(t + 1). Pseudo-code for the standard PSO algorithm is

given in Algorithm 2.5.

Particles within a swarm move to become more similar to their “better” neighbors.

Particles within a neighborhood influence one another by exchanging information

about the success of each particle in that neighborhood. Two well known PSO versions
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Algorithm 2.5 PSO()

1: (* ns is the size of the swarm *)
2: For Each particle i ∈ 1...ns Do
3: Randomly initialize xi

4: Initialize vi to zero
5: Set yi = xi

6: End For
7: Repeat
8: For each particle i ∈ 1...ns Do
9: Evaluate the fitness of particle i

10: Update yi

11: Update ŷi

12: For each dimension j ∈ 1...nd Do
13: Apply velocity update using Equation (2.21)
14: End For
15: Apply position update using xi(t + 1) = xi(t) + vi(t + 1)
16: End For
17: Until some convergence criterion is satisfied
18: End PSO

differ in the neighborhood topology used: These topologies are the star topology and

the ring topology. All particles are interconnected in the star topology and thus each

particle communicates with every other particle. For each particle, the entire swarm

becomes its neighborhood. The result of the star topology is that all particles are

attracted to one global best position. The implementation of the PSO using the star

topology is referred to as the global best (gbest) PSO.

Contrary to this, the ring topology has each particle connected to nN number of

immediate neighbors. Each particle’s neighborhood includes itself and its immediate

neighbors. Each particle tries to imitate its best neighbor by moving closer to the

best solution found within the neighborhood. The implementation of the PSO using



55

the ring topology is referred to as the local best (lbest) PSO.

Due to faster transfer of best position knowledge throughout the swarm, gbest

PSO usually converges faster than lbest PSO. Early research claimed that gbest PSO

should not be used because of its faster or premature convergence [72, 80, 108, 134]

and susceptibility of being trapped in a local minimum [36, 38, 81]. Recently, Engel-

brecht [39] disproved this claim and found that on a number of test functions, lbest

PSO converged prematurely than gbest PSO, and lbest PSO is equally susceptible of

being trapped in a local minimum as gbest PSO. Engelbrecht [39] claimed that both

the algorithms (lbest PSO and gbest PSO) are equally good at finding good solutions

and equally bad at finding worse solutions. Best of lbest PSO and gbest PSO is very

problem dependent.

PSO Parameters

The performance of PSO algorithms depends on several control parameters [78].

These include the swarm size, inertia weight, acceleration coefficients, and velocity

clamping. The influence of these parameters on performance is discussed below:

• Swarm size

A larger swarm size results in increased computational complexity per iteration

(because larger parts of the search space is covered), but favors higher diversity.

Higher diversity facilitates more exploration of the search space [4]. Thus, a
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larger swarm size may need fewer iterations to reach a good solution compared

to smaller swarms. The optimal swarm size value should be determined for each

problem instance.

• Acceleration coefficients c1 and c2

The acceleration coefficients, c1 and c2, associated with the cognitive and so-

cial components respectively play an important role in the convergence ability

of PSO algorithms. Varying these parameters has the effect of varying the

strength of the pull towards the two best positions. Values of c1 = c2 = 0 indi-

cates absence of both the cognitive and social components, and particles keep

moving at their current speed until they hit a boundary of the search space [38].

With c1 > 0 and c2 = 0, each particle does hill climbing. Each particle searches

for the best position in its neighborhood, and replaces the current best posi-

tion if the new position is better [38]. However, with c2 > 0 and c1 = 0, the

entire swarm is attracted to a single point, ŷ. The entire swarm becomes a

stochastic hill-climber. Furthermore, having c1 >> c2 causes each particle to

be attracted to its own personal best position to a very high extent, resulting in

excessive wandering. Contrary to this, c2 >> c1 results in particles being more

strongly attracted to the neighborhood best position, thus causing particles to

rush prematurely towards optima [38].
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• Velocity clamping Vmax

The velocity update by Equation (2.21) includes three terms. These three terms

provide the step size of particles. This velocity update quickly explodes to large

values, specially for particles far from the neighborhood best and personal best

positions [38]. If a particle’s velocity exceeds a specified maximum velocity

(Vmax), the particle’s velocity is set to the maximum velocity. Thus, velocity

clamping confines the step size determined from the Equation (2.21). The value

of Vmax is very important and problem dependent. Global exploration is possible

with large values of Vmax while smaller values facilitate local exploitation. A

too small value of Vmax may take more time to reach an optimum. A too large

value of Vmax risks the possibility of ignoring promising regions of the search

space. This leads to faster movement of the particles. Thus a good value of

Vmax should be found for each different problem to balance between (1) moving

too fast or too slow, and (2) exploration and exploitation. However, the use of

Vmax is optional.

• Inertia weight

The inertia weight, w, was introduced into PSO by Shi and Eberhart [154] in an

attempt to control the velocity or step sizes. The purpose of the inertia weight

is to control the impact of the previous velocities on the current velocity, thus
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influencing the trade-offs between exploration and exploitation abilities of the

algorithm. A larger value of w helps in searching new areas and hence increases

diversity. A smaller value of w helps in concentrating a promising search area

to refine a candidate solution. However, the impact of w also depends on the

values of c1 and c2 for ensuring a guaranteed convergence to an equilibrium

state [38].

Set based PSO

The solution representation for the OSPFWS problem is a set of weights on the

network links. This particular aspect provides the motivation to reformulate

the representation of PSO particles as sets in this thesis. This section provides

a review of existing discrete PSO algorithms.

Correa et al. [23] proposed an algorithm having set-based characteristics for the

ontology alignment problem. This algorithm possesses problem specific charac-

teristics where each element of a particle position have its own partial objective

function value. Veenhuis attempted to propose a generic set-based implementa-

tion of the PSO algorithm [169]. Velocities and positions are defined as sets. In

each iteration, updating velocities and positions always increases the set size.

To avoid this, a size reduction operator was introduced that uses the distance

between any two set elements. Neethling and Engelbrecht proposed a set-based



59

PSO called the SetPSO for the RNA structure prediction problem [123]. Par-

ticles were defined as a set of stems. Though the SetPSO was a generic set

implementation, its performance was found to be poor for the multidimensional

knapsack problem (MKP) [101] compared to other PSO methods. Chen et al.

proposed a generic set-based PSO called the S-PSO [19]. The S-PSO was ap-

plied to the travelling salesman problem (TSP) and the MKP. Each particle

position is a fixed size set where for each “dimension” of the set an element is

chosen from a set of available elements. Velocity is defined as a set which grows

in size as the algorithm is executed. Wu et al. applied a variant of the S-PSO

to the problem of cloud computing workflow scheduling [174]. Khan and Engel-

brecht applied a set based fuzzy PSO to optimize topology design of distributed

local area networks [89]. Velocities and positions are defined as a set of links.

The velocity update is defined as a link exchange operation, which removes a

single link in the position and replaces it by another. The size of the position set

is fixed in their implementation. Langeveld and Engelbrecht formulated PSO

algorithm in terms of set-theory and applied it to the MKP and the feature

selection problem (FSP) [101]. The algorithm proposed by Langeveld and En-

gelbrecht is generic and does not include any problem domain specific features.

Xiao et al. [175] presented a set-based PSO to address mapping and schedul-

ing problems on heterogenous embedded systems. Xiao et al. [175] found the
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performance of the proposed set-based PSO to be better than other heuristics

such as ant colony optimization (ACO).

Some applications of particle swarm optimization in multi-objective

optimization

Masehian and Sedighizadeh [109] presented a PSO based multi-objective al-

gorithm for robot motion planning. The goal was to determine shortest and

smoothest paths from a source location to the destination location. The multi-

objective aspect of the flexible job-shop scheduling problem was addressed by

Huang et al. [71]. The goal was to optimize the utilization of multiple ma-

chine resources. Urade and Patel [167] proposed a dynamic PSO algorithm for

mathematical functions with multiple objectives by setting a dynamic value for

swarm size. Lian [106] presented a multi-objective PSO algorithm for a job-shop

scheduling problem. The goal was to optimize three objectives, namely the run

time of every machine, earlierness time (no tardiness), and the processing time

of every job.
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2.4 MOO performance measures

One of the main aims of multi-objective optimization is to find a set of best solutions,

i.e. the Pareto front. To assess the quality of Pareto fronts, many performance

metrics, namely generational distance, spread, spacing, overall non-dominated vector

generation (ONVG) and the hypervolume have been suggested in the literature [38, 68,

152]. To calculate the generational distance and spread, knowledge of the true Pareto

front (desired Pareto front) is required. For the OSPFWS problem, such knowledge of

the true Pareto front is not available. Because of this reason, in this thesis, three MOO

performance metrics, namely overall non-dominated vector generation (ONVG) [68],

spacing [28, 29, 68, 152], and hypervolume [28] are used to evaluate the performance

of each implemented algorithm.

The ONVG metric measures the number of distinct non-dominated solutions ob-

tained in the Pareto front. The higher the value of the ONVG measure, the better

the performance of the algorithm.

The spacing metric represents a relative distance measure between consecutive

solutions in the obtained non-dominated set. In other words, the spacing measure in-

dicates the distance variance of neighboring solutions in the obtained non-dominated

set. Spacing is calculated by the following equation:

S =

√

√

√

√

1

|Q|

|Q|
∑

i=1

(di − d)
2

(2.22)
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where di = mink∈Q{
∑M

m=1 |f
i
m − fk

m|} and d is the average value of all di’s, d =

∑|Q|
i=1

di

|Q|
. Here, Q represents the obtained non-dominated solution set and f i

m is the mth

objective function value of solution i belonging to the set Q. The distance measure is

the minimum value of the sum of the absolute difference in objective function values

between the ith solution and any other solution in the obtained non-dominated set.

When the solutions are nearly spaced, the corresponding distance measure will be

small. Thus, an algorithm finding a set of non-dominated solutions having smaller

spacing (S) is better.

The hypervolume is the n-dimensional space that is enclosed by a n-dimensional

set of points. With respect to multi-objective optimization, this set of points are

treated as n-dimensional objective values. The hypervolume metric calculates the

volume in the objective space covered by the members of obtained Pareto front.

Mathematically, for each solution i, a hypercube is constructed with reference point

W and the solution i as the diagonal corners of the hypercube. The reference point

can simply be found by constructing a vector of worst objective function values.

Thereafter, the hypervolume (HV) is calculated as follows:

HV =

|Q|
∑

i=1

hi (2.23)

where Q represents the obtained non-dominated solution set and hi is the volume of

the hypercube constructed with solution i. An algorithm with a large value for HV
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metric is desirable.

2.5 Conclusion

This chapter provided a brief overview of some optimization methods with an empha-

sis on evolutionary and swarm intelligence techniques. Most of the methods discussed

in the chapter are used in this thesis to solve the OSPFWS problem. The problem

is modelled as a multi-objective optimization problem using fuzzy logic. A formal

definition of this problem is given and discussed in the next chapter.



Chapter 3

Routing and Open Shortest Path

First Protocol

This chapter starts by discussing routing in computer networks. It is followed by

a description of two interior gateway routing protocols (IGP), namely, the routing

information protocol (RIP) and the open shortest path first (OSPF) routing protocol.

Since the focus of this thesis is on OSPF routing and weight setting on network links, a

detailed review of existing research work related to the OSPFWS problem is provided.

The outline of the chapter is as follows: Section 3.1 discusses the fundamental

concepts of routing in computer networks. Section 3.2 describes the RIP and the

Bellman-Ford algorithm. Details of the OSPF routing protocol and Dijkstra’s algo-

rithm are presented in Section 3.3. Lastly, the literature review related to OSPFWS

64
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is provided in Section 3.4.

3.1 Routing in Computer Networks

Routing is a fundamental task in any computer network, consisting of finding a best

or shortest path from a source node to a destination node. Routing is performed

by routers in computer networks. These routers route the packets based on their

destination addresses. Routing tables help routers to determine the path from the

source to the destination. The routing table provides the address of the next hop

router to be visited to reach a destination. The routing information present in these

routing tables is collected by routing protocols.

Routing is a complex problem in large networks (such as the Internet), due to many

potential intermediate nodes a packet may traverse before reaching its destination.

These intermediate nodes route the traffic based on the routing tables.

Routing protocols are categorized into two general classes: (1) distance vector

routing protocols and (2) link state protocols. Distance vector routing protocols use

the Bellman-Ford algorithm [111]. A distance vector routing protocol enables a router

to inform topology changes periodically to all the neighbors of the router. Each router

share its routing table with all its neighbors. A router using a distance vector protocol

does not have knowledge of the entire path to a destination. An example of a distance

vector routing protocol is RIP. Contrary to this, link state routing protocols use the
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Dijkstra algorithm [99]. In the link state routing protocol, every router constructs

a map of complete connectivity from one router to another router in the form of a

graph. An example of a link state protocol is OSPF.

Routing protocols are also categorized as interior gateway routing protocols (IGP)

and exterior gateway routing protocols (EGP). An autonomous system is a group of

networks and routers under the authority of a single administration. A protocol

that works within an autonomous system is referred to as an IGP. A protocol that

manages routing between autonomous systems is referred to as an exterior gateway

routing protocol (EGP). OSPF [119] and RIP [145] are examples of IGP, while the

border gateway protocol (BGP) is an example of an EGP. Because the focus of this

research is on IGP, the following two sections describe the RIP and OSPF routing

protocols.

3.2 Routing Information Protocol

RIP is based on request and response message communication [145]. Each router

broadcasts a request message to all its neighbors and waits for response messages. In

response, all the neighboring routers send their latest routing table to the requesting

router. Then the router uses the latest routing table to perform routing. The routing

metric in RIP is hop count, which is limited to 15 hops. If the hop count exceeds 15,

then the route is considered as unreachable. By this phenomenon, RIP prevents the
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formation of routing loops. Each RIP router transmits a full update of routing tables

every 30 seconds. In the early days of RIP development, the networks were small

and traffic was not significant. As networks grew in size, massive traffic bursts for

every 30 seconds was evident. The disadvantage of RIP is that it takes much time to

converge initially (i.e., for each router to have the latest and complete routing table

information) and it is not scalable. There is no concept of areas or boundaries in RIP

networks. RIP is suitable for small networks or autonomous systems. The compu-

tation of the shortest paths for RIP is performed using the Bellman-Ford algorithm,

described below.

Bellman-Ford Algorithm

The Bellman-Ford algorithm determines the shortest path between the source and

destination nodes of the network [111]. In a network, nodes may be directly or

indirectly connected. For example, nodes 1 and 2 are directly connected and nodes

1 and 5 are indirectly connected as shown in Figure 3.1. A value is assigned to each

link referred to as the “link cost”. Consider dij as the cost between nodes i and j

and also assume that Dij is the computed minimum cost from node i to node j. If

the two nodes are directly connected, then the cost dij takes a finite value. Based on

the observation in Figure 3.1, nodes 4 and 6 are directly connected, thus d46 = 15.

Nodes 1 and 6 are not directly connected, thus d16 = ∞. For nodes 4 and 6, the

minimum cost is 2 if the path 4-3-6 is considered. Thus D46 = 2. For nodes 1 and
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Figure 3.1: A network with link costs.

6, the minimum cost is 3 if the path 1-4-3-6 is considered. In order to calculate the

minimum cost between two nodes in the network, intermediate nodes are considered

if available. Consider a generic node k directly connected to the source node i. Thus,

dik will have a finite value. The following equations must be satisfied by the shortest

path from node i to node j:

Dii = 0, for all i

Dij = mini6=k{dik + Dkj}, for all i 6= j

The pseudo-code of the Bellman-Ford algorithm is given in Algorithm 3.1. For

simplicity, assume that node k, which is directly connected to node i, is sending the

computed distance Dkj(t) at time t to other directly connected nodes, such as i.

Assume that the shortest path from node 1 to node 6 has to be found. Node 1 has

nodes 2 and 4 as neighbors. Thus,
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D16(t) = min{d12(t) + D26(t), d14(t) + D46(t)}.

At time t = 0: D46(0) = ∞, D26(0) = ∞, D16(0) = min{1 + ∞, 1 + ∞} = ∞.

At time t = 1: D46(1) = 15, D26(1) = ∞, D16(1) = min{1 + 15, 1 + ∞} = 16.

At time t = 2: D46(2) = 2, D26(2) = 3, D16(2) = min{1 + 2, 1 + 3} = 3.

Algorithm 3.1 Bellman-Ford Algorithm (Steps taken at node i) [111]

1: Begin
2: Initialize
3: Dii(t) = 0
4: Dij(t) = ∞ (for node j that node i is aware of)
5: For (nodes j that node i is aware of) Do
6: Dij(t) = mink directly connected to i{dik(t) + Dkj(t)}, for j 6= i
7: End For
8: End

3.3 Open Shortest Path First Routing Protocol

OSPF is a routing protocol developed for IP networks by the OSPF working group

of the Internet engineering task force (IETF). It is the most commonly used intra-

domain Internet routing protocol [10, 43, 73, 99, 118, 119]. OSPF enables each router

to learn the complete network topology.

Each OSPF router monitors the cost (called the link state or link weight) of the

link to each of its neighbors and then floods the link-state information to all other

routers in the network. For this reason, OSPF is often referred to as a link-state

protocol. The flooding of the link-state information allows each router to build a
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link-state database (or topological database) that describes the complete network

topology [53]. This link-state database will be identical across all the routers.

At a steady state, the routers will have the same link-state database, and so they

will know how many routers are in the network, the interfaces and links between them,

and the cost associated with each link. The information in the link-state database

allows a router to build the shortest-path tree with itself as the root. The computation

of the shortest paths is performed using Dijkstra’s algorithm.

Some of the features of OSPF include:

1. Support for variable-length sub-netting (hierarchy of sub-nets of different sizes)

by including the sub-net mask in the routing message.

2. A more flexible link cost that can range from 1 to 65,535. The cost can be based

on any criteria, such as distance or delay.

3. Distribution of traffic (load balancing) over multiple paths that have equal cost

to the destination. Equal-cost multipath is a simple form of traffic engineering.

4. Authentication schemes to ensure that routers are exchanging information with

trusted neighbors.

5. Multicast rather than broadcast of its messages to reduce the load on systems

that do not understand OSPF.
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6. OSPF is used in large networks.

7. Unlike RIP, OSPF updates only when a change in a routing table occurs.

Dijkstra’s Algorithm

The Dijkstra algorithm finds shortest paths from a source node to all other destina-

tion nodes in a network [111]. Consider a generic node i in a network of nn nodes.

It is intended to compute the shortest paths from node i to all other nodes in the

network. The list of nn nodes is denoted as N = {1, 2, 3, ..., nn}. Also consider a

generic destination node denoted as j (j 6= i). Consider that dij is the cost between

nodes i and j, and also consider that Dij is the minimum cost between node i and

node j.

The Dijkstra algorithm maintains the list N as two separate lists: a permanent

list L and a temporary list L′. Nodes present in the permanent list, L, are already

considered, while nodes present in the temporary list L′ are not yet considered. As

the algorithm progresses, L expands (new nodes are added) and L′ shrinks (nodes

are deleted). The algorithm stops when L′ becomes empty. Initially, L = {i} and

L′ = N\{i} (all nodes in N except node i). The algorithm expands the list L at each

iteration by considering a neighboring node k of node i with the least cost path from

node i. At each iteration, the algorithm then considers the neighboring nodes of k

which are not already in L to see if the minimum cost changes from the last iteration.

Consider Figure 3.1 and assume that all the shortest paths from node 1 to other
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destination nodes are to be determined. Thus, initially L = {1} and L′ = {2, 3, 4, 5, 6}.

The shortest paths to all nodes that are direct neighbors of node 1 can be readily

found while for the rest of the nodes, the cost remains at ∞, i.e., D12 = 1, D14 =

1, D13 = D15 = D16 = ∞. For the next iteration, because node 1 has two directly

connected neighbors 2 and 4, d12 = 1 and d14 = 1 respectively. Because nodes 2

and 4 are with the same minimum cost of 1, any one of the nodes can be selected.

Assume node 2 is chosen. Now L = {1, 2} and L′ = {3, 4, 5, 6}. The algorithm then

considers the direct neighbors of node 2 not already in set L. The neighbors of node

2 are nodes 3 and 4. The algorithm then computes the cost from node 1 to node 3

and to node 4 and checks if there is any improvement:

D13 = min{D13, D12 + d23} = min{∞, 1 + 2} = 3

D14 = min{D14, D12 + d24} = min{1, 1 + 1} = 1

Since there is no improvement in the cost to node 4, the original shortest path is

kept. For node 3, a new shortest path, 1-2-3, is obtained and for the rest of the nodes

the cost remains as ∞. This completes the iteration and the process is continued

to determine all the shortest paths from node 1. A formal description of Dijkstra’s

algorithm is given in Algorithm 3.2.



73

Algorithm 3.2 Dijkstras Algorithm [111]

1: Start with source node i in the permanent list of nodes considered, i.e., L = {i};
2: All the rest of the nodes are put in the tentative list labelled as L

′

3: Dij = dij, for all j ∈ L
′

4: Identify a neighboring node k not in the current list S with the minimum cost
path from node i, i.e., find k ∈ L

′
such that Dik = minm∈L

′ Dim.
5: Add k to the permanent list L, i.e., L = L ∪ k
6: Drop k from the tentative list L

′
, i.e., L

′
= L

′
\ k

7: If L
′
is empty, stop

8: Consider the list of neighboring nodes, Nk, of the intermediary k (but do not
consider nodes already in L), to check for improvement in the minimum cost
path, i.e.,

9: Dij = min{Dij, Dik + dkj}, for j ∈ Nk ∩ L
′

10: Go to Step 4

3.4 Literature review of the OSPF weight setting

problem

This section provides an overview of existing work from literature to solve the OSPFWS

problem. Notable research in optimizing OSPF weights has been reported in the liter-

ature [8, 11, 12, 15, 40, 46, 48, 56, 77, 103, 107, 125, 132, 137, 142, 143, 146, 147, 156,

160, 162, 182]. The pioneering work on the OPSF weight setting problem was done

by Fortz and Thorup [45, 47, 48], who used maximum utilization as the optimization

objective. The term “maximum utilization” refers to the maximum of all link uti-

lization values over all the link capacities in the network. A cost function based on

utilization ranges was first formulated by Fortz and Thorup [46], who applied tabu

search [59] to minimize “maximum utilization”. The optimization function defined
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by Fortz and Thorup is as follows:

minimize Φ =
∑

a∈A

Φa(la) (3.1)

subject to the constraints:

la =
∑

(s,t)∈N×N

f (s,t)
a , a ∈ A, (3.2)

f (s,t)
a ≥ 0 (3.3)

where Φ is the cost function, Φa is the cost associated with arc a, la is the total traffic

load on arc a, f
(s,t)
a represents traffic flow from node s to t over arc a, N defines the

set of nodes, and A represents the set of arcs. Equation (3.2) indicates that the total

load (traffic) on arc a is equal to the sum of the traffic load on arc a and the traffic

load on all incoming arcs to arc a. The constraint in Equation (3.3) states that the

traffic flow from node s to t over arc a has to be greater than or equal to zero.

In Equation (3.1), Φa represents piecewise linear functions, with Φa(0) = 0, and

the derivative, Φ
′

a(la), is calculated using the below equation.



75

Φ
′

a(la) =


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
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


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
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
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








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































1 for 0 ≤ la/ca < 1/3,

3 for 1/3 ≤ la/ca < 2/3,

10 for 2/3 ≤ la/ca < 9/10,

70 for 9/10 ≤ la/ca < 1,

500 for 1 ≤ la/ca < 11/10,

5000 for 11/10 ≤ la/ca < ∞

(3.4)

Figure 3.2 illustrates the corresponding behavior of Equation (3.4). The above

function indicates that the utilization (which represents the load to capacity ratio)

of a link is acceptable within 100% of the link’s capacity. Fortz and Thorup em-

ployed a dynamic shortest path algorithm [44, 52, 140] to obtain multiple equidistant

shortest paths between a source-destination pair. By this mechanism, traffic load was

distributed equally across the links.

Subsequent to the work of Fortz and Thorup, many other researchers attempted

to solve the OSPF weight setting problem with different algorithms and different

objective functions. Ramakrishnan and Rodrigues [147] proposed a local search pro-

cedure using the same cost function as that of Fortz and Thorup. The main difference

between the two approaches was that Rodrigues and Ramakrishnan’s technique in-

creases the link metric (i.e. the OSPF weight assigned to a link) for heavily used
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Figure 3.2: Cost function curve [46].

links. Ericsson et al. [40] developed a genetic algorithm [66] to solve the OSPFWS

problem, also using the cost function by Fortz and Thorup. Kandula et al. [77]

compared the performance of three OSPF weight optimizers while considering max-

imum link utilization as the optimization objective. Bhagat [8] proposed a hybrid

genetic algorithm for the OSPF weight setting problem while using the cost model of

Fortz and Thorup. Abo Ghazala et al. [58] performed a survey of various algorithms

applied to the OSPFWS problem, and also proposed a technique based on iterative

local search, while considering link utilization as the optimization objective. The

underlying cost function was the same as that proposed by Fortz and Thorup. In

a subsequent research article, Abo Ghazala et al. [56] assumed maximization of un-

used bandwidth as the optimization objective and employed SA and hybrid GAs for
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weight optimization. Parmar et al. [132] formulated the OSPF weight setting prob-

lem as a mixed-integer linear programming problem and developed a branch-and-cut

algorithm while assuming minimization of network congestion as the optimization ob-

jective. Pioro et al. [137] considered the maximum load on any link in the network as

the measure of congestion and proposed two heuristic approaches for weight setting.

Srivastava et al. [162] also considered minimization of maximum load on any link

and proposed heuristic algorithms based on Lagrangian relaxation to determine fea-

sible solutions for the weight setting problem. Buriol et al. [15] extended the genetic

algorithm proposed in [40] to a memetic algorithm by adding a local search proce-

dure while using the same cost function as that of Fortz and Thorup. Bley [11, 12]

proposed unsplittable shortest path routing (UPSR) and claimed that the proposed

approach can be applied to other routing schemes such as OSPF, while considering

minimization of maximum congestion over all arcs. Zagozdzon et al. [182] proposed a

two-phase algorithm for resolving the OSPF weight setting problem while considering

the residual capacity as the optimization objective. This residual capacity resulted

from setting the link weights proportional to the inverse of their capacity. Reis et

al. [141] proposed a memetic algorithm for weight setting in OSPF and distributed

exponentially-weighted flow splitting (DEFT) protocols while considering minimiza-

tion of total link utilization. Lin and Gen [107] proposed a priority-based genetic

algorithm for shortest path routing in OSPF. Their results indicated that the pro-



78

posed GA could be used for weight setting in OSPF and other routing algorithms.

Retvari et al. [142, 143] studied the OSPF weight setting problem considering maxi-

mization of network throughput and proposed some algorithms that could efficiently

optimize the link weights. Nucci et al. [125] proposed a tabu search heuristic for

choosing link weights that takes into account both service level agreement (SLA)

requirements and link failures with the objective of optimizing link utilizations. Shir-

mali et al. [156] devised an approach based on Nash bargaining and decomposition

[122]. It was claimed that the proposed approach could easily be modified to yield

a mechanism for setting link weights for ISPs using OSPF in a way similar to that

of Fortz and Thorup. Riedl [146] presented an algorithm based on SA [91] to opti-

mize link metrics in OSPF networks. The algorithm took into account the original

routing configuration and allowed trade-off considerations between routing optimality

and adaptation impact. Lee et al. [103] modelled the optimal link weight assignment

problem as an integer linear programming problem while considering minimization of

total energy consumption of all links.

It is noteworthy to mention that, generally, the aforementioned approaches con-

sidered a single objective in the optimization process. For example, the cost function

proposed by Fortz and Thorup (Equation (3.1)), on which many subsequent attempts

were based [8, 15, 40, 57, 58, 147, 156], considered minimization of maximum link uti-

lization. Other researchers [77, 137, 162] also assumed minimization of maximum link
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utilization. Other objectives considered in the optimization process were maximiza-

tion of unused link bandwidth [56], minimization of network congestion [11, 12, 132],

residual capacity of links [182], minimization of total link utilization [141], maximiza-

tion of network throughput [142, 143], and minimization of total energy consumption

over all links [103].

Exceptions from these single-objective optimization approaches were Nucci et al.

[125] and Sqalli et al. [149, 160]. Nucci et al. [125] considered link failure and link

no-failure states as the optimization objectives. Sqalli et al. [149, 160] considered

minimization of maximum utilization and minimization of congested links as the

optimization objectives to address OSPFWS problem.

A cost function developed by Sqalli et al. [149, 160] evolved from the earlier work

by Fortz and Thorup. The reason for using the cost function of Fortz and Thorup

was that the function was employed in many studies as mentioned above. One novel

aspect of the work of Sqalli et al. was the addition of another optimization objective

(i.e. minimization of congested links) in addition to minimization of maximum link

utilization. This resulted in better distribution of traffic in the network, since one

fundamental requirement of network traffic engineering is properly distributed traffic.

The objective function employed by Sqalli et al. is defined as

Φ = MU +

∑

a∈SetCA (la − ca)

|A|
(3.5)
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where MU is the maximum utilization of the network. SetCA defines the set of

congested links, |A| represents the total number of links in the network, ca refers to

the capacity of link a, and la is the total traffic on link a. Equation (3.5) is denoted

as “SqalliCF”.

The second term in Equation (3.5) defines the extra load on the network. This

extra load is divided by the total number of links present in the network to normalize

the entire function. For an uncongested network, the second term results as zero.

Thus, Equation (3.5) results in minimization of maximum utilization provided that

there is no congestion in the network. If congestion exists, then the function results in

the minimization of maximum utilization as well as the minimization of the number

of congested links. Sqalli et al. concluded that the cost function in Equation (3.5)

results in more efficient minimization of the number of congested links compared to

the cost function of Fortz and Thorup [46]. Furthermore, Sqalli et al. discovered that

the results for maximum utilization using Equation (3.5) were comparable to those

obtained by the approach of Fortz and Thorup. Using the cost function of Equation

(3.5), Sqalli et al. applied the SimE algorithm [93] to the OSPFWS problem and

compared the results with the results of SA [149]. Tabu search using the cost function

of Sqalli et al. [160] has also been applied to the OSPFWS problem [159].

A limitation of the cost function of Fortz and Thorup is that it minimizes “max-

imum utilization” only. This may lead to the existence of links which are either
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congested or unused. The cost function proposed by Sqalli et al. (Equation (3.5))

was aimed at simultaneous optimization of maximum utilization and the number of

congested links, without any consideration of unused links. It is, therefore, not guar-

anteed that optimizing maximum utilization and the number of congested links would

implicitly optimize the number of unused links as well. This observation points to

the fact that to have a more stable traffic flow, traffic from congested links should

be shifted to unused links. Therefore, in order to overcome this issue, this thesis

proposes a fuzzy logic based cost function that addresses the simultaneous optimiza-

tion of maximum utilization, number of congested links, and number of unused links

through fuzzy logic based aggregation. The details of this cost functions is present in

a subsequent chapter.

3.5 Conclusion

This chapter described routing concepts, followed by a description of the RIP and

OSPF routing protocols. The Bellman-Ford and Dijkstra’s shortest path algorithms

have also been discussed. Lastly, a brief description of existing research work pertain-

ing to the OSPFWS problem was presented. The next chapter defines the OSPFWS

as a multi-objective optimization problem.



Chapter 4

Open Shortest Path First Weight

Setting Problem

This chapter provides a formal description of the OSPFWS problem. The problem

is formulated as a multi-objective optimization problem using fuzzy logic. Therefore,

the formation of membership functions for the design objectives is discussed along

with the fuzzy logic based fitness function used to evaluate a solution.

The outline of the chapter is as follows: Section 4.1 provides the formal descrip-

tion of the OSPFWS problem. The description of Fuzzy logic cost function for the

OSPFWS problem is given in Section 4.2. Section 4.3 provides the details of the test

cases used in this thesis.
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4.1 Formal description of OSPFWS Problem

The purpose of this section is to describe the OSPFWS problem. Section 4.1.1 enu-

merates the steps to calculate the traffic load on each link, after assigning a set of

weights to the network links.

The OSPFWS problem is formulated as follows: Given a network topology and

predicted traffic demands, find a set of OSPF weights that optimizes network perfor-

mance. More precisely, given a directed network G = (N,A), a demand matrix D,

and capacity Ca for each arc a ∈ A, determine a positive integer weight ωa ∈ [1, ωmax]

for each arc a ∈ A such that the objective function or cost function Φ is minimized.

The maximum value of this weight, ωmax, is a user-defined upper limit. Fortz and

Thorup [45] discovered that a small range of values of weight significantly reduces

the overhead of the algorithm. By experimentation, they set ωmax to 20. The chosen

weights on arcs determine the shortest paths, which in turn completely determine the

routing of traffic flow, the loads on the arcs, and the value of the cost function. The

quality of OSPF routing is highly dependent on the selection of weights. Figure 4.1

shows a topology with weights assigned to each arc. These weights are in the range

[1, 20]. A solution for this topology can be (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16).

The weights for this solution are arranged through a breadth-first traversal of the

graph. For example, for node A, the weights on the outgoing links are 18 and 1. For

node B, the weights on outgoing links are 7 and 15, and so on.
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As discussed in the previous chapter, the existing literature considered optimizing

up to two objectives, namely, maximum utilization and the number of congested

links. In this thesis, a third objective, namely minimization of the number of unused

links, is also considered as an optimization objective. Minimization of the number of

unused links is a conflicting objective, because the less the number of unused links, the

higher the maximum utilization and number of congested links. Minimizing maximum

utilization will lead to a better distribution of network traffic across all links such that

congestion can be avoided and the network can be utilized well as per its capacity [47].

Network administrators desire less congested links. However, if a network is highly

congested, then the preference is to reduce the congestion by at least minimizing the

total number of congested links. For example, assume a network with 50 congested

links and 20 unused links. It would be preferred to accommodate some or all of the

extra traffic of the 50 congested links on the 20 unused links. This will reduce, and

even eliminate, data loss in the network since data on a link will not be exceeding

the capacity of the link. Thus, such distribution will have a positive impact on the

performance of the network in terms of the prevention of data loss [116]. Therefore,

a new solution might create new routing paths such that traffic on congested links

may be distributed on unused links.
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Figure 4.1: Representation of a topology with assigned weights.

4.1.1 Traffic Load Calculation

Given a weight setting, {ωa | a ∈ A,ωa ≥ 1}, the arc loads la are calculated in five

steps. For all demand pairs, dst ∈ D, consider one destination t at a time and compute

partial arc loads, lta ∀ t ∈ N̄ ⊆ N , where N̄ is the set of destination nodes and N is

the set of all nodes. The steps are as follows:

1. Compute the shortest distances dt
u from each node u ∈ N to t using Dijkstra’s

shortest path algorithm [30]. Dijkstra’s algorithm usually computes the dis-

tances away from source s, but since it is required to compute the distance to

the destination node t from all other nodes, the algorithm is applied on the

graph obtained by reversing all arcs in G.
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2. Compute the set At of arcs on shortest paths to t from all other nodes as

At = {(u, v) ∈ A : ω(u,v) = dt
u − dt

v}

3. For each node u, let δt
u denote its outdegree in Gt = (N,At), i.e.,

δt
u = | {v ∈ N : (u, v) ∈ At} |

If δt
u > 1, then traffic flow is split at node u to balance the load.

4. The partial loads lta are computed as follows:

(a) Nodes v ∈ N are visited in order of decreasing distance dt
v to t.

(b) When visiting a node v, for all (v, h) ∈ At, set

lt(v,h) = 1/[δt
v(dvt +

∑

(u,v)∈At lt(u,v))]

5. The arc load la is now summed from the partial loads as:

la =
∑

t∈N̄ lta

4.2 Fuzzy Logic Cost Function for the OSPFWS

Problem

This section describes the fuzzy logic cost function for the OSPFWS problem. A

solution to the OSPFWS problem is found by assigning weights to each network
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link. The best solution is that one which optimizes the network resources efficiently.

The design objectives of the OSPFWS problem include maximum utilization (MU),

number of congested links (NOC), and number of unused links (NUL). These ob-

jectives individually on their own do not provide adequate information for deciding

the quality of a solution. The conflicting nature of these objectives further amplifies

the complexity of the problem. To address this complexity, a mechanism is required

to find a solution that provides the best trade-off covering all the objectives. Fuzzy

logic is one approach that can conveniently and efficiently handle the trade-off issues

between multiple objectives.

The rest of this section discusses the use of fuzzy logic to combine the three con-

flicting objectives into a single overall objective function which is a scalar quantity.

To formulate the overall objective function, the membership values of individual ob-

jectives need to be determined first, through membership functions. This process is

described below.

To define the membership function for MU, two extreme values, the minimum

and maximum, are determined first. These values are found from prior knowledge.

Figure 4.2 shows the membership function of the objective to be optimized (MU

in this case). Point “A” refers to minimum MU (MUmin) and point “B” refers to

maximum MU (MUmax). The membership value for MU, µMU , is determined as

follows:
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Figure 4.2: Membership function of the objective to be optimized.

µMU(x) =












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















1 if MU ≤ MUmin

MUmax−MU
MUmax−MUmin

if MUmin < MU ≤ MUmax

0 if MU > MUmax

(4.1)

The membership function for NOC, µNOC , is defined in a similar way. With

reference to Figure 4.2, point “A” then refers to minimum NOC (NOCmin) and “B”

refers to maximum NOC (NOCmax). The membership function of NOC is defined as

follows:
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µNOC(x) =


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1 if NOC ≤ NOCmin

NOCmax−NOC
NOCmax−NOCmin

if NOCmin < NOC ≤ NOCmax

0 if NOC > NOCmax

(4.2)

Finally, the membership function for NUL, µNUL, is defined as

µNUL(x) =































1 if NUL ≤ NULmin

NULmax−NUL
NULmax−NULmin

if NULmin < NUL ≤ NULmax

0 if NUL > NULmax

(4.3)

where minimum (NULmin) and maximum (NULmax) values correspond to “A” and

“B” respectively in Figure 4.2.

A good solution to the OSPFWS problem is one that is characterized by a low

MU, low NOC, and low NUL. In fuzzy logic, this can be stated by the following fuzzy

rule:

Rule: IF a solution X has low MU AND low NOC AND low NUL THEN it is a

good solution.

The words “low MU”, “low NOC” and “low NUL” are linguistic variables, each

defining a fuzzy subset of solutions. Using the UAO operator [86], the above fuzzy

rule reduces to the following equation:
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µ(x) =
µMU(x)µNOC(x)µNUL(x) + ν × max{µMU(x), µNOC(x), µNUL(x)}

ν + max{µMU(x), µNOC(x), µNUL(x)}
(4.4)

where µ(x) is the membership value for solution x in the fuzzy set “good OSPF weight

set” and ν is a constant in the range [0,1]. The solution which results in the maximum

value for Equation (4.4) is reported as the best solution.

As an example, consider an arbitrary solution S1, having µMU = 0.19, µNOC = 0.2,

and µNUL = 0.17. Also assume that ν = 0.5. Then, Equation (4.4) results in a value

of 0.152. Similarly, consider µMU = 0.22, µNOC = 0.23, and µNUL = 0.09 associated

with another arbitrary solution S2. Again assume that ν = 0.5. Then, Equation (4.4)

evaluates to 0.164. Thus, solution S2 is better than solution S1 in terms of quality.

Equation (4.4) is employed as a fuzzy cost function for solving the OSPFWS problem

and is denoted as “FuzzyCF”.

4.3 Details of Test Cases

This research work used the test cases proposed by Fortz and Thorup [46]. Table 4.1

shows the characteristics of the test cases. For each test case, the table lists its network

type, the number of nodes, and the number of links. The 2-level hierarchical networks

are generated using the GT-ITM generator [183], based on the model of Calvert [17]
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and Zegura [184]. In hierarchical networks, short distance arcs have capacities equal

to 200, while long distance arcs have capacities equal to 1000. In random networks

and Waxman networks1, capacities are set at 1000 for all arcs. Fortz and Thorup

generated the demands to force some nodes to be more active senders or receivers

than others, thus modelling hot spots2 on the network. The demands generated by

Fortz and Thorup assign higher demands to closely located node pairs. Further details

on the assignment process of generated demands can be found in Fortz and Thorup

[47].

Table 4.1: Test cases for the OSPFWS problem (N = number of nodes, A = number
of arcs.). Smallest test case is in italics and the biggest test case is in boldface.

Test Code Network type N A

h100N280a 2-level hierarchical graph 100 280
h100N360a 2-level hierarchical graph 100 360
h50N148a 2-level hierarchical graph 50 148

h50N212a 2-level hierarchical graph 50 212
r100N403a Random graph 100 403
r100N503a Random graph 100 503

r50N228a Random graph 50 228
r50N245a Random graph 50 245
w100N391a Waxman graph 100 391
w100N476a Waxman graph 100 476
w50N169a Waxman graph 50 169
w50N230a Waxman graph 50 230

1Waxman graphs are frequently chosen in simulations as topologies resembling communications
networks. Waxman graphs are named after Bernard M. Waxman.

2A hot spot is a network point or router having heavy incoming and outgoing traffic.
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4.4 Conclusion

This chapter defined the OSPFWS problem as a multi-objective optimization prob-

lem. Three design objectives, namely, maximum utilization, number of congested

links, and number of unused links are considered as the optimization objectives. The

three objectives are aggregated using the unified and-or operator.

The next chapter discusses the application of a multi-objective FSA algorithm to

solve the OSPFWS problem.



Chapter 5

Fuzzy Simulated Annealing

Algorithm for the OSPFWS

Problem

This chapter discusses the multi-objective FSA algorithm developed to solve the

OSPFWS problem. The fuzzy cost function (denoted as FuzzyCF) described in Chap-

ter 4 has been used as the underlying objective function. The chapter also provides a

sensitivity analysis of the FSA control parameters. The results of FSA are compared

with existing work in the literature.

The outline of the chapter is as follows: Section 5.1 provides implementation

details of the FSA algorithm. Section 5.2 describes the solution archiving mechanism

93
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used by the FSA algorithm. Section 5.3 discusses the experimental setup used for FSA

simulations. This section also discusses the effect of the cooling rate parameter α on

the quality of solutions with respect to FuzzyCF. Section 5.3.1 provides a comparison

of the SqalliCF and FuzzyCF cost functions using the SA algorithm.

5.1 Fuzzy Simulated Annealing Algorithm

An algorithmic description of SA was given in Section 2.3.1. SA is applied as a multi-

objective algorithm to solve the OSPFWS problem by maximizing the cost function,

FuzzyCF, given in Equation (4.4). The OSPFWS problem requires an assignment of

a set of weights to the links in the network. This set of weights is a solution to the

OSPFWS problem. Thus in the context of the FSA algorithm, the weights are the

movable elements. A change in the weight of a link leads to different shortest paths

between source and destination pairs, resulting in a new solution, and thus providing

a different cost.

The FSA algorithm executes three main steps, namely, initialization, the metropo-

lis procedure, and evaluation. These steps are described below.

Initialization

The initialization step generates a random solution (i.e. a random set of weights).

The FSA control parameters, i.e. the initial temperature T0, the cooling rate α, the

constant β, maximum time for the annealing process Tmax (in terms of the number
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of iterations), and the length of Markov chain, M , are also initialized.

The FSA control parameters have an impact on the convergence of the algorithm.

For example, the initial temperature T0 is set to an appropriate value, so that all

moves are accepted initially. The appropriate value is determined by a trail and error

approach. A very high initial temperature causes the algorithm to search blindly.

Contrary to this, a very low initial temperature results in bad solutions to be rejected

in the early stage of the search, therefore limiting exploration. A number of methods

have been proposed in the literature to determine an appropriate initial temperature

[21, 75, 91, 110, 135]. This thesis adopts the method proposed by Kirkpatrick [91],

where the value of T0 is chosen such that the initial acceptance ratio, X(T0), is close

to unity. The acceptance ratio is calculated using

X(T0) =
NT0

TT0

(5.1)

where NT0
is the number of moves accepted at temperature T0 and TT0

is the total

number of moves attempted at temperature T0.

The cooling rate, α, controls the rate of decrease in temperature. The higher the

value of α, the lower the decrease in temperature, and vice versa. A typical value of

α ranges from 0.8 to 0.99 [100].

Parameter M also has an impact on the convergence of FSA, and it is very im-

portant to determine an appropriate value of M . A very high value of M increases
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the execution time. As an example, consider M = 35. This means that, at a given

temperature, the algorithm will attempt 35 moves. It is quite probable that the

same quality of solution is achieved with M = 15. Therefore, 20 moves are wasted.

Similarly, when M is very low (for example 5), then the algorithm may result in

poor quality solutions, simply because of the fact that the algorithm does not have

sufficient time to explore the search space for a given temperature.

Metropolis procedure

The core procedure of the annealing algorithm is known as the metropolis procedure.

This procedure is repeated for a given number of iterations. During the metropolis

procedure, a solution is perturbed through a move. For the OSPFWS problem, a

move involves selecting a weight from the set of given weights, and replacing the

selected weight with a different weight. For example, with reference to Figure 4.1, a

solution for this topology is (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16). FSA selects

a link randomly and replaces its weight with another random weight. Changing any

weight from the above solution will lead to a different solution in the search space.

Thus a new solution can be (18, 1, 7, 15, 3,5, 5, 14, 19, 13, 18, 4, 16, 16) by changing the

weight 17 to 5 on the link between node C and E. As shown in Figure 5.1, in the

subsequent iterations, weight 18 is changed to 9 on the link between nodes F and

D, weight 18 is changed to 10 on the link between nodes A and B, and weight 7 is

changed to 6 on the link between nodes B and C. Note that after each step shown, a
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Figure 5.1: Sequence of moves in FSA.

new solution is generated. This solution is evaluated and compared with the previous

solution. If the cost of a new solution is better than the cost of the immediate previous

solution, then the new solution is accepted. If the cost of the new solution is less than

the cost of the immediate previous solution, then the new solution is probabilistically

accepted as explained in Section 2.3.1.

Evaluation of a solution

Once a new solution is generated, its cost should be computed. This is done using

FuzzyCF (Equation (4.4)). For each individual objective, minimum and maximum

values are a prerequisite for obtaining the membership values. These extreme values

are found as follows: For objective MU, the minimum value, MUmin, is taken as
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the minimum utilization of the initial solution given to the algorithm during the

initialization phase. The maximum value for MU, MUmax, is taken as the maximum

utilization of the initial solution. The minimum value for objective NOC, NOCmin,

is set to zero. The maximum value for NOC, NOCmax, is taken as the number of

congested links obtained from the initial solution. In the same way, NULmin is set

to zero, while NULmax is taken as the number of unused links obtained from the

initial solution. In the subsequent steps, membership values for each objective are

calculated by using Equations (4.1), (4.2) and (4.3).

Stopping criterion

The algorithm is stopped when a maximum number of iterations has been reached.

The next section describes the archiving procedure used in FSA.

5.2 Solutions Archiving in FSA

In MOO there is a set of Pareto-optimal solutions, also known as the Pareto front. The

Pareto-optimal solutions are trade-off non-dominated solutions, and all of them are

global optimum solutions [6]. Since FSA is an iterative single-solution based algorithm

that generates a single solution in each iteration, the algorithm can not produce

Pareto-optimal solutions by its nature. In this thesis, a simple archiving scheme is

implemented during the execution of the proposed FSA. This is to determine whether

FSA has the capability to yield a set of non-dominated solutions. The initialization
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step places the first solution in the archive. Then, the following procedure is used to

maintain the archive during subsequent iterations:

1. If the obtained new solution is non-dominating with all the members of archive,

then new solution is added to the archive.

2. If all the members of archive are dominated by the new solution, then all the

members are deleted from the archive and the new solution is added to the

archive.

3. If the new solution is not dominating any one of the members of archive, then

the new solution is not added to the archive.

5.3 Experimental setup

This section discusses the parameters used for SA with respect to FuzzyCF and

SqalliCF. For each test case (refer to Section 4.3 for the details on these test cases),

30 independent runs were executed for 5000 iterations. The average of the best cost

and the standard deviation over these 30 runs were calculated. For all experiments

with respect to SqalliCF, the parameters α = 0.965 and β = 1.01 were used as

recommended in a previous study by Sqalli et al [160]. Experiments were conducted

to obtain the best parameter values of α and M with respect to FuzzyCF. The first

set of experiments focussed on obtaining the best cooling rate parameter, α. Initially,
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the values β = 1.01 and M = 20 were used. The initial α value was set as 0.99

for each test case. Subsequently, the α value was decreased by 0.01. As soon as

a lower α value produced a statistically significant worse result than a previously

evaluated higher α value, the higher α value was considered as the best value. For

example, if the α value 0.95 produced statistically significant worse result than the

result of α value 0.96, then the α value 0.96 was considered as the best α value.

Tables 5.1 and 5.2 provide the quality of solutions with respect to FuzzyCF obtained

for all the experimented cooling rate values. The penultimate column of the table

represents the percentage difference between the average fuzzy cost values obtained

for two consecutive α values. Because an α value of 0.99 is used as the initial value,

the percentage difference value for α = 0.99 is NA.

Besides these tables, graphic representations of the search progress for each ex-

perimented value of α with respect to all test cases are also shown in Figures 5.2,

5.3, 5.4 and 5.5. The results show that α = 0.96 performed well for all the test

cases and hence motivated the use of α = 0.96 for all further experiments. After

setting the value of α, further experimentation was done with values of the Markov

chain parameter M = 20 and M = 30 for all test cases with respect to FuzzyCF and

SqalliCF. As observed from Table 5.3, in general, M = 20 produced better results

for both SqalliCF (a lower value is desired) and FuzzyCF (a higher value is desired).

There are exceptions with respect to test cases h50N148a, r100N503a and w50N169a
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for the FuzzyCF cost function. However, since M = 20 requires less perturbations,

and thus results in less execution time, M = 20 is preferred over M = 30. Therefore,

all experiments were conducted using M = 20 for both FuzzyCF and SqalliCF.

Figures 5.6 and 5.7 show the plots of the average fuzzy cost and standard devia-

tion for all the test cases over 30 independent runs with respect to FSA. The search

accepted bad solutions in the early phases of execution, and behaved greedily towards

the end, accepting only the good solutions. As the search progresses, successive tem-

perature values decrease depending on the value of cooling rate α. The decrease in

temperature decreases the probability of accepting bad moves. It is also observed

from the figures that the standard deviation decreased over time. A decrease in stan-

dard deviation confirms that all the results over these 30 independent runs converge

towards similar optimal solutions. Similar search progress trends and convergence

towards similar optimal solutions were also found with respect to SqalliCF as shown

in Figures 5.8 and 5.9. Note that FuzzyCF is a maximization function, while SqalliCF

was modelled as a minimization function.

5.3.1 Comparison of SqalliCF and FuzzyCF using SA

Table 5.4 summarizes the results obtained for FSA using SqalliCF and FuzzyCF.

Furthermore, the average runtime for each test case with respect to the two cost

functions is also provided. Table 5.5 shows the percentage improvement achieved by
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Table 5.1: Best average FuzzyCF values for the test cases h50N148a, h50N212a,
h100N280a, h100N360a, r50N228a and r50N245a with respect to experimented cool-
ing rate values. Statistically significant differences are in italics. NA = Not Applicable
(% Difference is calculated between the average fuzzy cost values obtained for two
consecutive cooling rate values).

Test Case Cooling rate α Best Fuzzy Cost % Difference p-values
0.99 0.348 ± 0.102 NA NA
0.98 0.391 ± 0.021 11 0.043

h50N148a 0.97 0.431 ± 0.095 9.28 0.037
0.96 0.547 ± 0.072 21.21 0.005
0.95 0.522 ± 0.099 -4.79 0.187
0.99 0.361 ± 0.068 NA NA
0.98 0.417 ± 0.083 13.43 0.016

h50N212a 0.97 0.473 ± 0.072 11.84 0.038
0.96 0.575 ± 0.075 17.74 0.03
0.95 0.517 ± 0.008 -11.22 0.216
0.99 0.3 ± 0.041 NA NA
0.98 0.328 ± 0.041 8.54 0.011

h100N280a 0.97 0.356 ± 0.116 7.87 0.014
0.96 0.585 ± 0.154 39.15 0.024
0.95 0.554 ± 0.078 -5.6 0.126
0.99 0.287 ± 0.114 NA NA
0.98 0.312 ± 0.096 8.01 0.012

h100N360a 0.97 0.333 ± 0.036 6.31 0.009
0.96 0.6 ± 0.055 44.5 0.033
0.95 0.57 ± 0.048 -5.26 0.119
0.99 0.351 ± 0.006 NA NA
0.98 0.426 ± 0.116 17.61 0.017

r50N228a 0.97 0.502 ± 0.047 15.14 0.014
0.96 0.581 ± 0.025 13.6 0.035
0.95 0.542 ± 0.114 -7.2 0.167
0.99 0.307 ± 0.002 NA NA
0.98 0.413 ± 0.062 25.67 0.03

r50N245a 0.97 0.52 ± 0.014 20.58 0.035
0.96 0.613 ± 0.028 15.17 0.04
0.95 0.571 ± 0.114 -7.36 0.245
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Table 5.2: Best average FuzzyCF values for the test cases r100N403a, r100N503a,
w50N169a, w50N230a, w100N391a and w100N476a with respect to experimented
cooling rate values. Statistically significant differences are in italics. NA = Not
Applicable (% Difference is calculated between the average fuzzy cost values obtained
for two consecutive cooling rate values).

Test Case Cooling rate α Best Fuzzy Cost % Difference p-values
0.99 0.309 ± 0.056 NA NA
0.98 0.321 ± 0.084 3.74 0.017

r100N403a 0.97 0.333 ± 0.111 3.6 0.021
0.96 0.487 ± 0.185 31.62 0.014
0.95 0.482 ± 0.125 -1.04 0.186
0.99 0.265 ± 0.023 NA NA
0.98 0.274 ± 0.072 3.28 0.029

r100N503a 0.97 0.283 ± 0.107 3.18 0.037
0.96 0.507 ± 0.32 44.18 0.032
0.95 0.479 ± 0.008 -5.85 0.174
0.99 0.432 ± 0.023 NA NA
0.98 0.509 ± 0.053 15.13 0.008

w50N169a 0.97 0.587 ± 0.055 13.29 0.032
0.96 0.692 ± 0.018 15.17 0.029
0.95 0.668 ± 0.125 -3.59 0.152
0.99 0.302 ± 0.006 NA NA
0.98 0.355 ± 0.053 14.93 0.003

w50N230a 0.97 0.502 ± 0.076 29.28 0.041
0.96 0.705 ± 0.138 28.79 0.022
0.95 0.667 ± 0.078 -5.7 0.234
0.99 0.376 ± 0.129 NA NA
0.98 0.416 ± 0.068 9.62 0.017

w100N391a 0.97 0.456 ± 0.115 8.77 0.024
0.96 0.628 ± 0.065 27.39 0.014
0.95 0.602 ± 0.109 -4.32 0.218
0.99 0.359 ± 0.053 NA NA
0.98 0.445 ± 0.075 19.33 0.005

w100N476a 0.97 0.53 ± 0.061 16.04 0.036
0.96 0.606 ± 0.032 12.54 0.021
0.95 0.542 ± 0.032 -11.81 0.157
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Figure 5.2: Plots of FSA average best cost for all the values of α with respect to the
test cases (a) h50N148a (b) h50N212a and (c) r50N228a. Search with value α = 0.96
produced better results.
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Figure 5.3: Plots of FSA average best cost for all the values of α with respect to the
test cases (a) r50N245a (b) w50N169a and (c) w50N230a. Search with value α = 0.96
produced better results.
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Figure 5.4: Plots of FSA average best cost for all the values of α with respect to
the test cases (a) h100N280a (b) h100N360a and (c) r100N403a. Search with value
α = 0.96 produced better results.
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Figure 5.5: Plots of FSA average best cost for all the values of α with respect to
the test cases (a) r100N503a (b) w100N391a and (c) w100N476a. Search with value
α = 0.96 produced better results.
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Table 5.3: Results of average cost for different values of Markov chain parameter
(M) for SqalliCF and FuzzyCF. Imp. shows % improvement achieved with M = 20
relative to M = 30. Significant % improvement is in boldface. Inferior performance
with M = 20 for FuzzyCF is in italics.

Test Case SqalliCF FuzzyCF
M = 20 M = 30 % Imp. M = 20 M = 30 % Imp.

h50N148a 2.451±0.04 3.223±0.12 23.95 0.428±0.27 0.518±0.03 -21.03
h50N212a 2.498±0.37 3.395±0.03 26.42 0.461±0.10 0.261±0.01 43.38
h100N280a 2.654±0.10 2.688±0.02 1.27 0.543±0.04 0.519±0.02 4.42
h100N360a 3.003±0.03 4.994±0.03 39.87 0.308±0.02 0.217±0.01 29.55
r50N228a 14.618±1.23 30.453±2.03 52.00 0.588±0.09 0.561±0.01 4.59
r50N245a 36.437±6.12 55.253±5.01 34.05 0.56±0.04 0.552±0.03 1.43
r100N403a 26.811±2.30 49.309±5.01 45.63 0.457±0.02 0.375±0.09 17.94
r100N503a 29.145±2.05 59.54±4.03 51.05 0.291±0.02 0.44±0.05 -51.20
w50N169a 3.6±0.01 13.461±1.12 73.26 0.558±0.03 0.591±0.01 -5.91
w50N230a 3.436±0.19 10.84±0.31 68.30 0.586±0.03 0.264±0.10 54.95
w100N391a 2.666±0.06 8.065±0.04 66.94 0.455±0.02 0.257±0.01 43.52
w100N476a 6.145±0.07 18.94±2.03 67.56 0.592±0.06 0.561±0.09 5.24
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Figure 5.6: Average cost and associated standard deviation curves of FSA for all
the test cases with 50 nodes with respect to FuzzyCF (maximization function); α =
0.96, β = 1.01 and M = 20.
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Figure 5.7: Average cost and associated standard deviation curves of FSA for all
the test cases with 100 nodes with respect to FuzzyCF (maximization function);
α = 0.96, β = 1.01 and M = 20.
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Figure 5.8: Average cost and associated standard deviation curves of SA for all
the test cases with 50 nodes with respect to SqalliCF (minimization function); α =
0.965, β = 1.01 and M = 20.
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Figure 5.9: Average cost and associated standard deviation curves of SA for all
the test cases with 100 nodes with respect to SqalliCF (minimization funtion); α =
0.965, β = 1.01 and M = 20 .
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Table 5.4: MU, NOC, NUL, and average execution time corresponding to SqalliCF
and FuzzyCF using FSA.

Test case Traffic SqalliCF FuzzyCF
Demand MU NOC NUL Time MU NOC NUL Time
(bytes) (sec) (sec)

h100N280a 4605 1.36± 10.17± 13.13± 1177± 1.50± 8.93± 0.70± 859.1±
0.017 2.422 3.181 12.084 0.352 1.388 3.313 8.658

h100N360a 12407 1.66± 16.20± 16.93± 1091.1± 2.01± 21.03± 0.20± 796.5±
0.157 3.067 4.401 8.016 0.531 6.300 0.484 5.138

h50N148a 4928 1.40± 9.63± 3.07± 135.2± 1.51± 8.40± 0.00± 98.2±
0.058 2.251 1.460 1.095 0.100 1.670 0.000 3.097

h50N212a 3363 1.47± 5.63± 43.70± 145.7± 1.68± 5.17± 0.07± 102.1±
0.277 1.670 5.977 1.23 0.080 0.791 0.254 1.592

r100N403a 70000 1.93± 63.50± 3.00± 1335.5± 2.72± 62.60± 0.03± 1017.2±
0.184 5.124 1.681 13.798 0.576 6.579 0.183 13.792

r100N503a 100594 1.86± 83.60± 5.87± 1390.4± 3.58± 82.33± 6.57± 1069.8±
0.143 6.184 2.713 14.209 0.416 26.212 16.079 18.918

r50N228a 42281 1.58± 26.97± 5.80± 160.3± 2.02± 22.03± 0.03± 116.1±
0.154 3.347 2.441 1.466 0.134 2.251 0.183 1.408

r50N245a 53562 2.24± 41.83± 5.10± 159.1± 2.83± 28.77± 0.23± 117.2±
0.276 4.913 2.056 1.788 0.239 2.622 0.504 2.329

w100N391a 48474 1.44± 2.33± 4.80± 1355.5± 1.75± 42.10± 7.23± 1029.2±
0.046 1.647 1.954 13.423 0.708 19.921 6.185 22.928

w100N476a 63493 1.42± 23.83± 14.73± 1383.3± 2.24± 41.70± 4.73± 1048.2±
0.043 6.923 3.433 13.392 0.219 15.647 11.694 21.955

w50N169a 25411 1.27± 8.60± 2.93± 153.7± 1.41± 8.80± 0.00± 110.7±
0.021 1.792 1.552 1.552 0.086 1.808 0.000 1.78

w50N230a 39447 1.23± 4.90± 6.13± 158.6± 1.55± 14.40± 1.37± 113.8±
0.017 1.493 2.674 1.938 0.151 19.08 4.537 2.497
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Table 5.5: Comparison of FuzzyCF and SqalliCF in percentage using SA. Superior
performance of FuzzyCF is in boldface and inferior performance of FuzzyCF is in
italics.

Test Case MU p-value NOC p-value NUL p-value
% diff % diff % diff

h100N280a -10.29 0.022 12.19 0.019 94.67 0.013
h100N360a -21.08 0.001 -29.81 0.027 98.82 0.011
h50N148a -7.86 0.031 12.77 0.019 100.00 0.010
h50N212a -14.29 0.022 8.17 0.172 99.84 0.010
r100N403a -40.93 0.003 1.42 0.557 99.00 0.027
r100N503a -92.47 0.001 1.52 0.798 -11.93 0.815
r50N228a -27.85 0.021 18.32 0.041 99.48 0.009
r50N245a -26.34 0.034 31.22 0.035 95.49 0.020

w100N391a -21.53 0.021 -1706.87 0.000 -50.63 0.044
w100N476a -57.75 0.009 -74.99 0.008 67.89 0.032
w50N169a -11.02 0.033 -2.33 0.669 100.00 0.010
w50N230a -26.02 0.017 -193.88 0.001 77.65 0.000

FuzzyCF when compared to SqalliCF. The results in both tables are displayed with

respect to the three design objectives, i.e. MU, NOC, and NUL.

From Table 5.4, it is observed that SqalliCF was able to generate lower levels of

MU as compared to FuzzyCF for all test cases. More specifically, MU for SqalliCF

was generally in the range 1.23 to 1.93, with the exception of r50N245a (having an

MU level of 2.24). For FuzzyCF, MU was generally in the range 1.41 to 3.58. The

difference between the MU levels of the two approaches were statistically evaluated

for significance in terms of the percentage improvements as shown in Table 5.5. The

results in the second column of table suggest that, for the objective MU, the results

obtained by FuzzyCF were of inferior quality than those of SqalliCF.
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With respect to the second objective (NOC), the results were somewhat mixed

as shown in Table 5.4. For all the Waxman graphs as well as test case h100N360a,

SqalliCF resulted in a lower number of congested links, while for the remaining test

cases, the FuzzyCF cost function showed better performance. This was confirmed by

the values in Table 5.5, which showed statistically better results for FuzzyCF than

SqalliCF for four test cases (h100N280a, h50N148a, r50N228a, and r50N245a), while

SqalliCF performed statistically significantly better than FuzzyCF for the other four

cases (h100N360a, w100N391a, w100N476a, and w50N230a). For the remaining four

cases, both FuzzyCF and SqalliCF had the same quality of results.

The third objective (i.e. NUL) is reflected in Table 5.4, highlighting the dominant

trend that FuzzyCF performed significantly better than SqalliCF for over 80% (i.e.

10 out of 12) of the test cases. As seen in Table 5.5, the results obtained by FuzzyCF

were significantly better than that of SqalliCF, except for test case w100N391a while

for r100N503a, the results were of the same quality.

With regard to the execution time, it is observed from Table 5.4 that the average

execution time per run for FuzzyCF was less than that of SqalliCF.

Based on the above observations and analysis, it can be suggested that overall,

FuzzyCF performed better than SqalliCF.
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5.4 Conclusion

This chapter presented the FSA algorithm for the OSPFWS problem. The fuzzy

logic based objective function, FuzzyCF, was incorporated in the FSA algorithm. A

sensitivity analysis of the parameters of FSA was performed, which indicated that α

= 0.965 and M = 20 produced the best results for FSA. FSA was compared with

another SA algorithm based on the SqalliCF cost function. The results indicated

that:

• for the MU objective, FuzzyCF produced results of inferior quality as compared

to that of SqalliCF.

• for the NOC objective, FuzzyCF performed statistically significantly better than

SqalliCF for 4 out of 12 test cases. FuzzyCF performance was comparable to

SqalliCF for 4 out of 12 test cases.

• for the NUL objective, FuzzyCF performed better than SqalliCF for 10 out of

12 test cases.

Furthermore, archiving of solutions is implemented in FSA to obtain a set of non-

dominated solutions. This archive of solutions will be used in Chapter 8 to compare

the performance of FSA with other population-based algorithms.



Chapter 6

Fuzzy Simulated Evolution

Algorithm for the OSPFWS

Problem

This chapter presents the multi-objective FSimE algorithm for the OSPFWS problem.

The fuzzy cost function, FuzzyCF, described in Chapter 4 has been used as the

underlying objective function. The results are compared with a SimE algorithm

employing the SqalliCF cost function.

The outline of the chapter is as follows: Section 6.1 provides implementation

details of the FSimE algorithm. Section 6.2 provides the experimental setup used

for the FSimE simulations. Section 6.3 discusses the effect of the bias parameter,

117
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B, on the quality of solutions with respect to FuzzyCF. Section 6.3 also provides a

comparison of the SqalliCF and FuzzyCF cost functions using the SimE algorithm.

6.1 Fuzzy Simulated Evolution Algorithm

A detailed algorithmic description of SimE was given in Section 2.3.2. The SimE

algorithm updates a single solution, but unlike SA, navigates the search space by

employing compound moves (takes more than one move per iteration) as shown in

Figure 6.1, which corresponds to the topology given in Figure 4.1. The underlined

numbers are the new weights on their respective links of the network. The algorithm

repetitively iterates between the evaluation, selection, and allocation steps before

a pre-defined stopping criterion is reached. Furthermore, the concept of archiving

(as explained in Section 5.2) is also applied to FSimE. Similar to FSA, FSimE also

yielded an archive of non-dominated solutions. The implementation of the main steps

of FSimE are described below:

Evaluation

For the OSPFWS problem, each element is a weight on a link, for which goodness

needs to be evaluated. The goodness function is one of the key factors that affects

the performance of the FSimE algorithm, and should therefore be carefully designed.

This thesis uses the goodness function defined by Sqalli et al. [149] for both cost

functions (SqalliCF and FuzzyCF). The goodness function is defined as
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Figure 6.1: Sequence of moves in FSimE within the allocate function.

gi =















1 − ui for MU ≤ 1

1 − ui/MU + ui/MU2 for MU > 1

(6.1)

where ui represents the utilization on link i and MU refers to the maximum utilization.

To illustrate how the above goodness function works, examine the following example:

consider two links e1 and e2 of a particular solution. Let the maximum utilization be

0.9. Assume that the utilizations on links e1 and e2 are 0.6 and 0.1, respectively. By

substituting the above values in the goodness function in Equation (6.1), ge1
= 0.4

and ge2
= 0.9 are obtained. In the next iteration, e1 is more probable to be selected

for replacement than e2. This is because the goodness of e1 is worse than that of e2.
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Now, consider the maximum utilization to be 1.8, and let the utilization on links e1

and e2 be 0.7 and 1.4, respectively. From Equation (6.1), ge1
= 0.827 and ge2

= 0.655.

In the next iteration, e2 is more probable to be selected for replacement than e1.

Selection

In the selection phase, for each link, i, a random number is sampled from a uniform

distribution in the range [0,1]. If this random number is larger than gi + B, the

corresponding weight is selected for allocation.

The bias B is used to control the size of the set of selected weights. A low

value of B increases the number of elements selected in each iteration, thus allowing

the algorithm to explore more. This may lead to high quality solutions, but at the

expense of higher computational effort. A high value of B inflates the goodness

of each element. This may result in a reduced number of elements selected for re-

allocation. Consequently, the execution time of the algorithm is reduced, but at the

risk of premature convergence to a sub-optimal (or local optimal) solution.

Since it is computationally expensive to find the best bias value by a process of

trial-and-error, different approaches have been proposed in the literature [84, 148] to

use a dynamic bias, instead of a user-defined static bias. The approach by Sait et al.

[148] calculates the bias based on the quality of the current solution and changes in

every iteration. The corresponding dynamic bias is given by

B(t) = 1 − G(t) (6.2)
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where B(t) is the bias in iteration t and G(t) is the average goodness of all the elements

at the start of that iteration. The average goodness of elements is a measure of how

many “good” elements are present in the solution. For a detailed analysis of the

dynamic bias, refer to Sait et al. [148].

Allocation

During the allocation step of the algorithm, the selected weights are removed from the

solution one at a time. For each removed weight, new weights are tried in such a way

that they result in an overall better solution. The following allocation scheme was

adopted: For all iterations, a weight window of size 4 is kept. Therefore, if weight

6 was selected for replacement, then weight values 4, 5, 7, and 8 are tried. This

results in a beam search and is done to have less disturbance in the solutions in each

iteration.

Figures 6.2 and 6.3 illustrate a typical behavior of the proposed FSimE algorithm.

These figures respectively plot the average goodness of weights and the cardinality of

the selection set for the test case r100N503a as an example. It is observed in Figure

6.2 that the average goodness increases with time. In the initial stages of the search,

the goodness increases significantly. However, as the search progresses, the average

goodness increases slowly. Figure 6.3 illustrates the cardinality of the selection set.

It is observed that the number of selected elements (i.e., weights) decreases as the

number of iterations increases. This suggests that, on average, the weights have been
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assigned to their optimal values, and the algorithm reached a level of convergence.

Therefore, fewer elements (i.e., weights) are selected for perturbation. If the two

trends in Figures 6.2 and 6.3 are considered together, the general observation is that

the convergence of the FSimE algorithm towards a better solution is correlated with

the average goodness of links. The increase in average goodness with a decrease in

the selection set size indicates that most of the links are in their optimal or near

optimal positions and therefore less moves are made. This relationship between av-

erage goodness and selection set size is also illustrated in Figure 6.4 for the test case

r100N503a. When the average goodness of weights is low, the selection set size is

big and vice versa. Thus bad elements (i.e. weights) were differentiated from good

elements and were subjected to be changed with better weights.

6.2 Experimental setup

For each test case, 30 independent runs were executed for 100 iterations and the

average of the best solutions found in each run was recorded, together with the

standard deviation. Static bias values of -0.02, -0.1, 0, 0.1, 0.2, 0.3 and a dynamic

bias (see Equation (6.2)) were used for analysis with respect to FuzzyCF. For the

SqalliCF cost function, a bias value of -0.02 was used as reported by Sait et al. [149].

The Wilcoxon rank-sum test [65] was used to validate the significance of the results.

A confidence level of 95% was used.
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Figure 6.2: Average goodness of weights for test case r100N503a.
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Figure 6.3: Selection set size for test case r100N503a.
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Figure 6.4: Average goodness vs selection set size for test case r100N503a.

6.3 Results and Discussion

The purpose of this section is to discuss the effect of the bias parameter, B, on the

quality of solutions with respect to FuzzyCF. This section also provides a comparison

of the SqalliCF and FuzzyCF cost functions using the SimE algorithm.

The average cost over 30 independent runs for each bias value is shown in Tables

6.1, 6.2 and 6.3 for the 12 test cases (details of the test cases are presented in Sec-

tion 4.3). Graphic illustrations of the search progress for each experimented value of

the bias with respect to all test cases are shown in Figures 6.5, 6.6, 6.7 and 6.8. It is

observed that a bias value of -0.1 produced the best results (i.e. having the highest

value for FuzzyCF) for all the test cases. Furthermore, a dynamic bias was not able

to produce high quality results. Therefore, for all experiments involving FSimE with

FuzzyCF, a bias value of -0.1 was used.

The average value of MU for all test cases was lower for SqalliCF than that of
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Table 6.1: Effect of bias value on the quality of solution for the test cases h50N148a,
h50N212a, h100N280a and h100N360a. Statistically significant improvement achieved
by value -0.1 over other values is in boldface. NA = Not Applicable (The value -0.1
is used to calculate % improvement over other values).

Test Case Bias Value Avg. Cost % Impr.
-0.02 0.4±0.151 19.679
-0.1 0.498±0.078 NA
0 0.374±0.038 24.9

h50N148a 0.1 0.23±0.076 53.815
0.2 0.268±0.062 46.185
0.3 0.181±0.089 63.655
Dynamic 0.306±0.027 38.554
-0.02 0.415±0.017 10.944
-0.1 0.466±0.144 NA
0 0.395±0.015 15.236

h50N212a 0.1 0.287±0.045 38.412
0.2 0.266±0.093 42.918
0.3 0.22±0.045 52.79
Dynamic 0.293±0.096 37.124
-0.02 0.2±0.003 64.789
-0.1 0.568±0.117 NA
0 0.345±0.028 39.261

h100N280a 0.1 0.369±0.001 35.035
0.2 0.262±0.088 53.873
0.3 0.203±0.076 64.261
Dynamic 0.186±0.04 67.254
-0.02 0.37±0.064 27.875
-0.1 0.513±0.162 NA
0 0.429±0.037 16.374

h100N360a 0.1 0.348±0.044 32.164
0.2 0.293±0.031 42.885
0.3 0.166±0.061 67.641
Dynamic 0.357±0.074 30.409
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Table 6.2: Effect of bias value on the quality of solution for the test cases r50N228a,
r50N245a, r100N403a and r100N503a. Statistically significant improvement achieved
by value -0.1 over other values is in boldface. NA = Not Applicable (The value -0.1
is used to calculate % improvement over other values).

Test Case Bias Value Avg. Cost % Impr.
-0.02 0.538±0.118 11.658
-0.1 0.609±0.134 NA
0 0.276±0.058 54.68

r50N228a 0.1 0.493±0.015 19.048
0.2 0.45±0.091 26.108
0.3 0.382±0.099 37.274
Dynamic 0.279±0.029 54.187
-0.02 0.298±0.098 51.702
-0.1 0.617±0.132 NA
0 0.572±0.08 7.293

r50N245a 0.1 0.29±0.092 52.998
0.2 0.474±0.098 23.177
0.3 0.336±0.085 45.543
Dynamic 0.508±0.198 17.666
-0.02 0.3±0.037 47.826
-0.1 0.575±0.03 NA
0 0.206±0.053 64.174

r100N403a 0.1 0.258±0.081 55.13
0.2 0.24±0.019 58.261
0.3 0.1666±0.028 71.026
Dynamic 0.24±0.033 58.261
-0.02 0.3±0.082 52.607
-0.1 0.633±0.101 NA
0 0.3±0.058 52.607

r100N503a 0.1 0.494±0.058 21.959
0.2 0.471±0.103 25.592
0.3 0.293±0.074 53.712
Dynamic 0.492±0.111 22.275
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Table 6.3: Effect of bias value on the quality of solution for the test cases
w50N169a, w50N230a, w100N391a and w100N476a. Statistically significant improve-
ment achieved by value -0.1 over other values is in boldface. NA = Not Applicable
(The value -0.1 is used to calculate % improvement over other values).

Test Case Bias Value Avg. Cost % Impr.
-0.02 0.61±0.078 7.855
-0.1 0.662±0.093 NA
0 0.547±0.065 17.372

w50N169a 0.1 0.478±0.037 27.795
0.2 0.453±0.051 31.571
0.3 0.352±0.051 46.828
Dynamic 0.491±0.065 25.831
-0.02 0.302±0.089 57.284
-0.1 0.707±0.031 NA
0 0.276±0.098 60.962

w50N230a 0.1 0.457±0.061 35.361
0.2 0.39±0.089 44.837
0.3 0.335±0.076 52.617
Dynamic 0.493±0.098 30.269
-0.02 0.333±0.076 54.57
-0.1 0.733±0.068 NA
0 0.638±0.005 12.96

w100N391a 0.1 0.61±0.095 16.78
0.2 0.55±0.012 24.966
0.3 0.25±0.071 65.894
Dynamic 0.562±0.082 23.329
-0.02 0.652±0.093 14.548
-0.1 0.763±0.091 NA
0 0.611±0.026 19.921

w100N476a 0.1 0.507±0.052 33.552
0.2 0.504±0.073 33.945
0.3 0.348±0.034 54.391
Dynamic 0.542±0.096 28.965
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Figure 6.5: Plots of FSimE average best cost for all the bias values with respect to
the test cases (a) h50N148a (b) h50N212a and (c) r50N228a. Search with bias value
-0.1 produced better results.
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Figure 6.6: Plots of FSimE average best cost for all the bias values with respect to
the test cases (a) r50N245a (b) w50N169a and (c) w50N230a. Search with bias value
-0.1 produced better results.
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Figure 6.7: Plots of FSimE average best cost for all the bias values with respect to
the test cases (a) h100N280a (b) h100N360a and (c) r100N403a. Search with bias
value -0.1 produced better results.
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Figure 6.8: Plots of FSimE average best cost for all the bias values with respect to
the test cases (a) r100N503a (b) w100N391a and (c) w100N476a. Search with bias
value -0.1 produced better results.
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Table 6.4: MU, NOC, NUL, and average execution time corresponding to two cost
functions using SimE.

Test case Traffic SqalliCF FuzzyCF
Demand MU NOC NUL Time MU NOC NUL Time
(bytes) (sec) (sec)

h100N280a 4605 1.34± 10.73± 21.33± 1220.4 1.41± 8.50± 1.23± 875.9
0.000 2.449 3.078 0.058 1.432 0.898

h100N360a 12407 1.42± 15.63± 17.67± 1189.6 1.72± 16.13± 0.93± 826.6
0.088 2.189 3.708 0.092 2.240 1.015

h50N148a 4928 1.42± 10.93± 3.67± 148.1 1.62± 10.37± 0.07± 128.6
0.051 2.518 1.668 0.119 2.025 0.254

h50N212a 3363 1.32± 7.60± 46.07± 151 1.67± 4.93± 2.77± 137.5
0.096 1.714 5.705 0.102 0.740 1.924

r100N403a 70000 1.44± 53.13± 0.83± 1597.9 1.86± 44.73± 0.13± 1588.5
0.064 4.562 0.648 0.074 2.490 0.346

r100N503a 100594 1.41± 37.77± 1.63± 1479.2 2.19± 52.80± 0.17± 1334.1
0.059 5.283 0.890 0.166 2.809 0.379

r50N228a 42281 1.36± 24.83± 2.20± 160 1.80± 19.77± 0.10± 152.2
0.054 3.130 1.808 0.121 1.305 0.305

r50N245a 53562 2.14± 39.20± 2.03± 167.2 2.60± 26.20± 0.80± 114.4
0.182 3.872 0.999 0.193 1.972 0.887

w100N391a 48474 1.41± 1.10± 5.03± 1371 1.42± 7.17± 0.03± 1132.3
0.006 0.305 1.829 0.033 2.692 0.183

w100N476a 63493 1.32± 7.07± 12.63± 1374.6 1.46± 17.07± 0.60± 1174.9
0.003 1.143 1.712 0.070 2.363 0.814

w50N169a 25411 1.26± 9.37± 2.80± 178.4 1.44± 8.37± 0.03± 134.8
0.016 2.205 1.375 0.078 1.189 0.183

w50N230a 39447 1.23± 3.67± 5.27± 189.1 1.44± 9.13± 0.27± 112.8
0.007 0.959 1.741 0.088 1.570 0.583
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Table 6.5: Comparison of FuzzyCF and SqalliCF in percentage using SimE. Superior
performance of FuzzyCF is in boldface and inferior performance of FuzzyCF is in
italics.

Test Case MU p-value NOC p-value NUL p-value
% diff % diff % diff

h100N280a -5.22 0.032 20.78 0.040 94.23 0.019
h100N360a -21.13 0.027 -3.20 0.385 94.74 0.018
h50N148a -14.08 0.020 5.12 0.341 98.09 0.020
h50N212a -26.52 0.022 35.13 0.033 93.99 0.011
r100N403a -29.17 0.020 15.81 0.031 84.34 0.010
r100N503a -55.32 0.016 -39.79 0.027 89.57 0.012
r50N228a -32.35 0.019 20.38 0.019 95.45 0.034
r50N245a -21.50 0.011 33.16 0.020 60.59 0.023

w100N391a -0.71 0.045 -551.82 0.000 99.40 0.011
w100N476a -10.61 0.022 -141.44 0.001 95.25 0.025
w50N169a -14.29 0.020 10.67 0.033 98.93 0.019
w50N230a -17.07 0.015 -148.77 0.001 94.88 0.021

FuzzyCF. From the third column of Table 6.4, note that MU using SqalliCF was in

the range 1.23 to 1.44, with the exception of r50N245a (with MU level of 2.14). For

FuzzyCF, the MU was generally in the range of 1.41 to 1.72; with the exception of

r100N503a and r50N245a, having an MU of 2.19 and 2.60, respectively. The outcome

of a statistical test on the percentage improvement (second column of Table 6.5)

suggests that FuzzyCF produced inferior results compared to SqalliCF for all test

cases.

For the NOC objective, the results in Table 6.4 show superior performance by

FuzzyCF for seven cases out of which six are statistically significant as shown in

Table 6.5. For two test cases (h100N360a and h50N148a), the results were of the same
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quality. Furthermore, SqalliCF showed statistically significantly better performance

for the remaining cases (r100N503a, w100N391a, w100N476a, and w50N230a).

For the NUL objective, FuzzyCF had a lower number of unutilized links (which

is desired) than SqalliCF for all test cases, as depicted in Table 6.4. As suggested

by the values in Table 6.5, all results obtained by FuzzyCF were significantly better

than SqalliCF.

As far as execution time is concerned, the results depict more or less the same

trend as observed for FSA. Table 6.4 shows that the average execution time per run

for FuzzyCF was less than that of SqalliCF.

In view of the above results and analysis, the overall assessment is that FuzzyCF

performed better than SqalliCF.

6.4 Conclusion

This chapter proposed and investigated a fuzzy multi-objective algorithm based on

the SimE algorithm developed to solve the OSPFWS problem. The proposed algo-

rithm utilizes the fuzzy logic based objective function, namely, FuzzyCF. The FSimE

algorithm was compared with a SimE algorithm that uses the SqalliCF cost function.

An empirical analysis showed that the performance of FuzzyCF was:

• worse than SqalliCF with respect to MU for all test cases;



135

• better than SqalliCF for the majority of test cases with respect to NOC; and

• better than SqalliCF for all test cases with respect to NUL.

Furthermore, archiving of solutions is implemented in FSimE to get a set of non-

dominated solutions. This archive set of solutions will be used in Chapter 8 to

compare the performance of FSimE with other population-based algorithms.



Chapter 7

Particle Swarm Optimization

Algorithm Variants and NSGA-II

for the OSPFWS Problem

This chapter presents the PSO algorithm variants to solve the OSPFWS problem.

These algorithm variants are FPSO, FEPSO, WAPSO, and PDPSO. The fuzzy cost

function (denoted as FuzzyCF) described in Chapter 4 is used as the underlying

objective function for FPSO and FEPSO. The weighted sum (or aggregation) method

described in Section 2.1.1 is used as the cost function for WAPSO, while the PDPSO

algorithm uses the non-dominance criterion to solve the OSPFWS problem. The

NSGA-II algorithm is then discussed. Control parameters are optimized for all the

136
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algorithms presented in this chapter.

The outline of the chapter is as follows: Section 7.1 provides the implementation

details of the FPSO algorithm. FEPSO is discussed in Section 7.2. The chapter

is then followed by a discussion of WAPSO in Section 7.3. Section 7.4 describes

the PDPSO algorithm for the OSPFWS problem. Lastly, NSGA-II is discussed in

Section 7.5.

7.1 Fuzzy Particle Swarm Optimization Algorithm

The purpose of this section is to describe the implementation details of the FPSO

algorithm. Section 7.1.1 discusses the particle position and velocity representation

for the OSPFWS problem. The velocity update step of FPSO is discussed in Sec-

tion 7.1.2. Lastly, the particle position update of the FPSO implementation is given

in Section 7.1.3, followed by control parameter tuning in Section 7.1.4.

The original PSO algorithm was discussed in Chapter 2. Just like standard PSO,

FPSO navigates the search space by maintaining a swarm of candidate solutions, with

each candidate solution referred to as a particle. Each particle explores new positions

in the search space through its own history of traversing the search space, and from

the experience of other particles in the particle’s neighborhood. With respect to the

OSPFWS problem, each particle reaches a new candidate solution by changing a few

weights on the links of the network. As with the basic PSO, the guidance in changing
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these weights is provided by the particle’s current position, its own best position so

far, and the global best position obtained so far by the entire algorithm. Each step

of the proposed FPSO algorithm is discussed in the following sub-sections in detail

with the aid of examples.

7.1.1 Particle Position and Velocity Representation

The standard PSO uses floating-point vectors to represent positions and velocities.

For the OSPFWS problem the solution representation is a set of weights on the

network links. Therefore, this study uses a fixed size set representation for particles.

The size of each set is equal to the number of links in the network. Therefore, for an

arbitrary network, each particle position is defined as a set

Xi(t) = {ωab : (a, b) ∈ E}

where ωab is the weight assigned to the link between nodes a and b in the network, and

E is a set of edges. W = |Xi(t)| is the number of weights in the solution, which is also

equal to the number of links in the network. The velocity of particle i is represented

as

Vi(t) = {(ω ⇒ ω′)ab}

which represents a sequence of replacement operators, where the weight ω of link

(a, b) is replaced with a new value, ω′, and |Vi(t)| gives the total number of changes
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to particle i subject to the constraint, 0 ≤ |Vi(t)| ≤ W .

Example 1: Consider the topology given in Figure 4.1. Note that the total

number of links is 14. The assigned weights in this figure represents a possible con-

figuration at time t, whereas the configuration represents a solution (i.e. a particle).

A solution for this topology can be (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16). This

current solution is represented as

Xi(t) =

{18AB, 1AF , 7BC , 15BD, 3CE, 17CF , 5DA, 14EA, 19EG, 13FB, 18FD, 4FG, 16GB, 16GD}

Also assume that, at time t, Vi(t) = {(19 ⇒ 18)AB, (2 ⇒ 1)AF , (4 ⇒ 7)BC , (12 ⇒

15)BD, (4 ⇒ 3)CE, (15 ⇒ 17)CF , (6 ⇒ 5)DA, (12 ⇒ 14)EA, (13 ⇒ 19)EG, (10 ⇒

13)FB, (11 ⇒ 18)FD, (9 ⇒ 4)FG, (17 ⇒ 16)GB, (17 ⇒ 16)GD}. That is, the above

solution, Xi(t), was obtained by replacing weight 19 on link AB with a weight of 18,

weight 2 on link AF was replaced with a weight of 1, and so on. The particle Xi(t)

is then updated in subsequent steps as discussed in the following sub-sections.

7.1.2 Velocity Update

The velocity of particle i is updated using

Vi(t + 1) = w ⊗ Vi(t) ⊕ c1r1(t) ⊗ [Pi(t) � Xi(t)] ⊕ c2r2(t) ⊗ [Pg(t) � Xi(t)] (7.1)



140

where Pi(t) represents the particle’s own best position, and Pg(t) represents the

global best position. It is noted that the sets Xi(t), Pi(t) and Pg(t) have the same

set of links for a given network topology.

Equation (7.1) uses the operator ⊗ in three terms namely in the calculation of

the inertia component, the cognitive component, and the social component. For these

three terms, the same constant is multiplied with a set, generally expressed as c ⊗ X,

where c is a constant. The operator is implemented by randomly selecting bc × |X|c

elements from X as the result of the operator. For the different terms of Equation

(7.1), this means that:

1. Inertia component: bw×|Vi(t)|c elements are randomly selected from Vi(t). If

bw × |Vi(t)|c > |Vi(t)|, then all the elements from Vi(t) are selected.

2. Cognitive component: bc1r1(t)×|Pi(t)�Xi(t)|c elements are randomly selected

from the set Pi(t) � Xi(t). r1(t) is a random value in the range [0, 1] sampled

from a uniform distribution. The operator � is a “replacement” operator, which

replaces weights on the links in Xi(t) by the weights on the corresponding links

in Pi(t). If bc1r1(t) × |Pi(t) � Xi(t)|c > |Pi(t) � Xi(t)|, then all the elements

from the set Pi(t) � Xi(t) are selected.

3. Social component: bc2r2(t) × |Pg(t) � Xi(t)|c elements are randomly selected

from the set Pg(t) � Xi(t). r2(t) is a random value in the range [0, 1] sampled
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from a uniform distribution. The operator � replaces weights on the links in

Xi(t) by the weights on the corresponding links in Pg(t). If bc2r2(t)× |Pg(t)�

Xi(t)|c > |Pg(t) � Xi(t)|, then all the elements from the set Pg(t) � Xi(t) are

selected.

The operator ⊕ implements the set addition (union) operator.

Example 2: Continuing with Example 1, assume the following parameter values:

w = 0.5, Vmax = 2, c1 = c2 = 0.5, r1 = 0.52 (randomly generated), r2 = 0.75

(randomly generated). Further assume that the best fitness so far for particle i was

generated by the position:

Pi(t) =

{18AB, 12AF , 7BC , 15BD, 3CE, 16CF , 5DA, 13EA, 19EG, 13FB, 8FD, 4FG, 12GB, 16GD}

Also assume that the best solution so far generated by the entire swarm was

achieved by:

Pg(t) =

{18AB, 2AF , 7BC , 15BD, 3CE, 15CF , 5DA, 13EA, 19EG, 13FB, 9FD, 4FG, 1GB, 16GD}

The inertia weight, w, determines the number of replacements that will be ran-

domly selected from Vi(t) (mentioned in Example 1 above). Since w = 0.5, and

|Vi(t)| = 14, the number of randomly selected replacements is b0.5 × |Vi(t)|c = 7.

Thus, any seven replacements from the set Vi(t) can be taken randomly. Consider
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that those replacements are {(2 ⇒ 1)AF , (4 ⇒ 7)BC , (4 ⇒ 3)CE, (6 ⇒ 5)DA, (12 ⇒

14)EA, (13 ⇒ 19)EG, (10 ⇒ 13)FB}.

The difference between the particle’s current position and its own best position,

Pi(t) � Xi(t), is calculated by replacing the weight on each link in Xi(t) with the

weight of the corresponding link in Pi(t) as:

Pi(t) � Xi(t) = {(18 ⇒ 18)AB, (1 ⇒ 12)AF , (7 ⇒ 7)BC , (15 ⇒ 15)BD, (3 ⇒

3)CE, (17 ⇒ 16)CF , (5 ⇒ 5)DA, (14 ⇒ 13)EA, (19 ⇒ 19)EG, (13 ⇒ 13)FB, (18 ⇒

8)FD, (4 ⇒ 4)FG, (16 ⇒ 12)GB, (16 ⇒ 16)GD}.

Now, c1 × r1 ⊗ (Pi(t)�Xi(t)) = b0.5 × 0.52 × |Pi(t)�Xi(t)|c. Replacements in-

volving new and old weights having the same value are ignored. Thus, the cardinality

of Pi(t) � Xi(t) is 5. This implies that 0.5 × 0.52 ⊗ |Pi(t) � Xi(t)| = 1.3 = 1. This

means that any one of the five elements in Pi(t)�Xi(t) is randomly chosen. Assume

that c1 × r1 ⊗ (Pi(t) � Xi(t)) = {(18 ⇒ 8)FD}.

Similarly,

Pg(t) � Xi(t) = {(18 ⇒ 18)AB, (1 ⇒ 2)AF , (7 ⇒ 7)BC , (15 ⇒ 15)BD, (3 ⇒

3)CE, (17 ⇒ 15)CF , (5 ⇒ 5)DA, (14 ⇒ 13)EA, (19 ⇒ 19)EG, (13 ⇒ 13)FB, (18 ⇒

9)FD, (4 ⇒ 4)FG, (16 ⇒ 1)GB, (16 ⇒ 16)GD}.

The cardinality of the above set is 5. Therefore, b0.5 × 0.75 × |Pg(t) � Xi(t)|c =

0.5 × 0.75 × 5 = 1.3 = 1 replacement. Assume {(17 ⇒ 15)CF} is randomly chosen.

Substitution of the results above in Equation (7.1) gives Vi(t + 1) containing 9
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elements, i.e.

Vi(t + 1) = {(2 ⇒ 1)AF , (4 ⇒ 7)BC , (4 ⇒ 3)CE, (6 ⇒ 5)DA, (12 ⇒ 14)EA, (13 ⇒

19)EG, (10 ⇒ 13)FB, (18 ⇒ 8)FD, (17 ⇒ 15)CF}.

Since Vmax = 2, only two replacements from Vi(t + 1) are randomly chosen. As-

sume that (18 ⇒ 8)FD and (17 ⇒ 15)CF are chosen. Then,

Vi(t + 1) = {(18 ⇒ 8)FD, (17 ⇒ 15)CF}.

7.1.3 Particle Position Update

The position Xi(t) of a particle i is updated using

Xi(t + 1) = Xi(t)
⊎

Vi(t + 1) (7.2)

where
⊎

is a special operator that updates the links in Xi(t) on the basis of weight

replacements in Vi(t + 1), to obtain the new position Xi(t + 1).

Example 3: Consider Example 2, for which

Xi(t + 1) = Xi(t)
⊎

Vi(t + 1) = {18AB, 1AF , 7BC , 15BD, 3CE, 17CF ,

5DA, 14EA, 19EG, 13FB, 18FD, 4FG, 16GB, 16GD}
⊎

{(17 ⇒ 15)CF , (18 ⇒ 8)FD} =

{18AB, 1AF , 7BC , 15BD, 3CE,15CF, 5DA, 14EA, 19EG, 13FB,8FD, 4FG, 16GB, 16GD}.

Thus, in the new solution, weight 18 on link FD is replaced by 8 and weight 17

on link CF is replaced by 15. Subsequently, the cost of the new solution is calculated
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as explained in Chapter 4 and the algorithm continues until the stopping criterion

is satisfied. It is noteworthy to discuss the similarities and differences between the

proposed set based approach and earlier research work. For the OSPFWS problem, a

fixed size set representation for particles is used in this thesis, which is similar to the

approach taken by Chen et al. [19], and Khan and Engelbrecht [89] in their respective

work. The differences are as follows:

1. The particle position is defined as a set of links between network nodes in

the work of Khan and Engelbrecht [89]. For OSPFWS the particle position is

defined as a set of OSPF weights on the network links.

2. Khan and Engelbrecht [89] defined particle velocity as a set of link exchange

operations. For the approach proposed here, the particle velocity is defined as

a set of OSPF weight replacements on the network links.

3. Because the set-based PSO approach proposed in this thesis incorporates the

OSPFWS problem specific elements, for example fixed set sizes, it is not a

generic true set-based PSO as proposed by Langeveld and Engelbrecht [101].
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7.1.4 Control Parameter Tuning for Fuzzy Particle Swarm

Optimization

This section discusses the process of obtaining best parameter combination for the

FPSO algorithm with respect to each test case. The parameter combination that

resulted in the best quality solutions with respect to FuzzyCF is considered as the

best parameter combination. For each test, 30 independent runs were executed. The

average of the best fuzzy cost and the standard deviation over 30 runs were calculated.

The Wilcoxon rank-sum test [65] was used to validate the significance of the results.

A confidence level of 95% was used. The first set of experiments focussed on obtaining

the best swarm size. The values c1 = c2 = 1.49, w = 0.72 and Vmax = 5 were used.

The initial swarm size was set to 20 for each test case. Subsequently, the swarm

size was increased by 20. As soon as a higher swarm size produced a result that

is statistically significantly worse than a previously evaluated lower swarm size, the

lower swarm size was considered as the best swarm size.

Tables 7.1 and 7.2 provide the quality of solutions with respect to FuzzyCF ob-

tained for all the evaluated swarm sizes. Column 1 represents the test case. Column 2

represents the swarm size. Column 3 represents the average cost of the best solutions

obtained over the 30 independent runs using FuzzyCF. Column 4 represents the per-

centage difference between the average fuzzy cost values obtained for two consecutive

swarm sizes. Because swarm size 20 is used as the initial value, the percentage dif-
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ference value for swarm size 20 is NA (not applicable). A swarm size of 40 produced

the best quality solutions with respect to FuzzyCF for the five test cases h100N280a,

h50N148a, r50N245a, w50N169a, and w50N230a. For the rest of the test cases, a

swarm size of 100 produced the best quality solutions.

After setting the value of the swarm size for each test case, further experimentation

was done to obtain the best value for Vmax. As discussed in Section 2.3.5, Vmax confines

the step size of particles. In other words Vmax confines the level of perturbation. With

respect to the OSPF protocol, changes on very few weights of the links may establish a

completely different route. To avoid such undesirable large changes or perturbations,

values of 5, 10, 15, and 20 for Vmax were evaluated. These values correspond to

perturbation rates of 3% to 5%.

Table 7.3 shows the obtained best average fuzzy cost values with respect to FPSO

over 30 independent runs. It is observed from the table that Vmax = 5 produced

the best results for test cases h100N280a, h50N148a, r50N245a, w50N169a, and

w50N230a. For the rest of the test cases, Vmax = 15 produced the best results.

The results produced by Vmax = 5 was compared with the results produced by Vmax

= 10, Vmax = 15 and Vmax = 20 using Wilcoxon rank-sum test [65].

Table 7.4 shows that all the results were statistically significant except the test case

h100N280a, where the result produced by Vmax = 5 is statistically insignificant when

compared with the result produced by Vmax = 10. Similarly, the results produced
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Table 7.1: Best average FuzzyCF values for the test cases h50N148a, h50N212a,
r50N228a, r50N245a, w50N169a and w50N230a for the experimented swarm sizes.
Statistically significant differences are in italics. NA = Not Applicable (% Difference
is calculated between the average fuzzy cost values obtained for two consecutive swarm
sizes).

Test Case Swarm Size Best Fuzzy Cost % Difference p-values
20 0.353±0.014 NA NA

h50N148a 40 0.45±0.017 21.55 0.024
60 0.456±0.026 1.31 0.167
20 0.389±0.062 NA NA
40 0.47±0.025 17.23 0.021

h50N212a 60 0.482±0.026 2.4 0.013
80 0.5±0.02 3.6 0.026
100 0.504±0.018 0.79 0.014
120 0.508±0.016 0.78 0.115
20 0.443±0.013 NA NA
40 0.482±0.026 8.09 0.037

r50N228a 60 0.514±0.015 6.22 0.045
80 0.532±0.024 3.38 0.024
100 0.543±0.013 2.02 0.037
120 0.544±0.019 0.18 0.227
20 0.444±0.027 NA NA

r50N245a 40 0.499±0.025 11.02 0.043
60 0.54±0.028 7.59 0.132
20 0.506±0.032 NA NA

w50N169a 40 0.541±0.019 6.46 0.012
60 0.543±0.026 0.36 0.146
20 0.4±0.083 NA NA

w50N230a 40 0.504±0.035 20.63 0.038
60 0.506±0.034 0.39 0.187
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Table 7.2: Best average FuzzyCF values for the test cases h100N280a, h100N360a,
r100N403a, r100N503a, w100N391a and w100N476a for the experimented swarm
sizes. Highest average cost values are in boldface. Statistically significant differ-
ences are in italics. NA = Not Applicable (% Difference is calculated between the
average fuzzy cost values obtained for two consecutive swarm sizes).

Test Case Swarm Size Best Fuzzy Cost % Difference p-values
20 0.433±0.033 NA NA

h100N280a 40 0.471±0.025 8.06 0.015
60 0.473±0.025 0.42 0.103
20 0.434±0.039 NA NA
40 0.48±0.035 9.58 0.006

h100N360a 60 0.514±0.03 6.61 0.025
80 0.529±0.024 2.83 0.027
100 0.543±0.033 2.57 0.001
120 0.545±0.037 0.36 0.154
20 0.392±0.011 NA NA
40 0.425±0.037 7.76 0.005

r100N403a 60 0.447±0.024 4.92 0.023
80 0.47±0.024 4.89 0.022
100 0.481±0.027 2.28 0.04
120 0.483±0.017 0.41 0.115
20 0.41±0.012 NA NA
40 0.474±0.03 13.5 0.014

r100N503a 60 0.506±0.026 6.32 0.019
80 0.52±0.023 2.69 0.016
100 0.543±0.043 4.23 0.004
120 0.547±0.013 0.73 0.2
20 0.409±0.078 NA NA
40 0.49±0.062 16.53 0.027

w100N391a 60 0.563±0.037 12.96 0.028
80 0.582±0.042 3.26 0.039
100 0.609±0.032 4.43 0.047
120 0.61±0.039 0.16 0.143
20 0.489±0.024 NA NA
40 0.573±0.022 14.65 0.031

w100N476a 60 0.614±0.052 6.67 0.042
80 0.630±0.072 2.53 0.03
100 0.657 ±0.095 4.1 0.034
120 0.66±0.025 0.45 0.116
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by Vmax = 15 was compared with the results produced by Vmax = 5, Vmax = 10 and

Vmax = 20. Table 7.5 shows that all the results were statistically significant except for

the test cases h50N212a, r50N228a, and w100N476a when compared with the results

produced by Vmax = 20.

Table 7.3: Average FuzzyCF values for all the test cases with respect to FPSO.
Experimented Vmax values were 5, 10, 15 and 20. Best FuzzyCF values are highlighted
in boldface.

Test Case Vmax = 5 Vmax = 10 Vmax = 15 Vmax = 20
Set (1) Set (2) Set (3) Set (4)

h100N280a 0.471±0.033 0.462±0.028 0.455±0.018 0.45±0.021
h100N360a 0.475±0.033 0.482±0.051 0.543±0.034 0.503±0.039
h50N148a 0.45±0.017 0.414±0.026 0.4±0.019 0.387±0.023
h50N212a 0.465±0.018 0.479±0.019 0.504±0.022 0.485±0.038
r100N403a 0.435±0.027 0.457±0.014 0.481±0.031 0.46±0.017
r100N503a 0.485±0.025 0.52±0.023 0.543±0.029 0.512±0.02
r50N228a 0.487±0.053 0.517±0.021 0.543±0.032 0.52±0.023
r50N245a 0.499±0.025 0.48±0.024 0.465±0.03 0.458±0.093

w100N391a 0.498±0.022 0.528±0.05 0.609±0.063 0.572±0.083
w100N476a 0.587±0.025 0.625±0.023 0.657±0.022 0.632±0.013
w50N169a 0.541±0.041 0.523±0.033 0.51±0.019 0.482±0.026
w50N230a 0.504±0.035 0.482±0.08 0.475±0.038 0.478±0.019

After setting the value of Vmax, the best values for the parameters inertia weight,

w, and acceleration coefficients, c1 and c2, were determined. The experiments were

conducted using all the values of w ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} with all

the values of c1, c2 ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. The values of w, c1 and c2 that resulted

in the best quality solutions with respect to FuzzyCF for FPSO are tabulated in

Table 7.6 for all the test cases. An archive of non-dominated solutions was maintained
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Table 7.4: Percentage difference of FuzzyCF values for the test cases where Vmax = 5
performed better. Significant differences are highlighted in boldface.

Test Case 5 vs p-values 5 vs p-values 5 vs p-values
10 15 20

h100N280a 1.91 0.164 3.4 0.008 4.46 0.016
h50N148a 8 0.021 11.11 0.026 14 0.025
r50N245a 3.81 0.03 6.81 0.018 8.22 0.019
w50N169a 3.33 0.004 5.73 0.015 10.91 0.011
w50N230a 4.37 0.011 5.75 0.006 5.16 0.021

Table 7.5: Percentage difference of FuzzyCF values for the test cases where Vmax = 15
performed better. Significant differences are highlighted in boldface.

Test Case 15 vs p-values 15 vs p-values 15 vs p-values
5 10 20

h100N360a 12.52 0.003 11.23 0.013 7.37 0.015
h50N212a 7.74 0.011 4.96 0.019 3.77 0.142
r100N403a 9.56 0.042 4.99 0.029 4.37 0.002
r100N503a 10.68 0.012 4.24 0.013 5.71 0.019
r50N228a 10.31 0.032 4.79 0.037 4.24 0.135

w100N391a 18.23 0.009 13.3 0.02 6.08 0.025
w100N476a 10.65 0.037 4.87 0.017 3.81 0.128
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for FPSO as described in Section 5.2.

Table 7.6: Best parameter combinations obtained for FPSO for each test case.

Test Case Swarm Size c1 c2 w Vmax FPSO fuzzy cost
h100N280a 40 1.5 1.5 0.7 5 0.531±0.018
h100N360a 100 1.5 1.5 0.7 15 0.543±0.036
h50N148a 40 1.5 1.5 0.7 5 0.437±0.021
h50N212a 100 1.5 1.5 0.7 15 0.504±0.015
r100N403a 100 1.5 1.5 0.7 15 0.481±0.017
r100N503a 100 1.5 1.5 0.7 15 0.543±0.013
r50N228a 100 1.5 1.5 0.7 15 0.543±0.019
r50N245a 40 1.5 1.5 0.7 5 0.557±0.019

w100N391a 100 1.5 1.5 0.7 15 0.609±0.029
w100N476a 100 1.5 1.5 0.7 15 0.657±0.025
w50N169a 40 1.5 1.5 0.7 5 0.595±0.021
w50N230a 40 1.5 1.5 0.7 5 0.591±0.029

To study the convergence behavior of FPSO, the average fuzzy cost of all the

particles over 30 independent runs and the associated standard deviation is plotted

against the iterations in Figures 7.1 and 7.2 for all the test cases. These experiments

were conducted by using the optimized parameter combinations given in Table 7.6.

Observe from the figures that the average fuzzy cost of all the particles increased over

time. Contrary to this, the standard deviation decreased over time and became almost

zero. This shows good convergence because all the particles reached the optimal region

by having a zero or negligible difference between their cost values.
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Figure 7.1: Average Fuzzy cost and associated standard deviation curves of FPSO
for all the test cases with 50 nodes.
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Figure 7.2: Average Fuzzy cost and associated standard deviation curves of FPSO
for all the test cases with 100 nodes.
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7.2 Fuzzy Evolutionary Particle Swarm Optimiza-

tion Algorithm

This section discusses the implementation of FEPSO for the OSPFWS problem. Con-

trol parameter tuning for FEPSO is described in Section 7.2.1. In addition to the

FPSO algorithm for the OSPFWS problem, a hybrid variant of the FPSO using the

SimE algorithm was also developed to avoid replacement of high quality weights. This

hybrid variant is referred to as the FEPSO. The weight replacement for the OSPFWS

problem involves replacing old weights with new weights on the links. Furthermore,

the total number of performed replacements is limited by the parameter Vmax in PSO.

It is possible that, for a link i, a replacement may remove a weight (to be replaced

with another weight), which might already be an optimum (or near-optimum) weight

for that link. Note that this replacement is done “blindly”, that is, the value of

the new weight is chosen randomly. If these blind replacements continue for other

links having optimum weights, then it will take a significant amount of time for the

algorithm to converge. Rather than having a blind replacement, it would be more

appropriate to replace a weight based on its quality. A weight with low quality will

have a high probability of being removed from its current position, and vice versa.

The question is how to measure the quality of a weight. This can be answered

by incorporating the evaluation and selection phases of the SimE algorithm into the
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FPSO algorithm, as discussed in Section 6.1. The evaluation is performed for all

current weights which are part of the set Vi(t + 1) as defined by Equation (7.1).

Once the goodness of each existing weight in Vi(t + 1) is evaluated, the selection

phase chooses the weights that would be replaced with new weights. This selection is

done probabilistically based on the quality of existing weights in Vi(t+1). A random

number, r, in the range [0,1] is generated. If r ≤ 1 − gij + B, then the existing

weight is selected for replacement, otherwise no replacement is done. In the above

expression, gij refers to the goodness of the current weight on the link connecting

nodes i and j, and B is the selection bias. Algorithm 7.1 provides pseudo-code of

the selection function for FEPSO. The selection process is illustrated by the following

example.

Example 4: In Example 2, Vi(t + 1) was found as follows:

Vi(t + 1) = {(2 ⇒ 1)AF , (4 ⇒ 7)BC , (4 ⇒ 3)CE, (6 ⇒ 5)DA, (12 ⇒ 14)EA, (13 ⇒

19)EG, (10 ⇒ 13)FB, (18 ⇒ 8)FD, (17 ⇒ 15)CF}

In FEPSO, the replacements will be done based on the goodness of weights. As-

sume that weight 2 on link AF , weight 4 on link CE, weight 10 on link FB, weight

18 on link FD and weight 17 on link CF are of low goodness. Out of these 5 links

assume that the replacements (4 ⇒ 3)CE, (10 ⇒ 13)FB and (17 ⇒ 15)CF were prob-

abilistically selected based on the selection procedure. However, since Vmax = 2, only

two replacements were selected randomly out of the three. So, a possible result could
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be

Vi(t + 1) = {(10 ⇒ 13)FB, (17 ⇒ 15)CF}

Algorithm 7.1 Selection(B); Weight replacement function of FEPSO.

1: /* B: Selection Bias; */
2: Get the set of possible replacements Vi(t + 1) from Equation (7.1)
3: For all the current weights in the set Vi(t + 1) Do
4: Calculate the goodness gij of the weight on link between nodes i and j using
5: Equation (6.1)
6: If r ≤ 1 − gij + B Then
7: Allow the replacement of the old weight with the new weight;
8: Else
9: Do not allow the replacement of the old weight with the new weight;

10: End If
11: End For
12: End Selection;

7.2.1 Control Parameter Tuning for Fuzzy Evolutionary Par-

ticle Swarm Optimization

The best swarm size and Vmax values found for the FPSO were used for the FEPSO.

Further experiments were conducted to determine the best values of the parameters

inertia weight, w, and acceleration coefficients, c1 and c2. For each test, 30 inde-

pendent runs were executed. The average of the best fuzzy cost and the standard

deviation over 30 runs were calculated. Similar to FPSO, the experiments were con-

ducted using each of the values of w ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} with each

of the values of c1, c2 ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. The values of w, c1 and c2 that re-
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sulted in the best quality solutions with respect to FuzzyCF for FEPSO are tabulated

in Table 7.7 for all the test cases. During the search, an archive of non-dominated

solutions was maintained as described in Section 5.2.

Table 7.7: Best parameter combinations obtained for FEPSO for each test case.

Test Case Swarm Size c1 c2 w Vmax FEPSO fuzzy cost
h100N280a 40 1.5 1.5 0.7 5 0.526±0.015
h100N360a 100 1.5 1.5 0.7 15 0.605±0.012
h50N148a 40 1.5 1.5 0.7 5 0.469±0.019
h50N212a 100 1.5 1.5 0.7 15 0.528±0.013
r100N403a 100 1.5 1.5 0.7 15 0.595±0.011
r100N503a 100 1.5 1.5 0.7 15 0.710±0.012
r50N228a 100 1.5 1.5 0.7 15 0.610±0.016
r50N245a 40 1.5 1.5 0.7 5 0.644±0.014

w100N391a 100 1.5 1.5 0.7 15 0.725±0.010
w100N476a 100 1.5 1.5 0.7 15 0.757±0.011
w50N169a 40 1.5 1.5 0.7 5 0.640±0.012
w50N230a 40 1.5 1.5 0.7 5 0.711±0.022

After determining the c1, c2 and w values, further experimentation was done to de-

termine the parameter bias, B. A bias value in the range [−0.2, 0.2] was recommended

by Sait and Youssef [150]. For the FEPSO algorithm, a best value for the bias pa-

rameter was determined from the set of values {−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3}. For

each test, 30 independent runs were executed with these bias values. Figure 7.3 illus-

trates the best average results of FuzzyCF for all the test cases. A bias value of -0.2

was found to generate statistically significantly better quality solutions than other

bias values. Hence, a bias value of -0.2 was used for the FEPSO algorithm runs.

Figures 7.4 and 7.5 plot the average fuzzy cost versus standard deviation for all the
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Figure 7.3: Results obtained for different bias values for FEPSO.

test cases over 30 independent runs. The figures illustrate that the average fuzzy cost

increased and that the standard deviation decreased over time for all the test cases.

Thus, all the particles converged to the optimal region.

7.3 Weighted Aggregation Particle Swarm Opti-

mization Algorithm

The purpose of this section is to describe the WAPSO algorithm for the OSPFWS

problem. Section 7.3.1 discusses the control parameter tuning for WAPSO. The

FPSO and FEPSO algorithms were based on the fuzzy cost function (FuzzyCF).

WAPSO is based on the concept of a weighted sum of objectives as discussed in

Section 2.1.1. Both the fuzzy and the weighted-aggregation approaches convert the
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Figure 7.4: Average Fuzzy cost and associated standard deviation curves of FEPSO
for all the test cases with 50 nodes.
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Figure 7.5: Average Fuzzy cost and associated standard deviation curves of FEPSO
for all the test cases with 100 nodes.
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multi-objective optimization problem into a single-objective optimization problem.

The fuzzy approach evaluates a candidate solution based on the membership values

obtained for each objective. Contrary to this, the weighted aggregation approach

associates weights to each objective. The values of these weights are decided based

on three aspects: (1) the importance of each objective in the optimization process, (2)

to balance conflicting objectives, and (3) to normalize the objectives into the same

range. For the OSPFWS problem, the objective MU is usually a fraction ranging

between 0 to 10, while NOC and NUL are integers. In order to normalize these

objectives, each objective is divided by its corresponding maximum value. Thus, the

single-objective problem is formulated as:

f(x) =

(

λ1 ∗
MU(x)

MUmax

)

+

(

λ2 ∗
NOC(x)

NOCmax

)

+

(

λ3 ∗
NUL(x)

NULmax

)

(7.3)

where λ1, λ2 and λ3 are the weights associated with the objectives MU, NOC, and NUL

respectively (the sum of all these weights should be equal to 1). Because the objectives

of the OSPFWS problem are to be minimized, the above function is minimized.

7.3.1 Control Parameter Tuning for Weighted Aggregation

Particle Swarm Optimization

The best swarm size and Vmax values found for the FPSO were used for the WAPSO.

Further experiments were conducted to determine the best values for the inertia
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weight, w, and the acceleration coefficients, c1 and c2. For each control param-

eter value configuration, 30 independent runs were executed. The average of the

best weighted aggregation cost and the standard deviation over 30 runs were cal-

culated. Similar to FPSO, the experiments were conducted using each of the val-

ues of w ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} with each of the values of c1, c2 ∈

{0.0, 0.5, 1.0, 1.5, 2.0}. The values of w, c1 and c2 that resulted in the best quality

solutions with respect to Equation (7.3) for WAPSO are tabulated in Table 7.8 for

all the test cases. As for PSO and FEPSO, an archive of non-dominated solutions

was maintained for WAPSO.

Table 7.8: Best parameter combinations obtained for WAPSO for each test case.

Test Case Swarm Size c1 c2 w Vmax Weighted aggregation cost
h100N280a 40 1.5 1.5 0.7 5 0.301 ± 0.063
h100N360a 100 1.5 1.5 0.7 15 0.266 ± 0.077
h50N148a 40 1.5 1.5 0.7 5 0.366 ± 0.192
h50N212a 100 1.5 1.5 0.7 15 0.325 ± 0.091
r100N403a 100 1.5 1.5 0.7 15 0.361 ± 0.052
r100N503a 100 1.5 1.5 0.7 15 0.305 ± 0.043
r50N228a 100 1.5 1.5 0.7 15 0.306 ± 0.167
r50N245a 40 1.5 1.5 0.7 5 0.263 ± 0.018

w100N391a 100 1.5 1.5 0.7 15 0.218 ± 0.045
w100N476a 100 1.5 1.5 0.7 15 0.209 ± 0.114
w50N169a 40 1.5 1.5 0.7 5 0.227 ± 0.032
w50N230a 40 1.5 1.5 0.7 5 0.235 ± 0.086

In order to find the best objective function weight values, ten weight combinations

were evaluated as given in Table 7.9. A motivation for each weight combination is also

provided in Table 7.9. Figure 7.6 illustrates the cost values for all the test cases with
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respect to these six weight combinations. It is evident from the figure that weight

combination λ1 = 0.333, λ2 = 0.333 and λ3 = 0.333 performed better than the other

combinations for all the test cases. Thus, in this thesis equal importance is given to

all the three objectives.

Table 7.9: Experimented weight combinations for WAPSO.

Serial No λ1 λ2 λ3 Description
1 0.333 0.333 0.333 Equal importance is given to all
2 0.5 0.25 0.25 Importance is given to MU
3 0.25 0.5 0.25 Importance is given to NOC
4 0.25 0.25 0.5 Importance is given to NUL
5 0.4 0.4 0.2 Less importance is given to NUL than other

two objectives
6 0.4 0.2 0.4 Less importance is given to NOC than other

two objectives
7 0.2 0.4 0.4 Less importance is given to MU than other

two objectives
8 0.6 0.3 0.1 Importance is given in the

decreasing order: MU, NOC and NUL
9 0.3 0.6 0.1 Importance is given in the

decreasing order: NOC, MU and NUL
10 0.3 0.1 0.6 Importance is given in the

decreasing order: NUL, MU and NOC

Figures 7.7 and 7.8 show the average weighted cost versus the standard deviation

for all the test cases over 30 independent runs. The figures illustrate that the average

weighted cost decreased and that the corresponding standard deviation decreased over

time for all the test cases. This shows the convergence behaviour of all the particles

towards an optimal region.
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Figure 7.6: Weighted cost for ten weight combinations (λ1, λ2 and λ3) for WAPSO
for all the test cases.

7.4 Pareto-dominance Particle Swarm Optimiza-

tion Algorithm

This section discusses the PDPSO algorithm for the OSPFWS problem. It is followed

by a description of the control parameter tuning for PDPSO in Section 7.4.1. PSO

achieves a balance between exploration and exploitation by progressing towards both

the global best solution and particle best solutions. These global best and particle

best solutions are referred to as the global and local guides, respectively. PDPSO is a

dominance-based PSO. In this method an archive of non-dominated solutions is main-

tained to track all the obtained non-dominated solutions so far and to select global

and local guides for each particle. Julio et al. [2] found that such selection of guides
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Figure 7.7: Average weighted cost and associated standard deviation curves of
WAPSO for all the test cases with 50 nodes.
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Figure 7.8: Average weighted cost and associated standard deviation curves of
WAPSO for all the test cases with 100 nodes.
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from an archive provides both good convergence and widespread coverage. In this

thesis, PDPSO is implemented to solve the OSPFWS problem. The implementation

details are given in subsequent paragraphs.

During initialization of the PDPSO, non-dominating particle positions are added

to the archive. In subsequent iterations, if members of archive are dominated by

the new position of any particle, then these members are deleted from the archive.

Contrary to this, if the new position of any particle in the current swarm is not

dominated by any member of the archive, then this new position is added to the

archive. This process ensures a non-dominated set of solutions in the archive.

Local guides (personal best positions) are initialized to the particle’s initial posi-

tion (or solution). In subsequent iterations, if the new position of a particle dominates

the particle’s current local guide or both the new position and the particle’s current

local guide are mutually non-dominating each other, then the particle’s current local

guide is set to the new position.

The global guide is initialized to a randomly chosen member of the archive. In

subsequent iterations, if the new position of a particle is not already part of the

archive, then the global guide of this particle is chosen randomly from the members

of the archive that dominates the new position. Contrary to this, if the new position

of a particle is already present in the archive, then the global guide of this particle is

chosen randomly from the entire archive.



168

7.4.1 Control Parameter Tuning for Pareto-dominance Par-

ticle Swarm Optimization

Because PDPSO is a dominance-based approach, no scalarized cost function is avail-

able to evaluate the current solution in each iteration. Therefore, the MOO hy-

pervolume performance measure (discussed in Section 2.4) is used to evaluate the

performance of PDPSO in this thesis.

The best swarm size and Vmax values found for the FPSO were used for the

PDPSO. For each test, 30 independent runs were executed. Further experimen-

tations were done to determine the best values for the inertia weight, w, and the

acceleration coefficients, c1 and c2. Similar to FPSO, the experiments were con-

ducted using the values of w ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the values

of c1, c2 ∈ {0.0, 0.5, 1.0, 1.5, 2.0}. The values of w, c1 and c2 that resulted in the best

quality solutions with respect to hypervolume metric for PDPSO are tabulated in

Table 7.10 for all the test cases over 30 independent runs.

7.5 Non-dominating Sorting Genetic Algorithm II

The implementation details of NSGA-II for the OSPFWS problem is presented in

this section. Section 7.5.1 describes the control parameter tuning for NSGA-II. An

algorithmic description of NSGA-II was given in Section 2.3.1. Implementation of
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Table 7.10: Best parameter combinations obtained for PDPSO for each test case.

Test Case Swarm Size c1 c2 w Vmax hypervolume
h100N280a 40 1.5 1.5 0.7 5 3.924± 0.109
h100N360a 100 1.5 1.5 0.8 15 2.212± 0.226
h50N148a 40 1.5 1.5 0.6 5 3.592± 0.047
h50N212a 100 1.5 1.5 0.7 15 4.018± 0.363
r100N403a 100 1.5 1.5 0.7 15 4.865± 0.175
r100N503a 100 1.5 1.5 0.7 15 5.131± 0.139
r50N228a 100 1.5 1.5 0.7 15 4.185± 0.117
r50N245a 40 1.5 1.5 0.6 5 2.702± 0.185

w100N391a 100 1.5 1.5 0.7 15 6.401± 0.187
w100N476a 100 1.5 1.5 0.5 15 4.929± 0.058
w50N169a 40 1.5 1.5 0.7 5 4.202± 0.172
w50N230a 40 1.5 1.5 0.8 5 6.382± 0.036

NSGA-II for the OSPFWS problem is described below with an example using a

population size of 10 and a crossover rate of 0.5.

1. Assume that the population has the following solutions in a particular iteration,

given in the format of (MU, NOC, NUL) values:

S1 (4.8213, 21, 9)
S2 (2.84269, 20, 8)
S3 (3.24488, 21, 10)
S4 (3.59829, 21, 7)
S5 (2.67229, 17, 7)
S6 (2.32255, 18, 8)
S7 (2.35034, 27, 9)
S8 (2.35034, 23, 10)
S9 (2.42047, 18, 3)
S10 (2.67229, 21, 3)

2. Assume that the following five offspring are generated:

S11 (2.94400, 18, 4)
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S12 (4.20384, 16, 2)
S13 (2.03553, 22, 11)
S14 (5.04003, 15, 2)
S15 (3.24220, 10, 4)

3. NSGA-II employs the elitist approach in selecting the population. The initial

population and offspring solutions are combined and the best 10 solutions are

selected from this combined population. The next step ranks the combined

population based on non-dominance. Let nD be the number of non-dominated

solutions and SD be the set of dominated solutions. Solution S1 is dominated by

nine solutions, S2, S4, S5, S6, S9, S10, S11, S12, and S15. Upon further observation,

solution S1 does not dominate any other solution. It is worth noting that

solutions S3, S7, S8, S13, and S14 are neither dominating nor dominated by S1.

The same task is repeated for each solution and the following matrix is obtained

in the format (solution, nD, SD):

(S1, 9, {})
(S2, 3, {S1, S3})
(S3, 7, {})
(S4, 5, {S1})
(S5, 0, {S1, S2, S3, S4})
(S6, 0, {S1, S2, S3, S7, S8})
(S7, 1, {})
(S8, 1, {})
(S9, 0, {S1, S2, S3, S4, S10, S11})
(S10, 1, {S1, S3, S4})
(S11, 1, {S1, S3, S4})
(S12, 0, {S1})
(S13, 0, {})
(S14, 0, {})
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(S15, 0, {S1, S3, S4})

4. The next step is to categorize the solutions into non-dominating fronts (F1, F2, ...,

FnF
). Every solution with an nD value of 0 is assigned to front F1. Thus,

F1 = {S5, S6, S9, S12, S13, S14, S15}.

5. Now the next step is to determine the second front, F2. Mark all the solu-

tions present in F1. Take the first solution from F1 i.e, S5. S5 has SD as

{S1, S2, S3, S4}. Reduce nD values from solutions S1, S2, S3 and S4 by 1. Thus

the following matrix is obtained:

(S1, 8, {})
(S2, 2, {S1, S3})
(S3, 6, {})
(S4, 4, {S1})

(S
(1)
5 , 0, {S1, S2, S3, S4})

(S
(1)
6 , 0, {S1, S2, S3, S7, S8})

(S7, 1, {})
(S8, 1, {})

(S
(1)
9 , 0, {S1, S2, S3, S4, S10, S11})

(S10, 1, {S1, S3, S4})
(S11, 1, {S1, S3, S4})

(S
(1)
12 , 0, {S1})

(S
(1)
13 , 0, {})

(S
(1)
14 , 0, {})

(S
(1)
15 , 0, {S1, S3, S4})

6. Repeat the above step for other solutions of F1 i.e. S6, S9, S12, S13, S14 and S15.

During the process, if nD of any solution becomes 0 then it is assigned to the

current front F2. The following matrix is obtained:
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(S1, 4, {})

(S
(2)
2 , 0, {S1, S3})

(S3, 3, {})
(S4, 2, {S1})

(S
(1)
5 , 0, {S1, S2, S3, S4})

(S
(1)
6 , 0, {S1, S2, S3, S7, S8})

(S
(2)
7 , 0, {})

(S
(2)
8 , 0, {})

(S
(1)
9 , 0, {S1, S2, S3, S4, S10, S11})

(S
(2)
10 , 0, {S1, S3, S4})

(S
(2)
11 , 0, {S1, S3, S4})

(S
(1)
12 , 0, {S1})

(S
(1)
13 , 0, {})

(S
(1)
14 , 0, {})

(S
(1)
15 , 0, {S1, S3, S4})

Thus, F2 = {S2, S7, S8, S10, S11}.

7. The above process is repeated to produce four fronts. These fronts are then

ranked based on non-dominance. These fronts are F1 = {S5, S6, S9, S12, S13, S14,

S15}, F2 = {S2, S7, S8, S10, S11}, F3 = {S3, S4} and F4 = {S1}.

8. The 10 best solutions are selected from these fronts. The seven solutions from

F1 are selected, and the remaining three solutions are selected from F2. The

crowding distance, cd, is calculated on front F2 to choose the three solutions.

The calculation of cd is described in the subsequent steps.

9. The solutions of front F2 are sorted in ascending order with respect to first

objective MU:
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S7 (2.35034, 27, 9)
S8 (2.35034, 23, 10)
S10 (2.67229, 21, 3)
S2 (2.84269, 20, 8)
S11 (2.944, 18, 4)

10. Assign cd as ∞ to the first and last solution. The crowding distance for the

rest of the solutions in F2 is calculated using (MUprevious −MUnext)/(MUlast −

MUfirst) with respect to MU. The crowding distance of solution S8 is (2.67229−

2.35034)/(2.944 − 2.35034) = 0.54231. The following matrix in the format

(solution, cd) is obtained:

S7,∞
S8, 0.54231
S10, 0.82419
S2, 0.45768
S11,∞

11. As for the above step, the calculated crowding distance for front F2 with respect

to the second objective, NOC, after sorting are as follows:

S11,∞
S2, 0.33333
S10, 0.33333
S8, 0.66666
S7,∞

12. Similarly, the calculated crowding distance for front F2 with respect to the third

objective, NUL, after sorting are as follows:

S10,∞
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S11, 0.71428
S2, 0.71428
S7, 0.28571
S8,∞

13. All the crowding distances are added as follows:

S2, 0.45768 + 0.33333 + 0.71428 = 1.50529
S7,∞ + ∞ + 0.28571 = ∞
S8, 0.54231 + 0.66666 + ∞ = ∞
S10, 0.82419 + 0.33333 + ∞ = ∞
S11,∞ + ∞ + 0.71428 = ∞

14. The solutions with largest crowding distances are picked. Because the four

solutions S7, S8, S10, and S11 have ∞ any three solutions are randomly picked.

Assume that S7, S8, and S11 are selected. Thus, the 10 solutions picked from the

combined population (old population and new offspring) are {S5, S6, S7, S8, S9, S11

, S12, S13, S14, S15}. The parent population is replaced by these solutions. Par-

ent solutions are selected from this new population and the simple crossover

[61] operator is applied to generate offspring. A mutation operator is then ap-

plied to the offspring. Likewise, the algorithm continues to proceed for the next

iteration.
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7.5.1 Control Parameter Tuning for Non-dominating Sorting

Genetic Algorithm II

Similar to PDPSO, NSGA-II is also a dominance-based approach and generates a

set of non-dominated solutions. No scalarized cost function is therefore available to

evaluate the current solution in each iteration. The MOO hypervolume performance

measure (discussed in Section 2.4) is used to evaluate the performance of NSGA-II in

this thesis.

The best swarm size found for the FPSO was set as the initial population size for

NSGA-II with respect to each test case. The best Vmax values found for the FPSO were

taken as the mutation rate in NSGA-II to match the level of perturbations between

FPSO and NSGA-II. Further experiments were done to determine the best values for

the crossover rate. The values of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} were evaluated

for the crossover rate. The crossover rate that resulted in the best quality solutions

with respect to the hypervolume metric for NSGA-II are tabulated in Table 7.11 for

all the test cases.

7.6 Conclusion

This chapter presented five population based algorithms for the OSPFWS problem.

These algorithms are FPSO, FEPSO, WAPSO, PDPSO and NSGA-II. The fuzzy logic

based objective function, FuzzyCF, was incorporated into the FPSO and FEPSO
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Table 7.11: Best parameter combinations obtained for NSGA-II for each test case.

Test Case Population size Vmax crossover rate hypervolume
h100N280a 40 5 0.7 6.004± 0.184
h100N360a 100 15 0.7 2.517± 0.152
h50N148a 40 5 0.6 2.812± 0.145
h50N212a 100 15 0.8 3.629± 0.112
r100N403a 100 15 0.8 3.181± 0.114
r100N503a 100 15 0.8 3.03± 0.145
r50N228a 100 15 0.7 4.611± 0.254
r50N245a 40 5 0.5 3.101± 0.212

w100N391a 100 15 0.8 4.893± 0.211
w100N476a 100 15 0.6 1.79± 0.124
w50N169a 40 5 0.8 2.765± 0.085
w50N230a 40 5 0.8 4.857± 0.272

algorithms. A weighted sum (or aggregation) cost function is used for WAPSO.

The PDPSO and NSGA-II algorithms are pareto-dominant based algorithms. The

control parameters were tuned for all the algorithms presented in this chapter. The

next chapter evaluates the performance of all the algorithms presented in this thesis

by using the obtained results from this chapter.



Chapter 8

Empirical Comparison of the

Algorithms

Chapters 5 to 7 presented a number of optimization algorithms as applied to the

OSPFWS problem. This chapter presents an overall comparison of the results ob-

tained for each of the proposed algorithms. The proposed algorithms are grouped

into two categories: single-solution based (FSA and FSimE) and population based

(fuzzy PSO, variants of PSO, and NSGA-II). The chapter first presents a compari-

son of the SA and SimE algorithms with respect to the FuzzyCF and SqalliCF cost

functions. The next comparison is done between FPSO and FEPSO. This is fol-

lowed by a comprehensive comparison of all algorithms, including a comparison with

a state-of-the-art multi-objective genetic algorithm, NSGA-II.
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The outline of the chapter is as follows: Section 8.1 specifies the experimental

setup used for this chapter. A comparison of SA and SimE is done in Section 8.2.

Section 8.3 discusses the performance between FPSO and FEPSO. All the imple-

mented algorithms are compared with respect to diversity in Section 8.4 and with

respect to the MOO performance measures in Section 8.5.

8.1 Experimental Setup

The results of FSA and FSimE presented in Chapters 5 and 6 are used in this chapter,

along with the results of FPSO, FEPSO, WAPSO, PDPSO and NSGA-II presented

in Chapter 7. Thirty independent runs were performed. The Wilcoxon rank-sum test

[65] was used to validate the significance of the results. A confidence level of 95% was

used.

8.2 Comparison of Simulated Annealing and Sim-

ulated Evolution Algorithms

A comparative study of SA and SimE with respect to the three design objectives using

the SqalliCF and FuzzyCF functions was performed. Figure 8.1 shows different plots

with respect to MU, NOC, and NUL. Figures 8.1(a) and 8.1(b) compare SimE and
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SA with respect to both cost functions (FuzzyCF and SqalliCF) for the objective MU.

SimE performed significantly better than SA for eight test cases using the FuzzyCF.

For the remaining four test cases (h100N280a, h50N148a, h50N212a and w50N169a),

there was no statistically significant difference in performance. In the case of SqalliCF,

SimE performed significantly better than SA for seven test cases. For the other five

cases (h100N280a, h50N148a, w100N391a, w50N169a and w50N230a), there was no

statistically significant difference in performance. Thus, with reference to MU, SimE

outperformed SA in the majority of test cases with respect to both cost functions.

Results for the statistical tests are given in Table 8.1.

With reference to NOC, Figure 8.1(c) shows that SimE performed statistically

significantly better than SA for eight test cases (h100N360a, r100N403a, r100N503a,

r50N228a, r50N245a, w100N391a, w100N476a and w50N230a) with respect to FuzzyCF.

For the other four cases (h50N148a, h100N280a, h50N212a and w50N169a), the per-

formance of SimE and SA was comparable. Figure 8.1(d) shows that for seven

test cases (h50N212a, r50N228a, r50N245a, r100N403a, r100N503a, w50N230a and

w100N476a), SimE performed statistically significantly better than SA with respect to

SqalliCF. For the other five test cases (h100N280a, h50N148a, h100N360a, w50N169a

and w100N391a), there was no statistically significant difference in performance.

Thus, SimE outperformed SA for the majority of the test cases for both the cost

functions with respect to NOC. Results of the statistical tests are provided in Ta-
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ble 8.2.

Finally, for the third objective, NUL, SimE performed significantly better than

SA for four test cases (r100N503a, w100N391a, w100N476a and w50N230a) with

respect to FuzzyCF as shown in Figure 8.1(e). SA performed significantly better

than SimE for two test cases (h100N280a and h50N212a). For the rest of the test

cases, there was no significant difference in performance. Figure 8.1(f) shows that

SimE performed better than SA for six test cases (r100N403a, r100N503a, r50N228a,

r50N245a, w100N476a, and w50N230a) with respect to SqalliCF. SA performed sig-

nificantly better than SimE in one test case (h100N280a). For the rest of the test

cases, the performance was comparable. Results of the statistical tests are given in

Table 8.3.

Table 8.1: Statistical results of SimE vs SA with respect to FuzzyCF and SqalliCF
cost functions for the objective MU.

Test case FuzzyCF (for MU) SqalliCF (for MU)
SimE vs SA (% diff.) p-value SimE vs SA (% diff.) p-value

h100N280a 6.38 0.329 1.49 0.342

h100N360a 16.86 0.031 16.9 0.011

h50N148a -6.79 0.234 -1.41 0.154

h50N212a 0.6 0.112 11.36 0.017

r100N403a 46.24 0.035 34.03 0.043

r100N503a 63.47 0.013 31.91 0.018

r50N228a 12.22 0.008 16.18 0.028

r50N245a 8.85 0.004 4.67 0.025

w100N391a 23.24 0.044 2.13 0.132

w100N476a 53.42 0.028 7.58 0.014

w50N169a -2.08 0.255 0.79 0.285

w50N230a 7.64 0.014 0 0
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Figure 8.1: Comparison of SimE and SA using SqalliCF and FuzzyCF functions. (a)
MU for FuzzyCF: SimE vs SA (b)MU for SqalliCF: SimE vs SA (c) NOC for FuzzyCF:
SimE vs SA (d) NOC for SqalliCF: SimE vs SA (e) NUL for FuzzyCF: SimE vs SA
(f) NUL for SqalliCF: SimE vs SA.
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Table 8.2: Statistical results of SimE vs SA with respect to FuzzyCF and SqalliCF
cost functions for the objective NOC.

Test case FuzzyCF (for NOC) SqalliCF (for NOC)
SimE vs SA (% diff.) p-value SimE vs SA (% diff.) p-value

h100N280a 5.06 0.234 -5.22 0.322

h100N360a 30.38 0.036 3.65 0.314

h50N148a -19 0.129 -11.89 0.136

h50N212a 4.87 0.143 40.75 0.003

r100N403a 39.95 0.027 19.52 0.021

r100N503a 55.93 0.042 121.34 0.035

r50N228a 11.43 0.012 8.62 0.012

r50N245a 9.81 0.039 6.71 0.042

w100N391a 487.17 0.028 111.82 0.176

w100N476a 144.29 0.007 237.06 0.029

w50N169a 5.14 0.072 -8.22 0.232

w50N230a 57.72 0.02 33.51 0.021

The overall better performance of SimE compared to SA is attributed to the

fact that the search in SA is carried out blindly, and moves are done randomly.

This may result in replacing an optimally placed weight on a link with a weight

resulting in a lower quality solution. However, in SimE, perturbations to a solution

are done on the basis of goodness, i.e. moves are done intelligently, rather than

blindly. Figures 8.2, 8.3, 8.4 and 8.5 show the plots of average goodness of weights

for all the test cases with respect to FSA and FSimE. For all the plots, FSA shows a

random trend for the average goodness of weights. The corresponding FSimE plots

show an increase in average goodness of weights after a few initial iterations. Once

the weights settled to optimum or near-optimum values (evaluated by goodness),
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Table 8.3: Statistical results of SimE vs SA with respect to FuzzyCF and SqalliCF
cost functions for the objective NUL.

Test case FuzzyCF (for NUL) SqalliCF (for NUL)
SimE vs SA (% diff.) p-value SimE vs SA (% diff.) p-value

h100N280a -43.09 0.038 -38.44 0.037

h100N360a -78.49 0.139 -4.19 0.113

h50N148a -100 0.223 -16.35 0.075

h50N212a -97.47 0.035 -5.14 0.141

r100N403a -76.92 0.122 261.45 0.033

r100N503a 3764.71 0.043 260.12 0.013

r50N228a -70 0.252 163.64 0.025

r50N245a -71.25 0.307 151.23 0.009

w100N391a 24000 0.023 -4.57 0.126

w100N476a 688.33 0.028 16.63 0.046

w50N169a -100 0.225 4.64 0.174

w50N230a 407.41 0.022 16.32 0.012

FSimE did not replace these settled weights. This is not the case with FSA, where

weights are replaced blindly irrespective of their goodness. Thus, weights with high

goodness have a lower probability of being removed, while weights with low goodness

are more prone to being replaced. Hence, FSimE performed more intelligently than

FSA, resulting in higher quality solutions.

As far as time complexity is concerned, the time complexity of FSA is O(|A|) +

O(I), where |A| is total number of arcs and I is number of iterations. The first term,

O(|A|), represents the time required to initialize a random single solution and the

second term, O(I), represents the time required for performing the search. Contrary

to this, FSimE has an extra step of goodness evaluation of the weights on all the
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edges. Because of this, the time complexity of FSimE is O(|A|) + O(|A| ∗ I). Hence,

a single iteration of FSimE would take more time than a single iteration of FSA.

8.3 Comparison of Fuzzy Particle Swarm Optimiza-

tion and Fuzzy Evolutionary Particle Swarm

Optimization

The purpose of this section is to compare the performance of the FPSO and FEPSO

algorithms. Experiments were conducted using the best parameter combinations

found for both the algorithms (refer to Tables 7.6 and 7.7). Table 8.4 summarizes the

results of the comparison with respect to fuzzy cost function. It is clearly observed

from the table that the improvements achieved by FEPSO were statistically significant

for all test cases, with the exception of h100N280a (for which FEPSO had a slightly

inferior performance with a degradation of 0.91% in the average fitness). However,

this difference is not significant. Therefore, it can be confidently claimed that FEPSO

outperformed FPSO in terms of the quality of solutions with respect to fuzzy cost

function.

Although the proposed hybridization between FPSO and SimE seems promising in

generating high quality results, the approach has some limitations. One major issue is



185

� �

���� ������������������������������������������������������������������������������������������

� �

� � � � ������������������������������������������������������ � ������������������������������������������������

� �

� � � � ������������������������������������������������������������������������������������������������������������	��

�

����

�����

����

�����

����

�����

����

�����

� ���� ���� 	���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����


�

�����

�����

�����

�����

�����

����	

����


�����

�����

����

�����

� �� ��� ���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����


�� �

����

���	

���


����

����

���

����

����

����

����

� ���� ���� 	���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����


�

�����

����

�����

���	

���	�

���


���
�

����

�����

����

�����

� �� ��� ���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����


�� �

���	

���


����

����

���

����

����

����

����

����

� ���� ���� 	���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

� ��� ����


�

���	

���	�

���


���
�

����

�����

����

�����

���

�����

����

�����

� �� ��� ���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

� ��� ����


�� �

Figure 8.2: Plots of average goodness of weights for three sample test cases of size
50 with respect to FSA and FSimE. (a) h50N212a-FSA, (b) h50N212a-FSimE, (c)
r50N228a-FSA, (d) r50N228a-FSimE, (e) w50N230a-FSA, and (f) w50N230a-FSimE.



186

� �

���� ������������������������������������������������������������������������������������������

� �

� � � � ������������������������������������������������������ � ������������������������������������������������

� �

� � � � ������������������������������������������������������������������������������������������������������������	��

�

����

����

����

����

���

����

���	

���


� 	��� ���� ����



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����

�


�����

����

�����

����

�����

����

�����

���

�����

����

� �� ��� ���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����

��� �

����

����

����

����

����

���

����

���	

���


����

����

� 	��� ���� ����



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����

�


�����

����

�����

����

�����

����

�����

����

�����

� �� ��� ���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

���� ����

��� �

����

����

����

����

���

����

���	

� 	��� ���� ����



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

� ��� ����

�


�����

����

�����

����

�����

����

�����

���

�����

����

� �� ��� ���



�
�
��


�
�

�
�
�
�
�
��
��
	�
�
�
�

�
��

����������

� ��� ����

��� �

Figure 8.3: Plots of average goodness of weights for three sample test cases of size
50 with respect to FSA and FSimE. (a) h50N148a-FSA, (b) h50N148a-FSimE, (c)
r50N245a-FSA, (d) r50N245a-FSimE, (e) w50N169a-FSA, and (f) w50N169a-FSimE.
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Figure 8.4: Plots of average goodness of weights for three sample test cases of size
100 with respect to FSA and FSimE. (a) h100N360a-FSA, (b) h100N360a-FSimE,
(c) r100N503a-FSA, (d) r100N503a-FSimE, (e) w100N391a-FSA, and (f) w100N391a-
FSimE.
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Figure 8.5: Plots of average goodness of weights for three sample test cases of size
100 with respect to FSA and FSimE. (a) h100N280a-FSA, (b) h100N280a-FSimE,
(c) r100N403a-FSA, (d) r100N403a-FSimE, (e) w100N476a-FSA, and (f) w100N476a-
FSimE.
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Table 8.4: Comparison of FPSO and FEPSO with respect to fuzzy cost. Significant
differences are highlighted in boldface. % Imp = percentage improvement.

Test Case FPSO fuzzy cost FEPSO fuzzy cost % Imp p-values
h100N280a 0.531±0.018 0.526±0.015 -0.91 0.323
h100N360a 0.543±0.036 0.605±0.012 11.40 0.042
h50N148a 0.437±0.021 0.469±0.019 7.22 0.021
h50N212a 0.504±0.015 0.528±0.013 4.94 0.023
r100N403a 0.481±0.017 0.595±0.011 23.73 0.011
r100N503a 0.543±0.013 0.710±0.012 30.83 0.033
r50N228a 0.543±0.019 0.610±0.016 12.27 0.003
r50N245a 0.557±0.019 0.644±0.014 15.67 0.007

w100N391a 0.609±0.029 0.725±0.010 18.94 0.017
w100N476a 0.657±0.025 0.757±0.011 15.24 0.039
w50N169a 0.595±0.021 0.640±0.012 7.47 0.043
w50N230a 0.591±0.029 0.711±0.022 20.48 0.015

the need for tuning an additional parameter, namely, the bias (B), in addition to the

parameters of the FPSO algorithm. This adds extra effort and time to find the best

combination out of many possible combinations of all design parameters. Another

issue is that the complexity of the algorithm increases, thus increasing the execution

time. By considering Algorithm 2.5, If ns is the swarm size, and |A| is the total

number of arcs in the network, then the time complexity of steps 1 to 5 is O(ns ∗ |A|).

The time complexity of the rest of the steps 6 to 16 is O(ns ∗ I), where I is the

number of iterations the algorithm runs. Thus, the total time complexity of FPSO

is O(ns ∗ |A|) + O(ns ∗ I). Contrary to this, FEPSO has an extra step of goodness

evaluation for each existing weight in the set Vi(t + 1) as given in Algorithm 7.1.

Because of this, the time complexity of FEPSO is O(ns ∗ |A|) + O(ns ∗ |Vi(t + 1)| ∗ I).

Thus, a single iteration of FEPSO will take more time than a single iteration of FPSO.
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The proposed hybridization will allow faster convergence of FEPSO to an optimal or

sub-optimal solution and will produce higher quality solutions as compared to FPSO.

This is confirmed by the graphs shown in Figures 8.6 and 8.7.

Figures 8.8 and 8.9 show the plots of the average number of selected weights associ-

ated with links for replacement with respect to FEPSO and FPSO. All of these figures

indicate that FEPSO selected fewer weights than FPSO. This shows that FEPSO did

not select optimum or near-optimum position weights (evaluated by goodness) for re-

placement. This is not the case for FPSO, where weights are selected for replacement

irrespective of their goodness. The average goodness of weights associated with links

for FPSO and FEPSO is tabulated in Table 8.5. FEPSO performed statistically sig-

nificantly better than FPSO for 10 test cases. For the other two test cases, h50N212a

and w50N169a, the better performance of FEPSO is statistically insignificant.

8.4 Comparison of all the algorithms with respect

to diversity

The purpose of this section is to understand the exploration and exploitation tradeoff

of all the algorithms. Because FSA and FSimE are not population based algorithms

but single solution algorithms, they are excluded from this comparison. Diversity is

described as the variation amongst the candidate solutions (or particles w.r.t PSO) in
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Figure 8.6: Plots of average current cost of FEPSO and FPSO for all the test cases
with 50 nodes.
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Figure 8.7: Plots of average current cost of FEPSO and FPSO for all the test cases
with 100 nodes.
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Figure 8.8: Plots of average number of selected weights associated with links of
FEPSO and FPSO for all the test cases with 50 nodes.
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Figure 8.9: Plots of average number of selected weights associated with links of
FEPSO and FPSO for all the test cases with 100 nodes.
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Table 8.5: Comparison of FPSO and FEPSO with respect to average goodness of
weights associated with links. Significant differences are highlighted in boldface. %
Imp = percentage improvement.

Test Case FPSO average goodness FEPSO average goodness % Imp p-values
h100N280a 0.886±0.018 0.929±0.017 4.629 0.017
h100N360a 0.894±0.013 0.928±0.018 3.664 0.012
h50N148a 0.891±0.027 0.921±0.016 3.257 0.022
h50N212a 0.938±0.054 0.951±0.067 1.367 0.066
r100N403a 0.862±0.082 0.937±0.083 8.004 0.019
r100N503a 0.877±0.074 0.933±0.036 6.002 0.006
r50N228a 0.865±0.042 0.928±0.061 6.789 0.012
r50N245a 0.873±0.013 0.932±0.067 6.331 0.024

w100N391a 0.884±0.062 0.948±0.061 6.751 0.011
w100N476a 0.891±0.043 0.935±0.072 4.706 0.016
w50N169a 0.892±0.015 0.911±0.021 2.086 0.185
w50N230a 0.885±0.023 0.933±0.012 5.145 0.026

the population [9]. The calculation of swarm diversity is explained subsequently with

an example. Assume three solutions, S1 = {18, 1, 7, 15, 3, 17, 14, 19, 13, 18, 4, 16, 16}, S2 =

{18, 1, 14, 15, 3, 17, 15, 19, 13, 18, 4, 16, 16} and S3 = {18, 1, 7, 15, 3, 17, 14, 19, 11, 18, 4,

16, 9}, in an iteration for the topology given in Figure 4.1. Also assume that S3 is

the global best solution obtained in that iteration. By considering the global best

solution in each iteration as reference, the difference in elements between S1 and S3

is 2. Similarly, the difference in elements between S2 and S3 is 4. Because S3 is the

global best solution, the difference between S3 and the global best solution is 0. The

swarm diversity is then calculated as the average of these obtained values (i.e, 2, 4 and

0) and is equal to 2. Figures 8.10, 8.11, 8.12 and 8.13 compares the swarm diversity

with respect to the FPSO, FEPSO, WAPSO, PDPSO and NSGA-II algorithms for
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all the test cases. These figures were plotted by taking the average diversity over 30

independent runs. Similar exploration and exploitation trends with respect to all the

algorithms were found for test cases r50N245a, w50N230a, h50N148a, and h100N280a.

FEPSO exploited more than the other algorithms for the test case h100N360a. A bet-

ter exploration ability of NSGA-II compared to the other algorithms was found for

test cases h50N212a, h100N360a, and r100N503a. NSGA-II exploited more than the

other algorithms for test case w50N169a. NSGA-II and WAPSO exploited more for

test case r50N228a. FPSO explored better than the other algorithms for test cases

r100N403a, w50N169a, and r50N228a. Based on the above observations, the diversity

trends were found to be unpredictable across all the test cases for all the algorithms.

8.5 Comparison of all the algorithms with respect

to MOO performance measures

Three MOO performance measures, namely ONVG, spacing, and hypervolume were

discussed in Section 2.4. Table 8.6 provides the average ONVG values for all the

implemented algorithms over 30 independent runs. A comparison between FSA and

FSimE with respect to ONVG is given in Table 8.7. FSA and FSimE are comparable

in performance (i.e, no statistically significant differences were found) for six test cases

(h50N212a, r100N403a, r50N245a, w100N391a, w100N476a, and w50N230a). For the
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Figure 8.10: Swarm diversity plots with respect to FPSO, FEPSO, WAPSO, PDPSO
and NSGA-II algorithms for the test cases (a) h50N148a, (b) h50N212a, and (c)
r50N228a.



198

� � �

����

� � �

����

� � �

����

�

��

��

��

��

���

���

���

���

� ��� ��� ��� ���
�
�	


��
�

�

�

��
������� �
�

���� ����

	
��
 	��
 � ���
 ����
 �������

�

��

���

���

���

���

� �� ��� ��� ���

�
�	


��
�

�

�

��
������� �
�

���� ����

	
��
 	��
 � ���
 ����
 �������

�

��

���

���

���

���

� �� ��� ��� ���

�
�	


��
�

�

�

��
������� �
�

���� ����

	
��
 	��
 � ���
 ����
 �������

Figure 8.11: Swarm diversity plots with respect to FPSO, FEPSO, WAPSO, PDPSO
and NSGA-II algorithms for the test cases (a) r50N245a, (b) w50N169a, and (c)
w50N230a.
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Figure 8.12: Swarm diversity plots with respect to FPSO, FEPSO, WAPSO, PDPSO
and NSGA-II algorithms for the test cases (a) h100N280a, (b) h100N360a, and (c)
r100N403a.
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Figure 8.13: Swarm diversity plots with respect to FPSO, FEPSO, WAPSO, PDPSO
and NSGA-II algorithms for the test cases (a) r100N503a, (b) w100N391a, and (c)
w100N476a.
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rest of the test cases, FSimE performed statistically significantly better than FSA.

Summing the wins and losses of both the algorithms shows that FSimE performed

better in the majority of the test cases. Hence, FSimE performed better than FSA

with respect to the ONVG metric. The final winners are tabulated in Tables 8.8, 8.9

and 8.10 after following a similar process of comparison. Out of the 7 algorithms,

FEPSO showed the best performance in all the comparisons with respect to ONVG

metric.

Average spacing values are provided in Table 8.11 for all the implemented algo-

rithms over 30 independent runs. A sample comparison between FSA and FSimE with

respect to spacing is given in Table 8.12. No statistically significant difference was

found in the performance between FSA and FSimE for two test cases (h50N212a and

r50N228a). For the rest of the test cases, FSimE performed statistically significantly

better than FSA. Summing the wins and losses of both the algorithms shows that

FSimE performed better in the majority of the test cases. Hence, FSimE performed

better than FSA with respect to the spacing metric. The final winners are tabulated

in Tables 8.13, 8.14 and 8.15 after following a similar process of comparison. FSimE

showed comparable performance to PDPSO. Out of all 7 algorithms, FEPSO showed

the best performance in all the comparisons with respect to the spacing metric.

Table 8.16 provides the average hypervolume values and their standard deviations

for the implemented algorithms over 30 independent runs. A sample comparison be-
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Table 8.6: Average and standard deviation values of ONVG metric for all the algo-
rithms, for all the test cases.

Test Case FSA FSimE FPSO FEPSO WAPSO PDPSO NSGA-II

h100N280a 6.82± 5.83± 13.12± 15.21± 13.4± 14.83± 14.33±
1.48 0.75 3.24 3.67 3.43 2.83 3.21

h100N360a 5.75± 6.64± 9.17± 9.32± 7.22± 7.234± 8.154±
0.87 1.43 1.25 1.83 1.34 2.52 1.62

h50N148a 5.16± 7.143± 6.71± 5.4± 5.37± 6.43± 7.37±
0.65 2.54 1.52 0.81 0.87 1.54 1.56

h50N212a 8.46± 8.14± 11.48± 12.35± 12.66± 11.6± 10.63±
1.13 1.54 2.23 1.23 1.56 1.65 2.38

r100N403a 10.52± 9.57± 12.84± 13.12± 12.33± 11.342± 12.47±
2.4 2.24 1.78 2.02 1.47 2.23 2.78

r100N503a 5.65± 6.45± 10.23± 14.72± 9.41± 9.46± 11.51±
0.82 1.26 1.7 1.67 1.85 1.23 2.06

r50N228a 4.37± 6.42± 9.16± 10.634± 9.29± 8.62± 9.55±
0.74 1.62 1.56 1.84 1.81 1.23 1.83

r50N245a 10.74± 11.75± 15.25± 15.74± 14.63± 13.46± 12.75±
2.32 1.93 3.23 3.82 3.56 2.25 2.21

w100N391a 11.48± 10.81± 16.27± 13.37± 13.25± 17.76± 18.8±
1.89 2.25 3.56 3.22 3.25 3.23 3.52

w100N476a 7.84± 8.54± 10.67± 10.7± 11.62± 8.54± 9.41±
1.23 1.03 1.76 2.33 2.05 1.56 1.78

w50N169a 6.42± 5.51± 8.25± 7.55± 7.46± 4.62± 6.66±
2.32 0.83 1.34 1.37 1.66 0.78 1.53

w50N230a 8.34± 7.73± 14.51± 14.51± 12.74± 9.72± 10.07±
1.56 2.65 3.76 3.13 1.9 1.85 2.72
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Table 8.7: Statistical results of FSA vs FSimE with respect to ONVG metric.

Test case FSA FSimE FSA vs p-value FSA FSA FSimE FSimE
FSimE (%diff.) wins losses wins losses

h100N280a 6.82 5.83 14.52 0.036 1 0 0 1

h100N360a 5.75 6.64 -15.48 0.042 0 1 1 0

h50N148a 5.16 7.143 -38.43 0.013 0 1 1 0

h50N212a 8.46 8.14 3.78 0.266 1 0 1 0

r100N403a 10.52 9.57 9.03 0.111 1 0 1 0

r100N503a 5.65 6.45 -14.16 0.025 0 1 1 0

r50N228a 4.37 6.42 -46.91 0.013 0 1 1 0

r50N245a 10.74 11.75 -9.4 0.181 1 0 1 0

w100N391a 11.48 10.81 5.84 0.149 1 0 1 0

w100N476a 7.84 8.54 -8.93 0.118 1 0 1 0

w50N169a 6.42 5.51 14.17 0.031 1 0 0 1

w50N230a 8.34 7.73 7.31 0.134 1 0 1 0

Table 8.8: Comparison of algorithms with respect to ONVG metric.

Comp- FSA FSA FSA FSA FSA FSA FSimE
arison of vs vs vs vs vs vs vs

FSimE FPSO FEPSO WAPSO PDPSO NSGA-II FPSO
Winner FSimE FPSO FEPSO WAPSO PDPSO NSGA-II FPSO

Table 8.9: Comparison of algorithms with respect to ONVG metric (Continued).

Comp- FSimE FSimE FSimE FSimE FPSO FPSO FPSO
arison of vs vs vs vs vs vs vs

FEPSO WAPSO PDPSO NSGA-II FEPSO WAPSO PDPSO
Winner FEPSO WAPSO PDPSO NSGA-II FEPSO FPSO FPSO



204

Table 8.10: Comparison of algorithms with respect to ONVG metric (Continued).

Comp- FPSO FEPSO FEPSO FEPSO WAPSO WAPSO PDPSO
arison of vs vs vs vs vs vs vs

NSGA-II WAPSO PDPSO NSGA-II PDPSO NSGA-II NSGA-II
Winner FPSO FEPSO FEPSO FEPSO PDPSO WAPSO NSGA-II

Table 8.11: Average and standard deviation values of spacing metric for all the algo-
rithms, for all the test cases.

Test Case FSA FSimE FPSO FEPSO WAPSO PDPSO NSGA-II

h100N280a 1.144± 0.514± 0.424± 0.357± 0.362± 0.361± 1.00±
0.17 0.064 0.036 0.16 0.083 0.024 0.014

h100N360a 5.433± 1.385± 0.861± 0.416± 0.479± 0.959± 4.84±
0.36 0.55 0.051 0.022 0.075 0.143 0.42

h50N148a 1.831± 0.364± 0.552± 1.333± 0.511± 0.584± 0.67±
0.15 0.067 0.023 0.877 0.087 0.016 0.023

h50N212a 0.545± 0.518± 0.449± 0.041± 0.382± 0.837± 0.45±
0.035 0.0284 0.021 0.01 0.066 0.06 0.01

r100N403a 2.044± 0.392± 0.625± 0.511± 0.398± 0.606± 3.33±
0.326 0.048 0.08 0.073 0.053 0.034 0.18

r100N503a 1.59± 1.804± 0.507± 0.494± 1.049± 0.725± 0.643±
0.22 0.148 0.025 0.031 0.134 0.061 0.028

r50N228a 0.368± 0.356± 0.518± 0.473± 0.303± 0.465± 0.464±
0.145 0.057 0.0677 0.083 0.062 0.034 0.0245

r50N245a 0.691± 0.414± 0.453± 0.466± 0.965± 0.269± 0.79±
0.0363 0.0323 0.013 0.042 0.043 0.021 0.055

w100N391a 1.197± 1.415± 0.479± 0.0145± 0.277± 0.591± 1.12±
0.242 0.111 0.028 0.001 0.061 0.075 0.225

w100N476a 1.442± 0.706± 0.557± 0.492± 0.629± 0.811± 1.36±
0.286 0.041 0.033 0.064 0.023 0.027 0.028

w50N169a 0.481± 0.821± 0.374± 0.388± 0.523± 0.687± 0.38±
0.0342 0.076 0.044 0.037 0.061 0.032 0.043

w50N230a 5.835± 0.378± 0.119± 0.258± 0.264± 0.46± 1.95±
0.545 0.053 0.074 0.012 0.041 0.041 0.192
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Table 8.12: Statistical results of FSA vs FSimE with respect to spacing metric.

Test case FSA FSimE FSA vs p-value FSA FSA FSimE FSimE
FSimE (%diff.) wins losses wins losses

h100N280a 1.144 0.514 55.07 0.025 0 1 1 0

h100N360a 5.433 1.385 74.51 0.011 0 1 1 0

h50N148a 1.831 0.364 80.12 0.032 0 1 1 0

h50N212a 0.545 0.518 4.95 0.194 1 0 1 0

r100N403a 2.044 0.392 80.82 0.025 0 1 1 0

r100N503a 1.59 1.804 -13.46 0.038 1 0 0 1

r50N228a 0.368 0.356 3.26 0.607 1 0 1 0

r50N245a 0.691 0.414 40.09 0.024 0 1 1 0

w100N391a 1.197 1.415 -18.21 0.012 1 0 0 1

w100N476a 1.442 0.706 51.04 0.035 0 1 1 0

w50N169a 0.481 0.821 -70.69 0.031 1 0 0 1

w50N230a 5.835 0.378 93.52 0.038 0 1 1 0

Table 8.13: Comparison of algorithms with respect to spacing metric.

Comp- FSA FSA FSA FSA FSA FSA FSimE
arison of vs vs vs vs vs vs vs

FSimE FPSO FEPSO WAPSO PDPSO NSGA-II FPSO
Winner FSimE FPSO FEPSO WAPSO PDPSO NSGA-II FPSO

Table 8.14: Comparison of algorithms with respect to spacing metric (Continued).

Comp- FSimE FSimE FSimE FSimE FPSO FPSO FPSO
arison of vs vs vs vs vs vs vs

FEPSO WAPSO PDPSO NSGA-II FEPSO WAPSO PDPSO
Winner FEPSO WAPSO FSimE FSimE FEPSO WAPSO FPSO

and
PDPSO
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Table 8.15: Comparison of algorithms with respect to spacing metric (Continued).

Comp- FPSO FEPSO FEPSO FEPSO WAPSO WAPSO PDPSO
arison of vs vs vs vs vs vs vs

NSGA-II WAPSO PDPSO NSGA-II PDPSO NSGA-II NSGA-II
Winner FPSO FEPSO FEPSO FEPSO WAPSO WAPSO PDPSO

tween FSA and FSimE with respect to the hypervolume metric is given in Table 8.17.

For two test cases (h50N148a and h50N212a), there was no statistically significant

difference in performance between FSA and FSimE. For the rest of the test cases,

FSimE performed statistically significantly better than FSA. Aggregating the wins

and losses of both the algorithms shows that FSimE performed better in the majority

of the test cases. Hence, FSimE performed better than FSA with respect to the hyper-

volume metric. A similar process was followed to compare the rest of the algorithms.

The final winners are tabulated in Tables 8.18, 8.19 and 8.20. Observe from these

tables that FPSO showed comparable performance to PDPSO and FEPSO showed

comparable performance to WAPSO. Out of all the algorithms, FEPSO showed the

best performance in all the comparisons with respect to the hypervolume.

8.6 Conclusion

This chapter presented a comparison of the algorithms developed for solving the

OSPFWS problem. A comparison of the single-solution algorithms, namely SA and
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Table 8.16: Average and standard deviation values of hypervolume metric for all the
algorithms, for all the test cases.

Test Case FSA FSimE FPSO FEPSO WAPSO PDPSO NSGA-II

h100N280a 2.056± 1.451± 4.363± 6.68± 6.652± 3.924± 6.004±
0.054 0.141 0.178 0.373 0.193 0.109 0.184

h100N360a 1.815± 2.762± 2.311± 4.309± 4.628± 2.212± 2.517±
0.171 0.136 0.124 0.207 0.187 0.226 0.152

h50N148a 2.643± 2.734± 3.656± 3.322± 2.46± 3.592± 2.812±
0.613 0.013 0.212 0.153 0.078 0.047 0.145

h50N212a 2.573± 2.567± 2.113± 4.789± 6.196± 4.018± 3.629±
0.112 0.131 0.28 0.208 0.209 0.363 0.112

r100N403a 2.417± 3.01± 5.611± 5.899± 6.591± 4.865± 3.181±
0.312 0.262 0.345 0.137 0.225 0.175 0.114

r100N503a 1.872± 2.839± 4.838± 6.192± 6.179± 5.131± 3.03±
0.164 0.118 0.156 0.138 0.121 0.139 0.145

r50N228a 1.506± 2.083± 3.908± 4.565± 5.417± 4.185± 4.611±
0.172 0.258 0.102 0.184 0.137 0.117 0.254

r50N245a 2.689± 3.463± 5.092± 3.764± 3.26± 2.702± 3.101±
0.089 0.176 0.889 0.112 0.157 0.185 0.212

w100N391a 2.911± 3.143± 5.877± 5.864± 5.186± 6.401± 4.893±
0.126 0.155 0.841 0.267 0.345 0.187 0.211

w100N476a 2.539± 2.247± 4.507± 5.025± 5.523± 4.929± 1.79±
0.273 0.123 0.112 0.226 0.195 0.058 0.124

w50N169a 3.571± 1.798± 4.254± 2.665± 2.639± 4.202± 2.765±
0.192 0.248 0.274 0.067 0.131 0.172 0.085

w50N230a 2.2± 1.81± 5.223± 5.065± 5.687± 6.382± 4.857±
0.173 0.123 0.332 0.295 0.258 0.036 0.272
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Table 8.17: Statistical results of FSA vs FSimE with respect to hypervolume metric.

Test case FSA FSimE FSA vs p-value FSA FSA FSimE FSimE
FSimE (%diff.) wins losses wins losses

h100N280a 2.056 1.451 29.43 0.006 1 0 0 1

h100N360a 1.815 2.762 -52.18 0.035 0 1 1 0

h50N148a 2.643 2.734 -3.44 0.221 1 0 1 0

h50N212a 2.573 2.567 0.23 0.172 1 0 1 0

r100N403a 2.417 3.01 -24.53 0.033 0 1 1 0

r100N503a 1.872 2.839 -51.66 0.046 0 1 1 0

r50N228a 1.506 2.083 -38.31 0.032 0 1 1 0

r50N245a 2.689 3.463 -28.78 0.021 0 1 1 0

w100N391a 2.911 3.143 -7.97 0.017 0 1 1 0

w100N476a 2.539 2.247 11.5 0.012 1 0 0 1

w50N169a 3.571 1.798 49.65 0.014 1 0 0 1

w50N230a 2.2 1.81 17.73 0.027 1 0 0 1

Table 8.18: Comparison of algorithms with respect to hypervolume metric.

Comp- FSA FSA FSA FSA FSA FSA FSimE
arison of vs vs vs vs vs vs vs

FSimE FPSO FEPSO WAPSO PDPSO NSGA-II FPSO
Winner FSimE FPSO FEPSO WAPSO PDPSO NSGA-II FPSO

Table 8.19: Comparison of algorithms with respect to hypervolume metric (Contin-
ued).

Comp- FSimE FSimE FSimE FSimE FPSO FPSO FPSO
arison of vs vs vs vs vs vs vs

FEPSO WAPSO PDPSO NSGA-II FEPSO WAPSO PDPSO
Winner FEPSO WAPSO PDPSO NSGA-II FEPSO WAPSO FPSO

and
PDPSO
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Table 8.20: Comparison of algorithms with respect to hypervolume metric (Contin-
ued).

Comp- FPSO FEPSO FEPSO FEPSO WAPSO WAPSO PDPSO
arison of vs vs vs vs vs vs vs

NSGA-II WAPSO PDPSO NSGA-II PDPSO NSGA-II NSGA-II
Winner FPSO FEPSO FEPSO FEPSO WAPSO WAPSO PDPSO

and
WAPSO

SimE, with respect to both FuzzyCF and SqalliCF revealed that SimE performed

better than SA. A comparison of FPSO and FEPSO with respect to FuzzyCF revealed

that FEPSO performed better than FPSO. Diversity trends across the algorithms

are found to be comparable. This means that all the algorithms showed similar

exploration and exploitation capabilities with few exceptions. With respect to the

MOO performance measures, FEPSO performed better than the other algorithms.



Chapter 9

Conclusion

This thesis considered an optimization problem known as the open shortest path first

weight setting (OSPFWS) problem. The OSPFWS problem is modelled as a multi-

objective optimization problem. The first main objective of the thesis was to address

the multi-objective nature of the problem. This was accomplished by using fuzzy

logic to aggregate individual objectives into a multi-objective aggregation function.

The second main objective was the design and analysis of iterative heuristics to

solve the OSPFWS problem. This objective was accomplished by developing a num-

ber of algorithms, including simulated annealing (SA), simulated evolution (SimE),

and set-based particle swarm optimization (PSO) algorithms. A new hybrid PSO

algorithm that incorporates characteristics of the SimE was also proposed and eval-

uated in the context of the OSPFWS problem.

210
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The following sections briefly highlight the key findings and contributions of this

thesis, followed by a short discussion on directions for future research.

9.1 Summary

The summary and main findings of this research work is as follows:

1. The first objective of this thesis was to model OSPFWS as a multi-objective op-

timization problem. An extensive literature review was thus conducted on the

OSPFWS problem. The work of Fortz and Thorup [46] considered only optimiz-

ing Maximum Utilization (MU), while the work of Sqalli et al. [160] considered

optimizing two objectives: MU and number of congested links (NOC). In a

preliminary analysis, upon employing the cost functions of Fortz et al. and

Sqalli et al., a number of unused links (NUL) were available. This observation

points to the fact that, to have a more stable traffic flow in the network, traf-

fic from congested links can be shifted to these unused links. It was also not

guaranteed that optimizing MU only would implicitly optimize NOC and NUL

and vice versa. Thus, it was concluded that a multi-objective formulation of

OSPFWS was not yet available. Besides the existing two objectives, namely

MU and NOC, a third objective, NUL, was incorporated in the formulation of

the OSPFWS problem. Fuzzy logic was employed to scalarize these multiple
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objectives into a single-objective function, named FuzzyCF.

2. The next objective of this thesis was to develop a multi-objective fuzzy simulated

annealing (FSA) algorithm. The FuzzyCF cost function was employed in the

FSA algorithm. The control parameters of FSA, namely the cooling rate, α,

and the length of the Markov chain, M , were tuned for all the test cases. It

was found that α = 0.96 and M = 20 produced better results.

3. The next objective of this thesis was to develop a multi-objective fuzzy simulated

evolution (FSimE) algorithm. As for the FSA, the FuzzyCF cost function was

also used in the FSimE algorithm. The control parameter, namely bias, B, was

tuned for all the test cases. It was found that B = −0.1 produced better results.

It was also determined that a dynamic bias could not produce better results.

4. The next objective of this thesis was to develop the fuzzy particle swarm op-

timization (FPSO) and a hybridized PSO, namely fuzzy evolutionary particle

swarm optimization (FEPSO). The FuzzyCF was employed in both the algo-

rithms. For the OSPFWS problem, the solution representation is defined as a

set of weights on the network links. The control parameters namely swarm size,

velocity clamping, acceleration coefficients, and the inertia weight were tuned

for FPSO for all the test cases. After developing FPSO, a hybrid variant of

FPSO using the SimE algorithm was developed to avoid replacement of high
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quality (or fitness) weights on the network links. This was done by employ-

ing the evaluation and selection phases of the SimE algorithm in the FPSO

algorithm. The best values obtained for the swarm size and velocity clamping

for FPSO were then used for FEPSO. The acceleration coefficients and iner-

tia weight parameters were tuned for FEPSO. This was done to ensure fair

comparisons between the algorithms.

5. The next objective of this thesis was to develop the weighted-aggregation PSO

(WAPSO) and Pareto-dominance PSO (PDPSO) algorithms. The aim was

to compare the proposed fuzzy logic approach with another single-objective

function approach, namely the weighted-aggregation method (used in WAPSO)

and with a Pareto-dominance approach (used in PDPSO). The best values for

swarm size and velocity clamping obtained for FPSO were used for WAPSO

and PDPSO. The acceleration coefficients and inertia weight parameters were

then tuned for both WAPSO and PDPSO.

6. The next objective was to compare the algorithms developed in this thesis

to a well-established MOO algorithm, namely non-dominating sorting genetic

algorithm (NSGA-II).

7. The next objective was to perform pairwise comparisons of all the algorithms.

At first, FSA and FSimE were compared. It was found that FSimE performed
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better than FSA. Then FPSO and FEPSO were compared. It was revealed that

FEPSO performed better than FPSO. All the algorithms were then compared

with respect to diversity. It was found that all the algorithms showed similar

exploration and exploitation capabilities. Lastly, a comparison of all the algo-

rithms with respect to the MOO performance measures ONVG, spacing, and

hypervolume showed that FEPSO performed better than the other algorithms.

9.2 Future Research

Some directions for future research are summarized below.

Application of Other Techniques to OSPF Weight Setting

Problem

While this thesis engineered and investigated a number of iterative algorithms to solve

the OSPF weight setting problem, there are other techniques that can be applied to

the underlying problem. Some of these techniques are biogeography based optimiza-

tion, cuckoo search, the bat algorithm, the firefly algorithm, and the harmony search

algorithm. These techniques have less parameters to tune compared to the PSO algo-

rithm. Furthermore, application of these techniques to the domain of networking have

been very limited, which motivates their application on the OSPFWS problem. Such
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a study can further be enhanced by linking performance of algorithms to problem

characteristics, through fitness landscape analysis.

Hyper-heuristic Approaches

A hyper-heuristic is a heuristic search method that involves several simpler heuristics

(or meta-heuristics) to efficiently solve NP-hard problems. Hyper-heuristics [16, 136]

provide a more comprehensive framework of solving a problem through an automated,

intelligent process that allows selection of appropriate heuristics or meta-heuristics

during different phases of the optimization process. Hyper-heuristic finds a solution

to an optimization problem as well as finds the best heuristic for solving an optimiza-

tion problem. A hyper-heuristic based approach can be developed encompassing the

heuristics studied in this thesis (and including other as well) to solve the OSPFWS

problem. This is because different algorithms have been shown to be best for different

test cases. No one algorithm performed best for all the test cases.

Extension of the Problem into a Many-objective Optimization

Problem

The current study considered three optimization objectives, namely, maximum uti-

lization, number of congested links, and number of unused links. This motivated the

use of fuzzy logic based multi-objective approach. However, more design objectives,
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such as reliability, network delay, and link failure can be considered in the decision-

making process. This would shift the paradigm of the problem from multi-objective

to many-objective optimization. The many-objective optimization has its own chal-

lenges and highlights the need for new and more efficient algorithms that can handle

more than three objectives. One possible direction could be the analysis of various

fuzzy operators for many-objective optimization problems.

Other Aggregation Techniques

While the current study employed a fuzzy logic based approach for aggregation of

multiple objectives, other approaches discussed in Chapter 2, such as goal program-

ming, lexicographic ordering amongst others can also be exploited and compared with

the results of the fuzzy logic based approach.
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Appendix

Symbols

This appendix defines the commonly used symbols in this thesis. Symbols are listed

under each chapter according to their first appearance.

Chapter 2

f The fitness function

x∗ The global optimum solution vector

hm The equality constraints

gm The inequality constraints

ng The number of inequality constraints

nh The number of equality constraints

no The number of objectives

nx The number of decision variables

xmin The minimum boundary constraint

xmax The maximum boundary constraint

λk The weight value in weighted sum method for the objective k

εk The upper bound for the objective k

Q
′

The set of solutions
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Q The non-dominated set of solutions

µ The fuzzy logic membership function

C Crisp set

U Fuzzy set

Ω A linguistic variable

T (Ω) Collection of values for a linguistic variable

R Syntactic rule to characterize a linguistic variable

ℵ Semantic rule to characterize a linguistic variable

S0 Initial solution

T0 Initial temperature in SA algorithm

α Cooling rate parameter

M Markov chain parameter

β Constant value by which Markov chain parameter is increased

Tmax Maximum amount of time

r A random number sampled from a uniform distribution in the range (0,1)

gi Goodness of individual i in SimE algorithm

Oi Optimal cost of individual i in SimE algorithm

Ci Actual cost of individual i in SimE algorithm

B Selection bias parameter of SimE algorithm

P Population set
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pm Mutation rate

xi Current position of particle i in PSO

vi Current velocity of particle i in PSO

yi The personal best position of particle i in PSO

ŷi The global best position of particle i in PSO

w Inertia weight

c1 Cognitive acceleration constant

c2 Social acceleration constant

nN Number of immediate neighbors in ring topology

ns Swarm size

nd Number of dimensions in PSO

Vmax Velocity clamping

S Spacing, MOO performance measure

f i
m The mth objective function value of solution i

hi The volume of the hypercube constructed with non-dominating solution i

Chapter 3

dij The cost between nodes i and j of the network

Dij The computed minimum cost from node i to node j

N Set of nodes in the graph

L Set of permanent list of nodes used in Dijkstra algorithm
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L′ Set of temporary list of nodes used in Dijkstra algorithm

Φ The cost function

la The total traffic load on arc a

Φa The cost associated with arc a

A Set of arcs

ca Capacity of arc a in the graph

f
(s,t)
a Traffic flow from node s to t over arc a

Chapter 4

G Graph

At Set of arcs representing shortest paths from all sources to destination node t

a A single element in set A. It can also be represented as (i, j)

D Demand matrix

ωmax The maximum value of a weight on the network link

N̄ Set of destination nodes

dt
u Shortest distance from node u to the destination node t

ωij Weight on arc (i, j); if a = (i, j), then it can also be represented as ωa

δt
u Outdegree of node u when destination node is t

Gt Sub graph when t is the destination node

lt(v,h) The traffic load on the link (v, h) when t is the destination node

MUmin The minimum value of maximum utilization
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MUmax The maximum value of maximum utilization

µMU The membership value for maximum utilization

NOCmin The minimum value of number of congested links

NOCmax The maximum value of number of congested links

µNOC The membership value for number of congested links

NULmin The minimum value of number of unused links

NULmax The maximum value of number of unused links

µNUL The membership value for number of unused links

Chapter 5

NT0
The number of moves accepted at temperature T0 in SA algorithm

TT0
The total number of moves attempted at temperature T0 in SA algorithm

Chapter 6

gi The goodness of link i

ui The utilization of link i

Chapter 7

nD The number of non-dominated solutions

SD The set of dominated solutions

cd The crowding distance
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Acronyms

Below is a list of acronyms used in this thesis in alphabetic order.

CO Combinatorial optimization

EGP Exterior Gateway Routing Protocol

FEPSO Fuzzy Evolutionary Particle Swarm Optimization

FPSO Fuzzy Particle Swarm Optimization

FSA Fuzzy Simulated Annealing

FSimE Fuzzy Simulated Evolution

GA Genetic Algorithm

HV Hypervolume, MOO performance measure

IP Internet Protocol

IGP Interior Gateway Routing Protocol

MOO Multi-objective Optimization

MU Maximum Utilization

NOC Number of Congested Links/Arcs

NSGA-II Non-dominating Sorting Genetic Algorithm-II

NUL Number of Unused Links/Arcs

ONVG Overall non-dominated vector generation

OSPF Open Shortest Path First Algorithm
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OSPFWS Open Shortest Path First Algorithm Weight Setting

PSO Particle Swarm Optimization

RIP Routing Information Protocol

SA Simulated Annealing

SimE Simulated Evolution

SOO Single-objective Optimization
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