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Abstract	

The far-field divergence of a light beam propagating through a first order optical system is presented as a square root of 
the sum of the squares of the local divergence and the curvature divergence. The local divergence is defined as the ratio of 
the beam parameter product to the beam width whilst the curvature divergence is a ratio of the space-angular moment 
also to the beam width. It is established that the beam's focusing parameter can be defined as a ratio of the local 
divergence to the curvature divergence. The relationships between the two divergences and other second moment-based 
beam parameters are presented. Their various mathematical properties are presented such as their evolution through first 
order systems. The efficacy of the model in the analysis of high power continuous wave laser-based welding systems is 
briefly discussed..		

1. Introduction	

There	are	three	parameters	of	non‐spherical	non‐Gaussian	beams	that	can	be	calculated	directly	from	the	field	distribution	at	
each	selected	plane	ሾ1,2ሿ.	These	are	the	beam	width,	which	is	the	variance	of	the	transversal	position,	the	far‐field	divergence,	
which	is	the	variance	of	the	transversal	spatial	frequency,	and	the	space‐angular	moment	being	the	covariance	of	the	product	
of	the	transversal	position	and	spatial	frequency.	This	moment	approach	has	also	been	used	to	characterize	beams	carrying	
aberrations	ሾ3‐5ሿ.	The	results	has	shown	that	closed	form	solutions	of	 the	moments	showing	their	dependence	on	Zernike	
aberrations	 can	be	easily	 calculated.	The	approach	has	been	used	 to	demonstrate	how	aberrations	 can	 influence	 the	 focal	
length	 of	 a	 lens	 ሾ5ሿ.	Once	 these	 three	parameters	 are	 known,	 other	parameters	 such	 as	 the	waist	 location,	waist	 size	 and	
Rayleigh	 range	 can	 be	 derived	 from	 the	 three	 moments.	 For	 this	 reason,	 they	 are	 the	 basic	 parameters	 that	 need	 to	 be	
calculated	first	before	the	other	parameters	are	to	be	calculated	to	completely	define	a	laser	beam	propagating	through	a	first	
order	 system.	 If	 the	 propagation	 channel	 is	 free	 of	 aberrations,	 then	 the	 free	 space	 first	 order	 propagation	of	 these	 basic	
parameters	through	an	ܦܥܤܣ	system	can	be	expressed	using	some	basic	laws	involving	ABCD	matrices;	the	same	laws	that	
can	be	used	to	describe	the	propagation	of	the	derived	parameters	ሾ1,2ሿ.	This	implies	that	the	transformations	of	the	basic	
parameters	through	the	system	can	be	used	to	derive	the	corresponding	propagation	of	the	derived	parameters.		

In	first	order	beam	propagation,	a	certain	combination	of	the	basic	and	derived	parameters	can	be	used	to	create	
the,	 so‐called,	 propagation	 invariants	 whose	 values	 do	 not	 change	 throughout	 the	 propagation	 path,	 provided	 that	 no	
aberrations	are	generated	anywhere	 in	the	propagation	channel	 ሾ1,2ሿ.	The	main	parameter	 is	called	the	beam	propagation	
parameter	 ሺܲܲܤሻ,	which	 is	 directly	 proportional	 to	 the	beam	quality	 factor	 ሾ2ሿ.	 A	 typical	 example	 is	 the	product	 of	waist	
width	and	 far‐field	divergence,	which	 is	used	as	a	 standard	definition	 for	 the	beam	quality	 factor	 ሾ6ሿ.	The	model	 that	 is	of	
importance	in	this	paper	includes	the	focusing	parameter	ሾ7ሿ,	defined	as	a	value	that	facilitates	the	location	of	the	geometric	
focus	of	a	system.	It	has	the	same	form	as	the	reciprocal	of	the	Gaussian	Fresnel	number.		

In	 this	 paper,	 we	 investigate	 far‐field	 divergence	 by	 splitting	 its	 square	 into	 a	 sum	 of	 the	 squares	 of	 the	 local	
divergence	and	the	curvature	divergence.	We	demonstrate	that	the	focusing	parameter	can	be	presented	as	a	ratio	of	local	to	
curvature	divergence.	We	also	show	how	the	focusing	parameter	relates	to	other	beam	parameters.	In	the	following	section	
the	 transformation	 laws	 of	 the	 second	 order	 moments	 of	 non‐spherical	 non‐Gaussian	 laser	 beams	 through	 a	 simple	
astigmatic	first	order	system	are	presented.	In	Section	3,	local	and	curvature	divergence,	the	focusing	parameter	as	well	as	
the	 free	 space	 propagation	 of	 their	 normalized	 versions	 are	 introduced.	 The	 results	 are	 then	 applied	 to	 first	 order	 beam	
propagation	in	Section	4.	In	Section	5,	the	paper	is	discussed.			

2. Beam	parameters	and	their	transformation	in	first	order	optics	

A	general	representation	of	the	system	is	based	on	how	most	optical	setups	are	achieved,	which	is	a	source‐target	system	that	
is	 broken	 into	 three	 main	 sections:	 a	 laser	 source,	 processing	 optics,	 and	 the	 target	 half	 space.	 In	 this	 paper,	 a	 laser	
transmission	system	is	proposed,	which	is	comprised	of	the	laser	source	and	the	processing	optics.	The	basis	of	the	design	is	
that	 the	 laser	 source	 produces	 a	 beam	 with	 fixed	 output	 size,	 divergence	 and	 space‐angular	 moments	 because	 these	
properties	are	set	during	manufacture.	The	process	optics	are	a	diffraction‐limited	ܦܥܤܣ	system	responsible	for	processing	
the	beam	 in	 that	 it	 allows	 the	manipulation	of	 the	moments	 to	produce	 the	 respective	 required	moments	 for	 a	particular	
application.	As	shown	in	Fig.	1,	the	source	produces	a	laser	beam	defined	by	the	three	initial	moments	at	plane	P,	the	beam	
width	߱௜,	space‐angular	moment,	 ௜ܸ ൌ ߱௜

ଶ/ܴ௜	,	and	far‐field	divergence,	ߠ଴௜,	where	ܴ௜	is	the	field	average	radius	of	curvature.	
The	ܦܥܤܣ	system	converts	the	source	beam	into	one	that	has	the	respective	moments,	߱,	ܸ ൌ ߱ଶ/ܴ,	and	far‐field	divergence,	
ݖ	at	଴,ߠ ൌ 0,	indicated	by	Q.	Thereafter,	the	beam	undergoes	free	propagation	through	a	space	of	uniform	refractive	index	in	
which	we	place	the	target	at	a	distance	z	from	the	process	optics.	This	half	space	ሺݖ ൒ 0ሻ	is	the	space	after	the	ܦܥܤܣ	system	
where	 diagnosis	 of	 the	 system	 takes	 place.	 Therefore,	 the	ܦܥܤܣ	matrix	 for	 the	 entire	 length	 of	 this	model	 consists	 of	 the	
elements,		
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Fig.	1	A	laser	transmitter	in	grey	consisting	of	a	laser	source	and	diffractive‐limited	ABCD	process	optics,	with	the	respective	
source	and	intermediate	parameters	as	shown.	Observation	is	carried	out	in	the	half‐space,	ݖ ൒ 0,	where	the	beam	

experiences	free	propagation.	

The	respective	moments	at	the	target	become	߱ሺݖሻ	and	ܸሺݖሻ ൌ ߱ଶሺݖሻ/ܴሺݖሻ.	Obviously,	the	far‐field	divergence,	ߠ଴,	
remains	the	same	throughout	this	path.	The	focused	version	of	the	output	beam	has	a	waist	of	width	߱଴	located	at	a	distance	
	.respectively	maxima,	and	minima	local	its	reaches	ሻݖ1/ܴሺ	curvature	beam’s	the	where	are	ାݖ	and	ିݖ	at	planes	The	Q.	from	଴ݖ
The	depth	of	focus	ሺalso	called	the	confocal	parameterሻ	of	a	laser	beam	during	ܦܥܤܣ	propagation	is	defined	as	ݖା െ 	We	.ିݖ
will	refer	to	ିݖ	and	ݖା		as	the	Rayleigh	planes.		

a. Beam	moments	in	first	order	optics	

In	one	dimension,	 the	 transformation	of	 these	basic	moments	 through	 the	ܦܥܤܣ	system	has	been	evaluated	and	 found	 to	
obey	the	following	equations:	ሾ1,2ሿ

	߱ଶሺݖሻ ൌ ሺܣ ൅ ሻଶ߱௜ݖܥ
ଶ ൅ 2ሺܣ ൅ ܤሻሺݖܥ ൅ ሻݖܦ ௜ܸ ൅ ሺܤ ൅ ଴௜ߠሻଶݖܦ

ଶ ሺ2ሻ		
଴ߠ
ଶ ൌ ଶ߱௜ܥ

ଶ ൅ ܦܥ2 ௜ܸ ൅ ଴௜ߠଶܦ
ଶ 											 															ሺ3ሻ		

ܸሺݖሻ ൌ ሺܣ ൅ ௜߱ܥሻݖܥ
ଶ ൅ ሺሼܣ ൅ ܦሽݖܥ ൅ ሼܤ ൅ ሻܥሽݖܦ ௜ܸ ൅ ሺܤ ൅ ଴௜ߠܦሻݖܦ

ଶ 															ሺ4ሻ		

After	some	manipulation,	Eqs.	ሺ2ሻ	and	ሺ3ሻ	can	be	written	in	terms	of	the	far‐field	divergence	as	follows:	

߱ଶሺݖሻ ൌ ߱ଶ ൅ ݖ2ܸ ൅ ଴ߠ
ଶݖଶ 									ሺ5ሻ		

ܸሺݖሻ ൌ ܸ ൅ ଴ߠ
ଶݖ, 													ሺ6ሻ		

where	߱	and	ܸ	are	 respective	moments	 at	 point	ܻ	corresponding	 to	ݖ ൌ 0.	 These	 equations	 can	 be	 used	 to	 verify	 that	 the	
beam	propagation	parameter	ሺܲܲܤሻ,	usually	defined	as	2ܯଶ/݇,	stays	constant	throughout	the	propagation	path	with	݇	being	
the	laser	radiation	wave	constant.	Its	square	is	given	by	߱ଶሺݖሻߠ଴

ଶ െ ܸଶሺݖሻ	at	any	plane	where	ݖ ൒ 0.	This	result	is	identical	to	
߱௜
ଶߠ଴௜

ଶ െ ௜ܸ
ଶ	and	߱ଶߠ଴

ଶ െ ܸଶ	on	 the	 condition	 that	ܦܣ െ ܥܤ ൌ 1.	 Dividing	 Eq.	 ሺ2ሻ	 into	 Eq.	 ሺ4ሻ	 or	 Eqs.	 ሺ5ሻ	 into	 ሺ6ሻ	 gives	 the	
expression	for	the	evolution	of	the	field	curvature:	ሾ1,2ሿ	

1
ܴሺݖሻ

ൌ
ܸሺݖሻ

߱ଶሺݖሻ
. 																ሺ7ሻ	

The	ܲܲܤ	squared	calculated	at	 a	plane	other	 than	 the	waist	 can	also	be	defined	as	߱ଶሺݖሻߠ଴
ଶ,	 from	which	ܸଶሺݖሻ	is	 removed.	

This	value	is	directly	proportional	to	the	curvature,	1/ܴሺݖሻ	and	creates	an	artificial	waist	at	which	the	beam	characterization	
procedure	will	fulfil	the	conditions	set	by	the	ISO	11146	standard	ሾ6ሿ.	As	stated	earlier,	the	ܲܲܤ	squared	value	is	also	given	
by	ሺ2ܯଶ/݇ሻଶ,	which	implies	that	if	߱ሺݖሻ,	ߠ଴	and	ܸሺݖሻ	are	measured	at	some	plane	,ݖ	ܯଶ	can	be	easily	calculated.	As	a	result,	
this	method	is	referred	to	as	the	curvature‐removal	method	in	which	the	ܯଶ	measurement	is	carried	out	in	one	plane	ሾ8ሿ.	

b. Derived	beam	parameters	in	terms	of	the	far‐field	divergence	

Consider	the	situation	whereby	the	beam	converges	to	a	waist	such	that	the	curvature	becomes	positive	after	the	waist.	Let	
us	say	the	waist	is	located	at	ݖ ൌ 	,ሺ4ሻ	Eqs.	both	of	sides	hand	left	the	equating	by	found	then	is	waist	the	of	location	The	଴.ݖ
ሺ6ሻ	or	ሺ7ሻ	to	0,	making	ݖ଴	the	subject	and	is	found	to	be	
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଴ݖ ൌ െ
ܸ

଴ߠ
ଶ .																																																																																																																																																																																																																								ሺ8ሻ	

	
Therefore,	 the	 waist	 location	 can	 be	 expressed	 as	 a	 ratio	 of	 the	 space‐angular	 moment	 to	 the	 square	 of	 the	 far‐field	
divergence.	To	get	the	waist	width,	߱଴,	we	replace	ݖ	with	ݖ଴,	as	defined	by	substituting	Eq.	ሺ8ሻ	into	Eqs.	ሺ2ሻ	or	ሺ5ሻ	with	the	
definition	߱଴ ൌ ߱ሺݖ଴ሻ	and	then	rearrange	the	result	by	expressing	it	in	terms	of	ܲܲܤ	to	get	
	

߱଴ ൌ
ଶܯ2

଴ߠ݇
.																																																																																																																																																																																																																							ሺ9ሻ	

	
From	 this	 equation	 it	 can	 be	 inferred	 that	߱଴ߠ଴	is	 a	 propagation	 invariant	 as	mentioned	 in	 the	 introduction.	 To	 find	 the	
Rayleigh	planes,	Eq.	ሺ7ሻ	is	differentiated	with	respect	to	ݖ,	with	the	result	equated	to	zero	leading	to	the	expression	
	

േݖ ൌ
െܸ݇ േ ଶܯ2

଴ߠ݇
ଶ ൌ ଴ݖ േ 	ሺ10ሻ																																																																																																																																																																																				ோݖ

												
giving	us	ିݖ	and	ݖା.	It	is	apparent	that	the	Eq.	ሺ10ሻ	consists	of	the	sum	of	two	terms,	namely	the	waist	location	as	defined	by	
Eq.	ሺ8ሻ,	and	an	extra	term.	The	latter	term	is	referred	to	as	the	Rayleigh	range,	ݖோ,	which	is	half	the	confocal	parameter	and	
defined	as,	
	

ோݖ ൌ
ଵ
ଶ
ሺݖା െ ሻିݖ ൌ

ଶܯ2

଴ߠ݇
ଶ .																																																																																																																																																																																											ሺ11ሻ	

	
We	can	see	that	ݖோߠ଴

ଶ	is	also	a	propagation	invariant.	If	we	equate	it	to	߱଴ߠ଴,	another	definition	of	the	invariant,	we	get	߱଴ ൌ
	.଴ߠோݖ If	we	 eliminate	ߠ଴	from	Eq.	 ሺ9ሻ	 as	 defined	 by	 this	 equation,	 another	 variation	 of	 the	 propagation	 invariant,	߱଴

ଶ/ݖோ	is	
realised.	
	
3. Local	and	curvature	divergence,	and	the	focusing	parameter	
	
The	ܲܲܤ	at	the	target	can	be	defined	as	߱ଶሺݖሻߠ௟

ଶሺݖሻ,	where	ߠ௟ሺݖሻ	are	the	local	divergences.	It	has	been	specified	earlier	that	
the	 square	 of	 this	 version	 of	 the	ܲܲܤ	can	 also	 be	 given	 by	߱ଶሺݖሻߠ଴

ଶ െ ܸଶሺݖሻ.	 Comparing	 the	 two	 expressions,	 the	 local	
divergence	squared,	ߠ௟

ଶሺݖሻ,	is	then	found	to	be	
		

ሻݖ௟ሺߠ ൌ ቆ	ߠ଴
ଶ െ

ܸଶሺݖሻ

߱ଶሺݖሻ
ቇ
ଵ/ଶ

ൌ
ଶܯ2

݇߱ሺݖሻ
.																																																																																																																																																																					ሺ12ሻ	

	
In	the	limit	of	large	ݖ	this	parameter	tends	to	0.	At	the	same	time,	it	can	be	verified	by	using	Eq.	ሺ8ሻ	that	ߠ௟ሺݖ଴ሻ ൌ 	this	At	଴.ߠ
stage,	we	propose	a	new	type	of	divergence	which	we	will	to	refer	to	as	the	curvature	divergence,	ߠ௖ሺݖሻ,	defined	as		
	

ሻݖ௖ሺߠ ൌ
ܸሺݖሻ

߱ሺݖሻ
ൌ
߱ሺݖሻ

ܴሺݖሻ
.																																																																																																																																																																																															ሺ13ሻ	

	
We	derive	the	name	from	fact	that	this	method	involves	the	curvature‐removal	procedure	mentioned	earlier.	Note	that	the	
last	term	in	Eq.	ሺ13ሻ	originates	from	using	Eq.	ሺ7ሻ.	In	the	limit	of	large	ݖ,	in	the	far‐field,	ߠ௖ሺݖሻ	converges	to	ߠ଴.	At	the	waist,	
଴ሻݖ௖ሺߠ ൌ 0.	The	two	divergences	can	then	be	related	to	each	other	through	the	expression,		
	
௟ߠ
ଶሺݖሻ ൅ ሻݖ௖ଶሺߠ ൌ ଴ߠ

ଶ.																																																																																																																																																																																																			ሺ14ሻ		
	
At	the	Rayleigh	planes	ሺݖ ൌ 	,divergence	far‐field	the	of	70.7%	both	are	and	equal	are	divergences	curvature	and	local	the	േሻ,ݖ
േሻݖ௟ሺߠ ൌ േሻݖ௖ሺߠ ൌ

భ

√మ
	.଴ߠ

	
	
Fig.	2	The	curvature	divergence,	߱ሺݖሻ/ܴሺݖሻ,	subtended	by	the	plane	of	size	߱ሺݖሻ,	and	radius	of	curvature	ܴሺݖሻ.	In	comparison,	

the	far‐field	divergence	is	subtended	by	the	far‐field.		
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We	can	now	examine	the	meaning	of	the	curvature	divergence	utilizing	its	definition	given	by	the	last	term	in	Eq.	

ሺ13ሻ.	 It	 is	 an	angle	 subtended	by	 the	 curvature	of	 the	 local	 field.	The	angle,	ߠ௖ሺݖሻ,	 subtends	an	 arc	of	 radius	ܴሺݖሻ	with	 the	
centre	of	radius	of	curvature	centred	at	point	ݐ,	as	illustrated	in	Fig.	2,	which	shows	the	caustic	of	a	beam	including	the	plane	
of	minimum	beam	size,	the	waist.	If	the	position	of	the	initial	plane	is	located	very	far	from	the	waist,	the	wavefront	would	
have	a	radius	centred	at	the	waist,	thus	called	the	far‐field	divergence,	i.e.,	ߠ௖ሺݖሻ ൌ 	then	waist,	the	at	is	plane	initial	the	If	଴.ߠ
ሻݖ௖ሺߠ ൌ 0	since	the	curvature	of	the	field	would	be	zero.	In	between	these	two	extremes,	ߠ௖ሺݖሻ	is	between	0	and	ߠ଴.	
		

a. The	focusing	parameter	
	
We	 now	 present	 a	 model	 based	 on	 the	 focusing	 parameter	 using	 a	 different	 derivation	 from	 that	 used	 in	 Ref.	 ሾ7ሿ.	 Since	
߱଴
ଶߠ଴

ଶ ൌ ߱ଶሺݖሻߠ଴
ଶ െ ܸଶሺݖሻ,	after	making	ߠ଴

ଶ	the	subject	and	rearranging,	results	in	the	expression	
	

଴ߠ
ଶ ൌ

ܸଶሺݖሻ
߱ଶሺݖሻ

ቆ1 ൅
߱଴
ଶ

߱ଶሺݖሻ െ ߱଴
ଶቇ.																																																																																																																																																																													ሺ15ሻ	

	
The	numerator	and	denominator	of	the	fraction	inside	the	bracket	is	then	multiplied	by	ߠ଴

ଶ	such	that	the	ܲܲܤ	squared	waist	
width	in	the	numerator	is	replaced	by	ሺ2ܯଶ/݇ሻଶ,	whilst	that	in	denominator	is	replaced	by		߱ଶሺݖሻߠ଴

ଶ െ ܸଶሺݖሻ,	leading	to	the	
result,	
	

߱଴
ଶ

߱ଶሺݖሻ െ ߱଴
ଶ ൌ ቆ

ଶܯ2

ܸ݇ሺݖሻ
ቇ
ଶ

.																																																																																																																																																																																									ሺ16ሻ	

	
The	divergence	squared	can	be	expressed	as	shown	by	the	second	term	in	the	following	equation:		
	
଴ߠ
ଶ ൌ ሻሺ1ݖ௖ଶሺߠ ൅ ܰଶሺݖሻሻ ൌ ௟ߠ

ଶሺݖሻሺ1 ൅ ܰିଶሺݖሻሻ,																																																																																																																																																	ሺ17ሻ	
	
where	ߠ௖ሺݖሻ	has	been	defined	in	Eq.	ሺ13ሻ	and	ܰሺݖሻ	is	the	focusing	parameter	given	by	
	

ܰሺݖሻ ൌ
ଶܯ2

ܸ݇ሺݖሻ
ൌ
ሻݖ௟ሺߠ
ሻݖ௖ሺߠ

.																																																																																																																																																																																													ሺ18ሻ	

	
The	third	term	of	Eq.	ሺ17ሻ	is	a	result	of	replacing	ߠ௖ଶሺݖሻ	with	ߠ଴

ଶ െ ௟ߠ
ଶሺݖሻ.	Note	that	the	third	term	in	Eq.	ሺ18ሻ	can	be	derived	

from	the	second	equation	of	Eq.	 ሺ17ሻ.	From	Eq.	 ሺ17ሻ	we	note	 that	ߠ௟ሺݖሻ	ൌ	ߠ௖ሺݖሻ	when	ܰሺݖሻ ൌ േ1,	and	 that	when	ܰሺݖሻ ൌ 0,	
ሻݖ௖ሺߠ ൌ ሻݖ௟ሺߠ	and	଴ߠ ൌ0,	a	situation	which	reverses	when	ܰሺݖሻ →	∞.	Note	that	from	the	above	derivation,	it	is	obvious	that		
	
଴ߠ
ଶ ൌ ௖ଶሺ1ߠ ൅ ܰଶሻ ൌ ௟ߠ

ଶሺ1 ൅ ܰିଶሻ																																																																																																																																																																										ሺ19ሻ	
	
if	the	derivation	is	carried	out	with		߱ଶߠ଴

ଶ െ ܸଶ	instead,	where	ܰ	is	the	focusing	parameter	at	ݖ ൌ 0.		
Using	an	alternative	version	of	the	propagation	invariant	given	in	Eq.	ሺ18ሻ	means	that	ܰሺݖሻܸሺݖሻ ൌ ܸܰ.	This	means	

that	the	evolution	of	ܰሺݖሻ	through	the	space	ݖ ൒ 0	is	given	by		
	

ܰሺߞሻ ൌ
ܰ

1 ൅ ߞ ൅ ଶܰߞ ,																																																																																																																																																																																																	ሺ20ሻ	

	
where	ߞ	replaces	ݖ/ܴ,	 a	 dimensionless	 relative	position.	 The	 ratio	ܸሺߞሻ/ܸ	is	 evaluated	 from	Eq.	 ሺ6ሻ	 after	 replacing	ߠ଴

ଶ	with	
௖ଶሺ1ߠ ൅ ܰଶሻ,	using	Eqs.	ሺ6ሻ	and	ሺ13ሻ	to	simplify	the	result.	The	focusing	parameter	is	a	value	to	determine	the	position	of	the	
geometric	focus.	We	are	interested	in	ܰ	since	it	sets	the	focusing	properties	of	the	region	of	interest,	ߞ ൒ 0,	and	is	defined	by	
setting	Eq.	 ሺ18ሻ	at	ݖ ൌ 0.	The	version	of	ܰ	we	propose	 is	different	 from	that	shown	 in	Ref.	 ሾ7ሿ	 in	 that	 it	 includes	 the	beam	
quality	factor.	The	relationship	with	ܯଶ	shows	that	loss	of	beam	quality	results	in	the	drop	in	the	value	of	ܰ	except	when	ܸ ൌ
0	that	is	when	the	waist	is	at	Y.	The	process	optics	are	meant	to	control	ܰ	so	that	the	beam	moments	at	ܻ,	and	in	subsequent	
planes,	 have	 the	 desired	 values.	 The	 parameter	 to	 be	 controlled	 is	ܸ	by	 manipulating	 the	ܦܥܤܣ	elements	 of	 the	 process	
optics.	As	an	example,	we	select	what	may	be	the	simplest	optical	device:	a	positive	thin	 lens	attached	directly	to	the	 laser	
source.	In	that	case,	ܰ	takes	the	form	of	2ܯଶ݂/݇ሺെ߱௜

ଶ ൅ ݂ ௜ܸሻ,	expressed	in	terms	of	the	source	parameters.	If	 ௜ܸ ൌ 0,	as	in	the	
case	of	most	off‐the‐shelf	laser	systems,	then	ܰ	takes	on	the	value	െ2ܯଶ݂/݇߱௜

ଶ	which	has	a	directly	proportional	relationship	
with	݂.	Therefore,	the	control	parameter	in	this	particular	case	is	݂,	with	ܰ	being	the	output.		
	

b. Evolution	of	the	normalized	local	and	curvature	divergences	
	
From	the	results	so	far,	the	evolution	of	the	divergences	as	shown	in	Eqs.	ሺ12ሻ	and	ሺ13ሻ	can	be	presented	in	terms	of	ܰ.	The	
results,	expressed	as	normalized	by	ߠ଴

ଶ,	are	as	follows:		
	
௟ߠ
ଶሺߞሻ

଴ߠ
ଶ ൌ

ܰଶ

1 ൅ ܰଶ

1
ሺ1 ൅ ሻଶߞ ൅ ଶܰଶߞ .																																																																																																																																																																								ሺ21ሻ	
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ሻߞ௖ଶሺߠ

଴ߠ
ଶ ൌ

1
1 ൅ ܰଶ

ሺ1 ൅ ߞ ൅ ଶሻଶܰߞ

ሺ1 ൅ ሻଶߞ ൅ ଶܰଶߞ .																																																																																																																																																																									ሺ22ሻ	

	
The	two	expressions	as	functions	of	ߞ	and	ܰ	are	plotted	in	Figs.	3ሺaሻ	and	3ሺbሻ,	respectively.	The	above	equations	confirm	the	
fact	that	the	ratios	ߠ௟

ଶሺߞሻ/ߠ଴
ଶ	and	ߠ௖ଶሺߞሻ/ߠ଴

ଶ	have	values	between	0	and	1	and	that	they	add	up	to	1.	 In	Fig.	3ሺaሻ,	at	 large	|ߞ|,	
ሻߞ௟ሺߠ	which	in	ܰ	each	for	value	one	is	There	ܰ.	all	for	0	approaches	ሻߞ௟ሺߠ ൌ െ1	range	the	in	located	all	are	they	and	଴ߠ ൑ ߞ ൑
0.	At	 large	|ܰ|,	 this	maximum	occurs	when	ߞ ൌ 0.	 Getting	 close	 to	|ܰ| ൌ 0,	 the	maximum	 shifts	 towards,	 and	 is	 ultimately	
located	at,	ߞ ൌ െ1	when	ܰ ൌ 0,	a	point	we	will	refer	to	as	ݔ.	In	Fig.	3ሺbሻ,	the	opposite	occurs	in	that	ߠ௖ሺߞሻ	approaches	ߠ଴	for	
large	|ߞ|.	The	minima	in	Fig.	3ሺbሻ	are	located	in	exactly	the	same	coordinates	as	the	maxima	of	Fig.	3ሺaሻ.	It	is	apparent	that	at	
these	maxima/minima,	ߞ ൌ 	and	3ሺbሻ,	and	3ሺaሻ	Eqs.	either	of	gradient	the	calculating	by	found	is	which	location,	waist	the	଴,ߞ
equating	the	result	to	0.	The	result	is	the	first	equation	below:	
	

଴ߞ ൌ െ
1

1 ൅ ܰଶ ൌ െ
௖ଶߠ

଴ߠ
ଶ ;			

߱଴
ଶ

߱ଶ ൌ
ܰଶ

1 ൅ ܰଶ ൌ
௟ߠ
ଶ

଴ߠ
ଶ 																																																																																																																																																					ሺ23ሻ	

	
This	 is	sometimes	referred	 to	as	 the	relative	 focal	shift	of	an	optical	system	ሾ4ሿ.	 It	 illustrates	 the	relationship	between	 the	
waist	 location	 and	 the	 focus	 and	 always	 fulfils	 the	 condition,	െ1 ൑ ଴ߞ ൑ 0,	 indicating	 the	 limit	 to	which	 the	waist	 can	 be	
located	given	the	field	radius	of	curvature	of	a	focusing	beam.	The	moduli	of	the	focal	shift	and	field	curvature	are	equal	only	
when	ܰ ൌ 0,	i.e.,	when	the	waist	is	at	the	source	or	ߞ଴ ≅ െ1,	which	is	in	the	geometric	limit.	At	any	other	plane,	ߞ଴ ൏ െ1	for	all	
values	of	ܰ,	that	is,	the	waist	is	always	located	before	the	geometric	focus.	The	second	equation	is	the	relative	waist	size	and	
can	 be	 derived	 by	 using	 the	 definition	 of	 the	 beam	parameter	 product		߱ଶߠ଴

ଶ െ ܸଶ	in	 Eq.	 ሺ9ሻ	 and	 expressing	 the	 result	 in	
terms	 of	ߠ௟ሺߞሻ	and	ߠ௖ሺߞሻ	and	 finally	 in	 terms	 of	ܰ.	 The	 waist	 has	 limits,	0 ൏ ߱଴ ൑ ߱,	 with	 a	 minimum	 approached	 at	 the	
geometric	 limit.	At	|ܰ| ൌ 0,	the	waist	width	approaches	0.	Moreover,	we	can	ascertain	an	 implicit	relationship	between	the	
two,	߱଴

ଶ/߱ଶ െ ଴ߞ ൌ 1	by	adding	the	square	of	the	relative	local	and	curvature	divergences.	This	equation	gives	a	mathematical	
relationship	that	quantifies	the	way	in	which	an	increase	in	߱଴	results	in	an	increase	in	ߞ଴	given	a	specific	value	of	߱.	
	

	
					

Fig.	3	Local	ሺaሻ	and	curvature	ሺbሻ	divergence	normalised	by	the	far‐field	divergence	expressed	as	a	function	of	ߞ	and	ܰ.	The	
point	marked	x	indicates	the	geometric	limit	where	ሺܰ, ,ߞ ,ሺܰ	and	௢ሻߠ/ሻߞ௟ሺߠ ,ߞ 	and	ሺ0,െ1,1ሻ	values	on	take	௢ሻߠ/ሻߞ௖ሺߠ

ሺ0, െ1,0ሻ,	respectively.	
	
4. Parametric	characterization	of	the	paraxial	propagation	of	light	beams	
	
For	 first	order	beam	propagation,	we	consider	the	beam	during	translation	where	ݖ ൒ 0.	We	are	 in	a	position	to	select	 the	
conditions	at	ݖ ൌ 0	such	that	the	beam	would	have	selected	properties	at	any	point	after	that.	This	is	achieved	by	specifying	
an	 appropriate	ܦܥܤܣ	system.	 It	 has	 been	 established	 in	 the	 previous	 section	 that	 the	 control	 parameter	 would	 be	 the	
focusing	parameter,	ܰ.	To	 that	 effect,	we	need	 to	 specify	 the	 relationship	between	various	output	parameters	 and	ܰ.	This	
allows	 the	 system	designer	 to	 anticipate	 these	parameters	by	 setting	ܰ,	which	 can	be	demonstrated	by	 replacing	 the	 lens	
with	one	having	a	different	focal	length.	At	the	very	least,	we	intend	to	use	this	model	to	analyse	the	limits	of	the	parameters	
that	 can	 be	 acquired	 given	 certain	 input	 beam	 conditions.	 Including	ܰ	in	 the	model	 allows	 the	 inclusion	 of	 the	 local	 and	
curvature	divergences	where	we	use	Eqs.	ሺ19ሻ,	ሺ21ሻ	and	ሺ22ሻ	to	make	the	necessary	changes.	

We	begin	with	the	beam	width	as	defined	by	Eq.	ሺ2ሻ.	 In	 this	case,	 the	equation	 is	normalised	by	the	beam	width,	
which	simplifies	the	result.	Expressed	in	terms	of	the	focusing	parameter,	we	get	
	
߱ଶሺߞሻ

߱ଶ ൌ ሺ1 ൅ ሻଶߞ ൅ ଶܰଶߞ ൌ
௟ߠ
ଶ

௟ߠ
ଶሺߞሻ

.																																																																																																																																																																						ሺ24ሻ	
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The	third	term	comes	from	combining	Eq.	ሺ21ሻ	and	the	second	equation	of	Eq.	ሺ23ሻ.	The	propagation	invariant,	߱ሺߞሻߠ௟ሺߞሻ,	
can	also	be	utilized	to	make	the	same	connection.	The	graph	for	Eq.	ሺ24ሻ	is	shown	in	Fig.	4.	As	expected,	߱ሺߞሻ	increases	with	
increase	 in	|ܰ|.	 In	 other	words,	 the	 smaller	|ܰ|	is,	 the	more	 focused	 the	beam.	The	point	ߞ ൌ 0	is	 the	 starting	point	 of	 the	
beam	propagation,	with	positive	values	ሺwhen	ܴ ൐ 0ሻ	indicating	a	diverging	beam.	Negative	values	ሺwhen	ܴ ൏ 0ሻ	indicate	a	
converging	beam	to	a	Gaussian	plane	at	ߞ ൌ െ1,	whose	beam	width	is	given	by	߱௙ ൌ ߱ሺെ1ሻ ൌ ܰ߱.	The	size	of	the	beam	has	a	
minimum	 relative	 value	 at	ሺെ1/ሺ1 ൅ ܰଶሻ;ܰଶ/ሺ1 ൅ ܰଶሻሻ	which	 is	 identical	 to	ሺߞ଴; ߱଴

ଶ/߱ଶሻ	and	ሺെߠ௖ଶ/ߠ଴
ଶ; ௟ߠ

ଶ/ߠ଴
ଶሻ.	 This	means	

that	it	varies	between	0	and	1	at	the	points	where	ߞ	is	between	‐1	and	0.	In	the	geometric	limit	the	minimum	is	at	ሼെ1; 0ሽ	and	
the	graph	follows	the	equation	߱ሺߞሻ/߱ ൌ |1 ൅ ߞ	about	symmetric	is	which	,|ߞ ൌ െ1,	as	the	term	in	the	centre	becomes	very	
small.	 In	other	words,	only	 in	the	geometric	 limit	 is	 the	waist	 location	the	same	as	the	Gaussian	plane.	At	any	other	ܰ,	 the	
waist	location	falls	short	of	the	Gaussian	plane.	The	larger	ܰ	is,	the	further	the	waist	is	removed	from	the	Gaussian	plane.	In	
the	other	extreme,	when	ܰ →	0	the	minimum	tends	to	1	and	we	get	߱ሺߞሻ/߱ ≅ 	becoming	term	central	the	of	result	a	as	ߞܰ
very	large.	In	the	process,	the	graph	becomes	more	symmetrical	about	the	vertical	axis,	meaning	that	the	waist	remains	at	the	
initial	 position.	The	graph	of	ߠ௟ሺߞሻ/ߠ௟	is	 shown	 in	Fig.	 4ሺbሻ	which	 is	 in	 fact	 a	 reciprocal	 of	 Fig.	 4ሺaሻ	which	means	 that	 the	
minima	 of	 each	 graph	 becomes	 the	 maxima.	 At	ܰ ൌ 0,	 the	 local	 divergence	 magnification	 is	 infinite	 meaning	 that	 it	 is	
undefined	in	the	geometric	limit.	For	all	ܰ	and	ߞ ൌ ሻߞ௟ሺߠ	,0 ൌ 	the	|ܰ|,	large	For	constant.	remains	ሻߞ௟ሺߠ	that	means	which	௟ߠ
maxima	is	located	at	ߞ ൌ 0	but	as	|ܰ|	approaches	0,	the	maxima	at	each	ܰ,	ߠ௟ሺߞሻ ൐ 	point	the	towards	shifts	slowly	|ߞ|	and	௟,ߠ
at	which	ߠ௟ሺߞሻ/ߠ௟	approaches	∞.	
	

	
		

Fig.	4	Beam	size	ሺaሻ	and	local	divergence	ሺbሻ	magnifications	as	functions	of	the	relative	position	at	selected	values	of	ܰ.	
	

The	normalized	space‐angular	moment	derived	from	Eq.	ሺ20ሻ,	is	given	by		
	
ܸሺߞሻ

ܸ
ൌ 1 ൅ ߞ ൅ ଶܰߞ ൌ

ܰ
ܰሺߞሻ

.																																																																																																																																																																																		ሺ25ሻ	

	
The	plot	of	ܸሺߞሻ/ܸ	versus	ߞ	shown	in	Fig.	5ሺaሻ	is	a	straight	line	of	gradient	1 ൅ ܰଶ	with	the	intercept	at	1	for	all	ܰ.	The	graph	
crosses	the	horizontal	axis	when	ߞ	takes	a	value	of	െ1/ሺ1 ൅ ܰଶሻ	which	is	the	relative	waist	 location	ሺsee	Eq.	ሺ23ሻሻ.	Since	ܰ	
varies	from	0	to	∞	the	intercept	on	this	axis	will	be	between	‐1	and	0	for	all	values	of	ܰ.	The	gradient	of	each	graph	is	ߠ଴

ଶ/ߠ௖ଶ	
and	varies	between	1,	at	the	geometric	limit,	and	∞,	a	vertical	line	also	passing	through	the	origin.	The	condition	ܸሺߞሻ ൌ 0	is	
fulfilled	when	ߞ	has	the	same	value	as	the	minima	of	Fig.	4ሺaሻ,	namely	െߠ௖ଶ/ߠ଴

ଶ	.	This	agrees	with	the	space‐angular	moment	
being	zero	when	the	size	of	the	beam	is	smallest	at	its	waist.	The	last	term	of	Eq.	ሺ25ሻ	is	plotted	in	Fig.	5ሺbሻ.	The	asymptotes	
of	 this	 graph	 are	 obviously	 located	 at	 points	 where	 the	 graphs	 of	 Fig.	 5ሺaሻ	 cross	 the	 horizontal	 axis	 and	 are	 all	 located	
between	0	and	‐1.	
	

	
	

Fig.	5	Space‐angular	moment	ሺaሻ	and	focusing	parameter	ሺbሻ	as	magnifications	as	functions	of	the	relative	position	at	selected	
values	of	ܰ.	
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The	evolution	of	the	curvature	divergence	can	be	calculated	from	combining	Eq.	ሺ22ሻ	with	the	first	equation	of	Eq.	
ሺ23ሻ	which	results	in	the	first	equation	below;	

	
ሻߞ௖ଶሺߠ

௖ଶߠ
ൌ

ሺ1 ൅ ߞ ൅ ଶሻଶܰߞ

ሺ1 ൅ ሻଶߞ ൅ ଶܰଶߞ ൌ
ܴଶ

ܴଶሺߞሻ
.																																																																																																																																																																							ሺ25ሻ	

	
The	equation	is	plotted	in	Fig.	6ሺaሻ	and	shows	a	trivial	result	that	when	ܰ ൌ ሻߞ௖ሺߠ	,0 ൌ ߞ	at	except	ߞ	all	for	௖ߠ ൌ െ1	where	it	
approaches	 0	 as	|ܰ| → 0.	 For	 each	|ܰ| ് 0,	 the	 relationship	 between	ߠ௖ሺߞሻ/ߠ௖	versus	ߞ	possesses	 a	minimum	which	match	
the	maxima	of	Fig.	3ሺaሻ.	For	large	|ܰ|,	this	minima	has	a	value	ߠ௖ሺߞሻ ൌ 0,	that	is,	when	ߞ ൌ 0	but	as	|ܰ| → ሻߞ௖ሺߠ	,0 → 	it	until	௖ߠ
reaches	 this	mark	when	ܰ ൌ 0	and	ߞ ൌ െ1	which	 is	 the	geometric	 limit.	 In	 the	 limit,	ߞ → േ∞,	ߠ௖ሺߞሻ/ߠ௖ → √1 ൅ ܰଶ	for	all	ܰ.	
Also	note	 that	when	ߞ ൌ ሻߞ௖ሺߠ	,0 ൌ 	for	௖ߠ all	ܰ.	 The	 second	 term	of	 the	 above	 equation	 can	be	 simplified	by	 replacing	 the	
numerator	 and	 denominator	 by	 Eqs.	 ሺ25ሻ	 and	 ሺ24ሻ,	 respectively	where	 they	 are	 expressed	 in	 terms	of	 the	 subject	 terms,	
respectively.	The	result	 is	ሺܸሺߞሻ/ܸሻଶ/ሺ߱/߱ሺߞሻሻଶ	which,	when	simplified	using	Eq.	ሺ7ሻ	reduces	to	the	right	hand	side	of	Eq.	
ሺ25ሻ.	 This	 gives	 an	 expression	 of	 the	 evolution	 of	 the	 radius	 of	 curvature	which	 is	 the	 reciprocal	 of	 the	 evolution	 of	 the	
curvature	 divergence.	 As	 a	 result,	 it	 is	 plotted	 in	 Fig.	 6ሺbሻ	 and	 shows	 that	 the	minima	 acquired	 in	 Fig.	 6ሺaሻ	 translate	 to	
asymptotes	when	the	initial	wavefront	is	flat,	that	is,	when	curvature,	1/ܴ ൌ 0.	Note	that	Eq.	ሺ25ሻ	translates	into	yet	another	
propagation	invariant,	ߠ௖ሺߞሻܴሺߞሻ ൌ 	.௖ܴߠ
	

	
	

Fig.	6	Curvature	divergence	ሺaሻ	and	wavefront	radius	of	curvature	ሺbሻ	magnification	as	functions	of	the	relative	position	at	
selected	values	of	ܰ.	

	
We	can	look	at	the	Rayleigh	planes,	ߞേ,	calculated	from	the	expression	Eq.	11.	The	resultant	equation	is	given	by	

	

േߞ ൌ
െ1 േ ܰ
1 ൅ ܰଶ ൌ

െߠ௖ଶ േ ௟ߠ௖ߠ
଴ߠ
ଶ ;		െ

1
2
െ

1

√2
൑ േߞ ൑ െ

1
2
൅

1

√2
	.																																																																																																																										ሺ26ሻ	

	
Plots	of	ߞା	and	ିߞ	are	illustrated	in	Fig.	7.	The	results	clearly	show	that	there	is	a	maximum	limit	beyond	which	the	relative	
position	of	the	Rayleigh	planes	cannot	be	located	given	the	radius	of	curvature,	ܴ.	The	output	fits	in	the	range	given	on	the	
right	 hand	 side	 of	 Eq.	 ሺ26ሻ.	 This	 implies	 that	 the	ߞା	curve	 has	 respective	maxima	 and	minima	 at	 points,	ሼ1 ൅ √2,െ1/2 ൅
1/√2ሽ 	and	 ሼ1 െ √2,െ1/2 െ 1/√2ሻሽ 	and	 the	ିߞ 	curve	 has	 maxima	 and	 minima	 at	 ሼെ1 െ √2,െ1/2 ൅ 1/√2ሽ 	and	 ሼെ1 ൅
√2,െ1/2 െ 1/√2ሽ,	respectively.	In	the	limit	of	large	|ܰ|,	ߞേ	approaches	0,	and	at	the	geometric	limit,	both	graphs	coincide	at	
the	point	ሺ0, െ1ሻ	where	ߞோ ൌ 0.	The	section	of	the	graph	below	the	horizontal	axis	represents	a	focused	beam	and	shows	that	
the	 limit	 of	ߞേ	is	െ1/2 െ 1/√2	where	ܰ ൌ െ1 ൅ √2	and	1 െ √2	for	ିߞ	and	ߞା,	 respectively.	 The	 section	 above	 the	 horizontal	
axis	 corresponds	 to	 a	 diverging	 beam	 having	 a	 limit	 of	െ1/2 ൅ 1/√2	where	ܰ ൌ 1 ൅ √2	and	െ1 െ √2	for	ߞା 	and	ିߞ ,	
respectively.	The	Rayleigh	range	normalized	by	the	radius	of	curvature	in	terms	of	ܰ	is	shown	to	be	
				

ோߞ 	ൌ
ܰ

1 ൅ ܰଶ ൌ
௖ߠ௟ߠ
଴ߠ
ଶ ;		െ

1
2
൑ ோߞ ൑

1
2
.																																																																																																																																																																			ሺ27ሻ	

	
It	 is	 apparent	 that	ߞோ	has	 a	modulus	 less	 than	 0.5,	meaning	 that	 for	 any	 beam,	 the	maximum	Rayleigh	 range	 that	 can	 be	
achieved	is	half	the	radius	of	curvature	at	ߞ ൌ 0,	regardless	whether	the	beam	is	focused	or	diverging.	The	graph	for	Eq.	ሺ27ሻ	
is	shown	in	Fig.	ሺ6ሻ	as	well	and	calculated	at	each	ܰ	using	the	expression	ሺߞା െ 	the	setting	for	responsible	is	result	This	ሻ/2.ିߞ
range	of	the	product	of	the	local	and	curvature	divergences	between	െ0.5	and	0.5	of	the	far‐field	divergence	squared,	which	
is	achieved	when	ܰ ൌ െ1	and	1,	respectively.	
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Fig.	7	Normalised	Rayleigh	planes	as	a	function	of	the	focusing	parameter,	ܰ.	
	
5. Discussion	and	conclusion	
	
The	model	we	have	presented	allows	for	the	complete	characterization	of	any	light	beam	in	which	any	of	the	three	second	
order	moments,	 width,	 divergence	 and	 space‐angular	moment,	 can	 be	 acquired	 from	 the	measured	 electric	 field	 through	
calculation.	The	measurements	are	expected	to	take	place	in	one	plane	assuming	that	the	projected	propagation	is	paraxial	
and	 through	 free	space	such	 that	other	parameters	such	as	waist	width	and	 location,	divergence,	Rayleigh	range	and	 field	
curvature,	can	be	calculated	from	the	second	order	moments.	We	have	already	shown	how	the	measurement	of	ܯଶ	can	be	so	
acquired.	 For	 this	 discussion,	 we	 assumed	 that	 we	 are	 starting	 our	 calculation	 at	ݖ ൌ 0	where	 we	 obtain	߱,	ߠ଴	and	ܸ	and	
consequently	also	ܯଶ.	From	Eqs.	ሺ7ሻ,	ሺ8ሻ,	ሺ9ሻ	and	ሺ11ሻ,	we	can	calculate	ܴ,	ݖ଴,	߱଴	and	ݖோ,	respectively.	The	value	of	߱ሺݖሻ,	ܸሺݖሻ	
at	some	plane	ݖ ൐ 0	can	be	calculated	using	the	appropriate	form	of	Eqs.	ሺ2ሻ	and	ሺ4ሻ,	from	which	ܴሺݖሻ	is	calculated	using	Eq.	
ሺ7ሻ.	The	changes	that	the	beam	would	go	through	if	the	translation	is	replaced	by	a	generalized	ܦܥܤܣ	system	can	be	realised	
again	 using	 Eqs	 ሺ2ሻ‐ሺ4ሻ.	 We	 have	 also	 shown	 parameters	 ‐	 the	 local	 divergence,	 an	 established	 but	 relatively	 unknown	
parameter,	and	curvature	divergence,	a	new	parameter	–	both	which	can	be	calculated	from	the	basic	parameters	as	shown	in	
Eqs.	ሺ12ሻ	and	ሺ13ሻ.	We	have	established	that	the	squares	of	these	two	divergences	add	up	to	the	far‐field	divergence	squared.	

We	have	rewritten	the	beam	propagation	theory	by	expressing	all	the	important	parameters	in	normalized	form	in	
which	the	focusing	parameter	ܰ	was	introduced.	The	analysis	allowed	us	to	look	further,	investigate	the	limits	of	the	various	
parameters	 under	 various	 conditions.	 Though	 aspects	 of	 this	 work	 has	 been	 demonstrated	 in	 a	 previous	 publication	 ሾ4ሿ	
including	the	references	mentioned	therein,	we	showed,	in	a	new	result,	that	the	focusing	parameter	can	be	defined	as	a	ratio	
of	the	local	to	curvature	divergence.	This	allowed	us	to	replace	the	focusing	parameter	with	the	divergences	in	order	to	study	
them	in	relation	to	other	propagation	parameters	such	as	beam	width,	space‐angular	moment,	waist	width	and	location,	and	
Rayleigh	range.	The	normalized	nature	of	the	formulation	allows	the	user	to	compare	two	beams	under	different	propagation	
regimes.	A	typical	example	is	a	high	power	continuous	wave	laser	beam	that	can	be	scaled	up	to	several	kilowatts.	Most	of	
these	systems	are	fitted	a	transmission	system	which	includes	a	collimator	to	keep	the	far‐field	divergence	as	low	as	possible	
and	a	window	is	usually	fitted	to	a	collimator	to	limit	the	contamination	of	the	system.	However,	as	one	scales	up	the	power,	
the	 window	 and,	 to	 some	 extent,	 the	 collimator	 experience	 thermal	 lensing.	 This	 means	 that	 the	 transmitted	 beam	
experiences	focusing,	which	causes	it	to	get	smaller	at	the	target	as	the	power	is	scaled	up.	It	would	be	prudent	to	determine	
the	focusing	parameter	at	each	power	scale	at	which	each	measurement	is	taken	as	a	way	of	quantifying	the	thermal	effect	of	
the	 laser	 system	 on	 the	 transmission	 systems	 or	 a	 particular	 component.	 The	 process	 can	 be	 repeated	 every	 time	 a	 new	
component	 is	 added	 onto	 the	 propagation	 path	 of	 the	 high	 power	 beam.	 Once	 the	 focusing	 parameter	 is	 determined,	 it	
becomes	easier	to	better	predict	and	simulate	the	performance	of	the	whole	system.	

We	also	discussed	the	following	six	propagation	invariants:	߱଴ߠ଴,	߱ሺݖሻߠ௟ሺݖሻ,	ݖோߠ଴
ଶ,	ܰሺݖሻܸሺݖሻ,	ߠ௖ሺݖሻܴሺݖሻ	and	߱଴

ଶ/ݖோ.	
Since	 the	 first	 five	 invariants	 are	 expressed	 as	 products	 of	 two	 parameters,	 increasing	 one	 parameter	 by	 a	 certain	 factor	
reduces	the	other	one	by	the	same	factor.	In	theory,	if	one	wants	to	increase	߱଴	to	such	an	extent	that	it	can	capture	the	beam	
profile	at	the	waist,	then	one	should	decrease	ߠ଴	by	an	appropriate	preselected	factor.	The	sixth	invariant	is	expressed	as	a	
ratio,	which	means	that	both	߱଴

ଶ	and	ݖோ	increase	or	decrease	by	the	same	factor.	Since	all	the	invariants	are	all	equal	to	2ܯଶ/
݇,	individually,	they	can	be	used	to	determine	ܯଶ.	Moreover,	they	can	be	equated	to	each	other	to	solve	for	any	unknown.		
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