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ABSTRACT
This paper paves the way when the assumption of normality is challenged within the wireless communications
systems arena. Innovative results pertaining to the distributions of quadratic forms and their associated eigen-
value density functions for the complex elliptical family are derived, which includes an original Rayleigh-type
representation of channels. The presented analytical framework provides computationally convenient forms of
these distributions. The results are applied to evaluate an important information-theoretic measure, namely
channel capacity. Superior performance in terms of higher capacity of the wireless channel is obtained when
considering the underlying complex matrix variate t distribution compared to the usual complex matrix variate
normal assumption.
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1 Introduction

In wireless communications, systems with multiple-input-multiple-output (MIMO) design have become very
popular since they allow higher bit rate and because of their applications in the analysis of signal-to-noise ratio
(SNR). In the analysis of channel capacity, the formation of complex channel coe¢ cients play a deterministic
role and been taken to be complex matrix variate normal distributed so far, to the best of our knowledge.
However, this normality assumption has not been challenged. de Souza and Yacoub (2008) mentioned that the
Rayleigh density function is usually derived based on the assumption that from the central limit theorem for
large number of partial waves, the resultant process can be decomposed into two orthogonal zero-mean and
equal-standard deviation normal random processes. This is an approximation and the restriction of complex
normal is unnecessary - it is not always a large number of interfering signals. Thus a more general assumption
than complex matrix variate normal may not be that far from reality (see also Ollila et. al. (2011)). This
speculative research challenges this assumption of a channel being fed by normal inputs, and sets the platform
for introducing our newly proposed models to the MIMO wireless systems arena, and to provide deeper insight
into these systems.

The performance of these MIMO systems relies on the quadratic form of the complex normal channel
matrix, with n "inputs" and p "outputs", colloquially referred to as "receivers" and "transmitters" respectively.
Thus, the distribution of quadratic forms of the underlying complex normal channel matrix is of particular
interest. Distributions of quadratic forms of complex normal matrix variates is a topic that has been studied
to a wide extent in literature (James (1964), Gupta and Varga (1995), Ratnarajah and Vaillancourt (2005)b).
In this paper the distribution of S = XHAX is of interest2 , where X 2 Cn�p1 is taken to be the complex
matrix variate elliptical distribution to address the criticism against the questionable use of the normal model
(A 2 Cn�n2 , where Cn�p1 denotes the space of n� p complex matrices, and Cp�p2 denotes the space of Hermitian
positive de�nite matrices of dimension p). This complex matrix variate elliptical distribution, which contains
the well-studied complex matrix variate normal distribution as a special case, is de�ned next.

The complex matrix variate X 2 Cn�p1 , whose distribution is absolutely continuous, has the complex
matrix variate elliptical distribution with parameters M 2 Cn�p1 , � 2 Cn�n2 , � 2 Cp�p2 , denoted by X �

1Corresponding author: johan.ferreira@up.ac.za
2XH denotes the conjugate transpose of X.
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CEn�p(M;�
�;g), if it has the following density function3 (see also Micheas et. al. (2006)):

hX(X) =
1

j�jnj�jp g
�
� tr

�
��1(X�M)H��1(X�M)

��
: (1)

In (1), g (�) denotes the density generator4 g : R+ ! R+, which should be a function of a quadratic form (see
also Gupta and Varga (1995)).

Chu (1973) and Gupta and Varga (1995) demonstrates that real elliptical distributions can always be expanded
as an integral of a set of normal densities. Similar to Provost and Cheong (2002), we present the following
lemma to de�ne the complex matrix variate elliptical distribution as a weighted representation of complex
matrix variate normal density functions. This representation can be used to explore the distribution of S when
the distribution of X can be that of any member of the complex matrix variate elliptical class.

Lemma 1 If X � CEn�p(M;�
�; g) with density function hX(X), then there exists a scalar weight function
W(�) on R+ such that

hX(X) =

Z
R+

W(t)fCNn�p(M;�
t�1�)(Xjt)dt

where5 fCNn�p(M;�
t�1�)(Xjt) = 1
�pnj�jpjt�1�jn etr

�
�
�
t��1(X�M)H��1(X�M)

��
is the density function

of Xjt � CNn�p(M;�
t�1�), with

W(t) = �npt�npL�1
�
g
�
� tr

�
��1(X�M)H��1(X�M)

��	
where L is the Laplace transform operator.

Proof. Let s = tr
�
��1(X�M)H��1(X�M)

�
. Using (1) we have

hX(X) = j�j�n j�j�p g [�s]
= j�j�n j�j�p L

�
W(t)��nptnp

�
= j�j�n j�j�p

Z
R+

W(t)��nptnpe�tsdt

=

Z
R+

W(t)��np
��t�1����n j�j�p e�tsdt

from where the result follows.

Remark 2 Under the assumptions of Lemma 1, using Fubbini�s Theorem, we have

1 =

Z
Cn�p1

hX(X)dX =

Z
R+

W(t)

0B@ Z
Cn�p1

fX(X)dX

1CA dt = Z
R+

W(t)dt:

Thus for a non-negative weight function W(�), the function W(�) is a density function of t. Therefore Lemma
1 can only be interpreted as a representation of a scale mixture of complex matrix variate normal distributions.
However, W(�) is not always positive and can be negative on some domains (see Provost and Cheong (2002)
for some examples). The only limitation of Lemma 1 is that it de�nes those complex matrix variate elliptical
distributions whose inverse Laplace transform exist. There are some mild su¢ cient conditions that ensure the
inverse Laplace transform exists for most of the well-known complex matrix variate elliptical distributions.

3 jXj denotes the determinant of matrix X.
4R+ denotes the positive real line.
5etr(�) = etr (�) where tr (X) denotes the trace of matrix X, and X�1 denotes the inverse of matrix X.
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In this paper two special cases of the complex matrix variate elliptical model is of interest. Firstly, the complex
random matrix X 2 Cn�p1 has the complex matrix variate normal distribution with weight function W(�) in
Lemma 1 given by

W(t) = �(t� 1) (2)

where �(�) is the dirac delta function (see Chu (1973) and Provost and Cheong (2002)).
Secondly, X 2 Cn�p1 has the complex matrix variate t distribution with the parameters M 2 Cn�p1 , � 2

Cn�n2 , � 2 Cp�p2 and degrees of freedom � > 0, denoted by X � Ctn�p(M;�
�; �), with the following density
function:

fX(X) =
�npC� (np+ �)
�npC�p(�)

�
1 +

1

�
tr
�
��1(X�M)H��1(X�M)

���(np+�)
(3)

where the complex multivariate gamma function is given by (see James (1964))

C�p(a) = �
1
2p(p�1)

pQ
i=1

� (a� (i� 1)) : (4)

In this case the weight function W(�) in Lemma 1 is given by

W(t) = (t�)�e�t�

t�(�)
(5)

where �(�) denotes the well-known gamma function.
This paper is organized as follows: in section 2 the distribution of the quadratic form within the complex

elliptical class for the nonsingular- and singular case is derived, along with the density functions of the eigenvalues
of these quadratic forms. The distribution of the eigenvalues of the quadratic forms are of particular interest in
the MIMO environment as it describes the underlying distribution for many of the performance measures for
these MIMO systems. In section 3 this newly developed theory in the complex elliptical class is used to evaluate
the capacity of MIMO wireless systems for a speci�c channel environment; by particularly assuming the complex
matrix variate t distribution. Furthermore, a Rayleigh-type distribution stemming from the underlying elliptical
assumption, is also de�ned. Section 4 highlights the advantages of the complex matrix variate t distribution in
the MIMO environment and includes some conclusions.

2 Distributions of quadratic forms from the complex elliptical class

In this section the necessary theoretical development is presented to set the platform for section 3. The density
functions of the nonsingular and singular quadratic forms of complex elliptical random matrices are derived and
particular cases of them are of special focus. In addition, the density functions for the joint eigenvalues are also
derived; these densities are of particular importance when calculating performance measures of MIMO systems.
For the reader�s convenience, Remark 3 provides background regarding matrix spaces.

Remark 3 Matrix spaces: The set of all n� p (n � p) matrices, E, with orthonormal columns is called the
Stiefel manifold, denoted by CVp;n. Thus CVp;n =

�
E (n� p) ;EHE = Ip

	
: The volume of this manifold is given

by V ol (CVp;n) =
R

CVp;n

�
EHdE

�
= 2p�np

C�p(n) . If n = p then a special case of the Stiefel manifold is obtained, the

so-called unitary manifold, de�ned as CVn;n =
�
E (n� n) ;EHE = In

	
� U (n) where U (n) denotes the group

of unitary n� n matrices. The volume of U (n) is given by V ol (U (n)) =
R

U(n)

�
EHdE

�
= 2n�n

2

C�n(n) .

2.1 Non-singular case

Theorem 4 Suppose that n � p and X � CEn�p(0;�
�; g), and let �;A 2 Cn�n2 and � 2 Cp�p2 . Then
the quadratic form S = XHAX 2 Cp�p2 has the integral series complex Wishart-type (ISCW) distribution with
density function

fS(S) =
jSjn�pG(S)

C�p(n)j�Ajpj�jn
(6)
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where

G(S) =
Z
R+

tnp 0CF (p)0

�
B;�t��1S

�
W(t)dt

and B = A� 1
2��1A� 1

2 . This distribution is denoted as S �ISCWp (n;�
�;G(�)), where 0CF (p)0 (�; �) denotes
the complex hypergeometric function with two Hermitian matrix arguments (see James (1964), Koev and Edelman (2006)).

Proof. From Lemma 1, Xjt � CN
�
0;�
t�1�

�
. The result follows from Theorem 1 of

Ratnarajah and Vaillancourt (2005)b and integrating with respect to the weight function W(t).

Remark 5 We know that if X � CNn�p (0;�
�) then XHAX has the complex matrix variate quadratic dis-
tribution, denoted by CQn�p (A;�
�). Assuming that X � CEn�p (0;�
�;g), it then follows from Lemma
1 that

S = XHAX
d
=ZHAZ; where Zjt � CNn�p

�
0;�
t�1�

�
with

ZHAZjt � CQn�p
�
A;�
t�1�

�
:

Therefore

fS (S) =

Z
R+

W(t)fCQn�p(A;�
t�1�)
�
ZHAZjt

�
dt:

Particular cases of the density function (6) will be focussed on, since they form part of the investigation in
Section 3.

Remark 6 If A = In and � = In then S 2 Cp�p2 has the complex Wishart-type distribution with the following
density function

fS(S) =
jSjn�pG(S)
C�p(n)j�jn

(7)

where

G(S) =
Z
R+

tnp etr
�
�t��1S

�
W(t)dt:

If � = �2Ip (thus, uncorrelated with variance �2), (7) simpli�es to

fS(S) =
jSjn�pG(S)
C�p(n)�2np

where

G(S) =
Z
R+

tnp etr
�
�t��2S

�
W(t)dt:

Next, an expression for the density function of the joint eigenvalues of S = XHAX is given, when
S �ISCWp (n;�
�;G(�)) (see (6)).

Theorem 7 Suppose that S �ISCWp (n;�
�;G(�)), and let �1 > �2 > ::: > �p > 0 represent the ordered
eigenvalues of S 2 Cp�p2 . Then the eigenvalues of S, � = diag (�1; �2; :::; �p), has density function6

f(�) = K

Z
R+

tnp
Z

E2U(p)

0CF (p)0

�
B;�t��1E�EH

�
dEW(t)dt (8)

= K

Z
R+

tnp
1X
k=0

X
�

CC� (B)
k!C� (In)

CC�
�
�t��1

�
CC� (�)

C� (Ip)
W(t)dt (9)

where B = A� 1
2��1A� 1

2 and K =
�p(p�1)

 
pQ

i=1

�n�pi

! 
pQ

k<l

(�k��l)2
!

C�p(n)C�p(p)j�Ajpj�jn .

6CC�(Z) denotes the complex zonal polynomial of Z corresponding to the partition � = (k1; : : : ; kp); k1 � � � � � kp � 0,
k1 + � � �+ kp = k and

P
� denotes summation over all partitions �.
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Proof. Using Eq. 93 of James (1964) and (6), the joint density function of the eigenvalues �1 > �2 > ::: >
�p > 0 of S is given by

f(�) =

�p(p�1)
�

pQ
k<l

(�k � �l)2
�
j�jn�p

C�p(n)C�p(p)j�Ajpj�jn
Z

E2U(p)

G(E�EH)dE:

By using De�nition 2.6 from Dubbs and Edelman (2014), (9) follows directly.
Particular cases of the density function in (8) are focussed on next, since they form part of the investigation in
Section 3.

Remark 8 If A = In and � = In then the joint density function of the eigenvalues of the complex Wishart-type
distribution, f(�), simpli�es to

f(�) =

�p(p�1)
�

pQ
i=1

�n�pi

��
pQ
k<l

(�k � �l)2
�

C�p(n)C�p(p)j�jn
Z
R+

tnp 0CF (p)0

�
�;�t��1

�
W(t)dt: (10)

If � = �2Ip (thus, uncorrelated with variance �2), (10) simpli�es to

f(�) =

�p(p�1)
�

pQ
i=1

�n�pi

��
pQ
k<l

(�k � �l)2
�

C�p(n)C�p(p)�2np
Z
R+

tnp exp

 
�t��2

pX
i=1

�i

!
W(t)dt:

Remark 9 It is known that expressions containing hypergeometric functions of matrix argument and zonal
polynomials may be cumbersome to compute, and that software packages have limitations to handle such com-
putations. In this paper only cases with speci�c interest in MIMO systems will be focussed on. The reader is
referred to Alfano et. al. (2014), Gross and Richards (1989), and Koev and Edelman (2006) for some analyti-
cal expressions to compute such hypergeometric functions of matrix arguments.

The following table gives the density function for the special cases (see (7) and (10)) for the complex matrix
variate normal and complex matrix variate t distribution (see (5)) case respectively. The expressions for the
complex matrix variate normal case re�ects the results of James (1964).

Distribution of X Density function

fS(S) (see (7))
Normal (C�p(n)j�jn)�1 jSjn�p etr

�
���1S

�
t (� (�) C�p(n)j�jn)�1 ��jSjn�p� (np+ �)

�
tr��1S+ �

��(np+�)
f(�) (see (10))

Normal
(C�p(n)C�p(p)j�jn)�1 �p(p�1)

�
pQ
i=1

�n�pi

�
�
�

pQ
k<l

(�k � �l)2
�

0CF (p)0

�
�;���1

�
t

(C�p(n)C�p(p)j�jn� (�) �np)�1 �p(p�1)
�

pQ
i=1

�n�pi

�
�
�

pQ
k<l

(�k � �l)2
�P1

k=0

P
�

CC�(���1)CC�(�)
�kk!C�(Ip)

� (np+ � + k)

Table 2.1: Density functions of certain cases of complex matrix variate elliptical quadratic form

2.2 Singular case

In this section the singular case of the quadratic form of the complex matrix variate elliptical distribution is
also considered, where 0 < n < p.

5
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Theorem 10 Suppose that 0 < n < p and X � CEn�p(0;�
�; g), and let �;A 2 Cn�n2 and � 2 Cp�p2 . Let
� = diag (�1; �2; :::; �p). Then the quadratic form S = XHAX 2 Cp�p2 has the integral series complex singular
Wishart-type (ISCSW) distribution with density function

fS(S) =
�n(n�p)j�jn�pG(S)
C�n(n)j�Ajpj�jn

(11)

where

G(S) =
Z
R+

tnp 0CF (n)0

�
B;�t��1S

�
W(t)dt

and B = A� 1
2��1A� 1

2 . This distribution is denoted as S �ISCSWn (p;�
�;G(�)).

Proof. See that
f(X) =

Z
R+

tnpj�Aj�pj�j�n��np etr
�
�tBX��1XH

�
W(t)dt

where Xjt � CN
�
0;�
t�1�

�
. Let XHA

1
2= E1�H (where A

1
2A

1
2 = A), and note

S = XHA
1
2A

1
2X = E1�HH

H�EH1 = E1�
2EH1 = E1�E

H
1 (where �2 = �). From Remark 3 follows:

f(S) =
��npj�jn�p

C�n(n)j�Ajpj�jn
Z

CVn;n

Z
R+

tnp 0CF (n)0

�
B;�t��1S

�
W(t)dtdH

from where the result follows after some simpli�cation.
Particular cases of the density function (11) will be focussed on, since they form part of the investigation in
Section 3.

Remark 11 If A = In and � = In, then S has the complex singular Wishart-type distribution with the following
density function

fS(S) =
�n(n�p)j�jn�pG(S)

C�n(n)j�jn
(12)

where

G(S) =
Z
R+

tnp etr
�
�t��1S

�
W(t)dt:

If � = �2Ip (thus, uncorrelated with variance �2), (12) simpli�es to

fS(S) =
�n(n�p)j�jn�pG(S)

C�n(n)�2np

where

G(S) =
Z
R+

tnp etr
�
�t��2S

�
W(t)dt:

Next, expressions for the density function of the joint eigenvalues for the singular case are derived.

Theorem 12 Suppose that 0 < n < p and S �ISCSWn (p;�
�;G(�)) (see 11), and let �1 > �2 > ::: >
�n > 0 represent the ordered eigenvalues of S. Then the joint distribution of the eigenvalues of S, � =
diag (�1; �2; :::; �p), has density function

f(�) =

�n(n�1)
�

nQ
i=1

�p�ni

��
nQ
k<l

(�k � �l)2
�

C�n(n)C�n(p)j�Ajpj�jn

�
Z
R+

tnp
Z

CVp;n

0CF (n)0

�
B;�t��1E�EH

�
(dE)W(t)dt (13)

where B = A� 1
2��1A� 1

2 .
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Proof. Consider a partial spectral decomposition where S = E�EH , where E 2 CVp;n. The transformation
from S to E;� has volume element

(dS) = (2�)
�n ���n�p���2 nY

k<l

(�k � �l)2 (d�)
�
EHdE

�
:

Therefore, from (11) and Remark 3:

f(�) =
�n(n�p)

C�n(n)j�Ajpj�jn
(2�)

�n ���n�p���2 j�jn�p nY
k<l

(�k � �l)
!2

�
Z
R+

tnp
Z

CVp;n

0CF (n)0

�
B;�t��12 E�EH

� �
EHdE

�
W(t)dt

and the result follows.

Some special cases of the density function in (13) are reported next.

Remark 13 If A = In and � = In, then the joint density function of the eigenvalues of the complex singular
Wishart type distribution, f(�), simpli�es to the following density function:

f(�) =

�n(n�1)
�

nQ
i=1

�p�ni

��
nQ
k<l

(�k � �l)2
�

C�n(n)C�n(p)j�jn
Z
R+

tnp 0CF (n)0

�
�;�t��1

�
W(t)dt: (14)

If � = �2Ip (thus, uncorrelated with variance �2), (12) simpli�es to

f(�) =

�n(n�1)
�

nQ
i=1

�p�ni

��
nQ
k<l

(�k � �l)2
�

C�n(n)C�n(p)�2np
Z
R+

tnp exp

 
�t��2

nX
i=1

�i

!
W(t)dt:

The following table gives the density function for the special cases (see (12) and (14)) for weight functions
(2) and (5) respectively.

Distribution of X Density function

fS(S) (see (12))
Normal (C�n(n)j�jn)�1 �n(n�p)j�jn�p etr

�
���1S

�
t (�(�)C�n(n)j�jn)�1 ���n(n�p)j�jn�p� (np+ �)

�
tr��1S+ �

��(np+�)
f(�) (see (14))

Normal

(C�n(n)C�n(p)j�jn)�1 �n(n�1)
�

nQ
i=1

�p�ni

�
�
�

nQ
k<l

(�k � �l)2
�

0CF (n)0

�
�;���1

�
(see Eq. 25 in Ratnarajah and Vaillancourt (2005))

t

(C�n(n)C�n(p)j�jn� (�) �np)�1 �n(n�1)
�

nQ
i=1

�p�ni

�
�
�

nQ
k<l

(�k � �l)2
�P1

k=0

P
�

CC�(���1)CC�(�)
�kk!C�(Ip)

� (np+ � + k)

Table 2.2: Density functions of certain cases of complex singular matrix variate elliptical quadratic form
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3 Channel capacity

Figure 4.1: MIMO System

Suppose that a communication system is being characterized by the following output relation, as depicted in
Figure 4.1:

y = Hx+ v;

where y;v 2 Cnr�11 , x 2 Cnt�11 andH 2 Cnr�nt1 . In a correlated Rayleigh channel, the distribution of an nr�nt
channel matrix H is usually given by H � CNnr�nt(0; Inr 
�) with nr � nt (in other words, the channel coe¢ -
cient from di¤erent transmitter antennas to a single receiver antenna is correlated), and note that the o¤-diagonal
elements of � 2 Cnt�nt2 are nonzero for correlated channels. Suppose that the channel matrix H and noise vec-
tor v are independently distributed according the complex matrix variate elliptical and complex multivariate
normal distributions, respectively, in other words, H � CEnr�nt(0; Inr
�; g), and v � CNnr�1(0; �2Inr ). In
this section, the focus is to derive the channel capacity capacity if H � Ctnr�nt(0; Inr
�; �), with the weight
function (5).

The input power is distributed equally over all transmitting antennas and is constrained to � (the signal to noise
ratio) such that (see Ratnarajah and Vaillancourt (2005)b)

E
�
xHx

�
� �:

For the purpose of this paper we are particularly interested in Rayleigh distributed channels. However, having
an underlying complex matrix variate elliptical distribution for H results in having to consider a Rayleigh-type
channel which is de�ned next.

Proposition 14 Consider a complex elliptical process, Z = X+iY , where X; Y are independent and identically
zero-mean elliptical random variates. Let R =

p
X2 + Y 2 denote an element hij of H. The density function of

R emanating from the complex elliptical class is given by

h(r) =
r

�2

Z
R+

t exp

�
� r2

2�2t�1

�
W(t)dt

where r > 0, which is described as a Rayleigh-type density function (see also Miller (1974)).
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Moreover, if a block-fading model is assumed together with coding over many independent fading intervals, then
the ergodic capacity of the random MIMO channel is given by (see Teletar (1999))

C = EH

�
log

�����Int + �

nt
HHH

������
= E�

 
log

ntY
k=1

�
1 +

�

nt
�k

�!
(15)

where �1 > ::: > �nt are the eigenvalues of S. Hence (15) can be evaluated using the joint density functions of
the eigenvalues ((8) and (13) respectively). In the following two sections, the channel capacity is derived for the
nonsingular- and singular case, for both correlated- and uncorrelated cases.

3.1 Nonsingular case

In this section the assumption is that the complex channel coe¢ cients are distributed according to the complex
matrix variate t distribution. To this end, we �rst consider the more general complex matrix variate elliptical
distribution and subsequently derive the results for the complex matrix variate t distribution. We �rstly derive
the expressions for the channel capacity of a correlated- and uncorrelated Rayleigh-type nr�2 channel environ-
ment when the underlying distribution is complex matrix variate elliptical. In particular, a two-input (nt = 2),
nr output communication system is considered and the capacity graphically illustrated.

Theorem 15 1. For a two-input correlated Rayleigh-type channel H � CEnr�2(0; Inr
�; g), with nr � 2, the
capacity C is given by

C =
(a1a2)

nr

� (nr) � (nr � 1) (a1 � a2)

1Z
0

log
�
1 +

�

2
�1

�
(16)

�
�
�nr�11 � (nr � 1) a�(nr�1)2

Z
R+

tnr exp (�ta1�1)W(t)dt

��nr�11 � (nr � 1) a�(nr�1)1

Z
R+

tnr exp (�ta2�1)W(t)dt

��nr�21 � (nr) a
�nr
2

Z
R+

tnr�1 exp (�ta1�1)W(t)dt

+�nr�21 � (nr) a
�nr
1

Z
R+

tnr�1 exp (�ta2�1)W(t)dt
�
d�1

where a1 > a2 are the ordered eigenvalues of the diagonalized covariance matrix �.

2. For a two-input uncorrelated Rayleigh-type channel H � CEnr�2(0; Inr
�2I2; g), with nr � 2, the capacity
C is given by

C =

1Z
0

log
�
1 +

�

2
�1

�� Z
R+

�nr1 t
nr+1 exp

�
�t��2�1

�
W(t)

2� (nr)�2
dt (17)

�
Z
R+

�nr�11 tnr exp
�
�t��2�1

�
W(t)

� (nr � 1)
dt

+

Z
R+

�nr�21 tnr�1� (nr + 1) exp
�
�t��2�1

�
W(t)

2� (nr � 1)��2
dt

�
d�1:

9
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Proof. 1. The unordered density function of (10) is obtained by dividing by p! = nt! = 2!:

f(�1; �2) =
(�1�2)

nr�2 (�1 � �2) (a1a2)nr

2!� (nr) � (nr � 1) (a2 � a1)

Z
R+

t2nr�1 jexp (�tai�j)jW(t)dt

since from (4) we have C�2(2) = �� (2) � (1) ; C�2(nr) = �� (nr) � (nr � 1) ; and using an expression for the
complex hypergeometric function by Khatri (1969). Then

jexp (�tai�j)j =

���� exp (�ta1�1) exp (�ta1�2)
exp (�ta2�1) exp (�ta2�2)

����
= exp (�t (a1�1 + a2�2))� exp (�t (a1�2 + a2�1)) :

From (15) the capacity for a correlated Rayleigh-type fading model of dimension nr � 2 under the complex
matrix variate elliptical distribution is given by

C = 2

Z 1

0

log
�
1 +

�

2
�1

�Z 1

0

f(�1; �2)d�2d�1

= K

Z 1

0

log
�
1 +

�

2
�1

�Z 1

0

�
�nr�11 �nr�22 � �nr�21 �nr�12

�
�
Z
R+

t2nr�1 (exp (�t (a1�1 + a2�2))� exp (�t (a1�2 + a2�1)))W(t)dtd�2d�1

= K

Z 1

0

log
�
1 +

�

2
�1

� Z
R+

t2nr�1
Z 1

0

�
�nr�11 �nr�22 � �nr�21 �nr�12

�
� (exp (�t (a1�1 + a2�2))� exp (�t (a1�2 + a2�1))) d�2W(t)dtd�1

where K = (a1a2)
nr

�(nr)�(nr�1)(a2�a1) . The latter integral equals

�nr�11 exp (�ta1�1) � (nr � 1) (ta2)�(nr�1) � �nr�11 exp (�ta2�1) � (nr � 1) (ta1)�(nr�1)

��nr�21 exp (�ta1�1) � (nr) (ta2)�nr + �nr�21 exp (�ta2�1) � (nr) (ta1)�nr

by using Eq. 3.381.4 from Gradshteyn and Rhyzik (2007). Result (16) follows.
2. The proof follows similarly where � =�2I2.

A particular focus is that of an underlying complex matrix variate t distribution, therefore the weight function
(5) is substituted into (16) and (17) to obtain the corresponding capacity.

Corollary 16 1. For a two-input correlated Rayleigh-type channel, H � Ctnr�2(0; Inr
�; �), with nr � 2, the
capacity is given by

C =
anr1 a2�

�� (nr + �)

(a1 � a2) �(�)� (nr)

1Z
0

log
h
1 +

�

2
�1

i
�nr�11 (a1�1 + �)

�(nr+�) d�1 (18)

� a1a
nr
2 �

�� (nr + v)

(a1 � a2) �(v)� (nr)

1Z
0

log
h
1 +

�

2
�1

i
�nr�11 (a2�1 + �)

�(nr+�) d�1

� anr1 �
�� (nr + � � 1)

(a1 � a2) �(�)� (nr � 1)

1Z
0

log
h
1 +

�

2
�1

i
�nr�21 (a1�1 + �)

�(nr+��1) d�1

+
anr2 �

�� (nr + � � 1)
(a1 � a2) �(�)� (nr � 1)

1Z
0

log
h
1 +

�

2
�1

i
�nr�21 (a2�1 + �)

�(nr+��1) d�1:

2. For a two-input uncorrelated Rayleigh-type channel, H � Ctnr�2(0; Inr
�2I2; �), with nr � 2, the capacity

10
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C is given by

C =
��� (nr + � + 1)

�2�(�)� (nr)

1Z
0

log
h
1 +

�

2
�1

i
�nr1

�
�1
�2
+ �

��(nr+�+1)
d�1 (19)

� 2�
�� (nr + �)

�(�)� (nr � 1)

1Z
0

log
h
1 +

�

2
�1

i
�nr�11

�
�1
�2
+ �

��(nr+�)
d�1

+
��� (nr + � � 1) � (nr + 1)

��2�(�)� (nr � 1)

1Z
0

log
h
1 +

�

2
�1

i
�nr�21

�
�1
�2
+ �

��(nr+��1)
d�1:

Figure 4.2 shows the calculated channel capacity (18) versus nr for di¤erent values of �, assuming a correlation
of 0:9, �2 = 1, and � = 10.

35 dB

30 dB

25 dB

20 dB

15 dB

10 dB

5 dB

0 dB

Figure 4.2 (18) against nr for di¤erent values of �:

Figure 4.3 shows the calculated channel capacity (19) versus nr for di¤erent values of �, assuming a correlation
of 0, �2 = 1, and � = 10.

35 dB

30 dB

25 dB

20 dB

15 dB

10 dB

5 dB

0 dB

Figure 4.3 (19) against nr for di¤erent values of �:
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Table 4.1 shows the capacity in nats7 for this nr � 2 correlated Rayleigh-type fading channel matrix (as
illustrated in Figure 4.2). Table 4.2 shows the capacity in nats for this nr�2 uncorrelated Rayleigh-type fading
channel matrix (as illustrated in Figure 4.3). Each column represents di¤erent levels of SNR, in decibels (dB).
Observe how the capacity is increasing in both Tables 4.1 and 4.2 with regards to increasing SNR, as well as
increasing number of receivers nr. Furthermore, note how the capacity for the uncorrelated case (Table 4.2) is
higher for all corresponding entries than that of the correlated case (Table 4.1). The same is observed for other
arbitrarily chosen �.

nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1:2916 2:0609 3:3057 4:8558 6:6852 8:7821 10:9059 13:1656
4 1:9816 2:9984 4:5956 6:5129 8:6450 10:8836 13:1643 15:4598
6 2:4582 3:6126 5:3811 7:4294 9:6327 11:9010 14:1924 16:4914
8 2:8266 4:0737 5:9455 8:0592 10:2922 12:5715 14:8665 17:1666
10 3:1289 4:4445 6:3856 8:5381 10:7872 13:0721 15:368 17:6696
12 3:3862 4:7550 6:7460 8:9240 11:1831 13:4713 15:7691 18:0700
14 3:6105 5:0222 7:0506 9:2467 11:5125 13:8028 16:1012 18:4021
16 3:8095 5:2564 7:3141 9:5234 11:7939 14:0856 16:3842 18:6850
18 3:9882 5:4646 7:5456 9:7650 12:0988 14:3313 16:6298 18:9303
20 4:1502 5:6515 7:7414 9:9786 12:2547 14:5476 16:8458 19:1458

Table 4.1.
Capacity (18) in nats for a nr � 2 system for di¤erent
values of � and � = 10.

nr 0 dB 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB 35 dB

2 1:4843 2:4498 4:0298 5:9281 8:0291 10:2403 12:5045 14:7941
4 2:4402 3:7860 5:7830 7:9676 10:2292 12:5184 14:8167 17:1179
6 3:1083 4:6148 6:7334 8:9714 11:2528 13:5486 15:8490 18:1509
8 3:6156 5:2064 7:3788 9:6373 11:9256 14:2237 16:5284 18:8269
10 4:0228 5:6647 7:8668 10:1360 12:4279 14:7270 17:0285 19:3307
12 4:3622 6:0382 8:2591 10:5948 12:8287 15:1285 17:4302 19:7325
14 4:6583 6:3532 8:5869 10:8670 13:1623 15:4625 17:7643 20:0668
16 4:9069 6:6253 8:8684 11:1516 13:4479 14:7484 18:0503 20:3525
18 5:1324 6:8648 9:1149 11:4004 13:6974 15:9981 18:3000 20:6022
20 5:3350 7:0785 9:3342 11:6214 13:9189 16:2197 18:5215 20:8237

Table 4.2.
Capacity (19) in nats for a nr � 2 system for di¤erent
values of � and � = 10.

3.2 Singular case

For the singular case, the correlated- and uncorrelated Rayleigh-type 2� nt channel matrix is considered, and
its corresponding capacity derived.

Theorem 17 1. For a two-input correlated Rayleigh-type channel, H � CE2�nt(0; I2
�;g), with nt � 2, the
capacity C is given by

C = K

1Z
0

�1Z
0

�
log

�
1 +

�

nt
�1

�
+ log

�
1 +

�

nt
�2

��
(�1�2)

nt�2 (�1 � �2) (20)

�
Z
R+

tnt+1 det (exp (�tai�j))W(t)dtd�2d�1

7 In (18) if loge is used then the measurement unit for capacity is termed "nats".
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where K =

ntQ
i=1

a2i

2�(nt)�(nt�1)
ntQ
k<l

(al�ak)
, and a1 > a2 > ::: > ant > 0 are the eigenvalues of �

�1.

2. For a two-input uncorrelated Rayleigh-type channel, H � CE2�nt(0; I2
�2Int ; g), with nt � 2, the capacity
C is given by

C =
1

�2nt+2� (nt)

1Z
0

log

�
1 +

�

nt
�1

�
�nt1

Z
R+

tnt+1 exp
�
�t��2�1

�
W(t)dtd�1 (21)

� 2

�2nt� (nt � 1)

1Z
0

log

�
1 +

�

nt
�1

�
�nt�11

Z
R+

tnt exp
�
�t��2�1

�
W(t)dtd�1

+
� (nt + 1)

�2nt�2� (nt) � (nt � 1)

1Z
0

log

�
1 +

�

nt
�1

�
�nt�21

Z
R+

tnt�1 exp
�
�t��2:�1

�
W(t)dtd�1:

Proof. 1. The unordered density function of (14) is obtained by dividing by n! = nr! = 2!:

f(�1; �2) =

�2(2�1)

 
2Y
i=1

�nt�2i

! 
2Y
k<l

(�k � �l)2
!

2C�2(2)C�2(nt)j�j2
Z
R+

t2nt 0CF (2)0

�
�;�t��1

�
W(t)dt:

In the same way as Theorem 16, integrating with respect to �2 and calculating the expectation of (15) leads to
the �nal result.

2. The proof follows similarly where � =�2I2.

Corollary 18 1. For a two-input correlated Rayleigh-type channel, H � Ct2�nt(0; I2
�; �), with nt � 2, the
capacity C is given by

C = K
��

�(�)

1Z
0

�1Z
0

�
log

�
1 +

�

nt
�1

�
+ log

�
1 +

�

nt
�1

��
(�1�2)

nt�2 (�1 � �2) (22)

�
Z
R+

tnt+�e�t� det (exp (�tai�j)) dtd�2d�1

where K =

ntQ
i=1

a2i

2�(nt)�(nt�1)
ntQ
k<l

(al�ak)
, and a1 > a2 > ::: > ant > 0 are the eigenvalues of �

�1.

2. For a two-input uncorrelated Rayleigh-type channel, H � Ct2�nt(0; I2
�2Int ; �), with nt � 2, the capacity C
is given by

C =
��� (nt + � + 1)

�2nt+2�(�)� (nt)

1Z
0

log

�
1 +

�

nt
�1

�
�nt1

�
�1
�2
+ �

��(nt+�+1)
d�1 (23)

� 2��� (nt + �)

�2nt�(�)� (nt � 1)

1Z
0

log

�
1 +

�

nt
�1

�
�nt�11

�
�1
�2
+ �

��(nt+�)
d�1

+
��� (nt + � � 1) � (nt + 1)
�2nt�2�(�)� (nt) � (nt � 1)

1Z
0

log

�
1 +

�

nt
�1

�
�nt�21

�
�1
�2
+ �

��(nt+��1)
d�1:
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Figure 4.4 shows the calculated channel capacity (22) (correlation 0:9) and (23) (no correlation) versus SNR
(�) for nt = 4 and � = 10. Figure 4.5 illustrates the higher capacity for the underlying complex matrix variate
t distribution versus the complex matrix variate normal distribution for the correlated nonsingular case.

Figure 4.4 (22) and (23) against �; for nt = 4:

Figure 4.5 (18) and eq. (29) from Ratnarajah and Vaillancourt (2003) against nr, for �; � = 10.

4 Concluding remarks

In this paper the distribution of the quadratic form and its associated joint eigenvalues with an underlying
complex matrix variate elliptical model was derived. The proposed methodology is based on an integral repre-
sentation that provides the researcher with expressions for allowing other underlying models than that of the
normal, providing new insightful research possibilities. Some special cases were highlighted with the well-known
Wishart distribution as a special case when the complex matrix variate normal distribution is under considera-
tion. Another special case is that of no correlation; this case is of speci�c interest in the performance measure
of channel capacity in the MIMO environment.

In particular the complex matrix variate t distribution was applied and the literature is enriched with
its representation. The channel capacity within the MIMO environment is investigated for correlated and
uncorrelated scenarios in the nonsingular and singular cases. It is observed that

1. Correlation between transmitters/receivers degrade system capacity; and

2. The capacity of the system is higher in the case of underlying complex matrix variate complex t distribution
than that compared to an underlying complex matrix variate normal distribution.
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When no correlation exists between receivers, the well-known central limit theorem can be assumed which
results in H � CNnr�nt(0; Inr 
�). However, this paper provides new possibilities in the wireless communica-
tions systems environment with the elliptical platform. In particular, the complex matrix variate t distribution
is considered (as the t is a familiar candidate when placed alongside the normal). These numerical examples
(see Figure 4.5) of the channel capacity show that the derived expressions under the complex matrix variate t
distribution provide signi�cant insights on the behaviour of performance measures when the assumption of the
complex matrix variate normal distribution is challenged.

If the receivers and transmitters are correlated simultaneously, i.e. H � CNnr�nt(0;�nr 
�nt), then the
well-known central limit theorem does not apply. In that case the complex matrix variate elliptical distribution
may provide greater �exibility in this regard. Although the results in this paper are presented for the Inr
� and
related cases, in the case of �nr 
�nt the covariance structure can be adapted to Inr 
� via a transformation.
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