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Numerical Optimisation of Compressive Array Feed
Networks

Heinrich Edgar Arnold Laue, Student Member, IEEE, and Warren Paul du Plessis, Senior Member, IEEE

Abstract—Compressive antenna arrays reduce the number of
beamforming controls by taking a limited number of weighted
combinations of the element signals. A compressive array side-
lobe level (SLL)-minimisation algorithm, inspired by coherence-
optimisation algorithms, is presented. Optimised compressive
arrays are shown to obtain better SLLs than existing weighted
thinned arrays and completely overlapped subarrays. The design
of a compressive array with arbitrary sidelobe requirements
shows that increasing the number of elements for a given
number of beamforming controls improves array performance
over a conventional array. A compressive array with a hard
null is proposed to suppress interference before sampling. Where
beamforming controls are the main cost drivers, the proposed
approach promises to increase array performance without a
significant increase in cost.

Index Terms—Antenna arrays, antenna feeds, antenna pattern
synthesis, coherence, compressive sensing (CS), phased arrays.

I. INTRODUCTION

BEAMFORMING antenna arrays utilise multiple antenna
elements in order to steer a beam in a particular direction

while the array itself remains stationary [1]. In traditional
phased arrays, each element is connected to an analogue phase
shifter, and possibly, an amplifier [2]. On the other hand,
element-level digital beamforming arrays utilise a transmitter
and/or receiver at each antenna element [2]. These hardware
components will be referred to as beamforming controls since
they enable adaptive beamforming. Advantages of digital
beamforming include the ability to steer multiple beams si-
multaneously in software, array reconfigurability, improved
dynamic range, and precise array calibration [1]–[3].

The use of phase shifters and/or amplifiers at each element
in traditional phased arrays, and transmitters and/or receivers
at each element in digital antenna arrays places limitations
on the number of elements that may be used due to the size,
weight, complexity, and cost involved [2]–[4]. With uniform

Manuscript received 23 September 2017; revised 6 February 2018; accepted
1 April 2018.

This work is based on the research supported in part by the National
Research Foundation of South Africa (NRF) (Grant specific unique reference
number (UID) 85845). The NRF Grantholder acknowledges that opinions,
findings and conclusions or recommendations expressed in any publication
generated by the NRF supported research are that of the author(s), and that
the NRF accepts no liability whatsoever in this regard.

The authors are with the Department of Electrical, Electronic and Computer
Engineering, University of Pretoria, Pretoria 0002, South Africa (e-mail:
laueheinrich@gmail.com; wduplessis@ieee.org)

Color versions of one or more of the figures, as well as MATLAB
scripts for generating the main results in this paper are available online at
http://ieeexplore.ieee.org.

Digital Object Identifier 00.0000/TAP.0000.000000

spacing between antenna elements, this limits the aperture of
the array, and therefore, the achievable resolution.

Over the decades, significant effort has gone into developing
arrays with a given aperture that require either fewer antenna
elements, or fewer beamforming controls in an effort to reduce
cost, size and weight [2], [4]–[6]. Any array that aims to
reduce the number of beamforming controls will be referred
to as a reduced-control array below.

One way of reducing the cost and complexity of an array is
to take a filled array and disable some of the elements, referred
to as array thinning [6]–[8]. The result is an array with a
beamwidth similar to that of the filled array, but with decreased
directivity proportional to the number of active elements [1],
[6]. The remaining elements may also be weighted for finer
control over the array patterns [6], [9]. A similar approach
where the antenna elements may be arbitrarily positioned
within an array leads to sparse arrays [5], [10].

Another reduced-control technique is to combine the signals
at the antenna elements before reaching the beamforming
controls, thereby reducing the number of controls for the same
number of antenna elements [1], [2], [4], [11]. Subarrays com-
bine antenna elements for a reduced steering range, resulting
in narrow beams with high directivity being steered over a
relatively small angular range [1], [2], [4].

An array which combines the antenna-element signals so
that each output is a function of all antenna-element signals
was inspired by the concept of compressive sensing (CS) for
direction-finding (DF) and is termed the compressive sampling
array (CSA) [11]. A CSA can steer across the full field of
view. Initially, the use of random weights to combine the
element signals was proposed [11]. Subsequently, the use of
numerically optimised codebooks was shown to improve on
the use of random weights, but only allowed control over the
array pattern at a small number of angles [12].

A generalised framework for the numerical optimisation of
compressive feed networks for narrowband pencil-beam arrays
with arbitrary sidelobe-pattern requirements is presented. This
framework includes other reduced-control networks as special
cases. The framework is inspired by coherence-optimisation
algorithms which optimise codewords to have minimal simi-
larity, or coherence [13]. The coherence-optimisation problem
is extended to consider the problem of minimising sidelobe
level (SLL) in a compressive array. The presented approach
allows the sidelobe amplitude to be specified independently of
pattern and steering angle, which is useful as shaped sidelobe
patterns are often desirable in antenna arrays [14].

0000–0000/00$00.00 c© 2018 IEEE



2 IEEE Transactions on Antennas and Propagation, VOL. XX, NO. XX, XXXXXX 20XX

The proposed compressive-array framework is not restricted
to a particular hardware configuration, but represents a flexible
reduced-control array design methodology. For example, a
compressive feed network may be implemented either using
microwave circuitry to enable an array to have a larger number
of antenna elements than beamforming controls, or as a
software algorithm to reduce data rates.

The versatility of the proposed algorithm is illustrated by
synthesising linear and circular compressive arrays with a vari-
ety of constraints, including hard and soft nulls. Comparisons
to optimal solutions [15], thinned arrays synthesised using
the iterative FFT technique (IFT) [9], conventional arrays
synthesised by the matrix inversion method [14], and a dual-
transform completely overlapped subarray [1] demonstrate
the performance of compressive arrays synthesised using the
proposed approach.

Section II provides the required background, describes ex-
isting methods for designing compressive arrays, and gives
an overview of discrete coherence optimisation. Section III
formulates the continuous coherence-optimisation problem for
minimising SLL and presents an algorithm for accomplishing
this goal. Section IV presents results for a number of designs
which highlight various advantages of the proposed approach.
Finally, conclusions are drawn in Section V.

II. BACKGROUND

A. Conventional Antenna Arrays

Consider an array of N antenna elements placed at arbitrary
locations in two-dimensional space. Define the steering vector
as the baseband array response to a unit-amplitude continuous-
wave signal impinging on the array from the direction θ in
the plane of the array, denoted a(θ).1 The steering vector
includes the effect of the element patterns and can either be
formulated mathematically or measured practically. In the case
of a uniform linear array (ULA) with isotropic elements, the
N×1 steering vector is given by [16]

a(θ) =
[
ejβd1 sin(θ) · · · ejβdN sin(θ)

]T
(1)

where θ is the anticlockwise angle of the wave relative to
broadside, dn is distance of element n to a reference point
on the array, and β = 2π/λ, with λ the wavelength.2 A
circular array with radius R and isotropic elements on the
circumference of the circle has a steering vector given by [16]

a(θ) =
[
ejβR sin(θ−θ1) · · · ejβR sin(θ−θN )

]T
(2)

where θn is the angle of element n around the circle. The
steering of circular arrays will only be considered in the plane
of the array. In subsequent sections, the steering vectors are
normalised to have unit length to maintain proper scaling of
constraints on the steering vectors.

1The techniques described are applicable in the general case with suitable
alterations, but only the one-dimensional case is considered to avoid unnec-
essary notational complexity.

2It is worth noting that since the analyses are phase-based, the results are
inherently narrowband. However, most antenna-array analyses are formulated
in this way, so this is not considered a limitation of the results obtained.
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Fig. 1. (a) A compressive array with N elements and M subarray outputs with
digital beamforming weights for array pattern calculations. (b) An N -element
ULA with weights that result in the same patterns as the corresponding
compressive array.

B. Compressive Arrays

Consider the general compressive array illustrated in
Fig. 1(a), shown in the receive configuration. The results
obtained are, however, equally valid for a transmit antenna due
to reciprocity. The system is represented by y = Φx, where
y is the M×1 vector of signals at the beamforming controls,
x is the N×1 vector of signals at the antenna elements, and
Φ is the M × N sensing matrix representing a compressive
feed network with M ≤ N [12]. The rows of Φ describe how
the N elements are weighted to form each of the M subarray
outputs. The M×1 compressed steering vector (the response
y to a reference wave) is then b(θ) = Φa(θ) [11], [12].

A conventional uniform-excitation array with one element
per beamforming control can be represented by the N × N
sensing matrix Φ = I. A non-weighted thinned array will
have an M × N sensing matrix made up of M rows taken
from an N × N identity matrix [11]. A partially overlapped
subarray [4] will have a certain number of non-zero entries
per row, while a completely overlapped subarray [1] can be
represented by a fully populated sensing matrix. The CSA in
[11] uses a sensing matrix with random Gaussian entries.

The term compressive array arises as the synthesis of
antenna arrays with complex-valued sensing matrices with
M < N is considered, similar to the approach used in CS [17],
[18]. As outlined above, the compressive-array formulation
includes most existing reduced-control arrays with fixed ele-
ment positions as special cases, making it a generalisation of
the reduced-control concept. By using this generalisation, it is
shown how sensing matrices may be designed to improve on
existing criteria and fulfil a variety of criteria that could not
previously be considered for reduced-control arrays.

A compressive feed network can be implemented in hard-
ware or in software, for transmission and/or reception. Over-
lapped subarrays suggest that feed networks can be imple-
mented in microwave circuity where each output is a weighted
combination of multiple antenna elements [1], [2], [4], [19].
The proposed method could also be applied to an array with a
receiver at each element by using a software implementation
of the sensing matrix. This would enable reduced data rates
for transmission to a central processing station, for example.
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C. Compressive Array Patterns

A set of M complex-valued excitations at the M subarray
outputs is defined to characterise a compressive array. The
feed network, described by Φ, results in compressed steering
vectors b(θ) which change in both amplitude and phase with
steering angle. This requires each steering angle to have its
own set of weights to achieve the desired pattern when steering
in that direction.

Considering the illustration in Fig. 1(a), the array voltage
pattern is defined as the weighted sum of the M subarray
outputs due to a reference wave from the direction θ as

q(θ) =
∣∣w(θs)

Tb(θ)
∣∣ (3)

where w(θs) is the M×1 vector of complex weights for the
steering angle θs.

The aim of a compressive array design algorithm is to find
Φ and w(θs) for all steering angles of interest that minimise
the SLL. The SLL is defined as the largest pattern magnitude
in a pre-defined sidelobe region relative to the main-beam
peak. Since b(θ) is a function of Φ, both w(θs) and b(θ) must
be optimised over all steering angles θs and pattern angles θ.
However, the problem can be greatly simplified if w(θs) is
chosen as the complex conjugate of b(θs). This leads to

q(θ) =
∣∣b(θs)Hb(θ)

∣∣ (4)

where H represents the complex-conjugate transpose. This
expression is similar in form to the well-known coherence cri-
terion from CS theory, which will be discussed in Section II-D.

In order to validate the compressive array algorithm for an
M = N array against a Chebyshev array (Section IV-A),
it is necessary to define a ULA with the same patterns as
the corresponding compressive array. To do this, consider the
combined effect of the sensing matrix Φ and the beamforming
weights w(θs). Substituting b(θ) = Φa(θ) into (4) gives

q(θ) =
∣∣aH(θs)Φ

HΦa(θ)
∣∣ . (5)

Since a(θ) is the steering vector for a ULA, define a set
of equivalent weights for a conventional ULA as vT(θs) =
aH(θs)Φ

HΦ, or

v(θs) = ΦTΦ∗a∗(θs) (6)

where ∗ represents complex conjugation. This gives

q(θ) =
∣∣v(θs)Ta(θ)

∣∣ (7)

which is similar in form to (3). Applying the weights v(θs)
to a length-N ULA, as illustated in Fig. 1(b), will result in
the same patterns as the corresponding compressive array.

While varying excitations is the only way to control transmit
beamforming, digital beamforming techniques on reception are
not limited to weight-and-sum beamforming. For example,
super-resolution methods such as minimum variance distor-
tionless response (MVDR) and CS-based algorithms have been
successfully applied to compressive arrays for DF [11], [12].

D. Discrete Coherence Optimisation

Consider N length-M vectors as columns in the codebook
B. The coherence of a codebook quantifies how closely the
vectors approximate an orthogonal set and is given by [13]

µ(B) = max
n 6=l

∣∣bH
nbl

∣∣
‖bn‖ ‖bl‖

, n, l ∈ {1, . . ., N}. (8)

Often, the codewords are assumed to be normalised, in which
case the coherence simplifies to maxn 6=l

∣∣bH
nbl

∣∣ [20].
Optimising the coherence of a codebook is given by the

minimax problem [13], [21]

min
B

max
n 6=l

∣∣bH
nbl

∣∣ subject to ‖bn‖2 = 1 ∀n. (9)

Various methods for designing codebooks with minimal co-
herence exist [13], [21]–[24]. The best results in terms of
coherence and computational efficiency were obtained in [13],
which solved a series of subproblems given by

min
B

∑
n 6=l

(∣∣bH
nbl

∣∣2 − µ2
t

)p
p = 2, 4, . . .

subject to ‖bn‖2 = 1 ∀n (10)

which minimises the absolute deviation of the pairwise abso-
lute dot products from some target bound µt, which is derived
from the known minimum possible value. The solution to the
subproblem with the first value of p is used as starting point for
the next subproblem. Larger values of p assign more weight to
the larger summation terms, thereby providing an increasingly-
accurate approximation to the max operator as p→∞.

During the initial stages when the parameters change sig-
nificantly, small values of p provide the good conditioning
required for numerical stability [22]. Incrementing p guides
the problem towards an accurate approximation of the max
operator while maintaining numerical stability, even though
a large p would represent an ill-conditioned problem if the
starting point was not already close to a local minimum.

A codebook B with optimised coherence can be used to
design a sensing matrix for a compressive array via [12]

Φ = BA−1 (11)

where A is the conventional steering matrix A =
[ a(θ1) · · · a(θN ) ] at the N steering angles at which the
steering vectors are orthogonal. Such an optimised array has
been applied for DF and shown to perform better than com-
pressive arrays with random Gaussian sensing matrices [12].
However, it was noted that this method only allows for
sidelobe control at N discrete angles in the array patterns [12].

III. CONTINUOUS SLL OPTIMISATION

A. Problem Formulation

The use of optimised codebooks to design compressive
arrays for low SLL is severely hampered by the fact that
array pattern control is only possible at N angles. Even if the
discrete M×N codebook B has the lowest possible coherence,
there is no way to predict the resulting array patterns between
the N angles. Simply increasing the number of sampling
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angles in A will not suffice since this would result in B = ΦA
from (11) being under-determined.

In order to exercise sidelobe control across continuous
steering and pattern angles, it is necessary to reformulate the
optimisation problem in terms of Φ, since the sensing matrix
with MN discrete complex weights determines the continuous
compressed steering vectors via b(θ) = Φa(θ).

With the definition of the excitation weights as the complex
conjugates of the compressed steering vectors (Section II-C),
the SLL can be computed from

SLL = max
|θa−θs|≥θSLL

∣∣b(θs)Hb(θa)
∣∣ ,

θs ∈ [θs1, θs2], θa ∈ [θa1, θa2] (12)

where θSLL is the specified start of the sidelobe region relative
to the steering angle, θs are the steering angles, θa are the array
pattern angles, [θs1, θs2] is the steering range, and [θa1, θa2] is
the field of view (typically, [−90◦, 90◦] for ULAs and [−180◦,
180◦] for circular arrays). When designing compressive feed
networks for ULAs, the start of the sidelobe region is defined
to be constant in sin(θ) space, with the result that it changes
with steering angle (θs) in θ space.

Note that b(θs)
Hb(θa) =

[
b(θa)

Hb(θs)
]∗

and therefore∣∣b(θs)Hb(θa)
∣∣ = ∣∣b(θa)Hb(θs)

∣∣, which explains the symme-
try observed in the pattern plots of Section IV. Thus only
unique combinations of θs and θa need to be considered
in the optimisation, which significantly reduces the problem
complexity. Unique combinations of θs and θa are given
by θa − θs ≥ θSLL (the upper triangular sidelobe regions in
Figs. 3 and 4 in Section IV).

Define the continuous coherence-optimisation problem as

min
Φ

max
θa−θs≥θSLL

∣∣[Φa(θs)]
H[Φa(θa)]

∣∣
R(θs, θa)

subject to

‖Φa(θs)‖2 = 1, θs ∈ [θs1, θs2], θa ∈ [θa1, θa2] (13)

where R(θs, θa) is the sidelobe mask. This mask is used to al-
low the sidelobe requirements to vary over the sidelobe region.
Note that the mask values may be specified independently for
both steering and pattern angles, which leads to a number of
novel designs as discussed in Section IV.

The condition ‖b(θs)‖2 = 1 is necessary to ensure that a
peak is located at θs when the beam is steered in that direction.
In the algorithm to follow, this constraint is relaxed so that the
magnitudes of the compressed steering vectors are between
±0.01 dB because this relaxation leads to faster convergence.

Similar to the discrete coherence-optimisation problem in
(9), the continuous formulation in (13) is non-convex and is
not guaranteed to converge to the global minimum. Even so,
local optimisers produce discrete codebooks with coherence
values that have not been improved upon by any other method
[13], [21], [22], so this approach is reasonable.

Unfortunately, optimising the patterns using the formulation
above would involve evaluating an infinite number of combi-
nations of steering and pattern angles. The angles are thus
discretised to provide a finite set of angles over which the
SLL must be optimised. This is done by defining a set of

FN sampling angles for both the steering and pattern angles,
where F is the oversampling factor. These angular points are
uniformly spaced in sin(θ) space over [−1,1) for ULAs to
compensate for the sin(θ) factor in (1), and in θ space over
[−180◦,180◦) for circular arrays as the elements are uniformly
distributed around the circle. Although FN sampling angles
are defined, only those within the steering range and sidelobe
regions are considered in the optimisation.

Since the pattern values must be evaluated over all relevant
sampling angles, the problem is inherently combinatorial in
nature, with up to O

{(
FN
2

)}
combinations to consider. The

oversampling factor F allows a compromise to be made
between angular grid resolution (which influences the achieved
SLL) and realistic run times. A value of F = 2M was
empirically found to present a good compromise between
achieved SLL and run time. Using F = 2M means that the
resulting number of sampling angles, 2MN , is equal to the
number of control variables, namely the real and imaginary
parts of the MN elements in Φ.

In order to ensure that the calculated performance is accu-
rate the final beamwidth and SLL values in the results below
were calculated using 16 times more sampling points [9]. The
3-dB points in the beamwidth calculations were found using
cubic spline interpolation [9].

B. Algorithm and Implementation

The approach to minimising SLL in terms of Φ is to
sequentially approximate the max operator similar to (10) and
use a general-purpose constrained non-linear solver for the
subproblems. The goal function to be minimised is given by

g(Φ) = α

 1

C

∑
θa−θs≥
θSLL

(∣∣(Φas)
H(Φaa)

∣∣
αRs,a

)p
1/p

(14)

subject to the constraints

c1(Φ) = ‖Φas‖2 − 100.01/10 ≤ 0 ∀s and (15)

c2(Φ) = 10−0.01/10 − ‖Φas‖2 ≤ 0 ∀s (16)

where the subscripts s and a refer to variables sampled at
the angles θs and θa, and C is the number of terms in the
summation. Including the factor 1/C and raising the sum to
1/p maintains proper scaling of the problem. The function
is of the form (

∑
N |xn|

p
)
1/p which approximates the ∞–

norm by the p–norm as p→∞ [22]. The inequality-constraint
functions for the unit-length requirement in (13) are provided
in (15) and (16).

Since the dot products scaled by the sidelobe mask are
typically smaller than one, raising them to large powers may
produce results smaller than the lower limit of numerical
representation, resulting in underflow of some of the terms in
the summation. A scaling factor α, which does not affect the
final function value, is thus introduced to scale the terms in the
summation to minimise the incidences of underflow. The terms
in the summation in (14) can be written as (xs,a/α)

p, and
the goal is to ensure that these terms are as large as possible.
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Overflow during the intermediate computations can be avoided
by setting the sum equal to the largest representable value and
assuming that all terms are equal to the largest term, giving∑

C

(xmax

α

)p
= C

(xmax

α

)p
= νmax (17)

where νmax is the largest representable number. Solving for α
gives

α =
xmax

(νmax/C)
1/p

. (18)

The sequential quadratic programming (SQP) algo-
rithm [25] in MATLAB was chosen to solve the subproblems
given by (14) to (16) for increasing values of p. The value of
p is incremented via

p(k) = min

(
pmax, 2

⌈
rp(k−1)

2

⌉)
,

k = 2, 3, . . . , p(1) = 2, r > 1 (19)

where r is the power multiplication factor, k is the subproblem
number, and pmax is the maximum value of p. For each
subproblem, p is incremented to the next even number greater
or equal to rp(k−1). Restricting p to even values ensures that
(14) is smooth [13]. For a particular problem, the value of
pmax should be increased until no further improvement in
SLL is observed, after which the value of r is then reduced
until no further improvement in SLL is observed. Values of
pmax = 512 [13] and r = 1.1 have been found to produce
good solutions for a wide range of problems and were used
to obtain the results in Section IV.

The initial sensing matrix Φ(0) was chosen with real and
imaginary parts drawn from a Gaussian distribution with
variance 1/(2N) so that E [‖φm‖] = 1, where φm are the rows
in Φ [26]. The minimum step size was set to 10−10, the step
size used for discrete coherence optimisation in [13]. The first-
order optimality and constraint convergence criteria were kept
at their default values of 10−6. The number of iterations per
sub-problem was limited to a maximum of 105 [13]. Gradients
of goal and constraint functions were derived analytically and
are given in the appendix. This is important since using finite
differences is computationally inefficient.

IV. RESULTS

The results obtained for a number of test problems are
outlined below, after a description of the conditions under
which the results were obtained.

Isotropic antenna elements are assumed. However, the pro-
cedure is general enough that the steering vectors may be
specified in terms of arbitrary element patterns including, for
example, simulated or measured embedded element patterns.

Angles and beamwidths for ULAs are given in u = sin(θ)
space. The algorithm was implemented in MATLAB R2016b
and run on machines with two 6-core 2.30-GHz Intel Xeon
E5-2630 processors and 32 GB of memory each. In all cases,
an oversampling factor of F = 2M was used.

The results below are summarised in Table I. The SLL
and beamwidth results for the compressive arrays are for the
designs with the lowest SLL from ten independent runs of the
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Fig. 2. Subarray power patterns and their sum for the M = N = 4
compressive array in Section IV-A.

algorithm. Only the worst (i.e. largest) 3-dB beamwidths over
the steering ranges are presented. The run times indicated are
for the algorithm to run to p = pmax even if the best SLL was
obtained before then.

Reduced-control arrays can be considered to either reduce
the number of beamforming controls for a given aperture or
to increase the aperture for a given number of beamforming
controls. Under the reasonable assumption that the cost of an
array is primarily determined by the number of beamforming
controls [2], the second perspective is more useful when
comparing reduced-control and conventional arrays for a given
cost. Section IV-C below thus compares a compressive array
with M controls and N antenna elements to an M -element
conventional array because an N -element conventional array
would cost approximately N/M more.

A. M = N , Uniform Sidelobe Mask

The first test case designs a feed network with M = 4
outputs for a ULA with N = 4 elements, the start of the
sidelobe region at uSLL = 0.5, and a uniform sidelobe mask.
Since M = N , a Chebyshev excitation provides the optimum
result for the conventional weights v(θs), where optimality
refers to the lowest possible SLL for a given main beam region,
or the smallest beamwidth for a given SLL [15]. This problem
thus serves to test whether the proposed algorithm is able to
approach the known optimum result.

For the purpose of validation, the steering range was defined
as us ∈ [−1, 1) since a ULA has patterns which translate all
the way to endfire, though with a grating lobe at endfire when
half-wavelength spacing is used. When calculating SLL, the
sidelobe region range was adjusted to ensure that that grating
lobes were ignored as is done for Chebyshev arrays.

The compressive array achieved an SLL of −16.98 dB.
The Chebyshev excitation for an SLL of −16.98 dB is
|v(θs)| = [0.6669,1,1,0.6669]T. The normalised magnitudes
of the equivalent weights for the compressive array are the
same, with a maximum deviation of 9.89 × 10−7 from the
Chebyshev excitation over all weights and steering angles.
This result demonstrates that the compressive array algorithm
can achieve comparable results to the known optimum.

Fig. 2 shows the antenna patterns of each of the M subar-
rays comprising the compressive array design. The patterns are
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TABLE I
RESULTS FOR COMPRESSIVE ARRAY DESIGNS OVER TEN RUNS WITH COMPARISONS TO EXISTING APPROACHES

Sequential compressive array algorithm Comparison

Problem (Section) SLL (dB) BW3 dB Min. run time (s) Max. run time (s) Approach SLL (dB) BW3 dB (u)

M = N (IV-A) −16.98 0.4994 (u) 10.4 16.3 Chebyshev −16.98 0.4994
Uniform mask (IV-B) −2.89 0.0942 (u) 4 553.8 14 497.3 IFT [9] −2.47 0.1017

Soft null (IV-C) −19.85 0.2370 (u) 448.5 11 610.5 Length-M ULA [14] −19.76 0.2556
Hard null (IV-D) −13.27 50.1◦ 14 849.2 27 296.4 —

Small steering range (IV-E) −34.20 0.0382 (u) 3 657.7 3 806.1 Dual-transform [1] −32.49 0.0398

shown as power values, which add to 1 at each angle as shown
and as required by (13). The subarray patterns are simply the
M individual elements in the compressed steering vector, since
each element in b(θ) represents the response of the array at
the mth beamforming control. Even though the excitations at
the N elements are equivalent to those of a Chebyshev array,
the operating principle is different. A weighted ULA with M
isotropic elements samples the entire angular domain at each
element. In the compressive array, each subarray samples the
angular space differently. The subarrays are able to scan the
entire range of interest when combined, but individually, some
subarrays favour certain angles. The crucial observation is that
there is no angle at which all of the subarray gains are low
because that would make steering in that direction impossible.

The ability of compessive arrays to implement shaped subar-
ray patterns can be exploited to suppress the subarray patterns
where no steering is desired (Section IV-C), or to suppress
interference from a particular direction (Section IV-D).

B. M < N , Uniform Sidelobe Mask

The true compressive array design evaluated here considers
a feed network with M = 4 for a ULA with N = 16, the
start of the sidelobe region at uSLL = 0.046875, and a uniform
sidelobe specification. The steering range was limited to |us| ≤
0.875 or |θs| ≤ 61◦ since |θs| ≤ 60◦ is already considered a
wide steering range and steering to endfire presents a number
of practical challenges [1]. This problem illustrates the case
where beamwidths similar to that of a large, filled array are
desired at the expense of higher SLL, a typical consideration
for DF arrays.

The results are compared to a weighted thinned linear array
designed using the IFT [6], [9]. The IFT does not allow
the steering range to be limited, so this example also serves
to illustrate the performance improvements arising from the
ability of compressive arrays to limit the steering range.

Fig. 3 shows the patterns as a function of steering angle for
the compressive array design. Significantly, the patterns do
not translate with steering angle, but vary significantly as the
main beam is steered. Note that beamwidth and SLL values
provided below are achieved at all steering angles despite
the significant pattern variation. This is an example of non-
translational patterns which arise in compressive arrays. One
of the main consequences of non-translational patterns is that
steering of the main beam is more complex as the excitation
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Fig. 3. Normalised patterns as a function of steering angle for the uniform-
mask compressive array problem in Section IV-B.

amplitudes and phases vary non-linearly, unlike translational
patterns where only linear phase variation is required.

The compressive array has an SLL of −2.89 dB and a worst-
case 3-dB beamwidth of 0.0942 over the specified steering
range, while the IFT achieved an SLL of −2.47 dB with a
3-dB beamwidth of 0.1017 as the best result from ten runs. The
compressive array design improves on the weighted thinned
design by 0.42 dB in SLL and 7.4% in beamwidth (in u).
This improvement is achieved by exploiting the additional
degrees of freedom provided by the fact that the M feed
network outputs are functions of all N antenna elements,
which includes the ability to exploit a limited steering range.
On the other hand, in a weighted thinned array each of the
M outputs is only a function of a single antenna, and the IFT
cannot exploit a limited steering range.

Compressive arrays with uniform sidelobe masks would be
useful as an alternative to thinned or weighted thinned arrays
where SLL is crucial, since the additional degrees of freedom
in the feed network allow for designs with lower SLL for the
same number of beamforming controls.

C. Soft Stationary Null Steering

Section IV-B showed that a compressive array can have
patterns that change as a function of steering angle. In order to
exploit this property, the sidelobe mask Rs,a can be specified
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Fig. 4. Normalised patterns as a function of steering angle for the soft-null
compressive array problem in Section IV-C.

independently for both steering and pattern angles, allowing
the shape of the sidelobe regions to be controlled.

This problem introduces the idea of a soft stationary null,
where the sidelobes are reduced at a fixed pattern angle over
all steering angles except those near the soft null itself. This
allows a beam to be steered in the direction of the soft
null, while suppressing interference from this direction when
steering to other angles. This type of array would be useful
in scenarios where a high-power source must be suppressed
in order to receive weak signals from other directions, but
where it is also necessary to monitor the high-power source
itself. This situation would occur when low-power radios and
a high-power radar must be monitored by a receiver system.

Consider a feed network with M = 8 for a ULA with
N = 16, the start of the sidelobe region at uSLL = 0.25, and a
steering range of |us| ≤ 1− uSLL = 0.75. This limit prevents
any portion of the grating lobes appearing at extreme steering
angles in the case of half-wavelength element spacing [1].

A soft null at broadside is required to be 20 dB below the
SLL in the remainder of the sidelobe region. The nature of the
soft null means that it is only present when |us| ≥ 0.25, so
that the null does not enter the predefined main-beam region.

The resulting patterns are shown in Fig. 4. The achieved
SLL is −19.85 dB and the 3-dB beamwidth ranges from
0.1837 to 0.2370 depending on the steering angle. The
beamwidths narrow near broadside steering due to the nulls at
the start of the sidelobe region (u = ±0.25). The worst pattern
level in the soft null region is −39.87 dB, or 20.02 dB below
the SLL. Due to the reduced sidelobes at broadside steering,
the directivity peaks near broadside steering at 10.14 dB, while
the minimum directivity over the steering range is 8.96 dB.

The results were compared to an M -element ULA with
the same specifications to ensure that both cases have the
same number of beamforming controls. Weights for the ULA
were redesigned for each steering angle using the covariance
matrix inversion method [1], [14]. The required SLL was
specified as −19.85 dB, and the achieved worst-case SLL is
−19.76 dB (since no uSLL is specified, the SLL is defined
here as the largest pattern value outside the main beams).
The largest pattern value in the soft-null region is −39.84 dB
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Fig. 5. Sum of the subarray pattern powers for the soft-null compressive
array problem in Section IV-C.

below the peak, or 20.08 dB below the achieved SLL. The
3-dB beamwidths range from 0.2465 to 0.2556. Thus, the
compressive array improves on the ULA by 7.3% in worst-
case beamwidth. The directivity of the ULA ranges from
8.69 dB to 8.85 dB, which is consistently lower than that of
the compressive array.

Fig. 5 shows the sum of the M subarray pattern powers over
pattern angle, which equals 0 dB ± 0.01 dB in the steering
range as required by (15) and (16). The subarray patterns
are suppressed in the out-of-scan regions (|u| > 0.75), which
explains the higher directivity of the compressive array design
over the ULA.

The design of an M = 8, N = 16 soft-null compressive
array, and an 8-element soft-null ULA shows that increasing N
for the same M increases the control over the array patterns.

D. Hard Stationary Null Steering

Limiting the steering range of a compressive array means
that the subarray patterns may be constrained in any manner
outside the steering range. Consider an application where
an interfering signal is present from a known direction with
significantly higher power than the signal(s) of interest. An
example of such a scenario is a passive bistatic radar where
the receivers see a direct-path signal from the transmitter
of opportunity with a much higher signal strength than the
reflected signal from the target, with the direct-path signal
as much as 90 dB stronger than the reflected signal [27]. A
null formed via digital beamforming (e.g. a soft null) may not
suffice, since most of the receivers’ available dynamic range
will be utilised for sampling the interfering signal to avoid
saturation, with little dynamic range left for the signal(s) of
interest. A hard stationary null solves this problem by placing a
null in the subarray patterns themselves so that the interfering
signal is suppressed before sampling.

Consider the constraint function

c3,m(φm) = ‖φma(θw)‖2 − 10W/10 ≤ 0 (20)

where φm is the mth row of Φ such that bm(θw) = φma(θw),
θw is the desired null direction with θw /∈ [θs1, θs2], and W
is the desired magnitude in dB of the mth subarray pattern
in the null direction. The null level is not specified relative to
the subarray pattern peak, since a subarray pattern does not
necessarily have a single distinct peak (Section IV-A). It is
specified simply as the value of bm in the null direction.
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Fig. 6. Superimposed subarray patterns in the out-of-scan region for the
compressive circular array problem in Section IV-D.

Consider the design of a feed network with M = 6 for a
uniform circular array (UCA) with N = 9 elements with half-
wavelength spacing between adjacent elements. The steering
range is θs ∈ [−130◦, 130◦] with a null of magnitude W =
−60 dB at 180◦. The start of the sidelobe region is specified
as θSLL = 50◦.

Fig. 6 shows the resulting subarray patterns, superimposed,
in the out-of-scan region with the hard null visible at 180◦.
The achieved SLL over all steering angles is −13.27 dB and
the 3-dB beamwidth ranges from 42.9◦ to 50.1◦.

E. Small Steering Range Array

A dual-transform completely overlapped subarray with
M = 8 and N = 64 is described in [1]. N antenna elements in
a ULA are the inputs to an N ×N Butler matrix, but only M
outputs corresponding to the beams closest to broadside are
used. These M outputs are then passed through an M ×M
Butler matrix to produce the M subarray outputs. The sub-
array outputs are weighted by a 40-dB length-M Chebyshev
window. The entire feed network can be described by a fully
populated M ×N sensing matrix since each subarray output
is a function of the signals at all the antenna elements.

The dual-transform SLLs as a function of steering angle are
shown in Fig. 7 (with SLL defined here as the largest pattern
value outside the main beam). The specified range of steering
angles is us ∈ [−0.1094, 0.1094], but the sidelobes are high
at the extremities. As indicated in Fig. 7, the array achieves a
worst-case SLL of −32.49 dB over a range of us ∈ [−0.0846,
0.0846] which presents a more useful steering range. The worst
3-dB beamwidth over a steering range of us ∈ [−0.0846,
0.0846] is 0.0398, and the directivity ranges from 16.82 dB to
16.88 dB over the same range.

A compressive array was designed for a slightly wider
steering range of us ∈ [−0.0859, 0.0859], with a sidelobe
region starting at uSLL = 0.0508 to match the smallest start
of a −32.49-dB sidelobe region of the dual-transform array
which was found to be 0.0522. The best SLL achieved for the
compressive array was −34.20 dB, an improvement of 1.71 dB
over the dual-transform array. The worst-case 3-dB beamwidth
for the compressive array was 0.0382 which also improves on
the dual-transform design. Finally, the directivity varied from
16.97 dB to 17.15 dB which is, again, slightly better than that
of the dual-transform array.
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Fig. 7. SLL as a function of steering angle for the dual-transform and
compressive arrays in Section IV-E.
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Fig. 8. Compressive array pattern at us = −0.0859 steering angle and dual-
transform array pattern at us = −0.0846 steering angle for the small steering
range problem in Section IV-E.

Fig. 8 shows the patterns for the compressive and dual-
transform arrays at steering angles with the worst SLL, namely
us = −0.0859 and us = −0.0846, respectively. While the
dual-transform array has some sidelobes which are lower than
those of the compressive array, this characteristic leads to a
higher SLL and a wider main beam than the compressive array
which has a more uniform pattern in the sidelobe regions.

V. CONCLUSION

A generalised framework for the optimisation of compres-
sive arrays for low SLL has been proposed. A sequential
algorithm for accomplishing this goal, which is based on a
coherence-optimisation algorithm, is described.

The proposed algorithm has been validated against a Cheby-
shev array and achieved the same optimal result. Compressive
arrays have been shown to achieve better results than a
weighted thinned array designed using the IFT, and improve
on the performance of an existing completely overlapped
dual-transform subarray. A compressive array with a soft
null obtained better results than a conventional ULA with
the same number of beamforming controls. The increased
number of elements of a compressive array is thus shown to
enable better control over the shape of array patterns than a
conventional array with the same number of controls. A hard-
null compressive array shows that the subarray patterns can be
constrained outside the steering range to suppress interference
before the controls, for example.
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APPENDIX
GOAL AND CONSTRAINT FUNCTION GRADIENTS

Define the function

gs,a(Φ) =

∣∣bH
s ba

∣∣2
R2
s,a

. (21)

It can be shown that the gradients of (21) are given by

∂gs,a(Φ)

∂Φ
=

2

R2
s,a

[ (
bH
a bs

)
baa

H
s +

(
bH
s ba

)
bsa

H
a

]
. (22)

The gradients of the goal function in (14) are then found as

∂g(Φ)

∂Φ
=

1

2αC1/p

 ∑
θa−θs≥
θSLL

(∣∣bH
s ba

∣∣
αRs,a

)p
1/p−1

×
∑

θa−θs≥
θSLL

(∣∣bH
s ba

∣∣
αRs,a

)p−2
∂gs,a(Φ)

∂Φ

 (23)

with element-wise matrix addition where applicable.
Let φm,n represent the elements in Φ. The gradients of the

unit-norm constraint functions (15) to (16) are found using

∂

∂φm,n
‖bs‖2 = 2bsa

H
s . (24)

The gradient of the hard-null constraint function (20) is
found as

∂c3,m(φm)

∂φm,n
= 2bm(θw)a(θw)

H (25)

for row m in Φ; the gradients at all other rows are zero.
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