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Abstract: 

In this study, an adaptive neuro-fuzzy inference system (ANFIS) is proposed for the 

prediction and optimization of condensation heat transfer coefficient and pressure 

drops along an inclined smooth tube. The performance of three ANFIS structure 

identification methods, grid partitioning (GP), a subtractive clustering method (SCM), 

and fuzzy C-means (FCM) clustering, were examined. For training the proposed ANFIS 

model, an in-house experimental database was utilised. Three statistical criteria, 

the mean absolute error (MAE), mean relative error and root mean square error were 

used to evaluate the accuracy of each method. The results indicate that the GP structure 

identification method has the lowest number of training errors for both the pressure 

drop, i.e., MAE = 6.4%, and condensation heat transfer coefficient, i.e., MAE = 2.3%, 

models. In addition to the ANFIS model, numerical simulations were also conducted to 

assess the accuracy and capability of the proposed model. The comparison shows that 

the CFD simulation results have better accuracy for the specified operating conditions. 

However, the errors of both the CFD and ANFIS methods were within the uncertainties 

of the experimental data. It was therefore concluded that the ANFIS model is useful in 

obtaining faster and reliable results. Finally, the optimization results showed a possible 

optimum point at a mass flux of 100 kg/m2s, saturation temperature of 36.2 °C, 

downward inclination angle of -15° and a vapour quality of 0.48. At this condition the 

pressure drop is almost zero. 
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Nomenclature 

A Membership function in ANFIS structure [-] 

ai,j  Consequent parameter matrix 

B Membership function ANFIS structure [-] 

bi,j Consequent parameter matrix 

E Internal energy [J] 

f Firing strength in ANFIS structure [-] 

F Source term in the momentum equation [N/m3] 

g Gravitational acceleration [m/s2] 

G Mass flux [kg/m2s] 
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Gb Generation of turbulence kinetic energy due to buoyancy, [m4/s] 

h Heat transfer coefficient [W/m2K] 

k Turbulent kinetic energy [m2/s2] 

M Node label in layer 2 in ANFIS structure [-] 

N Node label in layer 3 in ANFIS structure [-] 

P Pressure [Pa] 

q” Heat flux [W/m2] 

S Summation of all signals in ANFIS structure [-] 

SE Energy source term [J/m3s] 

Sl Condensation mass source term [kg /m3s] 

Sv Vaporization mass source term [kg/m3s] 

t Time [s] 

T Temperature [K] 

Tsat Saturation temperature [K] 

u Velocity [m/s] 

w  Normalized firing strength in ANFIS structure [-] 

x Input parameter in ANFIS structure [-] 

Xa Predicted value [-] 

Xp Actual (experimental) data [-] 

y Input parameter in ANFIS structure [-] 

Greek symbols 

α Volume fraction [-] 

µ Molecular viscosity [Pa.s] 

ρ Density [kg/m3] 

k Curvatures of liquid and vapour phase [-] 

ε Turbulent dissipation rate [m2/s3] 

x Vapour mass fraction [-] 

β Inclination angle [°] 

σ Surface tension [N/m] 

Subscripts 

ave Average 

eff Effective 

l Liquid 
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L Laminar 

m Mean 

v Vapour 

Abbreviations 

ANFIS Adaptive Neuro-Fuzzy Inference System 

FCM Fuzzy C-means clustering 

GP Grid partitioning 

MAE Mean absolute error 

MF Membership function 

MRE Mean relative error 

RMSE Root mean squared error 

SCM Subtractive clustering method 

 

1. Introduction 

The applications of soft computing methods in the modelling and analysis of 

engineering problems have increased significantly during the last decade. Fuzzy logic, 

neural networks, and genetic algorithms are among the most frequently used 

components of soft computing methods. Because soft computing methods can recognise 

the existing knowledge and patterns behind empirical data, they have received 

significant attention within a wide range of mechanical engineering applications during 

the last few years [1-4]. 

 

Using experimental data, Gill and Singh [5] suggested the application of prediction 

models based on a dimensional analysis and the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) method for an R134a/LPG mass flow in an adiabatic tube. Their results 

indicated that although both the dimensional analysis and ANFIS method, achieve good 

statistical performance, the accuracy of the ANFIS model is slightly better.  

 

For better monitoring of wind turbine farms, Morshedizadeh et al. [6] introduced a new 

methodology based on a combination of an adaptive neuro-fuzzy inference system 

(ANFIS), an imputation algorithm, and a feature selection method to predict the 

performance of commercial wind turbines. To show the predictive capability of the 

suggested methodology, power curves of 2.3 MW pitch-regulated wind turbines were 
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investigated. The results indicate that the proposed ANFIS model performs better than 

the existing models. 

 

Using an experimental dataset, ANFIS, and an artificial neural network (ANN), Seijo et 

al. [7] suggested the application of prediction models for 12 different systems within an 

actual combined heat and power (CHP) power plant. Their results indicated the 

capability of both approaches to model cogeneration power plant systems with high 

accuracy. After modelling, a multi-objective optimisation technique was applied to 

maximise the electric production and amount of heat used in the slurry process, and to 

minimise the fuel consumption. 

 

An ANFIS and an ANN were utilised by Şahin [8] to predict the coefficient of 

performance (COP) of a single-stage vapour compression refrigeration system. Three 

environmental friendly refrigerants, R134a, R404a, and R407c, were used in this 

system. The same datasets were used for both ANFIS and ANN modelling. The results 

show that the ANN model performs better than ANFIS for R134a, whereas the 

prediction performance of the ANFIS is better than that of the ANN for R404a and 

R407c. 

 

The applicability of an ANN for the identification of a two-phase flow regime has been 

investigated by various researchers [9, 10]. Pan et al. [10] developed a fuzzy C-means 

(FCM) clustering algorithm to create a flow regime identification map for a co-current 

air-water two-phase flow in the vertical direction. They conducted several experiments 

to build a suitable database. Their results indicate that the proposed fuzzy method can 

be applied to the successful identification of the flow regime for both upward and 

downward flows. 

 

Balcilar et al. [11] used multilayer perceptron (MLP), radial basis networks (RBFN), and 

generalized regression neural network (GRNN) ANN methods, as well as the adaptive 

neuro-fuzzy inference system (ANFIS) technique for the prediction of the condensation 

heat transfer coefficient and pressure drop inside a vertical tube with a diameter of 8.1 

mm. They used different refrigerant mass fluxes, saturation temperatures, and wall heat 

fluxes for training purposes. They examined the performances of above mentioned ANN 
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methods and ANFIS technique in their study. Their results indicate that the ANFIS, 

radial basis network (RBFN), and multi-layer perceptron (MLP) methods can predict 

the condensation heat transfer coefficient and pressure with a deviation of less than 

20% as compared with the experiment data. 

 

In addition to the development of the ANFIS model, numerical simulations of 

condensation inside an inclined smooth tube have been conducted. The purpose of the 

CFD simulation was to conduct an assessment of the accuracy and computational costs 

of the proposed ANFIS model. Literature reviews have shown that previous numerical 

studies on the condensation inside different tubes have been limited to horizontal or 

vertical orientations [12-15]. Numerical simulations have been recently conducted to 

investigate the effects of the inclination angle on the condensation heat transfer 

coefficient, pressure drop, and flow regimes inside a smooth tube. The results showed 

an optimum downward inclination angle of between -30° and -15° through which the 

heat transfer coefficients become maximum. It was also found that the effect of the 

inclination angle on the pressure drop and void fraction become negligible at a high 

mass flux and vapour quality [16].  

 

Beside the applications of numerical methods for simulation and predicating purposes, 

their performance and ability to conduct optimization studies have been proven in the 

past. Genetic algorithm (GA) is one of the most favorite ones among evolutionary 

algorithms (EA) due to its simplicity and population-based search methodology. 

Applying different approaches for fitness assignment, elitism or diversification resulted 

in various genetic algorithm-based multi-objective optimization methods in literature 

[17]. 

 

In 2002  Deb et al. [18], proposed a modified non-dominated sorting genetic algorithm, 

called NSGA-II. This method later received significant attention as one of the most 

efficient genetic algorithm-based multi-objective optimization methods. Detailed 

information about this method has been given in Section 4. During the last fifteen years, 

NSGA-II was used in a wide range of mechanical engineering applications to find 

optimum design Pareto fronts [19-23]. 
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Literature reviews have shown that there have been no studies investigating the 

potential of a neuro-fuzzy inference system to predict the inclination effect on 

condensation of a refrigerant in a smooth tube. Furthermore, no work has been done on 

the optimization of heat transfer coefficients and pressure drops during the 

condensation phenomenon inside an inclined smooth tube. It was therefore the purpose 

of this paper, to apply ANFIS-GP and to model and predict the condensation heat 

transfer coefficients and pressure drops along an inclined smooth tube. Furthermore, to 

use NSGA-II multi-objective optimization approach to find the Pareto front of 

condensation heat transfer and pressure drop. Also, a comparison was made of the time 

and computational costs between the CFD and ANFIS models. 

 

2. Adaptive Neuro-fuzzy Inference System  

An ANFIS is built based on a combination of an ANN and fuzzy logic techniques. This 

combination creates a robust modelling for many different engineering problems. In an 

ANFIS, an ANN is used to find the appropriate membership functions and reduce the 

rate of errors in the rule determination process. On the other hand, a rule-based fuzzy 

inference system (FIS) in an ANFIS system transfers qualitative knowledge into an 

accurate quantitative analysis. 

 

The ANFIS structure consists of two parts, i.e., an introductory part and a conclusion 

part. A set of fuzzy rules links these two parts of the ANFIS structure together. Five 

district layers of a multilayer ANFIS network are shown in Fig. 1.  

 

The first layer of the ANFIS structure combines all input and output data into a single 

input-output space, and applies the fuzzification later. The firing-strength of a rule is 

calculated in the second layer, which is called the “rule layer.” This layer connects each 

node of the second layer with a fuzzy rule. The third layer conducts a normalisation of 

the membership functions by calculating the rate of the firing-strength associated with 

each rule for a summation of all rule firing-strengths. Defuzzification occurs in the 

fourth layer, which is the conclusive part of the fuzzy rules. Consequent parameters of 

the fuzzy rules are calculated in this layer. Finally, the last layer calculates the network 

outputs. Detailed information regarding the ANFIS structure layers was provided by 

Mehrabi et al. [24] and Rezazadeh et al. [25]. 
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Grid partitioning (GP), a subtractive clustering method (SCM), and fuzzy C-means 

clustering (FCM) are three structure identification methods commonly used in an ANFIS 

system. The selection of input variables, input space partitioning, choice of the 

membership functions, creation of the fuzzy rules, and selection of the initial 

parameters for membership functions all take place during the structure identification 

process used by Jalalifar et al. [26]. 

 

GP, which is an ANFIS structure identification method, was initially introduced by Jang 

[27]. Using GP, a partition is formed by dividing the input space into several fuzzy 

rectangular subspaces using an axis-paralleled partition, each of which is specified by 

the fuzzy membership function and type for each feature dimension. 

 

With this method, fuzzy grids are used to generate fuzzy rules based on the input-

output dataset. The GP performance depends heavily on the definition of the grid. The 

gridding process can be refined with the use of an adaptive approach. In this approach a 

uniform partitioned grid is utilized for the initialisation at the first step, then the 

previous membership functions are adjusted, and therefore the fuzzy grid evolves. At 

the next step the size and location of the fuzzy grid is optimized by using gradient 

descent method. Because the number of fuzzy rules increases exponentially with the 

increase in the number of input variables, Jang [27] suggested that a grid partitioning 

method is only suitable for cases with less than six input variables. 

 

The SCM as a fuzzy clustering technique was first introduced by Chiu [28] in 1994. With 

this algorithm, each data point is considered a potential cluster centre. The probability 

of this potential for each data point is calculated based on the density of the 

surrounding data points. After calculating this potential for each data point, the one 

with the highest probability is chosen as the first cluster centre. The potential of all data 

points near the first cluster centre being another cluster centre is reduced, and these 

data points are not considered in the next cluster centre selection process. This iterative 

process of selecting cluster centres and reducing the potential of neighbouring data 

points continues until all data points are within the range of influence of a cluster 

centre. 
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The FCM clustering algorithm was initially introduced by Dunn [29] and later Bezdek 

[30] and Bezdek et al. [31] as a data clustering technique in which each data point 

belongs to two or more clusters. The purpose of this unsupervised iterative algorithm is 

to find cluster centres based on a minimisation of the sum of the weighted square 

distances between each data point and the cluster centres. With the FCM algorithm, the 

number of clusters and the fuzziness index are first selected at random. The algorithm 

then begins by initialising the cluster centres using a random value from the data points.  

The next step, the membership matrix is computed and after the computation of the 

membership matrix, the objective function is computed. Finally, the new fuzzy cluster 

centres are computed. This iterative process is continued until the objective function is 

lower than the termination criteria. 

 

3. Multi-objective optimization 

In many engineering applications, we are dealing with different objectives that most of 

the times are competing. The best example of that in thermal science problems is where 

attempts are normally made to increase the heat transfer rate which unfortunately 

results in higher pressure drop and thus pumping power, which is undesirable. Multi-

objective optimization techniques are the answer to those engineering problems that 

involve more than one objective function or conflicting objective functions. 

 

There is not always a unique solution that optimizes all the parameters simultaneously. 

However, there may exist a set of Pareto optimal solutions. A solution is called non-

dominated or Pareto optimal if none of the objective functions can be improved in value 

without degrading one or more of the other objective values. Various multi-objective 

algorithms have been applied in engineering in the last two decades. Since the NSGA-II 

algorithm (Non-dominated sorting genetic algorithm II) is one of the most effective ones 

among them, it was chosen for this paper. 

 

The NSGA-II algorithm, has different operators that should work together to create a 

robust multi-objective optimization technique. Information on the operators such as; 

the fast non-dominated sorting operator, crowding-distance-assignment operator, and 

simulated binary crossover (SBX) operator. How they are connected to each other, and a 

flow diagram of the algorithm have been given in the previous work of the second 
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author [21]. The condensation heat transfer coefficient and pressure drop were two 

competing objectives in this study. The goal of the optimization process in this paper 

was to find the best design variables to maximize the condensation heat transfer 

coefficient and minimize the pressure drop simultaneously with respect to the mass flux 

G, saturation temperature Tsat, vapor quality x, and inclination angle β, which were the 

design variables. 

 

4. CFD simulation 

In this study, numerical simulations were also conducted to assess the performance of 

the proposed ANFIS model. To do so, a volume of fluid (VOF) multiphase flow 

formulation [32] is used for a simulation of the condensation phenomenon inside an 

inclined tube. In the VOF model, the governing equations, i.e., continuity, momentum, 

and energy equations, are defined as follows [16]: 
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where α is the volume fraction; u is the velocity; t is time; parameter S is the source term 

owing to a phase change; and indices l, v, and are the liquid, vapour, and mixture phases, 

respectively. Moreover μeff, keff, ρ, p, g, E, and Fσ are the effective viscosity, effective 

thermal conductivity, density, pressure, gravitational acceleration, internal energy, and 

surface tension force, respectively.  

  

For modelling the turbulence, a two-equation turbulence model, k-ɛ, is applied. The 

equations of turbulence energy and dissipation rate are as follows [33]: 
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where k and ε are the turbulent kinetic energy and turbulent energy dissipation rate, 

respectively. The parameter Gb is the generation of turbulence kinetic energy due to 

buoyancy. Further details on the constants used can be found in [33]. 

 

In this study, the effect of the phase is considered using the source terms in the 

governing equations. The condensation source terms can be expressed as in [34, 35]: 
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where T and Tsat are the temperature and saturation temperature of the working fluid, 

respectively. The coefficients rl and rv should be tuned to fit the model to the experiment 

data. Excessively small values of the coefficient r lead to a significant deviation between 

the interfacial and saturation temperatures. However, overly large values of r cause 

numerical convergence problems. In the present study, the values of rl and rv are both 

considered to be 5 500 s-1. 

 

The following assumptions are considered for the simulations: 

1. The flow regimes are slug or annular. Therefore, it is always possible to capture a 

certain two-phase interface.  

2. The flow field is considered to be three-dimensional, unsteady, and turbulent.   

3. The velocity difference between the liquid and vapour phases is neglected. 

4. The properties of each phase are assumed to be constant under the specified 

operating conditions. 
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5. The interface temperature is assumed to be equal to the saturation temperature. 

6. The contact angle between a liquid and solid at a saturation temperature of 40 °C 

is set to 5.8° [36]. 

7. A constant heat flux of 250 W and a no slip condition are assumed at the tube 

wall. 

8. As the initial condition, the whole volume of the tube is considered to be vapour 

with a constant temperature equal to the saturation temperature. 

 

To solve the governing equations, the ANSYS FLUENT 17.1 commercial software 

package is utilised. The pressure-velocity coupling is achieved using a two-phase 

extension of the well-known SIMPLE algorithm. To attain a stable solution procedure, 

all convective fluxes are approximated using a second-order upwind method, whereas 

the diffusive fluxes are discretised through a central differencing. To capture the 

liquid/vapour interphase, the Geo-Reconstruction scheme is also utilised. Moreover, the 

convergence criterion is set to 10-5 for the residual of each parameter. A time-step size 

of 10-4 s is used for the simulations. Further details on the numerical simulation can be 

found in [16, 37]. 

 

The effect of grid size on the condensation heat transfer coefficient (Fig. 2 (a)) and 

pressure drop (Fig. 2 (b)) for two different operating conditions is presented in Fig. 2. 

The test cases for the condensation heat transfer coefficient and pressure drop are G = 

200 kg/m2s, Tsat = 50 °C, and xm = 0.5, and G = 100 kg/m2s, Tsat = 30 °C, and xm = 0.25. 

Three grid sizes, with 640 000, 960 000 and 1 680 000 quadrilateral cells, are studied. 

In general, the results for each grid size show adequate consistency with the 

experimental data of Meyer et al. [38] for the condensation heat transfer coefficient and 

Adelaja et al. [39] for the pressure drop; however, it is concluded that the results for 

grid sizes greater than 960 000 cells changed by less than 4%. Therefore, the grid with 

960 000 cells is used for all the simulations in this study. 

 

5. Experiment apparatus 

In this study, the experimental database of Meyer et al. [40-44] is used for training the 

proposed ANFIS model. A schematic of the experiment setup developed by Meyer and et 

al. [40-44] during the last seven years is shown in Fig. 3. The setup consists of a vapour-



13 

 

compression cycle with a nominal cooling capacity of 10 kW, which circulates 

refrigerant R134a through two high-pressure condensation lines: a test section line and 

a bypass line. The test section is constructed using a tube-in-tube counter flow heat 

exchanger configured with water flowing in the annulus and refrigerant flowing 

through the test section. Condensation therefore occurs in the inner tube. The diameter 

of the inner tube test section is 8.38 mm, and its length is 1 488 mm.  The outlet of the 

tube under the flow regimes was captured using a video camera by looking through a 

sight glass tube of nearly the same internal diameter as the test section tube. The 

inclination angle of the test section could be changed within a vertical range of -90° 

downward to +90° upward, with 0° representing a horizontal angle. The heat transfer 

rates during condensation were determined by measuring the mass flow rate through 

the annulus, and the increase in temperature from the inlet to the outlet of the annulus. 

The heat transfer coefficients were determined from the heat flux in the annulus, and 

from measurements of the average wall temperature of the inlet and outlet 

temperatures of the refrigerant. The heat transfer coefficients are therefore the average 

heat transfer coefficients over the test section lengths. The uncertainties of these 

average heat transfer coefficients are ±10%. The vapour qualities at the inlets and 

outlets of the test section are determined based on the energy balance using water-

cooled pre- and post-condensers. The heat transfer coefficients were determined for 

mass fluxes of 100 to 600 kg/m2s at saturation temperatures of 30 to 50 °C at different 

qualities and inclination angles. During the experiments, the heat transfer rate of 

condensation was kept constant at 250 W by controlling the mass flow rates and water 

inlet temperature through the annulus using a thermal bath. 

 

6. Results and discussion 

6.1. Validation of the proposed ANFIS models 

In this study, the above-mentioned structure identification methods were used to 

identify the premised membership functions for the ANFIS models for the pressure drop 

and condensation heat transfer coefficient of R134a within an inclined smooth tube. 

Figs. 4 and 5 show the training error for two specific cases, i.e., Tsat = 40 °C, G = 

100 kg/m2s, xm = 0.25 and xm = 0.75 for each structural identification method, and the 

experimental input-output datasets [38, 39] used for training purposes, respectively. 

The results show that GP structure identification shows the lowest training errors for 
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both the pressure drop and condensation heat transfer coefficient for the R134a 

models. Three statistical criteria, i.e., the MAE, MRE, and RMSE, listed in Table 1 are 

used to show the performance of grid partitioning, subtractive clustering, and fuzzy C-

means clustering structure identification methods during the ANFIS training phase. The 

results are shown in Tables 2 and 3. From these results, it can be concluded that for 

both the pressure drop and condensation heat transfer coefficient of the R134a models 

within an inclined smooth tube, the GP structure identification method has the lowest 

training error, and was therefore chosen to continue with the ANFIS modelling 

procedure. 

 

Furthermore, the performances of the two ANFIS models were examined for predictive 

purposes. Figs. 6 and 7 show sample results of the examinations for the prediction of 

the condensation heat transfer coefficient and pressure drop along the tube. As the 

figures indicate, the performance of the GP structure identification method is superior 

to the other model. The prediction results for the SCM were completely out of bound 

under the specified operating conditions for the condensation heat transfer coefficient, 

and therefore the results are not shown in Fig. 6. This was probably due to the fact that 

the specified operating conditions for the method are outside of the cluster. 

 

A total of 679 input-output experimental data points obtained from the literature [38, 

39] were used to predict the condensation heat transfer coefficient and pressure drop of 

R134a in an inclined smooth tube. The experimental data were divided into two 

sections, i.e., 588 data points for training and 91 data points for testing.  

 

The optimum ANFIS structure and the membership functions were obtained through 

the GP structure identification technique, in which the input variables were fuzzified 

using generalised bell-shaped membership functions labelled MF1 and MF2 for the 

condensation heat transfer coefficient and pressure drop of R134a in an inclined 

smooth tube. The parameters of these membership functions are given in Table 4. 

 

The fuzzy rule base of our proposed ANFIS models for the condensation heat transfer 

coefficient and pressure drop of R134a in an inclined smooth tube is given in Tables 5 

and 6, respectively. The optimum consequent parameters obtained after the ANFIS 
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training process are given in the Appendix, in which [ai,j] is the consequent parameter 

matrix for the condensation heat transfer coefficient, and [bi,j] is the consequent 

parameter matrix for the pressure drop, of R134a in an inclined smooth tube. 

 

Fig. 8 shows the results of the ANFIS (GP) training process for the condensation heat 

transfer coefficient for different mass fluxes, vapour qualities, saturation temperatures, 

and tube inclination angles of the refrigerant. The plot clearly shows the high capability 

of the proposed ANFIS (GP) model for the prediction of the input data for the 

condensation heat transfer coefficient. The predicted results are within the uncertainty 

of the experiment data. Moreover, the proposed model can predict well the optimum 

points at which the condensation heat transfer coefficient reaches the maximum. 

 

Fig. 9 shows similar plots of input data prediction of the pressure drop along the tube. 

The results indicate that the predicted values are in good agreement with the 

experiment data. The results for the prediction of the input data, some of which are 

shown in Figs. 8 and 9, confirm that the proposed ANFIS (GP) model can predict well the 

characteristic parameters for the condensation process of R134a inside an inclined 

smooth tube.  

 

6.2. Assessment of prediction capability of the proposed ANFIS model 

After successfully training the proposed ANFIS (GP) model, the performance of the 

model for the prediction of in-bound and out-bound conditions was examined. Fig. 10 

shows the predicted results for the pressure drop along the tube using the ANFIS (GP) 

model for the case of Tsat = 40 °C, G = 100 kg/m2s, and xm = 0.5. As Fig. 9 indicates, the 

predicted results are in good agreement with the experiment data, which proves the 

high predictive capacity of the proposed ANFIS (GP) model. 

 

Figs. 11 and 12 show the predicted results for the condensation heat transfer coefficient 

using the ANFIS (GP) model for two cases of Tsat = 35 °C, G = 200 kg/m2s, and xm = 0.5 

(Fig. 11), and Tsat = 45 °C, G = 200 kg/m2s, and xm = 0.5 (Fig. 12). In these figures, the 

flow regime is stratified or stratified-wavy [38, 39], and as a result, the condensation 

heat transfer coefficient experiences a maximum point at the region between β = -30° 
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and β = -15°. The plots clearly show that the proposed model can predict this maximum 

point well.  

 

6.3. Performance assessment of CFD and the proposed ANFIS model 

Fig. 13 compares the predicted results of the ANFIS (GP) model with the CFD simulation 

for the pressure drop along the tube for the case of Tsat = 40 °C, G = 400 kg/m2s, and xm = 

0.5. The plots show that the CFD simulation obtained more accurate results than the 

proposed ANFIS mode. However, the performances of both methods are similar to each 

other, particularly for the negative inclination angles.  

 

Figs. 14 and 15 show another comparison for two additional cases of Tsat = 40 °C, G = 

300 kg/m2s, and xm = 0.25 (Fig. 14), and Tsat = 40 °C, G = 100 kg/m2s, and xm = 0.5 (Fig. 

15). Although, the CFD simulation results are more accurate than that of the proposed 

ANFIS model, the deviations of the ANFIS results are within the uncertainties of the 

experiment data. Since, the experimental data has been used for tuning the parameters 

in the CFD simulation and training the ANFIS proposed models, the processing time of 

the CFD simulations and the ANFIS modelling technique on top of the accuracy 

comparisons should be taken into consideration regardless of the time required for 

experimentations. The required time for the CFD simulation in this study is significantly 

higher than that of the ANFIS modelling technique. Therefore it can be concluded that 

the ANFIS modelling technique will be more useful to obtain faster but still reliable 

results. 

 

6.4. Optimum operating conditions 

Fig. 16 shows the Pareto front of the condensation heat transfer coefficients and 

pressure drops along the tube. All the presented points are the optimum points that 

correspond to different operating conditions. The range of variations in the operating 

conditions for the optimization process is presented in Table 7. The plots can be 

categorized into four regions. In the first region there is a linear relationship between 

the condensation heat transfer coefficients and pressure drops. The values of the 

condensation heat transfer coefficients are low, varying from 1 000 to 1 900 W/m2K 

with the pressure drops between -4 to -2 kPa in the first. Therefore the ultimate 

optimum operating conditions are not located in region one. In the second region,  the 
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variations of the condensation heat transfer coefficients are linear with respect to the 

pressure drops, similar to the first region, but the values of the condensation heat 

transfer coefficients are much larger. In the third and fourth regions the slopes of 

variations of the condensation heat transfer coefficients with respect to the pressure 

drops are too high (as compared to the regions I and II). Although these two regions 

represent the optimum values for the specific operating conditions, these points cannot 

be considered as the ultimate optimum regions because of high values of the pressure 

drop along the tube. 

 

The optimization process gave a unique optimum point in which the value of the 

pressure drop is almost zero compared, with a high condensation heat transfer 

coefficient of 2 647 W/m2K. The corresponding operating conditions for this point are G 

= 100 kg/m2s, Tsat = 36.1 °C, β = -15° and xm = 0.48. Although the pressure drop for this 

point is not the minimum as compared to the points in region I, but the corresponding 

condensation heat transfer coefficient is about 40 % higher.  

 

7. Conclusion 

In the present work, an ANFIS was proposed for the prediction of the condensation heat 

transfer coefficient and pressure drop of R134a along an inclined smooth tube. Three 

different ANFIS methods were developed and their performances were studied. 

Moreover, CFD simulations were conducted for a suitable comparison between the 

timing and accuracy of the CFD and ANFIS models. Furthermore, the NSGA-II algorithm 

was used to find the optimum design points to reach the maximum condensation heat 

transfer coefficient and minimum pressure drop. Based on this study, the following 

conclusions can be made: 

I. The results show that the ANFIS proposed models can predict well the 

characteristic parameters of condensation inside an inclined smooth tube. 

II. The prediction results of the three ANFIS methods show that the GP method 

achieves better accuracy than the other two methods. 

III. Although the CFD results show greater accuracy than the ANFIS model, the CFD 

method suffers from high computation costs. 

IV. The ANFIS model will be more useful to obtain faster but still reliable results. 
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V. The multi-objective optimization showed a possible optimum heat transfer 

coefficient at a mass flux of 100 kg/m2s, saturation temperature of 36.2°C, 

downward inclination angle of -15° and a vapour quality of 0.48 in which the 

pressure drop is almost zero and the condensation heat transfer coefficient is 

about 40 % higher compared to the points in region I. 
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Fig. 1. Schematic of the ANFIS architecture. 

Fig. 2 Effect of grid size: (a) condensation heat transfer coefficient, and (b) pressure drop 

along tube. 

Fig. 3. Schematic of the experiment setup [38]. 

Fig. 4. Comparison between the performances of the three proposed ANFIS models for 

the training of condensation heat transfer coefficient for Tsat = 40 °C and G = 100 

kg/m2s, with (a) xm = 0.25 and (b) xm = 0.75. 

Fig. 5. Comparison between the performances of the three proposed ANFIS models for 

the training of the pressure drop along the tube for Tsat = 30 °C and G = 100 kg/m2s, with 

(a) xm = 0.25 and (b) xm = 0.75. 

Fig. 6. Comparison between the performances of the two proposed ANFIS models for 

the prediction of condensation heat transfer coefficient for (a) Tsat = 45 °C, G = 200 

kg/m2s, and xm = 0.5, (b) Tsat = 45 °C, G = 200 kg/m2s, and xm = 0.5, (c) Tsat = 35 °C, G = 

200 kg/m2s, and xm = 0.5. 

Fig. 7. Comparison between the performances of the two proposed ANFIS models for 

the prediction of the pressure drop along the tube for (a) Tsat = 40 °C, G = 400 kg/m2s, 

and xm = 0.5 and (b) Tsat = 30 °C, G = 300 kg/m2s, and xm = 0.25. 

Fig. 8. Results of the ANFIS model and experiment data for predicting the condensation 

heat transfer coefficient at different tube inclination angles and mass fluxes for Tsat = 30 

°C, with (a) xm = 0.25, (b) xm = 0.5, and (c) xm = 0.75. 

Fig. 9. Results of the ANFIS model and experiment data for predicting the pressure drop 

along the tube at different tube inclination angles and mass fluxes for Tsat = 30 °C, with 

(a) xm = 0.25, (b) xm = 0.5, and (c) xm = 0.75. 

Fig. 10. Comparison between the present numerical results and experiment data by 

Adelaja et al. [39] for the pressure drop along the tube for Tsat = 40 °C, G = 100 kg/m2s, 

and xm = 0.5. 

Fig. 11. Comparison between the present numerical results and experiment data by 

Meyer et al. [38] for the condensation heat transfer coefficient along the tube for Tsat = 

35 °C, G = 200 kg/m2s, and xm = 0.5. 

Fig. 12. Comparison between the present numerical results and experiment data by 

Meyer et al. [38] for the condensation heat transfer coefficient along the tube for Tsat = 

45 °C, G = 200 kg/m2s, and xm = 0.5. 
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Fig. 13. Comparison between the present numerical results and experiment data of 

Adelaja et al. [39] for the pressure drop along the tube for Tsat = 40 °C, G = 400 kg/m2s, 

and xm = 0.5.  

Fig. 14. Comparison between the present numerical results and experiment data by 

Meyer et al. [38] for the condensation heat transfer coefficient for Tsat = 40 °C, G = 300 

kg/m2s, and xm = 0.25. 

Fig. 15. Comparison between the present numerical results and experiment data by 

Meyer et al. [38] for the condensation heat transfer coefficient for Tsat = 40 °C, G = 100 

kg/m2s, and xm = 0. 5. 

Fig. 16. Multi-objective Pareto front of the condensation heat transfer coefficient and 

pressure drop along the tube. 
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Table 1. Statistical criteria used for the analysis of the results. 

Table 2. Results of training errors for the average condensation heat transfer 

coefficient of R134a model using different structure identification methods. 

Table 3. Results of training errors for the pressure drop of R134a model using different 

structure identification methods. 

Table 4. Parameters of ANFIS membership functions for modelling of the average 

condensation heat transfer coefficient (have) and pressure drop (ΔP) of R134a within an 

inclined smooth tube. 

Table 5. Fuzzy rule base and ANFIS output for modelling of the average condensation 

heat transfer coefficient of R134a within an inclined smooth tube. 

Table 6. Fuzzy rule base and ANFIS output for modelling of the pressure drop of R134a 

within an inclined smooth tube. 

Table 7. The range of variations for the parameters used in multi-objective 
optimization. 
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Tables: 

 

Table 1. Statistical criteria used for the analysis of the results 

 

Statistical criterion Equation 

Mean absolute error 
1

1 n

p a

i

MAE X X
n 

   

Mean relative error 
1

100
(%)

n
p a

i a

X X
MRE

n X

 
 
 
 

  

Root mean square error  
2

1

1



 
n

p a

i

RMSE X X
n

 

Xp is the predicted value and Xa is the actual (experiment) data 
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Table 2. Results of training errors for the average condensation heat transfer 

coefficient of R134a model using different structure identification methods 

 

 MAE MRE RMSE 

Grid partitioning (GP) 47.19 2.33% 66.74 

subtractive clustering method (SCM) 76.75 3.85% 102.86 

fuzzy C-means (FCM) clustering  57.89 2.87% 73.03 
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Table 3. Results of training errors for the pressure drop of R134a model using different 

structure identification methods 

 MAE MRE RMSE 

Grid partitioning (GP) 75.37 6.38% 96.63 

Subtractive clustering method (SCM) 115.52 9.15% 173.59 

Fuzzy C-means (FCM) clustering  107.97 6.91% 146.33 
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Table 4. Parameters of ANFIS membership functions for modelling of the average 

condensation heat transfer coefficient (have)  and pressure drop (ΔP) of R134a within an 

inclined smooth tube 

 
 

Membership 
function 

 
Input 1 

G (kg/m2.s) 

 
Input 2 
Tsat (oC) 

 
Input 3 

xm 

 
Input 4 

β (Radian) 
 a b c a b c a b c a b c 
have 
MF1 
MF2 

 
150 
150 

 
1.451 
1.93 

 
99.98 
400 

 
9.646 
10.36 

 
1.704 
2.329 

 
29.61 
49.59 

 
0.2775 
0.2376 

 
2.001 
1.998 

 
0.2827 
0.7766 

 
1.116 
0.9718 

 
2.258 
2.547 

 
-1.759 
1.103 

Δp 
MF1 
MF2 

 
250 
250 

 
2.145 
2.274 

 
99.99 
600 

 
9.232 
10.83 

 
1.075 
2.866 

 
29.15 
48.99 

 
0.2592 
0.3184 

 
2.013 
1.981 

 
0.3522 
0.8032 

 
1.406 
1.481 

 
1.887 
1.558 

 
-1.504 
2.266 

a, b, and c represent generalised bell-shaped membership function constants  
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Table 5. Fuzzy rule base and ANFIS output for modelling of the average condensation 

heat transfer coefficient of R134a within an inclined smooth tube 

 
Number 

of Rules 

Rule description 

1 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF1) then                       
have = a1,1 ×G +a1,2 ×Tsat +a1,3 × xm +a1,4 × β +a1,5 

2 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF2) then                        
have = a2,1 × G +a2,2 × Tsat +a2,3 × xm +a2,4 × β +a2,5 

3 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF1) then                        
have = a3,1 × G +a3,2 × Tsat +a3,3 × xm +a3,4 × β +a3,5 

4 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF2) then                       
have = a4,1 × G +a4,2 × Tsat +a4,3 × xm +a4,4 × β +a4,5 

5 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF1) then                        
have = a5,1 × G +a5,2 × Tsat +a5,3 × xm +a5,4 × β +a5,5 

6 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF2) then                       
have = a6,1 × G +a6,2 × Tsat +a6,3 × xm +a6,4 × β +a6,5 

7 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF1) then                       
have = a7,1 × G +a7,2 × Tsat +a7,3 × xm +a7,4 × β +a7,5 

8 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF2) then                       
have = a8,1 × G +a8,2 × Tsat +a8,3 × xm +a8,4 × β +a8,5 

9 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF1) then                       
have = a9,1 × G +a9,2 × Tsat +a9,3 × xm +a9,4 × β +a9,5 

10 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF2) then                       
have = a10,1 × G +a10,2 × Tsat +a10,3 × xm +a10,4 × β +a10,5 

11 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF1) then                       
have = a11,1 × G +a11,2 × Tsat +a11,3 × xm +a11,4 × β +a11,5 

12 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF2) then                       
have = a12,1 × G +a12,2 × Tsat +a12,3 × xm +a12,4 × β +a12,5 

13 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF1) then                       
have = a13,1 × G +a13,2 × Tsat +a13,3 × xm +a13,4 × β +a13,5 

14 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF2) then                       
have = a14,1 × G +a14,2 × Tsat +a14,3 × xm +a14,4 × β +a14,5 

15 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF1) then                        
have = a15,1 × G +a15,2 × Tsat +a15,3 × xm +a15,4 × β +a15,5 

16 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF2) then                       
have = a16,1 × G +a16,2 × Tsat +a16,3 × xm +a16,4 × β +a16,5 
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Table 6. Fuzzy rule base and ANFIS output for modelling of the pressure drop of R134a 

within an inclined smooth tube 

 
Number 

of Rules 

Rule description 

1 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF1) then                       
ΔP = b1,1× G +b1,2× Tsat +b1,3×xm + b1,4×xm +b1,5 

2 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF2) then                       
ΔP = b2,1× G +b2,2× Tsat +b2,3×xm + b2,4×xm +b2,5 

3 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF1) then                       
ΔP = b3,1× G +b3,2× Tsat +b3,3×xm + b3,4×xm +b3,5 

4 
If (G is G MF1) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF2) then                       
ΔP = b4,1× G +b4,2× Tsat +b4,3×xm + b4,4×xm +b4,5 

5 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF1) then                       
ΔP = b5,1× G +b5,2× Tsat +b5,3×xm + b5,4×xm +b5,5 

6 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF2) then                       
ΔP = b6,1× G +b6,2× Tsat +b6,3×xm + b6,4×xm +b6,5 

7 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF1) then                       
ΔP = b7,1× G +b7,2× Tsat +b7,3×xm + b7,4×xm +b7,5 

8 
If (G is G MF1) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF2) then                       
ΔP = b8,1× G +b8,2× Tsat +b8,3×xm + b8,4×xm +b8,5 

9 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF1) then                       
ΔP = b9,1× G +b9,2× Tsat +b9,3×xm + b9,4×xm +b9,5 

10 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF1) and (β is β MF2) then                       
ΔP = b10,1× G +b10,2× Tsat +b10,3×xm + b10,4×xm +b10,5 

11 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF1) then                       
ΔP = b11,1× G +b11,2× Tsat +b11,3×xm + b11,4×xm +b11,5 

12 
If (G is G MF2) and (Tsat is Tsat MF1) and (xm is xm MF2) and (β is β MF2) then                       
ΔP = b12,1× G +b12,2× Tsat +b12,3×xm + b12,4×xm +b12,5 

13 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF1) then                       
ΔP = b13,1× G +b13,2× Tsat +b13,3×xm + b13,4×xm +b13,5 

14 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF1) and (β is β MF2) then                       
ΔP = b14,1× G +b14,2× Tsat +b14,3×xm + b14,4×xm +b14,5 

15 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF1) then                       
ΔP = b15,1× G +b15,2× Tsat +b15,3×xm + b15,4×xm +b15,5 

16 
If (G is G MF2) and (Tsat is Tsat MF2) and (xm is xm MF2) and (β is β MF2) then                       
ΔP = b16,1× G +b16,2× Tsat +b16,3×xm + b16,4×xm +b16,5 
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Table 7. The range of variations for the parameters used in multi-objective 
optimization. 

 
Parameter Range 

G [kg/m2s] 100 - 500 

xm [-] 0.1 - 0.9 

Tsat [°C] 30 - 50 

β [°] -90 - 90 
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