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ABSTRACT

This dissertation investigates the performance of two-class classification credit scoring data

sets with low default ratios. The standard two-class parametric Gaussian and naive Bayes

(NB), as well as the non-parametric Parzen classifiers are extended, using Bayes’ rule, to

include either a class imbalance or a Bernoulli prior. This is done with the aim of addressing

the low default probability problem. Furthermore, the performance of Parzen classification

with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth

estimation is also investigated. It is shown that the non-parametric Parzen classifiers yield

superior classification power.

However, there is a longing for these non-parametric classifiers to posses a predictive power,

such as exhibited by the odds ratio found in logistic regression (LR). The dissertation there-

fore dedicates a section to, amongst other things, study the paper entitled “Model-Free Ob-

jective Bayesian Prediction” (Bernardo 1999). Since this approach to Bayesian kernel density

estimation is only developed for the univariate and the uncorrelated multivariate case, the

section develops a theoretical multivariate approach to Bayesian kernel density estimation.

This approach is theoretically capable of handling both correlated as well as uncorrelated

features in data. This is done through the assumption of a multivariate Gaussian kernel

function and the use of an inverse Wishart prior.
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Dissertation overview

Problem statement

A class imbalance in data result in major problems in the field of classification. The lack

of data in one class results in the inaccurate training of classifiers and hence a poor fit of

the model. This is especially true in the credit scoring environment. Furthermore, there

exists some uncertainty whether parametric or non-parametric models perform better in this

setting. Although non-parametric kernel density estimators generally perform well, they lack

a much desired predictive power.

Research objectives

This dissertation has multiple research objectives. First of all, the dissertation introduces two

types of priors with the aim of addressing the class imbalance problem. The dissertation goes

further to investigate which of the abovementioned priors better adress the class imbalance

problem for various classifiers. The dissertation also sets out to solve the question of whether

parametric or non-parametric classifiers perform better in the class imbalance setting. The

final objective of the dissertation is to develop a theoretical approach to multivariate Bayesian

kernel density estimation, with the aim of providing kernel density estimators with the much

desired predictive power.

Outline of dissertation

Chapter 1 is dedicated to providing the reader with the required background information in

order to understand the setting in which the research is performed.

Chapter 2 describes the data used as well as the pre-processing methods applied to the data.

The chapter also describes the methods used to evaluate the performance of the models.

Chapter 3 investigates the mathematics underlying the Naive Bayes, Gaussian and Logistic

regression classifiers. This is done with the aim of giving the reader a deeper understanding

of these classifiers. A very short literature review of Bayesian logistic regression is also in-

1
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cluded in this chapter.

Chapter 4 introduces the theory surrounding non-parametric kernel density estimation. In

particular, it elaborates on the Silverman’s rule of thumb method of bandwidth estimation as

well as the Minimum Leave-One-Out Entropy method of bandwidth estimation. The chap-

ter goes further to introduce two types of priors, that have the aim of addressing the class

imbalance problem.

Chapter 5 performs a comprehensive study, investigating the effect of the priors introduced in

Chapter 4 as well as investigating the performance of the parametric versus the performance

of the non-parametric classifiers.

Chapter 6 starts off by reviewing the univariate approach to Bayesian kernel density estima-

tion as derived by Bernardo (1999). The chapter goes on to develop a theoretical multivariate

approach to Bayesian kernel density estimation. It is due to theoretical nature of this chapter

and the lack of a simulation study that the chapter is placed second to last in the dissertation.

In Chapter 7 concluding remarks are made and future work to be done are discussed.

2



Chapter 1

Introduction

Credit scoring utilises historical data and various statistical methods in order to determine

the risk associated with loan applications. A scoring model, also known as a scorecard,

analyse the performance of previously made loans in order to isolate the characteristics of

borrowers that will result in a loan being settled in accordance with the agreed upon condi-

tions. Typically scoring models assign a higher score to applicants considered to be a low risk

and vice versa for those considered to be a high risk. The lender can set a threshold scoring

value, depending on the lender’s risk appetite, upon which all loans with a score exceeding

the threshold is approved and all loans with a score below the threshold is denied (Mester

1997).

Linear probability models, probit models, logit models and discriminant analysis models are

methods traditionally used in credit scoring models. Discriminant analysis divides loan ap-

plicants into various classes based on the risk of default. The other three methods model

the probability of default of the loan applicants. Pricing theory models and neural networks

are two other models also used to model credit risk. Neural networks utilise training data

in order to determine the relationship that exists between the characteristics of borrowers

and the probability of default. The importance of the various characteristics, in terms of the

amount each characteristic contributes toward the estimated probability of default, is also

determined. Mester (1997) states that Since the assumptions surrounding neural networks

are more relaxed, the method is more flexible than traditional statistical methods.

A paper by Zekic-Susac et. al compare the performance of logistic regression (LR), neural

networks and CART decision trees in the small business credit scoring environment. The pa-

per by Zekic-Susac, Sarlija, and Bensic (2004) concludes that the neural network outperforms

the other models. In contrast to this, papers by Castillo et al. (2003), Féraud and Clérot

(2002) and Nath, Rajagopalan, and Ryker (1997) outline the poor performance of neural net-

works in the presence of small data sets or data sets containing irrelevant features. Clearly

there exists uncertainty surrounding the use of parametric versus the use of non-parametric

models when constructing credit scoring models.

3



Chapter 1. Introduction

The low default probability problem is a complication often encountered when modeling

credit risk. The low default probability problem boils down to a class imbalance problem.

There are two factors leading to a class imbalance in this context. The first being the pro-

portion of the one class differing significantly from the other class. That is to say the number

of borrowers, in the sample as well as the population, that default on their debt are consid-

erably less than those that do not default on their debt. This shortage of data relating to

defaulters often result in a distorted estimate of the probability of default. The second factor

is a difference in the proportion of a class in the sample compared to the proportion of that

class in the population.

There are three main categories of methods used to solve class imbalance problems. These

include the feature selection approach, the algorithmic approach and finally the sampling

approach. The sampling approach can be subdivided into under-sampling, in which observa-

tions from the majority class is randomly removed, and over-sampling, in which the random

observations in the minority class is replicated. Under-sampling has the disadvantage that

valuable information is lost, whereas over-sampling results in significantly higher computa-

tional time. The algorithmic approach includes algorithms designed to handle large class

imbalances. These approaches include one-class classification as well as cost-sensitive learn-

ing. Cost-sensitive learning methods aim to maximise the loss-function of a particular data

set. The problem with this method is that in most real world cases the cost of misclassifica-

tion is not known. According to Longadge and Dongre (2013), since high dimensionality is

often accompanied with large class imbalances, selecting the features that result in optimal

performance is of vital importance.

A paper by Kennedy, Mac Namee, and Delany (2012) compared one-class and two-class

classifiers. The paper only utilised the Gaussian and Parzen classifiers as one-class classifiers

where the majority class was modelled. It concluded that one-class classification outperforms

two-class classification when the proportion of defaulters is very low, typically when default-

ers are less than 1% of the sample.

We therefore perform a comprehensive study investigating the performance of parametric

versus non-parametric classifiers. Bayes’ rule is used to extend the two-class Gaussian, naive

Bayes (NB) and Parzen classifiers by modelling both class-conditional probability density

functions (PDFs) and accounting for class imbalances through the use of class priors (the

class proportions) as well as through the use of Bernoulli priors with a fixed prior parameter

p. This is done so that the negative effect of imbalanced data on the performance of two class

classification would be reduced. Furthermore, a rudimentary multivariate Bayesian kernel

density estimate approach is developed with the aim of affording kernel density estimators a

much desired predictive power.
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Chapter 2

Data, data pre-processing and model
evaluation

The following three data pre-processing techniques are introduced in this chapter: z-Scoring,

PCA and the Mahalanobis distance. The three data sets used in this dissertation are in-

troduced and the data pre-processing techniques are applied to them. Finally the model

evaluation techniques, in the machine learning context, are discussed and the mathematical

background for the metrics used in this dissertation are provided.

2.1 Data pre-processing

In machine learning the saying “garbage in, garbage out” is particularly true. One of the

aims of data pre-processing is to prevent data of poor quality resulting in inaccurate results.

The majority of pattern recognition algorithms require data to be pre-processed. The original

features are transformed into a set of new features with the aim of reducing the complexity of

the pattern recognition problem. According to Bishop (2006), another important attribute

of data pre-processing is its potential to reduce computational time.

2.1.1 z-Scoring

The z-score or standard score is the number of standard deviations a data point differs from

the mean of the values being observed. A positive z-score value indicates a data point above

the mean of the observed values, while a negative value indicates a data point below the

mean of the observed values. If the z-score value is zero the data point has the same value

as the mean of the observed values.

The z-score value is calculated by subtracting the population mean and then dividing by the

population standard deviation

z =
x− µ
σ

5
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where µ is the population mean and σ is the population standard deviation. Should the

population mean and standard deviation not be known, then the sample mean and standard

deviation may be used. This process is also known as standardising or normalising (Murphy

2012).

Some models are sensitive to the scale of the data. By standardising the data all features

have the same scale, enabling models and statistical methods that are scale sensitive to be

used.

2.1.2 Principal component analysis

Principal component analysis is a method used to reduce the dimensionality of data as well

as enhance the ability to interpret the data. It is of vital importance to standardise the

data before performing principal component analysis, since it is sensitive to the scaling of the

data. Geometrically, the method utilises an orthogonal transformation to rotate the original

set of axis, used to represent the features, {X1, . . . , Xp} to a new set of axis, {Y1, . . . , Yp}.
The transformation ensures that the directions displaying the maximum amount of variation

is represented by the new set of axis (Murphy 2012). It is important to keep in mind that

this is under the constraint that all of the derived axis are orthogonal to one another, i.e.

Y1 ⊥ Y2 ⊥ · · · ⊥ Yp. The derived axis also ensures that the covariance structure is described

in a parsimonious fashion. The derived axis are known as the principal components. Since

the derived axis are orthogonal to one another, the principal components are uncorrelated.

The principal components may also be viewed as linear combinations of the original data,

X = {X1, . . . , Xp}. The linear combinations are constructed in such a way that the variances

of each linear combination is maximised. Let the data, X, have a covariance matrix, Σ, with

eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and corresponding eigenvectors, {e1, e2, . . . , ep}, then

the principal components are

Y1 = eT1 X = e11X1 + e12X2 + · · ·+ e1pXp

Y2 = eT2 X = e21X1 + e22X2 + · · ·+ e2pXp

...

Yp = eTp X = ep1X1 + ep2X2 + · · ·+ eppXp

with respective variances and covariances

Var (Yi) = eTi Σei = λi ∀i = 1, . . . , p

Cov (Yi, Yj) = eTi Σej = 0 ∀i 6= j

The principal components are therefore defined in such a fashion that they appear in descend-

ing order based on the amount of variation explained (Bishop 2006). In other words, the first

6
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principal component explains the most variation with each successive principal component

explaining a smaller proportion of variation in the data.

Often most of the variation in the data can be accounted for by only considering a small

number k < p of principal components. If this is the case the k principal components, that

explains most of the variation, can be used to describe the data instead of the original p

variables. Only a small amount of information is lost since the k principal components con-

tain almost as much information as the original variables. The ability to use k principal

components to represent the data gives rise to the problem of determining the number of

principal components to retain, i.e. the value of k. The subject matter as well as the amount

of sample variation explained should be considered when addressing this issue. Assuming the

data is standardized, the proportion of variance explained by the ith principal component is
λi
p ∀i = 1, . . . , p. A good rule of thumb is to only use those components that individually

explain a proportion of at least 1
p of the total variation.

Scree-plot

Another useful tool to help determine the number of principal components is a scree-plot.

A scree-plot plots the eigenvalues λi, and thus the variation explained by each principal

component, against i, the eigenvalue number. The number of principal components to be used

is indicated by the position of an elbow or bend in the scree-plot. The number of components

that are retained are chosen such that the eigenvalues of the remaining components are fairly

small and approximately the same size (Johnson and Wichern 2014).

2.1.3 Mahalanobis distance

The Mahalanobis distance was first introduced by Mahalanobis (1936). The Mahalanobis

distance can be thought of as a multivariate method to measure the number of standard

deviations some point, y, is from the mean of some distribution, D. If the point y and the

mean of D are equal, the Mahalanobis distance would therefore be zero. By transforming the

coordinate system the Mahalanobis distance corresponds to the Euclidean distance (Murphy

2012). The distance is scale-invariant, unit less and it takes the correlations of the data

set into account. Considering the set of observations x = {x1, . . . ,xn} with mean µ =

{µ1, . . . , µn} and covariance matrix S, the Mahalanobis distance is

D =

√
(x− µ)T S−1 (x− µ)

By applying the Mahalanobis distance to a data set with a high dimensional feature space

and considering the diagonal of the resulting matrix, the dimensionality can be reduced so

that a univariate data set is obtained. This enables us to visualise the data with greater ease.
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It is important to ensure that features are not highly correlated, since this may result in the

covariance matrix being singular.

2.2 Data

2.2.1 Data summary

A summary of the number of observations and the number of features for the various data

sets are given in Table 2.1.

Data set
Total

observations
Defaulting

observations
Non-defaulting

observations
Features

German 1000 300 700 24
Australian 690 383 307 14

Lending club 120269 8357 111912 11

Table 2.1: Data summary

2.2.2 German credit scoring data

The German data set is a multivariate data set consisting of twenty features and a thousand

instances. Professor Hans Hofmann, of the University of Hamburg, donated the data set

in 1994. Originally the data set consisted of integer as well as categorical features. The

University of Strathclyde modified the data set, enabling various machine learning algorithms

to utilise it. In the modified data set, “german.data-numeric”, all categorical variables are

replaced with indicator functions. This results in the modified data set consisting of 24

features. The data set has a class imbalance of 300 instances of debtors defaulting and

700 that settle their debt. The data set is available from the machine learning repository

(Lichman 2013). Table 2.2 provides a description of the various features encountered in the

original data set.

Figure 2.1 illustrates the distributions of the Mahalanobis distance of the respective classes,

as explained in Section 2.1.3. The figure indicates that both classes are similarly distributed;

both slightly skewed to the right. It might be considered that the Mahalanobis distances

of the respective classes follow various forms of a Students-t distribution. Superimposing

the distributions of the classes, as done in Figure 2.2, emphasises the presence of a class

imbalance in the data, the fact that both classes have similar distributional forms as well

as the fact that the locations of the distributions are very similar. Since these locations are

very similar, it is clear that using the Mahalanobis distance to reduce the dimensionality of

the data is not a viable option for classification purposes.

Considering the scree-plot in Figure 2.3, it quite difficult to determine the optimum number

of principal components to retain. An “elbow” is evident at i = 6. However, only 40,96%
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of the variation is explained should six principal components be used. Another “elbow” can

be observed at i = 21. Retaining twenty-one principal components results in 95.78% of the

variation being explained. It would therefore be more sensible to retain about twenty-one

principal components.

Attribute number Feature Data type

1 Status of Checking Account
Qualitative

4 Levels

2 Duration
Quantitative

Integer

3 Credit History
Qualitative

5 Levels

4 Purpose
Qualitative
11 Levels

5 Credit Amount
Quantitative

Rounded to nearest hundred

6 Savings Account or Bonds
Qualitative

5 Levels

7 Present Employment
Qualitative

5 Levels

8 Instalment Rate
Quantitative

Percentage of disposable income

9 Personal Status and Sex
Qualitative

5 Levels

10 Other Debtors
Qualitative

3 Levels

11 Present Residence since
Quantitative

Integer

12 Property
Qualitative

4 Levels

13 Age
Quantitative

Integer

14 Other Instalment plans
Qualitative

3 Levels

15 Housing
Qualitative

3 Levels

16 Existing Credits at this Bank
Quantitative
Real value

17 Job
Qualitative

4 Levels

18 Number of dependence
Quantitative

Integer

19 Telephone
Qualitative

2 Levels

20 Foreign Worker
Qualitative

2 Levels

Table 2.2: German data set
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Figure 2.1: Class distribution of Mahalanobis distance of German data

Figure 2.2: Distribution of Mahalanobis distance for German data

Figure 2.3: German data scree-plot
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2.2.3 Australian credit approval data

The Australian credit approval data set represent data relating to credit card applications.

The data set has 14 features and 690 observations. The data set has a class imbalance of

307 positive instances and 383 negative instances. Since the data set contains missing values

imputation is implemented. The data is divided into the defaulting and non-defaulting

classes. The average of each feature for the relative classes are calculated. These values are

substituted into the missing continuous values for the respective features in the respective

classes. This is known as cell mean imputation. A similar technique where the mode instead

of the mean is used for the categorical variables. An additional variable is added to indicate

whether a variable is measured or imputed. This method is explained by Lohr (2010). A short

description of the data follow in Table 2.3. The official source of the data set is confidential.

The data set containing the imputations can be downloaded from the UCI machine learning

repository (Lichman 2013).

Figure 2.4 illustrates the distributions of the Mahalanobis distance of the respective classes,

as explained in Section 2.1.3. The figure indicates that both classes are similarly distributed;

both slightly skewed to the right. Superimposing the distributions of the classes, as done

in Figure 2.5, the absence of a large class imbalance in the data is evident. The fact that

both classes have similar distributional forms as well as the fact that the locations of the

distributions are very similar are also highlighted. Since these locations are very similar, it

is clear that using the Mahalanobis distance to reduce the dimensionality of the data is not

a viable option for classification purposes.

Considering the scree-plot in Figure 2.6 an “elbow” is seen at i = 4, suggesting the use of four

principal components. However, this will result in only 40.18% of the variance encountered

in the data being explained. From the scree-plot it is difficult to determine the optimal

number of principal components to retain. We will therefore use the number of components

that results in a minimum of 95% of the variance being explained; particularly in this case

thirteen principal components.
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Attribute number Data type Possible values

1 Categorical 0,1

2 Continuous

3 Continuous

4 Categorical 1,2,3

5 Categorical 1,2,3,4,5,6,7,8,9,10,11,12,13,14

6 Categorical 1,2,3,4,5,6,7,8,9

7 Continuous

8 Categorical 0,1

9 Categorical 0,1

10 Continuous

11 Categorical 0, 1

12 Categorical 1,2,3

13 Continuous

14 Continuous

15 Class 1,2

Table 2.3: Australian credit approval data

Figure 2.4: Class distribution of Mahalanobis distance of Australian data

Figure 2.5: Distribution of Mahalanobis distance for Australian data
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Figure 2.6: Australian data scree-plot

2.2.4 Lending club data

The Lending club data consists of a training as well as a testing data set. The training data

set consists of 150000 observations and 10 features, whereas the testing data set contains

100000 observations. However, the testing set does not contain class labels. Both the train-

ing and testing sets contain observations with missing values (Lending club 2016). Since the

objective of this research is not to investigate the handling of missing values and the data

sets are large, all observations containing missing values are removed from the respective

data set. This results in a testing set of 81000 and a training set of 120269 observations. A

short description of the data is given in Table 2.4.

Figure 2.7 illustrates that the distribution of the Mahalanobis distance of both classes are

skewed to the right, with a location close to two. Superimposing these distributions results

in the graph given in Figure 2.8. The graph highlights the enormous class imbalance present

in the data as well as the fact that the locations of both classes are very similar. The use

of the Mahalanobis distance to reduce the multivariate classification problem to a univariate

problem is therefore not feasible.

Considering Figure 2.9 two “elbows” are evident; the first at i = 4 and the second at i = 9.

Retaining four principal components results in 57.3% of the variation in the data being

explained, whereas if nine principal components are retained 99.63% of the variation is ex-

plained.
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Attribute number Description Data type

1 Class attribute Categorical

2 Personal credit divided by total credit limit Percentage

3 Age Integer

4 Number of late payments (past 30-59 days) Integer

5 Monthley debt divided by gross income Percentage

6 Monthley income Real

7 Number of current loans Integer

8 Number of late payments (past 90 days) Integer

9 Number of mortgage and real estate loans integer

10 Number of late payments (past 60-89 days) integer

11 Number of dependents integer

Table 2.4: Lending club data

Figure 2.7: Class distribution of Mahalanobis distance of Lending club data

Figure 2.8: Distribution of Mahalanobis distance for Lending club data
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Figure 2.9: Lending club data scree-plot

2.3 Model evaluation

2.3.1 k-Fold cross-validation

Suppose a data set consists out of a training set and a validation set that are independent

of one another. In the process of fitting the model, the model is optimised in such a fashion

that it over fits the training data. Therefore, the model generally fits the training data

considerably better than it fits the validation set. This is especially true if the data set is

small. Cross-validation is thus a method used to fit a model to a data set and evaluate its

performance when the data set doesn’t contain a validation set.

k-Fold cross-validation divides the data set into k folds. Of these k folds, k − 1 folds are

combined to form a training set and the remaining fold serves as the validating set. The

model is fitted using the training set and the performance of the fitted model is evaluated

using the validation set. The process is repeated for k iterations; during each iteration

another fold serves as the validation set. This results in every fold serving as the validation

set exactly once, as explained by Bishop (2006) and Giudici and Figini (2009).

2.3.2 Confusion matrices

A confusion matrix is a table that is used to represent the performance of a supervised

learning classification model. The table consists out of two rows and two columns; the

columns representing the actual class and the rows the predicted class, or vice versa. The

cells of the confusion matrix therefore summarise the number of true positives, false positives,
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C ′1 C ′2
C1 True Positive False Negative

C2 False Positive True Negative

Table 2.5: 2× 2 Confusion matrix

true negatives and false negatives (Murphy 2012). An example of a confusion matrix can be

viewed in Table 2.5.

2.3.3 Harmonic mean

The harmonic mean assumes the cost of incorrectly classifying instances as being positive

to be equal to the cost of incorrectly classifying instances as being negative. This could be

problematic if the costs of the type of classification errors differ. Should this be the case a cost

matrix is required. However, if cost matrices are not available the harmonic mean is deemed

an appropriate performance measure as explained by Kennedy, Mac Namee, and Delany

(2012). The accuracy of a classifier for a specific threshold is measured by the harmonic

mean. In order to calculate the harmonic mean a confusion matrix is constructed from which

the sensitivity and specificity is calculated. The harmonic mean is calculate as

Harmonic Mean =
2× Sensitivity× Specificity

Sensitivity + Specificity
(2.1)

Take note that according to Giudici and Figini (2009) sensitivity is the proportion of positive

instances correctly classified as such and specificity is the proportion of negative instances

correctly classified as such.

2.3.4 Count-R2

According to Gujarati and Porter (1999) the count-R2 measure is the proportion of instances

correctly classified. This measure is also known as the hit rate. It is important to compare

the count-R2 value to a benchmark, since class imbalances can result in a distorted image

of performance. One such benchmark is the proportional chance criterion given by CPRO =

q2
1 +q2

2, where q2
1 and q2

2 are the respective proportions of the classes. A classifier is considered

to perform sufficiently well if the count-R2 value is a quarter greater than the proportional

chance criterion. This method of evaluation is only a rough indication and becomes redundant

for large class imbalances.
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Parametric classification

Parametric models have a fixed number of parameters, regardless of the amount of training

data. Computationally speaking, parametric models are quite fast to use. However, according

to Bishop (2006) and Murphy (2012) these models are very rigid in the assumptions made

about the distributions of the data. This chapter provides an overview of the derivations of

the naive Bayes (NB), Guassian as well as the logistic regression (LR) classifiers. The chapter

goes further to provide a very short literature review of the Bayesian logistic regression (BLR)

classifier.

3.1 Naive Bayes classifier

The following section elaborates on the outline for NB classifiers given in Murphy (2012).

Let x = {x1, . . . , xp} be a vector consisting of p features. The NB classifier assumes that

given the class labels, the features are independent. Even if the independence assumption

doesn’t hold the model generally perform quite well due to its simplicity and small chance

of overfitting. Due to the independence assumption the conditional probability density can

be written in terms of the product of the density of each of the features:

p (x|y = c) =

p∏
j=1

p (xj |y = c) (3.1)

As emphasised by Equation 3.1 the NB classifier depends on the probability density of each

feature. For features consisting of real values, xj ∈ R ∀j = {1, . . . , p}, the Gaussian distri-

bution with mean µj and variance σ2
j is used. Equation 3.1 therefore becomes

p (x|y = c) =

p∏
j=1

N
(
xj |µj , σ2

j

)
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3.1.1 Parameter estimation

In order to fit the model it is necessary to estimate the relevant parameters. This is done

using maximum likelihood. The likelihood is given by

L
(
µ, σ2

)
= p

(
x, y|µ, σ2

)
=

n∏
i=1

p (yi)

p∏
j=1

p
(
xij |yi, µj , σ2

j

)
=

n∏
i=1

∏
c

π∆
c

p∏
j=1

p
(
xij |, µjc, σ2

jc

)∆
=

n∏
i=1

∏
c

π∆
c

p∏
j=1

N
(
xij |µjc, σ2

jc

)∆
=

n∏
i=1

∏
c

π∆
c

p∏
j=1

 1√
2πσ2

jc

e
−

(xij−µjc)
2

2σ2
jc

∆

where πc = p (yi = c) and

∆ = I(yi = c) =

{
1 if yi = c

0 otherwise

Taking the natural logarithm of the likelihood, the log-likelihood is

ln
(
L
(
µ, σ2

))
= ln

 n∏
i=1

∏
c

π∆
c

p∏
j=1

 1√
2πσ2

j

e
−

(xij−µj)2

2σ2
j

∆


=
n∑
i=1

∑
c

I (yi = c) ln (πc)−
p

2

n∑
i=1

∑
c

I (yi = c) ln (2π)

−
n∑
i=1

∑
c

I (yi = c)

p∑
j=1

ln (σj)−
n∑
i=1

∑
c

I (yi = c)

p∑
j=1

(xij − µj)2

2σ2
j

=
∑
c

nc ln (πc)−
p

2

∑
c

nc ln (2π)−
∑
c

nc

p∑
j=1

ln (σj)−
n∑
i=1

∑
c

I (yi = c)

p∑
j=1

(xij − µj)2

2σ2
j

=
∑
c

nc ln (πc)−
np

2
ln (2π)− n

p∑
j=1

ln (σj)−
n∑
i=1

∑
c

I (yi = c)

p∑
j=1

(xij − µj)2

2σ2
j

(3.2)
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Differentiating the log-likelihood towards µk, for some k ∈ {1, . . . , p}, and setting the deriva-

tive equal to zero the MLE of the mean is obtained

∂L
(
µ, σ2

)
∂µk

=

n∑
i=1

∑
c

I (yi = c)
xik − µk
σ2
k

= 0

n∑
i=1

∑
c

I (yi = c)µk =

n∑
i=1

∑
c

I (yi = c)xik

µ̂k =
1

n

n∑
i=1

xik

= x̄k

the sample mean of the kth feature. Differentiating the log-likelihood towards σ2
k, for some

k ∈ {1, . . . , p}, and setting the derivative equal to zero the MLE of the variance is obtained

∂L
(
µ, σ2

)
∂σ2

k

= − n

2σ2
k

+

n∑
i=1

∑
c

I (yi = c)
(xik − µk)2

2σ4
k

= 0

σ2
k =

1

n

n∑
i=1

(xik − µk)2

the sample variance of the kth feature. In order to calculate the MLE of the prior, πk,

Lagrangian multipliers are used. The constraint
∑

c πc = 1 is added to the log-likelihood

given in Equation 3.2

ln
(
L
(
µ, σ2, λ

))
=
∑
c

nc ln (πc)−
np

2
ln (2π)− n

p∑
j=1

ln (σj)

−
n∑
i=1

∑
c

I (yi = c)

p∑
j=1

(xij − µj)2

2σ2
j

+ λ

(
1−

∑
c

πc

)
(3.3)

Differentiating Equation 3.3 with respect to the prior, πk for some k ∈ {1, . . . , C} and setting

the derivative equal to zero, the MLE of the prior is obtained

∂L
(
µ, σ2, λ

)
∂πk

=
nk
πk
− λ = 0

π̂k =
nk
λ

(3.4)

This estimate of the prior, πk contains an unknown quantity, λ. Lambda is solved by using

the restriction
∑

c πc = 1 ∑
c

π̂c =
∑
c

nc
λ

1 =
1

λ

∑
c

nc

λ = n (3.5)
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Substituting lambda, given in Equation 3.5, into the expression for the prior of a class, given

in Equation 3.4, it is seen that the estimate of the prior is simply the proportion of instances

in that particular class

π̂k =
nk
n

3.2 Gaussian discriminative analysis

This section is based on the overiew of Gaussian classifiers given in Murphy (2012).

Gaussian discriminative analysis utilises multivariate normal densities to define class con-

ditional densities. The model therefore assume the data to be normally distributed. It is

important to note that, even though possible confusion due to the name, Gaussian discrim-

inative analysis is not a discriminative, but a generative model. Let x = {x1, . . . , xp} be a

vector consisting of p features. The class conditional densities are

p (x|y = c) =
1

(2π)
p
2 |Σc|

1
2

e−
1
2

(x−µc)TΣ−1
c (x−µc) (3.6)

Using Bayes’ theorem the posterior probability of classifying x to the class y = c is

p (y = c|x) =
πcp (x|y = c)∑C
j=1 πjp (x|y = j)

(3.7)

where πi = p(y = i) is the prior probability of x belonging to class i. A new instance is

classified to the class with the largest posterior probability. Considering Equation 3.7, it is

necessary to calculate estimates for the class priors, class conditional means and covariance

matrices. In the special case where Σc is a diagonal matrix the model simplifies to a NB

classification model. If the covariance matrices differ for the various classes the classification

model used is quadratic discriminant analysis. However, should the covariance matrices be

similar and a pooled estimate for the covariance matrix is used then the classification model

used is linear discriminant analysis.

3.2.1 Parameter estimation

The parameters can be estimated using maximum likelihood estimation. The likelihood

function is

L (µ,Σ) =

n∏
i=1

p (yi = c) p (xi|yi,µ,Σ)

=

n∏
i=1

∏
c

π∆
c p (xi|µ,Σ)∆

=
n∏
i=1

∏
c

π∆
c

(
1

(2π)
p
2 |Σc|

1
2

e−
1
2

(xi−µc)TΣ−1
c (xi−µc)

)∆
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Taking the natural logarithm of the likelihood, the log-likelihood is

ln (L (µ,Σ))

=
n∑
i=1

∑
c

I (yi = c) ln (πc)−
p

2
ln (2π)

n∑
i=1

∑
c

I (yi = c) +
1

2

n∑
i=1

∑
c

I (yi = c) ln
∣∣Σ−1

c

∣∣
− 1

2

n∑
i=1

∑
c

I (yi = c) (xi − µc)T Σ−1
c (xi − µc) (3.8)

=
∑
c

nc ln (πc)−
np

2
ln (2π) +

1

2

∑
c

nc ln
∣∣Σ−1

c

∣∣− 1

2

n∑
i=1

∑
c

I (yi = c) (xi − µc)T Σ−1
c (xi − µc)

(3.9)

Differentiating the log-likelihood towards µk for some k ∈ {1, . . . , C} and setting the deriva-

tive equal to zero, the MLE of the mean is obtained

∂ ln (L (µ,Σ))

∂µk
=

n∑
i=1

I (yi = k) Σ−1
k (xi − µk) = 0

n∑
i=1

I (yi = k)µk =

n∑
i=1

I (yi = k) xi

nkµk =

n∑
i=1

I (yi = k) xi

µ̂k =

∑n
i=1 I (yi = k) xi

nk
µ̂k = x̄k

where x̄k is the average vector of the kth class. In order to calculate the MLE of the covariance

matrix the log-likelihood first have to be written in the form

ln (L (µ,Σ))

=
∑
c

nc ln (πc)−
np

2
ln (2π) +

1

2

∑
c

nc ln
∣∣Σ−1

c

∣∣− 1

2

n∑
i=1

∑
c

I (yi = c) (xi − µc)T Σ−1
c (xi − µc)

=
∑
c

nc ln (πc)−
np

2
ln (2π) +

1

2

∑
c

nc ln
∣∣Σ−1

c

∣∣
− 1

2

n∑
i=1

∑
c

I (yi = c) Tr
[
(xi − µc) (xi − µc)T Σ−1

c

]

21



Chapter 3. Parametric classification

Differentiating the log-likelihood towards Σ−1
k for some k ∈ {1, . . . , C} and setting the deriva-

tive equal to zero, the MLE of the covariance matrix is obtained

∂ ln (L (µ,Σ))

∂Σ−1
k

=
nk
2

ΣT
k −

1

2

n∑
i=1

I (yi = k) (xi − µk) (xi − µk)T = 0

nk
2

ΣT
k =

1

2

n∑
i=1

I (yi = k) (xi − µk) (xi − µk)T

Σ̂k =

∑n
i=1 I (yi = k) (xi − µk) (xi − µk)T

nk

Σ̂k = Sk

where Sk is the sample covariance matrix of the kth group. In order to determine the MLE

of the class priors Lagrangian multipliers are used. The constraint
∑

c πc = 1 is added to the

log-likelihood given in Equation 3.9

L (µ,Σ, λ) =
∑
c

nc ln (πc)−
np

2
ln (2π) +

1

2

∑
c

nc ln
∣∣Σ−1

c

∣∣
− 1

2

n∑
i=1

∑
c

I (yi = c) (xi − µc)T Σ−1
c (xi − µc) + λ

(
1−

∑
c

πc

)
(3.10)

Differnetiating the log-likelihood in Equation 3.10 towards πk for some k ∈ {1, . . . , C} and

setting the derivative equal to zero, the MLE of the class prior is obtained

∂ ln (L (µ,Σ, λ))

∂πk
=
nk
πk
− λ = 0

π̂k =
nk
λ

(3.11)

Using the constraint
∑

c πc = 1 lambda can be solved. Taking the summation over the classes

on both sides of Equation 3.11 ∑
c

π̂c =
∑
c

nc
λ

1 =
n

λ
λ = n (3.12)

Substituting Equation 3.12 into Equation 3.11, the MLE of the prior for the various classes

are obtained

π̂k =
nk
n

3.2.2 Estimated posterior probabilities

Once the parameters are estimated it is required to estimate the posterior probabilities in

order to do classification. Combining the MLE’s of the parameters with Equations 3.7 and
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Equation 3.6 the posterior probabilities can be estimated

p̂ (y = c|x) =
π̂cp̂ (x|y = c)∑C
j=1 π̂j p̂ (x|y = j)

=
π̂c(2π)−

p
2

∣∣∣Σ̂c

∣∣∣− 1
2
e−

1
2

(x−µ̂c)T Σ̂−1
c (x−µ̂c)

∑C
j=1 π̂j(2π)−

p
2

∣∣∣Σ̂j

∣∣∣− 1
2
e−

1
2

(x−µ̂j)T Σ̂−1
j (x−µ̂j)

=
nc
n (2π)−

p
2 |Sc|−

1
2 e−

1
2

(x−x̄c)
TS−1

c (x−x̄c)∑C
j=1

nj
n (2π)−

p
2 |Sj |−

1
2 e−

1
2

(x−x̄j)
TS−1

j (x−x̄j)

3.3 Logistic regression

An overview of logistic regression (LR) is available in the textbook by Hastie, Tibshirani,

and Friedman (2008).

Let x = {x1, . . . , xp} be a vector consisting of p features and let C be the class so that

C ∈ {1, . . . , k}. The ith odds ratio is defined as

oddsi =
P (C = i|X = x)

P (C = k|X = x)

The LR model is defined in terms of the odds ratio

ln (odds1) = ln

(
P (C = 1|X = x)

P (C = k|X = x)

)
= α1 + βT1 x

ln (odds2) = ln

(
P (C = 2|X = x)

P (C = k|X = x)

)
= α2 + βT2 x

...

ln (oddsk−1) = ln

(
P (C = k − 1|X = x)

P (C = k|X = x)

)
= αk−1 + βTk−1x

It is clear that the model consists of k − 1 logit transformations. Since the probabilities of

all the classes sum to one, the probability of the kth class can be rewritten as

P (C = k|X = x) = 1−
k−1∑
i=1

P (C = i|X = x)

P (C = k|X = x) = 1− P (C = k|X = x)

k−1∑
i=1

eαi+β
T
i x

(
1 +

k−1∑
i=1

eαi+β
T
i x

)
P (C = k|X = x) = 1

P (C = k|X = x) =
1

1 +
∑k−1

i=1 e
αi+βTi x

In the case of two-class data, as is the case in credit scoring, the model simplifies to

ln

(
P (C = 1|X = x)

P (C = 2|X = x)

)
= α1 + βT1 x
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Let p (x, θ) = P (C = 1|X = x), so that 1−p (x, θ) = P (C = 2|X = x). Let yi be the response

variable, so that when ci = 1 then yi = 1 and when ci = 2 then yi = 0. The conditional

log-likelihood is expressed as

L (X, θ) =
n∑
i=1

ln (P (C = ci|X = xi))

=
n∑
i=1

[ln (p (xi, θ)) + ln (1− p (xi, θ))]

=
n∑
i=1

[yi ln (p (xi, θ)) + (1− yi) ln (1− p (xi, θ))]

=
n∑
i=1

[yi ln (p (xi, θ)) + ln (1− p (xi, θ))− yi ln (1− p (xi, θ))]

=
n∑
i=1

[
yi ln

(
p (xi, θ)

1− p (xi, θ)

)
+ ln (1− p (xi, θ))

]

=
n∑
i=1

yi ln

 eθ
T xi

1+eθ
T xi

1− eθ
T xi

1+eθ
T xi

+ ln

(
1− eθ

T xi

1 + eθT xi

)
=

n∑
i=1

[
yi ln

(
eθ
T xi
)

+ ln

(
1

1 + eθT xi

)]

=
n∑
i=1

[
yi
(
θTxi

)
− ln

(
1 + eθ

T xi
)]

The maximum of the log-likelihood is obtained by differentiating with respect to θ and

equating the derivatives to zero

∂L (X, θ)

∂θ
=

n∑
i=1

[
yixi −

xie
θT xi

1 + eθT xi

]
=

n∑
i=1

xi (yi − p (xi, θ)) = 0 (3.13)

The derivative of the log-likelihood, given in Equation 3.13, results in p+ 1 non-linear equa-

tions in terms of θ. These equations have to be solved numerically. In order to use the

Newton-Raphson algorithm the second derivative of the log-likelihood has to be calculated

∂2L (X, θ)

∂θ∂θT
=

n∑
i=1

−xixTi eθ
T xi
(

1 + eθ
T xi
)
− xixTi e2θT xi(

1 + eθT xi
)2

=

n∑
i=1

−xixTi eθ
T xi(

1 + eθT xi
)2

= −
n∑
i=1

xix
T
i p (xi, θ) (1− p (xi, θ))

The iterative Newton-Raphson algorithm used to determine the solution for θ is given by

θnew = θold −
(
∂2L (X, θ)

∂θ∂θT

)−1(
∂L (X, θ)

∂θ

)
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3.4 Bayesian logistic regression

A paper by Holmes and Knorr-Held (2003) suggests an approach to Bayesian logistic regres-

sion (BLR) models that is efficient to use in conjunction with a block Gibbs sampler. How-

ever, this approach requires the sampling from a Kolmogorov-Smirnov distribution. Since the

focus of this dissertation is not BLR, the Laplace approximation method will be utilised as

explained in (Murphy 2012). This classification technique is included purely for comparison

purposes.
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Non-parametric classification

Considering parametric models there is a desire to overcome the restrictions enforced by the

rigid assumptions made regarding the distributions of the data. This can be done through

the use of non-parametric models. Non-parametric models are considerably more flexible in

the distributional assmuptions made. However, one of the most important characteristics of

a non-parametric model is that the number of parameters increase, as the amount of training

data increase. This results in non-parametric models being computationally intractable for

data sets consisting of a large amount of observations (Murphy 2012).

4.1 Kernel density estimation overview

In 1985 Rosenblat developed the Kernel Density Estimation method. The aim of this new

method was to address the discontinuities encountered when performing Nave Density Es-

timation. Non-parametric kernel density estimation uses a kernel function to estimate the

density function of the data. A kernel function is fitted over each data point, with the data

point forming the centre of the kernel function. Finally the contributions of the kernel func-

tions are summed for each data point, resulting in the estimated density function. That is

to say; considering the univariate case, let x = {x1, . . . , xn} be a random sample from an

unknown distribution, p (.), then the density estimated using non-parametric kernel density

estimation is

p (x|h) ≈ 1

n

n∑
i=1

Kh (x− xi)

=
1

nh

n∑
i=1

K

(
x− xi
h

)
(4.1)

where h is the bandwidth and K (.) the kernel function.

Considering the multivariate case, let X = {x1, . . . ,xn} be a random sample, consisting of n

instances each with p features, from an unknown distribution, p (.). The multivariate density,
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estimated using non-parametric kernel density estimation, is

p (x|H) ≈ 1

n

n∑
i=1

KH (x− xi|H)

=
1

n
|H|−

1
2

n∑
i=1

K
(
H−

1
2 (x− xi)

)
(4.2)

where K (.) represents the multivariate kernel function and H is a symmetric, positive defi-

nite, p× p matrix.

4.1.1 Kernel function

The kernel function is a predetermined function that integrates to one, is non-negative and

it has a mean of zero. That is to say, for the kernel function K (.), in the univariate case the

following holds ∀t ∈ R

K (t) > 0,

∫
R
K (t) dt = 1, E [K (t)] = 0

and for the multivariate case the following holds ∀t ∈ Rp

KH (t) > 0,

∫
Rp
KH (t) dt = 1, E [KH (t)] = 0

The uniform density, Gaussian density, triangular, biweight, triweight and Epanechnikov

functions are just a few functions that are commonly used as kernel functions. It is important

to take into account that the chosen kernel function transfers it’s smoothness properties to

the estimated density function. The choice of kernel function should therefore be based on

the desired mathematical properties. Taking this into account, one of the major advantages

of using the Gaussian density as kernel function is it’s desired properties of continuity and

differentiability (Van der Walt and Barnard 2013). For the univariate case, using a Gaussian

density as kernel function the estimated density given in Equation 4.1 becomes

p (x|h) ≈ 1

n

n∑
i=1

1√
2πh

e
−
(
x−xi
h

)2

Considering the multivariate case, using a multivariate Gaussian density as kernel function,

the estimate density in Equation 4.2 becomes

p (x|H) ≈ 1

n

n∑
i=1

1

(2π)
p
2 |H|

1
2

e−
1
2

(x−xi)
TH−1(x−xi)

4.1.2 Bandwidth estimation

The bandwidth determines the smoothness of the resulting estimated density. The smaller

the value of the bandwidth the smoother the resulting density estimate. The bandwidths are
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estimated by optimising objective functions that serves as measures for goodness-of-fit. The

three measures for goodness-of-fit that are commonly used include the mean squared error

(MSE), mean integrated squared error (MISE) and the asymptotic mean integrated squared

error (AMISE). There exist various methods to estimate the bandwidth. The three main

methods include plug-in, cross-validation and rule-of-thumb bandwidth estimation.

Plug-in methods estimate the bandwidth by optimising the AMISE with respect to the band-

width. It attempts to express this solution in a closed-form expression. Methods that attempt

to optimise the AMISE with respect to the bandwidth requires the density function, f , that

we are attempting to estimate using KDE. Since the density function is unknown, plug-in

methods require an initial estimate of the unknown density, f . If the initial estimate is de-

termined using KDE the initial estimate also requires a bandwidth to be estimated. The

Hall Sheather Jones Marron (HSJM) estimator can be used to determine all the unknowns

required to calculate the bandwidth of the initial estimate of the unknown density, f .

Cross-validation methods can estimate the bandwidth through either least squares or max-

imum likelihood. When least squares are used in conjunction with cross-validation the in-

tegrated squared error (ISE) is optimised. The ISE requires the difference between the

estimated and true densities. This difference is approximated using leave-one-out cross-

validation. If maximum likelihood is used in conjunction with cross-validation the likelihood

function is maximised with respect to the bandwidth. It is important to use leave-one-out

cross-validation in order to prevent situations where the bandwidth is zero, resulting in a

maximum likelihood estimate that is infinite.

Just like the plug-in estimators, rule-of-thumb estimators optimise the AMISE with respect

to the bandwidth. As mentioned before, the optimization of the AMISE requires the un-

known densities, f . However, instead of using an initial estimate for the unknown densities,

as done by plug-in estimators, rule-of-thumb estimators make certain distributional assump-

tions regarding these unknown densities (Van der Walt 2014).

4.2 Silverman’s rule of thumb

Silverman’s rule-of-thumb optimise the AMISE with respect to the kernel bandwidth, thus (as

the name suggests) classifying it as a rule-of-thumb estimator. As mentioned in Section 4.1.2,

rule-of-thumb estimators make certain distributional assumptions regarding the unknown

distribution encountered in the formulation of the AMISE. Silverman suggested assuming

the unknown distribution to be Gaussian. Considering the univariate case, let σ̂2 be the

sample variance and n the number of instances in the sample. Then the optimal bandwidth,

assuming the use of a Gaussian kernel function, is

h = 1.06σ̂n−
1
5
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The reader is referred to Appendix A for a formal proof of Silverman’s univariate rule of

thumb. By estimating the bandwidth independently for each dimension the estimated band-

width is extended to the multivariate case. Let Hii be the bandwidth of the ith feature, σ̂2
i

the variance of the ith feature and p the number of features. Then the multivariate Silverman

rule-of-thumb kernel bandwidth estimator is

H
1
2
ii =

(
4

p+ 2

) 1
p+4

n
−1
p+4 σ̂i

Van der Walt and Barnard (2013) compared the performance of traditional bandwidth esti-

mators in high-dimensional feature spaces. They concluded that the Silverman rule-of-thumb

estimator performed competitively well for all the high-dimensional data sets investigated.

They go further to suggest it’s use as an initialising estimator for iterative bandwidth esti-

mation methods.

4.3 Minimum leave-one-out entropy

Unlike some of the conventional bandwidth estimators, the MLE bandwidth estimator is

feasible for density estimation in higher dimensions. This can be attributed it’s ability to

adjust the bandwidth accordingly for each individual data point. The MLE estimator also

has the advantage of being able to estimate larger bandwidths, often required by outliers.

The MLE and the MLL (maximum leave-one-out likelihood) have similar equations. The

only difference being that the numerator as well as the denominator of the MLE equation are

normalised. The normalization results in data points encountered in regions with low density

having an increased effect on the estimated bandwidth. Similarly, the normalization results

in data points encountered in regions with high density having a decreased effect on the

estimated bandwidth. As a result the MLE and MLL estimators have similar performance,

with the MLE slightly outperforming the MLL estimator for the investigated data sets (Van

der Walt 2014).

The MLE estimator requires an initial bandwidth matrix. The MLE estimator can be consid-

ered a plug-in estimator in cases where instead of following an iterative scheme, the estimator

is initialised and updated once. Van der Walt and Barnard (2017) suggest the use of Silver-

man’s rule-of-thumb estimator as the initialising bandwidth matrix.

4.3.1 Leave-one-out likelihood estimation

As mentioned before, when maximising the log-likelihood with respect to the bandwidth, the

likelihood for a point will tend to infinity as the bandwidth for that data point tends to zero.

This is overcome by using a leave-one-out estimate. The data point for which the density

is evaluated is left out of the summation. Thus, the likelihood for the specific data point is

29



Chapter 4. Non-parametric classification

calculated by using the remaining n− 1 data points to estimate the density. The expression

for the LOUT approach to estimate the density for some point xi is

pH(−i) (xi) =
1

n− 1

∑
j 6=i

KHj (xi − xj |Hj) (4.3)

The log-likelihood can now be calculated by taking the logarithm of the product of Equation

4.3

lH(−i) (X) =
n∑
i=1

ln
[
pH(−i) (xi)

]
=

n∑
i=1

ln

 1

n− 1

∑
j 6=i

KHj (xi − xj |Hj)

 (4.4)

The situation where the likelihood function tends to infinity as the bandwidth tends to 0 is

thus circumvented by optimising Equation 4.4 with respect to the bandwidth.

4.3.2 Diagonal bandwidth matrix

The MLE bandwidth estimator is derived using the LOUT estimator. The MLE estimator

is obtained by optimising the log-likelihood of the LOUT expression in Equation 4.4, with

respect to bandwidth Hk of some point xk. It can be shown that the partial derivative of

the log-likelihood of the LOUT expression is

d

dHk
lMLE (X) =

1

n− 1

n∑
i=1

∂
∂Hk

[KHk
(xi − xk)]

pH(−i) (xi)
(4.5)

Equation 4.5 clearly illustrates the dependence of the derivative on the kernel function. The

MLE has been derived for an univariate Gaussian kernel, a multivariate Gaussian kernel with

full covariance matrix and a multivariate Gaussian kernel with a diagonal covariance matrix

(Van der Walt 2014). However, we will only focus on the multivariate Gaussian kernel with

diagonal covariance matrix.

Consider the challenge of estimating the MLE diagonal bandwidth matrix. Let Khjd (.)

represent the univariate Gaussian kernel function, with bandwidth hjd, that is centered on

the dth feature of the data point xj . Furthermore let Hj be a p × p diagonal matrix with

entries Hj(d,d) = h2
jd. The multivariate kernel function can be expressed as the product of

the univariate kernel functions

KHj (xi − xj |Hj) =

p∏
d=1

Khjd

(
xid − xjd
hjd

)
(4.6)

Substituting the product of univariate kernels in Equation 4.6 into Equation 4.5 and setting

the resulting equation equal to zero, an estimate for the bandwidth in the lth dimension for
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some data point xk can be obtained. The lth entry of the resulting diagonal MLE bandwidth

matrix, for some point xk is

Hk(l,l) =

∑n
i=1

KHk
(xi−xk|Hk)(xil−xjl)

2

pH(−i)(xi)∑n
i=1

KHj
(xi−xk|Hk)

pH(−i)(xi)

It is important to realise that the use of a diagonal bandwidth matrix doesn’t impair the

kernel density estimator’s ability to model correlation. It is still possible for the kernel density

estimator to capture covariance to some degree. The assumption of independence between

variables are therefore not the same as assuming a diagonal covariance matrix.

The diagonal MLE estimator has a time complexity of order O
(
n3p
)
. For each of the n

diagonal bandwidth matrices there are p parameters that require estimation. Therefore, in

total np parameters have to be estimated.

4.4 Class priors

Two-class classification methods take into account the distributions of both classes, whereas

one-class classification methods only account for a single class’s distribution. In the credit

scoring environment this can be translated as two-class classifiers accounting for the distri-

butions relating to both borrowers that settle their debt, as well as those that default. On

the other hand, one-class classifiers only take into account the distribution of debtors that

settle their debt. Intuitively it is expected that two-class classifiers outperform one-class

classifiers, since two-class classifiers utilise all available information. One-class classifiers are

traditionally associated with outlier and anomaly detection. The performance of one-class

classifiers is compared to that of two-class classifiers in the credit scoring environment by

Kennedy, Mac Namee, and Delany (2012). The paper fits the one-class classifying models

on the majority class. Their results indicate that two-class classifiers are outperformed by

one-class classifiers for very large class imbalances, especially when the minority class make

out less than 1% of the investigated sample.

In order to overcome the adverse effect of the class imbalance, on the two-class classifiers, we

investigate the use of priors in conjunction with Bayes’ rule. Bayes’ theorem, as it is known

today, originated from a paper published by Bayes in 1963. This paper, entitled “An Essay

Towards Solving a Problem in the Doctrine of Chances”, describes the theorem of elementary

probability theory, giving rise to Bayes’ rule. The notion that the posterior distribution is

proportional to the likelihood was made by Fienberg (2006). Bayes’ rule suggests that the

posterior distribution is proportional to the likelihood multiplied by the prior distribution.

That is to say

p (α|X) ∝ p (X|α) p (α)
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4.4.1 Frequentist priors

The “frequensist priors” can be thought of as weights that sum to one. These weights are

calculated as the proportion of instances in the respective classes. That is to say, in the case

of credit scoring, the priors are the proportion of defaulters and non-defaulters. Suppose n

is the number of instances in the data set and nCi for i = 1, 2 is the number of instances in

the class Ci, then priors are

πC1 =
nC1

n

πC2 =
nC2

n

This implies that as the class imbalance is altered the values of the priors change. The

prior aims to reduce the impact of the class imbalance by assigning a larger weight to the

likelihood scores of the majority class and assigning a smaller weight to the likelihood scores

of the minority class. This method can be thought of as penalising the minority class; thereby

placing larger emphasis on the class that contains more data.

4.4.2 Bayesian priors

One of the shortcomings of the frequentist prior is the fact that the prior is restricted to

the class imbalance. This can be overcome by placing a discrete prior distribution on the

respective classes. Since we are considering a two-class problem, a Bernoulli prior with

parameter p ∈ (0, 1) is placed on the respective classes. The posterior distribution is obtained

by multiplying the Bernoulli prior of each class with the likelihood function of each class as

calculated with the respective two-class classifiers. In mathematical terms that is: P (X) =

P (Ci)P (X|Ci), ∀i ∈ {1, 2}. The Bernoulli distribution, and thus the prior, is given by

P (C) = pc (1− p)1−c (4.7)

with c ∈ {0, 1}. From Equation 4.7 it is clear that by setting the prior parameter p equal

to the proportion of the class imbalance encountered in the data, the prior reduce to the

frequentist prior encountered in Section 4.4.1. It also follows that setting p = 0.5 is equivalent

to performing two-class classification without the use of any priors, setting p = 0 classifies

all instances to the class C1 = 0 and setting p = 1 classifies all instances to the class C2 = 1.

The choice of the prior parameter p is subsequently of great importance. It is therefore

recommended to do a grid search; choosing the prior parameter p to be the value that

maximise the respective model performance evaluation measures.

It is of vital importance to realise that the use of a Bernoulli prior will not result in Bayesian

properties. This is due to the fact that the Bernoulli prior is placed on the class label, which is

not a feature in the data set, nor a parameter of the model, but rather a dependent variable.
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Therefore, the Bernoulli prior will result in frequentist properties with the added flexibility

of choosing the hyperparameter that best suits the class imbalance encountered in the data.
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Application

In Chapter 4 the class priors were introduced. It is of vital importance to understand the

role these priors play on the performance of various parametric as well as non-parametric

classifiers. This is particularly true for large class imbalances. Furthermore, it is of interest to

investigate how parametric classifiers compare to non-parametric classifiers, in terms of per-

formance, for various class imbalances. This chapter can be considered to be a comprehensive

study set out to investigate the abovementioned points of interest.

5.1 Experimental design

Experiments are designed with the purpose of addressing the following questions:

• What is the optimal Bernoulli prior parameter?

• Which prior selection performs best - Bernoulli, frequentist or no prior?

• Which class of classifiers performs the best - parametric or non-parametric?

The details are discussed in this subsection.

5.1.1 Bernoulli priors

In the case of the Bernoulli prior a grid search is done in order to determine the optimal

prior parameter, p, for each of the two-class classifiers. The performance of the respective

classifiers are evaluated in terms of the harmonic mean as well as the count-R2/ hit rate value

for the various prior parameter values. The performance with respect to the various priors is

evaluated at various class imbalances. The class imbalance is altered by reducing the number

of observations in the defaulting class. The results for each classifier are tabulated. It is

also graphically represented with the class imbalances or default ratios represented on the

x-axis of the graphs. Note that even though the class imbalance is varied the prior parameter
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remains fixed regardless of the class imbalance.

This is done for the German, Australian and Lending club data sets. For each of the data

sets the data is z-scored and PCA 95% is performed on the data. This results in a total of

six data sets on which the experiment is performed.

5.1.2 Comparison of priors

The performance of the optimal prior parameter, as determined in Section 5.1.1, is compared

to the performance of the respective classifiers with no prior and a frequentist prior. The

performance is evaluated over a range of class imbalances. The performance is measured in

terms of the harmonic mean as well as the count-R2/ hit rate. This is done for the German,

Australian and Lending club data sets. For each of the data sets the data is z-scored and PCA

95% is performed on the data. This results in a total of six data sets on which the experiment

is performed. Since the German and Australian data sets do not have accompanying testing

sets 10-fold cross-validation is applied to the data. The results are tabulated in such a fashion

that the performance of the z-scored data can be compared to that of the PCA 95% data. The

prior resulting in optimal performance for a specific default ratio is indicated with a green

cell, the worst performing prior with a red cell and the intermediate performing prior with a

yellow cell. By presenting the results in this fashion the table forms a type of heatmap. The

overall best performing prior (i.e. between the green cells of the PCA95% and the z-scored

results) is indicated by a bold font.

5.1.3 Parametric versus non-parametric classifiers

The optimal Bernoulli prior, with regard to each individual default ratio, is applied to the

Gaussian, NB, Silverman and MLE classifiers. The performance of this configuration for

these classifiers are not only compared to one another, but also to the BLR as well as the

LR classifiers. This is done over an increasing class imbalance. This is performed on the

PCA 95% as well as the z-scored data for the German, Australian and Lending club data

sets. 10-Fold cross-validation is performed on the German as well as the Australian data

sets, whereas 5-fold cross-validation is performed on the Lending club data set. Due to the

large size of the Lending club data set, the MLE classifier is computationally intractable and

therefore not applied to the data set.
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5.2 Results

5.2.1 Bernoulli priors

German data

When considering the Gaussian classifier it is seen that regardless whether the data is z-

scored or whether PCA 95% is performed on the data, the classifier has a general increasing

performance. The performance, in terms of the hit rate and the harmonic mean, is increasing

regardless of prior used. The increase in hit ratio as the class imbalance increase is expected,

as in the worst case the classifier can simply classify to the majority class and thereby present

an increasing hit rate. See figures 5.1, 5.2, 5.3 and 5.4.

From figures 5.2 and 5.4 it is clear that the hit rate of the classifier increase as the prior

decrease. It follows that a prior of p = 0.1 should be used to obtain the optimal hit rate for

the Gaussian classifier applied to both the z-scored as well as the PCA95% data.

The prior p = 0.1 results in inconsistent performance in terms of the harmonic mean. This

is true for the z-scored as well as the PCA95% data. This can be interpreted as too much

weight being assigned to the minority class. The shortage of data in the minority class results

in the erratic behaviour. Identifying the prior that optimise the performance in terms of the

harmonic mean isn’t as simplistic as in the case of the hit rate. There are numerous priors

that perform well across the various class imbalances, with no one classifier outperforming

the rest for all considered default ratios. Considering the PCA 95% data, the priors p = 0.3,

0.4, 0.5 and 0.6 all perform well. The prior p = 0.6 is outperformed by the before mentioned

priors for the majority of class imbalances and only becomes competitive at larger class

imbalances. On the other hand the priors p = 0.4 and 0.5 outperform all priors for the

majority of class imbalances. This is illustrated in Figure 5.3. Figure 5.1 highlights the fact

that the priors p = 0.3, 0.4 and 0.5 perform well, in terms of the harmonic mean, across the

various default ratios for the z-scored data. However, the prior p = 0.3 is outperformed by

the priors p = 0.8, 0.7, 0.6, 0.5 and 0.4 at the greatest tested class imbalance.
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Figure 5.1: Performance of Gaussian classifier with Bernoulli priors: German z-scored data

Figure 5.2: Performance of Gaussian classifier with Bernoulli priors: German z-scored data

37



Chapter 5. Application

Figure 5.3: Performance of Gaussian classifier with Bernoulli priors: German PCA 95% data

Figure 5.4: Performance of Gaussian classifier with Bernoulli priors: German PCA 95% data

The hit rate of the NB classifier applied to the z-scored data exhibit an increasing trend

for the higher performing priors. As the ranking (in terms of performance) of the prior
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decrease, the hit rate seems constant up to a default ratio just above 25% after which the

hit rate decrease slightly before eventually increasing. The hit rate of the classifier generally

increase as the prior decrease, for both the z-scored data as well as the PCA 95% data. An

exception to this is the prior p = 0.2 applied to the PCA 95% data, which outperforms the

prior p = 0.1 for the majority of class imbalances. In the case of the PCA95% data the prior

p = 0.9 exhibit a decreasing trend, the priors p = 0.8, 0.7 and 0.6 remain fairly constant and

finally the priors p = 0.5 to p = 0.1 exhibit an increasing trend. The prior p = 0.1 has the

greatest slope. This is illustrated in Figures 5.6 and 5.8.

It is interesting to note that the prior placed on the NB classifier and the prior’s compliment

result in similar performance in terms of harmonic mean for the PCA95% data. The harmonic

mean of the classifier increase as the priors approach p = 0.5. That is to say the priors p = 0.1

and p = 0.9 result in the lowest harmonic mean. The best performing priors remain fairly

constant in performance, whereas the priors performing poorly have an increasing trend. See

Figure 5.7. Considering the z-scored data, erratic behaviour in the prior p = 0.1 for the

NB classifier is observed. Most of the priors have a general upward trend, whereas the prior

p = 0.1 initially increase significantly after which it significantly decrease. This may be an

indication of too much weight being placed on the minority class. The priors p = 0.3 to

p = 0.6 all perform well across the various default ratios. It is clear that the choice of prior

will depend on the default ratio. With the aim of addressing large class imbalances the use

of no prior or even p = 0.6 might be considered. This is illustrated in Figure 5.5.

Figure 5.5: Performance of NB classifier with Bernoulli priors: German z-scored data
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Figure 5.6: Performance of NB classifier with Bernoulli priors: German z-scored data

Figure 5.7: Performance of NB classifier with Bernoulli priors: German PCA 95% data
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Figure 5.8: Performance of NB classifier with Bernoulli priors: German PCA 95% data

The hit rate of all considered priors for the Silverman classifier have a general upward trend

regardless of whether PCA95% or z-scoring is applied. Considering the z-scored data it is

observed that although the performance of the priors p = 0.7 and 0.8 are not optimal for

greater default ratio’s, the rate at which the hit rate increase is of such a nature that for

the greatest class imbalance these priors outperform all the other priors. The prior p = 0.4

performs consistently well across the majority of default ratios. This is observed in Figure

5.9. Focusing on the hit rate of the Silverman classifier for the PCA95% data, it is seen that

the priors p = 0.3 to p = 0.5 perform well over the majority of default ratios. The difference

in performance between these priors are minuet. At the largest tested class imbalance the

priors p = 0.7 and p = 0.6 also perform extremely well. See Figure 5.12.

For both the z-scored as well as the PCA95% data a general trend is observed in terms of

the harmonic mean of the Silverman classifier. There are a few priors that remain fairly

constant regardless of the default ratio. However, for both data sets there are priors that

result in a fairly constant harmonic mean up and till various default ratios, after which the

harmonic mean decreases. The rate at which the harmonic mean decreases, increase as the

class imbalance increase. This is evident from figures 5.9 and 5.11. For the z-scored data the

priors that results in decreased performance are p = 0.1 to p = 0.7, leaving the performance

of the priors p = 0.8 and 0.9 remaining fairly constant regardless of class imbalance. The

ranking in terms of performance of the priors that decrease, decrease as the value of the

prior decrease. That is to say p = 0.7 performs the best and p = 0.1 performs the worst.

Considering the PCA95% data the priors that result in decreasing performance after a certain
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default ratio are p = 0.1 to p = 0.5, leaving the performance of the priors p = 0.6 to p = 0.9

remaining fairly constant regardless of class imbalance.

Figures 5.9 and 5.11 highlight the role the optimal Bernoulli priors play in combating the

adverse effect of class imbalance.

Figure 5.9: Performance of Silverman classifier with Bernoulli priors: German z-scored data

Figure 5.10: Performance of Silverman classifier with Bernoulli priors: German z-scored data
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Figure 5.11: Performance of Silverman classifier with Bernoulli priors: German PCA 95% data

Figure 5.12: Performance of Silverman classifier with Bernoulli priors: German PCA 95% data

Consider the z-scored data. Applying the priors p = 0.4 to p = 0.6 all result in a harmonic

mean above 0.95 regardless of class imbalance. The priors all have an initial upward trend,

with the priors p = 0.2 to p = 0.5 as well as p = 0.7 showing a decrease in performance at

the largest evaluated default ratio. This decrease in performance is worrisome since it might
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indicate a general negative slope for larger class imbalances and hence poor performance for

class imbalances that are even larger than those evaluated. The priors p = 0.3 and p = 0.4

outperform the MLE classifier when no prior is used, for the larger class imbalance. However,

the prior p = 0.4 is the only prior that competes with the classifier when no prior is used,

regardless of class imbalance. This is reflected in Figure 5.13.

Considering the hit rate of the MLE classifier applied to the z-scored data, it is satisfying to

observe the priors p = 0.3 and p = 0.4 outperforming the use of no prior. The fact that these

priors optimise the harmonic mean as well as the hit rate implies that they not only result

in the optimal number of instances being correctly classified, but also that they result in

the optimal proportion of defaulting and non-defaulting instances being correctly classified

as such. The prior p = 0.2 also result in a competitive hit rate. The harmonic mean of

the classifier with regard to this prior suggest that the proportion of defaulters it correctly

classifies is suboptimal. The priors all result in a general upward trend in terms of the hit

rate. It is interesting to note the slope with which the hit rate of the classifier increase for

the prior p = 0.1. This suggests the prior is placing too much emphasis on the majority

class and thereby possibly allowing the classifier to classify the majority of instances to the

majority class. See Figure 5.14.

The hit rate of the MLE classifier applied to the PCA95% data exhibit a general increasing

trend regardless of the prior used. The difference in hit rate between the best performing

prior and the worst performing prior is at most about 0.03. The priors p = 0.2 to p = 0.4 all

perform well, outperforming the MLE classifier with no prior. The prior p = 0.9 results in

the lowest hit rate. See Figure 5.16.

The harmonic mean of the MLE classifier with priors p = 0.1 to p = 0.6 applied to the

PCA95% data have a decreasing trend. However, the priors p = 0.5 and p = 0.6 increase

slightly for the greatest evaluated class imbalance. Taking into account the above mentioned

fact that the hit rate for these priors are increasing, suggests that the priors result in the

largest proportion of instances correctly classified being in the non-defaulting class. This

implies that too much weight is assigned to the majority class. The priors p = 0.8 and p = 0.9

both perform well; outperforming the use of no prior. The prior p = 0.9 outperforms all other

evaluated priors for all default ratios less than 0.2391, whereas the prior p = 0.8 outperforms

all other evaluated priors for all default ratios greater than 0.2391. The performance of the

prior p = 0.9 remains fairly constant for larger class imbalances, whereas the prior p = 0.8

decrease for the smallest evaluated default ratio.
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Figure 5.13: Performance of MLE classifier with Bernoulli priors: German z-scored data

Figure 5.14: Performance of MLE classifier with Bernoulli priors: German z-scored data
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Figure 5.15: Performance of MLE classifier with Bernoulli priors: German PCA 95% data

Figure 5.16: Performance of MLE classifier with Bernoulli priors: German PCA 95% data

Australian data

Considering figures 5.17, 5.18, 5.19 and 5.20 it is seen that the performance of the Gaussian

classifier decrease, for the majority of default ratios, as the value of the prior parameter p

decrease. An exception to this may be the prior p = 0.2 which has a higher harmonic mean
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than the prior p = 0.1 at higher default ratios. Note that this is only the true for the PCA

95% data. It follows that for the z-scored data a prior parameter of p = 0.1 is recommended

to optimise the harmonic mean as well as the hit rate. However, for the PCA 95% data

a prior parameter of p = 0.1, or p = 0.2 for greater class imbalances, may be considered

appropriate in order to optimise the harmonic mean. The hit rate of the PCA95% data is

optimised using a prior of p = 0.1.

The hit rate of the Gaussian classifier decrease up and till a default ratio of about 0.3, after

which it has general increasing trend. This is true for the majority of priors, with the only

exceptions being the top performing priors. The top performing priors evaluated using the

PCA 95% data tend to remain relatively constant, before increasing slightly. The harmonic

mean trend of the Gaussian classifier tend to have a general upward trend, regardless of the

prior used and whether the z-scored or PCA95% data is considered. This is surprising as it

indicates the classifier performs better when there are less data available in the defaulting

class.

Figure 5.17: Performance of Gaussian classifier with Bernoulli priors: Australian z-scored data
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Figure 5.18: Performance of Gaussian classifier with Bernoulli priors: Australian z-scored data

Figure 5.19: Performance of Gaussian classifier with Bernoulli priors: Australian PCA 95% data
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Figure 5.20: Performance of Gaussian classifier with Bernoulli priors: Australian PCA 95% data

The performance of the NB classifier decrease as the prior parameter decrease for the z-scored

data. This is not the case for the PCA 95% data. This implies that a prior of p = 0.1 results

in the optimal performance in terms of the hit rate as well as the harmonic mean for the

z-scored data. The harmonic mean of the NB classifier applied to the z-scored data remains

fairly constant up to a default ratio of 0.3178 after which it increases. The only prior that

does not result in the harmonic mean behaving in the before mentioned fashion is p = 0.1.

This prior remains fairly constant regardless of the class imbalance. This is reflected in Figure

5.21.

The hit rate of NB classifier for the z-scored data generally decrease up to a default ratio

of 0.3178, after which it either increase or remain constant. A final increase is noticeable

between the default ratios 0.1026 and 0.0789. Regardless of the prior used the hit rate at

the starting default ratio is lower than the final default ratio of 0.0789. The decrease in hit

rate and simultaneous increase in harmonic mean may be attributed to an increase in the

proportion of defaulters correctly classified as such. See Figure 5.22.

Observing the hit rate of the NB classifier applied to the PCA95% data it is evident that

the priors p = 0.7 to p = 0.9 initially decrease after which at a default ratio of 0.3178 it

increases. The priors p = 0.6 and p = 0.5 follow a similar pattern. However, the slope at

which the hit rate initially decrease and finally increase is not as great as that of the priors

p = 0.7 to p = 0.9. The priors p = 0.1 to p = 0.4 do not exhibit the same initial decreasing

behaviour. In fact as the value of the prior decrease from p = 0.4 to p = 0.1 the slope with

which it increase, increases. However, the hit rate resulting from the use of the prior p = 0.1
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is considerably lower than that of the prior p = 0.2 when the data set is balanced. The

result is that the prior p = 0.1 only results in optimal performance for the greatest evaluated

class imbalance. The prior p = 0.2 performs consistently well for lower default ratios. These

results are clear from Figure 5.24.

The performance of the priors p = 03 to p = 0.6 applied to the NB classifier remain fairly

constant with a resulting harmonic mean of 0.85. These priors outperform the other evaluated

priors. It is interesting to note the dip in performance at a default ratio of 0.3178, with larger

dips for the priors p = 0.7 and p = 0.8. See Figure 5.23.

Figure 5.21: Performance of NB classifier with Bernoulli priors: Australian z-scored data
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Figure 5.22: Performance of NB classifier with Bernoulli priors: Australian z-scored data

Figure 5.23: Performance of NB classifier with Bernoulli priors: Australian PCA 95% data
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Figure 5.24: Performance of NB classifier with Bernoulli priors: Australian PCA 95% data

Considering the harmonic mean of the Silverman classifier for the z-scored data it is seen that

the priors p = 0.1 to p = 0.4 remain fairly constant. These priors perform well in comparison

to the other investigated priors. The prior p = 0.2 outperforms all other priors over the

majority of default ratios. It is interesting to note a jump that occurs in performance at

a default ratio of 0.286. The jump is more discernible for the poor performing priors. See

Figure 5.25.

The hit rate of the Silverman classifier with priors p = 0.2 and 0.3, applied to the z-scored

data, perform well and remain fairly constant over the various default ratios. A slight upward

trend in hit rate is visible for the prior p = 0.1. For greater class imbalances the prior p = 0.1

results in the highest hit rate. The poor performing priors have a general decreasing trend

up to a default ratio of 0.286, at which a jump in performance occurs. This is reflected in

Figure 5.26.

The priors p = 0.2 to p = 0.5 remain relatively constant in terms of harmonic mean with

respect to the PCA95% data. These priors outperform the other considered priors for the

majority of default ratios. Exceptions to this are the priors p = 0.6 and p = 0.7 which

perform well for larger class imbalances. As with the z-scored data a jump in harmonic mean

at a default ratio of 0.286 is evident for the prior p = 0.9. It is also interesting to note

that whereas the majority of priors result in an overall upward trend, the prior p = 0.1 is

decreasing from the default ratio 0.2512 onward. See Figure 5.27.

Similar to the z-scored data the priors p = 0.2 to p = 0.4 used in conjunction with the

Silverman classifier remain fairly constant in terms of hit rate for the PCA 95% data. In
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contrast to the hit rate for the z-scored data the prior p = 0.1 has a lower initial value and

increase significantly as the class imbalance increase. For greater class imbalances the prior

p = 0.2 maximises the hit rate. Just like a jump in the harmonic mean is evident at a default

ratio of 0.286 for the prior p = 0.9, a jump in the hit rate is evident at the same default ratio

for the prior p = 0.9.

Figure 5.25: Performance of Silverman classifier with Bernoulli priors: Australian z-scored data

Figure 5.26: Performance of Silverman classifier with Bernoulli priors: Australian z-scored data
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Figure 5.27: Performance of Silverman classifier with Bernoulli priors: Australian PCA 95% data

Figure 5.28: Performance of Silverman classifier with Bernoulli priors: Australian PCA 95% data

Considering the z-scored data the ranking (in terms of performance) of the priors for the

MLE classifier are similar regardless of whether the performance is measured in terms of

the hit rate or the harmonic mean. The only exception being the prior p = 0.1. This prior

results in a general upward trend in terms of the hit rate, with such a steepness that it
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outperforms all other priors for the greatest evaluated class imbalance. The fact that the

prior optimise the hit rate but not the harmonic mean at large class imbalances indicate that

too much weight is placed on the majority class. This results in the number of instances

in the majority class being correctly classified and hence a high hit rate. However, a small

proportion of instances in the minority class are correctly classified for which the harmonic

mean penalise the classifier. The harmonic mean as well as the hit rate is optimised for the

majority of evaluated default ratios by applying the prior p = 0.2 to the MLE classifier.

This is of extreme value since it implies that the prior not only result in the most instances

being correctly classified, but also that this prior best assists the classifier in classifying true

positive as well as true negative instances. It is worth noting that the performance of the

MLE classifier decrease as the prior increase, with the exception of the prior p = 0.1. This is

reflected in figures 5.29 and 5.30

The impact of a prior on the performance of the MLE classifier is much more erratic for the

PCA 95% data than that of the z-scored data, as evident from figures 5.31 and 5.32. The

priors p = 0.9 to p = 0.5 in general have increasing trends for the PCA 95% data. However,

selecting a prior to optimise the harmonic mean would greatly depend on the default ratio

present in the data. The priors p = 0.2 to p = 0.4 result in higher hit rates, in comparison to

the other evaluated classifiers, for the PCA 95% data. The priors p = 0.6 to p = 0.9 result

in a decrease in hit rate for some of the smaller default ratios evaluated, whereas the priors

p = 0.1 to p = 0.5 maintain an increasing trend over these default ratios. In general a prior

of p = 0.4 would perform sufficiently well across the various default ratios.

Figure 5.29: Performance of MLE classifier with Bernoulli priors: Australian z-scored data
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Figure 5.30: Performance of MLE classifier with Bernoulli priors: Australian z-scored data

Figure 5.31: Performance of MLE classifier with Bernoulli priors: Australian PCA 95% data
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Figure 5.32: Performance of MLE classifier with Bernoulli priors: Australian PCA 95% data

5.2.2 Comparison of various priors

The following subsection compares the performance of Bernoulli priors, no priors and fre-

quentist priors. The performance of the frequentist prior is indicated by the “Frequentist

prior” column, the performance of the use of no prior is indicated by the “p = 0.5” column

and the remaining column indicates the performance of the Bernoulli prior.

German data

Viewing Table 5.1 no single prior used in conjunction with the Gaussian classifier results in

the optimal harmonic mean across all class-imbalances. However, it would appear that the

frequentist prior rarely results in the optimal harmonic mean. This suggests that applying a

Bernoulli prior with a finer tuned prior parameter, say to three or four decimal places, may

be more appropriate. This is also an indication that a fixed Bernoulli parameter prior used

regardless of class-imbalance is inefficient. Instead the prior parameter should be dependent

on the class-imbalance.

The performance, measured in terms of the hit rate, suggests that the Bernoulli prior outper-

forms the frequentist prior as well as the use of no prior for the majority of class-imbalances.

It is also clear that the frequentist prior performs better than the classifier used without a

prior for all evaluated class-imbalances. The fact that the frequentist prior outperforms the

Bernoulli prior for greater class imbalances suggest that the Bernoulli prior parameter may

depend on the class-imbalance. See Table 5.2. The difference in conclusions made between
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the performance of the harmonic mean and that of the hit rate emphasise that the user

should decided whether it is more important to optimise the hit rate or the harmonic mean.

It is evident that the Gaussian classifier performs better, as indicated by the bold values, on

the z-scored data than the PCA95% data. This is due to the fact that by applying PCA to

the data the correlation is removed between features and some variation is lost due to the

dimensionality reduction. However, the Gaussian classifier is able to take into account co-

variances, and hence correlations, between features. The classifier therefore performs better

on the z-scored data in which the features are correlated and all of the original variation is

present in the data.

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.4 p = 0.5
Frequentist

prior
p = 0.4 p = 0.5

0,3000 0,6749 0,7328 0,7287 0,7393 0,7709 0,7610

0,2857 0,6967 0,7398 0,7302 0,7705 0,7546 0,7426

0,2708 0,7149 0,7493 0,7417 0,7474 0,7646 0,7580

0,2553 0,7180 0,7429 0,7450 0,7609 0,7586 0,7672

0,2391 0,7690 0,7531 0,7465 0,7592 0,7758 0,7595

0,2222 0,7703 0,7480 0,7397 0,7799 0,7679 0,7603

0,2045 0,7673 0,7499 0,7452 0,7875 0,7673 0,7702

0,1860 0,7420 0,7561 0,7506 0,7660 0,7701 0,7553

0,1667 0,7392 0,7743 0,7785 0,7605 0,7921 0,7944

0,1463 0,7344 0,8036 0,8004 0,7482 0,8133 0,8101

0,1250 0,7292 0,8088 0,8243 0,7561 0,8209 0,8558

0,1026 0,7319 0,8362 0,8282 0,7567 0,8469 0,8451

0,0789 0,7310 0,8374 0,8619 0,7604 0,8524 0,8712

Table 5.1: Harmonic mean of the Gaussian classifier: German data

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.1 p = 0.5
Frequentist

prior
p = 0.1 p = 0.5

0,3000 0,7550 0,7890 0,7090 0,7800 0,7990 0,7430

0,2857 0,7612 0,7990 0,7061 0,7857 0,8061 0,7235

0,2708 0,7781 0,8063 0,7188 0,7948 0,8177 0,7406

0,2553 0,7904 0,8160 0,7234 0,8011 0,8287 0,7564

0,2391 0,7935 0,8326 0,7207 0,8087 0,8315 0,7413

0,2222 0,7956 0,8322 0,7078 0,8133 0,8389 0,7433

0,2045 0,8034 0,8455 0,7102 0,8216 0,8545 0,7443

0,1860 0,8209 0,8535 0,7140 0,8337 0,8581 0,7372

0,1667 0,8524 0,8607 0,7464 0,8488 0,8595 0,7738

0,1463 0,8659 0,8732 0,7841 0,8659 0,8720 0,8000

0,1250 0,8875 0,8950 0,8000 0,8825 0,8925 0,8388

0,1026 0,9090 0,9051 0,8308 0,9154 0,9179 0,8513

0,0789 0,9368 0,9316 0,8579 0,9342 0,9316 0,8750

Table 5.2: Hit rate of the Gaussian classifier: German data
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The NB classifier performs better on the PCA95% data than the z-scored data. This can

be explained by the fact that there is no correlation present in the PCA95% data. Since

the NB classifier does not take account of the covariances, and hence correlations, it follows

intuitively that the classifier will perform better on the PCA95% data than the z-scored data.

The NB classifier performs best, in terms of the harmonic mean, on the PCA95% data when

no prior is used. In fact from Table 5.3 it is evident that the frequentist prior actually re-

duce the harmonic mean of the classifier regardless of the class imbalance. Considering the

z-scored data; the classifier has the optimal harmonic mean for the majority of default ratios

when no prior is used, with the exception of a few default ratios for which the frequentist

prior results in the optimal harmonic mean. The largest class-imbalance is the only case

in which the Bernoulli prior of p = 0.6 results in the optimal harmonic mean. It is clear

that for the z-scored data the optimal prior is dependent on the class-imbalance. However,

since the frequentist prior, of which the value of the prior depends on the class-imbalance,

does not result in the optimal harmonic mean the relationship between the prior and the

class-imbalance differ from that given by the frequentist prior.

The hit rate of the PCA95% data is optimised by the Bernoulli prior or the frequentist prior

depending on the default ratio. This suggests that a Bernoulli prior with prior parameter

dependent on the class-imbalance will result in the optimal performance. Considering the

z-scored data, the hit rate is optimised using a Bernoulli prior of p = 0.1 for the majority

of class-imbalances. The exception being the smallest default ratio, which is optimised by

the frequentist prior. It is clear that the use of a prior can improve the number of instances

correctly classified. The reader is referred to Table 5.4.

As with the Gaussian classifier there is a difference in the conclusions made for the per-

formance evaluated in terms of the harmonic mean versus that of the hit rate; once again

emphasising the choice the user of the model have to make between optimising the hit rate

versus optimising the harmonic mean.

59



Chapter 5. Application

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.5
Frequentist

prior
p = 0.5 p = 0.6

0,3000 0,6097 0,7197 0,7073 0,7044 0,6909

0,2857 0,5901 0,7162 0,6906 0,7043 0,6877

0,2708 0,5824 0,7262 0,6935 0,7037 0,6915

0,2553 0,5859 0,7182 0,6986 0,7021 0,6932

0,2391 0,5526 0,7268 0,7032 0,6989 0,6876

0,2222 0,5289 0,7233 0,7012 0,6994 0,6894

0,2045 0,4978 0,7379 0,7069 0,6939 0,6822

0,1860 0,4635 0,7374 0,6981 0,7010 0,6893

0,1667 0,4388 0,7248 0,6830 0,7005 0,6922

0,1463 0,4267 0,7294 0,6369 0,7108 0,7019

0,1250 0,4450 0,7542 0,6477 0,7403 0,7291

0,1026 0,3317 0,7415 0,5663 0,7337 0,7164

0,0789 0,3978 0,7522 0,5234 0,7712 0,7757

Table 5.3: Harmonic mean of the NB classifier: German data

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.2 p = 0.5
Frequentist

prior
p = 0.1 p = 0.5

0,3000 0,7630 0,7490 0,7300 0,7380 0,7570 0,6890

0,2857 0,7673 0,7561 0,7255 0,7327 0,7541 0,6857

0,2708 0,7719 0,7688 0,7333 0,7458 0,7667 0,6865

0,2553 0,7840 0,7809 0,7255 0,7617 0,7734 0,6872

0,2391 0,7924 0,7935 0,7315 0,7587 0,7870 0,6772

0,2222 0,8033 0,8067 0,7311 0,7600 0,7933 0,6744

0,2045 0,8148 0,8216 0,7477 0,7545 0,8045 0,6591

0,1860 0,8326 0,8372 0,7500 0,7744 0,8221 0,6628

0,1667 0,8357 0,8429 0,7548 0,8024 0,8274 0,6798

0,1463 0,8524 0,8488 0,7598 0,8220 0,8317 0,7012

0,1250 0,8725 0,8713 0,7738 0,8400 0,8463 0,7200

0,1026 0,8923 0,8821 0,7667 0,8526 0,8551 0,7308

0,0789 0,9158 0,8868 0,7855 0,8711 0,8671 0,7750

Table 5.4: Hit rate of the NB classifier: German data

The Silverman classifier performs better for the majority of default ratios on the PCA95%

data. This may be explained in a similar fashion as with the NB classifier. Silverman’s rule

of thumb estimates a diagonal bandwidth matrix and therefore does not take into account

covariances, and hence correlations, between features. Since the PCA95% data’s features are

uncorrelated the classifier performs better on this data set.

It is worth noting that the frequentist prior reduces the harmonic mean of the Silverman

classifier. For both the z-scored as well as the PCA95% data whether the Bernoulli prior

results in the optimal harmonic mean depends on the default ratio. However, the dependency
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is not explained by the relationship given by the frequentist prior. Table 5.5 also suggests

that the use of a Bernoulli prior with a finer tuned parameter might be more appropriate.

The frequentist prior reduce the hit rate of the Silverman classifier on the z-scored data,

regardless of the default ratio. Considering the PCA95% data the frequentist prior reduce

the hit rate of the Silverman classifier for the greater class imbalances. The hit rate for both

the z-scored as well as the PCA95% data is optimised using a Bernoulli prior. However, there

are a few default ratios for which not using a prior optimises the hit rate.

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.6 p = 0.5
Frequentist

prior
p = 0.8 p = 0.5

0,3000 0,9528 0,9589 0,9586 0,9486 0,9518 0,9586

0,2857 0,9474 0,9606 0,9572 0,9473 0,9532 0,9583

0,2708 0,9512 0,9620 0,9574 0,9444 0,9554 0,9587

0,2553 0,9474 0,9620 0,9591 0,9403 0,9561 0,9605

0,2391 0,9478 0,9620 0,9594 0,9452 0,9546 0,9610

0,2222 0,9442 0,9594 0,9622 0,9457 0,9574 0,9615

0,2045 0,9496 0,9577 0,9612 0,9469 0,9561 0,9605

0,1860 0,9267 0,9613 0,9641 0,9235 0,9593 0,9634

0,1667 0,9241 0,9663 0,9691 0,9182 0,9664 0,9648

0,1463 0,9012 0,9669 0,9697 0,8950 0,9725 0,9661

0,1250 0,8804 0,9675 0,9675 0,8799 0,9627 0,9637

0,1026 0,8631 0,9617 0,9624 0,8396 0,9583 0,9435

0,0789 0,7870 0,9608 0,9435 0,7230 0,9615 0,8561

Table 5.5: Harmonic mean of the Silverman classifier: German data

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.4 p = 0.5
Frequentist

prior
p = 0.4 p = 0.5

0,3000 0,9660 0,9690 0,9650 0,9630 0,9650 0,9650

0,2857 0,9653 0,9684 0,9653 0,9633 0,9663 0,9653

0,2708 0,9698 0,9677 0,9667 0,9635 0,9677 0,9667

0,2553 0,9691 0,9691 0,9681 0,9628 0,9681 0,9681

0,2391 0,9707 0,9728 0,9696 0,9663 0,9717 0,9696

0,2222 0,9722 0,9744 0,9722 0,9678 0,9733 0,9711

0,2045 0,9750 0,9761 0,9716 0,9705 0,9750 0,9705

0,1860 0,9698 0,9791 0,9733 0,9640 0,9756 0,9721

0,1667 0,9714 0,9774 0,9774 0,9667 0,9774 0,9750

0,1463 0,9683 0,9793 0,9780 0,9646 0,9793 0,9780

0,1250 0,9688 0,9838 0,9813 0,9675 0,9800 0,9825

0,1026 0,9705 0,9846 0,9833 0,9692 0,9769 0,9821

0,0789 0,9697 0,9816 0,9842 0,9645 0,9776 0,9776

Table 5.6: Hit rate of the Silverman classifier: German data

The MLE classifier performs better on the z-scored data rather than the PCA95% data.
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This might be attributed to the fact that the MLE density estimator is able to capture

correlation between variables owing to the adaptive kernel bandwidths. The MLE is able to

capture correlation between variables since the MLE estimates a unique bandwidth in each

dimension for each kernel. This is despite the fact that diagonal bandwidth matrices are

estimated in the experiment.

The frequentist prior used in conjunction with the MLE classifier decrease the harmonic mean

on the z-scored data set, whereas a Bernoulli prior of p = 0.4 results in the optimal harmonic

mean for the majority of default ratios. The fact that there are a few default ratios for which

the use of no prior results in the optimal performance suggest that a finer tuned Bernoulli

prior parameter might be more appropriate. In the case of the PCA95% data the frequentist

prior performs optimally, in terms of the harmonic mean, for the smaller class-imbalances.

However, as the class-imbalance increase the frequentist prior results in a lower harmonic

mean than that of the classifier used without a prior. Regardless of the class-imbalance the

Bernoulli prior with parameter p = 0.9 has a higher harmonic mean than the classifier used

without a prior. For the greater class-imbalances the Bernoulli prior outperforms, in terms

of the harmonic mean, the frequentist prior. This, as with the other classifiers, suggest that

the optimal prior depends on the default ratio. Yet the dependency is not the same as that

given by the frequentist prior. See Table 5.7.

The hit rate of the MLE classifier is optimised on the z-scored data by the Bernoulli prior

with parameter p = 0.4, regardless of the default ratio. On the other hand, the frequentist

prior results in a lower hit rate than the MLE classifier with no prior, for the majority of

default ratios. Considering the PCA95% data the frequentist prior results in the optimal

hit rate regardless of the default ratio, with the only exception being the smallest evaluated

default ratio. For the majority of evaluated default ratios the Bernoulli prior, with parameter

p = 0.2, improves the hit rate of the classifier when compared to the classifier used without

a prior.
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PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.9 p = 0.5
Frequentist

prior
p = 0.4 p = 0.5

0,3000 0,9528 0,9413 0,9306 0,9486 0,9616 0,9609

0,2857 0,9474 0,9389 0,9304 0,9473 0,9594 0,9610

0,2708 0,9512 0,9407 0,9350 0,9444 0,9642 0,9638

0,2553 0,9474 0,9405 0,9328 0,9403 0,9596 0,9683

0,2391 0,9478 0,9399 0,9394 0,9452 0,9624 0,9638

0,2222 0,9442 0,9423 0,9281 0,9457 0,9641 0,9610

0,2045 0,9496 0,9443 0,9335 0,9469 0,9655 0,9620

0,1860 0,9267 0,9426 0,9245 0,9235 0,9740 0,9669

0,1667 0,9241 0,9536 0,9259 0,9182 0,9749 0,9686

0,1463 0,9012 0,9486 0,9186 0,8950 0,9761 0,9733

0,1250 0,8804 0,9513 0,9110 0,8799 0,9741 0,9678

0,1026 0,8631 0,9528 0,8988 0,8396 0,9682 0,9627

0,0789 0,7870 0,9506 0,9031 0,7230 0,9602 0,9561

Table 5.7: Harmonic mean of the MLE classifier: German data

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.2 p = 0.5
Frequentist

prior
p = 0.4 p = 0.5

0,3000 0,9660 0,9480 0,9460 0,9630 0,9710 0,9640

0,2857 0,9653 0,9469 0,9469 0,9633 0,9704 0,9643

0,2708 0,9698 0,9563 0,9531 0,9635 0,9750 0,9667

0,2553 0,9691 0,9585 0,9532 0,9628 0,9713 0,9691

0,2391 0,9707 0,9620 0,9598 0,9663 0,9717 0,9663

0,2222 0,9722 0,9578 0,9556 0,9678 0,9722 0,9644

0,2045 0,9750 0,9602 0,9636 0,9705 0,9750 0,9659

0,1860 0,9698 0,9628 0,9605 0,9640 0,9814 0,9698

0,1667 0,9714 0,9655 0,9619 0,9667 0,9821 0,9714

0,1463 0,9683 0,9646 0,9610 0,9646 0,9829 0,9780

0,1250 0,9688 0,9688 0,9650 0,9675 0,9850 0,9738

0,1026 0,9705 0,9718 0,9705 0,9692 0,9833 0,9731

0,0789 0,9697 0,9803 0,9737 0,9645 0,9842 0,9763

Table 5.8: Hit rate of the MLE classifier: German data

Australian data

It is evident that the Gaussian classifier performs better, as indicated by the bold values, on

the PCA95% data than the z-scored% data. This is unexpected since the Gaussian classifier

is capable of modelling correlations between features and the PCA95% data does not contain

correlated features, whereas the z-scored data does contain correlated features. It is therefore

expected that the Gaussian classifier performs better on the z-scored data.

The performance of Gaussian classifier on both the PCA95% as well as the z-scored data

is optimised by using a Bernoulli prior. Compared to the classifier used without a prior,
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the frequentist prior decrease the performance for larger default ratios and increase the

performance for smaller default ratios. This is true regardless of whether the performance is

measured in terms of the hit rate or the harmonic mean. The reader is referred to tables 5.9

and 5.10.

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.2 p = 0.5
Frequentist

prior
p = 0.1 p = 0.5

0,5551 0,7915 0,8698 0,8074 0,7768 0,8547 0,7794

0,5418 0,7921 0,881 0,8036 0,7743 0,8609 0,7831

0,5277 0,7958 0,8689 0,8112 0,7796 0,8614 0,7818

0,5127 0,7948 0,8666 0,799 0,7802 0,8597 0,7791

0,4967 0,7952 0,8689 0,7931 0,782 0,8629 0,782

0,4797 0,8045 0,8677 0,8031 0,7958 0,858 0,7893

0,4614 0,8158 0,8669 0,8114 0,8017 0,8659 0,7937

0,4418 0,8163 0,8621 0,817 0,8059 0,8651 0,7999

0,4208 0,8183 0,866 0,8129 0,8136 0,8638 0,8027

0,398 0,8124 0,8692 0,8042 0,8083 0,869 0,7947

0,3735 0,8247 0,8649 0,8024 0,8171 0,8671 0,7986

0,3468 0,8229 0,8589 0,799 0,8078 0,8579 0,7892

0,3178 0,8383 0,8551 0,8053 0,8163 0,8669 0,8001

0,286 0,8525 0,8592 0,8207 0,8268 0,847 0,7947

0,2512 0,8625 0,8648 0,8345 0,8519 0,8509 0,8071

0,2128 0,8669 0,8755 0,8396 0,8535 0,8657 0,822

0,1703 0,8691 0,8714 0,8527 0,8636 0,8679 0,8258

0,1229 0,8964 0,9041 0,8708 0,883 0,8848 0,8438

Table 5.9: Harmonic mean of the Gaussian classifier: Australian data
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PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.1 p = 0.5
Frequentist

prior
p = 0.1 p = 0.5

0,5551 0,8217 0,8667 0,8304 0,8145 0,8594 0,8145

0,5418 0,8179 0,8672 0,8254 0,8090 0,8642 0,8149

0,5277 0,8169 0,8662 0,8277 0,8077 0,8631 0,8092

0,5127 0,8111 0,8635 0,8143 0,8048 0,8619 0,8032

0,4967 0,8082 0,8656 0,8066 0,8016 0,8639 0,8016

0,4797 0,8119 0,8678 0,8119 0,8085 0,8576 0,8034

0,4614 0,8175 0,8667 0,8140 0,8088 0,8649 0,8035

0,4418 0,8145 0,8709 0,8164 0,8073 0,8636 0,8036

0,4208 0,8132 0,8679 0,8094 0,8094 0,8623 0,8019

0,398 0,8039 0,8686 0,7961 0,8000 0,8667 0,7882

0,3735 0,8143 0,8694 0,7898 0,8041 0,8653 0,7857

0,3468 0,8085 0,8702 0,7809 0,7894 0,8511 0,7702

0,3178 0,8222 0,8756 0,7800 0,7933 0,8578 0,7733

0,286 0,8349 0,8744 0,7884 0,7930 0,8279 0,7581

0,2512 0,8488 0,8854 0,7976 0,8122 0,8293 0,7610

0,2128 0,8538 0,8897 0,8051 0,8154 0,8410 0,7692

0,1703 0,8568 0,8757 0,8027 0,8243 0,8378 0,7622

0,1229 0,8886 0,8943 0,8200 0,8514 0,8543 0,7914

Table 5.10: Hit rate of the Gaussian classifier: Australian data

The NB classifier performs better on the PCA95% data than the z-scored data. This can

be explained by the fact that there is no correlation present in the PCA95% data. Since

the NB classifier does not take account of the covariances, and hence correlations, it follows

intuitively that the classifier will perform better on the PCA95% data than the z-scored data.

A Bernoulli prior with parameter p = 0.1 results in the optimal harmonic mean for the NB

classifier applied to the z-scored data, regardless of the default ratio. The only exception

being the largest evaluated class-imbalance. There are a few default ratios for which the

frequentist prior increase the performance of the classifier. However, for larger default ratios

the frequentist prior has a lower harmonic mean than the classifier used without a prior.

Considering the harmonic mean of the NB classifier applied to the PCA95% data, there

is no single type of prior that results in the optimal harmonic mean regardless of the class-

imbalance. The prior is therefore dependent on the class imbalance. However, the dependency

is not the same as that given by the frequentist prior. This is reflected in Table 5.11.

The hit rate of the NB classifier applied to the z-scored data is optimised by the Bernoulli

prior with parameter p = 0.1. This is the same prior that optimises the harmonic mean. For

greater default ratios the frequentist prior results in a lower hit rate than the NB classifier

used with no prior. However, as the default ratio decrease the frequentist prior improves the

hit rate. Considering the PCA95% data, the frequentist prior as well as the Bernoulli prior

results in a higher hit rate for smaller default ratios. On the other hand, for larger default
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ratios the NB classifier used without any prior results in the optimal hit rate. This once again

suggests that there exists a dependency between the prior used and the class-imbalance. See

Table 5.12.

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.4 p = 0.5
Frequentist

prior
p = 0.1 p = 0.5

0,5551 0,8566 0,8572 0,8606 0,7815 0,8316 0,7839

0,5418 0,8587 0,8624 0,8665 0,7828 0,8352 0,7891

0,5277 0,8579 0,8591 0,8653 0,7872 0,8359 0,7893

0,5127 0,8476 0,8539 0,8615 0,7822 0,8331 0,7832

0,4967 0,8505 0,8536 0,8603 0,7835 0,8325 0,7835

0,4797 0,8561 0,8595 0,8563 0,7853 0,8368 0,7872

0,4614 0,8528 0,8587 0,8571 0,7881 0,8380 0,7861

0,4418 0,8586 0,8559 0,8578 0,7866 0,8390 0,7877

0,4208 0,8640 0,8577 0,8575 0,7961 0,8363 0,7891

0,3980 0,8621 0,8548 0,8572 0,8045 0,8369 0,7901

0,3735 0,8605 0,8514 0,8544 0,8064 0,8433 0,7862

0,3468 0,8452 0,8500 0,8389 0,8022 0,8449 0,7887

0,3178 0,8400 0,8416 0,8266 0,7972 0,8370 0,7870

0,2860 0,8500 0,8447 0,8403 0,8076 0,8380 0,7969

0,2512 0,8515 0,8453 0,8554 0,8208 0,8398 0,8008

0,2128 0,8397 0,8470 0,8462 0,8199 0,8331 0,8060

0,1703 0,8767 0,8561 0,8553 0,8226 0,8285 0,8014

0,1229 0,8456 0,8439 0,8404 0,8387 0,8423 0,8432

Table 5.11: Harmonic mean of the NB classifier: Australian data
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PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.2 p = 0.5
Frequentist

prior
p = 0.1 p = 0.5

0,5551 0,8623 0,8188 0,8623 0,8101 0,8377 0,8087

0,5418 0,8627 0,8254 0,8687 0,8075 0,8403 0,8119

0,5277 0,8600 0,8277 0,8662 0,8077 0,8400 0,8092

0,5127 0,8492 0,8222 0,8619 0,8016 0,8365 0,8016

0,4967 0,8508 0,8295 0,8607 0,7984 0,8344 0,7984

0,4797 0,8559 0,8407 0,8559 0,7949 0,8373 0,7983

0,4614 0,8526 0,8491 0,8561 0,7930 0,8368 0,7912

0,4418 0,8600 0,8509 0,8564 0,7873 0,8364 0,7891

0,4208 0,8660 0,8547 0,8547 0,7925 0,8321 0,7868

0,3980 0,8667 0,8569 0,8529 0,7961 0,8314 0,7824

0,3735 0,8714 0,8653 0,8510 0,7939 0,8367 0,7735

0,3468 0,8638 0,8596 0,8319 0,7851 0,8340 0,7702

0,3178 0,8711 0,8667 0,8222 0,7756 0,8222 0,7622

0,2860 0,8837 0,8791 0,8349 0,7814 0,8186 0,7651

0,2512 0,8927 0,8878 0,8512 0,7902 0,8146 0,7634

0,2128 0,8897 0,9000 0,8410 0,7872 0,8051 0,7615

0,1703 0,9162 0,9189 0,8541 0,7865 0,8027 0,7568

0,1229 0,9200 0,9143 0,8429 0,8086 0,8143 0,7800

Table 5.12: Hit rate of the NB classifier: Australian data

There is no definitive conclusion that can be made regarding whether the Silverman classifier

performs better on the z-scored or the PCA95% data. For some default ratios the classifier

performs better on the z-scored data and others the PCA95% data. The default ratios for

which it has a higher hit rate on the z-scored data do not even coincide with the default

ratios for which it has a higher harmonic mean on the z-scored data. This is unexpected

since the nature of the Silverman classifier suggests it should perform better on a data set

with no correlation between features.

A Bernoulli prior with parameter p = 0.2, used in conjunction with the Silverman classifier,

results in the optimal harmonic mean for the z-scored data, regardless of the class imbalance.

The frequentist prior improves on the harmonic mean of the classifier for default ratios of

0.4797 and lower. No specific prior results in the optimal harmonic mean regardless of class-

imbalance for the PCA95% data. This suggests that a Bernoulli prior with the parameter

dependent upon the class-imbalance might be appropriate. This is reflected in Table 5.13.

The hit rate of the Silverman classifier applied to the z-scored data is the highest for the

Bernoulli prior with parameter p = 0.2, for all evaluated class-imbalances. Although the

frequentist prior improves the hit rate of the Silverman classifier for default ratios smaller

and equal to 0.4797, it does not improve the hit rate by such a margin that the frequentist

prior outperforms the Bernoulli prior with parameter p = 0.2. The frequentist prior results in

the optimal hit rate for the PCA95% data with default ratios between 0.4967 and 0.2128 (both
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included). For the majority of evaluated default ratios the Bernoulli prior with parameter

p = 0.2 improves on the Silverman classifier without a prior. The aforementioned suggest that

a Bernoulli prior with the parameter dependent upon the default ratio might be appropriate.

See Table 5.14.

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.4 p = 0.5
Frequentist

prior
p = 0.2 p = 0.5

0,5551 0,9463 0,9620 0,9572 0,9025 0,9616 0,9179

0,5418 0,9459 0,9610 0,9568 0,9083 0,9623 0,9140

0,5277 0,9460 0,9604 0,9512 0,9140 0,9618 0,9197

0,5127 0,9507 0,9597 0,9524 0,9158 0,9612 0,9158

0,4967 0,9518 0,9606 0,9518 0,9157 0,9638 0,9157

0,4797 0,9597 0,9597 0,9546 0,9194 0,9631 0,9156

0,4614 0,9606 0,9621 0,9557 0,9303 0,9640 0,9228

0,4418 0,9594 0,9631 0,9571 0,9377 0,9647 0,9192

0,4208 0,9637 0,9620 0,9587 0,9468 0,9653 0,9228

0,3980 0,9657 0,9624 0,9600 0,9486 0,9640 0,9322

0,3735 0,9694 0,9641 0,9646 0,9568 0,9673 0,9359

0,3468 0,9716 0,9665 0,9571 0,9576 0,9681 0,9209

0,3178 0,9524 0,9662 0,9665 0,9665 0,9697 0,9228

0,2860 0,9472 0,9691 0,9732 0,9591 0,9722 0,9190

0,2512 0,9603 0,9691 0,9737 0,9703 0,9787 0,9377

0,2128 0,9545 0,9673 0,9759 0,9667 0,9684 0,9360

0,1703 0,9217 0,9614 0,9740 0,9630 0,9695 0,9450

0,1229 0,8672 0,9737 0,9704 0,9668 0,9721 0,9558

Table 5.13: Harmonic mean of the Silverman classifier: Australian data
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PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.2 p = 0.5
Frequentist

prior
p = 0.2 p = 0.5

0,5551 0,9522 0,9565 0,9609 0,9025 0,9638 0,9319

0,5418 0,9507 0,9552 0,9597 0,9083 0,9642 0,9269

0,5277 0,9492 0,9554 0,9538 0,9140 0,9631 0,9292

0,5127 0,9524 0,9540 0,9540 0,9158 0,9619 0,9238

0,4967 0,9525 0,9525 0,9525 0,9157 0,9639 0,9213

0,4797 0,9593 0,9492 0,9542 0,9194 0,9627 0,9186

0,4614 0,9596 0,9544 0,9544 0,9303 0,9632 0,9228

0,4418 0,9582 0,9564 0,9545 0,9377 0,9636 0,9164

0,4208 0,9623 0,9566 0,9547 0,9468 0,9642 0,9170

0,398 0,9647 0,9569 0,9549 0,9486 0,9627 0,9235

0,3735 0,9714 0,9592 0,9592 0,9568 0,9673 0,9245

0,3468 0,9723 0,9617 0,9489 0,9576 0,9660 0,9043

0,3178 0,9644 0,9622 0,9578 0,9665 0,9689 0,9022

0,286 0,9651 0,9651 0,9628 0,9591 0,9674 0,8930

0,2512 0,9756 0,9756 0,9659 0,9703 0,9732 0,9122

0,2128 0,9795 0,9769 0,9692 0,9667 0,9641 0,9103

0,1703 0,9730 0,9784 0,9676 0,9630 0,9703 0,9216

0,1229 0,9686 0,9857 0,9657 0,9668 0,9686 0,9257

Table 5.14: Hit rate of the Silverman classifier: Australian data

The MLE classifier performs better on the PCA95% data rather than the z-scored data. This

is due to the fact that the version of the MLE classifier used estimates diagonal bandwidth

matrices. Although the MLE classifier can still detect correlations due to the MLE’s ability

to estimates an unique bandwidth in each dimension for each kernel, it would appear that

on the Australian data set the fact that the MLE estimates diagonal bandwidths outweighs

this aforementioned ability. See tables 5.15 and 5.16.

The harmonic mean of the MLE classifier applied to the z-scored data suggests that a

Bernoulli prior with parameter p = 0.2 is most appropriate. The frequentist prior improves

the harmonic mean of the MLE classifier for the z-scored data with evaluated default ratios

less than 0.5127. Considering the PCA95% data there is no definitive optimal prior regard-

less of default ratio. This suggests that a Bernoulli prior that is dependent upon the default

ratio is most appropriate. This can be seen by observing Table 5.15. The Bernoulli prior

with parameter p = 0.4 improves the hit rate of the MLE classifier for both the PCA95% as

well as the z-scored data , regardless of the class-imbalance. The prior results in the optimal

hit rate for the majority of default ratios in both cases. The frequentist prior is shown to be

ineffective for the PCA95% and often reduce the hit rate of the MLE classifier. The reader

is referred to Table 5.16.

69



Chapter 5. Application

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.7 p = 0.5
Frequentist

prior
p = 0.2 p = 0.5

0,5551 0,9409 0,9198 0,9479 0,8244 0,9229 0,8417

0,5418 0,9460 0,9194 0,9460 0,8155 0,9274 0,8306

0,5277 0,9402 0,9190 0,9454 0,8224 0,9220 0,8331

0,5127 0,9463 0,9204 0,9411 0,8207 0,9224 0,8313

0,4967 0,9404 0,9231 0,9385 0,8317 0,9176 0,8308

0,4797 0,9411 0,9262 0,9410 0,8279 0,9172 0,8249

0,4614 0,9395 0,9293 0,9400 0,8444 0,9261 0,8341

0,4418 0,9460 0,9358 0,9441 0,8457 0,9278 0,8348

0,4208 0,9515 0,9336 0,9519 0,8578 0,9224 0,8344

0,398 0,9509 0,9361 0,9540 0,8712 0,9122 0,8495

0,3735 0,9431 0,9379 0,9548 0,8831 0,9111 0,8381

0,3468 0,9401 0,9420 0,9522 0,8850 0,9181 0,8345

0,3178 0,9404 0,9547 0,9472 0,8973 0,9317 0,8470

0,286 0,9308 0,9569 0,9501 0,9037 0,9304 0,8615

0,2512 0,9284 0,9610 0,9541 0,9411 0,9497 0,8838

0,2128 0,9262 0,9650 0,9612 0,9393 0,9315 0,8936

0,1703 0,9017 0,9690 0,9662 0,9381 0,9356 0,9028

0,1229 0,8961 0,9638 0,9786 0,8922 0,9347 0,8920

Table 5.15: Harmonic mean of the MLE classifier: Australian data

PCA 95% Z-Scored

Default
ratio

Frequentist
prior

p = 0.4 p = 0.5
Frequentist

prior
p = 0.2 p = 0.5

0,5551 0,9464 0,9536 0,9522 0,8594 0,9217 0,8696

0,5418 0,9493 0,9522 0,9493 0,8478 0,9269 0,8582

0,5277 0,9431 0,9508 0,9477 0,8492 0,9215 0,8569

0,5127 0,9476 0,9492 0,9429 0,8429 0,9222 0,8508

0,4967 0,9410 0,9492 0,9393 0,8475 0,9180 0,8475

0,4797 0,9407 0,9458 0,9407 0,8407 0,9169 0,8390

0,4614 0,9386 0,9421 0,9386 0,8491 0,9263 0,8421

0,4418 0,9455 0,9509 0,9418 0,8455 0,9291 0,8382

0,4208 0,9509 0,9509 0,9491 0,8528 0,9245 0,8321

0,398 0,9510 0,9549 0,9510 0,8627 0,9157 0,8412

0,3735 0,9469 0,9531 0,9531 0,8735 0,9204 0,8245

0,3468 0,9468 0,9489 0,9489 0,8723 0,9234 0,8149

0,3178 0,9533 0,9556 0,9511 0,8889 0,9378 0,8222

0,286 0,9581 0,9581 0,9651 0,8977 0,9395 0,8326

0,2512 0,9610 0,9659 0,9659 0,9317 0,9488 0,8512

0,2128 0,9667 0,9769 0,9744 0,9462 0,9410 0,8564

0,1703 0,9649 0,9784 0,9757 0,9622 0,9459 0,8595

0,1229 0,9743 0,9829 0,9800 0,9657 0,9571 0,8400

Table 5.16: Hit rate of the MLE classifier: Australian data

70



Chapter 5. Application

5.2.3 Parametric versus non-parametric classifiers

German data

Figure 5.33 indicates that the non-parametric classifiers have higher hit rates than the para-

metric classifiers for the PCA95% data. All the classifiers, with the exception of the BLR

classifier, exhibit a general increasing trend. The increasing trend is expected as the number

of instances classified correctly when simply classifying all instances to the majority class,

increases as the class-imbalance increase. It is possible that the Silverman classifier result in

higher hit rates than the MLE classifier due to the fact that only a single iteration is used

to update the MLE bandwidth. Another explanation is that the MLE performs better in

terms of density estimation and not necessarily classification. It is interesting to note that

even though the PCA95% data do not contain correlation between features, the Gaussian

classifier still outperforms the NB classifier. It was expected that these two classifiers result

in the same hit rate for the PCA95% data set. The trend with which the NB as well as the

Gaussian classifiers increase is greater than that of the LR classifier. The result is that the

NB and Gaussian classifiers perform considerably better than the LR classifier for the greater

evaluated class-imbalances. In comparison the BLR classifier have much lower respective hit

rates than the LR classifier. This might be due to the fact that the posterior predictive

distribution of the BLR classifier is approximated.

In terms of the harmonic mean the non-parametric classifiers outperform the parametric clas-

sifiers. The non-parametric classifiers maintain a fairly constant harmonic mean regardless

of the class-imbalance. As is the case with the hit rate, the harmonic mean of the Silverman

classifier is higher than that of the MLE classifier. The slope of the Gaussian classifier is

steeper than that of the NB classifier. Both these classifiers exhibit a general upward trend.

The Gaussian classifier has a higher harmonic mean than the NB classifier regardless of the

default ratio. It is interesting to note that even though the LR classifier results in a higher

hit rate than the BLR classifier for every default ratio, the BLR results in a higher harmonic

mean than the LR for every default ratio. That is to say that the BLR has a higher quality of

classification. This suggest that although the LR classifier might classify a greater proportion

of classes correctly, should a cost matrix be involved it might be that the BLR classifier will

result in more cost effective classifications. It is important to notice that the LR as well as

the BLR classifier have decreasing trends in terms of the harmonic mean. This is reflected

in Figure 5.34.
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Figure 5.33: Performance of parametric versus non-parametric classifiers: German PCA 95% data

Figure 5.34: Performance of parametric versus non-parametric classifiers: German PCA 95% data

Comparing Figure 5.35 to Figure 5.33 it is seen that whereas the Silverman classifier performs

much better than the MLE classifier on the PCA95% data, the hit rate of these classifiers

are much more similar for the z-scored data. This may be attributed to the MLE’s ability

to capture correlations between features, which the Silverman classifier is unable to do. The

hit rate for the non-parametric classifiers are higher than that of the parametric classifiers

across all default ratios, for the z-scored data. It is interesting to note that the LR classifier
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outperforms the NB classifier for smaller evaluated class-imbalances. The slope of the NB

classifier is so steep that the hit rate of the classifier surpasses that of the LR classifier for

larger evaluated class-imbalances. The hit rate of the BLR classifier is the lowest of all the

classifiers for the z-scored data regardless of default ratio. It is also the only classifier that

has a negative trend in terms of the hit rate.

Consider Figure 5.36. As in the case of the hit rate the two non-parametric classifier have very

similar harmonic means, with the MLE marginally outperforming the Silverman classifier for

a few default ratios. This may once again be explained by the fact that the MLE is capable

of modelling correlations between features, which the Silverman classifier is not able to do.

The non-parametric classifiers outperform all the other evaluated classifiers in terms of the

harmonic mean, for the z-scored data. The conclusions regarding the other classifiers are

similar to that of the harmonic mean for the PCA95% data. However, the default ratio at

which the NB classifier surpasses that of the BLR classifier is smaller than for the PCA95%

data.

Figure 5.35: Performance of parametric versus non-parametric classifiers: German z-scored data
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Figure 5.36: Performance of parametric versus non-parametric classifiers: German z-scored data

Australian data

The non-parametric classifiers outperform the parametric classifiers, in terms of the hit rate,

for the PCA95% data. The Silverman classifier has a higher hit rate than the MLE classifier

for the majority of default ratios, with the only exception being the two smallest evaluated

default ratios. This may be attributed to the single, instead of multiple, iterations used to

update the MLE bandwidth. The BLR and the LR classifier exhibit very similar performance

in terms of the hit rate. The hit rate of both these classifiers remain fairly constant regardless

of the class-imbalance. Originally these classifiers outperform the Gaussian as well as the

NB classifiers. It is possible for the NB classifier to have a higher hit rate than the Gaussian

classifier, at larger class-imbalances, since the PCA95% data do not contain correlations

between features and the Gaussian classifier can mistakenly model covariances, which do not

exist, whereas the NB classifier does not take covariances into account. See Figure 5.37.

Very similar conclusions can be made for the harmonic mean of the classifiers applied to the

PCA95% data as those made for the hit rate applied to the same data. The non-parametric

classifiers outperform the parametric classifiers. Furthermore, the LR and the BLR classifiers

have very similar harmonic means regardless of the default ratio. These two classifiers have a

fairly constant, yet slightly negative trend. The main difference in the performance evaluation

in terms of the hit rate and the harmonic mean is surrounding the NB classifier. All the

other evaluated classifiers outperform the NB classifier regardless of the default ratio. This

is interesting since it is expected that due to the absence of correlations between features in

the data set, that the NB and the Gaussian classifier would have similar harmonic means

74



Chapter 5. Application

regardless of the default ratio. It could even be expected that the NB classifier results in

higher harmonic means than the Gaussian classifier due to the potential of the Gaussian

classifier incorrectly modelling covariances between features, which do not exist. See Figure

5.38.

Figure 5.37: Performance of parametric versus non-parametric classifiers: Australian PCA 95% data

Figure 5.38: Performance of parametric versus non-parametric classifiers: Australian PCA 95% data

The non-parametric classifiers have higher hit rates than the parametric classifiers when

applied to the z-scored data. Both the Silverman as well as the MLE classifier have a general
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increasing trend, with that of the MLE being steeper than that of the Silverman classifier.

The Silverman classifier have greater hit rates for all the evaluated default ratios than that

of the MLE classifier. Although it is shown that the MLE is a better density estimator than

Silverman Van der Walt 2014, it may be that the Silverman classifier is better at classification

than the MLE classifier. The hit rate of the BLR as well as the LR classifier remain fairly

constant for the z-scored data. These classifiers perform very similar with the LR classifier

marginally outperforming the BLR classifier. These classifiers outperform the Gaussian as

well as the NB classifiers across all evaluated default ratios. As expected the Gaussian

classifier results in a higher hit rate, regardless of default ratio, than the NB classifier. This

is due to the Gaussian classifier’s ability to model correlations between features in the z-

scored data set. Refer to Figure 5.39.

Very similar conclusions regarding the harmonic mean of the classifiers can be made as those

made in terms of the hit rate. As with the hit rate, the non-parametric classifier have

higher harmonic means than that of the parametric classifiers and the harmonic mean of the

Silverman classifier is higher than that of the MLE classifier, regardless of the default ratio.

Although the harmonic mean of the Logistic regression and BLR classifiers are very similar

with the LR marginally outperforming the BLR classifier, they both have slightly decreasing

trend. As with the hit rate the NB and Gaussian classifier have the lowest harmonic means

of all the evaluated classifiers, with the Gaussian classifier outperforming the NB classifier

as expected. This is reflected in Figure 5.40.

Figure 5.39: Performance of parametric versus non-parametric classifiers: Australian z-scored data
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Figure 5.40: Performance of parametric versus non-parametric classifiers: Australian z-scored data

Lending club data

Considering Figure 5.41 it is important to note that the hit rates of the Silverman, NB,

Gaussian as well as the LR classifiers closely resemble the proportion of non-defaulting in-

stances. This suggest that these classifiers simply assign the majority of instances to the

majority class. The BLR classifier is the only classifier that maintains a fairly constant hit

rate regardless of the default ratio. It is interesting to observe that unlike for the other data

sets where the number of observations as well as the default ratios were considerably larger,

the hit rate of the parametric classifiers closely resemble that of the Silverman classifier. In

particular the NB classifier performs very similar to the Silverman classifier, in terms of the

hit rate. This might be due to the fact that NB classifier is incapable of modelling covari-

ances and similarly the Silverman classifier’s bandwidth is incapable of taking covariances

into account.

The BLR classifier maintains a constant harmonic mean regardless of the class imbalance for

the PCA95% data. This classifier outperforms all other evaluated classifiers in terms of the

harmonic mean. This may be due to the added structure provided by the use of a prior distri-

bution in order to obtain a posterior predictive distribution. The prior distribution ensures

that the effect of the class imbalance is reduced. As expected the harmonic mean of the NB

and the Gaussian classifiers are extremely similar. This is due to the fact that the PCA95%

data do not contain correlations between features, rendering the Gaussian classifier’s supe-

rior power of taking covariances into account redundant. The Silverman classifier performs

similarly to the Gaussian and NB classifiers, only marginally outperforming them in terms
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of the harmonic mean. The LR classifier performs extremely poor in terms of the harmonic

mean, being practically naught, regardless of the class imbalance. This only emphasise the

role the prior distribution plays in the BLR classifier. The reader is referred to Figure 5.42.

Figure 5.41: Performance of parametric versus non-parametric classifiers: Lending club PCA95% data

Figure 5.42: Performance of parametric versus non-parametric classifiers: Lending club PCA95% data

As with the PCA95% data the hit rate of the Silverman and NB classifiers closely resemble

one another for the z-scored data. These classifiers have higher hit rates than all the other

evaluated classifiers, regardless of the default ratio. Unlike for the PCA95% data the LR
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classifier has a higher hit rate than the Gaussian classifier, regardless of the default ratio.

This is unexpected since the Gaussian classifier is capable of modelling covariances and it is

therefore expected to perform better on data that contains correlated features. Furthermore,

the BLR classifier has an increasing trend, in terms of the hit rate, for the z-scored data. See

Figure 5.43

The harmonic mean of the Gaussian classifier marginally outperforms the BLR classifier.

As expected the Gaussian classifier exhibits a higher harmonic mean than the NB classifier,

since the PCA95% data do not contain correlations. It is surprising that the NB, Gaussian

as well as the BLR classifiers outperform the Silverman classifier, in terms of the harmonic

mean. It is worth noting that the Silverman classifier does exhibit an general upward trend

as the default ratio decrease. The LR classifier exhibit extremely poor performance in terms

of the harmonic mean, with all the other evaluated classifiers significantly outperforming it.

Even worse, the LR classifier decrease in the harmonic mean as the class imbalance increase.

See Figure 5.44.

Figure 5.43: Performance of parametric versus non-parametric classifiers: Lending club z-scored data
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Figure 5.44: Performance of parametric versus non-parametric classifiers: Lending club z-scored data

5.3 Conclusion

This chapter investigated the effect of the frequentist as well as the Bernoulli priors on the

performance of classifiers in the class imbalance setting. The chapter went further to compare

the performance of parametric versus non-parametric classifiers in the class imbalance setting.

Section 5.2.1 clearly illustrated that the use of an optimal Bernoulli prior can not only improve

the general performance of the classifier, but also to some extent prevent the performance of

the classifier deteriorating as the class imbalance increase. This was shown to be true for all

investigated classifiers. It was shown that at worst the optimal Bernoulli prior will result in

the same performance of the classifier when used without a prior.

Section 5.2.2 showed that the prior that optimise the harmonic mean of a classifier does not

necessarily optimise the hit rate of that classifier. It is therefore the user’s decision to decide

whether it is of greater importance to optimise the hit rate or the harmonic mean. The

section also illustrated that although there exists a relationship between the class imbalance

and the optimal prior, that this relationship is not that given by the frequentist prior. Instead

a Bernoulli prior with the prior parameter tuned for a specific class imbalance should be used.

In Section 5.2.3 parametric classifiers with optimal Bernoulli prior were compared to the non-

parametric classifiers with optimal Bernoulli prior. The section showed that the parametric

classifiers are outperformed by the non-parametric classifiers, thus showing the classification

power of kernel density estimation. The only exception being the BLR classifier applied to

the Lending club data, which outperformed the Silverman classifier. This emphasised the

importance of the structure brought to the classifier, when data in one of the classes are
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scarce, through the use of a prior distribution. There is thus a great desire for a Bayesian

approach to kernel density estimation.
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Bayesian non-parametric classification

In Chapter 5 it was shown that the kernel density estimator performs exceptionally well as

a classifier. However, there exhibits a desire for kernel density estimators to poses a predic-

tive power. Bernardo (1999) observed this desire and developed an univariate approach to

Bayesian kernel density estimation. Bernardo’s method was extrapolated to the uncorrelated

multivariate case (De Lima, Pereira, and Souza 2013). This chapter starts off by reviewing

Bernardo’s univariate method in Section 6.1 and then deriving a theoretical approach to the

correlated multivariate method in Section 6.2.

6.1 Univariate bayesian kernel density estimation

6.1.1 Overview

This subsection serves to provide a step-by-step overview of the derivation of the univariate

Bayesian kernel density estimation method, as developed by Bernardo (1999).

The steps are as follow:

1. The data is split into two random partitions. See Section 6.1.2.

2. The likelihood of the kernel density estimation is expressed in terms of the product of

m mixtures of k inverse gamma distributions. See Equation 6.3 to Equation 6.9.

3. Since the product of various mixtures of inverse gamma distributions are complicated

to work with, the mixture of inverse gamma distributions are approximated by a single

inverse gamma distribution.

(a) An expression for the Kullback-Leiber divergence between an inverse gamma dis-

tribution and some density function g(h) is obtained. See Equation 6.10 to Equa-

tion 6.14.
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(b) The expressions for E[ln(h)] and E[h−1], that result in the minimum Kullback-

Leiber divergence is obtained. See Equation 6.15 to Equation 6.17.

(c) The function g(h) is set equal to a mixture of inverse gamma distributions and the

expeced values in terms of this function g(h) of ln(h) and h−1 is equated to the

abovementioned expected values. Thereby approximating the mixture of inverse

gamma distributions with a single inverse gamma distribution. See Equation 6.18

to Equation 6.34.

4. The approximation of the mixture of inverse gamma distributions with a single inverse

gamma distribution is substitued into the expression for the likelihood. Thereby ex-

pressing the likelihood in terms of the product of inverse gamma distributions. See

Equation 6.35 to Equation 6.40.

5. The approximate reference distribution is calculated

(a) The reference prior is determined.

i. The approximate maximum likelihood estimate of h is calculated. See Equa-

tion 6.41 to Equation 6.44.

ii. The approximate likelihood is rewritten in terms of the maximum likelihood

estimate. See Equation 6.45 to Equation 6.47.

iii. The asymptotic posterior distribution of h is axpproximated for some function

u(h). See Equation 6.48 to Equation 6.54.

(b) Bayes’ rule is applied to the reference prior and the likelihood to obtain the ap-

proximate posterior distribution. See Equation 6.55 to Equation 6.57.

6. The approximate reference predictive distribution is calculated. See Equation 6.58 to

Equation 6.67.

7. The approximate reference predictive distribution is calculated for np random partitions

of the data, X, and averaged over. See Equation 6.68.

8. Repeat the process for various number of mixture components, k, and choose the value

of k that minimises the entropy. See Equation 6.69 and Equation 6.70.

6.1.2 Preliminaries

Consider the data x = {x1, . . . , xn} consisting of n univariate instances. Let x(tr) = {x(tr)
1 , . . . , x

(tr)
k },

for some 0 < k < n, be a subset, of size k, of x. Let x(te) = {x(te)
1 , . . . , x

(te)
m } be a subset, of

size m = n− k, of x. Note that x = {x(te),x(tr)} so that x(te) and x(tr) are non-overlapping
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subsets of x. Let q (.) be a kernel function, then using kernel density estimation a reasonable

approximation to density of X(te) given the bandwidth, h, may be obtained

p
(
x(te)|h

)
=

m∏
i=1

p
(
x

(te)
i |h

)
≈

m∏
i=1

k∑
j=1

q
(
x

(te)
i |x

(tr)
j , h

)
Thus, using Bayes’ rule the posterior distribution of the bandwidth is

p
(
h|x(tr),x(te)

)
∝ p (h) p

(
x(te)|x(tr), h

)
= p (h)

m∏
i=1

k∑
j=1

q
(
x

(te)
i |x

(tr)
j , h

)
The posterior predictive distribution for some data point x is thus given by

p
(
x|x(tr),x(te)

)
=

∫ ∞
∞

p (x|h) p
(
h|x(tr),x(te)

)
dh

≈
∫ ∞
∞

1

k

k∑
j=1

q
(
x|x(tr)

j , h
)
p
(
h|x(tr),x(te)

)
dh

=
1

k

k∑
j=1

∫ ∞
∞

q
(
x|x(tr)

j , h
)
p
(
h|x(tr),x(te)

)
dh (6.1)

Equation 6.1 can be viewed as the average of the k integrated kernels with respect to the

posterior distribution of the smoothing parameter h. Since this is true for any partition

x = {x(te),x(tr)} it follows that an estimate for posterior predictive distribution may be

calculated as

p (x|k,x) =
1

np

np∑
l=1

p
(
x|x(te)

(l) ,x
(tr)
(l)

)
(6.2)

where np is the number of partitions with the form x = {x(te),x(tr)}. The number of

partitions are chosen to be the same as the number of observations in the data set, that

is to say np = n. The notation x
(te)
(l) and x

(tr)
(l) are used to denote the lth partition of the x(te)

subset and x(tr) subset, respectively.

The value of k is of utter importance. In Section 6.1.3 it will be shown that the likelihood

is proportional to the product of m mixture models, each consisting of k inverted gamma

distributions. Therefore, the value of k not only represent the size of the subset x(tr), but

also represent the number of mixture components in each of the m mixture models. It makes

sense that the final posterior predictive distribution explicitly depends on the value of k.

The choice of k will be addressed in Section 6.1.6. It is clear that the posterior predictive

distribution and the posterior distribution of the bandwidth is dependent on the choice of

the kernel function. The following sections assume a univariate normal kernel function.
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6.1.3 Approximate likelihood

This section elaborates on the calculations required to obtain the approximate likelihood

function of the data. The section is started off by expressing the Gaussian kernel function,

found in the expression for the likelihood, in terms of an inverse gamma function. It is there-

fore shown that the likelihood is proportional to the product of the mixture of inverse gamma

functions. This is done in Equation 6.3 to Equation 6.9. In order to simplify the expres-

sion for the likelihood, the mixture of inverse gamma functions (found within the likelihood

expression) is approximated with a single inverse gamma function. This approximation is

performed using the Kullback-Leibler divergence. This is done in Equation 6.10 to Equation

6.34. Finally in Equation 6.35 to Equation 6.40 the obtained approximation to the mixture

of inverse gamma functions is substituted back into the likelihood function, resulting in the

desired approximate likelihood.

Consider the probability density function of the inverse gamma distribution,

Ig (h|α, β) =
βα

Γ (α)
h−α−1e−

β
h

with α > 0 and β > 0. It is possible to write the likelihood function in terms of the inverse

gamma distribution,

L (h|α, β) =
m∏
i=1

1

k

k∑
j=1

q
(
x

(te)
i |x

(tr)
j , h

)
(6.3)

=
m∏
i=1

1

k

k∑
j=1

1√
2πh

e−

(
x
(te)
i

−x(tr)
j

)2

2h (6.4)

=

m∏
i=1

1

k

k∑
j=1

h(
x

(te)
i − x(tr)

j

)
(
x

(te)
i − x(tr)

j

)
√

2Γ
(

1
2

) h−
3
2 e−

(
x
(te)
i

−x(tr)
j

)2

2h (6.5)

=

m∏
i=1

1

k

k∑
j=1

h(
x

(te)
i − x(tr)

j

)Ig
h|1

2
,

(
x

(te)
i − x(tr)

j

)2

2

 (6.6)

∝
m∏
i=1

k∑
j=1

h(
x

(te)
i − x(tr)

j

)Ig
h|1

2
,

(
x

(te)
i − x(tr)

j

)2

2

 (6.7)

=

m∏
i=1

k∑
j=1

h√
dij
Ig

(
h|1

2
,
dij
2

)
(6.8)

∝ hm
m∏
i=1

k∑
j=1

wijIg

(
h|1

2
,
dij
2

)
(6.9)
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where wij =

(√
dij
∑k

j=1
1√
dij

)−1

and Equation 6.5 follows from the fact that Γ
(

1
2

)
=
√
π.

This shows that the likelihood function can be written in such a way that it is propor-

tional to the product of m mixture models. These mixture models consist out of k inverse

gamma functions with parameters α = 1
2 , βij =

dij
2 =

(
x

(te)
i −x(tr)

j

)2

2 and weights equal to

wij =

(√
dij
∑k

j=1
1√
dij

)−1

.

In order to approximate the above mentioned mixture of inverse gamma distributions, the

Kulback-Leibler divergence between the mixture and an inverse gamma distribution Ig (h|, α, β)

needs to be minimised. The Kullback-Leibler divergence between the inverse gamma distri-

bution Ig (h|, α, β) and some density g(h) is given by

δ (α, β) =

∫ ∞
0

g (h) ln

(
g (h)

Ig (h|α, β)

)
dh (6.10)

=

∫ ∞
0

g (h) ln g (h)dh−
∫ ∞

0
g (h) ln Ig (h|α, β)dh (6.11)

=

∫ ∞
0

g (h) ln g (h)dh−
∫ ∞

0
g (h) ln

(
βα

Γ (α)
h−α−1e−

β
h

)
dh (6.12)

=

∫ ∞
0

g (h) ln g (h)dh− α ln (β)

∫ ∞
0

g (h) dh+ ln (Γ (α))

∫ ∞
0

g (h) dh

+ (α+ 1)

∫ ∞
0

g (h) ln (h)dh+ β

∫ ∞
0

g (h)h−1dh (6.13)

= c− α ln (β) + ln (Γ (α)) + (α+ 1) E [ln (h)] + βE
[
h−1

]
(6.14)

where c is some irrelevant constant. Equation 6.14 follows from the fact that since g(h) is a

density function,
∫∞

0 g (h) dh = 1. In order to minimise the Kullback-Leibler divergence we

differentiate with respect to the respective parameters and set the equations equal to zero.

∂δ (α, β)

α
= − ln(β) + ψ (α) + E [ln (h)] = 0 (6.15)

∂δ (α, β)

β
= −α

β
+ E

[
h−1

]
= 0 (6.16)

where ψ (.) = Γ‘(.)
Γ(.) is the digamma function. Solving Equation 6.15 and Equation 6.16 it is

seen that the Kullback-Leilber divergence is minimised if, and only if

E [ln (h)] = ln(β)− ψ (α) , E
[
h−1

]
=
α

β
(6.17)

Let g (h) =
∑

j ρjIg
(
h|12 , βj

)
be a mixture of inverse gamma distributions with weights ρk.

The best approximation to this mixture of inverse gamma distributions by a single inverse
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gamma distribution Ig (h|α, β) is obtained by matching the expected values of ln (h) and h−1

Eg

[
h−1

]
=
∑
j

ρj
1

2βj
(6.18)

Eg [ln (h)] =
∑
j

ρj

{
ln (βj)− ψ

(
1

2

)}
(6.19)

=
∑
j

ρj ln(βj)− ψ
(

1

2

)
(6.20)

Equation 6.20 follows from the fact that
∑

j ρj = 1. Equating the equations in Equation 6.17

to Equation 6.20 and Equation 6.18 respectively we obtain

E
[
h−1

]
= Eg

[
h−1

]
(6.21)

α

β
=
∑
j

ρj
1

2βj
(6.22)

β = 2α

∑
j

ρj
1

βj

−1

(6.23)

and

E [ln (h)] = Eg [ln (h)] (6.24)

ln(β)− ψ (α) =
∑
j

ρj ln(βj)− ψ
(

1

2

)
(6.25)

ln

2α

∑
j

ρj
1

βj

−1− ψ (α) =
∑
j

ρj ln(βj)− ψ
(

1

2

)
(6.26)

ln (α)− ψ (α) = − ln

2

∑
j

ρj
1

βj

−1+
∑
j

ρj ln(βj)− ψ
(

1

2

)
(6.27)

ln (α)− ψ (α) = ln (
1

2
)− ln

∑
j

ρj
1

2βj

−1+ ln
(
e
∑
j ρj ln(βj)

)
− ψ

(
1

2

)
(6.28)

ln (α)− ψ (α) = ln (
1

2
)− ψ

(
1

2

)
+ ln

 e
∑
j ρj ln(βj)(∑
j ρj

1
βj

)−1

 (6.29)

Now consider the asymptotic series expansion of the digamma function for some x ∈ R

ψ (x) = ln(x)− 1

2x
−
∞∑
n=1

B2n

2nx2n
(6.30)

where Bs is the sth Bernoulli number. The digamma function can therefore be approximated

by

ψ (x) ≈ ln(x)− 1

2x
(6.31)
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Using this approximation to the digamma function an approximate solution can be obtained

for Equation 6.29

1

2α
≈ 1 + ln

 e
∑
j ρj ln(βj)(∑
j ρj

1
βj

)−1

 (6.32)

α ≈ 1

2

1 + ln

 e
∑
j ρj ln(βj)(∑
j ρj

1
βj

)−1



−1

(6.33)

Substituting 6.33 into 6.23 we obtain

β ≈

1 + ln

 e
∑
j ρj ln(βj)(∑
j ρj

1
βj

)−1



−1∑

j

ρj
1

βj

−1

(6.34)

The likelihood can therefore now be expressed as

L
(
h,x(te),x(tr)

)
∝ hm

m∏
i=1

k∑
j=1

wijIg

(
h|1

2
,
dij
2

)
(6.35)

≈ hm
m∏
i=1

Ig (h|ai, bi) (6.36)

= hm
m∏
i=1

baii
Γ (ai)

h−ai−1e−
bi
h (6.37)

∝ hm
m∏
i=1

h−ai−1e−
bi
h (6.38)

= h−
∑m
i=1 aie−

∑m
i=1 bi
h (6.39)

where

ai =
1

2

1 + ln

 e
∑
j wij ln(dij)(∑
j wij

1
dij

)−1



−1

, bi =
1

2

1 + ln

 e
∑
j wij ln(dij)(∑
j wij

1
dij

)−1



−1∑

j

wij
1

dij

−1

(6.40)
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6.1.4 Approximate reference distribution

The approximate likelihood can be used to help determine a reference distribution for the

parameter h. The approximate maximum likelihood estimate of h can be calculated as

L
(
h,x(te),x(tr)

)
∝ h−

∑m
i=1 aie−

∑m
i=1 bi
h (6.41)

ln
(
L
(
h,x(te),x(tr)

))
∝ −mā ln(h)− b̄

h
(6.42)

∂

∂h
ln
(
L
(
h,x(te),x(tr)

))
∝ −mā

h
+
mb̄

h2
= 0−māh = mb̄ (6.43)

ĥ =
b̄

ā
(6.44)

where ā = m−1
∑m

i=1 ai and b̄ = m−1
∑m

i=1 bi. The likelihood function can now be rewritten

in terms of the approximate maximum likelihood estimate, ĥ = b̄
ā

L
(
h,x(te),x(tr)

)
=

(
mb̄
)mā

Γ (ām)
h−(mā+1)e

−mb̄
h (6.45)

L
(
h,x(te),x(tr)

)
=

(
mā b̄ā

)mā
Γ (ām)

h−(mā+1)e
−mā b̄ā
h (6.46)

L
(
h,x(te),x(tr)

)
=

(
māĥ

)mā
Γ (ām)

h−(mā+1)e
−māĥ
h (6.47)

The asymptotic posterior distribution of h can now be approximated, for some positive

function u(h), using Bayes’ rule

π
(
h|ĥ
)
∝

(
māĥ

)mā
Γ (ām)

h−(mā+1)e
−māĥ
h u (h) (6.48)

Suppose for instance u (h) = 1, then the posterior reduces to

π
(
h|ĥ
)
∝

(
māĥ

)mā
Γ (ām)

h−(mā+1)e
−māĥ
h (6.49)

It therefore follows that

f (h) = π
(
h|ĥ
)
|ĥ=h (6.50)

=
(māh)mā

Γ (ām)
h−(mā+1)e

−māh
h (6.51)

=
(mā)mā

Γ (ām)
h−1e−mā (6.52)

= ch−1 (6.53)

for some constant c. From Equation 6.53 it is clear that the reference prior is given by

π (h) = h−1 (6.54)
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The approximate reference posterior distribution is finally obtained by applying Bayes’ the-

orem to Equation 6.54 and Equation 6.39

π
(
h|x(te),x(tr)

)
∝ π

(
h|ĥ
)
L
(
h,x(te),x(tr)

)
(6.55)

∝ h−1h−
∑m
i=1 aie−

∑m
i=1 bi
h (6.56)

= h−mā−1e−
mb̄
h (6.57)

The approximate reference posterior distribution is an inverse gamma distribution with pa-

rameters mā and mb̄, that is Ig
(
h|mā,mb̄

)
.

6.1.5 Approximate reference predictive distribution

The approximate reference posterior distribution is used to calculate the approximate ref-

erence predictive distribution. In order to calculate the approximate reference predictive

distribution the fact that a normal distribution with variance following an inverse gamma
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distribution results in a Student t distribution, is proven.

π
(
x|x(te),x(tr)

)
=

∫ ∞
0

1

k

k∑
j=1

N
(
x|x(tr)

j , h
)
Ig
(
h|mā,mb̄

)
dh (6.58)

=
1

k

k∑
j=1

∫ ∞
0

N
(
x|x(tr)

j , h
)
Ig
(
h|mā,mb̄

)
dh (6.59)

=
1

k

k∑
j=1

∫ ∞
0

1√
2πh

e−

(
x−x(tr)

j

)2

2h

(
mb̄
)mā

Γ (mā)
h−(mā+1)e−

mb̄
h dh (6.60)

=
1

k

k∑
j=1

∫ ∞
0

(
mb̄
)mā

√
2πΓ (mā)

h−(mā+1)− 1
2 e−

(
x−x(tr)

j

)2
+2mb̄

2h dh (6.61)

=
1

k

k∑
j=1

(
mb̄
)mā

√
2πΓ (mā)


(
x− x(tr)

j

)2
+ 2mb̄

2


−(mā+ 1

2)

Γ

(
mā+

1

2

)

×
∫ ∞

0


(
x− x(tr)

j

)2
+ 2mb̄

2


mā+ 1

2

1

Γ
(
mā+ 1

2

)h−(mā+ 1
2

+1)e−

(
x−x(tr)

j

)2
+2mb̄

2h dh

(6.62)

=
1

k

k∑
j=1

(
mb̄
)mā

√
2πΓ (mā)


(
x− x(tr)

j

)2
+ 2mb̄

2


−(mā+ 1

2)

Γ

(
mā+

1

2

)
(6.63)

=
1

k

k∑
j=1

Γ
(

2mā+1
2

) (
mb̄
)mā+ 1

2

√
2māπΓ

(
2mā

2

) (
mb̄
mā

) 1
2

mb̄+

(
x− x(tr)

j

)2

2


−(mā+ 1

2)

(6.64)

=
1

k

k∑
j=1

Γ
(

2mā+1
2

)
√

2māπΓ
(

2mā
2

) (
mb̄
mā

) 1
2

1 +

(
x− x(tr)

j

)2

2mb̄


−(mā+ 1

2)

(6.65)

=
1

k

k∑
j=1

Γ
(

2mā+1
2

)
√

2māπΓ
(

2mā
2

) (
mb̄
mā

) 1
2

1 +
1

2mā

(
x− x(tr)

j

)2

mb̄
mā


−(mā+ 1

2)

(6.66)

=
1

k

k∑
j=1

t2mā

(
x|x(tr)

j ,
b̄

ā

)
(6.67)

The reference predictive distribution is therefore approximated by a mixture of Student t

distributions, each centred at x
(tr)
j . The non-central parameter b̄

ā in the mixture model has

the same function as the bandwidth in traditional kernel density estimation.
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Note that Equation 6.62 follows from the fact that

∫ ∞
0


(
x− x(tr)

j

)2
+ 2mb̄

2


α+ 1

2

1

Γ
(
mā+ 1

2

)h−(mā+ 1
2

+1)e−

(
x−x(tr)

j

)2
+2mb̄

2h dh

=

∫ ∞
0

Ig

h|mā+
1

2
,

(
x− x(tr)

j

)2
+ 2mb̄

2

 dh

= 1

Calculating the approximate reference predictive distribution for each of the np random

partitions of the form x = {x(te)
(l) ,x

(tr)
(l) } with l = 1, . . . , np, the desired model is obtained by

substituting Equation 6.67 into Equation 6.2.

p (x|k,x) =
1

np

np∑
l=1

p
(
x|x(te)

(l) ,x
(tr)
(l)

)
=

1

np

np∑
l=1

1

k

k∑
j=1

t2mā(l)

(
x|x(tr)

j(l) ,
b̄(l)

ā(l)

)
(6.68)

where ā(l) and b̄(l) are the respective parameters ā and b̄ calculated using the lth random

partition of x. It is important to note that for each of the np partitions the value of k

remains fixed.

6.1.6 Number of mixture components, k

As previously mentioned the choice of k, the number of instances in the x(te) subset and

hence the number of mixture components, is of great importance. Bernardo suggests that

the expected utility with form

u (p̂) = a

∫
X
p (x) ln [p̂ (x)] dx+ b

with b and a > 0 some arbitrary constants, may be considered the appropriate method to

evaluate the performance of the model. However, since the true model p(x) is unknown and a

random sample , x = {x1, . . . , xn}, from the model is known, the Monte Carlo approximation

may be used

û (p̂) ≈ a 1

n

n∑
j=1

ln [p̂ (xj |x−j)] + b (6.69)

with p̂ (xj |x−j) the predictive density of xj given all the observations excluding xj .

The expected utility is calculated for models with various values of k. The value of k resulting

in the highest expected utility is chosen as the optimal value.
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Since the values of a and b are arbitrary and the method is used in order to compare the

performance of the fitted models, it may be argued that entropy calculated as

H (p̂) = − 1

n

n∑
j=1

ln [p̂ (xj |x−j)] (6.70)

may be used instead of expected utility. This resolves the issue of selecting values for a and

b. The value of k that results in the minimum entropy results in the optimal model.

6.1.7 Example

In order to illustrate the working of the abovementioned Bayesian kernel density estimation

model, the example performed in (Bernardo 1999) is repeated with the added component of

choosing k with respect to minising the entropy. Fourteen observations are generated using

the mixture model p (x) = 0.7N (x|0, 1) + 0.3N (x|5, 1) to form the data set

x = {−1.39,−0.85,−0.54,−0.32,−0.31,−0.30,−0.19,−0.02, 0.54, 3.65, 4.21, 4.30, 4.98, 5.51}

The entropy of the model π (x|k,x) is evaluated for k = 1, . . . , 12. From this the model

resulting in the minimum entropy is fitted to the data. Since the data set is small cross-

validation is not performed.

Considering Table 6.1 it is interesting to note that based on the average sample entropy the

optimal value for the partition size is k = 8, whereas based on the average utility as given in

(Bernardo 1999) the optimal value for the partition size is k = 7. This may be explained by

considering the standard deviations of both the average utility as well as the average sample

entropy. The average sample entropy for k = 8 is -0.166638064 with a standard deviation

of 0.00274308701. This suggests that a three standard deviation confidence interval would

be H (p̂) ∈ (−0 .174867325 ;−0 .158408803 ). The confidence interval for the sample entropy

when k = 8 suggests that k = 6, . . . , 10 may have also resulted in appropriate models.
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k H̄ (p̂) SH (p̂) ū su
1 -0.0770924261 0.00218547205 0.623 0.007

2 -0.114479455 0.00403995765 0.701 0.011

3 -0.134445024 0.0034220724 0.742 0.009

4 -0.149378097 0.00587592722 0.761 0.01

5 -0.156339656 0.00417289488 0.764 0.005

6 -0.162431812 0.00280058455 0.764 0.008

7 -0.164942029 0.00316037422 0.767 0.006

8 -0.166638064 0.00274308701 0.766 0.006

9 -0.165711269 0.00242677633 0.762 0.005

10 -0.162168165 0.00255138971 0.753 0.007

11 -0.155215316 0.00421163317 0.739 0.006

12 -0.145759578 0.00713781333 0.698 0.008

Table 6.1: Mean and standard deviations of the sample entropy as well as the utility, using 20 reference
predictive estimates for each of the k = 1, . . . , 12 partitions.

In Figure 6.1 the various estimated pdf’s are compared to the actual mixture model. The

figure clearly illustrates Silverman’s rule of thumb (given in the cyan coloured dotted line)

over fitting the data. This bandwidth estimate results in an under smoothed estimated

density. Both the densities estimated using the Bayesian KDE method, with k = 7 and

k = 8 respectively, perform very similar. It is seen that both these densities come much

closer to estimating the actual density (represented by a thicker red line). It is seen that

for this particular set of random partitioning of, x =
(
x(te),x(tr)

)
, the model with k = 8

(selected using average sample entropy) performs slightly better than the model with k = 7

(selected using average utility). This goes to show that using sample entropy to select the

optimal value for k is a competitive alternative to using utility.

Figure 6.1: Estimated pdf’s for the simulated data x
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6.2 Correlated multivariate Bayesian kernel density
estimation

6.2.1 Overview

This subsection serves to provide a step-by-step overview of the derivation of the correlated

multivariate Bayesian kernel density estimation method. It follows a similar approach as

developed by Bernardo (1999) for the univariate case.

The steps are as follow:

1. The data is split into two random partitions. See Section 6.2.2.

2. The likelihood of the kernel density estimation is expressed in terms of the product of

m mixtures of k inverse Wishart distributions. See Equation 6.73 to Equation 6.80.

3. Since the product of various mixtures of inverse Wishart distributions are complicated

to work with, the mixture of inverse Wishart distributions are approximated by a single

inverse Wishart distribution.

(a) An expression for the Kullback-Leiber divergence between an inverse Wishart

distribution and some density function g(H) is obtained. See Equation 6.81 to

Equation 6.85.

(b) The expressions for E[ln |H|] and E[H−1]T , that result in the minimum Kullback-

Leiber divergence is obtained. See Equation 6.86 to Equation 6.88.

(c) The function g(H) is set equal to a mixture of inverse Wishart distributions and the

expeced values in terms of this function g(H) of ln |H| and H−1 is equated to the

abovementioned expected values. Thereby approximating the mixture of inverse

Wishart distributions with a single inverse Wishart distribution. See Equation

6.89 to Equation 6.102.

4. The approximation of the mixture of inverse Wishart distributions with a single in-

verse Wishart distribution is substitued into the expression for the likelihood. Thereby

expressing the likelihood in terms of the product of inverse Wishart distributions. See

Equation 6.103 to Equation 6.109.

5. The approximate posterior distribution is calculated

(a) The prior is an inverse Wishart distribution. See Equation 6.110 and Equation

6.111.

(b) Bayes’ rule is applied to the prior and the likelihood to obtain the approximate

posterior distribution. See Equation 6.112 to Equation 6.114.
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6. The approximate posterior predictive distribution is calculated. See Equation 6.115 to

Equation 6.124.

7. The approximate posterior predictive distribution is calculated for np random partitions

of the data, X, and averaged over. See Equation 6.125.

8. Repeat the process for various number of mixture components, k, and choose the value

of k that minimises the entropy. See Equation 6.126.

6.2.2 Preliminaries

Consider the data X = {x1, . . . ,xn} consisting of n instances and p features. Let X(tr) =

{x(tr)
1 , . . . ,x

(tr)
k },for some 0 < k < n, be a subset, of size k, of X. Let X(te) = {x(te)

1 , . . . ,x
(te)
m }

be a subset, of size m = n − k, of X. Note that X = {X(te),X(tr)} so that X(te) and X(tr)

are non-overlapping subsets of X. Let q (.) be a kernel function, then using kernel density

estimation a reasonable approximation to density of X(te) given the bandwidth, H, may be

obtained

p
(
X(te)|H

)
=

m∏
i=1

p
(
x

(te)
i |H

)
≈

m∏
i=1

k∑
j=1

q
(
x

(te)
i |x

(tr)
j ,H

)
Thus, using Bayes’ rule the posterior distribution of the bandwidth is

p
(
H|X(tr),X(te)

)
∝ p (H) p

(
(X(te)|(X(tr),H

)
= p (H)

m∏
i=1

k∑
j=1

q
(
x

(te)
i |x

(tr)
j ,H

)
The posterior predictive distribution for some data point x is thus given by

p
(
x|X(tr),X(te)

)
=

∫
H>0

p (x|H) p
(
H|X(tr),X(te)

)
dH

≈
∫

H>0

1

k

k∑
j=1

q
(
x|x(tr)

j ,H
)
p
(
H|X(tr),X(te)

)
dH

=
1

k

k∑
j=1

∫
H>0

q
(
x|x(tr)

j ,H
)
p
(
H|X(tr),X(te)

)
dH (6.71)

Equation 6.71 can be viewed as the average of the k integrated kernels with respect to

the posterior distribution of the bandwidth matrix H. Since this is true for any partition

X = {X(te),X(tr)} it follows that an estimate for posterior predictive distribution may be

calculated as

p (x|k,X) =
1

np

np∑
l=1

p
(
x|X(te)

(l) ,X
(tr)
(l)

)
(6.72)
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where np is the number of partitions with the form X = {X(te),X(tr)}. The number of

partitions are chosen to be the same as the number of observations in the data set, that is

to say np = n. The notation x
(te)
(l) and X

(tr)
(l) are used to denote the lth partition of the X(te)

subset and X(tr) subset, respectively.

The value of k is of utter importance. In Section 6.2.3 it will be shown that the likelihood

is proportional to the product of m mixture models, each consisting of k inverse Wishart

distributions. Therefore, the value of k not only represent the size of the subset X(tr), but

also represent the number of mixture components in each of the m mixture models. It makes

sense that the final posterior predictive distribution explicitly depends on the value of k.

The choice of k will be addressed in Section 6.2.6. It is clear that the posterior predictive

distribution and the posterior distribution of the bandwidth is dependent on the choice of

the kernel function. The following sections assume a multivariate normal kernel function.

6.2.3 Likelihood

Consider the probability density function of the inverted Wishart distribution:

W−1 (H|Ψ, ν) =
|Ψ|

ν
2

2
νp
2 Γp

(
ν
2

) |H|− ν+p+1
2 e−

1
2

Tr (ΨH−1)
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The likelihood function may be expressed in terms of the inverse Wishart distribution as

follows:

L
(
H,X(tr),X(te)

)
(6.73)

=
m∏
i=1

1

k

k∑
j=1

q(x
(te)
i |x

(tr)
j ,H) (6.74)

=
m∏
i=1

1

k

k∑
j=1

1

(2π)
p
2 |H|

1
2

e
− 1

2

(
x

(te)
i −x

(tr)
j

)T
H−1

(
x

(te)
i −x

(tr)
j

)
(6.75)

=
m∏
i=1

1

k

k∑
j=1

2
p2

2 Γp
(p

2

)
|H|p

(2π)
p
2

∣∣∣∣(x
(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI

∣∣∣∣ p2
∣∣∣∣(x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI

∣∣∣∣ p2
2
p2

2 Γp
(p

2

)
× |H|−

2p+1
2 e

− 1
2

Tr

[(
x

(te)
i −x

(tr)
j

)(
x

(te)
i −x

(tr
j

)T
H−1

]
− 1

2
λTr(H−1)+ 1

2
λTr(H−1)

(6.76)

=

m∏
i=1

1

k

k∑
j=1

2
p2

2 Γp
(p

2

)
|H|p

(2π)
p
2

∣∣∣∣(x
(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI

∣∣∣∣ p2
∣∣∣∣(x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI

∣∣∣∣ p2
2
p2

2 Γp
(p

2

)
× |H|−

2p+1
2 e

− 1
2

Tr

{[(
x

(te)
i −x

(tr)
j

)(
x

(te)
i −x

(tr
j

)T
+λI

]
H−1

}
+ 1

2
λTr(H−1)

(6.77)

=
m∏
i=1

1

k

k∑
j=1

2
p2

2 Γp
(p

2

)
|H|p e

1
2
λTr(H−1)

(2π)
p
2

∣∣∣∣(x
(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI

∣∣∣∣ p2
×W−1

(
H|
(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI, p

)
(6.78)

∝
m∏
i=1

k∑
j=1

|H|p e
1
2
λTr(H−1)

|Ψij |
p
2

W−1 (H|Ψij , p) (6.79)

∝ |H|mp e
1
2
mλTr(H−1)

m∏
i=1

k∑
j=1

wijW
−1 (H|Ψij , p) (6.80)

where
(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
is a p× p matrix, I is a p× p identity matrix and λ is

some value that is larger than the absolute value of the most negative eigenvalue of the matrix(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
. This ensures that the matrix

[
Ψij =

(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
+ λI

]
is a p× p positive definite matrix. The weights, encountered in the mixture model, are given

by wij =
|Ψij|−

p
2∑k

j=1|Ψij|−
p
2

. Since Ψij is positive definite for all i and j, all of the weights wij are

greater than zero. A special case may exist in which the data are of such a nature that the

matrices
(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
are positive definite for all i and j. In this case the

reader is reffered to Appendix B.

The Kullback-Leiber divergence of a inverse Wishart distribution W−1 (H|Ψ, ν) from some
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density function g (H) is given by

δ (Ψ, ν) =

∫
H>0

g (H) ln
g (H)

W−1 (H|Ψ, ν)
dH (6.81)

=

∫
H>0

g (H) ln g (H) dH−
∫

H>0
g (H) lnW−1 (H|Ψ, ν) dH (6.82)

=

∫
H>0

g (H) ln g (H) dH−
∫

H>0
g (H) ln

(
|Ψ|

ν
2

2
νp
2 Γp

(
ν
2

) |H|− ν+p+1
2 e−

1
2

Tr (ΨH−1)

)
dH

(6.83)

=

∫
H>0

g (H) ln g (H) dH− ν

2

∫
H>0

g (H) ln |Ψ| dH +

∫
H>0

νp

2
g (H) ln 2dH

+

∫
H>0

g (H) ln Γp

(ν
2

)
dH +

ν + p+ 1

2

∫
H>0

g (H) ln |H| dH

+
1

2

∫
H>0

g (H) Tr
(
ΨH−1

)
dH (6.84)

= c− ν

2
ln |Ψ|+ νp

2
ln 2 + ln Γp

(ν
2

)
+
ν + p+ 1

2
E [ln |H|] +

1

2
Tr
(
ΨE

[
H−1

])
(6.85)

where c is some constant. The minimum of the Kullback-Leiber divergence is found by

differentiating with respect to the respective parameters:

∂δ (Ψ, ν)

∂ν
= −1

2
ln |Ψ|+ p

2
ln 2 +

1

2
ψp

(ν
2

)
+

1

2
E [ln |H|] = 0 (6.86)

∂δ (Ψ, ν)

∂Ψ
= −ν

2

(
Ψ−1

)T
+

1

2
E
[
H−1

]T
= 0 (6.87)

Solving (6.86) and (6.87) it is seen that the Kullback-Leiber divergence is minimised if and

only if

E [ln |H|] = ln |Ψ| − p ln 2− ψp
(ν

2

)
, E

[
H−1

]T
= ν

(
Ψ−1

)T
(6.88)

where ψp (α) =
∂ ln Γp(α)

∂α is the multivariate digamma function.

Let g (H) =
∑

j ρjW
−1 (H|Ψij , p) be a mixture of inverse Wishart distributions with weights

ρj . The best approximation to this mixture of inverse Wishart distributions by a single inverse

Wishart distribution W−1 (H|Ψ, ν) is obtained by matching the expected values of ln |H| and

H−1:

Eg
[
H−1

]
=
∑
j

ρjpΨj
−1 (6.89)

Eg [ln |H|] =
∑
j

ρj

{
ln |Ψj | − p ln 2− ψp

(p
2

)}
(6.90)

=
∑
j

ρj ln |Ψj | − p ln 2− ψp
(p

2

)
(6.91)
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Equating the equations in Equation 6.88 to Equation 6.91 and Equation 6.89 respectively we

obtain:

νΨ−1 =
∑
j

ρjpΨj
−1 (6.92)

Ψ =
ν

p

∑
j

ρjΨj
−1

−1

(6.93)

and

ln |Ψ| − p ln 2− ψp
(ν

2

)
=
∑
j

ρj ln |Ψj | − p ln 2− ψp
(p

2

)
(6.94)

ln

∣∣∣∣∣∣νp
∑

j

pjΨj
−1

−1∣∣∣∣∣∣− p ln 2− ψp
(ν

2

)
=
∑
j

ρj ln |Ψj | − p ln 2− ψp
(p

2

)
(6.95)

ln
ν

p
− ψp

(ν
2

)
= − ln

∣∣∣∣∣∣
∑

j

ρjΨj
−1

−1∣∣∣∣∣∣+
∑
j

pj ln |Ψj | − ψp
(p

2

)
(6.96)

ln
ν

p
+ ln

p

2
− ln

p

2
− ψp

(ν
2

)
= − ln

∣∣∣∣∣∣
∑

j

ρjΨj
−1

−1∣∣∣∣∣∣+
∑
j

pj ln |Ψj | − ψp
(p

2

)
(6.97)

ln
ν

2
− ψp

(ν
2

)
= ln

p

2
− ψp

(p
2

)
+ ln

e
∑
j ρj ln|Ψj|∣∣∣∣(∑j ρjΨj

−1
)−1

∣∣∣∣ (6.98)

(6.99)

From Equation 6.98 it is clear that a numerical method is required to determine the optimal

degrees of freedom. Instead of using a numerical method to determine the optimal degrees of

freedom, the degrees of freedom can be fixed at the common value, p, as suggested by West

and Harrison (1997). However, this approximation is not the optimal approximation. The

problem of determining the inverse Wishart distribution that approximates the mixture of

inverse Wishart distributions therefore reduce to

Ψ =
ν

p

∑
j

ρjΨj
−1

−1

(6.100)

=

∑
j

ρjΨj
−1

−1

(6.101)
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An approximation the mixture of inverse Wishart distributions, g (H) =
∑

j ρjW
−1 (H|Ψij , p),

by a single inverse Wishart distribution, W−1 (H|Ψij , p) is therefore given by

∑
j

ρjW
−1 (H|Ψij , p) ≈W−1

H|

∑
j

ρjΨj
−1

−1

, p

 (6.102)

Applying this approximation of the mixture of inverse Wishart distributions to the likelihood

given in Equation 6.80, the likelihood becomes

L
(
H,x(tr),x(te)

)
(6.103)

∝ |H|mp e
1
2
mλTr(H−1)

m∏
i=1

k∑
j=1

wijW
−1 (H|Ψij , p) (6.104)

≈ |H|mp e
1
2
mλTr(H−1)

m∏
i=1

W−1

H|

 k∑
j

wijΨij
−1

−1

, p

 (6.105)

= |H|mp e
1
2
mλTr(H−1)

m∏
i=1

∣∣∣∣(∑k
j wijΨj

−1
)−1

∣∣∣∣ p2
2
p2

2 Γp
(p

2

) |H|−
2p+1

2 e
− 1

2
Tr
[
(
∑k
j wijΨj

−1)
−1

H−1
]

(6.106)

∝ |H|mp |H|−
2mp+m

2 e
1
2
λTr(H−1)e

− 1
2

∑m
i=1 Tr

[
(
∑k
j wijΨj

−1)
−1

H−1
]

(6.107)

= |H|−
m
2 e

1
2
mλTr(H−1)e

− 1
2

Tr
(∑m

i=1(
∑k
j wijΨj

−1)
−1

H−1
)

(6.108)

= |H|−
m
2 e

1
2
mλTr(H−1)e−

1
2

Tr (Ψ∗H−1) (6.109)

where Ψ∗ =
∑m

i=1

(∑k
j wijΨij

−1
)−1

6.2.4 Approximate posterior distribution for the bandwidth matrix

Let the inverse Wishart distribution with p × p positive definite scale parameter mλI and

ν > p− 1 degrees of freedom be the prior distribution of the bandwidth matrix H

W−1 (H|mλI, ν) =
|mλI|

ν
2

2
νp
2 Γp

(
ν
2

) |H|− ν+p+1
2 e−

1
2

Tr (mλIH−1) (6.110)

∝ |H|−
ν+p+1

2 e−
1
2
mλTr (H−1) (6.111)

The use of the inverse Wishart prior can be motivated by the fact that it is the conjugate

prior to the covariance matrix of the multivariate normal distribution. Combining Equation

6.109 and Equation 6.111 using Bayes’ rule, results in the posterior distribution of H, which

can be viewed as an inverse Wishart distribution.

π
(
H|x(tr),x(te)

)
∝ |H|−

m
2 e

1
2
mλTr(H−1)e−

1
2

Tr (Ψ∗H−1) × |H|−
ν+p+1

2 e−
1
2
mλTr (H−1) (6.112)

= |H|−
(m+ν)+p+1

2 e−
1
2

Tr (Ψ∗H−1) (6.113)

∝W−1 (H|Ψ∗,m+ ν) (6.114)
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It is important to take into account the restrictions zTΨ∗z > 0 ∀z 6= 0 and since ν > p− 1

it is only required that m ≥ 0. However, since Ψ∗ is the weighted sum of positive definite

matrices, with all the weights greater than zero, Ψ∗ will be positive definite and since m

represents the number of observations in a subset it can not be less than zero.

102



Chapter 6. Bayesian non-parametric classification

6.2.5 Approximate posterior predictive distribution

The approximate posterior distribution for the bandwidth can now be used to approximate

the posterior predictive distribution

π
(
x|x(tr),x(te)

)
(6.115)

≈ 1

k

k∑
j=1

∫
H>0

MVN
(
x|x(tr)

j ,H
)
W−1 (H|Ψ∗,m+ ν) dH (6.116)

=
1

k

k∑
j=1

∫
H>0

1

(2π)
p
2 |H|

1
2

e(x−x
(tr)
j )TH−1(x−x

(tr)
j ) |Ψ∗|

m+ν
2

2
(m+ν)p

2 Γp
(
m+ν

2

) |H|− (m+ν)+p+1
2 e−

1
2

Tr (Ψ∗H−1)dH

(6.117)

=
1

k

k∑
j=1

|Ψ∗|
m+ν

2 Γp
(
m+ν+1

2

)
π
p
2 Γp

(
m+ν

2

) ∣∣∣Ψ∗ + (x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣m+ν+1
2

×
∫

H>0

∣∣∣Ψ∗ + (x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣m+ν+1
2

2
(m+ν+1)p

2 Γp
(
m+ν+1

2

) |H|−
(m+ν)+p+2

2

× e−
1
2

Tr
(
Ψ∗H−1+(x−x

(tr)
j )(x−x

(tr)
j )TH−1

)
dH (6.118)

=
1

k

k∑
j=1

|Ψ∗|
m+ν

2 Γp
(
m+ν+1

2

)
π
p
2 Γp

(
m+ν

2

) ∣∣∣Ψ∗ + (x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣m+ν+1
2

(6.119)

=
1

k

k∑
j=1

|Ψ∗|
m+ν

2 Γp
(
m+ν+1

2

)
π
p
2 Γp

(
m+ν

2

) |Ψ∗|−
m+ν+1

2

∣∣∣I + Ψ∗−1(x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣−m+ν+1
2

(6.120)

=
1

k

k∑
j=1

Γp
(
m+ν+1

2

)
π
p
2 Γp

(
m+ν

2

)
|Ψ∗|

1
2

∣∣∣I + Ψ∗−1(x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣−m+ν+1
2

(6.121)

=
1

k

k∑
j=1

Γ
(
m+ν+1

2

)
π
p
2 Γ
(
m+ν+1−p

2

)
|Ψ∗|

1
2

∣∣∣I + Ψ∗−1(x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣−m+ν+1
2

(6.122)

=
1

k

k∑
j=1

Γ
(
m+ν+1

2

)
π
p
2 Γ
(
m+ν+1−p

2

)
(m+ ν + 1− p)

p
2

∣∣∣ 1
m+ν+1−pΨ

∗
∣∣∣ 1

2

×

[
1 +

1

m+ ν + 1− p
(x− x

(tr)
j )T

(
1

m+ ν + 1− p
Ψ∗
)−1

(x− x
(tr)
j )

]−m+ν+1
2

(6.123)

=
1

k

k∑
j=1

tm+ν+1−p

(
x,x

(tr)
j ,

1

m+ ν + 1− p
Ψ∗
)

(6.124)

The posterior predictive distribution can thus be approximated by a mixture of multivariate

Student’s t distributions, with each distribution having centre xi and the matrix 1
m+ν+1−pΨ

∗

playing the same role as the bandwidth matrix in traditional kernel density estimation. Take
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note that Equation 6.119 follows from the fact that

∫
H>0

∣∣∣Ψ∗ + (x− x
(tr)
j )(x− x

(tr)
j )T

∣∣∣m+ν+1
2

2
(m+ν+1)p

2 Γp
(
m+ν+1

2

) |H|−
(m+ν)+p+2

2

× e−
1
2

Tr
(
Ψ∗H−1+(x−x

(tr)
j )(x−x

(tr)
j )TH−1

)
dH

=

∫
H>0

W−1
(
H|Ψ∗ + (x− x

(tr)
j )(x− x

(tr)
j )T ,m+ ν + 1

)
dH

= 1

and Equation 6.122 is true since

Γp
(
m+ν+1

2

)
Γp
(
m+ν

2

) =
π
p(p−1)

4
∏p
i=1 Γ

(
m+ν+1

2 + 1−i
2

)
π
p(p−1)

4
∏p
i=1 Γ

(
m+ν

2 + 1−i
2

)
=

Γ
(
m+ν+1

2

)
Γ
(
m+ν

2

)
Γ
(
m+ν−1

2

)
. . .Γ

(
m+ν+3−p

2

)
Γ
(
m+ν+2−p

2

)
Γ
(
m+ν

2

)
Γ
(
m+ν−1

2

)
. . .Γ

(
m+ν+3−p

2

)
Γ
(
m+ν+2−p

2

)
Γ
(
m+ν+1−p

2

)
=

Γ
(
m+ν+1

2

)
Γ
(
m+ν+1−p

2

)

Finally Equation 6.123 can be seen to be true by considering the following identities; Let A

be some k × l, B some l × k and D some n× n matrix and let c be some constant, then

|Ik + AB| = |Il + BA|

and

|cD| = cn |D|

Calculating the approximate reference predictive distribution for each of the np random

partitions of the form X = {X(te)
(l) ,X

(tr)
(l) } with l = 1, . . . , np, the desired model is obtained

by substituting Equation 6.124 into Equation 6.72

p (x|k,X) =
1

np

np∑
l=1

p
(
x|X(te)

(l) ,X
(tr)
(l)

)
=

1

np

np∑
l=1

1

k

k∑
j=1

tm+ν+1−p

(
x,x(l)

(tr)
j
,

1

m+ ν + 1− p
Ψ∗

(l)

)
(6.125)

where Ψ∗
(l) is the matrix Ψ∗ calculated using the lth random partion of X. It is important

to note that for each of the np partitions the value of k remains fixed.
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6.2.6 Number of mixture components, k

As in the univariate case, we postulate the use of sample entropy to select the optimal value of

k. Using the suggestion made by Shannon (2001) for calculating sample entropy, the sample

entropy for the predictive density of xj is

H (p̂) = − 1

n

n∑
j=1

ln [p̂ (xj |X−j)] (6.126)

where p̂ (xj |X−j) is the estimated predictive density of xj given all the observations except

for xj itself. It can be shown that selecting the value of k that results in the minimum

sample entropy is similar to selecting the value of k that maximise the likelihood function of

estimated predictive density.

The method used in calculating the sample entropy can be viewed as a form of leave-one-out

cross-validation.

6.3 Conclusion

This chapter started off by reviewing the univariate approach to Bayesian kernel density

estimation. An example for the univariate case was included in order to demonstrate the

workings of the method. The chapter went further to develop a theoretical approach to

correlated multivariate Bayesian kernel density estimation.

It is important to mention that this method both the univariate as well as the multivariate

case suffers from robustness issues. Various simulations of using the same data result in

different density estimates. This is due to the random partitioning of the data, X. In

the univariate case the resulting densities differ marginally, depending upon the data set

used. However, in the multivariate case robustness is a major problem, as we were unable to

duplicate our results for various simulations.

Therefore, future work will include solving the robustness issues, investigating the effect of λ

on the resulting posterior predictive distribution as well as investigating methods for reducing

the computational time.
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Chapter 7

Conclusion

7.1 Dissertation summary

In Chapter 1 the introduction of the dissertation was given, in which the background of credit

scoring and the class-imbalance problem was defined.

Chapter 2 described the data sets used throughout the dissertation, as well as the methods

used to evaluate the performance of the relevant classifiers. The processes used to prepare

the data for use by the algorithms were also covered.

Chapter 3 covered the parametric classifiers and the mathematical mechanics that drive these

classifiers.

Chapter 4 discussed the non-parametric classifiers, in particular the kernel density estimation

method. The chapter elaborated on some of the different methods used to estimate the band-

width used in kernel density estimation. The chapter also introduced two types of priors,

the frequentist and the Bernoulli prior, that can be used in conjunction with any two-class

parametric and non-parametric classifiers.

Chapter 5 set out the experimental design for various experiments as well as the experiments

themselves. The aim of the chapter was to determine the effect of the Bernoulli and frequen-

tist priors on the various classifiers, identifying the optimal prior if possible and determining

whether parametric or non-parametric classifiers perform best, for various class-imbalances.

The chapter went further to identify the best performing classifier over all evaluated class-

imbalances.

Chapter 6 takes the idea of kernel density estimation and priors and combines it to form

a fully Bayesian approach to kernel density estimation. The chapter starts off with the

mathematics done by Bernardo (1999) for the univariate case, and later on extends this to

a theoretical approach to Bayesian kernel density estimation for the multivariate case. The

multivariate approach developed is theoretically able to handle correlated multivariate data.

The chapter also provided a short example of the practical use of the Bayesian kernel density

estimator in the univariate case.
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7.2 Dissertation contribution

The development of a Multivariate Bayesian kernel density estimator not only provide ker-

nel density estimators with a much desired predictive power, but also opens the world of

kernel density estimation to credibility intervals. At least in theory this development takes

the superior classification power of the kernel density estimator over the LR classifier, and

provides it with the predictive power of classifiers such as LR. Furthermore, the dissertation

introduced the frequentist as well as the Bernoulli priors. In Section 5.2.1 it was illustrated

that the use of an optimal Bernoulli prior does in fact improve the performance of the eval-

uated classifiers. It was also shown that the Bernoulli prior provides the flexibility of acting

as if there were no prior used by simply tuning the prior parameter. The section also showed

that the prior parameter used to optimise the hit rate does not necessarily optimise the

harmonic mean, leaving the practitioner with a choice to make. It was also shown that the

Bernoulli prior may be a solution to overcoming the class-imbalance problem. Section 5.2.2

compared the performance of the Bernoulli and frequentist prior to that of the classifier used

with no prior. The section highlighted that although in some instances the use of a Bernoulli

prior with a fixed parameter regardless of class-imbalance results in the optimal performance,

the Bernoulli prior parameter should be dependent upon the class-imbalance. The section

also showed that the dependence that exists between the Bernoulli prior parameter and the

class-imbalance is not that given by the frequentist prior. Section 5.2.3 emphasised that the

non-parametric classifiers outperform the parametric classifiers. For the majority of data

sets used the Silverman classifier outperformed the MLE classifier, indicating that although

the MLE is better at density estimation the Silverman classifier is better at classification.

Whether the Gaussian and NB classifiers or the LR and BLR classifiers perform better de-

pends greatly on the data set.

7.3 Future work

There is quite a lot of future work to be done. Although the theory and mathematics for

a multivariate Bayesian kernel density estimator were worked out in this dissertation, the

work should be extended so that it is usable by practitioners. This would entail solving the

current robustness issues. Methods of reducing computational time for the model should also

be investigated. Focus can also be placed on determining the optimal value of the parameter

λ used to ensure the matrix Ψ is positive definite.

With regard to the Bernoulli priors; the possibility of an exact relationship between the

default ratio and the optimal prior parameter should be investigate. Doing this would remove

the need to do a grid search and hence save computational time. The concept of Bernoulli

priors can be extended to other two-class classifiers and more extensive data sets in order to
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determine the limitations of the prior.

Multivariate Bayesian kernel density estimation is a promising and relatively new field. It

is our hope that this dissertation will add great value to not only the specific field but also

statistics in general.
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Appendix A

Silverman’s univariate rule of thumb

The AMISE of some unknow function f̂k is given by

AMISE(f̂k) =
1

nh
‖K‖22 +

h4

4
{µ2(K)}2‖f ′′‖22

Differentiating the AMISE(f̂k) with respect to h Equation A.1 follows

d

dh
AMISE(f̂k) = − 1

nh2
‖K‖22 + h3{µ2(K)}2‖f ′′‖22 (A.1)

Setting Equation A.1 equal to 0 and solving h

h =

(
‖K‖22

n{µ2(K)}2‖f̂k‖22

) 1
5

(A.2)

where K is the kernel function used, f is some unknown density function and µ2(K) =∫
x2K(x)dx.

We furthermore assume that f belongs to the family of normal distributions with mean µ

and variance σ2. Then

‖f ′′‖22 =

[{∫ ∞
−∞
|f ′′(x)|2dx

} 1
2

]2

(A.3)

=

∫ ∞
−∞
|f ′′(x)|2dx (A.4)

Equation A.3 follows from the fact that ‖j‖2 =
{∫ b

a |j(x)|2dg(x)
} 1

2
with g(x) = x.

The probability density function of f is given by
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f(x) =
1√
2πσ

e−
1
2(x−µσ )

2

The first derivative is therefore

f ′(x) = − 1√
2πσ

e−
1
2(x−µσ )

2
(

1

σ

)(
x− µ
σ

)
= − 1√

2πσ2
e−

1
2(x−µσ )

2
(
x− µ
σ

)
and the second derivative is

f ′′(x) =
1√

2πσ3
e−

1
2(x−µσ )

2
(
x− µ
σ

)2

− 1√
2πσ3

e−
1
2(x−µσ )

2

=
1√

2πσ3
e−

1
2(x−µσ )

2

[(
x− µ
σ

)2

− 1

]
(A.5)

Note that the propability density function of the standard normal distribution, p(z), is given

by

p(z) =
1√
2π
e−

1
2
z2

with the first order derivative

p′(z) = − 1√
2π
e−

1
2
z2
z

and the second order derivative

p′′(z) =
1√
2π
e−

1
2
z2

(z2 − 1) (A.6)

Set z = x−µ
σ so that x = xσ + µ and thus resulting in Equation A.5 being written as

f ′′(x) =
1√

2πσ3
e−

1
2
z2 [

z2 − 1
]

(A.7)

Taking Equation A.6 into account, Equation A.7 can be expressed as

f ′′(x) =
1

σ3
p′′(z) (A.8)
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Substituting Equation A.8 into Equation A.4

‖f ′′‖22 =

∫ ∞
−∞
|f ′′(x)|2dx

=

∫ ∞
−∞
| 1

σ3
p′′(z)|2σdz (A.9)

= σ−5

∫ ∞
−∞
{p′′(z)}2dz

=
σ−5

2π

∫ ∞
−∞

e−z
2
(z2 − 1)2dz

=
σ−5

2π

[∫ ∞
−∞

e−z
2
z4dz − 2

∫ ∞
−∞

e−z
2
z2dz +

∫ ∞
−∞

e−z
2
dz

]
(A.10)

Equation A.9 follows from the fact that dx = σdz.

We start by solving
∫∞
−∞ e

−ax2
dx:

Let I =
∫∞
−∞ e

−ax2
dx and similarly, let I =

∫∞
−∞ e

−ay2
dy. Then

I2 =

∫ ∞
−∞

e−ax
2
dx

∫ ∞
−∞

e−ay
2
dy

=

∫ ∞
−∞

∫ ∞
−∞

e−a(x2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−ar
2
rdrdθ (A.11)

=

[
−1

2
e−ar

2

]∞
0

[θ]2π0

= (
1

2a
)(2π)

=
π

a

Taking the square root on both sides, I is determined as

I =

√
π√
a

(A.12)

Equation A.11 follows from the fact that x = r cos(θ) and y = r sin(θ). Setting a = 1 in

Equation A.12 it is trivial to see that∫ ∞
−∞

e−z
2
dz =

√
π (A.13)

The next step is to solve
∫∞
−∞ e

−z2
z2dz by utilising Feynman’s trick∫ ∞

−∞
e−z

2
z2dz = − d

da

√
π

a
|a=1

=

√
π

2
a−

3
2 |a=1

=

√
π

2
(A.14)
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The integral
∫∞
−∞ e

−z2
z4dz can be solved in a similar fashion∫ ∞

−∞
e−z

2
z4dz =

d2

da2

√
π

a
|a=1

= − d

da

√
π

2
a−

3
2 |a=1

=
3
√
π

4
a−

5
2 |a=1

=
3
√
π

4
(A.15)

Substituting Equation A.13, EquationA.14 and Equation A.15 back into Equation A.10 we

get:

‖f ′′‖ =
σ−5

2

[∫ ∞
−∞

e−z
2
z4dz − 2

∫ ∞
−∞

e−z
2
z2dz +

∫ ∞
−∞

e−z
2
dz

]
=
σ−5

2

[
3
√
π

4
− 2

(√
π

2

)
+
√
π

]
= σ−5 3

8
√
π

(A.16)

Due to the fact that σ is unknown it should be estimated by

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

Assuming that the kernel function is the Gaussian kernel function: p(z) = 1√
2π
e−

1
2
z2

, then:

µ2(K) = µ2(p(z))

=

∫ ∞
−∞

1√
2π
e−

1
2
z2
z2dz

= E(Z2)

= V ar(Z) + E[Z]2 (A.17)

= 1 + 02 (A.18)

= 1 (A.19)

where Equation A.18 follows from the fact that Z ∼ N(0, 1). Furthermore,

112



Appendix A. Silverman’s univariate rule of thumb

‖p‖22 =

[{∫ ∞
−∞
|p(z)|2dz

} 1
2

]2

=

∫ ∞
−∞

1

2π
e−z

2
dz

=
1

2π

∫ ∞
−∞

e−z
2
dz (A.20)

=

(
1

2π

)(√
π
)

(A.21)

=
1

2
√
π

(A.22)

Equation A.21 is a result of substituting Equation A.13 into Equation A.20.

Finally we can calculate ĥ:

ĥ =

(
‖p‖22

‖f̂ ′′‖22µ2
2(p)n

) 1
5

(A.23)

=

 1
2
√
π(

σ̂−5 3
8
√
π

)
(1)2n

 1
5

(A.24)

=

(
4

3n
σ̂5

) 1
5

≈ 1.06σ̂n−
1
5

Equation A.24 is a result of substituting Equation A.16, Equation A.19 and Equation A.22

into Equation A.2. This concludes the proof for the univariate case of silverman’s rule of

thumb.
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Correlated multivariate Bayesian kernel
density estimation: Special case

This section follows the same general pattern as given in Section 6.2 with the exception that

it is assumed that the data is of such a nature that for all i and j the matrix Ψij is positive

definite. This assumption will allow the use of an uniformative in stead of an inverse wishart

prior.

Consider the data X = {x1, . . . ,xn} consisting of n instances and p features. Let X(tr) =

{x(tr)
1 , . . . ,x

(tr)
k },for some 0 < k < n, be a subset, of size k, of X. Let X(te) = {x(te)

1 , . . . ,x
(te)
m }

be a subset, of size m = n − k, of X. Note that X = {X(te),X(tr)} so that X(te) and X(tr)

are non-overlapping subsets of X. Let q (.) be a kernel function, then using kernel density

estimation a reasonable approximation to density of X(te) given the bandwidth, H, may be

obtained

p
(
X(te)|H

)
=

m∏
i=1

p
(
x

(te)
i |H

)
≈

m∏
i=1

k∑
j=1

q
(
x

(te)
i |x

(tr)
j ,H

)
Thus, using Bayes’ rule the posterior distribution of the bandwidth is

p
(
H|X(tr),X(te)

)
∝ p (H) p

(
(X(te)|(X(tr),H

)
= p (H)

m∏
i=1

k∑
j=1

q
(
x

(te)
i |x

(tr)
j ,H

)
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The posterior predictive distribution for some data point x is thus given by

p
(
x|X(tr),X(te)

)
=

∫
H>0

p (x|H) p
(
H|X(tr),X(te)

)
dH

≈
∫

H>0

1

k

k∑
j=1

q
(
x|x(tr)

j ,H
)
p
(
H|X(tr),X(te)

)
dH

=
1

k

k∑
j=1

∫
H>0

q
(
x|x(tr)

j ,H
)
p
(
H|X(tr),X(te)

)
dH

It is clear that the posterior predictive distribution and the posterior distribution of the

bandwidth is dependent on the choice of the kernel function. The following sections assume

a multivariate normal kernel function.

B.0.1 Likelihood

Consider the probability density function of the inverted Wishart distribution:

W−1 (H|Ψ, ν) =
|Ψ|

ν
2

2
νp
2 Γp

(
ν
2

) |H|− ν+p+1
2 e−

1
2

Tr (ΨH−1)
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The likelihood function may be expressed in terms of the inverse Wishart distribution as

follows:

L
(
H,X(tr),X(te)

)
=

m∏
i=1

1

k

k∑
j=1

q(x
(te)
i |x

(tr)
j ,H)

=
m∏
i=1

1

k

k∑
j=1

1

(2π)
p
2 |H|

1
2

e
− 1

2

(
x

(te)
i −x

(tr)
j

)T
H−1

(
x

(te)
i −x

(tr)
j

)

=
m∏
i=1

1

k

k∑
j=1

2
p2

2 Γp
(p

2

)
|H|p

(2π)
p
2

∣∣∣∣(x
(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T ∣∣∣∣ p2
∣∣∣∣(x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T ∣∣∣∣ p2
2
p2

2 Γp
(p

2

)
× |H|−

2p+1
2 e

− 1
2

Tr

[(
x

(te)
i −x

(tr)
j

)(
x

(te)
i −x

(tr
j

)T
H−1

]

=
m∏
i=1

1

k

k∑
j=1

2
p2

2 Γp
(p

2

)
|H|p

(2π)
p
2

∣∣∣∣(x
(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T ∣∣∣∣ p2
×W−1

(
H|
(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
, p

)
∝

m∏
i=1

k∑
j=1

|H|p

|Ψij |
p
2

W−1 (H|Ψij , p)

∝ |H|mp
m∏
i=1

k∑
j=1

wijW
−1 (H|Ψij , p) (B.1)

where Ψij =
(
x

(te)
i − x

(tr)
j

)(
x

(te)
i − x

(tr)
j

)T
is a p × p matrix and wij =

|Ψij|−
p
2∑k

j=1|Ψij|−
p
2

. The

Kullback-Leiber divergence of a inverse Wishart distributionW−1 (H|Ψ, ν) from some density

function g (H) is given by

δ (Ψ, ν)

=

∫
H>0

g (H) ln
g (H)

W−1 (H|Ψ, ν)
dH

=

∫
H>0

g (H) ln g (H) dH−
∫

H>0
g (H) lnW−1 (H|Ψ, ν) dH

=

∫
H>0

g (H) ln g (H) dH−
∫

H>0
g (H) ln

(
|Ψ|

ν
2

2
νp
2 Γp

(
ν
2

) |H|− ν+p+1
2 e−

1
2

Tr (ΨH−1)

)
dH

=

∫
H>0

g (H) ln g (H) dH− ν

2

∫
H>0

g (H) ln |Ψ| dH +

∫
H>0

νp

2
g (H) ln 2dH

+

∫
H>0

g (H) ln Γp

(ν
2

)
dH +

ν + p+ 1

2

∫
H>0

g (H) ln |H| dH +
1

2

∫
H>0

g (H) Tr
(
ΨH−1

)
dH

= c− ν

2
ln |Ψ|+ νp

2
ln 2 + ln Γp

(ν
2

)
+
ν + p+ 1

2
E [ln |H|] +

1

2
Tr
(
ΨE

[
H−1

])
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where c is some constant. The minimum of the Kullback-Leiber divergence is found by

differentiating with respect to the respective parameters:

∂δ (Ψ, ν)

∂ν
= −1

2
ln |Ψ|+ p

2
ln 2 +

1

2
ψp

(ν
2

)
+

1

2
E [ln |H|] = 0 (B.2)

∂δ (Ψ, ν)

∂Ψ
= −ν

2

(
Ψ−1

)T
+

1

2
E
[
H−1

]T
= 0 (B.3)

Solving (B.2) and (B.3) it is seen that the Kullback-Leiber divergence is minimized if and

only if

E [ln |H|] = ln |Ψ| − p ln 2− ψp
(ν

2

)
, E

[
H−1

]T
= ν

(
Ψ−1

)T
(B.4)

where ψp (α) =
∂ ln Γp(α)

∂α is the multivariate digamma function.

Let g (H) =
∑

j ρjW
−1 (H|Ψij , p) be a mixture of inverse Wishart distributions with weights

ρj . The best approximation to this mixture of inverse Wishart distributions by a single inverse

Wishart distribution W−1 (H|Ψ, ν) is obtained by matching the expected values of ln |H| and

H−1:

Eg
[
H−1

]
=
∑
j

ρjpΨj
−1 (B.5)

Eg [ln |H|] =
∑
j

ρj

{
ln |Ψj | − p ln 2− ψp

(p
2

)}
=
∑
j

ρj ln |Ψj | − p ln 2− ψp
(p

2

)
(B.6)

Equating the equations in Equation B.4 to the equations in Equation B.6 and Equation B.5

respectively we obtain:

νΨ−1 =
∑
j

ρjpΨj
−1

Ψ =
ν

p

∑
j

ρjΨj
−1

−1
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and

ln |Ψ| − p ln 2− ψp
(ν

2

)
=
∑
j

ρj ln |Ψj | − p ln 2− ψp
(p

2

)

ln
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= − ln
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ρjΨj
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ln
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p
+ ln
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2
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= − ln
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pj ln |Ψj | − ψp
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ln
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e
∑
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(B.8)

From B.7 it is clear that a numerical method is required to determine the optimal degrees

of freedom. Instead of using a numerical method to determine the optimal degrees of free-

dom, the degrees of freedom can be fixed at the common value, p, as suggested by West

and Harrison (1997). However, this approximation is not the optimal approximation. The

problem of determining the inverse wishart distribution that approximates the mixture of

inverse wishart distributions therefore reduce to

Ψ =
ν

p

∑
j

ρjΨj
−1

−1

=

∑
j

ρjΨj
−1

−1

An approximation the mixture of inverse wishart distributions, g (H) =
∑

j ρjW
−1 (H|Ψij , p),

by a single inverse wishart distribution, W−1 (H|Ψij , p) is therefore given by

∑
j

ρjW
−1 (H|Ψij , p) ≈W−1

H|

∑
j

ρjΨj
−1

−1

, p


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Applying this approximation of the mixture of inverse wishart distributions to the likelihood

given in B.1, the likelihood becomes

L
(
H,x(tr),x(te)

)
∝ |H|mp

m∏
i=1

k∑
j=1

wijW
−1 (H|Ψij , p)

≈ |H|mp
m∏
i=1

W−1

H|

 k∑
j

wijΨij
−1

−1

, p



= |H|mp
m∏
i=1

∣∣∣∣(∑k
j wijΨj

−1
)−1

∣∣∣∣ p2
2
p2

2 Γp
(p

2

) |H|−
2p+1

2 e
− 1

2
Tr
[
(
∑k
j wijΨj

−1)
−1

H−1
]

∝ |H|mp |H|−
2mp+m

2 e
− 1

2

∑m
i=1 Tr

[
(
∑k
j wijΨj

−1)
−1

H−1
]

= |H|−
m
2 e
− 1

2
Tr
[∑m

i=1(
∑k
j wijΨj

−1)
−1

H−1
]

= |H|−
m
2 e−

1
2

Tr (Ψ∗H−1) (B.9)

where Ψ∗ =
∑m

i=1

(∑k
j wijΨij

−1
)−1

B.0.2 Approximate posterior distribution for the bandwidth matrix

The Jeffreys prior is known to be

π (A) = |I (A)|
1
2

for some matrix A and I (A) = −E
[

∂2

∂A∂A

]
the Fisher information matrix. According to

Yang and Berger (1994) the determinant of the Fisher information matrix for the covariance

matrix H is

I (H) ∝ |H|−(p+1)

It follows that the Jeffrys prior is

π (H) ∝ |H|
−(p+1)

2 (B.10)

Combining B.9 and B.11 using Bayes’ rule, results in the posterior distribution of H, which

can be viewed as an inverse wishart distribution.

π
(
H|x(tr),x(te)

)
∝ |H|

−(p+1)
2 |H|−

m
2 e−

1
2

Tr (Ψ∗H−1)

= |H|−
m+p+1

2 e−
1
2

Tr (Ψ∗H−1)

∝W−1 (H|Ψ∗,m)

It is important to take into account the restrictions Ψ∗ > 0 and m > p− 1.
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B.0.3 Approximate posterior predictive distribution

The approximate posterior distribution for the bandwidth can now be used to approximate

the posterior predictive distribution

π
(
x|x(tr),x(te)

)
≈ 1

k
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∫
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(B.13)

=
1
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k∑
j=1

tm−p+1

(
x,x

(tr)
j ,

1

m+ 1− p
Ψ∗
)

The posterior predictive distribution can thus be approximated by a mixture of multivariate

Student’s t distributions, with each distribution having centre xi. Take note that Equation
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B.11 follows from the fact that
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Finally Equation B.13 can be seen to be true by considering the following identities; Let A

be some k × l, B some l × k and D some n× n matrix and let c be some constant, then

|Ik + AB| = |Il + BA|

and

|cD| = cn |D|
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