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Abstract. We study a first variation formula for the eigenvalues
of the Laplacian evolving under the Ricci flow in a simple example
of a noncommutative matrix geometry, namely a finite dimensional
representation of a noncommutative torus. In order to do so, we
first show that the Ricci flow in this matrix geometry is analytic.

1. Introduction

In [8], Ricci flow was defined and studied in a simple example of
a matrix geometry, namely in a finite dimensional representation of
a noncommutative (or quantum) 2-torus. This was motivated by [2],
which attempts to define Ricci flow in the usual infinite dimensional
representation of the noncommutative 2-torus by using a first variation
formula for the eigenvalues of the Laplace-Beltrami operator obtained
in the classical case in [7].

In [8], however, the Ricci flow was defined more directly by a non-
commutative version of the Ricci flow equation, with no reference to
the spectrum of the Laplace-Beltrami operator or a first variation for-
mula. In this paper the aim is to show that a first variation formula
can in fact also be obtained for the Ricci flow as defined in [8].

The formula is obtained in Section 5. This is actually the second of
the two main results of the paper. In order to prove it, we first need
to show that the Ricci flow in [8] is analytic, which is the first of our
main results, and is obtained in Section 3.

Section 2 briefly reviews the noncommutative Ricci flow from [8] in
preparation for Section 3. The central object in Section 5 is the non-
commutative Laplace-Beltrami operator. Section 4 presents this oper-
ator in the finite dimensional representation in analogy to the known
Laplace-Beltrami operator in the infinite dimensional representation of
the noncommutative torus.
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The results of this paper contribute to showing that various proper-
ties of Ricci flow in classical (i.e. commutative) differential geometry
can be systematically extended to a noncommutative example, indi-
cating that Ricci flow can be sensibly studied in the noncommutative
case. Secondly, the paper to some extent clarifies the similarities and
differences between the approaches taken in [8] and [2] respectively.

As Ricci flow is of importance in differential geometry and related
areas, it seems plausible that extensions of results on Ricci flow to the
noncommutative case can ultimately be of value in noncommutative
geometry and its applications. Keep in mind that Ricci flow originated
as part of Hamilton’s programme to prove the Poincaré conjecture [12],
and that this programme was indeed later completed by Perelman in
[24, 25, 26]. In Friedan’s work at about the same time as [12], Ricci
flow essentially also appeared as part of a low order approximation
to the renormalization group equation of nonlinear sigma models in
physics; see [10] for the initial paper, but for a clearer formulation
see in particular [11, Section II.1]. These remarks clearly illustrate
the power and range of applications of classical Ricci flow. Refer to
[2, Section 6] for a brief discussion of the possibility of corresponding
applications in the noncommutative case.

Since in the formulation used in [8] the usual partial differential equa-
tion in fact becomes a system of ordinary differential equations, one can
use tools from linear algebra, systems of ordinary differential equations
(including the case on a complex domain, rather than just on a real
interval), complex analysis and perturbation theory of linear operators,
to obtain results that in the infinite dimensional representation are far
more difficult to prove or are, as yet, not accessible. An example of
this is the convergence of the Ricci flow to the flat metric, shown in [8]
using techniques from systems of ordinary differential equations, but
which had not yet been obtained in [2]. In this paper we can use these
techniques to derive the analyticity of the Ricci flow, and consequently
of the eigenvalues and eigenvectors. Even in the classical case in [7],
on the other hand, the existence of sufficiently smoothly parametrized
eigenvalues and eigenvectors had to be assumed in order to obtain the
first variation formula. The setting in [8] is also very concrete and
should for example be amenable to numerical methods.

One should keep in mind though that the finite dimensional repre-
sentation is in many ways far simpler than the infinite dimensional case,
so we would not expect all these methods to extend easily to solve the
corresponding problems in the latter case. Nevertheless, one can learn
a lot about noncommutative geometry by studying simple examples, in
particular in this case about noncommutative partial differential equa-
tions. It seems plausible that some of the ideas and techniques could
be extended to more general situations, in either infinite dimensional
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representations or other matrix geometries. This could include non-
commutative versions of partial differential equations other than the
Ricci flow. See for example the noncommutative heat equations sub-
sequently studied in [20] and [21], in the same matrix geometry as
in [8]. Also, see [28] for partial differential equations in the infinite
dimensional representation of a noncommutative torus.

To conclude this introduction, we mention that the basic ideas re-
garding matrix geometries originated in [14] and [22]. Noncommutative
geometry is, however, much broader (and older) than just the matrix
case; see for example [4]. It remains an active field with much work
still to be done. In particular, Ricci flow has not yet been extensively
studied in the noncommutative case. Aside from the two papers on
noncommutative Ricci flow mentioned above, we can only point to [5]
and [30].

2. The Ricci flow

Here we review the definition of Ricci flow as studied in [8], including
notation to be used throughout the paper.

Note that in the classical case, Ricci flow is given by [12]

∂gµν
∂t

= −2Rµν ,

where gµν is a metric on a differentiable manifold, Rµν is the Ricci ten-
sor, and t is a real variable (“time”). Restricting ourselves to surfaces
and to metrics of the form gµν = cδµν , where δµν is the Kronecker delta
and c is some strictly positive function on the surface (a conformal
rescaling factor), it can be shown that this equation becomes

∂c

∂t
= (∂1∂1 + ∂2∂2) log c,

where ∂1 and ∂2 are the partial derivatives with respect to the coordi-
nates x1 and x2 on the surface. This paper studies a noncommutative
version of the latter equation.

First, we recall the matrix geometry we are going to work with. We
consider two unitary n×n matrices u and v generating the algebra Mn

of n× n complex matrices, and satisfying

vu = quv,

where

q = e2πim/n

for an m ∈ {1, 2, ..., n− 1} such that m and n are relatively prime.
Note that qn = 1, but qj 6= 1 for j = 1, ..., n − 1. We can for example
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use

u =


1

q
. . .

qn−1


and

v =


0 1

0
. . .
. . . 1

1 0

 ,
where the blank spaces are filled with zeroes. It is straightforward
to check that the commutant of the set {u, v} only consists of scalar
multiples of the identity matrix I, so u and v indeed generate Mn.
These matrices appeared in physics at least as far back as [29], in
relation to quantum mechanics, but the geometric interpretation in
terms of a noncommutative (or “fuzzy”) torus seems to have only come
later; see for example [22, Section 2].

For any two Hermitian matrices x and y such that

u = e
2πi
n
x

and
v = e

2πi
n
y,

we define derivations δ1 and δ2 on Mn by the commutators

δ1 := [y, ·]
and

δ2 := − [x, ·] ,
which are analogues of the partial derivatives 1

i
∂µ in the classical case

(please refer to [8, Section 2] for a discussion of this). Note that such
x and y exist but are not uniquely determined by u and v. However,
our analysis will not depend on the choices made. The existence of x is
clear for the diagonal u above. For v above, we first diagonalize using
the Fourier transform for the group Zn, obtain a y in this basis, and
then transform back to the original basis.

Note that Mn is an involutive algebra, i.e. a ∗-algebra, with the
involution given by the usual Hermitian adjoint of a matrix a, denoted
by a∗. In the operator norm, Mn is a unital C*-algebra. Although the
theory of C*-algebras will not appear in this paper, the C*-algebraic
point of view helps to connect what we do in this paper with the set-
ting used in [2] and [6]. Furthermore, we for the most part only need
abstract properties of the derivations (like those listed in [8, Proposi-
tion 2.1]), rather than the explicit definitions of u and v, and δ1 and
δ2, given above. The exceptions are one point in each of the proofs of
Theorems 3.1 and 5.1, where we do use the fact that the derivations
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are given by commutators with some fixed matrices. To emphasize this
abstract point of view, we usually rather use the notation

A = Mn

for our unital ∗-algebra. The unit of A is the n× n identity matrix I.
Using the derivations above, we define a noncommutative analogue

of a Laplacian as an operator on A:

(1) 4 := δ2
1 + δ2

2,

i.e. 4a = [y, [y, a]] + [x, [x, a]] for all a ∈ A.
The Hilbert-Schmidt inner product

〈a, b〉 := τ (a∗b)

on A then becomes relevant. Here τ denotes the usual trace on Mn,
i.e. the sum of the diagonal entries of a matrix. One can interpret
τ (a) as a noncommutative integral of the complex-valued “function”
a, corresponding in the classical case to the integral over the flat torus.

We denote the Hilbert space (A, 〈·, ·〉) by H.
Note that the Laplacian

4 : H → H

is a positive operator (see [8, Proposition 2.1]), so it corresponds to
−(∂1∂1 + ∂2∂2) in the classical case.

Now we turn to noncommutative metrics.
For a ∈ A, we write

a > 0

if a is a positive operator, i.e. if it can be written as a = b∗b for some
b ∈ A, and in addition 0 is not an eigenvalue of a. In other words,
a > 0 means that a is a Hermitian n× n matrix whose eigenvalues are
strictly positive. We also write

P = {a ∈ A : a > 0}
to denote the set of all these elements.

A noncommutative metric is any c ∈ P . This is the noncommutative
version of the metric cδµν in the classical case above. Given any c ∈ P ,
we also consider the Hilbert space Hc given by the inner product

(2) 〈a, b〉c := ϕ (a∗b)

on the vector space A, where

(3) ϕ(a) := τ(ca)

for all a ∈ A. The positive linear functional ϕ is a noncommutative
version of the integral over a curved surface (with metric given by a
conformal rescaling factor as above) in the classical case, a point which
becomes relevant in Section 5.

This setup for noncommutative metrics is adapted from the infinite
dimensional representation as studied in [6]. The Hilbert space Hc
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will play a central role in Sections 4 and 5, where we work with the
noncommutative version of the Laplace-Beltrami operator, which is
essentially a Laplacian on a curved noncommutative space.

A noncommutative version of the classical Ricci flow equation above
is the following:

(4)
d

dt
c(t) = −4 log c(t),

where c(t) ∈ P denotes the metric at time t. Here we define log a of an
a ∈ P by diagonalizing a, applying log to each of the diagonal entries,
and then returning to the original basis (this is the Borel functional
calculus in finite dimensions). In this sense we can view log as the real
logarithm applied to elements of P . Below, when studying the ana-
lyticity of this Ricci flow, we also use the principal complex logarithm
on D := C\(−∞, 0], denoted by Log, and applied to the larger set of
matrices whose spectra are in D.

3. Analyticity of the Ricci flow

In [8, Section 3], we used the theory of systems of differential equa-
tions to show that, given initial conditions, the Ricci flow equation (4)
has a unique solution c and that this solution is C1, i.e. it is differen-
tiable and its derivative is continuous. Here we go further and obtain
the first of the main results of this paper, namely that the Ricci flow is
in fact analytic. We use the theory of systems of differential equations
on a complex domain to do so. We collect these results as follows:

Theorem 3.1. Let ct0 ∈ P be any initial noncommutative metric at
the initial time t0 ∈ R. Then the noncommutative Ricci flow, Eq. (4),
has a unique C1 solution c on any interval [t0, t1] with t1 ≥ t0, and
also on the interval [t0,∞), such that c(t0) = ct0. In addition, such a
solution is necessarily analytic, i.e. at each point t2 ∈ [t0,∞) there is
a number ε > 0 such that each entry in the matrix c(t) ∈ P is a power
series in t− t2 for all t in the interval [t0,∞) ∩ (t2 − ε, t2 + ε).

Proof. We first consider the C1 property globally, and afterwards we
study analyticity locally. Although the C1 property was considered in
[8], we again look at certain aspects carefully and in more detail here,
since the results we obtain on the way are subsequently used in proving
analyticity.

We start by looking at the properties of Log when applied to matri-
ces, and viewed as a function of several complex variables. Below we
define Log a for all a in the open set B := {a ∈ A : σ(a) ⊂ D}, where
σ(a) is the spectrum of a, and D = C\(−∞, 0]. That B is indeed
open in A, follows from fact that the eigenvalues of a matrix depend
continuously on the matrix, since the roots of a polynomial depend
continuously on the coefficients of the polynomial (see for example [23,
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Section I.1]). By using the analytic functional calculus, we set

(5) Log a :=
1

2πi

∫
Γ

(zI − a)−1 Log zdz

for any positively oriented simple closed smooth contour Γ in D, sur-
rounding σ(a), for all a ∈ B. This definition is independent of Γ. See
for example [1, Section III.3] for further details. Note that because of
the Cauchy integral formula, for a > 0 this definition corresponds to
the definition for log a discussed at the end of the previous section.

The inverse ·−1 : Inv(A) → Inv(A) : a 7→ a−1, on the open set
Inv(A) of invertible matrices, is differentiable in each entry ajk ∈ C
of the matrix a being inverted. One can see this from the formula for
the inverse obtained from Cramer’s rule. So each entry in a−1 is an
analytic complex function of each entry of a separately. Therefore, by
the Hartogs theorem (see for example [15, Theorem 2.2.8]), each entry
in the matrix a−1 is an analytic function in several complex variables,
the variables being the entries of the matrix a. The derivatives of
these analytic functions are therefore themselves analytic, and hence
continuous functions. Because of this we can differentiate Eq. (5)
under the integral with respect to the entries of a (refer for example to
[19, Theorem VIII.6.A3]), to see that each entry in the matrix Log a is
(again by the Hartogs theorem) an analytic function in several complex
variables. Since 4 is given by commutators with certain matrices, we
immediately also know that the entries of the matrix 4Log a are each
analytic functions in several complex variables, the variables still being
the entries of a.

In particular, a 7→ 4 log a is a C1 function on P , which means (by
the theory of systems of ordinary differential equations; see for example
[3, Section 1.1]) that the initial value problem for Eq. (4) has a unique
C1 solution on any interval for which the solution stays in P . This
has already been discussed in [8, Section 3], where in particular it was
shown that the solution remains in P for all t ≥ t0, i.e. it exists (and
is necessarily unique) on [t0,∞).

However, we are now interested in the analyticity of this solution
c. We approach this problem using the theory of systems of ordinary
differential equations on a complex domain.

For any t2 ≥ t0, consider the system of differential equations given
in matrix form by

d

dz
w(z) = −4Logw(z)

where w is required to be a function on some neighbourhood of t2 in C,
with values in the open set B consisting of matrices a ∈ A such that
σ(a) lies in D. I.e. the values of w should be in the domain of Log
viewed as a matrix function as defined above.
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Because of the analyticity of a 7→ 4Log a shown above, and the fact
that it is consequently locally Lipschitz (see for example [18, Section
6.3]), it follows by [13, Theorem 2.2.2] that, on a small enough open disc
in C of radius ε around t2, this system has a unique analytic solution
such that w(t2) = c(t2). I.e. on this disc the entries of w(z) are analytic
functions, and therefore have power series expansions on this disc.

Restricting such a solution to real elements [t0,∞)∩ (t2−ε, t2 +ε) in
the disc, we necessarily obtain our solution c with values in P discussed
above on this interval around t2. The reason for this is that the system

d

dt
w(t) = −4Logw(t)

for real t, has a unique solution by the theory of systems of ordinary
differential equations on a real interval, just as for the case of c above.
So given the condition w(t2) = c(t2), such a solution of w must in fact
be the solution we already have, namely c, on the interval in question.
But the restriction of the solution on a complex domain to [t0,∞) ∩
(t2−ε, t2 +ε) mentioned above is exactly such a solution, hence on this
interval it is indeed c.

This means that the entries of c have power series expansions at each
t2, and therefore c is analytic. �

In addition, [8, Theorem 3.2] also showed the convergence of c to the
flat metric (proportional to the identity matrix I) as t goes to infinity,
as well as monotonicity of the determinant and preservation of the trace
under the flow. However, analyticity of the Ricci flow is the property of
fundamental importance in obtaining a first variation formula for the
eigenvalues of the Laplace-Beltrami operator in Section 5.

4. The Laplace-Beltrami operator

In the classical case, one can define a Laplacian that incorporates the
metric, the so-called Laplace-Beltrami operator. For the classical met-
ric gµν = cδµν mentioned in Section 2, the Laplace-Beltrami operator
is of the form

−1

c
(∂1∂1 + ∂2∂2),

if we use the convention that it should be a positive operator. (Often
the minus sign is dropped, then minus the Laplace-Beltrami operator
would be a positive operator.) Note that it reduces to the Laplacian
−(∂1∂1 + ∂2∂2) for the flat metric c = I.

We need to write down a suitable noncommutative version of this
operator, which should have a similar form and similar properties. In
particular, it should also be a positive operator, and it should reduce to
the noncommutative Laplacian 4 for the flat metric c = I. A natural
choice is the operator

(6) 4c : Hc → Hc : a 7→ (4a)c−1
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for any metric c ∈ P , where the product of 4a and c−1 is taken in
A. Keep in mind from Section 2 that Hc = (A, 〈·, ·〉c). Note that the
operator 4c : Hc → Hc is indeed positive, since

〈a,4ca〉c = τ(ca∗(4a)c−1) = τ(a∗4a) = 〈a,4a〉 ≥ 0

by the fact that4 : H → H is positive (see [8, Proposition 2.1]), where
H = HI as in Section 2. The operator 4c also clearly reduces to 4
when c = I. We therefore use (6) as our definition of the Laplace-
Beltrami operator.

Note that the alternative definition c−14a for 4ca, which may at
first seem to be the more obvious choice, would fail, since it would not
guarantee positivity of 4c.

The right multiplication by c−1 in the definition of the Laplace-
Beltrami operator also appears in the infinite dimensional represen-
tation of the noncommutative 2-torus. See for example [9, Remark
2.2].

In the next section it will also be convenient to represent 4c on H
instead of Hc. To do this we define a unitary operator

Uc : Hc → H : a 7→ ac1/2

where the product ac1/2 is taken in the algebra A. Note that this is
indeed unitary, since

〈Uca, Ucb〉 = τ((ac1/2)∗bc1/2) = τ(ca∗b) = 〈a, b〉c
for all a, b ∈ Hc, and Uc is invertible, since c1/2 is. We can therefore
represent 4c on H by the positive operator

4̄c := Uc4cU
∗
c : H → H,

for which we have

(7) 4̄ca = (4(ac−1/2))c−1/2

for all a ∈ H.

5. The first variation formula

This section presents our second main result, namely a version in our
context of the classical first variation formula obtained in [7, Corollary
2.3] for the eigenvalues of the time-dependent Laplace-Beltrami oper-
ator given by the classical Ricci flow. The analyticity of the noncom-
mutative Ricci flow, given by Theorem 3.1, will be used in proving this
result. We then discuss this first variation formula in relation to [2]
and the classical case.

Keep in mind from Section 2 that τ is the trace on Mn, that 4 is
the flat Laplacian given by Eq. (1), and that the Hilbert space Hc is
defined by the inner product in Eq. (2). To make some expressions
easier to read, we denote c(t) also by

ct := c(t).
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In terms of this notation, we can formulate our second main result as
follows:

Theorem 5.1. Let c be the Ricci flow on [t0,∞) as given by Theorem
3.1. Then the eigenvalues and normalized eigenvectors of 4ct can be
obtained as analytic functions of t, and for each such eigenvalue λt
and a corresponding normalized eigenvector at ∈ Hct, we have the first
variation formula

dλt
dt

= λtτ(|at|24 log ct),

where |at|2 := a∗tat, for all t ∈ [t0,∞). (At t = t0, this derivative can
be viewed as the right-hand derivative.)

Proof. We are going to apply perturbation theory of linear operators
to 4c(t). In order to do so, we work via 4̄c(t) : H → H as defined
in the previous section, since then we have an operator on the same
space H for all t. In order to apply perturbation theory (see [16, Chap.
VII, Sections 2 and 3]), we show that t 7→ 4̄c(t) can be extended to
a neighbourhood of [t0,∞) in C, i.e. to an open set in C containing
[t0,∞). More precisely, we need the extension of t 7→ 4̄c(t)a to be
analytic for all a ∈ A.

Because of Eq. (7), we start by showing that t 7→ c(t)−1/2 is analytic:
t 7→ c(t) is analytic by Theorem 3.1, and therefore at each point t1
in [t0,∞) has a power series expansion for each of its entries which
can be used to extend these entries to analytic complex functions on a
neighbourhood (a disc) N of t1 in C, giving us a complex matrix valued
function z 7→ w(z) extending t 7→ c(t) toN . Secondly, the entries of a−1

are complex analytic functions of several complex variables (the entries
of a), for a in the set of invertible elements Inv(A) of A, as mentioned in
the proof of Theorem 3.1. Thirdly, the entries of the square root a1/2,
for a ∈ A whose spectrum σ(a) lies in D = C\(−∞, 0], are complex
analytic functions of several complex variables (the entries of a), using
the same argument as for Log a in the proof of Theorem 3.1. (Here we

are using the branch of the square root given by e
1
2

Log, and we express
a1/2 in terms of the analytic functional calculus.) Choosing the radius
of N small enough, we can ensure that σ(w(z)) ⊂ D, so w(z)−1 exists
and σ(w(z)−1) ⊂ D, for z ∈ N . This is because σ(c(t1)) ⊂ (0,∞) ⊂ D,
and forN small enough, each element of σ(w(z)) will be as close to some
element of σ(c(t1)) as we require, simply because w is continuous and
w(t1) = c(t1). Here we have again used the fact that the eigenvalues of a
matrix depend continuously on the entries of the matrix, as mentioned
in the proof of Theorem 3.1. Hence the composition of the above
mentioned three functions, namely z 7→ (w(z)−1)1/2 = w(z)−1/2 on N ,
is well-defined, and its entries are complex differentiable (because of
the above mentioned analyticity of the three functions) and therefore
analytic.
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It follows that the entries of z 7→ 4̄w(z)a := (4(aw(z)−1/2))w(z)−1/2

are differentiable with respect to z, and therefore analytic on N . Thus
its restriction t 7→ 4̄c(t)a to the real line is also analytic.

Because we are working in finite dimensions, the fact that t 7→ 4̄c(t)a
is analytic for all a, is equivalent to the entries of 4̄c(t) (viewed as an
n2×n2 matrix acting on an n2 dimensional space) being analytic. One
can now analytically extend it to a neighbourhood of [t0,∞). To do
this we consider power series expansions for the entries of the n2 × n2

matrix 4̄c(t) on a neighbourhood in R of each t1 ∈ [t0,∞), allowing
us to define an analytic extension z 7→ T (z) of t 7→ 4̄c(t) to a disc
in C around t1, for each t1 ∈ [t0,∞). Since the extensions on two
overlapping discs are equal on a non-empty open interval in the real
line, they are equal on the overlap because of analyticity. Hence we
have an analytic extension z 7→ T (z) of t 7→ 4̄c(t) to a neighbourhood
of [t0,∞), namely to the union D0 of all these discs. Note that D0 is
symmetric around the real axis.

To apply the results from [16, Chap. VII, Sections 2 and 3], we
furthermore need T (z)∗ = T (z̄) to hold. To see that this is indeed

true, represent H as Cn2
with its usual inner product, in other words

we choose some orthonormal basis in H. Then we can represent T (z)
as an n2 × n2 matrix, such that T (z)∗ is simply the usual Hermitian
adjoint of T (z), i.e. transpose and entrywise complex conjugation. By
analyticity, at each t1 ∈ [t0,∞) each entry of T (z) is a power series in
z−t1 for all z in some disc N centered at t1, with radius only depending
on t1, since we can use the smallest radius that still works for all entries.
Say the power series for the (k, l) entry of T (z) is given by

T (z)kl =
∞∑
j=0

mjkl(z − t1)j

for all z ∈ N and all (k, l). Then in particular the (k, l) entry of
4̄c(t) in the same representation is (4̄c(t))kl =

∑∞
j=0 mjkl(t − t1)j for

t ∈ N ∩ [t0,∞). But 4̄c(t) is self-adjoint, since it is a positive operator
because of its definition in the previous section. It follows that

m̄jlk = mjkl,

from which it in turn follows that T (z)∗ = T (z̄), as required.
By the perturbation theory of linear operators, in particular [16,

Chap. VII, Theorem 3.9], we now conclude that the eigenvalues and
normalized eigenvectors of 4̄c(t) : H → H can be parametrized as
analytic functions of t ∈ [t0,∞). (Also see [17, Theorem (A)] for a
review, and [27] for the original literature.) Given such an eigenvalue
λt and a corresponding normalized eigenvector āt, it follows that λt is

also an eigenvalue of 4c(t), and that at := U∗c(t)āt = ātc
−1/2
t ∈ Hc(t) is

a corresponding normalized eigenvector. Since both āt and c
−1/2
t are
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analytic functions of t, the same is true of at. So, we have transformed
back to the representation on Hc(t), to see that the eigenvalues and
normalized eigenvectors of 4c(t) : Hc(t) → Hc(t) can be parametrized as
analytic functions of t ∈ [t0,∞). (In [7, Section 1] a result of this form
was assumed without proof.)

Ignoring time dependence for the moment, consider a metric c ∈ P ,
and let λ be any eigenvalue of 4c, with a ∈ Hc a corresponding, but
not necessarily normalized, eigenvector, i.e. 4ca = λa, then we have

a∗(4a)c−1 = λa∗a

from which

λ =
τ(a∗4a)

τ(ca∗a)

follows. Here τ(ca∗a) = 〈a, a〉c = ‖a‖2
c 6= 0 is the norm squared of the

eigenvector a in the Hilbert space Hc. (This step in our proof is closely
related to the approach taken in [7]. The rest of our proof, however,
is rather different from the proof of the classical first variation formula
given in [7].)

Now consider any eigenvalue λt and corresponding eigenvector at
of 4c(t), both analytic in t, but with the eigenvector not necessarily

normalized. Denoting time derivatives by λ̇t = dλt/dt, and similarly
for other time-dependent objects, we obtain

(8) λ̇t =
τ(ȧ∗t4at + a∗t4ȧt)

τ(cta∗tat)
− τ(a∗t4at)
τ(cta∗tat)

2
τ(ċta

∗
tat + ctȧ

∗
tat + cta

∗
t ȧt)

where we have used the fact that 4 is defined in terms of commutators
with some fixed operators, and therefore the time derivative can be
taken over 4.

Let us now specialize to the case of a normalized eigenvector at, as
obtained above. Since Eq. (8) holds for an eigenvector in general, it
in particular holds when it is normalized, i.e. when τ(cta

∗
tat) = 1. So,

using the fact that 4 : H → H is Hermitian, as well as the eigenvalue
equation for 4c(t) in the form 4at = λtatct, and lastly the Ricci flow
equation, namely Eq. (4), we obtain

λ̇t = τ(ȧ∗t4at + a∗t4ȧt)− τ(a∗t4at)τ(ċta
∗
tat + ctȧ

∗
tat + cta

∗
t ȧt)

= τ(ȧ∗t4at + (4at)∗ȧt)− λtτ(ċta
∗
tat + ctȧ

∗
tat + cta

∗
t ȧt)

= λtτ(ȧ∗tatct + ctat
∗ȧt)− λtτ(ċta

∗
tat + ctȧ

∗
tat + cta

∗
t ȧt)

= −λtτ(ċta
∗
tat)

= λtτ(a∗tat4 log ct),

as required. �

We note that this formula can also be written as

(9)
dλt
dt

= λtϕt(|at|24ct log ct),
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where ϕt(a) := τ(cta) for all a ∈ A. The significance of this is that
4ct log ct = (4 log ct)c

−1
t corresponds exactly to the formula for scalar

curvature in the classical case. Therefore Eq. (9) appears to be a
reasonable analogue of the classical formula

dλt
dt

= λt

∫
f 2
t Rtdµt

obtained in [7, Corollary 2.3], where Rt is the classical scalar curva-
ture, ft is an eigenfunction of the classical Laplace-Beltrami operator
at time t, and the integral

∫
(·)dµt over the surface in question corre-

sponds to the positive linear functional ϕt. However, it should also be
pointed out that (4 log ct)c

−1
t is not a sensible noncommutative scalar

curvature. It can for example not even be expected to be a Hermitian
element of A. See for example [8, Section 5] for how one can define
a more sensible noncommutative scalar curvature in this context from
the noncommutative Ricci flow. Therefore the analogy between Eq.
(9) and the classical case is not perfect, since Eq. (9) is not in terms
of scalar curvature, but rather in terms of a noncommutative object
having a form similar to the classical scalar curvature.

This result also indicates some similarity between our setting for
Ricci flow, and that of [2], where the first variation formula is used as
the basis for the noncommutative Ricci flow. However, there a much
more complicated object is used in the place of the classical R; see in
particular [2, Theorem 3.5].

In [7] the existence of eigenvalues and eigenvectors which are suffi-
ciently smooth (namely C1) in t is assumed, rather than proved. It
should be added, though, that in that paper classical manifolds more
general than just surfaces are considered, so such assumptions may be
unavoidable there. In [7, Section 1], it is also mentioned that for the
classical Ricci flow one can not in general expect analyticity in t.

In [2] it appears that an analogous assumption of sufficient smooth-
ness is made in the case of the noncommutative torus (in the infinite
dimensional representation). It is however not clear how the time-
dependent eigenvectors in [2] arise in the first place, since there the
Ricci flow is defined and studied by expressing the time-derivative of
an eigenvalue as a type of first variation formula involving the corre-
sponding eigenvector, without further equations from which the time-
dependence of the eigenvector can be obtained.

We now conclude with further general remarks on Theorem 5.1 in
relation to the classical case:

In the classical case, one can work with real-valued eigenfunctions
f , which in the noncommutative case correspond to Hermitian ele-
ments of A. However, noncommutativity appears to prohibit restrict-
ing ourselves to Hermitian elements of A as eigenvectors. The reason
for this is that if we split a not necessarily Hermitian eigenvector a
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of 4c into its Hermitian parts, i.e. a = a1 + ia2, with a1, a2 ∈ A
Hermitian, the noncommutativity makes it impossible to show that
a1 and a2 (or whichever of them are not zero) are eigenvectors, since
(4ca)∗ = c−14a1− ic−14a2, which need not be equal to 4ca1− i4ca2.
This is unlike the classical case, where the real and imaginary parts (at
least whichever of them are not zero) of an eigenfunction are in fact
themselves eigenfunctions, as is easily verified. This is why we have to
work with |at|2 rather than a2

t in the place of f 2
t .

In the proof of the classical first variation formula in [7], the eigen-
functions (other than 1) of the Laplace-Beltrami operator for a given
metric average to zero, i.e. ∫

fdµ = 0,

where
∫

(·)dµ is the integral over the manifold. We did not explicitly
use the noncommutative version of this fact in the proof above, but
it is interesting to note that it is indeed true. To see this, consider
any eigenvalue λ and corresponding eigenvector a ∈ Hc of 4c, for any
metric c ∈ P . Then 4a = λac, from which (see Eq. (3)) we have
λϕ(a) = τ(4a) = 0. When λ = 0, we necessarily have that a is
proportional to I, since ker4 = CI by [8, Proposition 2.1], showing
that

ker4c = CI
as well. On the other hand, for all other eigenvectors a, i.e. those not
proportional to I, we have λ 6= 0, so

ϕ(a) = 0

in exact analogy to the classical case.
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