
SPECIAL SECTION ON THE INTERNET OF ENERGY: ARCHITECTURES, CYBER SECURITY,
AND APPLICATIONS

Received November 20, 2017, accepted December 23, 2017, date of publication January 15, 2018,
date of current version March 13, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2793301

Performance Costs of Software Cryptography in
Securing New-Generation Internet of Energy
Endpoint Devices
LEHLOGONOLO P. I. LEDWABA 1,2, GERHARD P. HANCKE2,3, (Senior Member, IEEE),
HEIN S. VENTER4, (Member, IEEE), AND SHERRIN J. ISAAC1, (Member, IEEE)
1Meraka Institute, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
2Departments of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
3Department of Computer Science, City University of Hong Kong, Hong Kong
4Department of Computer Science, University of Pretoria, Pretoria 0002, South Africa

Corresponding author: Lehlogonolo P. I. Ledwaba (lledwaba@csir.co.za)

This work was supported in part by the Council for Scientific and Industrial Research under Project KR7SSMC and in part by the
South African Mineral Extraction Research Development and Innovation Strategy Programme’s thematic area of Real Time
Information Management Systems.

ABSTRACT In past years, cryptography has been considered a difficult task to achieve on sensor nodes for
the Internet of Energy (IoE) owing to the resource-constrained nature of 8- and 16-bit microcontroller units
(MCUs). Previous attempts at implementing cryptographic services on wireless sensor nodes have resulted
in high power consumptions, long operating times, and the depletion of memory resources. Over the last
decade, however, processors for the IoT and IoE have improved; with increased operating power andmemory
resources, longer data bus widths and low-power consumption. With the improvements made to processors
suitable for building IoT devices, the question remains whether endpoint nodes should still be considered
capable of only supporting the most lightweight of cryptographic mechanisms. We evaluate the capabilities
of a device family (Cortex-M series processors) commonly found in programmable logic controllers
to implement standard, verified software cryptographic libraries in terms of execution times, memory
occupation, and power consumption in order to determine their adequacy for use in smart grid applications.
It was seen that the MCUs were easily capable of running standard cryptographic algorithms. However,
the use of public key cryptography may still require the inclusion of a hardware crypto accelerator or the use
of a secure MCU implementing public key cryptography; as the relatively long execution times seen during
the operation of ECDSA, for example, could be intolerable within a real time IoE application.

INDEX TERMS Industrial Internet of Things, Internet of Energy, Embedded Security, Smart Grid.

I. INTRODUCTION
Smart grid applications come as a response to changing mar-
ket structures and the increasing need for new energy sources
and more efficient energy distribution structures. The electri-
cal grid in its current incarnation is unable to cope with the
rising demands for electrical energy as a result of the growing
populations, the decrease in conventional energy sources and
the inefficiencies in distribution systems which result high
losses of energy in the form of heat dissipation [1], [2]. The
Internet of Energy (IoE) is intended to allow energy utilities to
better meet the rising demand for energy resources, improved
reliability in distributed resources and lower carbon emis-
sions from generation processes [3]. The introduction of ICT

systems allow for various, distributed energy sources to be
integrated into a network configuration similar to the Internet
in order to provide high grid flexibility, energy packaging
and routing functions on a wider scale of distribution [1].
The main aims of smart grid applications is to reduce the
capital expenditure of energy utilities by allowing for precise
matching of supply and demand across the energy grid, better
manage demand on the grid through the analysis of con-
sumption patterns and the promotion of energy conservation
initiative, increase renewable capacity with existing grid gen-
eration structures and technologies, lower maintenance costs
through remote fault diagnosis and analysis of the operational
activity of generation, transmission and distribution assets,

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9303

https://orcid.org/0000-0002-7292-2835


L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

promote better compliance with carbon emission regulations
and enable better customer engagement through the sharing
of predicted load patterns and pricing schemes at peak and
non-peak hours [3].

Currently, the electrical energy supply chain consists of
four main activities: generation, transmission, distribution
and consumption [4]. Generation looks at processes that
result in the production of electrical energy, transmission
looks at processes which distribute electrical resources from
the generation point, over long distances to distribution points
where electrical resources are then provided to end-users who
then consume the resource and become a load on the electrical
grid [4]. Billing in the current incarnation of the electrical
grid is typically conducted and forwarded to consumers on a
monthly basis [1].

The IoE results in the incorporation of cyber processes into
the generation, transmission, distribution and consumption
of electrical resources and the accommodation of multiple
forms of energy generation, integrate energy and infor-
mation exchange into a single infrastructure based on an
internet-enabled energy router paradigm, and achieve balance
between supply and demand using Internet, distributed intel-
ligence and big data applications [1], [4].

Within these processes, as renewable generation sources
become more prevalent in the grid space, smart grids aim to
provide a variety of services which improve the quality of
service received from energy utilities such as allowing for
a bidirectional energy chain with provision for the sale of
excess energy back into the main grid, advanced metering,
dynamic pricing, fault detection and diagnostics and remote
monitoring and control over transmission systems, and pre-
dictive maintenance and self-healing in the event of failure
conditions [2].

In general, a smart grid network may consist of multiple
domains from which data can be collected and aggregated.
At the consumer end, smart meters are utilised to collect
real-time consumption information [5], [6]. Total energy con-
sumption data for residential neighbourhoods are gathered
by a collector device for each neighbourhood which then
distributes the information to the distribution and operation
centres through the use of a wireless mesh network [5], [6].
Similar operations are conducted for commercial and indus-
trial consumers [5]. All collector devices generate a separate
network and forward the load information to the central
energy utility units where grid load analysis, energy trans-
mission and billing is conducted [5], [6]. Utilities can also
forward grid load forecasts, pricing for peak load hours and
general control commands back to smart grid devices which
would then forward the relevant information on to the end
users in order to allow them to adjust their energy consump-
tion in accordance to peak load times and prices [5], [6].
The numerous domains from which data is collected in the
smart grid brings value into the customer profiling, demand
response, network planning and pricing profiles that can be
conducted by utilities and energy providers [5]. Wireless
technologies are often chosen for data gathering owing to

their high data rates and reliability while big data computing
mechanisms are required to transform the vast amounts of
gathered data into useful information [5].

Data gathered in a smart grid application typically exhibits
unique characteristics in terms of the volume of data,
the velocity and variety of the data gathered, the inherent
value of the data and the veracity of the data coming from the
grid [5]. As the number of collection points in the grid and the
frequency at which these points are sampled has increased,
the large amounts of data gathered from the smart grid brings
with it issues in terms of data storage, transmission and data
analysis. The rate at which the data requires processing serves
to add additional challenges as real-time processing of data is
required to provide a complete record of the grid’s operation
and in order to support decision making processes [5]. The
authenticity of the data gathered needs to be guaranteed as
this has a large impact on decision making and the quality
of the grid profiles generated, whether they are customer
consumption profiles, peak load prediction tables or pricing
profiles [5].

The realisation of a secure IoE comes with a variety of
problems. The cyber-physical nature of smart grid imple-
mentations means that the grid is exposed to a variety of
security vulnerabilities such as equipment and network fail-
ures, environmental erosion and disasters, industrial espi-
onage, physical tampering and malicious cyber-attacks [2].
The use of traditional ICT mechanisms of cyber security
are inadequate and inappropriate towards the overall security
of the grid. Security solutions for smart grid applications
are required to consider the distributed nature of the net-
work devices and communications, the resource-constrained
nature of the communicating devices and the vastness of
the network deployment. Adding provision for a bidirec-
tional supply/demand chain and incorporating cyber pro-
cesses into previously isolated physical process introduces
a wide variety of security vulnerabilities that may result in
‘‘either abandoning an exceptionally promising solution for
energy issues or deploying a system that could be the Achilles
heel of any industrialised nation’s critical infrastructure’’ [7].
Attacks on a smart grid could result in the widespread loss
of system components owing to the high interconnectivity
of the network, which could lead to physical damages to the
plant or end user assets, loss of generation efficiency resulting
in rolling blackouts that last days, weeks or months [4].

The remainder of the paper is organised as follows:
Section II provides a brief look into previous work conducted
towards addressing the security challenges faced in the IoE
and IoT. In Section III, the equipment and tools used in
conducting this research are listed and the main research
methodology is introduced and discussed in Section IV.
Section V presents the results obtained for the execution time,
power consumption and memory occupation on the software-
secured Cortex-M series processors while Section VI gives a
more detailed analysis of the results alongside themain obser-
vations and recommendations made by the authors regarding
the use of software cryptographic services with the Cortex-M

9304 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

series. Section VII serves to conclude the paper and gives
insight into the research directions in which additional work
shall be conducted by the authors.

II. RELATED WORK
A smart grid implementation can be formed from a wide vari-
ety of device types, each with differing resources available
to them. These technologies could affect supply, load or grid
conditions dependent on the current grid consumption pro-
file [8]. The devices would typically form part of the
advanced metering infrastructure (AMI), used in order to
provide information regarding consumption and pricing pro-
files within the smart grid, an energy management system
(EMS), a distribution management system (DMS), wide area
measurement system (WAMS) and network communication
that make up the smart grid configuration [1], [9].

In RFC 7228, Keranen et al. [10] developed a classification
scheme of the devices that could typically be found in internet
of energy and sensor network schemes. Devices classified
as Class 0 devices are typically sensor-like endpoints which
would, ordinarily, have less than 10kB of RAM and 100kB
of Flash memory available to them and would not be able to
support secure communications [10]. Class 1 devices, with
approximately 10kB of RAM and 100kB of Flash memory
available to them, would be the devices that would typically
handle basic communications within the network with the
ability to support protocol stacks, such as CoAP, for con-
strained devices [10]. Class 2 devices could typically be
used as gateway or as part of smart meter devices given that
they would have approximately 50kB of RAM and 250kB of
Flash available to them. These devices would be capable of
supporting more secure communications and protocol stacks
however they would perform best when running lightweight
and energy-efficient protocols [10].

While it does provide a good system of classification
for devices that could be found within an IoE application,
the RFC does not take into consideration the advancements
and improvements that have been made within Internet of
Things technologies and within the fog computing sector.
Class 0 devices could be combined with Class 2 devices to
form a more powerful, less constrained endpoint device for
the Smart grid, such as a smart meter or data concentrator
unit [1]. As such, it would no longer be appropriate to say
that the Class 0 device is incapable of supporting secure
communications, given that the resources available to it have
no increased. Also, devices that could be considered class
0 devices are getting more powerful processors and are being
made available with more memory resources. As such, one
would need to conduct an evaluation on the new-generation
device before concluding that it is incapable of supporting
secure communications or security processes.

Smart grids are subjects of a wide variety of vulner-
abilities that could lead to a number of cyber-physical
attacks by malicious actors. The distributed nature of a smart
grid means that it is difficult to implement access control
mechanisms to the grid. A lack of protocols and hardware

standards makes it harder to hold accountable third party
vendors who supply insecure technologies intended for smart
grid operations [4], [11]. The interconnection of equipment,
applications, utilities and consumers open the grid up to the
possibility of cascading failure from the various subsystems
within the grid and information leaks as a result of insuffi-
cient mechanisms designed to protect the confidentiality of
network and customer data [1]. The vast amounts of data
generated by the smart grid and the variety of sources from
which the data is gathered introduce issues of trust, data
authenticity and the use of secure storage facilities [1], [5].
Smart meters vulnerabilities are easily monetised and as a
result these devices are often subject to a variety of customer
fraud attacks, such as the falsification of meter usage readings
whether to lower the readings of an individual or to increase
the readings of an unsuspecting target [6]. Smart meters can
also be used as part of large scale denial of service (DoS)
attacks on the smart grid, through the flooding of the grid
servers with numerous keepalive messages or falsified meter
readings [6], [11]. In the larger grid, alteration type attacks
could create false links to change the server view of the grid
network, thus changing the grid topology [11], e.g. simple
wormhole attacks can cause data to be routed through attack
nodes [12]. This can also be used in conjunction with black-
hole attacks where data is routed to a compromised router and
dropped or packets of a certain type are dropped in the false
network topology. This could severely hamper the smart grid
network function [11].

With consideration of the security challenges faced by
smart grid applications, the goal of any security scheme
intended for the smart grid is to ensure that the grid is
able to maintain the integrity, confidentiality, availability and
authenticity of the data, detect and prevent attacks on the grid,
maintain end user privacy by protecting usage information
collected on smart meters, establish trust in the data sent and
receivedwithin the grid, provide attestation for devices within
the smart grid, and provide adequate key management and
cryptographic services on grid devices [4], [6], [8], [11]. With
the large scale of work required until a complete security
solution is developed, this research shall focus on the estab-
lishment of cryptographic services for the smart grid edge
network.

Cryptographic techniques are intended for the establish-
ment and maintenance of integrity and confidentiality in the
IoE however, with the resource-constraints found on old-
generation, Class 0 and Class 1 microcontrollers, imple-
menting cryptographic operations on IoT endpoint devices
without algorithm optimisation and minimisation techniques
remained a challenge. Khurana et al. [8] note that any cryp-
tographic services intended for use in smart grid applications
need to include a key management system that is able to
update or revoke security keys. However, the authors also
note that devices intended for the smart grid do not have
the processing and memory resources required to support
real time, high-volume cryptographic services [8]. Previous
attempts at implementing cryptographic services on devices

VOLUME 6, 2018 9305



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

intended for sensor network or IoT applications have aided in
supporting this viewpoint.

Antonopoulos et al. [13] utilised the Advanced Encryp-
tion Standard (AES), Rivest Cipher 5 algorithm (RC5)
and SkipJack as their cryptographic algorithms of choice
in order to determine the effect of security processes on
the ATmega128L processor found on the MicaZ. Using
Omnet++ 4.2 and the MiXiM framework for WSNs, net-
work simulation was conducted in order to determine the
execution time and energy consumption of the processor
at the end of the key setup, packet encryption, and packet
decryption phases [13]. Summation of these measured val-
ues then provided the total execution time and energy con-
sumption for the cryptographic algorithms. In the study,
the authors acknowledge that while the key setup phases of
the algorithms could be optimised to give a better result for
the algorithm performance, such techniques were found to
impose increased memory requirements on the sensor node
and potentially compromised the security level provided by
the algorithms [13].

The study conducted by Chang et al. [14] determined the
energy consumption of RC5, the Data Encryption Standard
(DES)with cipher block chaining (CBC), AES and the Secure
Hashing Algorithm 1 (SHA1). Operation times were only
determined for DES-CBC on the Mica2 and Ember motes.
Owing to the size of the available memory resources, the
size of the algorithm code and the algorithm’s use of system
resources, the authors were unable to load the cryptographic
algorithms directly into the microprocessor. Instead, a divide
and conquer technique was utilised in order to re-use por-
tions of the processor memory during the execution of the
cryptographic algorithm [14]. Even with the use of the divide
and conquer technique, AES was not capable of running on
the EM2420 node as the compiler utilised too much of the
processor read-only memory (ROM) [14]. The energy con-
sumption of the running algorithm was determined using the
voltages measured over a shunt resistor circuit. The measured
voltages were used to calculate the current from Ohm’s law
and the current results with the supply voltage of the node
batteries were used to calculate the power consumed during
the operation of the cryptographic algorithm [14].

Guimaraes et al. [15] tested the energy utilisation and
execution time of SkipJack, RC5, the Rivest Cipher 6 algo-
rithm (RC6), the Tiny Encryption Algorithm (TEA) andDES.
Measurement of the ATmega128L processor, on the Mica2,
in active mode without the inclusion of security processes
gave the authors a central processing unit (CPU) current
of 8mA and an operational voltage of 3V; which was used
in combination with the energy equation E = V × I ×
1T in order to determine a control energy consumption
of 0.4104 mJ for the processor [15]. After having determined
the base energy consumption measurements for the proces-
sor prior to the inclusion of the cryptographic algorithms,
the authors note that the increase in energy consumption
would be determined by the added execution and transmis-
sion time as a result of the cryptographic processes [15].

An oscilloscope was used to obtain the execution time inter-
val of the algorithms by monitoring the logical change in a
general purpose input/output pin (GPIO) connected to the
ATmega128 processor [15].

Trad et al. [16] analysed AES, RC5 and RC6 in terms of
the energy consumption, operational time and memory occu-
pation on the ATmega128L processor. As in [14] and [15];
to calculate the energy consumption of the cryptographic
algorithms, the authors measured the voltage drop across two
resistors using an oscilloscope [16]. The execution times of
the key setup, encryption and decryption processes weremea-
sured with repeated execution of the cryptographic processes
used to generate an average, estimate operational time value
for the total algorithm. Both measurements were then used,
in conjunction with the PowerTOSSIM tool, to calculate the
energy consumption of the processor [16].

The results from the studies provided a good indication
of the capability of older generation sensor nodes to handle
cryptographic algorithms and their inadequacy for use in real
time, smart grid applications. The knowledge base however,
requires updating owing to changes that have occurred in the
years past. Of the six (6) algorithms tested in the studies
above, four (4) are not appropriate for use in an industrial
setting; leaving a gap regarding the capabilities of IoT proces-
sors in running cryptographic algorithms that are approved
for use in industrial applications. Both SkipJack and DES
were deprecated by the National Institute of Standards and
Technology (NIST) in 2016 [17] and in 2005 [18], respec-
tively. RC6 was developed as a candidate algorithms for
AES and is subsequently non-standard [19] whereas RC5 is
a proprietary algorithm of RSA Data Security Laboratories
and may not be as easily modifiable and usable as an open
standard algorithm [20].

More recently, studies on cryptography for the IoT have
looked into the use of elliptic curve cryptography (ECC)
as a mechanism to provide security on network end-
points. Liu et al. [21] noted that ECC is a more applicable
cryptographic algorithm for low-end IoT devices owing to
the algorithm’s relatively small key sizes and operand lengths
however that the ECDSA signature algorithm, which is capa-
ble of providing security equivalent to AES 128 at 255-bits,
is the verification of the signature is a computationally inten-
sive process which has the potential of introducing delays
into a real-time IoT network [21]. In an effort to speed up
the verification process of ECDSA, the authors utilise twisted
Edwards curves with a computable endomorphism. Two ver-
sions of the optimisation were proposed, one which allowed
for savings in memory occupation but at the cost of execution
performance and another which allowed for savings in exe-
cution time at the cost of the amount of memory occupied on
the processor [21]. Additional details regarding the design of
the hardware architectures utilised in the implementation of
the optimised verification engines were given in [21].

A second study by Liu et al. [22] also notes that despite
the relatively small key sizes, the computational requirements
of elliptic curve algorithms may make them unsuitable for

9306 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

real IoT implementations however, unlike the previous study
which was concerned about the potential processing delay
that could be incurred, the authors indicate that the elliptic
curve algorithms may have too high an energy consumption
for use in the IoT [22]. In this work, the authors implement
a hybrid class of elliptic curves, called MoTE curves after
the Montgomery and twisted Edwards curves, on the 8-bit
ATmega128 processor as implemented on the MicaZ and
on the MSP430 as implemented on the Tmote Sky while
optimising for execution speed and memory occupation [22].

Owing to the limited resources available on the MicaZ,
the more memory efficient ECC algorithm was implemented.
The authors found that 11.5% of the total RAM and 10.2%
of the total ROM was occupied by the optimised ECC algo-
rithms. Themodified double-base scalarmultiplicationwhich
would be utilised in ECDSA achieved an execution time
of 0.841s for a 159-bit prime; with a 191-bit prime it achieved
an execution time of 1.339s; the 223-bit prime gave an exe-
cution time of 2.001s and an execution time of 2.848s was
achieved using a 255-bit prime [22]. Energy consumption of
the cryptographic operation was estimated to be 32.58mJ for
159-bit ECC [22].

Both the execution time and memory occupation optimi-
sations were implemented on the Tmote Sky. The authors
show that the MSP430 was able to give execution times
of 0.581s for 159-bit, 0.883s for 191-bit, 1.278s for 223-bit
and 1.772s for 255-bit primes while running the execution
time optimisation and execution times of 0.701s for 159-bit,
1.080s for 191-bit, 1.579s for 223-bit and 2.209s for 255-bit
primes while running the memory efficient optimisation [22].

While more recent studies are looking into the use of
newer, standard cryptography algorithms in the IoT, with
research still being conducted using older generation plat-
forms, the cryptographic algorithms are still being labelled
as unsuitable for use in the IoT. This however does not
give consideration to the increases in available resources
and improvements in energy efficient processing that is seen
on new generation processors for the IoT. As a result, this
work aims to determine the performance of new genera-
tion IoT microprocessors in loading and running software-
implemented cryptographic algorithms capable of encryp-
tion, decryption and key generation using pseudo random
number generation in order to determine their applicability
for use in the IoE smart grid applications.

III. EQUIPMENT
Awide variety of hardware and software tools were used over
the course of this research. The following sections give a brief
description of the equipment used and the motivation behind
their selection towards answering the research question pro-
posed.

A. MCUs AND DEVELOPMENT BOARDS
As some of the foremost modern processor series for the
Internet of Things, the ARM Cortex-M family were the pro-
cessors of choice for the testing cryptographic algorithms.

The family currently consists of seven processors— M0,
M0+, M3, M4, M7, M23 and M33— although the most
recent processors, the M23 and M33, have yet to be available
on development or prototyping boards. Within the processor
family, M0, M0+ and M23 are intended for applications
which require minimal monetary cost, power, and area [23];
the M3, M4, and M33 are intended as mid-range choices,
balancing performance and energy efficiency [23] and the
M7 is intended to provide maximum performance, making
it ideal for high processing applications [23].

A variety of ARM architectures have been implemented
across the M-series. The M0+ and M3 have implemented the
ARMv6 architecture, the M0, M4 and M7 have implemented
the ARMv7 architecture and the new M23 and M33 will
implement ARM’s latest ARMv8 architecture and will be
ARM TrustZone capable; allowing for the establishment of a
root of trust (RoT) and trusted execution environment (TEE)
in the processors [23]–[27].

As ARM does not physically produce silicon, there are a
number of vendors from whom the processors can be pur-
chased. As a result, variations in processing speed and avail-
able peripherals can occur. For the purposes of this research,
the STM32F0Discovery [28], STM32VLDiscovery [29],
STM32F4Discovery [30] and STM32F767-Nucleo144 [31]
development boards— which are distributed with the
M0 [24], M3 [25], M4 [26], [27] and M7 [27] processors
respectively— were chosen after taking into consideration
the availability of the boards, cost, processing speeds, devel-
opment tools and available peripherals on the evaluation
boards. The processors were chosen to cover a wide spec-
trum of the operating frequencies available in the processor
series in addition to covering two of the three architectures
available across the series. The operating frequency of the
M3 distributed on the STM32VL is close to the minimum
available frequency for the processor at 24MHz [29] whereas
the M7 distributed on the STM32767-Nucleo comes close
to the maximum available frequency for the processor at
216MHz [31]. The processors were also able to represent
improvements made by ARM in the development of IoT
processors in recent years; with the announcement dates for
the chosen processors cover the ten (10) year period between
2004 and 2014.

B. CRYPTOGRAPHIC LIBRARY
The STMicroelectronics X-CUBE-CRYPTOLIB firmware
library implements a variety of standard and non-standard
cryptographic algorithms for use with the STM32 processor
series. The algorithms chosen for this research —AES 128 in
counter mode (AES128-CTR), SHA-256 and Elliptic Curve
Digital Signature Algorithm (ECDSA) — have been certi-
fied for industrial use by the NIST Cryptographic Algorithm
Validation Program [32]. The program provides independent,
accredited ‘‘validation testing of FIPS approved and NIST
recommended cryptographic algorithms’’ [33] with the aim
of providing assurance to various agencies and industrial
sectors that the cryptographic algorithms validated have been

VOLUME 6, 2018 9307



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

implemented correctly according to the official standards
and of providing confidence that the algorithms do provide
their claimed level of security [33]. The certification of the
algorithms tested was the main decider in the use of the cryp-
tographic library as opposed to a general C implementation of
the algorithms as the code tested can be implemented directly
in an industrial application without the need to go through
an independent validation and certification process. The per-
formance, memory occupation and consumption results seen
within this research may be used as a guideline for product
estimations to be used in industrial applications given that the
algorithms tested have been pre-approved for use.

The X-Cube library is supported by the entire Cortex-M
series; with implementations given in both software and with
support for hardware accelerated MCUs. Runnable imple-
mentations for specific MCU models from the series are pro-
vided for IAR Embedded Workbench, Keil and TrueStudio
with templates available for easy porting to the other MCU
models in the Cortex-M series.

IV. EXPERIMENT METHODOLOGY
To adequately determine the capabilities of the new genera-
tion processors, three (3) main metrics were considered for
this work:
• Algorithm Execution Time: the time taken for key gen-
eration (if utilised by the algorithm), encryption, and
decryption.

• Algorithm Power Consumption: defined as the power
utilised by the MCU while executing the cryptographic
algorithm.

• Memory Occupation: defined as the amount of MCU
Flash and RAM memory utilised by the cryptographic
implementation.

Execution time measurements were taken by toggling a
chosen GPIO pin and using a Tektronix TDS3012B oscil-
loscope to measure the waveform width time between the
falling and rising edges as the algorithm runs to completion.
The physical experiment setup is seen in Fig. 1 (a) and (b).
The time taken to execute the entire algorithm was measured,
with additional encryption and decryption execution times
being measured as separate experiments for the symmetric
algorithms, AES128-CTR and SHA256. During the default
initialisation of the variables and methods used by the algo-
rithm, the GPIO pin was set to high. Prior to the start of
the cryptographic processes, the GPIO pin was pulled low.
Once the algorithm had finished running, the GPIO pin was
pulled high again. The subsequently square waveform was
shown on the oscilloscope, which was set to trigger once
the measured voltage on the probe surpassed 50% of the
pin voltage. The width measurement of the waveform, given
by the oscilloscope, determined the execution time of the
algorithm.

After having captured the waveform, the debugger was
terminated and reset to ensure that the MCU was erased of
the previous instance of the algorithm. The sequence of events
was then repeated over twenty (20) runs, before changing the

FIGURE 1. Execution time experiment setup. (a) Oscilloscope setup
shown using the STM32F0Discovery. (b) Close-up of probe connections.

toggling points in order to measure the execution times of
the next portions of the algorithm. The timestamps visible on
each waveform were used to match the captured waveform
as well as the measured execution time, with its relevant
run number. Fig. 2 (a) - (c) gives the waveform captures
seen for AES128-CTRwhen run on the STM32F0Discovery;
illustrating the execution times measured when toggling the
pin for the entire algorithm, the encryption portion of the
algorithm and the decryption portion of the algorithm.

After concluding the necessary runs for the three algo-
rithms under consideration, the boards were switched out and
the test sequence was started from the beginning using the
new board.

To determine the power consumption of the cryptographic
algorithms, the current consumption module (IDD) found on
the development boards was used in conjunction with a 1.2 �
shunt resistor in order to measure the voltage drop seen across
the resistor during the execution of the cryptographic algo-
rithms. The measured voltage was then used in conjunction
with Ohm’s Law and the Power Equation to calculate the
power consumption of the MCU seen when executing the
identified algorithms. The current consumption module is
available on the Discovery and Nucleo boards and is activated
by the removal of the IDD jumper.

9308 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

FIGURE 2. Execution time waveforms for single run of AES128-CTR
experiment on STM32F0Discovery. (a) Full Algorithm, (b) Encryption-only
and (c) Decryption-only.

For the experiment, two channels were used with a Rigol
DS1104Z oscilloscope; channel one (1) was used to measure
the voltage drop across the resistor while channel two (2)
was used to visualise the execution time waveform generated
when toggling the GPIO pins. Having the two waveforms
on-screen, the voltage drop waveform was matched with the
execution time waveform, allowing for the identification of
the portion of the MCU consumption that occurred as a result

of the execution of the cryptographic algorithms. As only one
power source may be used at a time with the development
boards [30], power was provided to the boards using the USB
connection, as opposed to an external power source, in order
also to enable loading the cryptographic algorithms onto the
MCUs through the debugger. A high level, circuit diagram
representation of the power consumption experiment is given
in Fig. 3 whereas the physical setup for the experiment can be
seen in Fig. 4 (a) and (b). JPx was used to denote the general
jumper pin number for the IDD module, as the specific number
was dependent on the development board. MCU was used
to denote the general microcontroller processor used on the
different development boards and VS was used to denote the
supply voltage which is given as 5V, in the development user
manuals, when the ST-Link/USB connection is utilised.

FIGURE 3. High level representation of power consumption experiment
setup (based on Fig. 3 in [34]).

As with the execution time experiments, the GPIO pin
was toggled LOW during the instantiation of the variables
and methods. Prior to the execution of the cryptography
algorithm, the pin was toggled HIGH. Once the pin was
pulled LOWagain, the algorithm had successfully concluded.
In order to isolate the voltage consumed during the execution
of the cryptographic algorithms, measurement boundaries
equal to the width of the execution time waveform were set
using the cursor feature on the oscilloscope. The average
voltage of the bounded portion of the waveform was then
given by the oscilloscope, which can be identified from the
sample waveform in Fig. 5 as the VPP measurement.

For this experiment, the power consumption was only
measured for the whole cryptographic algorithm as a worst-
case, consecutive execution scenario for a security mote. The
experiment was again repeated twenty (20) times for each
board, terminating and restarting the debugger to ensure the
erasure of the MCU between runs.

VOLUME 6, 2018 9309



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

FIGURE 4. Physical setup of the power consumption experiment.
(a) Entire setup and (b) Close-up of development board connections.

FIGURE 5. Execution time and bounded voltage waveform for
SHA256 running on the STM32VLDiscovery.

The memory occupation of the cryptographic algorithms
was determined using the Build/Memory analyser feature of
Atollic TrueStudio Pro. The build/memory analyser utilised
the elf file generated for the use of the debugger in order to
give a detailed breakdown of the memory utilization for each
algorithm build in RAM and Flash [35]. This can be seen in
Fig. 6 (a) and (b), which shows the memory occupation of
AES128-CTR on the STM32F4Discovery. The analyser can

FIGURE 6. Memory Occupation of AES128-CTR on the STM32F4Discovery.
(a) Summary version. (b) Detailed expansion version.

be switched also to view the stack utilisation of the algorithms
however that was beyond the scope of this research.

While conducting the experiments to determine the mem-
ory occupation, it was discovered that a rebuild of the pro-
gram had no effect on changing thememory occupation of the
algorithms. The inclusion of the GPIO toggling instructions
also had minimal effect on the resulting memory occupation
of the algorithms.

V. RESULTS
The results of the experiments have been collated and pre-
sented in the following sections, rounded to three decimal
points. To determine the statistical error of the measured
results (Xi) over the number of runs (N ), the mean (X ),
standard deviation (σX ) and standard error of the mean (σX )
were determined using (1) to (3).

X =
1
N

∑N

i=1
Xi (1)

σX =

√
1
N

∑N

i=1

(
Xi − X

)2
(2)

σX =
1
√
N
σX (3)

A. EXECUTION TIME
As a symmetric algorithm, three execution time measure-
ments were taken during the AES128-CTR experiments: the
execution time for the cryptographic algorithm as a whole,
the time taken only for encryption operations and the time
taken only for decryption operations. Fig. 7 gives the results
of the execution of the full algorithm whereas Figs. 8 and 9
give the results of the execution times for the encryption and
decryption operations respectively.

9310 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

FIGURE 7. Execution time of Cortex-M series processors running
AES128-CTR.

FIGURE 8. Execution time of Cortex-M series processors running
AES128-CTR (Encryption Only).

FIGURE 9. Execution time of Cortex-M series processors running
AES128-CTR (Decryption Only).

Looking at the three figures, it could be seen that very little
deviation occurred for the execution time of AES128-CTR
over the twenty (20) runs. With an operating frequency
of 24MHz, the M3 had the longest running times whereas
the M7, with the largest operating frequency of 216 MHz,
had the shortest running times. Surprisingly, the performance
of the M4, with an operating frequency of 168 MHz, was
similar to the performance of the M7, which ran approxi-
mately 140.334 µs faster than the M4 with a 22.222% speed
increase over processor. Comparing the execution times seen
in Figs. 8 and 9, one could see that the time spent for encryp-
tion or decryption in AES128-CTR was nearly identical.

TABLE 1. Execution time mean, standard deviation and standard error for
MCUs running AES128-CTR.

TABLE 2. Execution time mean, standard deviation and standard error for
MCUs running AES128-CTR (Encryption Only).

TABLE 3. Execution time mean, standard deviation and standard error for
MCUs running AES128-CTR (Decryption Only).

To confirmmathematically the trends visible in the graphs,
the results from the runs were used to calculate the mean,
standard deviation and standard error for execution time esti-
mates for each of the MCU, which are given in Tables 1 to 3:

Using the result above, the total execution time for
AES12-CTR on the Cortex-M processors was estimated as
follows:

M0 : 486.470 µs ± 0.039 µs

M3 : 1578.500 µs ± 0.199 µs

M4 : 193.870 µs ± 0.047 µs

M7 : 80.667 µs ± 0.005 µs

Similarly, using the results in Table 2, the execution time for
the encryption operations could be estimated as:

M0 : 243.385 µs ± 0.017µs

M3 : 786.175 µs ± 0.047 µs

M4 : 96.984 µs ± 0.015 µs

M7 : 44.000 µs ± 0.000 µs

The execution time for the decryption operations was esti-
mated from the results in Table 3 as:

M0 : 243.735 µs ± 0.021µs

M3 : 792.670 µs ± 0.042 µs

M4 : 96.704 µs ± 0.015 µs

M7 : 37.071 µs ± 0.003 µs

VOLUME 6, 2018 9311



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

From the estimations, it could be seen that, indeed, very
little deviation occurred over the course of the execution time
experiments and that equal periods of time were spent on the
individual encryption and decryption operations; confirming
the trends visible in the graphs. From the four (4) processors,
the M3 presented the largest, observed deviation for the total
execution time, encryption time and decryption time whereas
the M7 presented the least amount of deviation; with an
instance of no deviation being observed over the twenty (20)
runs measuring time spent on encryption operations. It was
also observed that, on three of the four (4) Cortex-M proces-
sors, AES128-CTR was capable of running within microsec-
onds while the M3 ran AES128-CTR at an average execution
time of 1.578ms. Dependent on the allowed delay tolerance
for a particular application, the observed execution times
of AES128-CTR on the Cortex-M processors may be suffi-
ciently fast for the algorithm to be considered for use, without
introducing significant delay into the network, on IIoT nodes
used in hard real-time operations.

The STM Cryptographic library implements two versions
of ECDSA: one version that only implements signature
generation and verification from preloaded public and pri-
vate keys — identified as ECDSA (Sign-Verify) — and
another version that utilises a pseudo random number gen-
erator (PRNG) for key generation — identified as ECDSA
(Key Gen-Sign-Verify). The execution times for both algo-
rithms on the Cortex-M processors were determined over
twenty (20) runs. Fig. 10 gives the observed results of
ECDSA without key generation whereas Fig. 11 gives the
results for ECDSA with key generation.

FIGURE 10. Execution time of Cortex-M series processors running ECDSA
(Sign-Verify).

As with AES128-CTR, very little deviation was observed
over the course of the execution time experiments. Interest-
ingly, the performances of theM4 andM7when running both
versions of the public key algorithm were nearly identical.
This was seen where the graph illustrating the performance
of the M4 was almost completely obscured by the graph
illustrating the performance of the M7. Also interesting to
note was that the inclusion of key generation had, in essence,
doubled the execution time of ECDSA on the processors as

FIGURE 11. Execution time of Cortex-M series processors running ECDSA
(Key Gen-Sign-Verify).

TABLE 4. Execution time mean, standard deviation and standard error for
MCUs running ECDSA (Sign-Verify).

TABLE 5. Execution time mean, standard deviation and standard error for
MCUs running ECDSA (Key Gen-Sign-Verify).

opposed to the use of pre-loaded keys. This resulted in delays
that were seconds long; particularly in the case of the M3,
where the execution time could add a delay that was nearly
half a minute long.

Mathematically, the visible trends were confirmed using
the results to calculate the mean, standard deviation and
standard error for the execution time estimates for each of
the MCU. These are given in Tables 4 and 5:

Using the mean and standard error the estimated execution
time for ECDSA sans key generation was given as follows:

M0 : 7.101 s ± 0.000 s

M3 : 12.342 s ± 0.001 s

M4 : 0.572 s ± 0.000 s

M7 : 0.471 s ± 0.000 s

Similarly, the estimated execution time for ECDSA includ-
ing key generation was given as:

M0 : 16.600 s ± 0.000 s

M3 : 29.284 s ± 0.001 s

M4 : 1.362 s ± 0.000 s

M7 : 1.141 s ± 0.000 s

9312 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

Apart from the very small deviation seen in the results for
the M3, the estimated execution mean times for ECDSA on
the Cortex-M series, both with and without key generation,
show no deviation. This could allow for the employment
of delay tolerance strategies using a pre-set delay estimate.
However, with the longer estimated execution times, ECDSA
may not be suited for hard real-time industrial applications.
The use of the PRNG for key generation only served in nearly
doubling the execution time of the algorithm. This observa-
tion did not provide much confidence in the performance of
other public key cryptography algorithms or the inclusion
of public key cryptography at the edge of the IIoT network.
In this instance, should a public key algorithm need to be used
on an edge node, the use of a hardware accelerator with true
random number generation may be needed to be employed to
avoid the introduction of long delays into the network.

As in the experiment with AES128-CTR, three execution
time measurements were taken during the SHA256 exper-
iments: the execution time for the hashing algorithm as a
whole, the time taken for only hash generation operations
and the time taken for operations confirming the validity of
the message digest. Fig. 12 gives the results of the execution
time for the full algorithm whereas Figs. 13 and 14 give the
results of the execution time for hash generation and digest
verification operations respectively.

FIGURE 12. Execution time of Cortex-M series processors running
SHA256.

Quite interestingly, the observed performances of the
M4 and M7 for the total execution time, hash generation
and digest verification were, once again, close to identical.
In the three (3) figures, the graph illustrating the observed
performance of the M4 had been obscured owing to an over-
lap with the graph illustrating the performance observed for
the M7 processor. Another observation of interest was that
the majority of the execution time observed for SHA256 was
utilised in the generation of the hash function. In comparison,
the time spent during the validity checking of the generated
message digest was minimal.

Once again, in order to confirm mathematically the trends
observed from the graphs, the results from the experiment
runs were used to calculate the mean, standard deviation and
standard error for the execution time estimates of each of the
MCU. They are given in Tables 6 to 8:

FIGURE 13. Execution time of Cortex-M series processors running
SHA256 (Hash Generation Only).

FIGURE 14. Execution time of Cortex-M series processors running
SHA256 (Message Digest Checking Only).

TABLE 6. Execution time mean, standard deviation and standard error for
MCUs running SHA256.

Using the results above, the total execution time for
SHA256 on the Cortex-M processors was estimated as fol-
lows:

M0 : 397.000 µs ± 0.046 µs

M3 : 1124.000 µs ± 0.000 µs

M4 : 57.361 µs ± 0.008 µs

M7 : 56.029 µs ± 0.004 µs

From the results given in Table 7, the execution times for
the hash generation operations could be estimated as:

M0 : 384.040 µs ± 0.028 µs

M3 : 1075.750 µs ± 0.099 µs

M4 : 55.102 µs ± 0.004 µs

M7 : 50.438 µs ± 0.001 µs

VOLUME 6, 2018 9313



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

TABLE 7. Execution time mean, standard deviation and standard error for
MCUs running SHA256 (Hash Generation Only).

TABLE 8. Execution time mean, standard deviation and standard error for
MCUs running SHA256 (Message Digest Checking Only).

Similarly, the execution times for the digest verification
operations were estimated from the results in Table 8 as:

M0 : 13.086 µs ± 0.002 µs

M3 : 48.371 µs ± 0.003 µs

M4 : 2.363 µs ± 0.000µs

M7 : 2.491 µs ± 0.001 µs

The foregoing estimations gave a better illustration of how
close the observed execution times for the M4 and M7 were.
With the estimated mean for the full execution time, only a
difference of 1.332 µs was seen between the two processors
while a difference of 0.128µs was observed for the execution
time of the digest check. The largest difference was observed
for the execution time of the hash generation process at
4.664µs. As with the previous two cryptographic algorithms,
very little deviation was observed in the execution times;
illustrating that the processors were capable of running the
cryptographic algorithms within a predictable time period.
This could allow for easier planning and adjustments when
determining the allowed delay tolerance in an IIoT network.

B. POWER CONSUMPTION
The power consumed by the MCUs was determined using the
measured voltage drop, VMCU , taken across a shunt resistor
of resistance R. The current consumed by the MCU during
the execution of the cryptographic algorithms, IMCU , was
calculated according to Ohm’s Law using (4):

IMCU = VMCU ÷ R Amperes (A) (4)

where the resistance of the shunt resistor R was measured
to equal 1.3 ohms (�).

Equation (5) was then used to calculate the power con-
sumption of the MCU:

PMCU = VS × IMCU Watts (W) (5)

where the supply voltage from the ST-Link/USB connec-
tion, VS , was given as 5.0 Volts (V).

The final consumption results were converted to milliwatts
(mW) and rounded to three decimal places.

To determine the statistical error of the measured results
(Xi) over the number of runs (N ), the mean (X ), standard
deviation (σX ) and standard error of the mean (σX ) were
determined using (1) to (3).

As in the execution time experiments, the power con-
sumption experiments were conducted using the CTR mode
of AES128 on the Cortex-M processors. The experiment
measured the consumption of the algorithm from the start
of the AES algorithm at encryption to its conclusion after
a successful decryption. Twenty (20) runs were conducted
on each development board, the results of which have been
illustrated in Fig. 15.

FIGURE 15. Power consumption of Cortex-M series processors running
AES128-CTR.

It could be seen that, apart from theM3, the consumption of
the processors was capable of fluctuatingwidely. TheM7 pre-
sented the largest fluctuation, with its lowest consumption
at approximately 50mW and its highest consumption at just
over 200mW. From the figure, it also appeared that the power
consumption of the processors and the amount of fluctuation
in consumption increased with the increase in operating fre-
quency of the processors.

In order to determine mathematically the true extent of
deviation illustrated above, the mean, standard deviation,
and standard error were calculated on the results from the
twenty (20) runs.

Using the calculated mean and standard error presented
in Table 9, the consumption of the processors running
AES128-CTR could be estimated as follows:

M0 : 72.462 mW ± 8.339 mW

M3 : 37.885 mW ± 1.622 mW

M4 : 106.154 mW ± 5.443 mW

M7 : 143.385 mW ± 9.579 mW

It could be seen that while the M3 did consume the least
power and offered the least deviation, the M4 presented a

9314 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

TABLE 9. Power consumption mean, standard deviation and standard
error for MCUs running AES128-CTR.

smaller deviation than the M0, despite having a larger operat-
ing frequency. The larger deviation seen in the M0, however,
was insufficient for the upper bound power consumption
estimate to match the lower bound consumption of the M4,
which could be seen as one of the larger power consumers
in the series. The M7 presented the largest consumption and
the largest deviation from the processor series; with a mean
consumption of 143.385mW and an estimated standard error
of 9.579mW.

With the large deviation ranges presented by the proces-
sors, should software implemented AES be required on an
edge node, care would need to be taken during the design
and consideration of external power sources to ensure that (a)
the sources were capable of supporting the node operations at
both the minimum estimated consumption and the maximum
estimated consumption over the deployment lifecycle and
that (b) surge detection and protection circuitry was capable
of distinguishing a legitimate, anomalous power consumption
deviation from the regular, large deviations seen in the power
consumption profile of each particular MCU.

The power consumption of the two (2) versions of the pub-
lic key cryptographic algorithm ECDSAwas tested on theM-
series processors. Fig. 16 compares the power consumption
of the MCUs running ECDSA (Sign-Verify) over the course
of twenty (20), independent runs whereas Fig. 17 compares
the power consumption of the MCUs running ECDSA (Key
Gen-Sign-Verify) over twenty (20) runs.

FIGURE 16. Power consumption of Cortex-M series processors running
ECDSA (Sign-Verify).

It could be seen that, for ECDSA (Sign-Verify), the M0
and M4 MCUs consumed the least power. For ECDSA (Key
Gen-Sign-Verify), the M0 was, once more, the least power

FIGURE 17. Power consumption of Cortex-M series processors running
ECDSA (Key Gen-Sign-Verify).

consumption heavy MCU, whereas the performances of the
M3 andM4were very similar. In both instances, theM7MCU
consumed the most power.

Overall, the amount of deviation seen in the graph pat-
terns for both Sign-Verify ECDSA and Key Gen-Sign-Verify
ECDSA was relatively stable, however ECDSA without key
generation appeared to give better a more stable power con-
sumption profile for the MCUs than ECDSA with key gener-
ation.

TABLE 10. Power consumption mean, standard deviation and standard
error for MCUs running ECDSA (Sign-Verify).

In order to provide mathematical confirmation for the
aforementioned observations, using the mean and standard
error given in Table 10, the consumption of the processors
running ECDSA (Sign-Verify) was estimated as follows:

M0 : 121.538 mW ± 2.982 mW

M3 : 202.308 mW ± 2.746 mW

M4 : 178.923 mW ± 4.887 mW

M7 : 277.538 mW ± 4.280 mW

Similarly, the consumptions of ECDSA (Key Gen-Sign-
Verify) were estimated using the figures given in Table 11:

M0 : 132.308 mW ± 8.153 mW

M3 : 203.077 mW ± 2.621 mW

M4 : 194.038 mW ± 6.513 mW

M7 : 253.692 mW ± 4.089 mW

Looking at the standard errors, one could see that the
observed deviation for ECDSA without key generation was

VOLUME 6, 2018 9315



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

TABLE 11. Power consumption mean, standard deviation and standard
error for MCUs running ECDSA (Key Gen-Sign-Verify).

contained within a smaller range than the deviations observed
for ECDSA with key generation; with ECDSA (Sign-Verify)
giving a range of 2.141mW and ECDSA (Key Gen-Sign-
Verify) giving a range of 5.532mW. Between the two (2)
versions of ECDSA, the M0 and M4 MCUs saw an increase
slightly over 8% in power consumption with key generation.
The M0 was observed to have had a 173.407% increase in
deviation and the M4 was shown to have had a 33.271%
increase in deviation with the inclusion of key generation.
These figures showed that, in addition to an increase in power
consumption, the inclusion of key generation had the effect
of increasing the variability in the power consumed by the
M0 and M4; highlighting that adequate surge detection trig-
ger rules would need to be created and adjusted for any surge
detection circuitry should it be required that key generation be
utilised with the end nodes running ECDSA. The variability
seen with the inclusion of key generation to ECDSAmay also
be indicative of the performance that may be observed from
these two processors with other cryptographic algorithms
requiring key generation using a PRNG.

The performance of the M3 and M7 were of particular
interest. With the inclusion of key generation to the ECDSA
algorithm, the M3 experienced only a 0.380% increase in
power consumed and a 4.552% decrease in standard error.
This showed that, while the power consumed between both
algorithms was very similar, the inclusion of key generation
gave amore stable power consumption profile inM3, over the
twenty (20) run experiment. The M7 experienced decreases
in both power consumed and deviation; with a decrease of
8.592% in power consumed and a decrease of 51.192% in
observed deviation. This showed that the inclusion of key
generation using a PRNG led to improved performance for
ECDSA when run on the M7. The improvements observed
with the inclusion of PRNG on these two processors raised
the question of their possible performance when a PRNG is
used for key generation with other cryptographic algorithms.
This will be considered for future work on this topic.

Power consumption experiments for SHA256 were
conducted over twenty (20) runs on each MCU. As in the
consumption experiments for the other cryptographic algo-
rithms, the power was measured from the start of the hashing
algorithm to the conclusion of the algorithm. The graphical
results of the power consumption observed in the MCUs over
the course of the experiment are given in Fig. 18.

The power consumption observed in the four (4)
processors was surprisingly unstable, with the M3 showing

FIGURE 18. Power consumption of Cortex-M Series processors running
SHA256.

TABLE 12. Power consumption mean, standard deviation and standard
error for MCUs running SHA256.

the least amount of deviation. The power consumed by the
M0 and M3 was seen to be very similar however, the M0 dis-
played spikes in power consumption that would match,
near match or exceed the observed consumption of the M4
processor.

Utilising the values given in Table 12, the power consump-
tion of the M-series processors was estimated as follows:

M0 : 57.538 mW ± 6.019 mW

M3 : 58.231 mW ± 3.848 mW

M4 : 114.615 mW ± 4.480 mW

M7 : 164.462 mW ± 3.752 mW

The results of the estimations showed that; while the
M0 and M3 did display highly similar power consumption
averages, the M0 had a larger, observed deviation than the
M3 processor. More precisely, the M0 processor had dis-
played the largest observed deviation from the processor
series. The deviations observed from the remaining three
processors were within range of the others whereas the M7
gave the largest, observed power consumption on average.

C. MEMORY OCCUPATION
TheBuild/Memory analyser tool built into Atollic TrueStudio
allowed for a detailed analysis to be given of the RAM and
Flash memory occupation for the debugger elf file which
was generated for the selected processor. An analysis of
the RAM and Flash occupation was conducted across the
M-series processors for each of the cryptographic algorithms

9316 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

in order to determine the extent to which memory resources
are consumed by the security algorithms.

1) RAM
The detailed results of the RAM occupation analysis con-
ducted for each cryptographic algorithm on the M-series
processors are summarised in Table 13. A graphical repre-
sentation of the percentage of RAM used by the algorithms
is presented in Fig. 19.

TABLE 13. RAM occupation of cryptographic algorithms loaded onto
Cortex-M series processors.

FIGURE 19. Comparison of the percentage RAM occupation of
cryptographic algorithms loaded onto Cortex-M processors.

It could be seen that, for the four (4) algorithms tested,
the space occupied in RAM for the M0 and M3, both of
which have 8kB of available RAM, was very similar; with
AES128-CTR and SHA256 occupying the most RAM at
slightly above 20% each, and ECDSA occupying the least
RAM at slightly above 19%. Even with the cryptographic
algorithms occupying a fair portion of RAM, approximately
80% of RAM was still available for the use of the MCUs
in other applications and processes. This, however, would
decrease relatively quickly as more algorithms are loaded
onto the processors.

The observed RAM occupation significantly drops when
considering the M4 and M7 processors, where the available
RAM was 128kB and 512kB respectively. The M4 observed
a very similar RAM occupation across the four (4) algo-
rithms with AES128-CTR occupying slightly more RAM

at 2.83%. The occupation of the cryptographic algorithms
on the M7 could be considered almost insignificant, with not
one of the algorithms occupying at least 1% of the available
RAM. In this instance, the MCU had nearly all the RAM
available to it for other applications and processes and could
easily support the inclusion of multiple cryptographic algo-
rithms. In all the cases however, it was observed that the
inclusion of the cryptographic algorithms did not serve to
deplete the available RAM resources to a point where further
operations could be compromised.

2) FLASH
As with the RAM occupation, analysis of the occupation of
the cryptographic algorithms in Flash was conducted using
the Atollic TrueStudio Build/Memory analyser. The detailed
results of the analysis are presented in Table 14 with a graphi-
cal presentation of the percentage occupation given in Fig. 20:

TABLE 14. Flash occupation of cryptographic algorithms loaded onto
Cortex-M series processors.

FIGURE 20. Comparison of the percentage Flash occupation of
cryptographic algorithms loaded onto Cortex-M processors.

Unlike the RAM, a larger variation in space occupation
occurred in Flash. From the four (4) processors, ECDSA
with key generation occupied the most Flash memory across
the M-Series processors, with ECDSA sans key generation
being the next largest algorithm. Of the four (4) processors,
the cryptographic algorithms had the largest percentage occu-
pation on the M0, which had the least amount of available
Flash memory at 64kB. As the amount of available Flash

VOLUME 6, 2018 9317



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

in the processor increased, the percentage occupation of the
cryptographic algorithms decreased, with the M7 display-
ing the smallest percentage occupation of its 2048kB Flash.
It was noted, however, that the largest percentage occupation
was observed from the smallest available Flash at just below
40%, leaving approximately 60% of the remaining Flash
available. While this is a significantly larger occupation than
that observed in RAM, a total depletion of resources had
not occurred and sufficient resources would still be available
for other MCU applications and processes. Due care and
planning may need to be taken when utilising larger algo-
rithms with the M0 processor to ensure that any additional
processes that may be required to run would have sufficient
Flash memory. In such instances, the use of an alternative but
smaller algorithm providing a similar level of security and
performance trade off may prove to be beneficial.

VI. DISCUSSION
To try to determine the viability of software-implemented
cryptography as a tool towards the design of a secure mote for
the IIoT, one needs to consider the performance of the algo-
rithms in terms of execution time, power consumption and
memory resource consumption. An IIoT network has a vari-
ety of different operational requirements, one of which may
be real-time operation. Real time operation is highly depen-
dent on the ability of the system to meet a pre-determined
deadline while generating a correct response. Industrial con-
trol systems and safety or mission critical systems typically
utilise hard deadlines, where a missed deadline can constitute
complete system failure, as predictability is a main require-
ment of a real time system.Within these parameters, the addi-
tion of cryptographic operations should not impede upon the
ability of the system to meet its deadlines. Considering the
results given in Section 4, software-implemented cryptogra-
phy appeared to be a good candidate for use in hard real time
operations. It was seen that, over the course of the twenty (20)
runs, very little deviation in the execution time of the algo-
rithms occurred. This showed that the Cortex-M processors
were capable of running the cryptographic algorithms within
a predictable time period and with a relatively low chance of
a sudden, large jump in operating time in between executions.
Fig. 21 gives the average execution time performances deter-
mined for the identified cryptographic algorithms.

Looking at the average execution times, one could see
that, as could be expected, the performance of the processors
was directly related to their operating frequency. The M3,
with the smallest operating frequency, consistently gave the
slowest execution time; followed by the M0, with the next
smallest operating frequency. The performance of theM4was
surprising in that, apart from AES128-CTR, it showed a
very similar execution time to the M7 processor, in spite of
its slower operating frequency. For the four (4) algorithms
tested, it could be seen that there was little benefit to the
more powerful M7 processor when executing cryptographic
algorithms, as the M4 was capable of delivering a similar
performance.

FIGURE 21. Average execution times of cryptographic algorithms on
Cortex-M processors. (a) AES128-CTR, (b) ECDSA (Sign-Verify), (c) ECDSA
(Key Gen-Sign-Verify) and (d) SHA256.

The specific trends seen in the execution times of the
processors were also interesting to note. The M0, M4, and
M7 were capable of running the symmetric algorithms in a

9318 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

time period that may be considered sufficiently fast for use as
part of hard real time tasks; as their addition to the processing
time would be within the realm of microseconds. In these
cases, it appeared that the processors were capable enough
themselves to run cryptographic algorithms without the need
of adding a hardware crypto accelerator. The same could
not be said for the public key cryptographic algorithm. The
fastest execution times, as given by the M7 processor, were
471.02ms for ECDSA without key generation and 1.141s
for ECDSA with key generation. These execution times,
especially in the case where key generation is used, would
be sufficiently long to increase the possibility of introducing
cascading delay into the IIoT network and, with that, missed
operation deadlines.

Depending on the deadline definitions for the IIoT net-
work, some of the symmetric cryptography algorithms could
be run on the M3 without the need for hardware accelera-
tion; as AES128-CTR and SHA256 gave average execution
times at 1.578ms and 1.124ms respectively. As with the
more powerful processors, the added delay for the tested
public key algorithm was sufficiently long that the addition
of the algorithm to hard real time tasks would possibly cause
missed operation deadlines. Should public key cryptography
be required as a part of the network security architecture,
a number of alternative possibilities could be used in the
place of software-implemented libraries. One option would
be the use of a hardware crypto accelerator with the standard
Cortex-M processors. In addition to providing acceleration
in the execution of cryptographic processes, one might be
able to establish a root of trust from which node operations
are verified. Extra care would need to be taken however,
to ensure that security information was not leaked within the
communications between the MCU and the hardware accel-
erator. Another option is the use of a security-enabled MCU
as they are specifically designed to provide a variety security
operations quickly and efficiently, in addition to cryptography
services. A comparison of the abilities of a security MCU
and a standardMCU running a software cryptographic library
will be conducted in the future in order to determine an
exact speed-up factor that could be seen through the use of
a security MCU.

In addition to the processors being able to meet the hard
deadline requirements of real time operation, the power con-
sumption of the processors needed to be determined as part
of maximising the operational lifetime of the node power
supply. IIoT network deployments can be large and in areas
where regular maintenance activities would be difficult and
costly to complete. One would, therefore, want to maximise
the time between maintenances and minimise as much power
consumed during operational activities as possible, so as
not to drain the power supply to the network endpoint too
quickly. Fig. 22 gives a comparison of the power consumption
for the four (4) cryptographic algorithms run on the Cortex
M processors.

Of the tested algorithms, AES128-CTR gave the low-
est power consumption whereas ECDSA gave the highest

FIGURE 22. Average power consumption of cryptographic algorithms on
Cortex-M processors.

consumption. It was interesting to note that the power con-
sumption of the ECDSA algorithm was very similar whether
key generation was utilised or not utilised. Comparing the
four (4) MCUs, one could see that different algorithms per-
formed better on the different processors. Looking at Fig. 22,
one could see that the M3 processor was the lowest consumer
for AES128-CTR; the M0 gave the lowest power consump-
tion for both versions of ECDSA, and the M0 and M3 gave
similar power consumptions for SHA256. The power con-
sumptions from the M4 processor were varied; especially
when compared to the consumptions of the other three (3)
Cortex-M processors. With the symmetric algorithms, it gave
the second largest power consumption whereas when running
the public key algorithm, it gave the second lowest power
consumption, with the power consumption of the M3 pre-
ceding it. Throughout the experiments, the M7, as the most
powerful processor, gave the largest power consumptions for
the four (4) algorithms.

To determine the best overall performer in the execution of
the cryptographic algorithms, the average consumption and
execution times seen for the processors as a single unit needed
to be considered. Fig. 23 compares the power consumption
and execution times seen for the tested cryptographic algo-
rithms using a combination of a split column and scatter plot
in order to display the overall performance of the four (4)
processors.

In addition to determining the best overall performer across
the Cortex-M series, a comparison of the performance of
the new generation processors against the old generation
processors was needed to illustrate the improvements that had
been made in IoT processors in the past decade. The results
of attempts made at implementing software cryptography on
the 8-bit Atmega128L processor, as found on the Mica2,
were presented in [13]–[16] however, of the many algorithms
tested, only AES could still be used to secure an industrial
network deployment. As a result, the comparison between
the old and new generation processors was limited to the
results observed for AES. The comparisons for execution
time, energy consumption and memory occupation are given

VOLUME 6, 2018 9319



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

FIGURE 23. Average power consumption with execution times of
cryptographic algorithms on Cortex-M processors. (a) AES128-CTR,
(b) ECDSA (Sign-Verify), (c) ECDSA (Key Gen-Sign-Verify) and (d) SHA256.

in Figs. 24 and 25. To provide an equivalent dataset for the
comparison, the results for AES, as given in the previous
works, were averaged and used to calculate an estimated
energy consumption, execution time, andmemory occupation
for the Atmega128L was used to determine the processor’s
performance in encrypting and decrypting a 64-byte block

FIGURE 24. Energy consumption and execution time comparison for
Atmega128L and Cortex-M processors (AES).

FIGURE 25. Memory occupation comparison for Atmega128L and
Cortex-M processors (AES).

size, as this was the block size used in STMicroelectronic’s
AES128 software implementation. The energy consumption
of the Cortex-M processors was calculated from themeasured
power consumptions and execution times using (6):

Energy (J) = Power (W)× time (s) (6)

Comparing the energy consumption performance of the
Atmega to those of the Cortex processors, as shown in Fig. 24,
one could see that the 8-bit Atmega gave a very low energy
consumption compared to the 32-bit Cortex processors, con-
suming approximately twelve (12) times less energy than the
best performing Cortex processor— the M7— at 0.962mJ.
The execution time of the Atmega however, was far greater
than the execution times seen on any of the Cortex processors,
executing AES approximately nineteen (19) times slower
than the worst performing Cortex-M processor, with an aver-
age execution time of 30ms as compared to 1.579ms from
theM3. In comparing the overall performance of the Atmega,
one could see that it appeared to give a better performance
than the M0 and M3 processors however, with the length of
the execution time and its heavy contribution towards the pro-
cessor’s performance profile, a hardware accelerator would
be required with the Atmega to ensure that the processor was
capable of meeting the hard real time deadline requirements
of an IIoT network.

In spite of a fairly promising performance profile, when
looking at the memory resource consumption of AES
in Fig. 25 one could see that, for a 64-byte packet, the Atmega

9320 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

would be incapable of running the algorithm as the memory
requirement exceeds the available resources of the processor,
requiring 4.28kB of RAM where only 4kB of RAM would
be available. This complete depletion of the available RAM
would mean that, even if the required RAM had been equiva-
lent to the available RAM, the processor would only be able to
execute the cryptographic algorithm and could not run other
processor operations for the execution and transmission time
duration. This is would result in a situation where the entire
network essentially would have paused while the endpoint
nodes completed their cryptographic operations. In com-
parison, the Cortex-M processors were capable of running
AES efficiently for a 64-byte packet with very little memory
resource consumption. The worst case consumptions, seen
with the M0 and M3, still left the majority of the RAM
resources available for the use of other processor operations.

The consumption of the non-volatile memory resources
improved upon the consumption seen for the volatile memory
resources. The Atmega gave a similar consumption of non-
volatile memory as the Cortex M0, consuming 14.063% of
its available ROMas compared to theM0’s 12.93% consump-
tion of its available Flash memory. In this respect, the Atmega
gave a comparable performance to a processor seven (7) years
newer.

Considering the foregoing results presented, despite the
areas in which the Atmega was capable of performing as
well as or better than the newer Cortex processors, its long
execution time and lack of sufficient volatile memory made
it unsuitable to run AES cryptographic processes without
the inclusion of additional hardware, such as a hardware
crypto accelerator and additional RAM. The Cortex0 proces-
sors, on the other hand, were capable of running the AES
cryptographic services easily and quickly without additional
hardware requirements or without requiring the algorithm to
be optimised and scaled down to fit within their available
memory. Their weakest point was in the processor energy
consumption; where the Atmega was shown to be vastly
superior. This however, may be seen as a sufficient trade-off
for the ability to be able to implement upgradable software
cryptography services at the edge of the IIoT network without
requiring additional hardware components and upgrades.

As in the analysis of AES, a similar comparison of old and
new generation processors was made against the performance
of standard ECDSA on the Cortex-M processors against the
results seen in [22] for the memory optimised version of
ECDSA when run on the MicaZ’s Atmega128L processor.
The execution time and energy consumption results are given
in Table 15 and the memory occupation results are given
in Fig. 26.

Considering the execution time, it was seen that the
Atmega128L, with fewer processing and memory resources,
was able to vastly outperform the M0 and M3 when running
the optimised validation process for ECDSA. The longest
operating time seen for the 255-bit prime was approximately
59.893% faster than the M0 running standard ECDSA and
was approximately 79.924% faster than the M3 running stan-

TABLE 15. Comparison of execution time and energy consumption of
ECDSA on old and new generation processors.

FIGURE 26. Memory occupation comparison for Atmega128L and
Cortex-M processors (ECDSA).

dard ECDSA. The M4 and M7 gave a better execution time
performance than the best performing implementation of the
optimised algorithm however were vastly outperformed in
the energy consumption for the cryptographic performance.
It was here that the value was seen in the optimisation of the
ECDSAverification process as the energy consumption of the
Atmega128Lwas significantly lower than the consumption of
the Cortex Processors.

The performance of the optimised algorithm did not falter
when considering the memory occupation. The Atmega128L
gave a smaller percentage occupation than the M0 and
M3 processor but was beaten by the memory occupation of
the M4 and M7, which gave significantly better occupation
results with the standard ECDSA implementation.

What the results from the comparisons showed was the
value in the optimisation of cryptographic algorithms for use
in the IoT. The algorithm optimisations proposed in [22]
were able to improve upon the performance of ECDSA
such that the Atmega128L, which has less operational power
and smaller memory resources than the Cortex processor,
was able to provide a better overall performance than the
newer Cortex M0 and M3 processors which ran the stan-
dard ECDSA algorithm. Should such optimisations be imple-
mented on the newer generation processors; the use of
ECDSA and other elliptic curve algorithms in IoT and IoE

VOLUME 6, 2018 9321



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

applications could be achieved without requiring the inclu-
sion of hardware accelerators to prevent network delays. Such
optimisations however, would require verification and certifi-
cation for industrial use under the NIST Cryptographic Algo-
rithm Validation Program or other, similar standardisation
processes in order to ensure that adequate security levels are
still being achieved by the modified cryptographic algorithm.

VII. CONCLUSION AND FUTURE WORK
Previously, owing to the limited resources available, proces-
sors for WSNs and smart grids were left insecure and without
security processes, resulting in large networks deployments
that were vulnerable to a wide variety of cyber-physical
attacks. It could be seen however, that with the improvements
made in new generation processors over the last decade,
low power processors designed for use with the IoT were
easily able to quickly run cryptographic operations without
the depletion of memory and power resources. This showed
that processors for the IoT were no longer incapable of imple-
menting security processes and that software cryptographic
libraries could be a viable resource in designing a secure,
endpoint node; either as a tool to extend the effective lifetime
of a network deployment or as a security tool on nodes with
very tight size restrictions.

It was seen that, despite having identified the CortexM4 as
the best suited general purpose processors for running soft-
ware cryptographic services, the new generation processors
chosen were capable of running the algorithms without the
depletion of their memory resources and excessive power
consumption. It was also seen that the use of a hardware
cryptographic module or an algorithm optimisation could be
required for the Cortex-M series should an implementation
of public key cryptography be needed in an IIoT network; as
the resulting execution times for ECDSA were sufficiently
long as to increase the probability of missed deadlines in
a hard real time network application. A comparison of the
Cortex-M performance results seen in this research with the
performance results seen on previous applications of AES
and ECDSA on the Mica2 and MicaZ platforms served to
illustrate the improvements made in the capabilities of MCU
platforms for the IoT over the past decade and the value in
algorithm optimisation towards reducing excessive delay and
energy consumption that could result from the adaptation of
a cryptographic algorithm. The research has provided a
detailed analysis regarding the capabilities of new generation
IoT processors when running software cryptographic services
and found that symmetric and hashing cryptographic services
can be implemented on the processors with minimal costs
to the processor performance. The inclusion of a hardware
accelerator is recommended for the implementation of public
key cryptographic services owing to the long execution times
seen for the processors.

After concluding this research, it is the authors’ opin-
ion that verified software cryptographic services could be
used as a viable option towards securing new generation
processors where the inclusion of hardware services may

not be viable or where the network security may have been
compromised. However, work still needs to be done towards
developing solutions for the other areas of smart grid security
as cryptography alone only forms one part of a complete, IoE
security solution.

As part of future work, the authors aim to continue
work towards a general, implementable design for a gen-
eral secure endpoint device at the IIoT edge, which can
be adapted for use in smart grid applications. In partic-
ular, the authors aim to expand upon the research con-
ducted within this work and compare the performances of
the software-implemented cryptography algorithms to their
hardware-implemented counterparts, revisit the experiments
conducted in this work having expanded the list of crypto-
graphic algorithms under consideration, test the performance
of the Cortex-M processors when running the algorithms used
within this work with longer key expansions and test for the
performance differences that could be seen when a TRNG
is used for key generation as opposed to a PRNG. Finally,
the authors aim to conduct an evaluation comparing the
performance of software-secured MCUs to the performance
of security-enabled MCUs to the performance of a softcore
secured FPGA/MCU hybrid platform in order to determine
which configuration would provide the fastest, least power
intensive security services for the IoE edge while maintaining
a good longevity and maintainability.

REFERENCES
[1] K. Wang, X. Hu, H. Li, P. Li, D. Zeng, and S. Guo, ‘‘A survey on

energy Internet communications for sustainability,’’ IEEE Trans. Sustain.
Comput., vol. 2, no. 3, pp. 231–254, May 2017.

[2] G. E. P. Kumar, K. Baskaran, R. E. Blessing, and M. Lydia, ‘‘Securing the
smart grid network: A review,’’ in Proc. IEEE Int. Conf. Comput. Intell.
Comput. Res., Chennai, India, Dec. 2016, pp. 1–6.

[3] C. Donitzky, O. Roos, and S. Sauty. (2014). A Digital Energy Network:
The Internet of Things and the Smart Grid. [Online]. Available:
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/iot-smart-grid-paper.pdf

[4] M. B. Line, I. A. Tøndel, and M. G. Jaatun, ‘‘Cyber security challenges in
Smart Grids,’’ in Proc. 2nd IEEE PES Int. Conf. Exhib. Innov. Smart Grid
Technol., Manchester, U.K., Dec. 2011, pp. 1–8.

[5] K.Wang et al., ‘‘Wireless big data computing in smart grid,’’ IEEEWireless
Commun., vol. 24, no. 2, pp. 58–64, Apr. 2017.

[6] P. McDaniel and S. McLaughlin, ‘‘Security and privacy challenges in the
smart grid,’’ IEEE Security Privacy, vol. 7, no. 3, pp. 75–77, Jun. 2009.

[7] M. Fabro, T. Roxey, and M. Assante, ‘‘No grid left behind,’’ IEEE Security
Privacy, vol. 8, no. 1, pp. 72–76, Feb. 2010.

[8] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, ‘‘Smart-grid security
issues,’’ IEEE Security Privacy, vol. 8, no. 1, pp. 81–85, Feb. 2010.

[9] K. Wang, M. Du, S. Maharjan, and Y. Sun, ‘‘Strategic honeypot game
model for distributed denial of service attacks in the smart grid,’’ IEEE
Trans. Smart Grid, vol. 8, no. 5, pp. 2474–2482, Feb. 2017.

[10] A. Keranen, M. Ersue, and C. Bormann. (2014). Terminol-
ogy for Constrained-Node Networks. [Online]. Available:
https://tools.ietf.org/html/rfc7228#ref-IOT-SECURITY

[11] F. Jameel, ‘‘Network security challenges in smart grid,’’ in Proc. 19th Int.
Multi-Topic Conf. (INMIC), Islamabad, Pakistan, 2016, pp. 1–7.

[12] A. Yang, E. Pagnin, A. Mitrokotsa, G. Hancke, and D. S. Wong, ‘‘Two-
hop distance-bounding protocols: Keep your friends close,’’ IEEE Trans.
Mobile Comput., to be published, doi: 10.1109/TMC.2017.2771769.

[13] C. P. Antonopoulos, C. Petropoulos, K. Antonopoulos, V. Triantafyl-
lou, and N. S. Voros, ‘‘The effect of symmetric block ciphers on
WSN performance and behavior,’’ Proc. IEEE 8th Int. Conf. Wireless
Mobile Comput., Netw. Commun. (WiMob), Barcelona, Spain, Oct. 2012,
pp. 799–806.

9322 VOLUME 6, 2018



L. P. I. Ledwaba et al.: Performance Costs of Software Cryptography in Securing New-Generation Internet of Energy Endpoint Devices

[14] C. C. Chang, S. Muftic, and D. J. Nagel, ‘‘Measurement of energy costs
of security in wireless sensor nodes,’’ in Proc. 16th Int. Conf. Comput.
Commun. Netw., Honolulu, Hi, USA, 2007, pp. 95–102.

[15] G. Guimaraes, E. Souto, D. Sadok, and J. Kelner, ‘‘Evaluation of
security mechanisms in wireless sensor networks,’’ in Proc. Syst.
Commun. (ICW’ICHSN’ICMCS’SENET’), Montreal, QC, USA, 2005,
pp. 428–433.

[16] A. Trad, A. A. Bahattab, and S. B. Othman, ‘‘Performance trade-offs
of encryption algorithms for wireless sensor networks,’’ in Proc. World
Congr. Comput. Appl. Inf. Syst. (WCCAIS), Hammamet, Tunisia, 2014,
pp. 1–6.

[17] E. Barker. (2016). Guideline for Using Cryptographic Standards
in the Federal Government: Cryptographic Mechanisms. Accessed:
Sep. 4, 2017. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-175B.pdf

[18] Data Encryption Standard (DES), FIPS Standard 46-3, 1999.
[19] EMC Corporation. (2017). RSA Laboratories—RC6 Block Cipher.

Accessed: Sep. 4, 2017. [Online]. Available: https://www.emc.com/emc-
plus/rsa-labs/historical/rc6-block-cipher.htm

[20] R. L. Rivest, ‘‘The RC5 encryption algorithm,’’ in Proc. 2nd Int. Workshop
Fast Softw. Encryption, Leuven, Belgium, Dec. 1995, pp. 86–96.

[21] Z. Liu, J. Groszschaedl, Z. Hu, K. Jarvinen, H. Wang, and I. Verbauwhede,
‘‘Elliptic curve cryptography with efficiently computable endomorphisms
and its hardware implementations for the Internet of Things,’’ IEEE Trans.
Comput., vol. 66, no. 5, pp. 773–785, May 2017.

[22] Z. Liu, X. Huang, Z. Hu, M. K. Khan, H. Seo, and L. Zhou, ‘‘On emerging
family of elliptic curves to secure Internet of Things: ECC comes of age,’’
IEEE Trans. Depend. Sec. Comput., vol. 14, no. 3, pp. 237–248, Jun. 2017.

[23] Arm Limited. (2017). (Cortex-M). Accessed: Aug. 30, 2017. [Online].
Available: https://www.arm.com/products/processors/cortex-m

[24] Arm Limited. (2017). Cortex-M0. Accessed: Aug. 30, 2017. [Online].
Available: https://developer.arm.com/products/processors/cortex-m/
cortex-m0

[25] Arm Limited. (2017). Cortex-M3. Accessed: Aug. 30, 2017. [Online].
Available: https://developer.arm.com/products/processors/cortex-m/
cortex-m3

[26] Arm Limited. (2017). Cortex-M4. Accessed: Aug. 30, 2017. [Online].
Available: https://developer.arm.com/products/processors/cortex-m/
cortex-m4

[27] Arm Limited. (2017). Cortex-M7. Accessed: Aug. 30, 2017. [Online].
Available: https://developer.arm.com/products/processors/cortex-m/
cortex-m7

[28] STMicroelectronics. (2017). STM32F0—ARM Cortex-M0
Microcontrollers. Accessed: Sep. 4, 2017. [Online]. Available: http://www.
st.com/en/microcontrollers/stm32f0-series.html?querycriteria=productId=
SS1574

[29] STMicroelectronics. (2017). STM32F1—ARM Cortex-M3
Microcontrollers. Accessed: Sep. 4, 2017. [Online]. Available: http://www.
st.com/en/microcontrollers/stm32f1-series.html?querycriteria=
productId=SS1031

[30] STMicroelectronics. (2017). STM32F4—ARM Cortex-M4 High-
Performance MCUs. Accessed: Sep. 4, 2017. [Online]. Available:
http://www.st.com/en/microcontrollers/stm32f4-series.html?
querycriteria=productId=SS1577

[31] STMicroelectronics. (2017). STM32F7—ARM Cortex-M7
Microcontrollers. Accessed: Sep. 4, 2017. [Online]. Available:
http://www.st.com/en/microcontrollers/stm32f7-series.html?
querycriteria=productId=SS1858

[32] STMicroelectronics. (2017). X-CUBE-CRYPTOLIB—STM32
Cryptographic Firmware Library Software Expansion for STM32Cube
(UM1924). Accessed: Sep. 5, 2017. [Online]. Available: http://www.st.
com/en/embedded-software/x-cube-cryptolib.html

[33] S. Keller. (2009).Cryptographic AlgorithmValidation Program. Accessed:
Sep. 5, 2017. [Online]. Available: https://www.nist.gov/programs-
projects/cryptographic-algorithm-validation-program

[34] M. Mielke. (2017). Using the IDD Current Measurement Feature on
the STM32L053 Discovery Board. Accessed: Sep. 5, 2015. [Online].
Available: https://eewiki.net/display/microcontroller/Using+the+IDD+
Current+Measurement+Feature+on+the+STM32L053+Discovery+Board

[35] Atollic. (2017). TrueSTUDIO Pro—ARM Development Tools—
Subscription FAQ. Accessed: Sep. 4, 2017. [Online]. Available:
http://info.atollic.com/pro-upgrade-faq

LEHLOGONOLO P. I. LEDWABA received the
BCIS degree from Monash University, South
Africa, in 2016, and the B.Sc. degree (Hons.) in
computer science from the University of Pretoria,
South Africa, in 2017, where she is currently pur-
suing the M.Sc. degree in applied sciences. She
holds the Masters Studentship at the Council for
Scientific and Industrial Research (CSIR), Preto-
ria, South Africa. Her research interests include
security for cyber-physical systems, wireless sen-

sor networks, and the industrial internet of things.
Ms. Ledwaba received membership from the Golden Key International

Honours in 2016 for academic excellence.

GERHARD P. HANCKE (S’99–M’07–SM’11)
received the B.Eng. and M.Eng. degrees from the
University of Pretoria, South Africa, in 2002 and
2003, respectively, and the Ph.D. degree in com-
puter science from the Computer Laboratory,
Security Group, University of Cambridge, in 2008.
He is currently an Assistant Professor with the
City University of Hong Kong, Hong Kong. He is
also an extraordinary Senior Lecturer with theUni-
versity of Pretoria. His research interests include

system security, embedded platforms, and distributed sensing applications.

HEIN S. VENTER (M’07) received the B.Sc.
degree, the B.Sc. degree (Hons.), and the M.Sc.
degree, and the Ph.D. degree from the Univer-
sity of Johannesburg (formerly the Rand Afrikaans
University), South Africa, all in computer sci-
ence. He is currently a Professor and the Research
Group Leader with the Digital Forensic Science
Research Group, University of Pretoria, South
Africa, where he collectively supervises 30 Com-
puter Science postgraduate students, including two

B.Sc. (Hons.), sevenM.IT., 12M.Sc. and nine Ph.D. students. In his research
career, over the past 16 years, he has established an international research
reputation in cyber security and cyber forensics. Over the past nine years, he
has been focusing mainly on cyber forensics research.

Prof. Venter has been a member of ACM since 2007 and the American
Academy for Forensic Sciences since 2009. He is the General Chair of the
Information Security for South Africa Conference.

SHERRIN J. ISAAC (M’04) was born in Ethiopia
in 1967. He received the B.Eng. degree in elec-
tronics and telecommunications and the M.Eng. in
electrical degree from the University of Zambia,
Lusaka, Zambia, in 1988 and 1994, respectively,
and the M.B.A. degree from the University of
Pretoria, Pretoria, South Africa, in 2006.

He joined the University of Zambia, as a Project
Engineer in 1989. Since 1998, he has been with
the Council for Scientific and Industrial Research,

Pretoria, where he is currently a Research Group Leader in embedded intel-
ligent systems. His current research interests include cyber physical systems
for smart infrastructure with respect to wireless sensor networks, security,
distributed embedded artificial intelligence, real-time control, operations,
and maintenance.

Mr. Isaac is a Professional Engineer in South Africa and a member of the
South African Institute of Electrical and Electronic Engineers.

VOLUME 6, 2018 9323


	INTRODUCTION
	RELATED WORK
	EQUIPMENT
	MCUs AND DEVELOPMENT BOARDS
	CRYPTOGRAPHIC LIBRARY

	EXPERIMENT METHODOLOGY
	RESULTS
	EXECUTION TIME
	POWER CONSUMPTION
	MEMORY OCCUPATION
	RAM
	FLASH


	DISCUSSION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	LEHLOGONOLO P. I. LEDWABA
	GERHARD P. HANCKE
	HEIN S. VENTER
	SHERRIN J. ISAAC


