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Abstract This reply focuses on comments made by Zöller (2017). We sincerely
appreciate the comment by Zöller. This comment and our response creates a perfect
opportunity to clarify the controversial issue of whether area-characteristic maximum
possible earthquake magnitude mmax can be estimated using only the seismic-event
catalog. In his comment, Zöller is attempting to convince the reader that based on the
seismic-event catalog, the area-characteristic mmax cannot be estimated using equa-
tion (25) of Kijko et al. (2016). In this reply, we will argue the opposite: that with
the help of statistical theory, it is possible to assess the mmax.

Reality is defined by fact. The fact is that in many
instances, an estimation of the maximum possible earthquake
magnitude mmax is essential. This is especially true for
seismic-hazard assessments of critical infrastructures such
as bridges, dams, mines, airports, and nuclear facilities. In all
these cases, engineers need to have an estimate of mmax to
allow them to design structures that are both safe and eco-
nomically viable. A second fact is that the quality and length
of earthquake catalogs are not always what we wish them to
be, nor do they adhere strictly to the stochastic models we
apply to the data. These catalogs are only a small sample
of the true population of earthquake events. Aleatory and epi-
stemic uncertainties are therefore an inherent part of any
earthquake model or parameter estimation. The goal of
parameter estimation is to obtain the best possible estimator
based on available sample information, but it should be re-
membered that it remains only an estimate—a best calculated
guess of sorts—of the true value based on available but
imperfect data.

One of the tools used to verify fact is numerical simu-
lation (e.g., Monte Carlo simulation). Although Zöller ex-
presses his concern regarding the use of this technique to
test the theory, it is a proven and well-used statistical tool
used to determine the effectiveness of statistical estimation
and tests. If done properly, the simulation process does not
lie. Figure 1 supports this by showing how closely it can sim-
ulate reality.

Figure 1 shows results of a Monte Carlo simulation of the
seismicity that can occur in many seismic active areas. It is
assumed that the sought mmax is 6.8, the b-value of Guten-
berg–Richter is 1.0, and the available seismic-event catalog
is complete from magnitude m0 � 5:0. A total of 1000

catalogs were simulated for each of the events indicated in Fig-
ure 1. By default, each simulated catalog contains its own
mobs

max. The first moment (the mean value) of the unknown
mmax is estimated with equation (1) (equation 25 in Kijko et al.,
2016; hereafter, KS estimator) over each set of the 1000 simu-
lated catalogs. As Figure 1 shows, the estimated mean ofmmax

has a negligible error of significantly less than 0.1 magnitude
unit. At the point of 100 events in the catalog, the mean square
error of estimated mmax already does not exceed 0.2 units of
magnitude. The simulation results are in full disagreement of
Zöller’s opinion, that the point estimator of mmax cannot be
estimated from seismic-event catalog.

Let us address some points and opinions expressed by
Zöller in more detail. There are countless estimation proce-
dures that attempt to assess the upper limit of a distribution of
stochastic processes. One of these procedures is the estimator
used in Kijko et al. (2016; their equation 25). This estimator
was defined in Kijko (2004) as
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in which mobs
max is the maximum observed magnitude in the

catalog and FM�m� denotes the cumulative distribution func-
tion (CDF) of earthquake magnitude. For the doubly trun-
cated frequency–magnitude Gutenberg–Richter relation,
the CDF (equation 1) takes the form
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(e.g., Page, 1968), in which β � b ln�10�, b is the parameter
of the frequency–magnitude Gutenberg–Richter relation,
mmin is the level of completeness, and n denotes the number
of seismic events equal to or exceeding mmin. If the generic
estimator (equation 1) is applied to the Gutenberg–Richter
CDF of earthquake magnitudes (equation 2), it states that
the maximum regional earthquake magnitude mmax is equal
to the largest observed magnitude mobs

max, increased by a cor-
rection factor Δ � R

mmax
mmin

�FM�m��ndm. This correction factor
depends on the seismic parameters, supporting the expecta-
tion that it is always positive and that its value decreases as
the time span of the catalog (more precisely, the number of
seismic events) increases.

The derivation of equation (1) is based on a generic es-
timator of the upper bound of a random variable as provided
by Cooke (1979). The derivation of the estimator includes
analysis of its asymptotic confidence intervals and tests of hy-
potheses for its bounds. In his subsequent work, Cooke (1980)
discusses the problem of the assessment of an upper limit for a
random variable when the database is highly incomplete and
only a few of the largest observations are known.

An essential part of the derivation of the Cooke’s esti-
mator (equation 1) is the replacement of the maximum ob-
served random value (in our case maximum observed
magnitude mobs

max) by the expected value E mobs
max

� �
of the sam-

ple (equation 4 in Zöller, 2017). The legitimacy of this
replacement is questioned by Zöller. Conceptually, such a
replacement has its roots in the classic method of moments
(MM) estimation of parameters, developed by Pearson
(1894). The MM involves equating sample moments with
their theoretical counterparts. Because the sample moments
are consistent estimates of population moments, the param-
eter estimates by MM are generally consistent. Because the
distribution function of mobs

max is known and equal to
FM m� �� �n, introducing the conditionmobs

max � E mobs
max

� �
makes

it possible to assess all quantiles of the unknownmmax. It can
be done despite the fact that FM�m� depends on an unknown
mmax, because mobs

max is a sufficient statistic for a sample and
any function of mobs

max is an unbiased estimator of its expect-
ation with the lowest possible variance. Theoretical justifica-
tion of such an approach can be found in the original paper
by Cooke (1979) and in any textbook of theoretical statistics
that discusses the Rao–Blackwell theorem. Also, the appli-
cation of the condition mobs

max � E mobs
max

� �
for the assessment

of the mmax magnitude, including a comprehensive justifica-
tion of the applied approach, can be found in Pisarenko
et al. (1996).

It is important to note that any given seismic-event cata-
log can be only a sample of the true population of earthquake
events in history and that the sufficient statistic E�mobs

max� is
only valid for a specific sample of the data at a given point
in time. If the catalog is updated, it will constitute a new sam-
ple for which a new estimator is required. It can and does
happen that a new magnitude value that exceeds the previous
mobs

max is added to the sample, thus updating both E�mobs
max� and

m̂max. The previous estimation of m̂max and therefore the pro-
cedure should not be seen as wrong, but rather that it was the
best possible estimation based on available data.

The m̂max estimator in equation (1), or equation (25) in
Kijko et al. (2016), cannot be solved without an iteration
process, because mmax also appears on the right side of
the equation. The integral in equation (1) can be calculated
analytically or approximately. In both cases, the estimation
of mmax requires iteration. In all of our computational codes,
the solution of equation (1) is obtained by utilizing the so-
called fixed point iteration (e.g., Hoffman, 2001), functional
iterations, or simply the iterative method. The first approxi-
mation of m̂max is obtained by replacing mmax with mobs

max in
two places on the right side of equation (1), in the CDF
FM�m� and in the upper limit of integration. The next
approximation of m̂max is obtained by replacing the mobs

max

with its previous solution. This procedure is repeated until
the last correction of m̂max is small (in our computer code
its absolute value ≤0:01), or if the number of iterations
exceeds 10. In most cases, the procedure converges very fast
and does not exceed 10 iterations. An extensive analysis and
formal conditions of convergence of the above iterative
procedure are discussed, for example, by Legras (1971).

Regarding the statement that the authors are providing
only the approximation of the correction factor
Δ � R

mmax
mmin

�FM�m��ndm: following equation (1) and the
assumption that earthquake magnitudes follow the doubly
truncated Gutenberg–Richter distribution (equation 2), the
KS estimator of mmax requires calculation of the integral
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The previously mentioned analytical solution of the integral
has the closed-form solution as defined by Dwight (1961),
but it is neither simple nor easily tractable. This closed-form

Figure 1. Monte Carlo simulation of the area-characteristic
maximum magnitude based on equation (25) of Kijko et al.
(2016), as well as the respective confidence intervals.
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solution is provided by equations (15) and (16) in Kijko and
Singh (2011; Section 2.1.3: Kijko-Sellevoll Procedure). An
alternative solution for the integral (equation 3) can be ob-
tained by applying Cramer’s approximation, in which
�FM�m��n≅ exp�−n�1 − FM�m���. It provides a solution that
is no less accurate than the exact one but is compact and
easily tractable. Therefore, as a personal preference, we ap-
ply the approximation for equation (3) to most of our appli-
cations as

EQ-TARGET;temp:intralink-;df4;55;407Δ � E1�n2� − E1�n1�
β exp�−n2�

�mmin exp�−n�; �4�

in which n1 � n=f1 − exp�−β�mmax −mmin��g, n2 �
n1 exp�−β�mmax −mmin��, and E1�·� denotes an exponential
integral function (Abramowitz and Stegun, 1970). The com-
parison of the two solutions, the exact with the approximate,
is provided in Figure 2.

Figure 2 shows that the two solutions for the integral
(equation 3) are indistinguishable, even for a very small num-
ber of observations �n ∼ 10�. It therefore does not matter
which solution, analytical or approximate, you use—the
estimates you obtain will be indistinguishable.

It is interesting to note that in 2002, when we started the
project to design a toolbox for the assessment of the maxi-
mum possible earthquake magnitude (Project Number
691/2002, Council for Geoscience, Pretoria), we had the
same doubts that Zöller expressed in his comment: if the ap-
plication of the Cramer’s approximation provided accurate
enough values for the integral (equation 3). This question
was investigated thoroughly by creating the MATLAB com-
puter code mmax.m, which compares 12 different methods of
mmax estimation (Kijko and Singh, 2011). Among others,
this program and the subsequent publication provides the
estimators of mmax per the KS procedure, the first of which
based on the exact solution of the integral (equation 3), and
the second based on Cramer’s approximation. Numerous ap-

plications of the KS procedure showed that both versions of
procedures provide almost identical results. The mmax.m
code is freely available from the authors of this note.

Zöller raises two questions regarding the application of
the formalism by Cooke (1979) in the KS estimator, namely
the range of integration in equation (3) and the application of
an analytical form of earthquake magnitude distribution
F�m�. The exact application of Cooke’s formalism requires
integration of �FM�m��n in the range hmmin; mmaxi. As men-
tioned above, this leads tommax being present in both sides of
equation (1). Because mmax is unknown, its assessment can
be done only by iteration. To avoid the iteration process,
Cooke (1979) replacedmmax bymobs

max. Such replacement sim-
plifies the search procedure but can lead to a slight under-
estimation of mmax. In early applications of the KS
procedure (e.g., Kijko and Graham, 1998), Cooke’s simpli-
fication was used. However, in the more recent works of
Kijko (2004), Kijko and Singh (2011), and Kijko et al.
(2016), the integration of �FM�m��n is performed in the range
hmmin; mmaxi with an iterative search of m̂max. The computer
code mmax.m provides the user with a choice between the
fast and iteration-free approach by Cooke with integration
range hmmin; mobs

maxi, as well as the time-consuming iterative
procedure with an integration range hmmin; mmaxi.

Regarding Zöller’s comment on the use of the empirical
distribution F̂n�m� compared to the assumed analytical mag-
nitude distribution FM�m�: by its nature, the formalism by
Cooke (1979) is generic and applicable to any form of dis-
tribution F�m�. As long as the assumed functional form of
the magnitude distribution is correct, its application can only
improve the performance of the estimator, not aggravate it.

As stated by Zöller, the confidence interval of the esti-
mator m̂max can indeed be infinite, particularly for cases that
lack sufficient data for the reliable assessment of m̂max

(Pisarenko, 1991). Infinite confidence intervals are not an
uncommon phenomenon and can been seen in the cases of
the Pareto distribution (with an infinite variance), the Cauchy
distribution (with no finite moments), and even the Gaussian
distribution with its infinite tails.

In summary, there is no doubt that it is not easy and not
always possible to accurately assess the area-characteristic
maximum possible earthquake magnitude mmax. Nobody
is questioning this. But life teaches us that any extreme view-
point, in this case the view that we are not able to assess
mmax, could be dangerous. As evidenced by the above dis-
cussion, we believe that if we have enough observations, we
can do it. No mathematical or statistical tricks can replace the
data, and we have sound mathematical tools that provide the
best possible estimates, as well as techniques to assess how
reliable our estimates are.

As stated earlier, one of the tools used to determine the
reliability of estimates is numerical simulation (e.g., Monte
Carlo simulation). Simulation, if done properly, does not lie.
Simulations can also reveal if available catalogs contain
enough information about mmax. Pisarenko (1991) presented
it elegantly by introducing special indicator (parameter α),

Figure 2. Comparison of the estimation of the correction factor
Δ using the exact and the approximated solutions.
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which quantifies the likelihood that, based on the available
catalog, one has a chance (or not) to assess mmax.

In our opinion, the critical question that remains is what
to do when not enough information is available but we still
have to provide an estimate of mmax for the area. Real-world
situations like these are abundant in the design and construc-
tion of critical structures. One obvious course of action is to
constrain the mmax estimator by providing additional and in-
dependent information such as regional or local geology, tec-
tonics, paleoearthquakes, capable tectonic faults, seismic
history of similar regions, and/or an mmax for similar seismo-
genic regions. This information in conjunction with the avail-
able seismic-event catalog will be able to constrain the
estimated mmax. The combination of different sources of in-
formation can easily be done with the application of Baye-
sian statistics.

Addendum

A comprehensive discussion on virtually of all the con-
cerns raised by Zöller regarding the assessment of the mmax

estimator, as proposed by Kijko et al. (2016), can be found in
the two papers by Haarala and Orosco (2016a,b). These pa-
pers were made known to the authors after the review of this
article.

Data and Resources

The data used in this article was synthetically derived
using Monte Carlo simulation of seismicity. It was assumed
that mmin � 5:0, b � 1, and mmax � 6:8. The figures were
generated using MATLAB from Mathworks (https://www.
mathworks.com/products/matlab.html, last accessed
May 2017).
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