
Perspective for equipment automation in
process industries ?

Bei Sun ∗ Sirkka-Liisa Jämsä-Jounela ∗ Yancho Todorov ∗
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Abstract: Advances in digital technologies are improving manufacturing systems dramatically.
These advances, along with increased interconnectivity of devices, have launched the Industry
4.0 initiative that is concerned with how cyber physical systems and the internet of things
can create adaptive, modularised, efficient, and reliable processing systems. This work presents
a perspective on how equipment automation can contribute to this goal. Some of the main
obstacles in the way of efficient and flexible operations are highlighted. How these may be
overcome through equipment automation to form a cyber physical automation network is also
presented. The effective integration of these methods can realize the vision of Industry 4.0 in
the processing industry.
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1. INTRODUCTION

Industrial automation plays an important role in increas-
ing production efficiency, reducing energy consumption,
and optimizing production along business model require-
ments. Recently, driven by social demand and the rapid
development of big data, cloud computing, and the in-
ternet of things (IoT) technologies, industrial automation
systems are shifting from centralized systems to cyber-
physical systems (CPS). The “blowout” of these enabling
technologies facilitate technical innovation which is now
recognized as the 4th industrial revolution (Jazdi (2014)).
Many countries have embraced the upgrade of manufactur-
ing systems as a national strategy to remain economically
competitive. Examples include Germany’s “Industrie 4.0”
Platform (Germany Trade & Invest (2013)), USA’s “Ad-
vanced Manufacturing Partnership (AMP)” (Anderson
(2015)) and the “Industrial Internet Consortium (IIC)”,
Japan’s “New Robot Strategy” (The Headquarters for
Japan’s Economic Revitualization (2015)) and “Industrial
Value Chain Initiative”, South Korea’s “Manufacturing
Industry Innovation 3.0 strategy” (Ministry of Trade, In-
dustry and Energy (2014)), and the Chinese “Made in
China 2025” initiative (The Sate Council (2015)) among
others.

Driven by this global trend, novel concepts such as the
Internet of Services (IoS) (Saldivar et al. (2015)), smart
manufacturing (Gregor et al. (2015)), cloud manufacturing
(Liu and Xu (2017)), social manufacturing (Jiang et al.
(2016)) and their applications are emerging. Currently
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however, these applications are mainly found in the dis-
crete manufacturing industries (Chen and Jin (2006)), e.g.
the production of cars, electronic devices, and switches.
There are only a few papers reported that study the
application of Industry 4.0 in processing industries. This
phenomenon is rooted in the inherent differences between
discrete component manufacturing and the process indus-
tries (Taylor et al. (1981); Fransoo and Rutten (1994)).
For discrete manufacturing, items (or parts) are produced
either individually or in lots (Bitran and Morabito (1996)).
In the process industries however (e.g. chemical, metallur-
gical, mineral processing, petrochemical) the content and
form of the ingredients in raw materials are changed con-
tinuously by complex chemical and physical reactions, con-
ducted in interconnected equipment networks (see Fig. 1).
The control problems involved in process industries are
often strongly nonlinear, with constraints, uncertainty,
and multivariable control objectives. In the era of smart
manufacturing, integrating the existing control methods
with the enabling technologies of “Industry 4.0” enables
highly efficient, adaptive, and flexible production (Chai
(2016)).

Single pieces of equipment are the basic material pro-
cessing components in process industries. The automation
level of individual pieces of equipment can be upgraded
to keep pace with the evolution of industrial automation
technology. With this consideration, the future trends of
equipment automation are investigated in this article. The
main problems in achieving efficient and flexible operation
are first discussed in Section 2. In Section 3, the role of
equipment in a Cyber-Physical System is analysed. The
scenarios of equipment automation are then described
from different perspectives. Finally, in Section 4, an oper-
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ational optimization framework based on distributed and
networked smart agents is proposed and illustrated.

2. MAIN PROBLEMS IN ACHIEVING EFFICIENT
AND FLEXIBLE OPERATION

In the process industries, raw materials are processed step
by step until the final product is produced. The entire
plant could be viewed as a network of equipment. The
optimal operation of a single piece of equipment is deter-
mined from the value of its manipulated variables that
are changed to fulfil certain functions. This can be seen as
optimizing a certain performance index subject to imposed
technical and process constraints. However, this optimiza-
tion task is hampered by “information asymmetry”. The
individual piece of equipment has sufficient information
about how it operates (e.g. its dynamics), but not much
about the rest of the value chain.

2.1 Complex system dynamics

Equipment often has to contend with time-varying inputs
and dynamics. In the plant, each piece of equipment inter-
acts with upstream and downstream equipment through
mass and energy transfers or recycles.

Inside reaction equipment, due to the heterogeneous na-
ture of raw materials and processing conditions, there are
not only main reactions but also side reactions whose
dynamics and interaction mechanism with the controlled
main reactions are not thoroughly known. In addition,
changing material conditions or equipment/device mal-
function can also cause undesirable fluctuations.

As an entity, an individual reactor is a system with
multiple levels ranging from “molecule” through “particle”
to “reactor”. These levels have different temporal and
spacial dimensions. The reactions happen on the molecular
level, while the model for equipment control is on the
reactor level. The gaps between different levels lead to
uncertainties in the model used for control.

The same scenario exists for other pieces of equipment that
are not reactors. A distillation column for example is often
modelled as a single unit (Skogestad and Morari, 1988)
with disregard for the comprising elements that define the
working of the column. Modelling a distillation column as
a series of individual trays can increase model accuracy,
but the computational effort of using such a model is not
always worth the additional accuracy. With the increase
in computing power such models become more viable.

This argument is analogous for other equipment as well,
such as pumps, compressors, furnaces, and heat exchang-
ers. All of these equipment can be modelled on a more fun-
damental level, with some model parameters determined
from operating data. Modelling in this fashion is called
grey-box modelling, and generally leads to good accuracy
while maintaining a degree of flexibility.

2.2 Limited measurements

As a component in the plant-wide material flow, the
physical and chemical properties of the material inside
the equipment (e.g. the concentration of reagent in a

reactor) are usually defined as the system states, which
are used in state feedback control. However, in practice,
some state values remain unknown due to the high price
of sensors (when they exist) and a lack of appropriate soft
sensors (Ali et al. (2015)). An observer is then required to
reconstruct the states using available measurements and
the system model.

2.3 Rigid production mode

According to the Purdue Enterprise Reference Architec-
ture (PERA) (see Fig. 2), equipment control is situated on
level 1 of the automation hierarchy pyramid. The lateral
flow of equipment information is often blocked. Equipment
operate in isolation without any interface to vertical or
horizontal communication with other equipment and sys-
tems, except that the operating point of the equipment
may be set by a higher level decision maker. The material
flow along the equipment is also fixed due to a lack of
flexibility.

From the above, it is evident that improving the avail-
ability of knowledge and information could enable the
optimal operation of equipment in an efficient way. And
on the other hand, unblocking the flow of knowledge and
information could enable more flexible production.

3. TOWARDS SMART EQUIPMENT-SCENARIOS OF
EQUIPMENT AUTOMATION

Feedback plays a key role in control theory. In a CPS, the
integration is essential in various aspects, e.g. horizontal
integration through value networks, vertical integration
through networked manufacturing systems, and end-to-
end digital integration of engineering across the entire
value chain. For a single piece of equipment, integration is
also crucial to increase its ability. In this section, the role
of equipment in a Cyber-Physical System is first discussed
and then some scenarios of equipment automation in this
context are presented.

3.1 Role of equipment in a Cyber-Physical System

In a CPS, the real, the virtual, and the digital factory are
integrated. The manufacturing value chain in the physical
world can be integrated with its virtual copy, or digital
twin, through CPS and IoT (Internet of Things), and
then be seamlessly integrated with IoS. The design, de-
velopment, use, and recycling phase and the whole life-
cycle of products, services, and processes are considered
within the global context of product life-cycle manage-
ment. Traditional products may then be produced in a
more efficient way. The factory can also instantly and
flexibly respond to changing material conditions, various
customer demands, disruptions, and failures. New types of
products and services may also result when using a CPS
approach.

In order to realize this flexible and highly efficient means
of production, the structure of the automation system will
have to shift from the hierarchical pyramid of Fig. 2 to
a non-hierarchical structure such as that shown in Fig. 3.
Such a non hierarchical structure could enable many ad-
vances on shop floor level (Cardin et al. (2016)). The
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Fig. 1. Market chain, material chain, and equipment chain in process industries.
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Fig. 2. Traditional pyramid structure in plant automation.

automation functions are decentralized, and the “intelli-
gence” of a centralized system is moved into individual
pieces of equipment. In this CPS structure an individual
piece of equipment can be considered as a cyber-physical
component. Such equipment is autonomous and can make
decisions by itself and serves as a link between physi-
cal material and knowledge/information. It automatically
collects, analyses, and utilizes the data to manage the
information flow and extract knowledge from the data and
information, in order to make sense of the process and
to optimize the process operation. The equipment is con-
nected in a non-hierarchical reconfigurable manufacturing
network context which enables self-organization as well as
plug and play. The data, information, and knowledge are
shared locally and globally through the use of wireless
sensor nodes and networks. Such smart equipment can
participate actively and collaboratively to support the
entire manufacturing value chain in a global context.

Practically then each piece of equipment is well aware of its
own states and outputs. This information is passed down-
stream along the value chain such that subsequent pieces
of equipment know what to expect regarding inputs and
disturbances. Information about downstream bottlenecks
and equipment failures should be transmitted upstream
such that material routings can be adjusted dynamically.
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Fig. 3. Non-hierarchical manufacturing network structure
of CPS.

Each piece of equipment has a corresponding model in
the digital twin, and this model is used for local state
estimation, fault detection and isolation (FDI), and local
control.

3.2 Equipment automation dimensions

The operational dimension

(i) Integration of advanced control, fault diagnosis, self-
recovery, and big-data analytics:
There is a large body of literature on advanced con-
trol, fault diagnosis, self-recovery, and big-data ana-
lytics. These fields contribute to equipment automa-
tion from different points of view, but their integra-
tion has however not been studied much. Advanced
control methods are designed with specific emphasis
and could be divided into different types, e.g. model-
based control, intelligent control, adaptive control,
discrete event techniques, event-triggered, and self-
triggered control. By itself, any single control method

3



is incapable of handling the complex system dynam-
ics of an entire processing plant. Considering fault
diagnosis in the traditional automation pyramid, it is
usually implemented at the supervisory level which is
higher than the control systems level. It shares the
same measured variables but may have competing
objectives with optimizing control (Du et al. (2016)).

Machine learning algorithms and big data analytics
are able to improve the efficiency of industrial pro-
cesses and to support predictive maintenance. There-
fore, the integration of advanced control, fault diag-
nosis, self-recovery, and big-data analytics increases
information utilization and enables a better under-
standing of equipment behaviour. Thus the imple-
mentation of control, fault diagnosis, and data ana-
lytics in a unified framework could guarantee produc-
tion safety, increase production efficiency, and ensure
optimal economic performance.

(ii) Intelligent perception:
Equipment is operated in a changing environment
with time-varying inlet and material conditions. Con-
sciously being aware of the status of the material
flow is the foundation of an agile production system
that can adapt rapidly to changing material condi-
tions. The material conditions inside equipment can
be estimated using a state observer. However, many
existing observers rely on accurate process models,
which are usually unavailable, especially in chemical
and metallurgical processes. In order to circumvent
the modelling difficulty, artificial intelligence has been
introduced in the observer design step (Ali et al.
(2015)). Unfortunately, the AI-based observers are
limited in terms of robustness and ensuring conver-
gence. Thus, integrating AI-based observers with the
strictly convergent observers to reconstruct system
states in a rigorous and intelligent manner will likely
be a future trend in state estimation.

(iii) Value-chain optimization:
Given that individual pieces of equipment can be
controlled sufficiently and that proper integration of
advanced control, FDI, and big-data analytics has
occurred, the global value-chain optimum still needs
to be defined in order to ensure that all equipment
contribute to achieving this optimum.

The global value chain optimum in a continuous
processing system is often defined by the product
values, cost of feedstock, and cost of processing.
Product values define which product grades should
preferentially be produced. Cost of feedstock defines
which supplies should preferentially be used. Cost of
processing encapsulates energy costs and conversion
costs (such as catalyst or utilities). A distributed
optimization scheme (such as distributed MPC (Cam-
ponogara et al., 2002)) can then be used to attain
the value chain optimum. Separation equipment may
focus on the product yields in as much as they af-
fect downstream routings and final product deliveries.
Pumps may only be concerned with operating close
to the efficiency point while delivering the required
discharge flow.

Another consideration for value-chain optimization
is how the process should adapt in the presence of
faults in the system (as is considered in Olivier and

Craig (2017)). Some faults are not very detrimental
to process operations, while other may necessarily
to process stoppages. Plant economic performance
should also be considered with faults present and,
as Olivier and Craig (2017) shows, for some faults
it may be more economical to shut the plant down,
fix the fault(s), and start up again than simply
operating with faults (even they do not cause process
stoppages).

The virtual dimension

(i) Digitalization and virtualization:
Digitalization and virtualization project the physical
equipment into a virtual equipment “data space”
to create a cyber or digital twin of the equipment
which is able to analyse the production data, extract
knowledge, perform control and fault diagnosis, while
interacting with other components in the entire cloud
manufacturing system.

(ii) Knowledge automation:
Equipment constitute visible physical assets of a
plant, while knowledge is recognized as a valuable but
invisible asset of an enterprise (Da Xu (2011); Gui
et al. (2016)). Knowledge plays a key role in enter-
prise management and plant production. In modern
industry, the automation of machines has liberated
operators from the physical work with high labour
intensity. However, decision making, planning, and
dispatching still rely on the knowledge of human be-
ings. Knowledge automation will enable equipment to
learn from the production data automatically, which
involves:
• knowledge discovery: There are various sources of

knowledge in industry, including data knowledge,
mechanism knowledge and experience knowl-
edge. Such knowledge has different manifesta-
tions, various magnitudes, and multiple time
scales. Knowledge discovery aims to extract the
information contained in large amounts of pro-
duction data into useful knowledge that forms a
basic knowledge library.

• knowledge utilization and creation: This process
involves simulating the thought processes of hu-
man beings to produce new knowledge elements
through data correlation and inference or through
the restructuring of existing knowledge elements.

The communication dimension

(i) Remote monitoring and operation:
In the wireless industrial internet, every single piece
of equipment has an assigned IP address to communi-
cate with other members of the CPS. Users can access
and change the equipment conditions via the cloud
or the internal wireless industrial internet. Wireless
communication also provides flexibility in plant lay-
out and reduces the planning effort in that cabling is
no longer required.

(ii) Information security:
Equipment production data are usually confidential.
Only authorized users can access a certain piece of
equipment within a plant, and such access should be
controlled.
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Smart equipment design and production

(i) Integrated equipment design:
Traditionally, the control system is designed only
after the plant is built. This type of design is not
optimal as it possesses a smaller degree of freedom
compared to when controller design is integrated with
equipment design. In the integrated equipment de-
sign, the control, communication, and the machinery
will be designed simultaneously which can lead to
significant economic benefits and improved dynamic
performance during plant operation.

(ii) Customized and modularized equipment production:
In order to realize plug and play in a reconfigurable
manufacturing network, the production standards of
equipment must agree, including communication and
hardware interfaces. The components of equipment
can be modularized. The users of the equipment will
be involved in the equipment design to enable cus-
tomization. The future PLC will become the interface
between physical and cyber equipment. As such it
can serve as a complex service object in the manu-
facturing value chain, which will interpret the service
requests to the equipment level. On the other hand,
it will possess high computational power, low energy
consumption and self-sufficient functionality.

4. DISTRIBUTED AND NETWORKED SMART
MANUFACTURING SYSTEMS

The smart equipment with wireless communication will
form a distributed, networked, smart manufacturing sys-
tem that is efficient in its use of resources, highly resilient
to disturbances, and adaptable to changes in the environ-
ment in which it exists. In a distributed networked smart
manufacturing system, each piece of equipment could be
viewed as an agent with autonomy and coordinating abil-
ities. An example of such a system is shown in Fig. 4.
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Gregor, M., Herčko, J., and Grznár, P. (2015). The factory
of the future production system research. In 21st In-
ternational Conference on Automation and Computing
(ICAC), 1–6. IEEE.

Gui, W., Chen, X., Yang, C., and Xie, Y. (2016). Knowl-
edge automation and its industrial application. SCIEN-
TIA SINICA Informationis, 46(8), 1016–1034.

Jazdi, N. (2014). Cyber physical systems in the context
of industry 4.0. In Automation, Quality and Testing,
Robotics, 2014 IEEE International Conference on, 1–4.
IEEE.

Jiang, P., Ding, K., and Leng, J. (2016). Towards a cyber-
physical-social-connected and service-oriented manufac-
turing paradigm: Social manufacturing. Manufacturing
Letters, 7, 15–21.

Liu, Y. and Xu, X. (2017). Industry 4.0 and cloud manu-
facturing: A comparative analysis. Journal of Manufac-
turing Science and Engineering, 139(3), 034701.

Ministry of Trade, Industry and Energy (2014). The
industrial innovation movement 3.0 for manufacturing
industry for realization of creative economy.

Olivier, L.E. and Craig, I.K. (2017). Should i shut down
my processing plant? - An analysis in the presence of
faults. Journal of Process Control.

Saldivar, A.A.F., Li, Y., Chen, W.n., Zhan, Z.h., Zhang, J.,
and Chen, L.Y. (2015). Industry 4.0 with cyber-physical
integration: A design and manufacture perspective. In
21st International Conference on Automation and Com-
puting (ICAC), 1–6. IEEE.

Skogestad, S. and Morari, M. (1988). Understanding the
dynamic behavior of distillation columns. Industrial
Engineering Chemical Research, 27, 1848 – 1862.

Taylor, S.G., Seward, S.M., and Bolander, S.F. (1981).
Why the process industries are different. Production
and Inventory Management Journal, 22(4), 9–24.

The Headquarters for Japan’s Economic Revitualization
(2015). New robot strategy.

The Sate Council (2015). Made in China 2025.

5



Raw material Final product

Physical equipments

Cyber twins: smart agents

Digitalization and visualization

Cloud of things and 
services

Agent 
1

Agent 
2

Agent 
N

Wireless 
industrial 
network

Intelligent perception

Integrated intelligent  equipment 
control, fault diagnosis and self 

recovery

Knowledge automation

Access control and 
communication interface

Smart agent of functions

Distributed and networked smart manufacturing system

Consumers
Suppliers

Fig. 4. Distibuted networked smart manufacturing system

6




