In silico annotation of five candidate genes associated with pathogenicity in Fusarium circinatum. E. Jordán Muñoz-Adalia^{1,2*}, Mercedes Fernández^{1,3}, Brenda D. Wingfield⁴, Julio J. Diez^{1,2}. 1: Sustainable Forest Management Research Institute, University of Valladolid - INIA, Avenida de Madrid 44, 34071 Palencia, Spain. 2: Department of Vegetal Production and Forest Resources, University of Valladolid. Avenida de Madrid 44, 34071 Palencia, Spain. 3: Department of Agroforestry Sciences, University of Valladolid. Avenida de Madrid 44, 34071 Palencia, Spain. 4: Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa. * Correspondence: E. Jordán Muñoz-Adalia. Tel.: (34) 979108432. Email: emigdiojordan.munoz@uva.es **Running Head** Annotation of candidate genes in Fusarium circinatum 1 # **Summary** The Pine Pitch Canker disease caused by the pathogenic fungus *Fusarium circinatum* is one of the most devastating diseases in pine forests, afforestation and nurseries around the world. Despite the importance of this phytopathogen, only a little is known about the genes that drive the infection traits and the virulence factors. In this work, five candidate genes (i.e. *Fcfga1*, *Fcfgb1*, *Fcac*, *Fcrho1* and *FcpacC*) were *in silico* annotated using the whole genome of *F. circinatum* as reference. The similarity of these proposed genes at nucleotide and protein levels with genes previously described in other *Fusarium* species was > 90 % of identity and > 90 % query coverage in all cases. In addition, the gene ontology of each candidate gene was also investigated. Keywords: cAMP-PKA, damping-off, gene annotation, MAPK, Pine Pitch Canker disease. #### 1 INTRODUCTION Fusarium circinatum Nirenberg & O´Donell is the causal agent of one of the most devastating forest diseases around the world: the Pine Pitch Canker disease. This pathogen infects coniferous species (mainly *Pinus* spp. and *Pseudotsuga menziesii* (Mirb.) Franco), causing wilting and bleeding cankers in mature trees, drastically reducing the value of timber and predisposing the trees to break during windstorms (Wingfield et al., 2008). In addition, it causes severe damping-off in seeds and seedlings in nurseries. Despite the high threat that this fungus embodies for native forests and pine plantations, there is limited knowledge about the genes involved in the infection process. On the other hand, the complete genome of *F. circinatum* has been sequenced and made accessible through public databases (Wingfield et al., 2012; De Vos et al., 2014). Several virulence-related genes have been annotated in other species of *Fusarium*. Regarding the cell signaling pathways, the guanine nucleotide-binding protein subunits α and β have been reported as related with pathogenesis in fungi. These two subunits play a key role as essential elements upstream of cellular signaling process affecting either the mitogen-activated protein kinase (MAPK) cascade or the cAMP-dependent protein kinase pathway (cAMP-PKA) by triggering virulence factors as in the case of *Fusarium oxysporum* Schltdl. (Guo et al., 2016). Likewise, adenylate cyclase has been described as a major element in cAMP-PKA signaling. This pathway is involved with pathogenesis development in several fungi (e. g. *Colletotrichum orbiculare* (Berk.) Arx and *Ustilago maydis* (DC.) Corda), and it is linked to the MAPK pathway in virulence regulation (Kohut, Oláh, Ádám, García-Martínez, & Hornok, 2010) A number of genes known to be involved in metabolic process are also implicated in virulence. More specifically, Martínez-Rocha et al. (2008) highlighted the importance of GTP-binding protein as an element implied in the maintenance of a correct cell wall structure in *F. oxysporum*. According to these authors, the loss of the structure could facilitate the recognition of fungal membrane proteins by potential hosts. On the other hand, Caracuel et al. (2003) studied the pH signaling transcription factor in the same species and reported that the expression of this gene was reduced when pH becomes acidic (closer to host conditions) favoring the synthesis of virulence factors (e. g. cell-wall degrading enzymes). In this study, we hypothesized that the genome of *F. circinatum* could include pathogenicity genes with high similarity with other species of *Fusarium*. In consequence, the goal of this research was to annotate candidate genes of *F. circinatum* that could be related with virulence. #### **2 MATERIAL AND METHODS** The prediction of five candidate genes was performed using an empiric approach based on homology between annotated genes available in GenBank (https://www.ncbi.nlm.nih.gov/) and the genome of *F. circinatum* (ASM49732v2; genomes of fungal strains FSP34 and GL1327). The following criteria were fulfilled by the genes selected as queries: a) the reference genes were identified in other pathogenic *Fusarium* spp. (e.g. genes of *F. oxysporum* reviewed by Michielse, & Rep, 2009), b) the complete nucleotide and protein sequences were available in GenBank and c) the biological function of the gene as a pathogenicity trait was previously reported in scientific literature. The accession numbers of genes selected as queries were summarized in Table 1. The encoding regions of each reference sequence was accessed from GenBank, without removing intron sequences. These reference sequences were compared with the complete genome of F. circinatum using MegaBLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (database: whole-genome shotgun contigs (wgs); taxid:48490), to obtain the candidate sequences. The nucleotide sequences for F. circinatum were compared with those deposited in GenBank using BLAST and MegaBLAST algorithms in order to ensure the putative homology with target genes (Table 1). The annotation was assessed if the identity between candidate genes and queries was ≥ 90 %. In parallel, the similarity at protein level between the candidate sequences and those available in GenBank was also checked by BLASTx using the non-redundant protein sequences (nr) database. The specific databases of Fungi (taxid: 4751) and Fusarium sp. (taxid 5506) were selected for more accurate searches (Table 1). Only proteins with a similarity higher than 90 % in at least one search were selected for annotation. The software Geneious 6.0.6 (http://www.geneious.com) was used for sequence trimming and alignment (methods: CluscalW for nucleotide sequences; BLOSUM matrix for proteins), while the software AUGUSTUS 2.5.5 (http://augustus.gobics.de/) was required to predict amino acid sequences available in S2. Regarding gene ontology, the 100 best matches of the BLASTx search (i.e. BLASTx, nr database, Fusarium spp. (taxid 5506) as organism and word size of 3) were used as input data in TABLE 1. GenBank best matches for five candidate genes related with the pathogenicity of *F. circinatum*. QC: Query cover; E: E-value; ID: Similarity between sequences; Coord.: Number of first nucleotide position in the 5′/3′ extreme. nt: nucleotides. | Gene | Accession number (Reference gene) | Type of sequence | Algorith
ms | Databa
se | Limit | Best match ID | Accession number (Best match) | QC
(%) | E | ID (%) | Coord. | Length
(nt) | |--------|-----------------------------------|------------------------------------|------------------|---------------------|--|--|---|----------------|------|--------|-------------------|----------------| | Fcfga1 | GU168785.1 | Protein | BLASTx | nr | Fungi (taxid: 4751) | Guanine nucleotide-binding protein subunit alpha [Hirsutella minnesotensis 3608] | KJZ72861.1 | 90% | 0 | 91% | 2594/384
9 | 1256 | | | | | | | Fusarium (taxid:5506) | guanine nucleotide-binding protein [Fusarium oxysporum f. cubense] | ACF20294.1 | 93% | 0 | 91% | | | | | | Nucleotide | BLASTn | nr/nt | Fungi (taxid: 4751) | Fusarium oxysporum fga1 gene for guanine nucleotide-binding protein alpha subunit, partial cds | AB072451.1 | 100% | 0 | 96% | | | | | | | MegaBL
AST | | Fusarium (taxid:5506) | Fusarium oxysporum fga1 gene for guanine nucleotide-binding protein alpha subunit, partial cds | AB072451.1 | 100% | 0 | 96% | | | | Fcfgb1 | DQ457053 | Protein | BLASTx | nr | Fungi (taxid: 4751) | Guanine nucleotide-binding protein subunit beta [Fusarium oxysporum f. sp. cubense race 1] | ENH75085.1 | 76% | 0 | 98% | 494810/4
96220 | | | | | | | | Fusarium (taxid:5506) | Guanine nucleotide-binding protein subunit beta [Fusarium oxysporum f. sp. cubense race 1] | ENH75085.1 | 76% | 0 | 98% | | 1411 | | | | Nucleotide | BLASTn | nr/nt | Fungi (taxid: 4751) | Fusarium oxysporum fgb1 gene for guanine nucleotide-binding protein beta subunit, partial cds | AB072452.1 | 100% | 0 | 95% | | | | | | | MegaBL
AST | 111/111 | Fusarium (taxid:5506) | Fusarium oxysporum fgb1 gene for guanine nucleotide-binding protein beta subunit, partial cds | AB072452.1 | 100% | 0 | 95% | | | | | HF563555.1 | Protein | DI ACT. | nr | Fungi (taxid: 4751) | putative adenylate cyclase [Fusarium fujikuroi] | KLO87628.1 | 89% | 0 | 99% | 330884/3
38072 | 7189 | | Fcac | | | BLASTx | | Fusarium (taxid:5506) | putative adenylate cyclase [Fusarium fujikuroi] | KLO87628.1 | 89% | 0 | 99% | | | | | | Nucleotide | BLASTn | | Fungi (taxid: 4751) | Gibberella fujikuroi ac gene for adenylate cyclase, strain IMI58289 | HF563555.1 | 100% | 0 | 95% | | | | | | | de MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Gibberella fujikuroi ac gene for adenylate cyclase, strain IMI58289 | HF563555.1 | 100% | 0 | 95% | | | | Fcrho1 | XM_018889260.1 | Protein | BLASTx | c nr | Fungi (taxid: 4751) | mitochondrial <i>Rho</i> GTPase 1 [<i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4 54006] | EXM09411.1 | 99% | 0 | 99% | | 1858 | | | | | | | Fusarium (taxid:5506) | mitochondrial <i>Rho</i> GTPase 1 [<i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4 54006] | EXM09411.1 | 99% | 0 | 99% | | | | | | BLASTn
Nucleotide MegaBL
AST | pr/pt | Fungi (taxid: 4751) | Fusarium oxysporum f. sp. lycopersici 4287 mitochondrial Rho GTPase 1 partial mRNA | XM_018380855.1 | 99% | 0 | 96% | 402 | 1000 | | | | | | MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Fusarium oxysporum f. sp. lycopersici 4287 mitochondrial Rho GTPase 1 partial mRNA | XM_018380855.1 | 99% | 0 | 96% | , | | | FcpacC | XM_018893598.1 | Protein
8.1 | ein BLASTx | nr | Fungi (taxid: 4751) | pH-response transcription factor <i>pacC</i> [Fusarium oxysporum f. sp. vasinfectum 25433] | EXM37240.1 | 99% | 0 | 98% | 144218/1
45606 | | | | | | BLAGTX | 111 | Fusarium (taxid:5506) | pH-response transcription factor <i>pacC</i> [Fusarium oxysporum f. sp. vasinfectum 25433] | EXM37240.1 | 99% | 0 | 98% | | 1389 | | | | | BLASTn | | Fungi (taxid: 4751) | Gibberella fujikuroi pacC gene for transcription factor PACC, exons 1-4 | AJ514259.1 | 100% | 0 | 96% | | | | | | | Nucleotide | MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Fusarium verticillioides 7600 pH-response transcription factor pacC/RIM101 mRNA | XM_018893598.1 | 100% | 0 | 96% | | | All | - | Nucleotide | MegaBL
AST | wgs | Fusarium circinatum (taxid:48490) | - | see text | 100% | 0 | 100% | - | - | BLAST2GO 4.1 software (https://www.blast2go.com/; required e-value: 10⁻¹⁰). This software assigned the ontology of each gene using GO database (http://www.geneontology.org/page/go-database). #### **3 RESULTS AND DISCUSSION** In this study, five candidate pathogenicity genes were detected in the *F. circinatum* genome using *in silico* methods (i.e. *Fcfga1*, *Fcfgb1*, *Fcac*, *Fcrho1* and *FcpacC*; Table 1, Supplementary files S1, S2 and S3). The role that these gene products plays in cellular signaling pathways has already been addressed in other species of the genus *Fusarium*, but these candidate genes have not been previously described in *F. circinatum*. The proposed annotation was supported by gene ontology and results provided by BLAST2GO agreed with the suggested function of each putative gene (Table 2). Minor differences in amino-acid sequence can affect the functionality of the protein. In consequence, high similarities between queries and translated proteins do not guarantee the same biological function. In this study, the similarities between proteins did not reach 100 %, nevertheless even in that case the annotation could not be directly assigned (Punta, & Ofran, 2008). The results reported here (i.e. high homology of sequences and ontology) supported high probability of the same functions between queries and translated proteins. Hence, definitive annotation will require either structural characterization of proteins or biological assays focused on gene expression. The candidate genes *F. circinatum* putative guanine nucleotide-binding protein subunit alpha (*Fcfga1*) and beta (*Fcfgb1*) were identified in the reference genomic shotguns AYJV02000016.1 (genome of fungal strain FSP34) and JRVE01000002.1 (fungal strain GL1327), respectively (Table 1). Guo et al. (2016) studied the disruption effect of *fga2* and *fgb1* genes disruption in *F. oxysporum* f. sp. *cubense* and they found that when the encoding gene of Gα subunit (*fga2*) was silenced, the *in vivo* virulence resulted strongly reduced. A putative adenylate cyclase (*Fcac*) was found in the genomic region of *F. circinatum* identified as JRVE01000018 (fungal strain GL1327. Table 1). In *Fusarium proliferatum* (Matsush.) Nirenberg either virulence (female fertility and *in planta* pathogenicity) or resistance factors (i.e. TABLE 2. Best matches of gene ontology (based on GO database) for five candidate genes of *F. circinatum*. | Candidate gene | Domain | GO term description | GO term ID | | |----------------|--------------------|--|------------|--| | Fcfga1 | Molecular function | G-protein coupled receptor binding | GO:0001664 | | | , o.g.a. | Biological process | regulation of MAPK export from nucleus | GO:0071701 | | | Fcfgb1 | Molecular function | signal transducer activity | GO:0004871 | | | , e.g. | Biological process | heterotrimeric G-protein complex cycle | GO:0031684 | | | Fcac | Molecular function | adenylate cyclase activity | GO:0004016 | | | | Biological process | cAMP biosynthetic process | GO:0006171 | | | Fcrho1 | Molecular function | nucleic acid binding | GO:0003676 | | | | Biological process | fungal-type cell wall biogenesis | GO:0009272 | | | FcpacC | Molecular function | nucleic acid binding | GO:0003676 | | | | Biological process | cellular response to alkaline pH | GO:0071469 | | thermo-tolerance and resistance against oxidative stress) were regulated by a homolog gene of *Fcac* called *Fpacy1* (Kohut et al., 2010). The candidate gene in *F. circinatum* a putative GTP-binding protein (*Fcrho1*) was located in JRVE01000119.1 (fungal strain GL1327. Table 1). The loss of function of the possible orthologue *Rho1* in *F. oxysporum* reduced fungal virulence according to Martínez-Rocha et al. (2008). The last candidate gene analyzed was a putative pH signaling transcription factor (*FcpacC*), whose sequence was found in the genomic shotgun JRVE01000056.1 of *F. circinatum* (fungal strain GL1327. Table 1). Caracuel et al. (2003) reported that a plausible orthologue of *FcpacC* could repress the expression of some pathogenicity genes in alkaline conditions triggering the virulence factors in acidic environments (plant-fungus interface). The metabolic pathways that drive the response of *F. circinatum* against external stimuli (e.g. host metabolites, nutrients, etc.) have not been deeply investigated. Consequently, the results proposed here could improve the knowledge about the basis of pathogenicity in this phylamentous fungus, contributing to better understand the etiology of Pine Pitch Canker disease. ## **ACKNOWLEDGMENTS** This study was supported by two research projects AGL2015-69370-R "Next Generation Sequencing (NGS) technologies for the study of *Fusarium circinatum* mycoviruses" (MINECO/FEDER, UE) and AGL2012-39912 "Biological control of Pine Pitch Canker disease by the use of *Fusarium circinatum* mycoviruses" (Ministerio de Economía y Competitividad). This article is based upon work from COST Action FP1406 PINESTRENGTH (Pine pitch canker - strategies for management of *Gibberella circinata* in greenhouses and forests), supported by COST (European Cooperation in Science and Technology). E. J. Muñoz-Adalia is in receipt of grants from the European Social Fund and from the Consejería de Educación de Castilla y León (JCyL) (ORDEN EDU/1083/2013). ### **REFERENCES** Caracuel, Z., Roncero, M.I.G., Espeso, E.A., González-Verdejo, C.I., García-Maceira, F.I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen *Fusarium oxysporum*. *Molecular Microbiology* 48, 765–779. De Vos, L., Steenkamp, E.T., Martin, S.H., Santana, Q.C., Fourie, G., Van Der Merwe, N.A., Wingfield, M.J., & Wingfield, B.D. (2014). Genome-wide macrosynteny among *Fusarium* species in the *Gibberella fujikuroi* complex revealed by amplified fragment length polymorphisms. *PLoS ONE 9*, 1–18 Guo, L., Yang, L., Liang, C., Wang, J., Liu, L., & Huang, J. (2016). The G-protein subunits FGA2 and FGB1 play distinct roles in development and pathogenicity in the banana fungal pathogen *Fusarium oxysporum* f. sp. *cubense*. *Physiological and Molecular Plant Pathology 93*, 29–38. Kohut, G., Oláh, B., Ádám, A.L., García-Martínez, J., & Hornok, L. (2010). Adenylyl cyclase regulates heavy metal sensitivity, bikaverin production and plant tissue colonization in *Fusarium proliferatum*. *Journal of Basic Microbiology 50*, 59–71. Martínez-Rocha, A.L., Roncero, M.I.G., López-Ramirez, A., Mariné, M., Guarro J., Martínez-Cadena, G., & Di Pietro, A. (2008). Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of *Fusarium oxysporum*. *Cellular Microbiology* 10, 1339–1351. Michielse, C.B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10 (3), 311–324. DOI: 10.1111/J.1364-3703.2009.00538.X Punta, M., & Ofran, Y. (2008). The rough guide to in silico function prediction, or how to use sequence and structure information to predict protein function. *PLoS Comput Biol 4(10)*, e100.160. doi:10.1371/journal.pcbi.1000160 Wingfield, M.J., Hammerbacher, A., Ganley, R.J., Steenkamp, E.T., Gordon, T.R., Wingfield, B.D., & Coutinho, T.A. (2008). Pitch canker caused by *Fusarium circinatum* - A growing threat to pine plantations and forests worldwide. *Australasian Plant Pathology 37*, 319–334. Wingfield, B.D., Steenkamp, E.T., Santana, Q.C., Coetzee, M.P.A., Bam, S., Barnes, I., Beukes, C.W., Chan, W.Y., de Vos, L., Fourie, G., Friend, M., Gordon, T.R., Herron, D.A., Holt, C., Korf, I., Marija, K., Martin, S.H., Kershney, N., Phasha, M.M., Postma, A., Reva, O., Roos, H., Simpson, M., Slinski, S., Slippers, B., Sutherland, R., van der Merwe, N.A., van der Nest, M.A., Venter, S.N., Wilken, P.M., Yandell, M., Zipfel, R., & Wingfield, M.J. (2012). First fungal genome sequence from Africa: A preliminary analysis. *S. Afr. J. Sci. 108*, 1–9. #### **SUPPORTING INFORMATION** S1. Nucleotide sequences of five candidate genes in *Fusarium circinatum*. - S2. Amino acid sequences of five candidate genes in *Fusarium circinatum*. - S3. Alignments of candidate genes and reference ones as nucleotide sequences and protein. TABLE 1. GenBank best matches for five candidate genes related with the pathogenicity of *F. circinatum*. QC: Query cover; E: E-value; ID: Similarity between sequences; Coord.: Number of first nucleotide position in the 5′/3′ extreme. nt: nucleotides. | Gene | Accession number (Reference gene) | Type of sequence | Algorith
ms | Databa
se | Limit | Best match ID | Accession number (Best match) | QC
(%) | Е | ID (%) | Coord. | Length (nt) | | | | |--------|-----------------------------------|----------------------|------------------------------|-----------------------------------|--------------------------------------|--|--|--|--|------------|-------------------|-------------|------|-----|--| | Fcfga1 | GU168785.1 | Protein | BLASTx | nr | Fungi (taxid: 4751) | Guanine nucleotide-binding protein subunit alpha [Hirsutella minnesotensis 3608] | KJZ72861.1 | 90% | 0 | 91% | | | | | | | | | | | | Fusarium (taxid:5506) | guanine nucleotide-binding protein [Fusarium oxysporum f. cubense] | ACF20294.1 | 93% | 0 | 91% | 2594/384
9 | 1256 | | | | | | | Nucleotide | BLASTn | nr/nt | Fungi (taxid: 4751) | Fusarium oxysporum fga1 gene for guanine nucleotide-binding protein alpha subunit, partial cds | AB072451.1 | 100% | 0 | 96% | | | | | | | | | | MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Fusarium oxysporum fga1 gene for guanine nucleotide-binding protein alpha subunit, partial cds | AB072451.1 | 100% | 0 | 96% | | | | | | | Fcfgb1 | DQ457053 | Protein | BLASTx | | Fungi (taxid: 4751) | Guanine nucleotide-binding protein subunit beta [Fusarium oxysporum f. sp. cubense race 1] | ENH75085.1 | 76% | 0 | 98% | 96220 | | | | | | | | | | nr | Fusarium (taxid:5506) | Guanine nucleotide-binding protein subunit beta [Fusarium oxysporum f. sp. cubense race 1] | ENH75085.1 | 76% | 0 | 98% | | 1411 | | | | | | | Nucleotide | BLASTn | mr/mt | Fungi (taxid: 4751) | Fusarium oxysporum fgb1 gene for guanine nucleotide-binding protein beta subunit, partial cds | AB072452.1 | 100% | 0 | 95% | | | | | | | | | | MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Fusarium oxysporum fgb1 gene for guanine nucleotide-binding protein beta subunit, partial cds | AB072452.1 | 100% | 0 | 95% | | | | | | | | HF563555.1 | Protein | DI AOT | nr | Fungi (taxid: 4751) | putative adenylate cyclase [Fusarium fujikuroi] | KLO87628.1 | 89% | 0 | 99% | 330884/3
38072 | 7189 | | | | | Fcac | | | BLASTx | | Fusarium (taxid:5506) | putative adenylate cyclase [Fusarium fujikuroi] | KLO87628.1 | 89% | 0 | 99% | | | | | | | | | 3555.1
Nucleotide | BLASTn | | Fungi (taxid: 4751) | Gibberella fujikuroi ac gene for adenylate cyclase, strain IMI58289 | HF563555.1 | 100% | 0 | 95% | | | | | | | | | | eleotide MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Gibberella fujikuroi ac gene for adenylate cyclase, strain IMI58289 | HF563555.1 | 100% | 0 | 95% | | | | | | | Fcrho1 | XM_018889260.1 | Protein | n BLASTx | | Fungi (taxid: 4751) | mitochondrial <i>Rho</i> GTPase 1 [<i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4 54006] | EXM09411.1 | 99% | 0 | 99% | | 1858 | | | | | | | | | c nr | Fusarium (taxid:5506) | mitochondrial <i>Rho</i> GTPase 1 [<i>Fusarium oxysporum</i> f. sp. <i>cubense</i> tropical race 4 54006] | EXM09411.1 | 99% | 0 | 99% | | | | | | | | | BLA | XM_018889260.1
Nucleotide | BLASTn | | Fungi (taxid: 4751) | Fusarium oxysporum f. sp. lycopersici 4287 mitochondrial Rho GTPase 1 partial mRNA | XM_018380855.1 | 99% | 0 | 96% | 402 | 1000 | | | | | | Nucle | | Nucleotide MegaBl
AST | MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Fusarium oxysporum f. sp. lycopersici 4287 mitochondrial Rho GTPase 1 partial mRNA | XM_018380855.1 | 99% | 0 | 96% | | | | | FcpacC | XM_018893598.1 | Dustain | Drotoin DI | Duatain DI ACT | DI ACT. | DLACT | nr | Fungi (taxid: 4751) | pH-response transcription factor <i>pacC</i> [Fusarium oxysporum f. sp. vasinfectum 25433] | EXM37240.1 | 99% | 0 | 98% | 98% | | | | | Protein | BLASTx | nr
<i>Fusarium</i> (taxid:5500 | Fusarium (taxid:5506) | pH-response transcription factor <i>pacC</i> [Fusarium oxysporum f. sp. vasinfectum 25433] | EXM37240.1 | 99% | 0 | 98% | 144218/1
45606 | 1389 | | | | | | | | BLASTn | | Fungi (taxid: 4751) | Gibberella fujikuroi pacC gene for transcription factor PACC, exons 1-4 | AJ514259.1 | 100% | 0 | 96% | | | | | | | | | Nucleotide | MegaBL
AST | nr/nt | Fusarium (taxid:5506) | Fusarium verticillioides 7600 pH-response transcription factor pacC/RIM101 mRNA | XM_018893598.1 | 100% | 0 | 96% | | | | | | | All | - | Nucleotide | MegaBL
AST | wgs | Fusarium circinatum
(taxid:48490) | - | see text | 100% | 0 | 100% | - | - | | | | TABLE 2. Best matches of gene ontology (based on GO database) for five candidate genes of *F. circinatum*. | Candidate gene | Domain | GO term description | GO term ID | | |----------------|--------------------|--|------------|--| | Fcfga1 | Molecular function | G-protein coupled receptor binding | GO:0001664 | | | | Biological process | regulation of MAPK export from nucleus | GO:0071701 | | | Fcfgb1 | Molecular function | signal transducer activity | GO:0004871 | | | 9 | Biological process | heterotrimeric G-protein complex cycle | GO:0031684 | | | Fcac | Molecular function | adenylate cyclase activity | GO:0004016 | | | | Biological process | cAMP biosynthetic process | GO:0006171 | | | Fcrho1 | Molecular function | nucleic acid binding | GO:0003676 | | | | Biological process | fungal-type cell wall biogenesis | GO:0009272 | | | FcpacC | Molecular function | nucleic acid binding | GO:0003676 | | | | Biological process | cellular response to alkaline pH | GO:0071469 | |