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Large area monitoring plays an important role in the Maritime Domain Awareness initiative. To

effectively monitor long coastlines and further out at sea, a multitude of monitoring techniques are

necessary. One of these techniques, satellite Synthetic Aperture Radar (SAR), can monitor large areas

independent of weather or time of day. SAR imagery is particularly useful in the tracking of ships at

sea as ships are highly reflective objects and become visible against the dark ocean background. This

allows SAR to supplement traditional ship tracking methods such as transponder-based systems as it

requires no cooperation to track the ships.

SAR ship detection research is typically focused on high resolution, smaller width imagery. While

this imagery is an effective way to detect ships and monitor smaller areas such as single harbors, high

resolution SAR imagery cannot provide the necessary coverage to monitor large areas such as national

Exclusive Economic Zones (EEZ). Large swath imagery can provide this coverage but comes with

reduced resolution which in turn limits the minimum detectable ship size. Current methods applied

to high resolution SAR imagery do not necessarily translate well to low-to-medium resolution SAR

imagery and so new methods need to be developed to help improve detection performance on these

types of imagery.



Two novel SAR ship detection techniques are proposed, both of which are tested against a newly

created 46 image, medium resolution SAR imagery dataset. The dataset covers approximately 80% of

South Africa’s Exclusive Economic Zone using two sensors (Sentinel-1 and RADARSAT-2), three

resolutions and four polarizations. The first method extends the conventional Constant False Alarm

Rate prescreening method to allow per-pixel thresholding so thresholds can be adjusted for specific

areas. The method makes further use of Simulated Annealing to help identify areas of probable ships

using an auxiliary transponder dataset. This technique improves the flexibility of previous Constant

False Alarm Rate-based methods and provides a mean detection accuracy of 87.51%, a mean False

Alarm Rate (FAR) of 5.644×10−8 and mean Matthews Correlation Coefficient (MCC) of 0.80. The

second method uses unique ship-like, rapidly calculable features known as Haar-like features to

describe ships. These features are used to train a cascaded classifier to create a ship discrimination

step. The combination of these aspects and an advanced training technique known as AdaBoost creates

a method which can be efficiently applied to medium resolution SAR imagery to provide significant

false alarm reduction whilst maintaining a high ship detection accuracy which provides the best results

of the methods investigated with a mean detection accuracy of 88.71%, mean FAR of 1.940×10−8

and a MCC of 0.89. These two methods are evaluated against a range of other ship detection methods

using various standardized metrics and multiple test scenarios. Finally, the thesis concludes with an

in-depth discussion of the novel methods’ advantages and disadvantages and what possible future areas

of research may be.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Maritime Domain Awareness (MDA) involves the generation of actionable intelligence for any maritime

related activities [1]. Monitoring such activities is necessary for each sea-bordering country but is

infeasible to do so at a global scale. MDA is therefore an initiative seeking to facilitate collaborations

among countries to improve all stakeholders maritime awareness.

A major component of MDA is the understanding and policing of each country’s own Exclusive

Economic Zone (EEZ). The EEZ is an area of water that extends approximately 370 kilometers from

the coast and each sea-bordering country is required to police its EEZ. South Africa’s land mass covers

approximately 1.2 million square kilometers whereas its EEZ covers more than 1.5 million square

kilometers. Due to both its size and unique positioning between two oceans, improvement of South

Africa’s MDA is an important long term goal for the country.

One of the ways in which an EEZ can be monitored is by using remote sensing techniques. These

techniques are provided by two main platforms - airborne and spaceborne. Airborne remote sensing can

provide very high resolution acquisitions with short revisit times but only over a limited geographical

area. Alternatively, spaceborne remote sensing can monitor very large areas at reduced resolutions

at a significantly lower cost per square kilometer than airborne methods. Large areas, such as South

Africa’s EEZ, could not be monitored regularly using airborne remote sensing techniques whereas

spaceborne remote sensing techniques could map this same area within days.



CHAPTER 1 INTRODUCTION

Airborne and spaceborne remote sensing can be supplemented by in-situ measurements to provide

the best overall view of the maritime domain. A number of remote sensing sensors are available

spanning the entire electromagnetic (EM) spectrum [2] aboard both airborne and spaceborne platforms.

Sensors can be passive such as optical or multi-/hyper-spectral sensors or active such as Synthetic

Aperture Radar (SAR) or Light Detection and Ranging (LiDAR) sensors. Passive sensors typically

rely on sunlight to illuminate the area to be observed whereas active sensors use their own form of EM

illumination. Active sensors can therefore be used independent of the time of day. Furthermore, SAR

uses specific bands of the EM spectrum which, under most circumstances, do not interact with weather

conditions making it an ideal candidate to monitor large areas consistently.

SAR imaging works by measuring the power returned from objects as well as the time it takes to receive

a transmitted signal thereby determining distance due to the fixed speed of EM waves (at the speed

of light). Objects that are highly reflective will provide a higher amount of return backscatter which

allows the discrimination of highly reflective targets such as ships from those with lower backscatter

values such as the sea.

The detection of ships within SAR imagery is an open research topic. With the recent influx of free

SAR imagery from the European Space Agency’s (ESA) Sentinel-1 satellite access to the newest SAR

imagery has become a viable means of monitoring large areas. This study aims to develop new methods

for ship detection on the newest SAR imagery with a focus on South Africa’s coast for improving its

MDA. In addition to this the study also aims to develop a deeper understanding of the methods, their

parameters and the metrics used to determine performance of ship detectors.

1.1.2 Research gap

Through the literature investigation of this study three main research gaps were identified.

Initial sample selection (ship prescreening) is currently limited by the usage of a single threshold at

which entire scenes are processed. Due to their varying nature, SAR imagery is often processed with

adaptive threshold methods. This quality should be investigated to identify if more advanced adaptive

methods could improve ship detection performance within SAR imagery.
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False alarm removal or ship discrimination for low-to-medium resolution SAR imagery has clearly

defined limits, in particular with the usage of machine learning for discrimination tasks. Most studies

currently focus on high resolution SAR imagery where ships occupy hundreds of pixels. While

high resolution SAR imagery is useful to help identify ship classes the initial ship detection task is

more simple due to these large ship sizes. Reducing the resolution provides unique challenges and

preliminary literature research has identified this as a potential area for additional research into methods

that can improve performance despite these limitations. Furthermore, identification of ships over a

large area in low-to-medium resolution SAR imagery can guide tasking of higher resolution imagery

over a specific area.

The field of SAR ship detection currently lacks a single, accessible dataset that covers multiple sensors,

acquisition modes and resolutions. Method comparisons across studies are difficult due to different

processing setups (preprocessing, prescreening and discrimination) and datasets that are often unique

on a per-study basis. Research has also revealed a lack of coherent and precise descriptions of ship

detection performance metrics across studies, further blurring possible comparisons between current

and future methods from different authors.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

Recent SAR ship detection has largely focused on the detection of ships at sea in high resolution

SAR data. The objectives of this study include the determining of gaps in current literature focused

on medium-to-low resolution SAR imagery and the development of new methods to improve on

these gaps. Another important topic is the analysis of errors and the metrics by which these are

measured. Performance metrics need to be selected that effectively highlight ship detection methods in

a meaningful manner, across different datasets and acquisition conditions but also across a multi-sensor

dataset which are now more readily acquired. The research conducted here will evaluate the proposed

methods in a scientific and reproducible manner in order to select methods that might work best in a

general, operational setting.

These lead to the following research questions to be answered in this study:
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• What current ship detection method shortcomings can be exploited to improve overall ship

detection in medium resolution SAR imagery?

• Can operational ship detection be accomplished by utilizing machine learning and related

methods?

• Are the current performance metrics used for ship detection results sufficient to underline

performance differences between methods in a meaningful manner across different datasets?

1.3 HYPOTHESIS AND APPROACH

The hypothesis of this study is that current ship detection performance can be improved by applying

new image processing and machine intelligence algorithms to SAR imagery. Furthermore, proper

performance metric standards are necessary to improve comparisons between methods, especially

when used on a large varying dataset.

The study is to be conducted by acquiring SAR imagery and testing current methods followed by

proposing new methods in a scientific and reproducible manner. A thorough investigation into the

current state-of-the-art algorithms, how they compare to the novel methods presented here and the

advantages and disadvantages of the methods presented will also be discussed. The methods will be

tested against one another using reproducible and precise metrics. The results and a discussion thereof

will be compiled into the thesis as the final objective of this study.

1.4 RESEARCH GOALS AND CONTRIBUTIONS

The research goals of this thesis is to provide a stringent study on the various methods of ship

detection in SAR imagery by improving the research connection between remote sensing and machine

learning. The thesis will aim to identify the various methods advantages and disadvantages against a

systematically created SAR ship dataset and utilize additional MDA transponder data.

The research was expected to generate two published journal articles to remote sensing journals.

The first, “Manifold Adaptation for Constant False Alarm Rate Ship Detection in South African
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Oceans” will present an extension to a conventional ship detection prescreening algorithm and combine

additional sources of data to improve the detection capabilities of current ship detection methods

in medium resolution SAR imagery [3]. The second, “Synthetic Aperture Radar Ship Detection

Using Haar-Like Features” describes a framework for detecting ships using unique ship-like machine

learning features extracted from SAR imagery, trained and classified using advanced machine learning

techniques to provide state-of-the-art ship discrimination [4]. In addition to the above, the study was

also expected to generate a number of internationally accepted conference papers to identify relevant

areas of research including the usage of object saliency [5], H-dome transformations [6] and Gabor

wavelet extraction [7] for SAR ship detection. These contributions aim to add to the remote sensing,

SAR and machine intelligence research body of knowledge while highlighting the necessity of research

into these topics in a South African context.

1.5 OVERVIEW OF STUDY

This study is composed of seven chapters: Chapter 2 provides an introduction and literature review

of MDA and ship transponders and where remote sensing is used in the context of MDA. Chapter 3

present an introduction into SAR with a focus on SAR for MDA applications. Chapter 4 provides the

literature review of ship detection at the present whilst Chapter 5 introduces two novel ship detection

techniques aimed to overcome shortcomings identified in the literature study. Chapter 6 provides

an in-depth study of the ship detection dataset used to test the newly developed methods. Chapter 7

analyses the performance of these methods and provides a discussion thereof. Chapter 8 provides a

conclusion and discussion of possible future work.
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2.1 CHAPTER OVERVIEW

To better contextualize where SAR fits into the greater ship detection picture MDA as a concept needs

introduced. This chapter describes what is MDA, what South Africa’s role in it is and provides insight

into the current and future of solutions used for wide-area maritime monitoring such as transponders

and remote sensing.

2.2 MARITIME DOMAIN AWARENESS

Maritime Domain Awareness is the monitoring and understanding of all maritime-related activities [1,

8, 9]. Activities that affect the environment, economic and security aspects of a country’s maritime

domain require maritime monitoring. All entities are responsible for monitoring their own maritime

domains but some specific goals are also included in the MDA initiative, including:

• Identification of potential and verifiable maritime threats.

• Creating a common maritime monitoring goal among governmental, national and international

partners.

• Execution of countermeasures.

No single country can monitor all maritime domains and cooperation in many areas is key to the success

of MDA [8]. Despite this, countries have a responsibility to monitor and police their own waters.

Specifically, countries need to ensure their territorial waters (extending approximately 22km from the

coast) and EEZ (approximately 322km from the coast) are regulated and monitored constantly.
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Countries’ EEZs are threatened by a number of maritime-related activities. One major threat is illegal,

unreported and unregulated fishing (IUU) [10]. It has been estimated that worldwide economic losses

due to IUU fishing amount to between $10 and $23.5 billion annually. IUU fishing also poses the

highest threat to developing countries, such as South Africa, which are expected to lose approximately

$1 billion due to IUU fishing [10, 11]. Other major problems related to the maritime domain include

drug and human trafficking, piracy and terrorism [12].

A number of countries are actively invested in MDA. The United States was one of the first countries

to instantiate a national MDA directive [8]. This directive allowed for the creation of support networks

with foreign governments to not only improve the United State’s maritime knowledge but also that of

its maritime partners. A number of maritime partners have used these directives in their own plans for

MDA improvement for their own region. Canada, possessing the longest coastline in the world, is also

a significant contributor to global MDA relations and has maintained its own MDA directives since

at least 2004 [13]. Similar to the efforts from the USA, the Canadian government recognized that to

effectively monitor all domains related to maritime security an improved collaboration between itself

and other MDA countries was necessary. Finally, another significant global MDA partner is Norway

which posses a long coastline thanks to its fjords and Svalbard. It has provided valuable inputs into the

European Union’s MDA policies [14].

South Africa has been a key supporter of improved MDA on the African continent. It has a long

coastline (approximately 3900km long) and has an EEZ which covers a larger area than that of its

land (Figure 2.1). One of the busiest routes between the East and West is the Cape Sea Route, catering

for approximately 30% of European and American bound oil from the Middle East [15]. The ocean

contributed approximately $7 billion to South Africa’s Gross Domestic Product and approximately

316 000 jobs in 2010 [16]. It has been estimated that the South African ocean economy could rise to 1

million jobs in the future and as such focus on this has taken on renewed interest in an intergovernmental

initiative called "Operation Phakisa". This initiative seeks to place more focus on South Africa’s "blue

economy" by empowering growth in various sectors related to the ocean including Marine Protection

Services and Ocean Governance [16], which indirectly calls for improved MDA.

Various solutions are available to MDA countries to perform maritime monitoring. The first is in-situ

and on-the-ground measurements. These methods typically work well for smaller marine areas that

need to be monitored constantly with real-time updates but are affected by limited range. To monitor
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South Africa

South 
Africa (Land)
Exclusive 
Economic
Zone (EEZ)

Figure 2.1. Comparison between South Africa’s EEZ and its land area. South Africa’s EEZ covers

approximately 1500000km2 while its land which occupies approximately 1200000km2.

large areas, such as the South African EEZ, two different yet related types of solutions exist. The first,

transponders, is a means of monitoring ships at sea using their cooperation. A second method, remote

sensing, uses a platform such as a satellite which is unconnected to the ocean or ships to monitor areas

from a distance.

2.3 TRANSPONDERS

To effectively monitor the oceans a means of tracking the various ships at sea needs to be utilized [17].

Ships are necessary to travel the seas and as such any method that helps to track these ships is necessary

for safety, security and enviornmental reasons. Transponders are devices which can help track ships

at sea by acting as a tracking device installed onboard the ships. They are installed onto some ships

and transmit the ship’s position and other details at regular intervals and are received via terrestrial or

satellite-based receivers [18].
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2.3.1 AIS

The Automatic Identification System (AIS) has become one of the most widely-spread transponder-

based tracking systems for MDA [19]. It was first introduced in Sweden in 1993 and was later developed

into a ship tracking system. The International Maritime Organization (IMO) mandated that by 1 January

2005, all ships with a gross tonnage over 300 engaged in international travel, all cargo ships with gross

tonnage over 500 and all passenger ships are required to carry an AIS transmitter [19, 20].

AIS has two types of transponders, class A (primarily installed on commercial ships) and class B

(primarily installed on fishing ships). These transponders use Very High Frequency (VHF) trans-

mission bands and have a Global Position System (GPS) device installed to determine the device’s

position [20]. These transponders use International Telecommunication Union (ITU) protocols to

transmit information such as the ship’s Maritime Mobile Service Identity (MMSI), IMO number,

position (longitude/latitude), date/time, length, breadth and heading [19].

A technique known as Time Division Multiple Access (TDMA) is used which allows multiple AIS

transceivers to allocate transmissions within a limited bandwidth [20]. AIS has two frequencies used

for broadcasting which makes provisions for up to 4500 different communication channels every

60 seconds. Transmission interference is mitigated by utilizing bidirectional transmission on both

channels. Ships are granted time slots within a 60 second interval and are required to register their

next time slot during their current one. AIS allows for adaptable processing which prefers closer ships

to more distant ones which is due to the design of AIS as a collision avoidance system.

AIS can be received in two primary manners. The first is via coastal-based receivers which receive

transmission signals within Line-of-Sight (LOS) and have near-real time temporal frequency. To track

ships further out at sea using AIS satellite-based receivers need to be employed. When AIS messages

are received via a satellite and relayed back to a ground station it is known as Sat-AIS. Sat-AIS has a

more course temporal frequency but allows for the monitoring of ships globally.
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2.3.2 LRIT

Long-Range Identification and Tracking (LRIT) is another ship transponder system. It is similar to

AIS but only operates using satellite-based receivers. The IMO introduced the Safety of Life At Sea

(SOLAS) resolution which detailed the implementation and enforcement of the LRIT system [20].

LRIT is now mandated for all ships from 2008 onwards and is mandatory installation for all passenger

ships, high speed ships and cargo ships with gross tonnage of 300 and over.

LRIT makes provision for member states to request timely reports of ship identity and location. These

requests can be made by member state ships or those ships which fall within the member state’s

coastline. There are two types of reports: on-demand and prescheduled. Both versions are configured

in a request/response manner whereby ships on international voyages need to send reports with their

identity, position and time/date stamp. Prescheduled reports need to be transmitted at least every 6

hours whereas on-demand reporting has no such limits. Message reporting frequencies can range from

a maximum frequency of one report every 15 minutes (96 reports every 24 hours) to a minimum of 1

report every 6 hours (4 reports every 24 hours). Member states can further request reports that inform

when a ship is within 1000 nautical miles from its coastline. Similarly, ports can request reports from

ships requiring entry.

The primary difference between AIS and LRIT is that LRIT has positional access control. AIS data is

broadcast freely and unencrypted so anyone with a compatible AIS receiver can receive AIS messages,

decode them and have the positional information of any ships within range. LRIT’s member state

access list ensures that only groups with the correct permissions can view the information contained

within the LRIT messages. This level of security is highly desirable for commercial entities to privately

keep track of their assets.

2.3.3 VMS

The Vessel Monitoring System (VMS) is one of the primary ways of tracking fishing ships at sea. In

a similar manner to LRIT, VMS transponders transmit the ship’s position, name, MMSI and other

information to a satellite-based receiver which then relays these messages to the partners associated
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Table 2.1. Various types of transponder systems including AIS, LRIT and VMS with details on

coverage, message delay and data access, derived from information in [23].

Terrestrial Satellite

Attributes AIS SAT-AIS LRIT VMS

Coverage Coastal LOS 85km Global Global Global
Message Delay Real-time (minutes) ±6 hours ±6 hours ±6 hours
Minimum Reporting Interval (s) 2 3600 900 1800
Data access Open Closed Closed Closed

with that fishing ship. VMS supports the ability to log fishing catches so fishing effort can be

studied [21].

VMS typically transmits messages to the receiver every 30-120 minutes, depending on the region the

ship is in. In much the same way as LRIT, VMS is a closed-access system whereby only registered

receivers will receive updated information about the ships pertinent to them. VMS has seen usage in

a number of cases, including marine spatial planning for marine protected areas, documentation of

fishery track records and analysis of maritime fishing trip efficiency [22, 21].

VMS is of particular interest to countries who use fishing as a means of income. Generally fishing

ships that operate within an EEZ are mandated to carry and transmit their fishing catches and ship

information using VMS. This allows the fishing authority in any given country to determine the number

of foreign flagged fishing ships within the EEZ.

2.4 TRANSPONDERS FOR MONITORING

To understand how effective transponders are at tracking ships at sea we need to first identify each of

the advantages and disadvantages of the different methods. Table 2.1 provides an overview of the most

important characteristics of the different transponder-based ship tracking methods.

The table shows how conventional AIS can only keep track of ships within LOS from the coast whereas

the other solutions all have global coverage. A system overview of these methods work is shown in

Figure. 2.2. Despite this greatly extended coverage, the satellite sensors have two difficulties. The first

is a message delay and the second is message congestion. For satellite-based transponders the delay

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

11



CHAPTER 2 MARITIME DOMAIN AWARENESS

between transmission to the client receiving the message can be hours [24] whereas terrestrial AIS can

have message delays within minutes. The difference is due to how the data is relayed back as shown in

Figure. 2.2. If the nearest data server is in the direction opposite to the satellites orbit direction then

delays can be even greater as the data has to be sent to next nearest data server and then processed then

forwarded on to the data receiver.

Another significant issue with the original AIS specifications is the system was designed for a fixed

number of slots per minute for ships to transmit their message and reserve their next spot. Due to

the fact that space-based AIS has a much wider foot print, the number of ships present increases

and therefore can cause congestion issues not planned for previously. Studies have shown that this

congestion create a limit to the number of ships that are detectable for a given satellite coverage

footprint [24]. For instance, an AIS satellite with a coverage receving width of 150km has a less than

1% chance of receiving all information for all ships in that area if that specific area has more than 3000

ships within it [24]. Various techniques can be used to reduce this problem but even then delays in

reporting frequency and other issues occur which cannot be readily fixed without additional satellites

or using alternative frequency AIS modes and similar solutions [24].

Finally, the single biggest issue with transponder-based systems is that they can be turned off, sabotaged

or damaged. If a transponder system is not transmitting its location then the ship cannot be tracked

using a transponder and as such transponder tracking is known as “cooperative tracking” [25]. This

means the ships need to cooperate in sending their positional information, in a timely and correct

manner. In some instances even if the ships do send their position information this information

can be falsified [26]. Despite these shortfalls transponder-based tracking is widely used for ship

tracking [18]. These methods can be supplemented using a wide-area non-cooperative method such as

remote sensing.

2.5 REMOTE SENSING

The observation of the Earth’s features using a platform unconnected to the area of observation is

known as remote sensing. Airborne- and satellite-based instruments are used to infer characteristics

of objects on the Earth’s surface using their geophysical properties for identification [2]. These

instruments emit and receive EM radiation which is then analyzed to provide interpretations of the
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Figure 2.2. Transponder systems and their ranges. Coastal AIS coverage extends approximately 74km

from the coastline whereas the EEZ extends approximately 370km from the coastline [20, 24]. Ships

outside the coastal AIS range can relay their positional information to a satellite in a similar manner to

LRIT and VMS.

physical situation not in direct contact with the observer [2]. This provides the observer with the ability

to monitor areas which may be inaccessible to them or to observe larger areas than could be done using

ground-based in-situ measurements.

Satellite-based remote sensing provides a means of monitoring large ocean areas which can improve a

country’s MDA [17, 27, 3]. The techniques for MDA observation range from optical satellites and

LiDAR to radar at various wavelengths.
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2.5.1 Electromagnetic Radiation

Remote sensing sensors uses emitted and reflected EM radiation to observe large areas using either

passive or active EM instruments. Passive instruments use the reflected radiation from the Sun to

observe an area by measuring how much of the Sun’s EM radiation is reflected or absorbed. Active

instruments transmit their own pulses of EM energy and the interaction of these pulses with the objects

is then used to discriminate amongst targets.

EM radiation is divided into a number of bands known as the EM bands [2, 28]. Each band relates to

different aspects of the EM spectrum such as visibility and associated power/frequency. An example

of the distribution of different EM wavelengths, their associated instruments and names is shown in

Figure 2.3.

The applications of these bands vary from land cover applications using the electro-optical Moderate-

resolution imaging spectroradiometer (MODIS) [29] and L-band SAR sensors [30] to C-band

ocean [31] and LiDAR-based sea ice measurements [32]. This study will give a general overview of

the different sensors used to improve MDA but will focus on the application of SAR imagery for ship

detection.

2.5.2 Remote sensing and monitoring for MDA

The first civilian remote sensing platform for ocean monitoring SeaSAT [2] launched in 1978 and

provided the first SAR-based sensor to the remote sensing community. Since then, remote sensing of

the maritime platform has grown to make use of most of the EM bands for maritime monitoring [2,

32, 29, 30]. Two types of EM sensors are of particular interest to MDA, namely passive and active

sensors:

Passive sensors Spectral sensors use the EM radiation from the Sun to observe maritime areas

passively and can be airborne or spaceborne [28]. Depending on the instruments aboard the

platform, the sensor can make use of multi-/hyper-spectral, infrared or visible EM radiation

to observe different properties of the ocean [2, 28]. These sensors are of particular interest to

oceanographers for environmental purposes [28].
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Figure 2.3. The various EM bands and their wavelengths ranges for the EM sensor instruments. This

graph shows the most common EM spectra used for remote sensing including the electro-optical,

LiDAR and radar bands.

Active sensors Radio detection and ranging (radar) is an active remote sensing technique which

transmits EM pulses of energy in the 1mm−1m range and measures the time taken for these

pulses to return to determine distance to the target [18, 2, 33]. Radar remote sensing can be

terrestrial-based [34] or satellite-based [2] depending on the footprint required to monitored.

Some radar EM bands, such as C-band SAR, are useful for monitoring large ocean areas as they

do not interact with clouds which can be a problem for Electro-optical EM sensors [18, 2, 31].

Often the radar wavelength is chosen based on what specific application is necessary. For

instance, LiDAR uses the same principle as radar but emits EM waves with wavelengths of

approximately 1.064µm to measure structures such as sea surface ice [32].

2.5.3 Spectral- vs radar-based remote sensing

Table. 2.2 presents the most pertinent differences between Spectral-, LiDAR- and radar-based remote

sensing. These are general concepts but in some cases there may be sensors that do not follow this

table such as the Visible Infrared Imager Radiometer Suite (VIIRS) day/night band spectral sensor [35]
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Table 2.2. Comparison between Optical/Spectral imaging, LiDAR and radar based remote sensing

instruments. Note these are general observations that occur and in some cases are not always true (e.g.

High precision interferometric SAR needs to take weather into account).

Attributes Spectral LiDAR radar

Supported Platforms Spaceborne & Airborne Airborne Spaceborne & Airborne
Measurement technique Passive Active Active
Measurement type (primary) Chemical Geophysical Geophysical
Measurement spectrum Visible & Infrared Infrared Microwave
Acquisition time Day Day & Night Day & Night
Weather Dependence Impeded by cloud cover Impeded by cloud cover Weather-independant
Bands of Operation 10 (Multi) to 1000 (Hyper) Single Single
Polarimetry Not Applicable Not Applicable Available
Interferometry Not Applicable Not Applicable Available

or multi-band SAR [36]. The major advantage of radar-based imaging is that it can monitor areas using

active EM waves which allow it to circumvent problems such as cloud cover or lack of night-time

acquisitions. Another reason is ships further out to sea are larger and hence are of metal construction

which is highlighted well using active sensors [18]. Optical imagery can be hampered by these factors

which play a significant role in identifying targets for MDA and as such radar-based remote sensing

was chosen as the focus of this study above that of optical imagery.

2.6 CONCLUSION

MDA is an important part of any country’s agenda and specifically those bordering on the sea. This

chapter introduces what it is, how it seeks to improve all sea-bordering countries maritime domain

knowledge and which are the important members of the MDA initiative. South Africa long coastline

and large EEZ contributes to the requirement of improving its maritime monitoring capabilities.

It was shown that to improve maritime ship monitoring two main methods are employed, namely

transponder-based systems and remote sensing systems. Transponder-based monitoring is the most

widely used method for ship tracking. By installing a transponder on a ship it can be monitored at

various distances depending on whether the receiving is done via land or satellite receivers. Despite

its ubiquity, transponder-based systems have some disadvantages such as LOS issues, congestion or

closed data-access policies. The biggest disadvantage transponder-based systems have is that they

require the cooperation of the ship to work correctly. If the ship turns off the transponder then the ship

cannot be tracked.
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To supplement transponder-based monitoring, remote sensing monitoring techniques can be used. In

the ideal situation all sources of data, remote sensing or otherwise, would be combined to get the best

possible MDA picture. Often, however, selections of which sensors to implement need to made due to

man-power, time and budgetary constraints. To this end the remote sensing instruments with the biggest

initial impact need to be chosen. Given the long coastline that South Africa possesses, the probability

of cloud cover and likelihood of night-time illicit activities, the remote sensing method selected for

research in this thesis was radar-based imaging. More specifically, the thesis focus on SAR-based

observations from spaceborne platforms. This has the acceptable combination of large swaths, revisit

times and most recently low-cost per square kilometer due to free access to SAR imagery.
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3.1 CHAPTER OVERVIEW

This chapter will give a general overview of SAR, how SAR imagery is formed and discuss some of its

parameters. This chapter will also introduce SAR variants as well as some sources of errors including

those common to maritime applications. Finally, an introduction into a few of the most prominent

SAR satellites will be given with focus on satellites for MDA.

SAR is an active remote sensing technique which can penetrate cloud cover and illuminate large scenes

during any time of day [2, 18, 33]. SAR sensors operate on airborne or spaceborne platforms, but for

the purpose of this work it is assumed that any reference to SAR herein is referencing spaceborne SAR.

This is due to the wider area that can be covered at a reduced cost per area. Due to the fact that radar is

an active sensing technique SAR imagery provides a view of the Earth that is independent of the Sun’s

illumination which benefits MDA greatly by allowing observations to take place during the night time

when illicit activities are difficult to see far out in the ocean (see Figure 3.1).

3.2 SAR PRINCIPLES

SAR is a form of radar that is used to image objects within a given scene. SAR uses the relative motion

of the platform to synthesize a longer antenna than would typically be physically possible. The SAR

platform transmits successive radar pulses and measures the time and power of the returned echos.

The platform moves a given distance between the transmission and receiving of a radar pulse and

this distance determines the synthetic length of the SAR sensor’s antenna. Generally, the longer the

radar antenna aperture the better the SAR resolution. The location of the SAR sensor’s antenna also
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changes with respect to the object in time thanks to the Doppler effect [37]. Signal processing utilizes

this time delay and Doppler frequency separation to form SAR images which are independent of the

distance to the targets and yet can have sub-meter resolution, even from spaceborne platforms. SAR is

also a side-looking technique in that SAR images are taken facing the left or right, depending on the

configuration of the SAR platform. The side-looking nature of SAR is necessary to separate objects

using radar principles and provides a unique perspective on surface objects. The side-looking nature

also brings about its own artifacts unlike those in conventional optical imagery and these need to be

understood to properly analyze SAR imagery [2].

The power signals returned from objects in SAR imagery are often referred to as backscatter. SAR

sensors provide radar backscatter measurements which are influenced by the structure and roughness

of objects on the surface. Objects within these images that are specular reflectors, such as ships, will

return a higher backscatter compared to diffuse reflectors, such as the ocean. Finally, smoother objects

such as a calm ocean area will have a higher backscatter compared to turbulent ocean areas [18].

Figure 3.2 gives a general overview of some of the terms used in SAR image processing.

3.2.1 SAR Imaging

SAR imaging is the process of converting the raw signals from two directions to create a SAR image.

Raw SAR data is a record of signal energy in the range and azimuth directions. The range direction is

the direction perpendicular to the platform’s flight path whereas the azimuth is all components parallel

to the flight path of the SAR sensor. Imaging objects in the range direction uses the time/distance

principle of radar. The SAR antenna transmits EM pulses at regular intervals known as the pulse

repetition frequency (PRF) to separate targets using their delayed responses. Targets closer in the

range direction will reflect these pulses before those further away. This time delay between near and

far range targets allows SAR imagery to separate targets in the range direction. Given the time taken t

for an EM pulse traveling at the speed of light c to return to the transmitting instrument, the slant range

distance xr to the target will be

xr =
ct
2
, (3.1)

where the factor of 1
2 accounts for the distance traveled there and back by the EM pulse [37].

To separate targets in the azimuth direction SAR imaging relies on the assumption that targets are at
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Figure 3.1. A SAR satellite image over Cape Town, South Africa (33.9249◦ S, 18.4241◦ E). The

image comes from the Canadian satellite RADARSAT-2 and was imaged on the 5th October 2014 at

04:06 AM. The image was taken in a dark setting yet the scene is clearly illuminated and covers an

area of 300km×300km. Notice how the mountain areas tilt towards the bright (nadir) position along

the right of the image. Furthermore, areas around the bay have dark areas of ocean area surrounded by

brighter areas of water. These are all effects of SAR imaging that will be discussed in this chapter.

different angles with respect the flight path of the antenna which causes the targets to have slightly

different relative speeds. This difference in speed causes a shift in the observed frequency of a

transmitted signal due to the Doppler history effect [37]. By noting the difference in frequencies

observed at the antenna from those transmitted, SAR imagery is able to separate targets moving parallel

to the flight of the antenna. Given a target reflecting EM pulses with original frequency fs, moving
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Figure 3.2. SAR imaging principles and common terms.

away from the antenna with a velocity of v, the observed frequency fo will be

fo =

√
1−
( v

c

)
1+
( v

c

) fs. (3.2)

When a reflecting target is moving towards the antenna the observed frequency will be

fo =

√
1+
( v

c

)
1−
( v

c

) fs. (3.3)

This indicates that targets moving away will have a lower observed frequency whereas ones approaching

the antenna will have a higher frequency. Using this shift in frequency due to the Doppler effect to

resolve targets in the azimuthal direction was previously known as Doppler beam sharpening (frequency

domain) but is now referred to as SAR processing (time domain) [37, 38].
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3.2.2 Incidence Angle, Ground Range and Slant Range

One important distinction of SAR is that it is a side-looking remote sensing technique. The side-looking

aspect is necessary in order to provide separate targets in the azimuth direction with a higher resolution

compared to real-aperture radar [37].

The angle made between the nadir and radar beam direction is known as the look angle. The look

angle of space-based SAR platforms typically varies between 20◦−40◦ and varies from the near to

the far range of the platform as shown in Figure 3.2. A related term, the incidence angle, is the angle

between the radar and the surface normal. When assuming a flat Earth area and a low altitude then

the incidence angle is equal to the look angle of the platform. Due to the effect of the curvature of

the Earth and height of the platform in spaceborne SAR, look angle and incidence angle cannot be

considered the same. In this case, we refer to incidence angle as the local incidence angle which may

vary from resolution cell to resolution cell [37].

The incidence angle of the platform determines the angle at which the objects on the surface are

measured. For range measurements, the distance to the target is the direct line of sight from the

platform to the object as calculated in equation (3.1) for a given local incidence angle. This range is

known as the slant range yet most literature and SAR imagery work is done on the ground range which

is size of the across track beam on the ground. Given a local incidence angle of an object of θ and a

slant range distance of xr, the ground range distance xg is

xr = xg sinθ ,

xg =
xr

sinθ
. (3.4)

This projection from ground to slant ranges can cause artifacts that are only applicable to side-looking

imaging. These effects are generally caused by differing heights of objects compared to one another

but are less of a problem for maritime applications.

The monitoring of an area can be highly dependent upon the resolution of the imaging platform used.

For maritime domain awareness, all aspects of the resolution of the data plays an important role in

defining the limits of the system, where and how often the platform can monitor a specific maritime

area and what data can be reasonably expected so that sensible comparisons across acquisitions can be
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made. In addition to this, the range and azimuth resolutions are often different and therefore require

different techniques to extract meaningful data.

3.3 RANGE RESOLUTION

Range resolution refers to the minimum separable distance between two targets in the across-track

distance. Assuming two targets separated in the slant range the time difference between each pulse ∆t

(and therefore target’s echo) can be defined as

∆t =
2xr

c
, (3.5)

where, as in equation (3.1), the 2 accounts for the round-trip time of the pulse. Due to the fact that two

targets can only be separated if the leading edge of the second target is received after the trailing edge

of the first target, we can assume that the smallest separable time difference is equal to the effective

length of the pulse τ such that ∆t = τ [37]. Using equation (3.4) we can then define the slant xr and

ground range xg in terms of effective time length as

xr =
cτ

2
, (3.6)

xg =
cτ

2sinθ
. (3.7)

It is important to note that ground range resolution is therefore dependent on the local incidence angle

and can vary due to local slopes in an image.

To properly image an area using SAR an effective level of signal needs to be returned compared to

noise in the system. A high Signal-to-Noise Ratio (SNR) is required to effectively image an area in

SAR. A high SNR in SAR imaging can be achieved using either high power peak transmission signals

or long pulse durations. Power on a spaceborne platform is a finite resource and thus continually

transmitting with high peak power is not feasible. Therefore, to achieve high SNR long pulse widths

are required but this has an adverse effect on resolution according to equation (3.7). To circumvent this

high SNR/high resolution trade off, SAR sensor designers employ signal modulation techniques.

To understand how signal modulation can improve range resolution we need to convert the problem

into the frequency domain. Effective pulse width is typically defined in terms of system bandwidth

such that

τ =
1
B

(3.8)
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where B is the system bandwidth measured in hertz [37, 39]. To achieve a large bandwidth which is

a small effective time length a chirped signal is used. A chirp is a signal whose frequency is varied

linearly while the pulse is being transmitted. Assuming the frequency f0 is changed by ∆ f then

from [37, 39] system bandwidth can be defined as

B = |( f0 +∆ f )− f0|,

= |∆ f |. (3.9)

Here B is independent of the physical pulse length τp thus allowing a long τp which improves SNR

while simultaneously allowing wide bandwidth B. A high B decreases effective time length τ thereby

improving range resolution. It should be noted that while the time difference returns from targets much

smaller than τ cannot be separated in time, they can be separated in the frequency domain [37]. If the

frequency is modulated using chirping then the returns from two targets will have different frequencies

and thus can be separated using a matched filter.

Finally, using the above including equations (3.7), (3.8) we can define the resolution in the slant range

∆xr and ground range ∆xg as

∆xr =
c

2B
, (3.10)

∆xg =
c

2sinθB
. (3.11)

where ∆r and ∆g refer to the smallest distance in meters targets are separable in range by the SAR

imaging.

3.4 AZIMUTH RESOLUTION

Azimuth resolution is the ability of the sensor to distinguish targets in the along track direction. Two

targets in the azimuth direction are separable because they have different angle relative to the velocity

vector of the platform [37]. This difference in angle causes a difference in Doppler frequencies which

can then be filtered in order to separate targets.
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Assuming target that is moving towards the antenna with velocity v, with original frequency fs and

observed frequency fo and given that c >> v, we can reformulate equation (3.3) as

fo =

√
1+
( v

c

)
1−
( v

c

)√1+
( v

c

)
1+
( v

c

) fs,

=

√√√√ (
1+
( v

c

))2(
1−
( v

c

))(
1+
( v

c

)) fs,

=

√√√√√(1+ ( v
c

))2

1−
(

v2

c2

) fs,

≈
(

1+
v
c

)
fs, (3.12)

because v2

c2 tends to zero when c >> v. The shift in Doppler frequency is the difference between the

observed and original frequency multiplied by two to account for the shift on the way and back to the

platform [39, 40]. Using equation (3.12), the Doppler frequency observed at the antenna fD is

fD = 2( fo− fs) ,

= 2
((

1+
v
c

)
fs− fs

)
,

= 2
(

fs +
v
c

fs− fs

)
,

=
2v fs

c
, (3.13)

which provides a means of separating targets based on their observed shift in frequencies. Assuming

two targets are the same range distance of XR, we can define the velocity of the platform v in terms of

the target’s relative velocity to the platform vrel as

v =
yvrel

XR
, (3.14)

where y is the azimuth distance between the two targets [39, 37]. The original frequency fs of the

transmitted pulse can be defined in terms of the transmitted wavelength λ such that fs =
c
λ

. Using this

and equations (3.13) and (3.9) the resolution in the azimuth direction can be defined in terms of the
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Doppler bandwidth as

fD =
2 yvrel

XR

c
λ

c
,

=
2yvrel

λXR
,

y =
λXR

2vrel
fD,

∆y =
λXR

2vrel
∆ fD,

=
λXR

2vrel
BD. (3.15)

Finally, the SAR sensor has a radar beam width (footprint) Φy which is defined as Φy =
λ

Ly
where Ly is

the length of the antenna in the azimuth direction [39]. If the target remains within this beam-width for

a time τD, this Doppler time can be defined in terms of the above terms such that

τD =
y

vrel
,

=
XRΦy

vrel
,

=
XRλ

Lyvrel
. (3.16)

As the bandwidth is the inverse of the time (see equation (3.8)) and by using equations (3.15) and (3.16),

we can define the final azimuth resolution as

∆y =
λXR

2vrel

1
τD

,

=
λXR

2vrel

Lyvrel

XRλ
,

=
Ly

2
. (3.17)

This is one of the fundamental properties of SAR imaging from space and shows that the achievable

azimuth resolution is approximately equal to half the length of the antenna in the azimuth direction. It

is independent of wavelength and distance to the target. This counter-intuitive result can be explained

by the fact that a smaller antenna has a larger footprint on the surface (Φy =
λ

Ly
) which means a

longer synthetic array is in effect allowing a longer observation time for each point. This increase in

observation time increases the Doppler bandwidth which accounts for a finer surface azimuth resolution.

An important point to note is that the radar antenna cannot just be reduced to any desired resolution as

a number of factors such as PRF/sampling frequency, antenna pattern and so forth.
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3.5 RADIOMETRIC RESOLUTION

Radiometric resolution is the average spread of the variation for every resolution cell within the SAR

image. It determines the ability of the sensor to distinguish two targets based on their normalized

return value. The radiometric resolution Y can be defined in terms of mean and standard deviation

image intensity µ and σ such that

Y= 10ln
(

σ +µ

µ

)
, (3.18)

where lower values for Y mean improved radiometric resolutions [41]. The variation in each resolution

cell of the SAR image is determined by a few well-known effects that are prevalent in SAR including

concepts such as speckle noise, thermal noise and signal degradation.

In practical terms the radiometric resolution determines the finite number of quantization levels a radar

return is recorded at. Most SAR products are released as unsigned 16-bit images which can allow for

a radiometric resolution of 65536 different levels of brightness. In most situations this radiometric

resolution is enough to allow for meaningful comparisons between images but can hinder applications

such as interferometry and polarimetry [41].

3.6 TEMPORAL RESOLUTION

Temporal resolution refers to the rate at which a specific area can be monitored (i.e. the days between

acquisitions of that area). The orbiting nature of SAR satellite platforms means that there are two

different types of temporal resolutions when referring to SAR imagery, namely repeat and revisit

times. Repeat frequency refers to how often the satellite can monitor the exact same area with the

exact same imaging conditions for any given position on Earth. Revisit frequency refers to how often

the satellites can image a given area for varying imaging conditions, such as altered look angle or

ascending/descending acquisition. Repeat times are an estimate of the time between exact imaging

conditions necessary for some types of SAR processing (such as interferometry). Revisit times give

an estimate of time it would take to image a given area for operational monitoring that do not require

continual acquisition. Typical repeat times can vary from 6 days for the Sentinel-1 A/B to about 34 days

for Environment Satellite (ENVISAT). Revisit times are reduced because the exact same positioning

is not required and some studies show that given the combination of two satellite constellations
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(COSMO/SkyMed and RADARSAT Constellation Mission (RCM)) a mean revisit time of 7 hours can

be achieved [42].

3.7 SAR FORMATS

The amount of data the sensor receives is vast and techniques to process this data into usable SAR

imagery takes considerable processing [43]. To understand which data is processed by any given

algorithm the three main types of SAR data formats need to be discussed.

SAR signals are stored inside RAW data files as two dimensional tables physically related to the sensor

(antenna direction and satellite track) but do not represent imagery [44]. SAR satellite providers do

allow the distribution of RAW SAR data in order for end-users to process the data in a specific manner.

It should be noted that much research has gone into the compression of RAW SAR data in order to

provide faster and more efficient transfer of data [43, 44].

When the RAW SAR signals are received on the ground they are compressed using pulse compression

algorithms such as the Range-Doppler Algorithm, Chirp Scaling Algorithm or Range Mitigation

Algorithm [43, 44, 40]. Single-Look Complex (SLC) data stores the processed RAW signals as a

complex matrix where each element (pixel) has an associated amplitude and phase information typically

stored using 16-bit values. The single look refers to the fully available signal bandwidth for a given

imaging mode with no adjustments made to the data such as multi-look processing. The amplitude

data of SLC is of great importance to many remote sensing applications and the phase information

allows height estimation using interferometric processing. It should be noted that SLC data is often

processed in the slant range and additional processing is required in order to relate SLC results to

ground range pixels [43, 44, 40, 45].

While SLC imaging may contain the most information for researchers it contains a lot of speckle

noise and is often elongated in the one imaging direction thus making visual interpretation tricky. Two

common manners in which speckle is reduced in SAR imagery is by multi-look filtering and adaptive

image filtering such as Lee, Frost or Gamma filters [46, 47]. Multi-looking splits the bandwidth of the

azimuth spectra into L segments called looks and then incoherently averages these as separate images.

This process reduces speckle but comes at the expense of reduced image resolution. Furthermore, in
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some products the range and azimuth resolutions are different and need to be sampled differently to

obtain a square pixel. SAR satellite providers often distribute a single image with only amplitude data

where the pixels are both square and converted into the ground range for simpler interpretation. This

data is is often labelled a multi-looked or a Ground Range Detected (GRD) product.

3.8 POLARIMETRY

Polarimetry is the measurement of applying transverse wave principles to SAR EM waves. In par-

ticular, the interaction of the geometrical orientation of the transmitted radar signals is measured to

determine how the object affected the orientation of the signal. SAR imagery can be created for various

combinations of these orientations to provide a multiple views of the same area. Targets on the Earth’s

surface will have distinctive signatures depending on the polarization that interacts with the target. For

instance, volume scatters will have polarization properties that differ from those of surface scatterers

and thus by imaging areas using different polarizations further classification of these types of targets in

an area can be identified.

SAR sensors transmit EM waves as either Vertical (V) or Horizontal (H) polarizations and are received

using either Vertical or Horizontal filters. Typically the transmit and receive channels are denoted

next to each other so a EM wave sent out as Vertical and received as Vertical is denoted as a VV

wave, similarly for VH, HV, and HH waves. Satellite-based SAR sensors can allow for three types

of polarization structures - single, dual and quad-mode polarizations. Single refers to SAR antenna

transmission and receiving that contain the same polarization such as HH or VV. Dual polarized SAR

platforms can send a signal in one orientation (H or V) and receive in both H and V or vice-versa.

Quad polarized SAR imagery are generated by platforms that send both H and V signals and receive in

both H and V channels.

One way in which SAR polarimetry can be viewed is by noticing that a target alters the polarization

upon reflection [37]. This alteration can be summed up by using a matrix of transformation terms which

defines the transformation of the transmitted signal to the scattered signal. For a given transmitted EM
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signal, Etr, the scattered EM signal Esc can be defined as

Esc = SEtr,

=

[
Shh Shv
Svh Svv

]
Etr (3.19)

and S is known as the scattering matrix that describes the transformation of Etr into Esc. This

scattering matrix is a function of various SAR properties including the transmission frequency and

SAR viewing geometry and can be used to synthesize how the target would respond to arbitrary

polarization conditions. Decompositions of the scattering matrix generate alternative views of the

scene, allowing areas such as vegetation or man-made structures to be highlighted better depending

on decomposition parameters. Applications of SAR polarimetry play large roles in MDA in areas

such as sea ice identification, coast wind field measurement, oil spill detection, ship detection and

classification [37].

3.9 INTERFEROMETRY AND DIFFERENTIAL INTERFEROMETRY

Up until this point SAR signals have been treated as real-valued sampled data but the EM wavelengths

associated with SAR are complex composing of amplitude and phase information. The phase dif-

ference between two pixels acquired under slightly different sensor positions can provide a wealth

of information [48]. Interferometric SAR (InSAR) is a technique which extracts phase differences

from two SAR images acquired over the same geographical area at different sensor positions or times.

Differences in the interferogram can be due to a number of factors: distance from the SAR sensor

to the target; topography and dielectric properties of the surface; frequency used in the two images;

satellite orbital parameters; atmospheric effects and system noise. Within the interferogram a number

of patterns which represent areas of equal phase are created which are called fringe patterns. Any

interference with the backscatterer on the ground can affect the fringe pattern.

The most critical parameter for SAR interferometry is the baseline which is the offset between the two

sensors. Two types of SAR interferometry are derived from the two baseline configurations - spatial

and temporal. Spatial baselines are two SAR observations separated in distance and occur when two

SAR satellites are in a single-pass configuration thereby needing only a single pass of the area to be

able to generate interferometric information. Temporal baselines occur when two SAR observations

are separated in time and are referred to as repeat-pass interferometry. Smaller baselines allow for

more precise identification of SAR height differences whereas larger baselines can cause decorrelation
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of the phase measured by the variance in phase difference or coherence. In both cases a number of

stringent requirements are placed on the imaging parameters including the baseline distance or precise

co-registration so both images pixels’ match to a given level of error typically less than 0.1 pixel.

Let us assume two SAR complex images are acquired where the first is the master and the second

is known as the slave image. For repeat-pass interferometry, the phase difference between the two

co-registered images is called the interferometric phase φ and is calculated as

φ = ∆φrange +∆φtopo +∆φphase shift +∆φatm +∆φdielectric +∆φphase noise +2nπ (3.20)

where ∆φ{effect} refers to the various effects that can alter the interferometric phase including the range

distance, surface topography, shift in phase from master to slave image, atmospheric effects, dielectric

properties of backscatterer and phase noise. The final term in (3.20) refers to the ambiguity associated

with InSAR processing because the phase wraps around 2π such that any phase value is an n multiple

of φ ∈ [0,2π]. To solve for n requires a technique known as “phase unwrapping” [48]. In most InSAR

literature all except the first term in (3.20) are accounted for and by using the measured φ from the

two phase images as well as the relationship ∆φrange =
4π

λ
∆D0 the surface displacement ∆D0 can be

calculated given the wavelength of the system. This shows us how interferometric SAR processing can

be used to calculate height displacements using SAR which has a number of important applications

such as the measurement of earthquakes, landslides, subsidence, structural stability and glacial motion

analysis.

Given a series of phase images over the same area offset by a baseline, multiple interferograms can

be created and the differences between these interferograms allows for Differential Interferometric

SAR (DInSAR) processing. These techniques can map the change in displacement over time which is

another good indications of surface stability or movement [49].

3.10 SAR ACQUISITION MODES

SAR imaging from an airborne or spaceborne platform can be undertaken using various configurations

(see Figure 3.3). The manner in which a SAR acquisition is taken determines many of the properties

of the image such as swath width and pixel resolution. Three main configurations for SAR imaging

from space are discussed next.
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Range
Direction

Azimuth (orbit)
Direction

Subswath

Stripmap ScanSAR Spotlight

Figure 3.3. The three main acquisition modes for SAR imaging from space. ScanSAR mode is an

extension to Stripmap mode by creating a number of subswaths, each a stripmap of their own. The

Spotlight imaging mode provides the highest resolution imaging but comes at the cost of reduced

swath width.

Stripmap When SAR satellites operate in stripmap mode the imaging swath is varied by changing

the look angle of the antenna. Stripmap mode limits the satellite to a fixed narrow swath and

generally can be found on historical satellites due to the fixed antenna position.

ScanSAR Modern SAR satellite platforms now make use of the ScanSAR principle. In ScanSAR

imaging additional antenna swaths are created by artificially steering the elevation of the antenna

differently for each swath. For each elevation angle, the SAR sensor imagines the swath in the

same manner as Stripmap imaging but the end of a given swath another nearby (overlapping) one

is created by changing elevation of the antenna. Each swath created in this manner is called a

sub-swath and multiples of these sub-swaths are combined to create a SAR imaging with similar

resolution to Stripmap imaging but with a much larger swath widths.

Spotlight Spotlight SAR imaging provides a much finer azimuth resolution than the other modes by

electronically steering the antenna beam so that a single area on the Earth is illuminated during

the platform passover. This allows for a number of benefits over Stripmap imaging, including
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the providing views of an area at multiple angles in a single pass and imaging multiple smaller

scenes compared to strips of Earth in Stripmap.

3.11 SAR IMAGE ERRORS AND ARTIFACTS

Due to the unique side-looking nature of SAR imagery, a number of side-effects and sources of error

can become apparent as seen in Figure 3.4. These range from effects due to wavelength and coherence

all the way to SAR processing and topographical scene effects. This section will discuss the most

pertinent errors in SAR imagery with specific focus and examples for errors most likely to occur within

MDA applications.

3.11.1 Speckle

Within SAR imagery an SLC or ground-range image contains a single resolution cell of a fixed

resolution in range and azimuth direction. For the most part these resolution cells are larger than the

wavelength of the SAR sensor. This means that within a given resolution the smaller wavelength may

interact with many reflectors within a resolution cell. This causes multiple returns per resolution cell

and these wave returns can interfere with one another constructively or destructively. The interference

causes a stronger or weaker return in that resolution cell which can manifest as salt and pepper-like

noise termed speckle. Speckle is the primary imaging error in SAR imagery and many filters and

research has been conducted to reduce the effect of speckle [44, 2]. A cutout on Figure 3.4 shows an

example of what speckle looks like over MDA SAR imagery.

3.11.2 Range and azimuth ambiguities

When errors in processing either of these directions occur ambiguities arise. For an example of azimuth

and range ambiguities in SAR MDA imagery, see Figure 3.4, Figure 3.5 and Figure 3.6.

Ambiguities in the range direction occur when two radar signals from different pulses are received

at the same time. Range ambiguities appear as similarly bright or darker versions of the object but

separated in the range direction, sometimes by many kilometers. This makes automatically filtering out

these effects a difficult task. The separation distance is affected by a number of factors and generally is
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Ship-based errors

Speckle errors

Land-based errors

Figure 3.4. A SAR satellite image over Durban, South Africa (29.8587◦ S, 31.0218◦ E). It is a

RADARSAT-2 SCNB image and was acquired on the 2nd August 2016 at 03:11 AM. The image

contains a number of errors unique to SAR imagery. Figure 3.5 and Figure 3.6 show the land- and

ship-based errors in more detail.

not accounted for in SAR image preprocessing. Figure 3.4 and Figure 3.5 show examples of these

types of ambiguities.

Ambiguities in the azimuth direction are caused by overlapping SAR signal returns with multiple

associated Doppler frequencies. The local Doppler frequency is estimated per pixel and is used for the

generation of azimuth resolution in SAR. For the general case, the mean value of the azimuth signal

can be shifted from zero due to the movement of the platform and thus this can cause a shift in Doppler

frequency. This shift needs to be accounted for azimuth errors occur that appear as ghosts. See Figure
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Range ambiguities

Range 
ambiguities
far from source
(edge of image)

Range 
smearing

Azimuth 
ambiguity
(ghosting)

Figure 3.5. This figure shows highlighted areas views of the top left and top right (red) portions of

Figure 3.4. This includes azimuth and range ambiguity errors.

3.4, Figure 3.5 and Figure 3.6 for examples of these kinds of errors.

General processing to remove ambiguities is a difficult class of problems still under investigation,

specifically in high resolution SAR imagery [50] but also in medium resolution imaging using explicit

means such as repeat pass discrimination [51]. More specifically for ship detection most studies filter

out the vast majority of ambiguities using size-based filtering [52, 53]. The various satellite providers

distribute their SAR imagery as GRD products, often with a number of preprocessed steps already

applied to the image. For this thesis it was assumed that the preprocessed GRD imagery presented to

the system would have a number of the most obvious errors cleaned up during the conversion from SLC

to GRD. Furthermore, the final stage of ship detection would remove detections that are unreasonably

large compared to expected ship sizes. For example, ships would be excluded that are 100 pixels

long if a single pixel occupies 50m. Alternatively, it was assumed that the later stages would remove

these ambiguities using machine learning techniques by learning what constitutes a real ship and an

ambiguity.
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3.11.3 Sidelobes

When processing SAR imagery highly reflective objects can have multiple copies near to the original.

These multiple copies appear as weaker versions of the original at set distances from the original.

Examples of SAR ship sidelobes can be seen in Figure 3.6.

Sidelobes are a direct effect of the finite extent of the aperture which limits bandwidth. Objects in SAR,

such as ships, have their responses modeled using what is known as a sinc function. This function has

sidelobes which repeat at specific intervals and due to the large dynamic range in SAR imagery these

repetitions can often still be seen. In some cases these sidelobes from a ship with strong returns can

obscure nearby, weaker-return targets [54].

Apodization is a method of reducing sidelobes [54]. There is a direct relationship between sidelobe

power and main lobe power such that if the sidelobes are reduced then the mainlobe’s power is also

reduced. This trade-off plays an important role in SAR preprocessing efforts but in some cases cannot

be controlled depending on the type of product received from the SAR satellite imagery provider For

instance, Sentinel-1 GRD products already have their apodization fixed. This is an important factor in

understanding results from medium resolution ship detection methods.

3.11.4 Geometric effects

Geographical areas respond differently to SAR wavelengths which may manifest as distortions in

an SLC image. Most of these distortions do not occur in SAR imagery over maritime areas but are

discussed here for completeness.

SAR sensors measure the time difference between signals for a given area to measure distance. When

one signal interacts with the base of a tall object tilted towards the SAR sensor shortly before a second

signal interacts with the top, then the perceived time difference between the two signals will be shorter

thus indicating a smaller distance. This has the effect of compressing the distance between the top and

base of the tall object in the SAR imaging plane causing the object to appear foreshortened. This effect

is heavily dependent on the angle at which the tall object is tilted towards the SAR sensor and could
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be compensated for if a terrain model is available or multiple acquisitions with different inclination

angles.

Layover is an extreme form of foreshortening. When a tall object is tilted at such an angle that signals

from the top of the object arrive before that of the base, both the top and base of the object will have

inverted positions on the SAR imaging plane. These typically occur at low incidence angles where the

areas will appear bright in geocoded SAR imagery.

When a tall object sits in the line-of-sight of another shorter object on the ground, the radar cannot

see around the tall object. The tall object casts a radar “shadow” that SAR imaging cannot see behind

because signals cannot interact past the tall object and thus these regions appear as blank or black areas

in SAR imagery.

In SAR imagery for MDA a particular form of shadow manifests. Mountains and large structures can

cast a shadow on SAR maritime areas because the wind typically associated with sea-surface roughness

is blocked. This causes a “shadow” behind the mountain as the water in this area experiences lower

wind speeds which cause the radar signals to be more dispersed [18]. This in turn causes backscatter

in these areas to be lower than surrounding ocean areas with higher wind speeds yet objects such

as ships within them can still have much higher backscatter. For an example of what this form of

shadowing looks like in SAR imagery see the darker water areas off of the coast near Table Mountain

in Figure 3.1.

3.12 SAR MISSIONS

Since the release of SEASAT in 1978 [2] SAR satellite observation has played an important role in

remote sensing of the Earth. The following subsections each describe some historical and recent SAR

satellites and some of their parameters with a summary of all these missions in Table 3.1.

3.12.1 ENVISAT

The Environmental Satellite (ENVISAT) was launched in 2002 and acted as the European Space

Agency’s (ESA) successor to the ERS satellite missions. ENVISAT operated until 2012 and contained
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Ship with 3 
azimuth
ambiguities
(ghosts)

Sidelobes

Ship with 2 azmuth ambiguities 
(ghosts) and significant sidelobing

Ship with 3 
azimuth 
ambiguities 
(ghosts)

Figure 3.6. This figure shows highlighted views of the three bottom right (blue) portions of Figure 3.4.

This includes azimuth ambiguities and sidelobing.

9 remote sensing instruments and delivered over a petabyte of data. It was the only orbiting dual

polarimetric SAR satellite until 2007 when RADARSAT-2 was launched. The Advanced SAR (ASAR)

instrument aboard the satellite provided a C-band 5.331GHz, dual-polarization capable SAR sensor

that was designed to gather data on water, ice and land areas. It had a 101 minute polar orbit period at

an altitude of approximately 790km. The satellite originally had a 35 day repeat cycle but this was

altered in 2010 to 30 days.

3.12.2 SENTINEL-1 A/B

The Sentinel-1A satellite was launched in 2014 and is the ESA’s successor to the ENVISAT mission

providing global coverage for a number of science missions including maritime monitoring and

land-based measurements. The satellite has a Sun-synchronous, near-polar orbit with a period of

98 minutes and a repeat cycle of 12 days at an altitude of 693km. Onboard is a C-band 5.405GHz,

dual-polarization SAR sensor. To compliment Sentinel-1A, a second identical satellite was launched

in 2016 called Sentinel-1B which follows the same orbit as Sentinel-1A but is 180◦ behind so that the

constellation repeat cycle is reduced to 6 days.
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3.12.3 RADARSAT-2

Created by the MacDonald Dettwiler and Associates company in association with the Canadian Space

Agency (CSA) the RADARSAT-2 satellite was launched in 2007. It is the successor to the original

RADARSAT-1 satellite with a number of more advanced device improvements. The RADARSAT-2

sensor is a C-band 5.405GHz, quad-polarization capable sensor. It has a near-polar 100 minute orbit

period at an altitude of 798km and a repeat cycle of 24 days. It has seen applications in maritime

monitoring, geological mapping and agricultural activity monitoring.

3.12.4 TERRASAR-X and TANDEM-X

The TerraSAR-X SAR satellite was developed by the German Aerospace Centre (DLR) in partnership

with EADS Astrium and was launched in 2007. In 2010 a partner satellite, TanDEM-X, was launched

to fly originally in a helical pattern to create an accurate Digital Elevation Measurement (DEM) of

the Earth to an accuracy of approximately 2m. The satellites use an X-band 9.65GHz SAR sensor,

has a polar, sun-synchronous orbit at an altitude of 514km with an orbital period 95 minutes. The

satellite has a repeat time of 11 days which allows for interferometric processing in both single-pass

and repeat-pass configurations.

3.12.5 ALOS-2

The Advanced Land Observing Satellite-2 (ALOS-2) is the successor to the "ALOS-PALSAR" mission

and was launched in 2014 by the Japan Aerospace and Exploration Agency (JAXA). It contains an

L-band 1.270GHz quad-polarization capable SAR sensor flying in near polar orbit at an altitude of

628km. The satellite has an orbital period of 97 minutes with a 14 day repeat cycle which allows for

more rapid monitoring of disasters compared to previous JAXA missions. The satellite also features

the capability to provide a left and right looking sensor which is not available on most other SAR

satellites.
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3.12.6 COSMO-SkyMED

The Italian Space Agency launched the first two satellites of the COnstellation of small Satellites

for Mediterranean basin Observation (COSMO-SkyMED) in 2007. It followed this with two more

satellites launched in 2008 and 2010 to form a constellation of four medium-sized SAR satellites. The

satellites all form the same orbital plane and are sun-synchronous, polar orbiting X-band 9.6GHz

dual-polarization capable sensors. They orbit at an altitude of 619km with an orbital period of 97

minutes and repeat cycle of 16 days. Sensors 1, 2 and 4 are all offset by 90◦ from one another whilst

Sensor 3 is offset from Sensor 2 by 67.5◦ providing varied intervals between satellite acquisitions

along the same ground track (between 1 and 15 days difference).
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CHAPTER 4 SHIP DETECTION IN SYNTHETIC

APERTURE RADAR

4.1 CHAPTER OVERVIEW

Medium resolution SAR imagery covers ocean large areas but this comes at the expensive of reduced

resolution. An operator searching through a SAR image covering millions of pixels and for ships which

are approximately 10 pixels long can be time consuming and error prone. To aid in the development of a

working SAR monitoring platform automatic ship detection methods are necessary to provide reliable

and consistent results to better assess a given areas maritime domain [18, 55, 17, 3, 4]. Medium

resolution SAR imagery is of particular importance as it can be used to gauge areas where illicit

fishing activity is occurring [17] thus allowing higher resolution SAR imagery to be targeted a specific

areas.

Ship detection in SAR imagery consists of several steps, each intending to narrow down the list of

possible targets for the next [18]. A number of ship detection configuration exist, with the most

common shown in Figure 4.1. SAR images are preprocessed to remove artifacts and land areas so

that the prescreening stage can detect pixels that are brighter than the background at sea. The ship

discrimination step then uses additional techniques to group these pixels and discriminate between

areas that are ships and ones that are look-a-likes. Ship discrimination generates a list of likely ship

positions which are sometimes fed into auxiliary processes such as operator validation, ship attribute

(length, width, bearing, etc.) extraction or classification of ship type. For the purpose of this study only

ship detection up to the discrimination step will be described in detail with a focus on intensity-based

ship detection methods. The detection of wakes is an important topic in SAR ship detection [18, 56]
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SAR 
Image Preprocessing Prescreening Ship 

Discrimination

Attribute
Extraction

Ship
Classification

Validation or 
Evaluation

Detected
Positions

Ship Detection

Figure 4.1. The common steps for ship detection in SAR imagery. The initial steps prepare the image

into a standard from which it is then prescreened to detect possible targets. A ship discrimination

step uses additional methods to discriminate ships from ship-like targets and, generally, provides

positions of likely ship targets. Additional steps can include operator validation, attribute extraction

and classification into various classes.

but is not the focus of this study due to inherent problems such as stationary ships, variable wake

lengths and shapes, and strong reliance on sea-state and ship parameters [18].

4.2 PREPROCESSING

One of the most important steps in automatic ship detection is that of preprocessing [18, 57]. It largely

determines the results of the subsequent steps. The most important aspect of this step is the ability

to generate consistent processed SAR imagery for the prescreening and discrimination steps. By

ensuring that the output is as uniform as possible subsequent steps should have fewer errors to deal

with. Preprocessing generally involves signal and image processing techniques to enhance the image

in a number of ways and like the other steps often has a trade-off between complexity, reliability and

performance/accuracy.

Two assumptions need to be stated: it is assumed that all of the processing on the SAR imagery

is done on the intensity images only because the phase is not exploitable on a per image basis and

changes in sea-surface conditions vary significantly between repeat-pass SAR acquisitions. Second, it

is assumed that the work here does not rely on polarimetric data. Whilst a lot of research has gone into

the detection of ships in polarimetric data [18, 50, 58], such data is typically not available for medium

resolution SAR imagery (at least fully polarimetric data) and the scope of such detection methods is

beyond the scope of this study.
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4.2.1 Speckle removal

Speckle is a major source of errors in both high and lower resolution SAR imagery. It is especially a

problem for MDA applications where speckle interferes with the ocean background or clutter statistics

and can appear as ship-like entities in low-to-medium resolution SAR imagery [18, 17, 57, 3]. The

amount of speckle in a SAR image is estimated using a uniform image area and pixel intensity values

and is often termed the Equivalent Number of Looks (ENL) [46, 59]. In SAR image processing

literature there are two primary ways in which speckle is reduced: non-coherent/multi-look integration

or adaptive spatial-based filtering [46].

As discussed previously, multilooking is the process of dividing the bandwidth of the azimuthal spec-

trum into L looks which form L independent images of the same scene. These are then incoherently av-

eraged to reduce the speckle noise but at the expense of degrading the image resolution [46, 59].

Adaptive Spatial filtering are another technique often used for the filtering of speckle in SAR imagery

using box-statistic filters. These make use of local variations in the data and use well-studied statistical

image properties to reduce the effects of speckle. Spatial speckle reduction falls into two broad

categories, namely Minimum Mean Squared Error (MMSE) such as the Mean, Frost, Lee or Kuan

speckle filters [46, 47]; or Maximum a posteriori (MAP) based filters such as Gamma-Gamma speckle

filters [60]. The filters remove speckle based on the assumption that it can be separated from the

sea-clutter but do so based on a fixed (or variable) neighborhood size which degrades the spatial

resolution of the SAR imagery.

The various filters each have their own trade-offs and benefits. For instance, the mean box filter might,

on average, exhibit the best speckle reduction across a wide variety of samples but might do so at

an increased loss of spatial resolution compared to the other methods. The Frost filter has excellent

resolution preserving capabilities but speckle is not reduced as prominently. This all comes at the

expense of increasing complexity which might not satisfy certain operational requirements. It should

be noted that most SAR satellite providers distribute multilooked speckle-reduced products as part of

their ground range detected products. This reduces the processing requirements on the user’s end but

does so at the expense of flexibility in choosing which speckle reduction technique is used.
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4.2.2 Image Calibration

Image Calibration is the process of calibrating the image in terms of real-world positioning and

radiometric properties. The process of image calibration takes into account two main factors, georefer-

encing and radiometric calibration. Uniform image calibration is essential to reproduce results and

interpret results across studies.

Georeferencing is the process of geolocating every pixel within a SAR image to a point on the Earth,

thereby assigning real-world coordinates to points [59]. This is usually done using either the known

corner coordinates of the image or predetermined ground control points which typically accompany

the SAR image as metadata. Often an initial run determines a pixel’s rough accuracy with subsequent

refinements created by an iterative procedure utilizing a precise orbital state vector (also provided as

metadata with the SAR imagery). Geocoding refers to the process of ensuring the image is placed so

that north is facing upwards. Finally, registration is the process of geolocating two images precisely in

order to allow for comparisons between images in a meaningful way and also utilizes the orbital state

vector data as discussed before. Some studies have shown that using precise co-registration artifacts in

the sea can be reduced using multiple acquisitions over a longer time period [51].

Radiometric calibration is the process of converting the native SAR imaging readings into standard-

ized geophysical units of measurement, normally known as the scattering coefficient σ0 expressed in

decibels. This represents the normalized radar cross section (RCS) per squared meter and is dimension-

less. Radiometric calibration is important as it ensure that data can be compared between sensors, times

and positions. The process of calibrating an image in terms of σ0 is dependent on the incidence angle,

wavelength, polarization and the ship/object’s scattering properties. Other more uncommon forms

of radiometric calibration include those based on radar brightness which is derived from the digital

number inherent in some SAR products and is generated by applying a calibration factor [61].

4.2.3 Land Masking

Land masking is an important step in preprocessing SAR data as it determines how close results can

be to the shoreline. Land areas can cause detection results because they typically produce backscatter

that is higher due to the specular nature of land areas compared to flat ocean areas. Land masking
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essentially removes land in the processed SAR image and uses shapefiles of the coastline to remove

the land. Alternatively, the coastlines are detected using automatic methods and then the same masking

procedure is applied as with shapefiles [62]. In either case, a buffer zone determines how close to the

shore the results can be relied upon and which determines the ability of the subsequent steps to detect

ships in harbor/near shore areas [18].

4.2.4 Ambiguity Removal

Another common occurrence in SAR imagery is that of azimuth and range ambiguities. The removal of

ambiguities forms a large part of research and typically involves using the SAR acquisition parameters

such as PRF, satellite velocity and target range distance. These are used to predict the position of likely

weakened and repeated “ghost” copies of the original highly reflective target. Additionally concepts

such as repeat-pass ambiguity removal are also sometimes applied to SAR data [57, 51].

It is assumed that the techniques described and data used in this study have been done to an accuracy

that will not hinder ship detection in medium resolution SAR imagery. As the only data available for

this study is already multilooked this is the chosen form of speckle reduction with any latent speckle

dealt with by the following steps. The image calibration should ensure that the data is radiometrically

calibrated to σ0 and georeferenced to within 1 pixel accuracy (platform resolution dependent). It was

assumed that a buffer of 1km would suffice as a land masking buffer and that any ambiguities not

removed in the preparation of the satellite product by the satellite provider would be dealt with during

prescreening and discrimination.

4.3 PRESCREENING

One of the primary steps in ship detection literature is that of ship prescreening [18, 63, 64, 17, 3].

The prescreening step is often combined with the discrimination step to form a single detection step.

This is usually done for efficiency reasons as SAR images can be extremely large with sizes up to

52400×37200 pixels [65], depending on image resolution.

When the SAR image is properly calibrated and georeferenced then the next step is to generate likely

targets. These targets are identified using a threshold across the image which splits the image into ships
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and non-ships. Due to the inherent property of these binary decision detectors which require a trade-off

between detection accuracy and false alarm rate choosing a single threshold parameter that provides

both a high detection accuracy and a low false alarm rate can often not be achieved. To this end, many

SAR ship detection systems [18, 64, 17, 66, 67, 68, 69, 65] split the prescreening and discrimination

phases of ship detection. Prescreening typically involves image processing and statistical methods

on SAR intensity imagery to identify areas that likely contain ships. Discrimination then uses these

results as input to discriminate ships from ocean-clutter and SAR artifacts using wide variety of science

disciplines to identify false alarms. Prescreening methods fall into three broad categories, namely

global, local and other, discussed next.

4.3.1 Global thresholding

Global prescreening methods take the entire SAR image and use a single value to threshold every pixel.

These methods have historically been one of the first methods used in ship detection problems [18, 70,

56]. They provide a basic means of identifying bright areas in SAR imagery that can be implemented

in an efficient parallel manner. A single threshold value is computed in some manner, such as using

histogram percentiles, and every pixel in the image is compared against this threshold to determine if

it is bright or not [18, 71]. The higher the threshold value the fewer false alarms but the possibility

of missing a ship increases. A fairly successful recent application of historical global thresholding

for prescreening and detection uses the Otsu’s gray level thresholding to identify the threshold which

partitions the ships and ocean clutter with maximum inter-class variance [72, 69]. Another approach

normalizes the RCS of the pixels in the SAR image and then applies an empirically chosen single

threshold to this image to identify ships [56].

The application of a single threshold value to an entire image can lead to efficient solutions but typically

does not have the discriminatory power to separate ships in areas of both high and low contrast and

is especially a problem in SAR imagery which exhibits a wide range of values between the near

and far range known as the high dynamic range of SAR [18, 37, 39]. Research has shown that ship

prescreening using global thresholding typically incurs orders of magnitude more false alarms [18, 3, 4]

and requires a specially customized discrimination step to be successful [69].
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4.3.2 Local, adaptive thresholding

Ships contain metal which reflect most of the transmitted radar signals back to the sensor and hence

ships appear as high backscatter bright areas in SAR imagery compared to ocean areas. It is assumed

that the backscatter around the ship is lower than the ship’s backscatter or else it would be invis-

ible/appear as ocean backscatter. Sea-surface conditions often vary from one end of the SAR image to

the other and so a single global threshold usually does not provide the discriminatory power to separate

ships in ocean areas with high and low sea-surface roughness [18].

Instead of comparing each pixel to a single global threshold researchers noted that the brightness

of pixels relative to its surroundings was a key to separating high backscatter targets in areas of

both high and low backscatter background returns. This led to the development of Constant False

Alarm Rate (CFAR) prescreening [18, 17, 63, 70, 66, 67, 73, 74, 75]. CFAR uses a collection of two

neighborhoods around a set of pixels to determine if this area has a higher local-relative backscatter

than its neighbors. The CFAR algorithm ensures a constant level of false alarms by using a selected

probability of false alarm (Pf a) to calculate a varying threshold on a per-region-of-interest basis. The

surrounding neighborhood distribution and current area of interest are compared and the area is deemed

bright if it is an outlier to the expected (background) distribution. The probability of false alarm sets a

hard limit on the threshold T which in turn determines how many times brighter a given pixel needs

to be than its neighbors to be identified as a ship. The adaptive nature of the method ensures that

the number of false alarms is equal to or less than Pf a, hence ensuring a constant (expected) number

of false alarms. Instead of specifying a required Pf a, a custom threshold T is sometimes chosen in

order to prevent cases where both the number of true positives and false alarms cannot be met by the

automatically calculated Pf a [76, 77, 78, 79, 79]

Research into CFAR prescreening is split into two major areas, modeling of the sea/ship distribu-

tions [18, 80] and the comparative manner in which these are used [18, 64, 79, 81]. The most common

assumption for the sea-clutter distribution is known as the K-distribution. This models the water

using a Gaussian distribution modulated by the mean of the amplitude data which itself is modeled

by a Gamma distribution [18, 33]. Other distributions often associated with SAR ocean-clutter are

the Rayleigh, Alpha-stable, Generalized Gamma distributions [18, 33, 82, 83]. Non-parametric type

methods such as the Parzen-window Kernel-based sea-clutter distribution estimation tries to adaptively

model the underlying distribution [84]. Most distribution modeling research in SAR imagery focuses
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on the sea-clutter but some research has gone into modelling the ship’s backscatter distribution using

the ship’s physical properties [80].

The most widely used, Cell-Averaging CFAR (CA-CFAR) calculates the clutter mean and then

compares the region of interest to this value to see if its T times brighter than this mean [18, 64,

17, 77, 3]. Initially, clutter was assumed homogeneous where CA-CFAR could potentially provide

an optimal comparison statistic [64, 81] but this assumption does not always hold true. Additional

methods were developed to incorporate heterogeneous distributions and hence are typically better at

detecting bright areas for conditions [76]. The two most widely used examples of these methods are the

Greatest-Of and Smallest-Of CFAR (GO-CFAR and SO-CFAR respectively) which check if the current

pixel value is T times the largest or smallest pixel value in the surrounding area. Other heterogeneous

CFAR methods exist such as Order-Statistic (OS-CFAR), Switched OS-CFAR (SWOS-CFAR) and

Generalized Switching (GS-CFAR) each with their own advantages and disadvantages which broadly

reorder the clutter samples in various ways and compare the test area to this reording [64]. Finally,

a recent paper uses SAR imagery metadata to adaptively vary which CFAR method is used on a per

resolution and region basis [85] which provides an excellent source of prescreening but does report

processing times of hours per image for some of the methods used.

4.3.3 Other prescreening methods

While CFAR and global thresholding methods are the most ubiquitous means of prescreening an image,

a number of other methods can be used - ranging from image processing to machine learning. The

Wavelet analysis has played a major role in SAR prescreening due to its ability to identify signals in

SAR imagery at various rotations and scales [18, 86]. One other prominent example of prescreening

is the creation and thresholding of a Rice Factor image which is the coherent to incoherent received

power ratio [87].

Prescreening largely determines the overall accuracy in ship detection systems. Global or locally

adaptive thresholding methods with parameters set too stringently can fail to identify all possible

ships in a given SAR image. Global methods introduce orders of magnitude more false alarms at

lower thresholds than locally adaptive methods but can have the advantage of being more efficient

solutions.
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The selection of which CFAR method is largely based on the images to be processed. In most cases

a single CFAR method can suffice for a single SAR dataset but the requirements become difficult to

meet when the CFAR method is applied to a SAR dataset that varies in terms of sensor, polarization

and resolution. To this end, and discussed in the next chapter, the simplest CFAR method is usually

chosen and emphasis on reducing false alarms (assuming all ships are detected) is placed on the ship

discrimination step.

4.4 DISCRIMINATION

A common strategy for ship detection is to initially highlight as many likely targets as possible from the

entire SAR image using one specialized step and then following this up with a secondary step which

works within the reduced search space to identify features correlated with ships. Ship discrimination

is typically referred to as the high-level classification stage in ship detection literature [18, 64]. For

the purpose of this thesis ship discrimination forms the last part of the ship detection procedure. Its

goal is to identify positions of ships in the SAR image whilst reducing the number of false alarms

presented to it by the prescreening step. The discussion of ship discrimination can be split into three

areas - classical-; frequency-; and machine learning-based ship discrimination.

4.4.1 Classical ship discrimination

The first method ship discrimination strategy is to vary the Pf a or custom threshold in a conventional

CFAR method [18, 64]. This approach can provide acceptable results but may fail on larger SAR

datasets [88]. This can be improved by breaking the symmetry around the parameters by creating a

cascade of CFAR thresholds, each tuned to remove different false alarms than the last [67]. Some

methods use CFAR in a hybrid prescreening/discrimination stage by first estimating the underlying

distribution using Kernel Density Estimation (KDE) and then using this as input into a conventional

CFAR as the discrimination step [63].

Other CFAR-based discrimination methods create an intermediary image or representation as part of

the prescreening step and then use CFAR to identify ships. For example, ships in both high resolution

and lower resolution SAR imagery are often immediately apparent to an observer because of the

difference in contrast between the relatively dark sea area. A saliency map is a computer vision
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construct which emphasizes salient objects and de-emphasizes other aspects within an image. Two

examples of this in SAR literature include the creation of a saliency map using image processing [5]

and machine learning techniques [89]. A local thresholding approach is applied as discrimination

in the former [5] whereas the latter uses a specially adapted CFAR known as the Signed Pressure

Function CFAR to the saliency map to identify ships from false alarms [89].

Another ship discrimination approach is that of clustering-based methods. These separate ships from

false alarms by discriminating based on ship properties such as size, density and shape. Size-based

methods use connected component analysis and then remove false alarms based on logical maximum

ship sizes [90, 75]. For instance, one approach uses connected component clustering with a minimum

size TCL followed by position estimation of likely azimuth ambiguities [80]. Morphological operations

feature in discrimination literature with the aim of using common operations such as erode and thinning

to remove connected pixels and identify clusters of pixels more likely to be ships [70, 75]. Traditional

clustering methods are also sometimes employed as additional discrimination after morphological

processing such as k-means [85] or mean-shift [6] or more recently superpixel segmentation [91].

Superpixel segmentation is particularly interesting as the final stage of the discrimination step uses

additional local and global contrast thresholds to identify pixel segments likely to be ships [91].

4.4.2 Frequency-based ship discrimination

Another popular form of discrimination uses the assumption that the frequency components of false

alarms exhibit different properties to those of ships. Conventional filtering techniques such as notch

filtering have been shown to provide acceptable results but only with high resolution imagery [58].

The most common form of frequency processing for ship discrimination is Wavelet filtering. Wavelets

extract detections using filter banks attuned to certain signal properties such as frequency and rotation.

One of the first uses of Wavelet processors to SAR imagery used it as a combined prescreening and

discrimination stage [86, 92] whereas later attempts used it solely during discrimination [66]. A more

recent advancement applies Gabor Wavelets to the output of a CA-CFAR prescreened SAR image.

Gabor Wavelets allow for infinitely many scales, rotations and frequencies enabling more flexibility in

the filter bank configuration compared to previous Wavelet discriminators [7].
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4.4.3 Machine learning-based ship discrimination

Machine learning methods have been used for ship discrimination since at least [18, 93]. These ship

discriminators are trained on data to identify salient characteristics of ships. These characteristics can

range from size features to textures or backscatter composition.

Machine learning ship discrimination most commonly uses either Neural Networks (NNs) [18, 93, 88]

or Support Vector Machines (SVMs) [94, 95, 96]. Classical NNs were one of the first types of machine

learning ship discriminators used [93]. More recent developments have used SVMs as they can model

the separation between false alarms and ships better using the kernel method [94, 95, 96].

The training of neural networks is an important aspect of the ship discrimination as it can affect the

performance. SVMs often use a constrained minimization procedure [95] whereas there have been

multiple studies into using alternative means of training NNs, specifically for ship discrimination.

These often take the form of evolutionary algorithms. These, too, are minimization procedures but

take inspiration from real-world biological processes to train the NN. Examples of these types of

algorithms applied to SAR imagery for ship discrimination include Genetic Algorithms (GA) and Ant

Colony Optimization [93, 97].

While SVM now play a large role in ship discrimination, interest in traditional NN architectures have

been renewed by extending them in depth. This recent advancement has been called deep learning and

is the next step in the evolution of machine learning. In classical machine learning features are hand

picked from an initial limited set of calculated features and the combination of these features with the

best performance is chosen as the final set of features for discrimination. This process is known as

feature engineering and deep learning forgoes this step by placing the responsibility of finding the best

set of features on the network during training from a much large initial feature set. Initial tests indicate

promising results [88] but further studies are required to understand the long term efficacy of this new

form of NN for ship discrimination in SAR imagery.
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4.5 SHIP DETECTION CONSIDERATIONS

In the addition to the above, some practical issues need to be addressed. This section will describe

some of the pertinent issues, which types of SAR data these affect and how they are typically ad-

dressed.

4.5.1 Effectiveness of bands on maritime monitoring

SAR that is available commercially has 3 common bands, namely X-, C-, and L-band. These bands

each interact differently to maritime conditions and the choice of which band to use for maritime

monitoring (ship detection and environmental monitoring) has been studied extensively. The choice

of which band largely depends on application but some broader findings are available to help choose

the most effective band. X-band is highly sensitive to atmospheric effects [98] where initially L-

band was shown to have difficulty enhancing maritime objects of interest such as oil-slicks [99, 100].

More recently, however, polametric L-band processing has shown improved performance for oil-slick

detection [101, 102]. For general maritime monitoring C-band seems to be the most common choice

as it shows strong contrasts at sea when wind speeds are below 14 m/s [103]. It also maps shorelines

more accurately than the other bands [104]. Finally, C-band has shown excellent performance for

bilge-dump detection [105] and ship detection in a number of scenarios [18, 3, 4]. For this reason

ENVISAT, RADARSAT-1, RADARSAT-2, SENTINEL-1A and SENTINEL-1B all carry or carried

a C-band sensor for general maritime operation [57]. The agreement to use C-band sensors across

multiple satellites and providers built with MDA applications in mind indicates that C-band is a suitable

SAR sensor band for monitoring MDA.

4.5.2 Data Availability

A significant issue faced when using SAR imagery for maritime monitoring and specifically for ship

detection is data availability. There are two aspects to this discussion - the accessibility of SAR

data and the repeat/revisit times and matching of this to auxiliary ship data such as AIS transponder

data.
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Historically, SAR imagery has been particularly difficult to obtain due to high data costs. In 2014 ESA

announced that the Sentinel program will allow free and unlimited access to all satellite imagery taken

by any of the Sentinel missions. In particular, Sentinel-1A/B is now freely available to anyone with an

internet connection. The downside of this is that specific mode and area acquisitions are not possible

without a formal agreement with ESA. To obtain specific imagery over specific areas for operational

usage taskable satellites are necessary such as RADARSAT-2 and TERRASAR-X. For this study, both

freely available (Sentinel-1A) and taskable satellite data (RADARSAT-2) are used.

All SAR satellites have a finite power consumption limit [37, 57] and as such only certain modes are

used at certain times. Furthermore, the speed of the satellite is finite and thus it takes a finite time to

revisit a specific area. For operational ship monitoring this can be a problem, specifically if the area of

observation is small. This problem can be alleviated by using multiple satellites in tandem to observe

an area. A recent study has calculated that for a given area using high resolution satellite data from

COSMO-SKYMED and RADARSAT Constellation Mission (RCM) the combination could achieve a

mean revisit time of 7 hours [42]. In addition to this, the study also showed that matching AIS data for

the same region could be acquired within 25 minutes of the SAR acquisitions [42].

4.5.3 Resolution on ship detectability versus swath width

A major concern for any ship detection system is that of the swath width/image resolution trade off.

Current SAR systems can either observe a small area with very high resolution imagery or a large area

can be monitored at a much reduced resolution per pixel. Advances in SAR technology and processing

has seen an improvement for low-to-medium resolution SAR imagery but there is still a fundamental

limit that needs to be addressed which is called the minimum mappable unit (MMU). Ships smaller

than a given ground resolution may be invisible in that pixel depending on how the subscatters combine

during processing. Due to the likelihood of speckle a single pixel may appear bright yet not contain

any ship. To distinguish within a single pixel and speckle requires highly accurate, timely auxiliary

knowledge such as AIS. Even with this auxiliary knowledge SAR imagery tries to fill gaps which

cannot be achieved using transponder data (i.e. dark targets) and as such it is assumed that a ship

is only detectable if it occupies a MMU of two or more pixels in the GRD type imagery. This limit

affects the minimum pixel size a ship needs to occupy and thus a ship needs to be approximately

two pixels long in either length or width to be detected. Methods of detecting ships smaller than
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this in medium resolution imagery are out of scope of this study. The minimum ship size, however,

largely depends on the preprocessing steps taken before the ships are detected. For GRD imagery

preprocessing steps such as main lobe focusing/side-lobe reduction and multilooking to reduce speckle

play a large role in determining the final size in pixels a ship occupies in a SAR image versus its actual

size on the water. To this end the minimum detectable ship size will depend on the SAR sensor and its

ability to discriminate small bright scatterers during RAW to SLC conversions and then SLC to GRD

conversions.

4.5.4 Medium resolution imagery for ship detection

A number of new studies are focused on ship detection using Sentinel-1 imagery with focus on Inter-

ferometric Wide swath (IW) Single Look Complex (SLC) imagery type [106, 107]. SLC imagery has

been shown to have excellent ship detection performance due to the increased spatial resolution [106]

and similar results occur for other SLC-type satellite sensor imagery such as RADARSAT-2 and

TERRASAR-X too [50, 108, 106, 107]. While SLC high-resolution imagery is particularly good at

detecting ships as they are highly reflective targets spread over hundreds of pixels they do so with a

reduced swath width.

Whilst some research has been done into Extra-Wide swath (EW) mode imagery for Sentinel-1 ship

detection [106, 57], current studies could be improved by study into this image type over a specific

study area, where and why false alarms occurred, how parameter adjustments might affect performance,

few comparisons between sensors/resolutions and as-of-yet no definitive comparison among current

state-of-the-art ship detection methods have been made for this type of imagery [106, 109, 108]. To this

end Sentinel-1 EW imagery has much larger swath widths which is specifically useful for monitoring

South African waters. South Africa’s EEZ covers more area than its land and these vast areas cannot

be properly monitored using Sentinel-1 IW imagery (due to the reduced swath width). The ESA has

also deemed South Africa and its waters a calibration site for the Sentinel-1 mission and is currently

one of the few areas where EW imagery is being acquired near a coastline and is not related a sea-ice

zone [110].

Additional research effort into various ship detection methods for SAR imagery includes the usage

of TerraSAR-X [63, 50, 111, 107, 73], RADARSAT-2 [112, 113, 114, 115] and CosmoSkyMed [113]
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satellites. These satellites provide additional modes and resolutions not necessarily available on

Sentinel-1 but the data are not free. Focus on these satellites often also uses full- or quad-polarimetric

information which can require specially developed ship detection methods to use [50, 58, 116, 117].

While the Sentinel-1 EW imagery does not provide full polarimetry, dual polarimetry allows for

double validation of targets and provides additional opportunity to identify polarizations which provide

improved ship visibility over others [27].

4.5.5 Ship detection performance metric coherence

There is a lack of coherence among the different performance metrics and their usage within the ship

detection community. Across a number of recent studies there exists a multitude of ways to report

results, with few similarities between the methods [50, 63, 115, 111, 58, 106, 73]. In addition, the

way in which performance is measured varies from study to study and the results need to be critically

evaluated before presenting methods as better or worse [118]. In one study [106], the authors state

that AIS ship transponder information is used to verify detections. The authors go on to state how

SAR ship detections that do not have matching transponder information are disregarded [106]. While

this can be used to give a general idea of performance, it completely negates the usefulness of SAR

imagery which can circumvent ships that switch off their transponders [17] and could fail to detect

any potential ships in an image if useful AIS data is not acquired for a given SAR image. In another

study [50], the authors provide a much more comprehensive set of ground truth data including both

visually inspected and AIS matched ships but fail to describe the total number of false alarms not

related to ambiguities their ship detection method incurs. Another aspect that is rarely described is the

reconstruction performance of the ship detection method. Subsequent stages might require improved

ship reconstruction to estimate various parameters of the ship and the lack of performance metrics to

assess reconstruction performance is another limiting factor in current ship detection studies. With the

lack of a single common, complete SAR data set and the difference in performance metrics available,

comparison between methods developed by different authors becomes even more difficult.
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4.6 CONCLUSION

Over the course of this chapter a number of research opportunities were identified. To better focus the

study going forward the following provides a list of these.

• Focus on high resolution SAR imagery

High resolution SAR imagery often receives research priority over lower resolution imagery due

to more detailed ships within which implies smaller ships can be tracked. Furthermore, ships in

high resolution imagery have more data associated with them which can mean more descriptive

features can be formed which may aid in detection, discrimination and classification tasks. All

of these attributes dictate that new ship detection methods are primarily aimed towards higher

resolution SAR imagery.

• Lack of ship detection research on Sentinel-1 EW imagery

Sentinel-1 imagery provides a free-to-use source of SAR imagery. Most focus on SAR ship

detection for this data has been on its higher resolution imagery but EW imagery also provides

a source of data for lower resolution ship detection research that could supplement the high

resolution information.

• Small versus large dataset

Smaller datasets are often used in lieu over larger, more varied datasets, primarily due to the

extensive costs involved in acquiring many SAR images. Whilst smaller datasets provide good

initial indications of possible performance, their smaller sizes do not present a representative

population. Smaller, less varied datasets therefore call into question the statistical significance

of any results obtained. Finally, larger datasets can better represent operational situations, which

may be a deciding factor when selecting a ship detection method.

• Medium resolution SAR machine learning

Medium resolution SAR imagery provides capabilities to detect ships at sea but those ships are

in the order of 5-7 pixels long [4]. This makes applying any machine learning to SAR imagery

complex without appropriate considerations. Furthermore, in the field of machine learning

benchmark datasets are readily available to method designers to directly compare methods
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against one another. This trend has not yet carried over to the SAR machine learning research.

• Metric and reporting inconsistencies

CFAR-based methods are known as binary decision classifiers and one of their primary principles

is the trade-off necessary between false alarm reduction and true positive retention. This trade-off

manifests differently in SAR ship detection compared to other areas of research due to the large

discrepancy between the number of ships and ocean pixels in wide-swath SAR imagery. This

means that the metrics and the way in which they are reported need to be carefully considered to

provide a clear picture of the results. In addition to this, different studies report with a variety of

different metrics which can make comparisons a complex task.

• Lack of use of auxiliary data

Transponder data is often used as a means of verifying ship detection results and extracting ship

types from correlated SAR and transponder detections. This ignores the wealth of information

present by using this data as long-term distribution analysis data (i.e. a-priori data). Auxiliary

data, such as historical transponder data, is rarely used as part of the detection stage.

• Minimum ship size detectability

Special considerations need to be made in order to understand and cope with the minimum

detectable ship sizes imposed by using medium resolution data. For instance, methods that work

on high resolution SAR ships with hundreds of associated pixels do not necessarily translate to

medium resolution SAR ship with many fewer pixels per ship.

• Preprocessing, data types and sources of error

Data type conversions, preprocessing and SAR image peculiarities can all possibly describe

errors in SAR ship detection but are either assumed as known or occasionally not described

at all. A common source of many SAR errors, for instance, is the conversion from SLC type

data to GRD type data and the effects these conversions have on SAR ships and artifacts. If

GRD type data is the only type available (such is the case with Sentinel-1 EW imagery) special

attention needs to be paid on what effects this may have on SAR ship detection performance.

Research into ship detection has yet to find the optimal detector and with new data constantly becoming

available ship detection is an active area of research in the geoscience and remote sensing community.
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This chapter analyzed the various literature related to SAR ship detection and described the most

common steps found. The first step, preprocessing, ensures that data are of a consistent and standard

format when presented to the next steps. Prescreening methods were discussed and it was shown that

CFAR plays an important role as the initial stage in many ship detections systems. Once initial targets

are identified by the prescreening then various ship discrimination steps can be used to isolate false

alarms. The following chapters described two novel methods developed for this study and the data

they were tested against.
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5.1 CHAPTER OVERVIEW

Two novel ship detection methods are introduced in this chapter aimed to address some of the identified

shortfalls in the SAR ship detection literature. An overview of the ship detection process is given

followed by a mathematical description of the basic CFAR prescreening method. This is followed by a

novel extension to CFAR for per-pixel thresholding control as in [3]. This extended CFAR method is

then used to threshold a SAR image based on a ship distribution map and initial detections using an

optimisation procedure known as Simulated Annealing (SA) [3]. A second method, introduced in [4],

is also described which uses a low-threshold CFAR prescreening step to derive initial detections which

are then fed to a Haar-like feature extraction step. These features are fed into a cascade classified

trained to help identify ships from false alarms in a rapid, consistent manner.

5.2 SHIP DETECTION OVERVIEW

Figure 5.1. The first step, preprocessing is discussed with the creation of the SAR dataset, as described

in Chapter 6. The next two stages, prescreening and discrimination, are discussed in this chapter.

Chapter 7 deals with the results obtained and a discussion thereof.
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With over 100 000 ships active at any given point in time in the ocean [1], the detection of ships using

any means possible is important. Maritime surveillance can be accomplished by processing SAR

imagery using a multistage approach whereby each stage provides ever stricter requirements on the

ships that are accepted [18, 66, 64, 119, 6, 67, 74]. Figure 5.1 gives an overview of the ship detection

system used in this thesis. It was assumed that no differentiation between ships and other bright

targets are made and that the ship detection methods presented here can be extended using auxilarily

information as additional processing step to separate ships and other targets if necessary.

The first stage of most ship detection systems is data acquisition and preprocessing, Figure 5.1. These

steps are discussed further in Chapter 6 which describes the SAR dataset and preparation used in this

thesis. As a brief introduction the preprocessing stage completes two tasks - the first is the removal

of land from the image and the second is radiometric calibration. Land removal is done in order

to prevent incorrect detections over land as well as to reduce land azimuthal ambiguities near the

coast. Radiometric calibration is put in place so that detections between various acquisition modes are

compared using a similar basis. Additional preprocessing steps involving filtering were not applied in

order to reduce the possibility of altering the sea clutter statistics as well as to prevent the removal of

small ships within the SAR imagery.

Prescreening and ship discrimination stages are the stages described in this chapter. Prescreening uses

a form of local thresholding to identify a list of bright objects in a SAR image that may be a ship or a

false alarm. The prescreening stage is applied to reduce the large discrepancy between the number of

ships and the number of sea pixels used in the subsequent detection process. This effectively reduces

the input search space for the discrimination stage. The discrimination stage’s primary goal is to use

various methods to learn when a sample is a false alarm and when it is a ship, thereby reducing overall

false alarm rates while trying to maintain a high level of detection accuracy.

5.3 CFAR SHIP PRESCREENING

5.3.1 Conventional CA-CFAR

The first true detection stage in most ship detection systems is the prescreening stage. A commonly

used variant of the CFAR method is known as the Power Ratio (PR) or Cell-Averaging CFAR (CA-
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Clutter Window

Guard Window

Region of Interest
Window

Figure 5.2. A CFAR window configuration. The mean pixel value inside the clutter and ROI windows

are µC and µROI, respectively. The clutter window is used to represent each pixel’s mean ocean

backscatter or clutter level. The guard window is there to prevent corruption of the clutter mean by

objects larger than the ROI. Only ROIs where µROI > µC×TC are selected as bright pixels. The sizes

of the windows are defined as squares with lengths SC, SG, and SROI for the clutter, guard and ROI,

respectively.

CFAR) [18, 77, 17, 64, 67, 74]. It is based on a scalar threshold value which determines how much

brighter a pixel must be compared to its local surroundings to be selected as a target or ship. All

CFAR methods use a sliding window configuration, shown in Figure. 5.2, with this threshold to

identify possible targets. A CA-CFAR prescreening stage compares the center region of interest’s

(ROI) window mean (µROI) to the clutter’s window mean (µC) with a guard window to prevent ROI

value corruption of the clutter mean [3, 18]. As the window moves across the image, ROI pixels

which are TC times brighter than µC are marked as bright pixels in an output binary image J. The

threshold (or depending on the type of CFAR method the probability of false alarm Pfa) can either be

a fixed constant or a two-dimensional manifold which can be varied across a SAR image (described

in section 5.3.3. Among the benefits of the CA-CFAR prescreening stage is its low complexity and

the ability to compute good initial estimates of the target without computing the probability density

function (PDF) for each sub-window. The disadvantage of using a single scalar threshold to define

the distribution of reflectance of the ocean that the distribution of the sea clutter can be heterogeneous

which could cause the method to fail [64, 74].

Assuming an input SAR intensity image I and binary output image J with dimensions X×Y where

x = {0, . . . ,X − 1}, y = {0, . . . ,Y − 1} and x,y ∈W such that I and J can be defined as in [3, 4]
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by

I =
{{

I(x,y)
}x=X−1

x=0

}y=Y−1

y=0
(5.1)

=


I(0,0) · · · I(0,Y −1)
I(1,0) · · · I(1,Y −1)

...
. . .

...
I(X−1,0) · · · I(X−1,Y −1)

 , (5.2)

J(I,TC) =

{{
J(I,x,y,TC)

}x=X−1

x=0

}y=Y−1

y=0
. (5.3)

Where TC ∈ R is a scalar value known as the CA-CFAR threshold and is inversely proportional to the

number of false alarm pixels permissible. The CA-CFAR binary pixel J(I,x,y,TC) and mean (power)

ratio µratio (x,y) are calculated with

J(I,x,y,TC) =


true if µratio (x,y)> TC

false otherwise
, (5.4)

µratio (x,y) =
µROI (x,y)
µC (x,y)

, (5.5)

where µROI (x,y) and µC (x,y) are known as the region of interest mean and clutter mean respectively

and are calculated using the window system shown in Figure 5.2. Notice that the threshold TC is a

single value which acts equally on all pixel values, irrespective of pixel location within the SAR image.

The above CFAR formulation is known as a custom threshold factor formulation of the CFAR method.

In the classic formulation of the CFAR algorithm the threshold is adaptively calculated based on the

clutter’s assumed distribution but is still tied to a single, pre-selected fixed probability of false alarm

Pfa. Formulating the CA-CFAR using equation (5.5) in [18, 77, 17, 64, 67, 74] affords us the ability to

extend the fixed threshold or Pfa to adapt this value across the SAR image.

5.3.2 Alternative CFAR methods

In the CA-CFAR method clutter values not in the guard or ROI window are considered equally

important and are compared to the ROI mean. By weighting each pixel equally no preference towards

brighter or darker clutter pixels are given. Contrastingly, methods such as Greatest Of-CFAR (GO-

CFAR) and Smallest Of-CFAR (SO-CFAR) use the the greatest or smallest pixel value in the clutter

window. This value is then compared to the ROI in the same way for the different CFAR methods

using a threshold TC.
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As mentioned in [64], SO-/GO-CFAR based methods tend to perform better when applied to hetero-

geneous clutter. These methods still use a single threshold or Pfa to calculate whether a pixel value

is higher than the highest or lowest pixel value. It should be noted that whilst the CA-CFAR method

is extended in the next section, a number of CFAR forms could also be extended. The CA-CFAR

method used here could be replaced with the GO-/SO-CFAR based methods by changing how µclutter

is calculated. The only constraint is that the chosen prescreening method identifies all the ships in the

image with methods. This is most easily accomplished by using either a very-low threshold global

thresholding method or a low threshold CA-CFAR but can also be accomplished using other CFAR

variants with carefully selected thresholds. Due to the assumption that ships are at least as bright as

their surroundings, the CA-CFAR method provides a method that will highlight all the ships with an

order of magnitude fewer false alarms compared to global thresholding methods [18, 3, 4].

5.3.3 Extending CA-CFAR Prescreening

The conventional CA-CFAR method uses a single threshold value to determine if the current pixel ratio

µratio is a ship or not. If the threshold value is low, a vast number of pixels will be highlighted, many

of which will be false alarms. If the threshold value is high then the number of false alarms will be

significantly reduced but a number of valid targets will be ignored, causing a drop in detection accuracy.

This makes the selection of TC complex and made more so by the fact that a single threshold value,

even when used to discriminate between local statistics of pixels, may not be sufficient to properly

discriminate between similarly valued mean ratio values. Figure 5.3 presents an example of how

a single threshold, described here as a flat manifold, can fail on occasions to properly discriminate

regions with the same or similar µratio values. Pixels that are brighter than their neighbors manifest as

large values compared to others in the neighborhood. These high ratio values appear as spikes in the

ratio image when µROI > µc. Figure 5.3 shows an example of three such spikes found in a mean ratio

image with two threshold manifolds overlaid - one flat and the other non-flat. A single-valued, flat

manifold such as T1 would not be able to differentiate the spikes two and three with the same value.

With a flat threshold, either they are both accepted or rejected as bright ship pixels. If we assume

that number three is a false alarm by extending the threshold manifold to allow for variations in the

threshold value along the manifold the two spikes could easily be separated by increasing the threshold

over the one that is not a ship.
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Candidate
Ships

1

2 3

Figure 5.3. Ratio image µratio (x,y) and two threshold manifolds, T1 and T2. Spikes one, two and three

indicate three objects that are brighter than their surroundings, with the one and two being ships and

three being a false alarm. Using a flat threshold manifold such as T1 spikes two and three cannot be

separated. A non-flat manifold, such as T2, allows for discrimination between these two ships.

The single value scalar threshold TC can be extended to a discrete threshold manifold or surface,

constrained by the input image dimensions X ×Y where x = {0, . . . ,X −1}, y = {0, . . . ,Y −1} and

x,y ∈W such that threshold manifold T can be defined as

T =

{{
T (x,y)

}x=X−1

x=0

}y=Y−1

y=0
(5.6)

=


T (0,0) · · · T (0,Y −1)
T (1,0) · · · T (1,Y −1)

...
. . .

...
T (X−1,0) · · · T (X−1,Y −1)

 . (5.7)

This creates a discrete manifold that is bounded at the sides by the image limits X and Y and threshold

value T ∈ R+ [120, 121]. In much the same way the various threshold surface solutions possible

for this method all lie within the constrained surface or discrete manifold parametrized by the two

positional variables (x,y) within the image and the threshold value T (akin to the two pose variables

and azimuthal lighting in [122]).
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Using the new threshold manifold T (x,y), the output binary image J(I,x,y,T (x,y)) is calculated

with

J(I,x,y,T (x,y)) =


true if µratio (x,y)> T (x,y) ,

false otherwise,
(5.8)

where T (x,y) ∈ R+. Pixels with an associated threshold value of T < 1.0 are ignored. The threshold

value for this thesis was assumed to be within the range T ∈ [1,SARmax] where SARmax represents

the maximum pixel value in the SAR image. These bounds are important as they significantly reduce

the range of possible threshold values which is important to reduce the computational complexity of

the SA procedure. The lower bound of T ≥ 1 is derived from the assumption that ships need to be at

least as bright as their surroundings. If the threshold is larger than the maximum pixel value in the

SAR image then no ships will be selected because no ship pixels can be greater than T (x,y) ·SARmax

which sets the hard limit for the threshold.

In this method the assumption that a singular scalar threshold value is sufficient is discarded by creating

a constrained threshold manifold whereby each pixel is assigned its own specific threshold. This

threshold manifold or constrained surface [120, 121, 122], in addition to the local statistics within each

window, provides a ship detection method which extends the CA-CFAR method to be more flexible

whilst still avoiding the local PDF computation that other methods require [67, 74].

The task is then to compute appropriate thresholds for each pixel. For areas with higher average

backscatter (those close to the nadir position) lower thresholds may be necessary whilst those further

away from the nadir might require higher threshold values. A non-flat threshold can be constructed by

setting a lower threshold for all values along the nadir at T min
C and a higher one at the end of the swath

with T max
C .

5.3.4 Discrimination stage requirements

This study introduces two different discrimination stages. The prescreened binary image J generated

by processing the input SAR image using equation (5.5) or (5.8) is fed into the two discrimination

stages differently. For the first method, based on SA, the entire binary image is passed to the SA

process as the initial manifold as described in section 5.4.3. For the second discrimination method

SAR sub-images of 21× 21 pixels are extracted where J(x,y) = true and processed to extract the

ship-like features. Using a low threshold CA-CFAR method to extract sub-images reduces the number
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Detected Ships

Adapted CFAR
prescreening

Input 
transponder 
data

Preprocessing
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Distribution 
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Input SAR
image

Simulated Annealing
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Preprocessed
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Ship 
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Figure 5.4. Flow diagram of the system process for this experiment. A SAR image is preprocessed by

removing the land and georeferencing the image. This processed image is then prescreened using an

initial CA-CFAR which generates initial detections. This initial solution is adjusted using SA until

there is little change in the solution. This is then used in a second prescreening stage to produce a

binary image with the detected ships centers as true values.

of sub-images presented to the classifier by at least an order of magnitude whilst still presenting all the

possible ships in an image due to the low-threshold chosen [4].

5.4 DISCRIMINATION METHOD 1: SIMULATED ANNEALING MANIFOLD ADAPTA-

TION

The entire detection process proposed for this first method is shown in Figure 5.4 [3]. The conventional

CA-CFAR method described using equation (5.5) is extended in the next section to a new method that

allows for per-pixel thresholding. Following this, the creation of the ship distribution map is described

which is used as input into the SA stage which is discussed thereafter.
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5.4.1 Ship distribution mapping

Traditionally, ship monitoring relies on using a transponder system [55, 17, 119, 6]. These transponder

systems range from terrestrial based systems such as conventional AIS to space-based transceiver

systems such as Satellite-AIS (Sat-AIS) and Long Range Identification and Tracking (LRIT) [17, 119,

6]. Ship detection using transponders becomes difficult when either the transponders are sabotaged or

out of range (for terrestrial transponder systems). Despite this, the immense amount of data provided

by transponders can still be useful for the creation of a ship distribution map to profile ship movement

behavior [17].

If enough ship positions are collected over a number of years, a daily, weekly or even monthly ship

distribution map for a given region could be generated, as shown in Figure 5.5. All 12 months of

transponder data was used to generate the ship distribution map and it is assumed this would sufficiently

model the average movement of ships within the image’s geographical limits.

This ship distribution map is used to assign, to each pixel of the input image, a value which represents

the likelihood of that pixel having shipping traffic. Pixels with high associated probabilities implies

many ships transmitted their position at that geographical position and low associated probabilities

means fewer ships had coordinates recorded for that geographical position. More formally, given an

input image I, the associated ship distribution map V for that image is defined as

V =

{{
V (x,y)

}x=X−1

x=0

}y=Y−1

y=0
(5.9)

=


V (0,0) · · · V (0,Y −1)
V (1,0) · · · V (1,Y −1)

...
. . .

...
V (X−1,0) · · · V (X−1,Y −1)

 . (5.10)

Each V (x,y) is calculated by adding up the number of ship positions found in the data nearest to that

(x,y) coordinate divided by the total number of coordinates counted so that V (x,y) = 1. Once this

distribution map is generated, it can be used to adapt an initial threshold manifold using SA. If the

ship distribution map is unavailable, the current non-flat threshold manifold is passed onto the final

stage and is used to threshold the input image to produce a final output. The ship distribution map is

therefore useful to significantly reduce the false alarm rate but is not required in order for the method

to produce results.
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Low to high ship probability

Figure 5.5. A section of the ship distribution map generated using all 12 months’ LRIT data within

the given geographic region. The image shows the ship distribution map off the coast of South Africa,

near Mossel Bay (34.1833◦ S, 22.1333◦ E). It is interesting to note that two shipping lanes are clearly

visible as well as two platforms. This is due to the fact that thousands of ship positions were collected

along those lines, indicating a large number of traversals over those points.

5.4.2 Simulated Annealing

To adapt the threshold manifold a widely used optimization method known as SA was used in conjunc-

tion with the ship distribution map [123]. SA mimics the process of heating a material and allowing

it to slowly cool to reduce abnormalities in the material. The method works by altering a currently

accepted solution, testing the validity of the new solution and then replacing the current best solution

with the new solution. The method also allows suboptimal solutions to be accepted to improve solution

diversity. A flow chart of the SA method is shown in Figure 5.6. SA is used to adapt a flat manifold

over a number of steps to increase thresholds over areas unlikely to contain ships. This reduces a

large number of false alarms but also allows for low thresholds so ships that are not particularly bright
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Figure 5.6. The SA threshold manifold adaptation process. The process starts at i = 1 by using the

intial manifold T0. The manifold is adapted using the process described in section 5.4.6 which generates

the candidate threshold manifold. If the candidate threshold manifold fails evaluation it can still be

selected as a new, best candidate by means of the Boltzmann probability as described in section 5.4.6.

Finally, the process is terminated when either N steps have occurred or the change in temperature over

a number of steps has stayed constant.

compared to their neighbors can still be detected. One of the benefits of SA is that it uses a given

solution to generate further solutions. This is in contrast to other optimization methods, such as GA,

which search the entire solution space using multiple different candidates [124, 125].

5.4.3 Initial threshold manifold

It is assumed that the initial (flat) threshold manifold highlights all ships within the SAR imagery with

a large number of false alarms. This implies that the initial threshold manifold T0 is a good starting

solution because subsequent processing steps need only remove the false alarms by increasing those

pixels’ thresholds to improve performance. This selection of the starting manifold significantly reduces

the number of searchable ship positions from the entire image to only areas where pixels are as bright

as their surroundings. Subsequent steps of the SA processes uses the ship distribution map to evaluate

changes in threshold manifold values. The initial threshold manifold, T0, is generated by running a low,

flat CA-CFAR prescreening on the input SAR image I such that T0 (x,y) = J(I,x,y,T (x,y) = 1.0). For

the sake of brevity Ti for i = 1,2, . . . ,N is equivalent to Ti (x,y) where N represents the total number of

SA steps. This will select all areas of the input image that have a brighter-than-average pixel value

including all ships. These positions will have an associated threshold manifold value of T0 = 1.0 whilst

all others will have have T0 = 0.0. To correctly increase threshold manifold values for false alarms a

means of threshold manifold evaluation is presented next.
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5.4.4 Mean change in probability per ship

SA requires a manner to evaluate the current solution Tcurrent and its possible replacement Ti. To do so,

some performance metric must be calculated for each solution. Given Ti and I, the number of ships

detected Li, the total probability vtotal
i at time step i can be calculated. The total probability vtotal

i is the

sum of all probabilities for all the detected ship centers across the whole image using V (x,y) at each

time step i which is computed as

vtotal
i =

X

∑
a

Y

∑
b
{V (a,b) | Ji (I,a,b,Ti) = true} , (5.11)

where Ji (I,a,b,Ti) is the input image I (x,y) processed using the CA-CFAR with the threshold manifold

Ti. Note that total probability may change at each step because the detected ships may change at each

stage.

The mean probability per ship is

αi =
vtotal

i
Li

. (5.12)

This can be extended to include the variations in the mean probability per ship at each time step by

noting the change in α and the change in the number of ships such that the mean change in probability

per ship, βi, is

βi =
|vtotal

i − vtotal
i−1 |

|Li−Li−1|+ ε
. (5.13)

The symbol ε is a arbitrarily small value, typically ε << 10−9. At each time step, βi can change

based on the current threshold manifold Ti, which then directly affects the value of total probability

vtotal
i .

Once the mean change in probability βi is calculated for a given time step, a cost function can be used

to decide if the current threshold manifold Ti represents an improvement or not. The cost function at

time step i, Di, is calculated using βi with

Di = 1−|βi−βi−1|. (5.14)

For the initial threshold T0 values are assumed such that D0 = 1, vtotal
0 = 0, L0 = 0 and β0 = 0. Cost

function values that are closer to one are preferable because they represent a smaller change in mean

ship probability. This is because a small decrease in mean ship probability indicates a reduction in

the number of ships in low probability zones which are most likely false alarms. This causes a small

change in β between step i−1 and i and thus the cost function tends closer to one in those cases. An
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Low to high ship probability

CA-CFAR ship candidate

T3

T1

T2

Figure 5.7. Three flat threshold manifolds are shown with Ti (x,y) = {2.0,2.5,3.0}. The ship distribu-

tion map V (x,y) is superimposed over each image. The number of ships are L1 = 5,L2 = 4 and L3 = 2

and the total probability is vtotal
1 = 0.5,vtotal

2 = 0.45 and vtotal
3 = 0.2 per step. Using equation (5.14)

the cost values are D1 = 0,900,D2 = 0,950 and D3 = 0,925. Notice how, intuitively, the highest cost

threshold T2 is the best threshold manifold because it removes a redundant bright pixel present at T1

but does not remove the two high probability ships like T3 does.

example of this process is shown in Figure 5.7. Do note that for the sake of clarity, a flat threshold

manifold is used in this example and not the non-flat manifold as introduced in this thesis (the same

principle applies).
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5.4.5 Simulated Annealing alternatives

Despite the efficiency of methods such as GA or Particle Swarm Optimization, the SA produces a

solution which is more intuitive to the problem of computing the threshold manifold [124, 125, 126].

The reason is that the CA-CFAR produces accurate initial conditions for the SA to adapt quickly to an

acceptable solution, which can reduce the computational costs.

There are a number of reasons SA was selected above other methods. As mentioned in [125, 124],

it is expected that there will be cases where either GA or SA will be better suited to the problem.

The following presents the reasoning as to why SA was considered better suited to the generation of

non-flat threshold manifolds given an initial input solution.

When comparing GA and SA on a computational basis, in most cases GA is far better than SA as it

searches the solution space simultaneously using multiple solutions at once versus SA which searches

the solution space using one solution with many epochs of adaptation [124]. In most cases this causes

SA to have a much greater computational time because if the optimal solution is at one point of the

searchable space and a search is started in the opposite position then the entire searchable solution

space is searched serially when using SA rather than in parallel for a GA [124]. The main advantage

of SA can be seen with the intelligent selection of the initial starting point and the way in which the

initial starting point is adapted to form a final solution [126]. The initial threshold manifold, T0, is

generated using a low threshold CA-CFAR highlighting all of the ships as well as a number of false

alarms. The best possible manifold will be a version of T0 that rejects all false alarms but maintains all

of these correct detections. Due to the selection of this initial starting point a large area of the search

space becomes irrelevant because the solution is inherent from T0. Therefore, a major benefit of GA

being efficient solution space searching becomes less applicable as the entire solution space need not

be searched. Furthermore, the way in which GA searches might cause it to stochastically diverge away

from T0, thus searching for a solution in part of the solution space that is not applicable.

A practical concern regarding selecting GA above SA in this work is generating a starting population

from T0. The starting GA population could be generated from this initial solution but then the question

of population solution diversity arises. How can a starting set of solutions be generated from a good

initial solution whilst maintaining population diversity? A second, related concern is how can the

genes and mutations for each generation be designed for a threshold manifold to a) maintain solution
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diversity so that local minima are avoided and b) keep the population close enough to the good initial

solution, even during mutations? To this end, SA lends itself as the more natural optimization method

in this instance as better manifolds are derivatives of the original and changes are improvements

upon previous steps. Also the small, gradual change in threshold value across the manifold using

the SA procedure fits well with the manner in which each solution is evaluated (detection of large

changes in average ship probability). This furthers the case for SA being a more suitable optimization

method for this work given the way in which the auxiliary data is used. Looking specifically at how

the computational burden can be reduced, we provide a few specifics as to why using SA becomes

more attractive than in the general case by reducing the searchable solution space. Due to the initial

input manifold being acceptable, the size of the SA solution search space is greatly reduced from

X ·Y ·R searchable points (every single manifold coordinate) to L0 ·R searchable points (where L0 is

the number of initial ships detected at T0). For a typical Sentinel-1 image, X ·Y ≥ 475000000 whereas

L0 < 5000 which is a 95000 fold decrease in search space size. Furthermore, the adaptation process

computational time per epoch is linear in the number of initial and subsequent ship detections and as

more false alarms are removed the adaptation process runtime per epoch decreases.

Another point that needs to be considered is that the possible searchable space per searchable point

need not be the entire R range. Let us assume an 8-bit grayscale input image for interests, the

solution space is reduced to 1 ≤ T (x,y) ≤ SARmax. The lower threshold bound, 1 ≤ T (x,y), stems

from the requirement that ships be at least as bright as their surroundings. The upper bound of

threshold values can be understood with two special cases, namely when µc = 1 and as µc→ 0. When

µc = 1, µratio =
µROI
µc

= µROI and so T cannot be more than the maximum pixel value, in this case

T (x,y)≤ SARmax. When µc→ 0,

lim
µc→0

µratio→ ∞ >> T (x,y), (5.15)

We can then choose the maximum value of T (x,y) to be any finite value less than ∞ because the above

equation will be satisfied. Therefore, T (x,y) ≤ SARmax is selected to fall in line with the previous

case. This reduces the search space that the SA has to deal with to R ∈ [1,SARmax] rather than all R

for each manifold threshold value.

The selection of which method to implement to perform the adaptation is a matter of designer

choice [125, 124]. In some applications better computational time performance will be required

and so GA or another method might be chosen and the adaptation process changed to suit that method.

For the case of this thesis, a proof of concept was presented and the selection of optimization method

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

74



CHAPTER 5 ADVANCED SHIP DETECTION

hinged on which method seemed to lend itself best to the presented process and given auxiliary data

rather than practical and implementation concerns. For the case of this thesis the adaptation of a

single solution given a well derived input solution indicated SA would be a suitable method to test the

concept.

5.4.6 Manifold adaptation

The manifold adaptation scheme used in this thesis estimates the degree to which the areas of the

manifold should be adapted by using the number of ships that are neighboring every ship. The threshold

manifold is increased by a uniform random amount inversely proportional to the number of ships near

each ship and added to the previous threshold value at that pixel which is expressed as

Ti (a,b) = Ti−1 (a,b)+
(

Rz

Z (a,b)

)
whereJi (I,a,b,Ti) = true, (5.16)

where Rz is a randomly chosen uniform value which scales the change at position (a,b) from the

previous position. Z (a,b) refers to the number of ships in a square area around the ship found in

Ji (I,a,b,Ti). If no ships are found within the area, Z (a,b) = 1. The reasoning behind the inverse

relation between the number of ships and the threshold change is that areas with more ships should

be increased slowly as the likelihood of ships in those areas is assumed to be more. Singular, solitary

pixels’ thresholds should be increased rapidly so that their effect on the overall mean probability can

be ascertained quickly. If these solitary pixels are in low probability areas then their removal will have

little to no effect on the mean probability per ship and these would typically be assumed as false alarms

and require higher threshold values.

Despite the above, a threshold with a low cost can still be accepted if the rejected candidate’s probability

of acceptance is above a given value known as the Boltzmann probability. The SA method allows

for this replacement of the current optimal solution in order to prevent the process from settling into

non-optimal, local minima. To prevent this, the temperature parameter γ is introduced which is related

to the mean threshold value. Specifically, the current temperature γi is equal to

γi =
100
µTi

, (5.17)

µTi =
1
Li

X−1

∑
x=0

Y−1

∑
y=0

Ti (x,y) where Ti (x,y)> 0, (5.18)

for i = 1 . . .N. We assume γ0 = 100 and µT0 = 1.0 because at i = 0 all threshold values within T0 are

either T = 1.0 for highlighted pixels or T = 0.0 for the rest.
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The value of µTi increases as the SA process continues, thus decreasing the temperature γi over time.

Using the current temperature and the change in cost, a previously rejected threshold manifold can be

accepted using the Boltzmann probability if

e−
∆D
γi > R. (5.19)

Where ∆D is the change in cost between the current solution and the best solution, γi is the current

temperature of the solution and R is a random uniform real number in the range [0,1].

The above is repeated until the change in cost function over a number of time steps is negligible or a

number of predefined time steps N has been reached. The final output image is JN = J(I,TN (x,y)).

The ships within this image are grouped together, and their center positions within the image are used

to compare against the known ship positions to determine the method’s performance. Using the center

position ensures groups of nearby detections are fused in order to prevent azimuthal ambiguities near

to the ships whilst maintaining the correct number of detections.

5.5 DISCRIMINATION METHOD 2: HAAR-LIKE FEATURE EXTRACTION AND CAS-

CADE CLASSIFICATION

Research into Sentinel-1 ship detection generally focuses on the higher resolution IW imagery [82, 73,

127]. IW imagery facilitates precise monitoring of small areas and the higher resolution imagery allows

algorithms that cannot necessarily be created using medium resolution imagery such as ship-type

classification. However, the impracticality of monitoring large areas using only high resolution SAR

imagery demands effective capability be developed to detect ships in low-to-medium resolution SAR

imagery. Also initial detections can be made using medium resolution, wide swath imagery which

can then advise operators where to task high resolution SAR imagery. Almost exclusively in ship

detection studies the prescreening step is configured to stringently remove as many false alarms as

possible [127, 80] which reduces the responsibility of the ship discrimination step. The difficulty with

this is that stringent removal of false alarms in the early detection steps increases the likelihood of not

detecting ships in subsequent stages. Depending on the requirements of the ship detection process and

operator, this may not be a desirable result.

The previous discrimination method explored the limits of what can be done by extending the con-

ventional CFAR algorithm to exhibit per-pixel threshold values. One of the downsides of using this
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Figure 5.8. The Haar-like feature extraction and cascade classification overview. The figure shows

the two types of systems - training creates the cascade classifier that is used during the ship detection

process when testing.

method is the computational burden required to generate a manifold that provides reasonable results,

typically due to optimization procedures such as SA. Also, depending on the prescreening and dis-

crimination method used, a significant increase in computational complexity can sometimes occur in

large SAR imagery [80]. Ship detection using machine learning has historically been arduous due

to the limited number of samples available to train systems which, in part, is due to prohibitively

expensive SAR imagery. With the release of the free Sentinel-1 imagery, large SAR datasets could

be created and thus research into more modern machine learning techniques became possible. This

thesis introduces a novel ship detection method which combines a low-threshold presecreening step

with a novel ship discrimination step that extracts ship-like features and presents these to a classifier

tailored to effectively identify ships from false alarms. These unique features are scalable, rapidly

calculable and are descriptive enough to highlight ships effectively across a large SAR dataset. By

using CA-CFAR as the prescreening step these features are only extracted for objects likely to be ships

thereby improving the method’s efficiency on SAR imagery compared to the direct application on the

SAR imagery. The combination of these adaptable features and versatile machine intelligence-based

ship discrimination allows the proposed method to be both efficient and accurate [4].

An overview of the proposed method is described in Figure 5.8. After the low-threshold CA-CFAR

prescreening method identifies likely ship candidates which are sent to the novel discrimination method

as 21×21 subimages. These subimages are processed to extract Haar-like features which are then fed

to an adaptable cascade classifier to discriminate ships from non-ships.
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Figure 5.9. A 21×21 RADARSAT-2 SAR intensity sub-image containing a ship with the upright [128]

and rotated [129] Haar-like feature templates. Each ship can be described by a combination of these

feature templates, at various scales and positions in the image.

5.5.1 Haar-like feature extraction

The process of detecting all ships in an image can be accomplished if it is assumed that ships are

brighter than their surroundings and a low enough threshold (TC = 1.0) CFAR will detect all ships in

an image [3, 18]. To remove the many accompanying false alarms we propose to use special ship-like

features called Haar-like features. These features have a number of directly relevant advantages for

SAR ship discrimination as they are scalable, rapidly calculable and also reduce the in-class variance

whilst increasing the out-of-class variance [128, 129]. Furthermore, using variants that are rotated, the

features are simultaneously scale and rotation invariant [128, 129]. An example of how the features

look, scale and rotate to describe ships effectively is shown in Figure 5.9.

Haar-like features come in three types (edge, line and center) and two variations (upright [128] and

rotated [129]). A single Haar-like feature is simply the normalized difference between two (or more)

scalable areas in a SAR ship sub-image. To aid in rapid calculation of these features, the concept of

integral images is introduced [128]. An integral image II is the integral result of I and is calculated as
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the summation of all pixels above and to the left of a pixel at I(x,y), inclusive. More specifically,

II (x,y) = ∑
x′≤x

∑
y′≤y

I
(
x′,y′

)
. (5.20)

The advantage of using an integral image to calculate sums is that a single pass over the image is all

that is required to calculate any integral image value and subsequent values only require reference

lookups to II. Assuming II (−1,y) = II (x,−1) = 0 [129], the integral image value at pixel (x,y) is

calculated using only four references to II such that

II (x,y) = II (x,y−1)+ II (x−1,y)+ I (x,y)− II (x−1,y−1) . (5.21)

To calculate a single two-part Haar-like feature, f j we make use of the integral image to calculate the

value over the two template areas using only six integral image references. Assuming two template

rectangles r1 and r2 with heights Y1 and Y2 and widths X1 and X2, a two-part upright Haar-like feature

f j is calculated as

f j =
Ω(r1)−Ω(r2)

X1×Y1 +X2×Y2
, (5.22)

Ω(r) = II (x−1,y−1)+ II (x+X−1,y+Y−1)−

II (x−1,y+Y−1)− II (x+X−1,y−1) . (5.23)

Where f j is normalized by the area of the two templates so that features of different scales are weighted

equally and Ω(r) is the pixel sums for r1 and r2, respectively. Due to two common points, f j only

requires six references to II, irrespective of where or how large the feature is within the sub-image.

The above only applies to upright features, but can be extended to include rotated features using a

rotated integral image [129] thereby improving rotation invariance. For an illustrative example of

how to calculate a single upright two part Haar-like feature see Figure 5.10. Once these features are

extracted they are presented to a trained classifier created using AdaBoost.

5.5.2 Cascade classifier creation using AdaBoost

A single 21×21 sub-image can contain up to 111160 (upright) or 155060 (upright+rotated) Haar-like

features. This would be too many features for conventional classifiers to successfully train on due to the

curse of dimensionality [130]. To effectively select the most descriptive Haar-like features and create a

classifier to discriminate ships the Adaptive Boosting (AdaBoost) method is chosen [128, 129, 131].

AdaBoost does this using three main concepts: weak learners or feature thresholds; strong learners

which are weighted combinations of weak learners; and sample importance to identify which samples

are most difficult to classify. By intelligently ordering the strong learners in a cascade classifier,
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Figure 5.10. Example calculation of an arbitrarily sized upright Haar-like feature within a SAR ship

sub-image. Points 1 through 4 are calculated as the sum of pixels above and to the left of the point.

These points are then used to calculate sums B and D (equation (5.23)) using only two and four

references, respectively. Finally, irrespective of size, feature f j can be calculated using equation (5.22)

with only six unique integral image references (normalization not shown).

AdaBoost also ensures that only the most likely ship candidates reach the final stages where the stages

are most complex and easy-to-discriminate samples are quickly accepted/discarded in the first stages

thereby improving classification computational efficiency [128]. An overview of the entire AdaBoost

training procedure is given in Figure 5.11 as well as an example of the cascade classifier using strong

and weak learners in Figure 5.12.

The AdaBoost creation of the cascade classifier proceeds over L rounds where l = 1,2, . . . ,L. For

each round Sl steps occur so that s = 1,2, . . . ,Sl . Assuming M samples (both ship and ocean) such

that m = 1,2, . . . ,M with N features such that n = 1,2, . . . ,N where each sample x1,x2, . . . ,xM is xm =

{ f1, f2, . . . , fN} and fn is the nth Haar-like feature. For each sample we assume a label ym ∈ {−1,1}

for ocean and ship examples, respectively. Additionally, each sample xm has a sample importance

distribution value Ds(m) = {D(1),D(2), . . . ,D(M)}. For the first step s = 1 all samples are weighted

equally such that D1(m) = 1
M .

For each round l a strong learner Hl(x) is created that is a linear combination of weighted weak learners

hs. The simplest weak learner function that can be defined is a threshold θn of a single feature fn such

that hn(xm) = fn > θn. This threshold is selected as the value that separates the M samples with a fixed

error less than 0.5 for each feature n. At every time step a single learner is selected such that hn at s

(hs for brevity) from the set of all weak learners H if it has the lowest error rate (at least εn < 0.5).

The error εn represents the error that feature has in classifying all the samples. The Single learner is
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Figure 5.11. An overview of the AdaBoost training algorithm. The system receives sub-images

containing likely ships and extracted Haar-like features. During each of L rounds a single strong

learner is created from SL weak learners. During each round if the cascade classifier meets the desired

specifications (can be specified in general or per-round) then it is added to the cascade classifier

otherwise more weak learners are added until the specification is met.

assigned a weight αs using

hs = arg min
hn∈H

M

∑
m=1

Ds(m)[hn(xm) 6= ym], (5.24)

αs =
1
2

log
(

1+ rs

1− rs

)
, (5.25)

rs =
M

∑
m=1

Ds(m)hs(xm)ym. (5.26)

Where H contains N = 111160 or N = 155060 weak learners depending if upright or upright and

rotated Haar-like features are selected. The weighting factor, αs, is known as the weak learner

importance. As shown in equation (5.25), weak learners hs with error rates closer to 0.5 will have

lower αs values and hence their contribution to the strong learner Hl(x) will be decreased because

they provide less discrimination capability. By combining enough of these weak learners it is has
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been proven that the resulting strong learner (and by extension cascade of strong learners) can be

trained to a required accuracy and false alarm rate on the training data with a bounded generalization

error [128, 129, 131].

The final computation during step s is the adjustment of the distribution Ds (m) for the next step

s+1. The distribution value at m is increased for misclassified samples and decreased otherwise. The

magnitude of this change is dependant on the previous distribution value of Ds(m) and current weak

learner importance αs such that

Ds+1(m) =
Ds(m)exp(−αsymhs(xm))

Zs
, (5.27)

where Zs is a normalization factor chosen so that Ds+1 is a distribution. Adjusting the sample

importance in this manner allows the AdaBoost procedure to hone in on features that can be thresholded

such that εn < 0.5, even for difficult to classify samples when s > 1. This is repeated Sl times until the

strong learner meets a specified minimum accuracy and false alarm rate.

Once Sl steps have taken place using equation (5.24), (5.25) and (5.27), a strong learner Hl(x) can

be defined as a linear combination of Sl weak learners hs(x) and weak learner importances αs such

that

Hl(x) = sign

(
Sl

∑
s=1

αshs(x)

)
. (5.28)

After L rounds a cascade classifier is created containing L strong learners Hl(x) which in turn are

composed of Sl weak learners. The AdaBoost procedure reorders the cascade classifier so that, typically,

S = 1 for l = 1 and S ≥ 1 for l ≥ 1. This configuration is an integral part of the proposed method

because it allows for the removal of easy-to-identify false alarms at the beginning of the cascade

while delegating difficult sample discrimination requiring more features to the end, thereby improving

computational efficiency. If a sub-image is classified as a ship by L cascaded strong learners it is

deemed a ship.

5.5.3 Additional considerations

In addition to the above there are a number of practical considerations that need to be addressed.
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Figure 5.12. A trained AdaBoost Haar-like feature cascade ship discriminator. A sub-image is fed into

the cascade window and only the relevant Haar-like features are extracted per-stage. If a sub-image

survives L strong classifier stages then it is classified as a ship. Each strong classifier has S weak

classifiers within it where typically S = 1 for the first stage and S > 1 to improve computational

efficiency.

5.5.3.1 Feature selection

In classical machine learning, one of the most important tasks is the selection of relevant features

for classification. This step, referred to as feature selection or engineering, often requires in-depth

knowledge of the problem area as well as an understanding of how certain features may affect results.

Feature engineering often involves statistical analyses of the features including trying to capture

which features explain the most variance in the dataset. As mentioned above, the Haar-like feature

extraction process extracts hundreds of thousands of features for even a small 21× 21 sub-image.

While a technique such as Principle Component Analysis (PCA) can be extended using Singular Value

Decomposition (SVD) to process this many features, in practise this leads to very large matrices that can

be limited by hardware (i.e. the U matrix of the SVD enhanced PCA method will be 155060×155060
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single/double precision matrix for our rotated feature’s case). Selecting features by hand is feasible

when the number of features is below 1000 but beyond that becomes an error-prone task with no

guarantee that the selected features properly allow for exploration of the solution space.

A number of modern machine learning techniques place the responsibility of feature selection within

the training architecture and is part of the reason the AdaBoost method was chosen as the training

method for this system. The AdaBoost method described above selects the most relevant features

using αx, focuses on the most relevant examples using Ds(m) (those which are proving the hardest to

classify) and builds the classifier at the same time. This is one step removed from many of the latest

machine learning techniques which even create problem-specific features as part of the network known

as deep learning. In this case the completeness and similarity of Haar-like features to ships lent itself to

the natural selection of these features over hand-crafted features. Furthermore, the AdaBoost training

helps eschew a common difficult of feature selection by automatically selecting relevant features as

part of the training process.

5.5.3.2 Application of the method specific to wide-swath SAR

The direct application of the original Haar-like methods [128, 129] has shown a detection accuracy

performance that is unacceptable on its own, despite the low FAR achieved [4]. To explain this the

concept of voting needs to be introduced. Practical implementation of the the Haar-like papers use a

sliding window approach to detect objects within an image. Each object is assigned a detection vote V

after its successful classification using the Haar-like cascade classifier and then the window is moved

one pixel on and the same process is repeated again until the entire image has been covered. An object

is only detected within the image when there is a minimum of V detections for that object within the

image. This vote value V sets a hard limit to the minimum number of detections that are necessary to

accept a sample when V> 1. If V is set too high (either by design or automatically during training)

then correct objects can be missed in a large varying datasets whereas setting this value too low will

increase the FAR. This is akin to CFAR prescreening where the probability of false alarm or threshold

determines how many ships will be detected/missed.

Our implementation of the method avoids this problem by always assuming V= 1 or in other words

no voting is applied. By providing the Haar-like detection stage with more likely targets, as opposed to
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every single pixel, we assume that after both CA-CFAR prescreening and L classifier stages the current

window has a ship in it and voting does not need to be done. To this end low-threshold prescreening

removes the need for voting because we only pass over each object only once in an entire image and

therefore do not need to collect votes.

Finally, the original methods were tested on images that are typically less than 1000×1000 [132]. At

this size the sliding window approach presents approximately 960400 overlapping 21×21 windows to

the classifier. The average size of a SAR Sentinel-1 GRDH image is approximately 22900×19600 [4]

which would present approximately 447990400 overlapping 21×21 windows to the classifier. While

the original methods performed well on the original images sizes they were given, but both original

papers’ methods were simply not designed to process images two orders of magnitude larger and

evidence of this is shown in their poor performance by direct application to the dataset [4]. Instead of

direct application some adaptation to these two original methods was applied to allow the method to

perform better on SAR imagery. Even if a prescreening stage still allows 10000 samples through to the

classifier per image we still reduce the number of 21×21 windows seen by the classifier by a factor of

approximately 44800. This represents a significant reduction in processing required to identify ships

in SAR imagery especially compared to the SA manifold adaptation method whilst further increasing

the probability of detection because the number of possible false alarms presented to the classifier is

reduced than simple direct application of the Haar-like original methods to SAR imagery.

5.5.3.3 Adaptability of proposed method

Adaptability for our described method is achieved using three aspects. First using a fixed low threshold

will ensure all potential ships in the SAR image are presented to the cascade classifier, irrespective of

image type/sensor/resolution as long as we assume ships are brighter than their surroundings. Secondly,

by assuming each detection has a fixed number of votes V= 1 ensures we need not alter this minimum

based on ship size/frequency in any of the SAR images due to practical processes such as sliding

window techniques, instead relying on the AdaBoost training to deal with hard-to-classify samples.

Finally, by making use of a machine learning method adaptability is increased because new sources of

SAR imagery could be dealt with by retraining the classifier.
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5.5.3.4 Fast Contrast Stretching

The original implementations of the Haar-like classifier [128, 129] used a fast contrast stretching

algorithm to ensure samples are uniform when presented to the classifier. The method presented here

makes no use of contrast stretching due to the peculiarities present in SAR imagery. In the originals,

the types of images presented to the system [132] constitute gray-scale imagery that remains relatively

consistent between images and their dynamic ranges all fall within the same range, more-or-less. SAR

imagery is completely different in that ships near the nadir will often have different backscatter values

compared to those far away, often with a very large dynamic range. Original testing indicated that using

contrast stretching to normalize these differences negatively affected performance. This is likely due

to the property that while visually appearing similar, the values ships have compared to false alarms

such as azimuthal/range ambiguities differs enough to be detected by the classifier. It was concluded

that these backscatter values inherent to ships are being used as additional information by the classifier

to improve detection accuracy and therefore any sort of contrast stretching was removed.

5.6 CONCLUSION

In this chapter two methods for ship detection in SAR imagery were introduced. The first method,

SA CFAR Threshold Selection, extends the conventional CA-CFAR method to allow for per-pixel

thresholding. To select the correct thresholds across a SAR image the proposed method uses an

auxiliary data set of historic ship positions. This a-priori data, in combination with the optimization

procedure of SA, allows the method to choose thresholds which could allow for more effective detection

of ships at sea in SAR imagery. The chapter also introduced a machine learning-centric ship detection

method known as Haar-like feature cascade classification. This method uses an adaptive set of ship-like

features which are robust to changes in rotation, and translation and scale to describe SAR ships. These

features were fed into a binary tree cascade classifier which tries to identify ships from non-ships. The

AdaBoost training method selects the best features from the overcomplete Haar-like feature set and

also creates and intelligently orders the cascade to improve detection efficiency.
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6.1 CHAPTER OVERVIEW

A robust dataset needs to be created to properly evaluate any new method. By ensuring the dataset is

of a high quality, the results and analysis derived can be better understood and better interpretations

of the strengths and weaknesses of a method can be extracted. During the creation of the dataset, the

extents of the data need to be thoroughly documented and tested in order to determine the parameters

that work well to circumvent these limitations. This, in turn, can help to derive a deeper understanding

of the results various methods obtain given the dataset. The dataset was designed according to the

following objectives:

• The dataset needs to be large enough to encompass the most probable scenarios the methods

might be expected to operate in.

• The dataset needs to be well documented in terms of all aspects from the data package level to

the ground truth positions of ships.

• Errors and sources of error within the dataset need to be well documented in order to identify

where and how certain methods fail.

• The dataset needs to be constructed in such a way to accommodate comparative research in

various fields, including machine-learning.
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This chapter presents a large SAR dataset, covering two separate SAR satellites using three separate

resolutions. The dataset comprises of two components - transponder data derived from LRIT and AIS

messages and SAR imagery. The first section of this chapter details how the collection of SAR imagery

was preprocessed including details on radiometric calibration, georeferencing, warping, landmasking

and associated sources of expected errors. The second section details how the ships were extracted

and referenced. It also provides a summary of the details related to ships, their positions and how the

data is organized for ease of comparison to future methods. The final section of the chapter details

the transponder data associated with some of the ship detection and the two ways in which it was

used.

6.2 SYNTHETIC APERTURE RADAR DATA

6.2.1 Study area

The geographic extent of the SAR imagery used in this dataset is shown in Figure 6.1. The SAR

imagery covers approximately 1.17 million km2 which includes, approximately, 76% of the South

African EEZ and 90% of its territorial waters. The dataset was acquired between 6 October 2014 and

22 July 2015. The dataset contains 1596 ships all across the South African EEZ and nearby waters; the

geographical distribution of these ships can be seen in Figure 6.2.

The dataset consists of 46 SAR images covering approximately 76% of South Africa’s EEZ across:

two sensors (RADARSAT-2 and Sentinel-1A); three resolutions (SCNA 81m×30m, EW GRD High

(GRDH) 50m×50m and EW GRD Medium (GRDM) 93m×97m); and four polarizations (HH, HV,

VV, VH). There are 1596 ships (positive samples) across all 46 images, extracted as 21×21 pixel

sub-images for this experiment (accommodating a maximum possible ship size of 20 pixels long).

The dataset contains over 500 000 possible false alarms but from these a random selection of 3192

21×21 sub-images with no ships within them were used as negative samples. The difference in sample

size models what a ship discrimination step would see with a prescreening method such as the one

discussed in section 5.3.3.
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Figure 6.1. A map of South Africa and the extent that the Sentinel-1 and RADARSAT-2 images cover.

The white border indicates the South African EEZ. Approximately 80% of the EEZ is covered by

the SAR dataset. In addition to this a number of images cover the Maputo Bay area of Southern

Mozambique and form part of the dataset.

6.2.2 Sentinel-1

The first freely available imagery from the Sentinel-1 constellation was released on the 6 October 2014,

which included two images located over South Africa and were used in an initial research study [7, 6].

All 46 images used in this dataset are from the EW swath acquisition mode with Incidence Angles

between 19.0◦ and 47.0◦ and a swath width of 400km. At the time of writing, no SLC imagery over

South Africa in EW mode was available, specifically over the EEZ waters of South Africa. All of the

data were GRD imagery using either the High (GRDH) or Medium (GRDM) resolution class. GRDH

images have a resolution of 50m× 50m and pixel spacing of 25m× 25m (in range and azimuth

respectively). Similarly, GRDM imagery has a resolution of 93m× 97m with a 40m× 40m pixel
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spacing. The dataset covers the three of the possible four EW polarization acquisition modes, namely:

SDH (HH+HV), SDV (VV+VH) and SSV (VV). There are a total of 22 Sentinel-1 acquisitions, 21

containing two polarization images (either SDH or SDV) and one with a single VV polarizations, for a

total of 43 Sentinel-1 images. A summary of the imagery within the dataset is given in Table 6.1.

Saldanha Bay

Cape Town

Simon's
Town

South Africa

Maputo Bay

Richard's Bay

Durban

East London

Port Elizabeth
Mossel Bay

Figure 6.2. A distribution map of all the 1596 ships in the dataset. The Durban, Richard’s Bay and

Port Elizabeth ports show significantly higher ship density than most of the South African coast. A

number of factors cause this including the fact that most of the Sentinel-1 images occur over these

areas and because these ports are closer to the South African economic hub, Gauteng.

6.2.3 RADARSAT-2

Three RADARSAT-2 images were acquired near Cape Town, South Africa. All three are ScanSAR

Narrow A (SCNA) imagery of the non-SLC type (intensity only). The imagery has a resolution of
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Table 6.1. SAR data information per image sensor and polarization where rg means range and az

means azimuth.

Sentinel-1 RADARSAT-2

Attributes GRDH GRDM SCNA

Acquisitions 6 16 3
Images Total 12 31 3
Type EW EW SGF
Incidence Angle (◦) 19.0−47.0 19.0−47.0 20.0−39.0
Swath Width (km) 400 400 300
Resolution [rg x az] (m) 50×50 93×97 81×30
Pixel Spacing [rg x az] (m) 25×25 40×40 25×25
Number of Looks [rg x az] 3×1 6×2 2×2

81m×30m and pixel spacing of 25m×25m. The images have a swath width of 300km and have

an incidence angle range of between 20.0◦ and 39.0◦. All three SAR images were acquired in the

HH polarization. These images all came in the SAR georeferenced fine (SGF) format which was an

intensity only, GRD product. A summary of the RADARSAT-2 imagery is given in Table 6.1.

6.3 SAR DATA PREPROCESSING

The preprocessing steps described here are applied after the conversion from SLC to GRD imagery

done by the satellite data providers before the product was distributed to the authors. As satellite

providers do not provide access to the SLC data for some types of imagery it can cause processing

artifacts which consumers have no control over. The images were used as is from the supplier with

only the preprocessing steps described here. The reasoning for this is three-fold. The first is that

the imagery is already received with some preprocessing steps applied, such as multilooking, which

already degrades the size of the ships inside the image (speckle is reduced at the expense of resolution).

Additional measures such as speckle filtering have not been applied to preserve the ships resolution.

Secondly, additional preprocessing has been kept to a minimum to ensure that the dataset is consistent

for distribution. A user of the dataset should be able to acquire the imagery from the satellite providers

and with little effort reproduce the dataset. This helps to create a universal dataset that can be used by

multiple users with the knowledge that the preprocessing applied has not affected the creation of the

dataset. Finally, the methods developed need to be robust to changes in the input SAR imagery. By

using the data as-is the methods should learn to deal with errors that crop up on a variety of different
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SAR imagery. Wherever possible, clear errors have been marked in the dataset as false alarms so that

the methods’ abilities to remove these errors are noted.

6.3.1 Data acquisition and output

Both Sentinel-1 and RADARSAT-2 acquisitions data are received as compressed zip files. The

decompressed zip files are fed into a collection of tools (namely either Geospatial Data Abstraction

Library (GDAL) or GAMMA based tool-chains) to generate interoperable Geographical Tagged Image

File Format (GeoTIFF) files and associated Extended Markup Language (XML) meta-data files. Each

acquisition and polarization within (for Sentinel-1 images with multiple popularizations per acquisition)

are processed independent from one another. The final output of the preprocessing steps is a geocoded

GeoTIFF per polarization for a consistent data access strategy.

6.3.2 Radiometric calibration

The first step of the dataset preprocessing is the conversion from digital numbers into normalized

Radar Cross Section (RCS) values using Radiometric Calibration [133, 61]. To perform geographical

parameter extraction radiometric calibration needed for comparisons between objects across acquis-

itions. The Sentinel-1 products provides an updated Look Up Table (LUT) for its Level-1 products

defined as

Aσ =

√
A2

DNK
sin(ρ)

(6.1)

where ADN is an unsigned 16 bit LUT which defines the scaling from internal SLC to GRD product, K

is the single calibration constant for all final products and ρ is the local incidence angle [61]. Finally,

the average backscatter coefficient σ0 (i) [134] at digital number DN(i) is

σ
0 (i) =

E {DN(i)}2

A2
σ

(6.2)

where E {DN(i)} is the mean pixel amplitude digital number values over a small area (typically

3× 3), taken directly from the measurement (GeoTIFF) file. A similar procedure is followed for

RADARSAT-2 radiometric calibration. For a complete overview of radiometric calibration in SAR

see [133].
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6.3.3 Georeferencing and warping

The next preprocessing step involves georeferencing the input SAR image. This assigns real-word

coordinates to each pixel of the image using Ground Control Points (GCPs). These GCPs are inherent

within the GeoTIFFs in both Sentinel-1 and RADARSAT-2. More precise estimations of these pixel

longitudes and latitudes can be acquired using each satellite’s orbital state vector meta-data [57] but

for the purpose of this study the ones provided with the GeoTIFF files were deemed sufficient given

that the dataset is comprised of medium resolution imagery and the corrections should not make a

significant impact to detection locations within reasonable error tolerances (less than the MMU of 2

pixels).

To provide a uniform access format all of the images are then warped to be north-facing (geocoded)

images. For the case of this study all images were warped to the World Geodetic System 1984 or

"WGS84" projection. This was selected due to being the same datum used for Global Positioning

System (GPS) coordinates which align with transponder-based acquisitions used in the dataset later

on.

One important aspect to note is that georeferencing images might require interpolation when the image

is resampled. The simplest method, nearest neighbor, was used as the resampling method to reduce

the amount of alterations done to pixels values but other resampling methods such as bilinear, cubic,

cubic spline and Lanczos resampling are available [71]. These methods resample the pixel value using

varying types of weighted neighborhoods which might affect the final pixel value and were avoided to

keep the data as consitient as possible.

6.3.4 Land masking

The final step of preprocessing is to remove any land within the image. The complexity of the land

removal step is based on the needs of the dataset and can range from simple landmasking using a

shapefile to advanced coastline extraction procedures [135, 62, 136, 57]. To reduce the effects of

small georeferencing errors and ships too close to the shore a buffer of 1km was used to extend a

conventional coastline shapefile. This aligns with the fact that any ships close enough to the coast can
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be detected using terrestrial transponder-/radar-based systems and the necessity for highly accurate

SAR detections that near to the cost is reduced.

6.3.5 Sources of error

As mentioned previously, some image providers do typically not give access to the RAW data or

SLC data for wide-swath imagery over South Africa and instead make derived products accessible

to researchers and organizers. The following is a non-exhaustive list of possible errors due to the

out-of-scope conversion from RAW to SLC to GRD imagery handled by the satellite providers:

• To get to square pixels within GRD imagery, the SLC imagery needs to be sampled at different

rates in the range and azimuthal directions. The conversion to these square pixels for GRD

products can cause actual ships sizes to be larger or smaller than their actual footprint in the

original SLC imagery.

• Azimuthal and range processing can cause artifacts discussed in section 3.11 such as smeering,

land-object ghosts and SAR ship ghosts. These can distort sea-clutter and ships alike which may

present a problem for methods not tuned to remove these errors automatically.

• There is a trade off between the reduction of sidelobes and main-target resolution. Sidelobe

reduction often occurs via apodization which in turn reduces the main sidelobe resolution [54]

and is fixed for GRD products such as GRDM, GRDH and SCN imagery.

For the data creation step of the dataset the above errors have been manually eliminated to the best of

the author’s abilities. During testing using the results of each method is also scrutinized to identify

which methods fail to remove these types of errors automatically. Initial results indicate that most

errors occur due to misaligned land masking, followed by errors due to GRD conversions and finally

the most difficult errors to remove are the ones related to ships such as ship size and copies of the ship

appearing as ghosts but these are also the fewest.
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6.4 SAR SHIP REFERENCING

6.4.1 Ship definition

In SAR intensity imagery covering the ocean, a ship is defined as any object that is sufficiently brighter

than its surrounding ocean backscatter [3, 18, 64]. For the sake of simplicity, and due to the resolution

of the SAR imagery for this dataset, it was assumed that a ship is an area of ocean that has higher

backscatter than its neighbors and also each ship was least 2 pixels in length (its MMU). Ships that are

smaller than these dimensions are beyond the scope of this dataset and would be better analyzed using

higher resolution SAR imagery. This definition, therefore, ignores single pixels with high backscatter

due to speckle noise. The intent of this dataset is to cover most areas of the EEZ and thus wider swath

widths are necessary which in turn reduces the available resolution of the dataset. To this end, any

objects that do not meet these criteria are deemed non-ships or ocean clutter and are defined as false

positive areas of interest.

Each ship within the dataset has four associated images, namely a ship patch, reference patch, ship

sub-image and reference sub-image as shown in Figure 6.3. Patches are images which cover a large

area of pixels (101×101) centered on the ship. Sub-images are smaller images (21×21) with little to

no other information but the ships found at the center of the image. The large size of the patches ensure

ships of all possible sizes are captured within the image and the sub-image’s smaller size is based on

statistical evaluations of all ships present in the dataset. Patch images provide local context to evaluate

where the ship is (near a harbor, far out at sea, within a crowd of other ships). This context is important

to help identify why detection errors may occur relative to various features around the ship, especially

errors from SAR preprocessing such as smeering, sidelobes and ghosts. Finally, by providing these

larger images around the ship the need to scan the large SAR images is reduced when reprocessing/re-

evaluation is required. Sub-images are smaller images around the ship designed to emulate machine

learning datasets such a the MNIST [137] or CIFAR-10 and CIFAR-100 datasets [138].

6.4.2 Reference images

For the purpose of this study, a reference image is a binary image which indicates “true” for pixels

most likely associated with the ship at the center and “false” for all other pixels. Reference images
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Ship patch Reference patch

Ship sub-image Reference sub-image

Figure 6.3. The four main types of sub-images in the dataset. Notice how the ship patch area provides

local context as it shows two other ships within the image. The ship sub-image only contains the ship

at the center. The reference patch and image only highlight the center ship’s pixels as one and the rest

of the pixels are set to zero.

sizes were set to match the same size as the SAR ship patches and sub-images (101×101 and 21×21

respectively).
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To effectively identify ships within the SAR imagery and then to reference them correctly the following

procedure was taken:

1. Each of the 46 SAR images were scanned and targets of high backscatter are identified using

both the basic GeoTIFF and a contrast stretched version (which enhances darker areas and

darkens brighter, near-nadir areas of the SAR image). Each potential bright area’s latitude and

longitude was recorded. This process was repeated twice for each image to ensure no potential

bright target areas were missed.

2. For each potential target, a patch of the SAR image centered on the target was extracted. For

each target the patch was re-examined using the context provided by the patch and marked as

either a ship or not. Known geographical features such as islands, sea-platforms, rough sea areas

were used to eliminate targets with high backscatter that were in fact false alarms.

3. Another identification step occurred by matching ships across polarizations. Ships that appeared

within one pixel (25m or 40m depending on sensor resolution) for a single acquisition were

deemed the same ship across different polarizations. Ships that did not match across polarizations

were still kept if they matched the criteria as discussed above.

4. For each identified ship patch an associated reference patch was created by setting every pixel

likely to be a ship pixel to one and the rest to zero. It should be noted that any other potential

ships or objects not at the center were ignored within each reference patch.

5. Each reference patch was analyzed to determine the ship’s centroid, length and width. For each

centroid a 21×21 sized sub-image was extracted from the ship and reference patches to create

the ship and reference sub-images.

6. A final stage of ship identification matched the identified centers of the SAR ships against

a dataset of known AIS positions. The exact details of the AIS referencing is discussed in

section 6.5.2.
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Figure 6.4. A radiometrically correct SAR ship sub-image and its associated reference sub-image

(ship number 160 of 1596). The image also shows the four main attributes of the reference image,

namely the ship’s centroid C, major axis length Lmaj, the minor axis length Lmin and ship orientation

or heading ω extracted using the Minimum-Volume Enclosing Ellipsoid.

6.4.3 Ship attributes

For each reference patch, a list of attributes are extracted. These attributes provide valuable information

to help guide the design of detection methods. For the purpose of this study, four attributes are

calculated namely the ship’s centroid C, major axis length Lmaj, the minor axis length Lmin and ship

orientation or heading ω . Within the dataset itself, it is possible to extract more attributes but for the

sake of brevity this study only discusses these four.

The ship’s centroid is the location of the center of mass of the reference image. Given a finite set S

of k reference points with a “true” value such that S = {P1, 2, . . . ,Pk} in R2 where P1 = (x1,y1) is

the first point’s x and y coordinates, the centroid C = (xcentroid,ycentroid) of the reference image can be

calculated as [139]

C =
P1 +P2 + · · ·+Pk

k
. (6.3)

To calculate the other three ship attributes the Minimum-Volume Enclosing Ellipsoid (MVEE) can

be used [140]. For the sake of completeness it should be stated that the method is defined for higher
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dimensionalities but for the case of the 2-D reference images the method actually calculates a minimum-

area enclosing ellipsoid. As defined in [140], a full-dimensional ellipsoid EQ,C in R2 is specified by a

2×2 symmetric positive-definite matrix Q with center C is defined as

EQ,C =
{

P ∈ R2 : (P−C)T Q(P−C)≤ 1
}
. (6.4)

The area of this ellipsoid is therefore calculated as Area(EQ,C) = η detQ−1/2 where η is the area of

the unit ball in R2 and det is the determinant applied to Q [140]. The MVEE of a set of points S is

defined as MVEE(S) and will satisfy the following

(1/2)MVEE(S)⊆ conv(S)⊆MVEE(S) . (6.5)

The notation conv(S) is the convex hull of S and the left-hand side ellipsoid is scaled by 1/2 around

its center. Assuming S is the set of vertices for the full-dimensional polytope P⊆ R2 (the reference

ship shape), then MVEE(S) yields a rounded approximation of P. For exact details on the calculation

of the MVEE, see [140].

The major axis length Lmaj is the approximate length of the ship and can be calculated by finding the

furthest two points that lie on the MVEE. A ship’s approximate width, Lmin, is calculated as the line

perpendicular to the major axis. The ship’s heading ω is calculated as the angle between the major

axis length and north at 0◦. The attributes for a single reference sub-image are shown on the right in

Fig. 6.4.

6.4.4 Dataset organization

The purpose of creating such a dataset as described above is to facilitate repeatable, verifiable ex-

periments within a fixed and known extent of data. To this end this dataset has been split into two

organizational structures, namely the SAR images themselves with associated ship positions used for

the process of ship prescreening and a collection of sub-images and patches with associated metadata

for ship discrimination and analysis. Splitting the dataset up may help to identify methods that perform

well in one task but may not necessarily perform well for the other task. Splitting the ship detection

process into separate entities for prescreening and discrimination therefore allows for greater focus on

each task [3, 4]. The following sections describe the two data organizational structures which help

facilitate the creation and evaluation of methods for each task.
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(a) SAR unity scaled ship (b) SAR reference ships

Figure 6.5. All 1596 ship (a) and reference (b) sub-images within the dataset. These cover the two

satellites at three resolutions. Each ship sub-image has been normalized so that the brightest point

is at unity for display purposes. Each reference sub-image is analyzed using the MVEE to calculate

attributes such as SAR ship length, width and orientation.

6.4.4.1 Prescreening dataset

Almost all ship detection literature uses a known collection of ship positions to determine performance.

These are created using either a referencing procedure similar to section 6.4 [3, 50] or by using the

AIS matched ships only and ignoring all other detections [127]. For this dataset, a comma-separated

text file is stored with each SAR image and contains the positions of all the ships identified within that

image. Each row within this text-file provides the ship’s position in Latitude/Longitude coordinates

and geocoded image-specific row/columns coordinates. This representation helps when comparing

ship detection methods which only provide detected ship positions and helps simplify SAR-AIS ship

matching. This format can allow for comparisons between methods that output ship positions as results

but for a more refined discrimination system the dataset is also split up using SAR sub-images, as

discussed next.
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Figure 6.6. Nine sample sub-images from the SAR dataset. The rows consist of positive (ships) [top

row], ship-likes false positives [middle row] and ocean clutter false positives [bottom]. The first two

columns are Sentinel-1 GRDH and GRDM examples and the last column contains examples from

RADARSAT-2 SCNA imagery.

6.4.4.2 Discrimination dataset

While the above data organization is sufficient for comparing most ship detection systems, a more

refined, rigid structure is necessary to compare machine learning methods. Many machine learning

datasets are available but arguably the MNIST dataset [137] is the most famous and widely-used

benchmark machine learning dataset. The fixed size, center-aligned handwritten digits dataset was

constructed to allow for fair analysis between methods on a fixed, accessible dataset. To mimic this,

the SAR dataset has also organized into a collection of SAR ships and false alarms sub-images similar

to MNIST’s own 24×24 sized sub-images. The ship identification procedure described above found

1596 ships within the 46 SAR images. Each ship appears at the center of a 21× 21 sub-image for

consistent comparisons between ships across resolutions and sensors. The entire collection of 1596

SAR ship sub-images with associated reference sub-images shown in Figure 6.5. Details of how these

ships are distributed across polarizations, resolutions and sensors is shown in Table 6.2. This table also

details the number of hard matched AIS ships, a process is described in section 6.5.2.

False alarms are errors in detection where ship detection methods identify brighter areas incorrectly
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as ships. For every image a very low global threshold was run over the image and all detections that

were not ships were marked as false alarms. This was repeated for all images and generated a total of

approximately 500 000 false alarms across the 46 SAR images. Of these a selection of 3192 samples

were randomly selected as the false alarm subset to create a dataset of false positives which contains

ship ghosts, SAR smearing artifacts, land-object ghosts and nadir (brighter) sea clutter. This is two

times as many false positive samples as the number of identified SAR ship examples and represents

the distribution of false positives to true positives that should be encountered with careful prescreening

threshold design and selection, as described in [4]. For each false alarm a 21×21 SAR sub-image

was extracted to match that of the SAR ship sub-images. Both the ship and false sub-images were

combined with the patch and reference images, ship attributes and AIS matches into a single ship

discrimination dataset containing the bulk of the information required for advanced discrimination

method design and evaluation. Figure 6.6 shows a sample of 9 sub-images containing ships and false

positives from this dataset.

6.5 TRANSPONDER DATA

The SAR dataset is supplemented by a collection of transponder data using the LRIT and AIS transpon-

der systems. Historical LRIT data has been used in a manner similar to [17] to create a ship distribution

map as described in [3]. A more recent AIS dataset is also used to create a ship matching dataset which

was used to identify AIS matched ships across all 46 SAR images, both described next.

6.5.1 Ship distribution map

The first method proposed in this study requires a map of ship positions to identify where thresholds

can be adjusted for during the SA manifold adaptation [3]. The ship distribution map only requires

latitude and longitude points of the ships, so any source of ship positional information can be used such

as AIS, SAT-AIS or LRIT data. LRIT data was the original data used in the first study [3] but has been

extended here to include an expanded distribution map thanks to the AIS positions available.

The first ship distribution map used in the original method included approximately 450 000 ship

latitude and longitude coordinates, recorded over the time period of 2011/03 to 2012/03 off the coast

of South Africa. All 12 months of transponder data were used to generate the ship distribution map
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Low to high ship probability

Figure 6.7. A section of the ship distribution map generated using all 12 month’s LRIT data within the

given geographic region. The image shows the ship distribution map off the coast of South Africa,

near Mossel Bay (34.1833◦ S, 22.1333◦ E). It is interesting to note that two shipping lanes are clearly

visible as well as two platforms. This is due to the fact that thousands of ship positions were collected

along those lines, indicating a large number of traversals over those points.

and it was assumed this would sufficiently model the average movement of ships within the image’s

geographical limits. If enough ship positions were collected over a number of years, a daily, weekly or

even monthly ship distribution map for a given region could be generated but for the sake of simplicity

all ship positions were combined to create a single distribution map. It should be noted that this was

extended to approximately 2 450 000 points using the additional, more recent AIS positions. It was

assumed that the original LRIT ship distribution map and the extended version are both indicative of

the average ship’s movements off of the coast of South Africa. A small sub-image of a ship distribution

map off of the South African coast is shown in Figure 6.7.
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Minimum Track 
Distance

Minimum
AIS 
Distance

Reference ship position

AIS ship positions

Interpolated ship position
at time of SAR acquisition

AIS Track 

(a) Hard SAR-AIS match (b) Soft SAR-AIS match

Figure 6.8. Two subfigures showing the different between a hard (a) and soft (b) AIS match. Note that

both (a) and (b) use the symbols defined in (a). When a single AIS tracks aligns within a reference

ship patch image matches and the track distance, time difference and AIS distance were below the

specified minimums a match was recorded. For multiple AIS tracks within the reference patch image

area and within the specified parameters a soft match was assigned to the target. Only hard matches

were considered in this dataset.

6.5.2 AIS ship identification

The dataset of AIS points that covered and intersected with the SAR dataset includes approximately 2

million satellite and coastal AIS messages obtained from the 6th October 2014 to the 22 July 2015 and

covers the majority of South Africa’s EEZ.

The last step of the referencing procedure is the matching of transponder-based ship positions to that of

the ships within SAR image and this is a vital component in ship detection literature [127, 57, 50, 92].

The process concerns itself with matching the centroid latitudes and longitudes of SAR ships to

positions received from the ships themselves. The primary problem with matching AIS to SAR ships

is a temporal one. AIS messages may or may not line up with SAR acquisition times and so it is rare

that all ships in a SAR image transmit an AIS message at the same time the image was taken by the

satellite. To combat this AIS tracks are built using the history of the ship’s AIS messages and positions

to build a map of the likely area a ship was at any given moment.
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For this dataset, all AIS messages 12 hours before and after a SAR acquisition were used to build AIS

tracks. An AIS track is a collection of AIS messages built-up over time to indicate the history of a

ship and will have either an interpolated AIS position at the time of a SAR acquisition or a fixed AIS

message at that time. An interpolated AIS position is the estimated position of a ship at the SAR time

of acquisition. This position is created using the time and position of the last AIS message before and

first AIS message after a SAR acquisition. If a SAR ship had a single AIS message (interpolated or

fixed) within 500m of its position it was deemed to have a hard AIS match as shown in Figure 6.8

(a). If more than one AIS position existed for a single SAR ship and therefore multiple nearby tracks

within the 500m window then a ship was said to have a soft AIS match as shown in Figure 6.8 (b). For

this dataset, only hard matches were considered to ensure that SAR-AIS matches were of the highest

quality with little to no matching ambiguities.

Across all 1596 identified SAR ships only 494 ships were matched to AIS messages. Of these 494, 437

of them were unique matches whereas the additional 57 were AIS matches for the same ship across

different polarizations. Unfortunately, the AIS dataset available did not cover any of the RADASAT-2

images near Cape Town harbor and therefore only Sentinel-1 GRDM and GRDH images had AIS

coverage (see Table 6.2 for more details). This is an interesting result and it implies that even for a

large SAR dataset only approximately 27% of all ships had a matched AIS detection. This could be

due to the stringent AIS hard matching but makes another case for SAR imagery as a supplemental

source of ship monitoring.
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7.1 CHAPTER OVERVIEW

This chapter will present the results and discussion pertaining to the two methods introduced in this

thesis. The chapter will provide the metrics against which typical ship detection methods are tested,

the results over the dataset described in the previous chapter and an overview in terms of general

performance for the two methods. This chapter will also discuss some of the considerations that need

to be understood to contextualize the performance. The chapter will be closed with a conclusion that

can be drawn from these results.

7.2 METRICS FOR PERFORMANCE

One of the problems with the detection of ships in SAR imagery is a need for a strict agreement

among the different performance metrics and their usage in different papers. Across a number of

recent studies there exists a multitude of ways to report results, with few similarities between the

methods [50, 63, 115, 111, 58, 106, 73]. In addition, the way in which performance is measured varies

from study to study and the results need to be critically evaluated before presenting methods as better

or worse [118]. In [106], the authors state that they use AIS ship transponder information to verify

detections. The authors go on to state how SAR ship detections that do not have matching transponder

information are excluded [106]. While this can be used to give a general idea of performance for the

ship detector, it completely negates the usefulness of SAR imagery which can circumvent ships that

switch off their transponders [17] and could fail to detect any potential ships in an image if useful

AIS data is not acquired. In [50], the authors provide a much more comprehensive set of ground truth

data including both visually inspected and AIS matched ships but fail to describe the total number of
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Pred. Ship Pred. Sea

Actual Ship TP FP

Actual Sea FN TN

Figure 7.1. The confusion matrix template. The column headings are the “Predicted as ship” and

“Predicted as sea” whereas the row headings are “is an actual ship” and “is actually sea”. This means

that TN reads as “Predicted as sea and is actually sea” and similarly for all the other combinations.

false alarms not related to ambiguities their ship detection method incurs. The nomenclature and exact

usage of performance metrics becomes important when comparing various methods across different

studies and so the following section will describe the exact performance metrics and the statistics used

to describe the performance adequately across a large SAR dataset.

7.2.1 Confusion Matrix

Results presented in most ship detection studies can be fully described by a confusion matrix. The

confusion matrix is defined by four values, known as True Positive (TP), False Positive (FP), False

Negative (FN) and True Negative (TN). The value TP is the number of detections that were correctly

labeled as ships whereas FP are the detections incorrectly labeled as ships (sea pixels grouped and

labeled as ships). False negatives are the number of detections that were incorrectly flagged as sea pixels

whereas TN are the number of sea pixels correctly labeled as sea pixels. The total number of detections

is TP+FP+FN+TN. The values in the confusion matrix are arranged as shown in Figure 7.1.

The confusion matrix indicates which category most of the detections are occurring, what problems a

detector might be having and if its doing an acceptable job of separating ships from the ocean. One

issue with using a confusion matrix to describe results is that a confusion matrix should be defined

per image per method per parameter. This can become cumbersome to interpret when there are for

instance, 46 SAR images, 4 or more methods, with multiple parameters per method. To this end we

introduce three metrics which can help to summarize a confusion matrix’s results. Two are in ship

detection literature and one of them helps to overcome some interpretation issues. It should be noted

that in ship detection literature TN includes the total number of pixels tested so that FAR results align

with other results in literature and a ship/false positive is only counted once despite containing multiple

pixels.
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7.2.2 Detection Accuracy and False Alarm Rate

Most ship detection literature uses values derived from the confusion matrix to summarize results.

The first is the Detection Accuracy (DA) which is the number of correct detections versus the total

number of ships. DA is expressed as percentage of the actual number of ships in the image such

that DA =
( TP

TP+FN

)
∗100. A DA = 100% indicates all ships in an image were detected and correctly

identified as ships whereas DA = 0% means no ships were identified correctly. False Alarm Rate

(FAR) from the confusion matrix refers to the ratio of incorrectly identified to actual sea pixels such

that FAR = FP
FP+TN . The FAR value is usually described as values ranging from 0 to 1. A FAR = 0

represents zero incorrectly labeled sea pixels whereas FAR = 1 means every sea pixel was incorrectly

labeled as a ship. Good detectors on typical SAR images have FAR≈ 10−7 to 10−9 however this is

dependent on how many total pixels are tested. It is good practice to note the total number of detections

to give context to how well the detector is doing. A detector might appear to have an excellent FAR rate

of 10−9 but if the total number of pixels tested is 1013 then the detector is identifying approximately

104 false positives (which may or may not be acceptable depending on the evaluation situation). This

is not a problem when using the confusion matrix as the number of pixels is apparent but does become

a problem when using FAR to summarize the detectors performance across a number of images. Any

FAR results given in this study will state the number of pixels (or average thereof) tested against,

rounded to the nearest whole number.

7.2.3 Matthews Correlation Coefficient

In almost all SAR ship detection literature DA and FAR is used to describe the performance of a ship

detector in one form or another [18, 17, 74, 3, 4, 75]. One issue that was identified during research was

that some situations may require high DA with no regard to FAR whereas in other situations a low FAR

was more important to the development and assessment of the method. Ideally, DA would be 100% and

FAR would 0 but real-world situations demand a trade-off between these two (most notable due to the

Neyman-Pearson criterion for binary detections [130]) and some way to objectively identify whether

one trade-off is “better” than the other. To do this the Matthews Correlation Coefficient (MCC) [141],

often used in machine learning literature, is introduced as a recommended metric for performance
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evaluation of SAR ship detectors. The MCC can be defined from the confusion matrix as

MCC =
TP×TN−FP×FN√

(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)
. (7.1)

MCC values are defined such that MCC ∈ {−1.0,1.0} which range from perfectly decorrelated (−1.0)

to perfectly correlated (1.0) with a value in the center (0.0) indicating no correlation/random detections.

The MCC is particularly useful to SAR ship detection literature as it takes all factors in the confusion

matrix into account equally. It is also unbiased by data with skewed classes [141]. This last point is

of particular importance to SAR ship detection because while there may be on average 20 ships in

an image, the detector tests millions of sea pixels and thus the ship detections problem is actually a

highly class-imbalanced problem which means DA and FAR do not objectively count equally towards

performance descriptions and the MCC helps to alleviate this discrepancy.

7.2.4 Moments

In addition to performance metrics defined in terms of the confusion matrix we need to measure these

for multiple images and in this sense we can use statistics to summarize these values. The mean is often

used to describe the average or expected performance across the whole range of tested values. The

variance gives us an indication of how far the performance is spread across the range of values which

determines how much from the mean, both positively and negatively, the detector will perform for any

given situation. Finally, we also report on the skewness of the results to provide a description on the

distribution of variance. Negatively skewed results indicate that the detector will more consistently

provide results above the mean than below and vice versa for positively skewed results. For instance,

some usage scenarios might require the DA be more often as good as or better than the mean DA and

so a negatively skewed DA result might be better whereas a FAR with a close to zero skew would

indicate the mean FAR is more or less the final expected performance of the detector.

7.2.5 Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve describes the performance of a binary classification

task under some variation of one (or more) of its parameters, but can be extended to more than two

classes [130]. As the chosen parameter is varied the performance of the system changes and the

ROC curve reports the results. An ROC curve is constructed with the methods true positive rate

performance on the y-axis and the false positive rate performance on the x-axis. Curves closer to
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the top left corner indicate better performers with those closer to the diagonal worse. A common

metric used in conjunction with ROC curves is the Area-Under-Curve (AUC) value. An AUC =

1 is a perfect discriminator while a discriminator with AUC = 0.5 is essentially selecting results

randomly [130].

7.3 PARAMETER SELECTIONS

For every method developed and tested against has a number of method parameters that can be adjusted.

Each of these have varying degrees of effect on the performance of the ship detection system. Table 7.1

details the full list of parameters, which are fixed and which are adjusted for the ROC curve in

section 7.4.3.

7.3.1 CFAR Variants

There are 3 CFAR variants tested in this thesis, namely the two common ones CA-CFAR and GO-

CFAR [64] as well as the non-flat version (abbreviated as CA-CFAR NF) described in section 5.3.3

and [3]. They all three mainly rely on the threshold TC and less so on the guard and clutter window

sizes, SG and SC respectively. This is because the variation in the window sizes will be accounted

for due to the variable calculation of µC with the related fixed threshold TC [64, 18]. Variations in SG

and SC affect the values of µC but these can be accounted for by varying TC (as is done in the results).

For the case of the non-flat CA-CFAR Manifold, the threshold is linearly decreased from T min
C = 1.0

along the nadir of the image to T max
C at the end of the swath. This is because ships are relatively

brighter at the end of the swath and thus should be under greater scrutiny (i.e. higher threshold should

still allow bright ships through at the end of the swath) whereas ships near the swath cannot always

be much brighter than the bright nadir returns. T min
C can also be varied but setting it at 1.0 gives a

good indication of the minimum expected performance of the detector given the worst (lowest) case

threshold.

7.3.2 Newest Ship Detection Methods

The rest of the methods tested are the novel methods developed in this thesis or those that have shown

good results on SAR imagery in previous studies and could be replicated. The CA-CFAR SA Manifold
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Table 7.1. List of parameters for the methods tested, including the fixed and varied parameters. Note

that SARmax is typically either 255 for 8-bit images or 65536 for 16-bit SAR images but can be reduced

to SARmax = 20 which will cover almost all situations and reduce processing time. Also note that

SROI = 1 for all CFAR methods tested and methods marked with a “*” indicate novel methods described

in this thesis.

Methods List of Parameters Fixed Parameters Variable Parameter Range

CA-CFAR [64] TC,SG,SC SG = 17,SC = 15 TC ∈ [1,5] (low),
TC ∈ (5,SARmax] (high)

GO-CFAR [64] TC,SG,SC SG = 17,SC = 15 TC ∈ [1,3] (low),
TC ∈ (3,SARmax] (high)

*CA-CFAR NF [3]
T min

C ,T max
C ,

SG,SC

T min
C = 1.0,

SG = 17,SC = 15
T max

C ∈ (1,SARmax]

*CA-CFAR SA [3]
TC,SG,SC

N,∆D
TC = 1.0,SG = 17,
SC = 15,∆D ∈ [0,10] N ∈ [1,1×104]

HAAR Upright [128]

DAtrain,

FARtrain,

L, f j

DAtrain = 95%,

FARtrain = 10×10−3,

f j where j = 1 . . .111160
L ∈ [1,10]

HAAR Full [129]

DAtrain,

FARtrain,

L, f j

DAtrain = 95%,

FARtrain = 10×10−3,

f j where j = 1 . . .155060
L ∈ [1,10]

*CHAAR Upright [4]

SG,SC,TC

DAtrain,

FARtrain,

L, f j

SG = 17,SC = 15,TC = 1.0,
DAtrain = 95%,

FARtrain = 10×10−3,

f j where j = 1 . . .111160
L ∈ [1,10]

*CHAAR Full [4]

SG,SC,TC

DAtrain,

FARtrain,

L, f j

SG = 17,SC = 15,TC = 1.0,
DAtrain = 95%,

FARtrain = 10×10−3,

f j where j = 1 . . .155060
L ∈ [1,10]

SVM Classifier [94]
SG,SC,TC

f j,γ,α

SG = 17,SC = 15,
f j where j = 1 . . .14,
α = 1.0

TC ∈ [1,SARmax],

γ ∈ [1×10−1,1×101]

Mod. Otsu’s [69]
Minnum,Maxnum,

Minsize,Maxsize

Minnum = 2,Maxnum = 135,
Minsize = 1 Maxsize ∈ (1,20]

H-dome [6] σL,O,d σL = 1.0,d = 5 O ∈ [0.9∗SARmax,1.0∗SARmax]
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Adaptation method (abbreviated as CA-CFAR SA) had only one variable, the number of iterations

N, which was varied with the other variables remaining fixed as described in [3]. Similarly, for all

Haar-like variants the length of the final cascade affects the performance most critically and was

varied between 1 and 10 [128, 129, 4]. Longer cascade lengths could be tested, but previous results

show that lengths longer than 5 show degraded performance and lengths greater than 5 are shown

here for completeness [4]. The CA-CFAR Haar-like feature cascaded classifier for ship detection

method has been abbreviated as CHAAR for all the results [4]. The methods were tested against the

original Haar-like classifiers (abbreviated as HAAR), with both upright and full (rotated + upright)

features tested. They were also tested against a Modified Otsu’s method built specifically for ship

detection [69], an OC-SVM ship detector based on features extracted per sample [94] and an H-dome

ship detector [6]. The Modified Otsu’s method had a few parameters that could be adjusted, with

the maximum ship size determining how groupings were made and the others determined as per the

original paper [69, 3, 4]. The SVM classifier used a CFAR variant as prescreening with a variable

threshold TC and SVM classifier with γ which was varied (γ is the inverse of the radius of influence

of samples selected by the model as support vectors). Finally, the H-dome methods parameters were

chosen as those described in the paper [6], with the h-dome size parameter O parameter varied between

90% and 100% of the maximum SAR value within each image.

7.4 RESULTS

The results section is divided into three subsections: an overview describing the average performance,

a subsection which describes performance variations in terms of training data redundancy and ROC

curves to describe performance under parameter variations and a single image example with all the

confusion matrices and in-depth look at specific results.

7.4.1 Overall

It should be noted that wherever results include stochastic components the method was tested using a

k-fold cross validation technique with k = 5 [130]. The entire dataset of 1596 positive (ship) and 3192

negative (sea clutter) samples were randomized and split into 5 (roughly) equal sized groups. The

methods were then trained with 4 of the groups and tested with the other and this was repeated 5 times
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Table 7.2. Mean DA, FAR and MCC results for the different systems tested across 5-fold cross valida-

tions with a total of 1596 ships in total tested with an average number of pixels being approximately

300×106. The values in brackets are the variance and skewness values, respectively.

Method DA FAR MCC
CA-CFAR Low 100.0(0.00,N/A) 8.825×10−07 (5.952×10−07,1.13) 0.41(0.03,−1.42)
CA-CFAR High 64.99(1.17,0.39) 2.857×10−07 (1.879×10−07,1.11) 0.43(0.04,−0.29)
GO-CFAR Low 95.62(1.64,−0.45) 8.825×10−07 (5.954×10−07,1.13) 0.39(0.08,−0.57)
GO-CFAR High 81.39(1.75,−0.50) 8.800×10−07 (5.959×10−07,1.14) 0.34(0.15,0.55)
CA-CFAR NF 100.0(0.00,N/A) 2.350×10−07 (1.110×10−07,0.46) 0.64(0.07,1.07)
CA-CFAR SA 87.51(1.40,1.46) 5.644×10−08 (4.307×10−08,1.17) 0.80(0.04,0.20)
HAAR Upright 55.62(1.79,0.09) 6.833×10−09 (3.073×10−09,0.72) 0.72(0.01,0.78)
HAAR Full 56.79(2.54,0.65) 1.217×10−08 (1.112×10−08,1.39) 0.71(0.02,−0.42)
CHAAR Upright 88.71(1.97,0.18) 1.940×10−08 (7.533×10−09,0.42) 0.89(0.01,−0.95)
CHAAR Full 84.89(3.28,−0.50) 9.553×10−08 (8.082×10−08,1.26) 0.81(0.06,−0.42)
SVM 88.68(1.61,0.06) 1.197×10−07 (1.639×10−07,1.25) 0.66(0.09,−0.15)
Mod. Otsu 91.76(1.39,−0.10) 3.344×10−07 (2.884×10−07,1.12) 0.52(0.19,−0.15)
H-dome 92.44(0.68,−0.53) 4.078×10−07 (2.990×10−07,1.20) 0.41(0.05,−0.62)

by replacing the testing group with one of the other 4 groups. Results presented then represent the

average performance across the 5 test results including standard deviation and skewness values.

The results of the overall comparison is shown in Table 7.2 and Figure 7.2. The table shows the

three main forms of performance metrics used in determining ship detector performance. These show

the results of using the best performing parameters shown in Table 7.1. There were 5 methods that

performed above 90% DA including CA-CFAR Low, CA-CFAR NF, GO-CFAR Low, the Modified

Otsu’s and H-Dome. The first two achieved 100% across all k-fold and was to be expected as these

methods highlight every ship, with little regard for the amount of false alarms generated. Similarly,

the other three methods scored above 90% but all of them had at least 2.3×10−7 false alarms which

translates to approximately 72 false alarms for a typical SAR image with 300 million sea pixels. All 5

of these methods show smallest variances in DA because they were all designed to hit these goals of

consistent ship detection with more false alarms. Of the 5, the methods with a skew value were all

negative indicating that the results are more likely to be above the mean. These 5 methods all showed

MCC results in the range of 0.39−0.64, with the CA-CFAR NF showing the best MCC of 0.64 across

the 5-folds. This shows that a low MCC value is obtained when the FAR is high, even if the DA is

100%.
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Figure 7.2. The figure shows a bar graph of the MCC values from Table 7.2 for each ship detection

method. The error bars are the variances shown in the table and the numbers are the mean DA (top)

and FAR (bottom).

If we move towards methods with better FAR we see a drop of approximately 11-16% in average DA

across the 5-fold cross validation scheme. The CA-CFAR SA, CHAAR Upright, CHAAR Full and

SVM methods all had DAs of above 84% but yielded at least twice as better FAR compared to the

methods discussed above. Specifically, the CHAAR Upright method achieved an 88.71% accuracy

with an average FAR of 1.940×10−8, almost an order of magnitude better than the SVM which had

4% better DA. Similarly, the CA-CFAR SA achieved a mean DA of 87.51% yet had a FAR twice as

good as the SVM method. Interestingly, only the CHAAR Full had a negative DA skewness value

with the rest showing positive DA skewness indicating that the four other methods have results below

the mean but their best-case results are above the mean. Again, except for the CHAAR Full, all the

methods had DA variances below 2.0 so the performances for the best parameters seemed quite stable.

The FARs for these 5 methods ranged from 1.197×10−7 to 1.940×10−8, all with variances of less

than 1.639× 10−7. These 5 methods also all had positive skewness which indicates that the FAR
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results were below the mean with a few select samples being higher. This is a positive result because

FARs below the reported value means improved results and is not unexpected as these methods were

designed to improve discrimination thereby lowering FAR. Finally, the 4 methods had MCC values

ranging from 0.66−0.89 with the CHAAR Upright having the best MCC of all the methods tested

as shown in Figure 7.2. The CA-CFAR SA had a positive MCC skewness, whereas the rest all had

negative skewness with the CHAAR method having the lowest skewness of the three at -0.95.

The four other methods not discussed above were the CA-CFAR High, GO-CFAR High, HAAR

Upright and HAAR Full. These four methods either failed to have an acceptable DA (HAAR Full

and Upright score around 55%) or the drop in DA did not yield acceptable drops in FAR (CA-CFAR

High and GO-CFAR High). These are included for discussion purposes but do not meet an acceptable

level of ship detection performance in most cases. It is interesting to note that the MCC values are in

the 0.70 range for the HAAR Upright and HAAR Full methods because they have significantly lower

FARs compared to the other methods.

7.4.2 Performance Variations

The methods tested in Table 7.2 represent the best case scenarios for all the methods tested. While this

does give a good indication of what average the performance of the methods might be especially when

using 5-fold cross validation, variance and skewness, a more complete performance description can be

made. To do this the methods were also tested to see how their performance varies when adjusting

their most influential parameters as well how each method performed when the amount of testing data

is varied.

7.4.2.1 Receiver Operating Characteristic Curve

As mentioned in section 7.2.5, we can determine the performance of the various methods by varying

a parameter as set out in Table 7.1. Figure 7.3 shows the ROC curves for the 13 methods tested in

this thesis. Only a small fraction of the possible 18.4×109 pixels across the 46 images would ever

be seen by the ship discrimination methods presented here. This is because the ship prescreening

method (generally CA-CFAR) would eliminate the majority of potential false alarms, even with a low

threshold. The false positive rate of the ROC curve shown here is more indicative of the sub-images
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Figure 7.3. ROC curves for the 13 methods under test. The table to the right shows the method’s line

shape and what AUC it scored. This False Positive Rate is scaled for display purposed compared to the

results in Table. 7.2. The parameters varied are shown in Table 7.1.

that the ship discrimination stage would see and thus the false positive rates differ from per-pixel

classifiers and are scaled from 0 to 1 for display purposes. Variant of a single method had the same line

color but different shapes. The last three methods were colored black but are not necessarily related.

Closest to the diagonal is the CA-CFAR Low method with an AUC of 0.6311, indicating the lowest

performing method across all the methods tested. The method with the highest AUC is the CHAAR

Upright method with an AUC of 0.9235. The CA-CFAR and GO-CFAR follow similar patterns with

the GO-CFAR doing better with a higher threshold. The CA-CFAR NF breaks this smoothly varying

behavior and has a larger AUC than either the CA-CFAR or GO-CFAR methods. The HAAR and

CHAAR methods largely follow the same curve pattern with the Upright version doing better in the

CHAAR case and the Full version doing better in the HAAR case.

7.4.2.2 Redundancy

These tests aim to identify what is the minimum acceptable amount of data necessary to train the

various methods and how each method performs when a minimum amount of training data is not
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Figure 7.4. Redundancy curve for DA using all the stochastic methods.

present. The methods’ parameters were fixed with the best performing parameters and the amount of

data used for testing was varied from 1% to 100% The results for the DA, FAR and MCC metrics are

shown in Figure 7.4, 7.5 and 7.6, respectively. It should be noted that only methods with stochastic

components were considered for this section as the other methods did not use any data to train their

systems and thus varying the amount of testing data had little to no effect on their performance. That

is, a CA-CFAR system would perform similarly given one or twenty test images (assuming the correct

parameters were chosen).

For Figure 7.4 all methods start with slightly lower DAs. This is largely due to overfitting because at

1% testing data the systems are given 99% of the data to train on where they are unlikely to learn the

intrinsic patterns of the data but rather the data itself. These patterns are repeated in the FAR and MCC

redundancy curves shown in Figure 7.5 and 7.6.

In Figure 7.4 the HAAR variants are significantly lower and approaches random when the available

testing data is set to 60% or above. This indicates that below this amount of data these methods would

not likely to be trained correctly which sets a minimum on the amount of data necessary. The other

methods converge on similar DAs, even with a small amount of training data. This is likely due to

the other methods being based on the low threshold CA-CFAR and an improvements or decreases
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Table 7.3. This table shows the confusion matrices values TP, FP, FN and TN in a simplified format

with each method’s associated DA, FAR and MCC for the specific SAR image Figure 7.7. The MCC

values for each method are plotted in Figure 7.8.

Name TP FP FN TN DA FAR MCC
CA-CFAR Low 55 322 0 314218025 100.0 1.02×10−6 0.381
CA-CFAR High 36 120 19 314218227 65.45 3.82×10−7 0.388
GO-CFAR Low 53 180 2 314218167 96.36 5.73×10−7 0.468
GO-CFAR High 45 110 10 314218237 81.81 3.50×10−7 0.487
CA-CFAR NF 55 54 0 314218293 100.0 1.72×10−7 0.710
CA-CFAR SA 48 12 7 314218335 87.27 3.82×10−8 0.835
HAAR Upright 30 2 25 314218345 54.54 6.37×10−9 0.715
HAAR Full 31 6 24 314218341 56.36 1.91×10−8 0.687
CHAAR Upright 49 5 6 314218342 89.09 1.59×10−8 0.899
CHAAR Full 48 24 7 314218323 87.27 7.64×10−8 0.762
SVM 50 37 5 314218310 90.90 1.18×10−7 0.722
Mod. Otsu 50 40 5 314218307 90.90 1.27×10−7 0.710
H-dome 50 188 5 314218159 90.90 5.98×10−7 0.437

with less training data works with or against the base CA-CFAR method (which also accounts for

the large variance in results at 99% training data). Similar results are found in Figure 7.5 and 7.6.

Lastly, the larger FAR across most of Figure 7.5 for the SVM method contributes to its low MCC score

in Figure 7.6 however, the variances and decrease in MCC is less pronounced than either CHAAR

variants.

7.4.3 Single Image Analysis

An examination of the methods on a single image was taken and shown in Figure 7.7. This experiment

demonstrates how the above general performance indicators translate to a specific image and how

various methods perform in terms of centroid placement While not every method is shown in Figure 7.7

for brevity, a confusion matrix for the results of the 13 methods tested with their best parameters is

shown in Table 7.3 and Figure 7.8.
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Detection Methods
Symbol Method Ships Det. FA

CA-CFAR NF 55 54
CHAAR Upright 52 5
Mod. Otsu 49 40
Reference ships 55 -

Figure 7.7. Sentinel-1 GRDM VV image between Port Elizabeth and East London, South Africa

(33◦57′29′′S 25◦36
′
00′′E). The image shows 55 reference ships and the detection results of the

CHAAR, CA-CFAR NF and Modified Otsu’s method. The CHAAR has significantly lower number of

false alarms (5 vs. 40 for the Mod. Otsu’s) with only three missed detections. The cutout also shows

the sub-pixel positional accuracy of the proposed ship detection method.

Figure 7.7 shows a Sentinel-1 GRDM VV image taken on the 25th June 2015 near Port Elizabeth,

South Africa. The figure shows 55 reference ships (diamonds icons) spread across the image and

the results of applying the CA-CFAR NF (red circle), CHAAR Upright (purple dot) and Modified

Otsu’s method (white circle) to this image. The CA-CFAR NF missed none of the ships where the

Modified Otsu’s missed two ships and the CHAAR method missed three. However, the CA-CFAR NF

and Modified Otsu’s detected 54 and 40 false alarms, respectively, whereas the CHAAR detected 5.

A number of the false alarms occur in line with the azimuth direction. As the Sentinel-1 imagery is

composed of 5 subwaths that are pieced together to form the entire SAR image the divide between
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Figure 7.8. The figure shows a bar graph of the calculated MCC, DA and FAR values from the

confusion matrices values shown in Table 7.3 for each ship detection method. The values inside each

bar represent the DA (top) and FAR (bottom).

each subswath has higher backscatter than further down in the subswath creating visible strips in the

SAR imagery. Unless the methods are set to a) high thresholding values or b) specifically designed to

reduce false alarms the divides represent a major change in SAR pixel value which can manifest as

ships. This is evident with the number of detections along these subswath lines. In general, the more

advanced methods circumvent these errors by using either machine learning or size-based filtering to

identify these as false alarms.

To get a better perspective of how exactly these results compare for all the methods, Table 7.3 lists

all of the tested method’s confusion matrices values for this image. These are summarised as MCC,

DA and FAR values in Figure 7.8. The confusion matrices provide a description of the difference

between a FAR of 10−7 and 10−9 as well as giving exact understanding to how many ships are missed

by each method. When using a low-threshold CA-CFAR we see about 322 false alarms (FAR of
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8.82× 10−7) but by applying the HAAR-like cascade classifier to this the number of false alarms

are reduced to around 5 and 24 (FAR of 1.94×10−8 and 9.55×10−8, respectively) for the Upright

and Full CHAAR variants. This massive reduction in false alarms is precisely why the HAAR-like

classifier was chosen (the standard HAAR methods had 2 and 6 false alarms, respectively). The SVM,

while built to maintain a high detection accuracy, failed to provide better DA in this example compared

to the CHAAR or CA-CFAR SA method whereas the Modified Otsu’s did provide the same or better

detection accuracy, at the cost of a relatively large number of false alarms.

In addition to the above, the small cutout in the top left corner of Figure 7.7 shows the positional

accuracy for a single example ship. The Modified Otsu’s suffers with regards to positional accuracy

with an average pixel error of 1.78 versus 0.68 for the CA-CFAR and CHAAR methods. This is

likely due to the global threshold approach of the Modified Otsu’s method compared to the local,

adaptive threshold provided by the CA-CFAR and CHAAR methods. The global approach highlights

more pixels which moves the mean centroid further away from the reference (diamond) position.

The CA-CFAR NF and CHAAR share the same positional accuracy because both use the CA-CFAR

method as the initial detection and therefore position.

7.5 DISCUSSION

A difficult task in ship detection literature is understanding what an acceptable trade-off between

DA and FAR is. At what reduction in FAR makes a method with a DA of 85% acceptable versus

another method with a 95% DA? The answer to these types of questions is largely based on the

application scenario in which the ship detection method is to applied to. Some require very high DA

whilst others require a low FAR. To try and understand results in the more general case (without a

specific application in mind) the MCC (and AUC) is introduced to objectively measure what is an

acceptable trade-off. The simple CFAR (CA-CFAR/GO-CFAR) methods clearly had the best DA at

low threshold values but their corresponding FAR were at least an order of magnitude higher than the

other methods. This indicates that these methods cannot be used on their own to detect ships with a

low number of false alarms for the given SAR dataset, irrespective of the parameters used. On the

other hand, the standard HAAR methods have an excellent FAR reduction but at the cost of severe

DA degradation. The strengths of both of these methods are used in the proposed CHAAR method

and the results show that by combining the CA-CFAR and Haar-like cascade classifier performance is
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improved over either method. Similarly, by extending the simple CA-CFAR method and incorporating

external knowledge (historical ship positions) the CA-CFAR SA method performed nearly as well as

the CHAAR Upright method for the various metrics provided. Both the CA-CFAR SA and CHAAR

Upright methods had a drop in maximum DA from 100% to 87.51% and 88.71%, respectively. These

drops in DA were considered acceptable given the average FAR improvement of 15 times and 45 times

better for the CA-CFAR SA and CHAAR Upright methods, respectively. While this might not satisfy

every system requirement the study found that the smaller trade off in DA is significantly off-set by the

large difference in FAR. Objectively, the MCC value confirms this assessment as both CHAAR and

the CA-CFAR SA methods have higher MCC values than the other methods tested. Finally, the novel

methods’ performances were the least sensitive to parameter adjusts shown in the ROC curve.

7.5.1 Additional Considerations

7.5.1.1 Current ship detection methods limitations

CFAR variants may perform adequately on single images with specific parameters but general per-

formance is lacking, as is shown in the ROC curves for these methods in Figure 7.3.

Methods such as the original HAAR-like classifiers’ performance is hindered as they it sees too

many windows by using a sliding window technique. This means the number of detects necessary

(V> 1) needs to be increased whic sets a hard threshold on the number of ships that pass through all L

stages. In many cases these ships are incorrectly identified as false alarms thereby lowering the DA

significantly. The original HAAR-like methods were tested against smaller imagery and were not built

to balance ship positives and false positive removal on images thousands of times larger and with a

highly skewed class distribution. The original methods also perform contrast stretching as discussed in

section 5.5.3.4 and this does not align well with the high dynamic range present in radiometrically

calibrated SAR imagery.

Finally, the other methods have reduced performance because of the focus on maintaining high

detection accuracies. While necessary for specific contexts in general the increase of false alarms leads

to worse detectors. The SVM classifies samples by hand-picked features which do not necessarily

translate to both good DA and FAR. The Modified Otsu’s method relied on a global thresholding
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approach which significantly increases the number of false alarms, particularly along subswath lines

in Sentinel-1 imagery. The discrimination based upon ship feature size is largely dependent upon

the expected ship sizes but beyond that no further intelligent identification of false alarms is created.

The H-dome method applies a CFAR-like local-based thresholding approach but mostly relies on the

relative brightness to isolate false alarms which is why its performance is not significantly better than

simpler CA-CFAR methods across a range of images. In fact, this method would be better suited as in

initial thresholding method rather than a full ship detection method.

7.5.1.2 CA-CFAR Non-flat advantages

The CA-CFAR NF method provides similar performance as a low threshold CA-CFAR but does so

with fewer false alarms. This indicates the introduced per-pixel thresholding extension to CA-CFAR is

a reasonable improvement over other CA-CFAR methods if an good selection is made for the threshold

manifold across the image. This is confirmed in Figure 7.3 where it can be seen that the CA-CFAR

NF has a higher AUC than any of the CFAR methods due to its corner value being higher than those

methods. The method excels in one regard because it is a simple extension to the well known and

widely used CA-CFAR method. This extension can be applied to almost any CFAR variant, especially

if the fixed threshold approach is used. If the fixed preselected required Pfa is specified (i.e. clutter

distribution characterization during each step of the processing) then this method just changes that

single specified Pfa to a Pfa that varies on a per-pixel basis. While not examined here, this does lend

to the possibility of using more advanced non-flat manifolds to decrease the threshold and increase

it exponentially along the swath width whereas the CA-CFAR NF method tested here is a linearly

increasing threshold from T min
C to T max

C ).

7.5.1.3 Simulated Annealing Manifold Adaptation advantages

The CA-CFAR SA method has the benefit that it works based on factor external to the SAR image

(relies on transponder data) so that more information before detections seem to improve the end result

(improvement compared to previous results on the ASAR imagery in the journal paper [3]. This

method shows excellent performance because it does not require training in the traditional sense and

its performance is partially dependent on the AIS dataset which independent of the SAR imagery. SA

is an exhaustive search strategy so could likely improve as the quality and quantity of the transponder
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data gets better. The original paper published with ASAR data and the current results on RADARSAT-

2/Sentinel-1 imagery show a performance improvement of about 5% for DA and FAR which due to

increased the amount of data and and changes in processing of the LRIT and AIS data using hard/soft

AIS ship matching.

7.5.1.4 CA-CFAR Haar-like cascade classifier advantages

The CHAAR method performs well due to a number of factors. The first is that it leverages the

well-established SAR prescreening method CA-CFAR and the significant false alarm rate removal of

HAAR methods. The AdaBoost training method used selects samples and features that are important

at the same time as it builds and intelligently orders the cascade which allows the method to retain

good samples further down the cascade and quickly discard easy-to-discriminate samples earlier on.

AdaBoos also affords the ability to avoid other feature reduction techniques and does so without the

same computational requirements of other methods. Furthermore, not requiring a minimum number

of detects (i.e. fixed V= 1) means the CHAAR methods have one fewer parameter that significantly

affects their performance and should allow it to be more adaptive such that V need not be varied for

different image conditions as is the case of the original HAAR methods. This along with the flexibility

afforded by machine learning methods by retraining on new samples means the method is both flexible

and likely more future proof than most of the other methods.

The CHAAR methods are slower to train but offer much better operational performance (see Table 7.4).

This is because it leverages an optimized CA-CFAR method plus rapid feature extraction which can

take approximately 200 operations per sample, many times faster than either CA-CFAR SA, HAAR or

SVM methods. This is further improved if using the Upright only features set as the integral image

feature extraction only needs to be performed for the Upright features.

Finally, the redundancy tests show that approximately 60% of the current dataset is necessary to

correctly train the system to achieve the performances listed here for the CHAAR methods. This

means that with each image having, on average, 35 ships in it we would require approximately 27

SAR images to train the method (or just under 1000 ships). Fewer than this limit and the method is not

guaranteed to have the same performance. Contrastingly, the method only requires this many images

and datasets larger than that (or operational systems) should at least maintain the average performance
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Table 7.4. The average and worst training and operational run times in seconds for three of the methods

tested.

Method
Training
Runtime (average) (s)

Training
Runtime (worst) (s)

Operational
Runtime (average) (s)

Operational
Runtime (worst) (s)

CA-CFAR SA 20 60 5000 100000
CHAAR Upright 1800 3600 1 180
SVM 900 1800 5 180

listed here for many more images assuming this dataset is a representative sample of the expected

population of SAR imagery.

7.5.1.5 CA-CFAR Non-flat Disadvantages

The CA-CFAR NF method fails in some regard because it indiscriminately accepts and rejects false

alarms based only on the current value, local clutter value and local threshold. This is a similar

reasoning to why GO-/CA-CFAR methods cannot be the only discrimination step. Furthermore, to

apply the CA-CFAR NF extension to other CFAR implementations they need to respect a per-pixel

thresholding scheme and as such most implementations need to be adjusted slightly to make use of the

variable fixed threshold which may not be a desirable property.

7.5.1.6 Simulated Annealing Manifold Adaptation disadvantages

The two largest downside of using the CA-CFAR SA approach is its reliance on the density of the

ship positional (AIS/LRIT) data and its testing or operational runtime performance. Without the

AIS and LRIT data the method devolves into an overly complicated CA-CFAR NF method with a

random manifold for per-pixel thresholds which may or may not perform adequately. When examining

Figures 7.4, 7.5 and 7.6 the amount of testing data is changing the amount of positional data used

during operation. The method performs well up to about 70% AIS then rapid declines as the positional

data decreases. This affects the sparsity of the ship in the ship distribution map which means more

ships are not typical shipping lanes and thus their influence on each step of the SA becomes less which

compounds at at every step.
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Fewer than 1000 steps produces a CA-CFAR SA ship detector akin to a random detector so the number

of steps has a strong effect on the ship detection method. Conversely, many steps are required to

improve ship detection accuracy and this comes with a significant increase in operational runtime (see

Table 7.4). In practice these large operational run times lead to scenarios which took hours to process a

single SAR image and this process is repeated if a single SAR acquisition has multiple polarizations

(Sentinel-1).

As the SA adapts the manifold it accepts the next generated manifold based on either an improvement in

performance or having a value above the Boltzmann probability. By applying the Boltzmann principle

to the method it allows the system to accept solutions that are not necessary optimal using at the

current step which can lead to more optimal solutions at further steps. This manifests as an attempt to

reset out of local minima. One issue with this, however, is that if the accepted solution is found to be

severely lacking in performance many steps later then the current method has no way of resetting back

a previously accepted solution. One alternative could be to store a list of accepted solutions and revert

to those when the results do not improve well over a number of rounds. This, however, would increase

the computational cost of the method further still which may be an undesirable solution.

7.5.1.7 CA-CFAR Haar-like cascade classifier disadvantages

Despite all of the advantages the CHAAR method presents it does come with a few disadvantages. The

goal of the CHAAR method is to improve its training performance with the hope that this generalizes

well to the testing data. Given a long enough training time it could perfectly discriminate the entire

testing dataset but would do so at severe ovefitting that might not be visible even using variance-bias

trade-off techniques such as k-fold cross validation to reduce ovefitting. Stated otherwise, theoretically

it could learn to perfectly classify all samples in the training dataset with a long enough cascade

but at the expense of reducing the generalization performance by assuming the dataset is a perfect

representation of the real world data (obviously it is not). Furthermore, it requires a precise setup

for training (fixed input image sizes, a large amount of both positive and negative samples which

also applies to the HAAR method). This is a method between traditional features which are directly

engineered by users (such as the ship rotation, size, etc used by the SVM method tested) and a machine

generated feature set as is seen in Deep Learning [88]. The full feature set is overcomplete which

means blindly using the full CHAAR could result in degraded performance. That many features are
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can be difficult to automatically using other techniques such as PCA. This is because the uprights

feature of length N = 111160 require hundreds of gigabytes of memory to fit in, for instance, and

SVD-PCA and currently there is a large reliance on the AdaBoost training procedure for the method to

work.

7.5.1.8 Cascade complexity and necessity of rotated features.

The length of cascades L was varied to obtain the ROC curves for the HAAR Upright, HAAR Full,

CHAAR Upright and CHAAR Full methods in Figure 7.3. The best performing cascade configurations

had five strong learners L = 5 with the number of weak learners per stage l = 1, . . . ,5 was Sl =

{1,3,1,2,94} and Sl = {1,5,3,8,45} for the HAAR and CHAAR, full and upright-only configurations,

respectively. Note how the first stages of both cascade configurations have a single weak learner in the

first step. This helps improve computational complexity by discarding the vast majority of false alarms

early on in the cascade thereby reducing the number of overall steps required to classify an image.

Using approximately half the number of weak learners in the final stage (45 vs 94) the upright-only

configurations were able to outperform the full Haar-like feature cascade configurations for both the

HAAR and CHAAR methods. This is likely due to the feature space of the full Haar-like feature

set being 39.49% greater than that of the upright-only feature set which indicates a search space to

locate salient features during AdaBoost training. This increase in feature space seems to improve the

training performance hence the more complicated last stage of the configurations but this training

performance does not perform as well on testing data. This implies some overfitting inherent to the

full Haar-like feature set that does not occur with the upright-only feature set and is also likely the

reason why performance decreases for cascades where L> 5.

The second HAAR method [129] proposes using the same framework for object detection as the

original HAAR method [128] but supplements the upright features with an the extended set of Haar-

like features including rotated features. These features are proposed in order to better describe faces

using Haar-like features and the original paper authors note an improvement in performance in their

tests for these objects. The results here have shown that applying these original methods as-is produces

sub-optimal results for ship detection in medium resolution SAR imagery. The results seem to indicate

that not only are these rotated features not necessary their inclusion into the cascade classifier doubles

the complexity of the stages with decreased accuracy. Even with the CA-CFAR prescreening step the
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number of operations for ship detection using a cascade classifier can be reduced by half by heeding

this finding. In combination with the CA-CFAR the number of total operations to detect ships is

significantly reduced compared to other methods. It should be noted that this is a novel aspect of

applying the newly method to SAR imagery for ship detection.

7.5.1.9 Performance contextualization

The 5-7% performance decrease in DA for the proposed ship detection methods translates to roughly 5

missed ships per image on average but at the cost of significantly improved FAR. It is important to

note the specific operational application of each method and whether that is an acceptable trade-off

or not. For example a typical usage scenarios where the reduced number of false alarms is especially

important is a tactical interception scenario. Let us take the differences between an SVM ship detection

based system and a CHAAR Upright method as shown in Figure 7.7 as an example. The SVM system

would identify one more ship than the CHAAR Upright method but at the cost of more than seven

times the number of false alarms. If an interception team were to be sent out for every true and false

positie, the total cost for the interception campaign would be much higher for the SVM-based system.

The SVM-based ship detection system would send the interception team to 37 different incorrect ship

locations versus the CHAAR Upright system which would only send the interception team to 5. This

is an important consideration when selecting which method is preferred overall.

The methods were tested across various polarizations but the final performance did not significantly

differ depending on polarization. The largest effect different polarizations had was the number of ships

presented to the system. The cross-polarization imagery of Sentinel-1 typically had 5-10 more ships

per image on average than the co-polarized versions. The percentage differences in DA, FAR and

MCC between the imagery was minimal, however. The difference between a pixel with resolution

of 25m and 40m made little difference in performance, especially for methods trained agnostically

across the dataset (i.e. HAAR/CHAAR variants).

Most of the methods incurred errors due to three main sources: a) errors near the nadir; b) errors near

land and/or caused by bright objects on land; and c) errors near bright ships which create their own

copies which are misclassified as ships. The errors near the nadir were largely reduced by increasing

thresholds such as that of CA-CFAR NF or by using the more advanced methods which discriminate
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on other features such as CHAAR. Errors near the nadir occur because the brightness values there are

much higher due to the increase number of returns at the nadir position. Errors due to the effects of

b) can be reduced by using repeat pass/multi acquisitions, as discussed before, or by using domain

knowledge (ie operator in the loop). Most of these errors were removed by using a buffer on the land

shape file but errors where bright copies of land objects were made in the range direction were filtered

out by size and relative brightness. The final error of ship copies are the hardest to remove and requires

a combination of "macro" views of the ship check along ships intersections if there are very similar

doubles, by using classifiers specifically built to identify and finally by estimating likely copy positions

using the PRF inherent in the SAR imagery metadata.

7.6 CONCLUSION

This chapter described the performance of 13 methods tested across the dataset detailed in the previous

chapter, including the novel methods presented in Chapter 5. This chapter detailed the performance

metrics used, including the MCC which helps to interpret the two competing performance metrics

of DA and FAR. The methods were tested with their best performing parameters, variations in the

most influential parameters, variations in the amount of training/testing data and finally on a single

image for real-world implication testing. The two proposed methods, namely the CHAAR Upright

and CA-CFAR SA, had the best and second best performances of all the methods tested across the

general metrics MCC and AUC with acceptable DA performances which were compensated for by

significantly improved FAR versus the other methods.

The CA-CFAR NF method achieves high DA with reduced FAR compared to the common CA-

CFAR methods yet is low complexity extension to these methods and can be readily applied to many

current implementations of CFAR. Given enough ship distribution information, the CA-CFAR SA

method provides significant FAR reductions with acceptable DAs but does so at a high operational

computational cose. The CHAAR Upright method builds upon the CA-CFAR method by including a

Haar-like cascade classifier to produce results that are a balanced trade-off between a small loss of

DA, a large improvement to FAR and a significantly better operational computational cost system.

Furthermore, it was shown that the full set of Haar-like features are not necessary to create a high

performance ship detection system and their inclusion reduces the speed and efficacy of the proposed

methods.
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The chapter contextualized the performance and showed that a reduction of two orders of magnitude

FAR results in hundreds of fewer ships in the final output. Finally, the chapter described some of the

advantages and disadvantages of the methods presented as well as how and where most of the errors in

the results occurred.
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8.1 STUDY OVERVIEW

Surveillance of a country’s EEZ forms an integral part of MDA. The EEZ represents a major source of

income and protecting it from illegal activities is necessary to prevent other countries from exploiting

their EEZ. Traditionally, the EEZ has been monitored using transponder-based systems which rely on

compliance of the ship’s operators. If the transponders on-board are intentionally or unintentionally

disabled then tracking these ships becomes a difficult task. Furthermore, certain types of transponder

systems have a limited tranmission range significantly smaller than the extent of the EEZ which

means many of these transponder systems need to be supplemented with other monitoring methods to

successfully track ships.

To this end remote sensing from airborne and spaceborne platforms have been used to supplement

traditional transponder-based systems. Satellites equipped with EM sensors periodically observe areas

to provide monitoring coverage. Of the various remote sensing techniques available, SAR has arisen

as an excellent source of monitioring oceans due to its ability to penetrate cloud cover as an active

sensor regardless of time of day. Another motivation is the highly spectral reflectance of the ships to

the SAR operating wavelengths when compared to the diffuse reflection of water. A large amount of

research has gone into improving ship detection in SAR imagery. The focus has recently been on higher

resolution SAR imagery. Since the release of free lower resolution free SAR imagery from ESA’s

Sentinel-1/Copernicus initiative new focus has been on developing methods for this data. This can be

seen as a bid to aid higher resolution SAR ship detection work by providing a wide area coverage and

allowing the specification of detection reports which can direct high resolution tasking efforts. For this

study, the free freely available SAR data was combined with other SAR data to create a 46 SAR image

dataset that spanned across two sensors, three resolutions and four polarizations.
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The thesis detailed SAR theory, some of its applications and the various benefits and expected errors

that are associated with ship detection in SAR imagery. Furthermore, it was shown that results and

how they are interpreted in SAR ship detection can vary significantly and as such comparing different

methods across studies (without a single widely accessible dataset) becomes a complex task. In a

perfect detection scenario the ship detection systems would have perfect DA with a zero FAR. In

practise, a trade off between DA and FAR which leverage the number of false identified ships versus

the number of correctly identified ships is necessary. In some applications it is imperative that all

ships are identified whereas other applications require that the number of possible targets are reduced.

However, for the general case objectively balancing DA and FAR becomes a difficult concept and this

thesis highlighted a well-known machine learning confusion metric known as the MCC value to help

alleviate this problem.

In this thesis two different ship discrimination methods to the SAR ship detection community were

proposed. The first, “Manifold adaptation for Constant False Alarm Rate ship detection” makes use

of pre-existing transponder data in combination with an extension to the conventional CA-CFAR

method and Simulated Annealing. This method allows for per-pixel thresholding variations and makes

use of auxiliary transponder data to help guide the creation of threshold manifolds which are used

to threshold the input SAR image. This iterative procedure of threshold manifold generation does

come at a significantly increased computational burden. Despite this, the method can effectively

discriminate ships from false alarms with a mean DA of 87.51%, FAR of 5.644× 10−8 and MCC

value of 0.80. A second method based on machine learning techniques known as the “Haar-like

feature cascade classifiers for ship discrimination” was also introduced. This method combined a

low-threshold simple CA-CFAR prescreening step with an advanced cascade classifier trained on the

SAR dataset. The method uses rapid integral calculations to extract features and then an carefully

ordered cascade classifier discriminates between ships and false alarms. The features are scale, rotation

and translation invariant and can be rapidly calculated even for the approximately 100 000 features

per sub-image. The method improved upon the originals by specializations such as avoiding contrast

stretching and sliding window voting techniques. The method performed best of all the methods tested

with a mean DA of 88.71, FAR of 1.940×10−8 and MCC of 0.89 but had a strong reliance on the

AdaBoost training process and the amount of training presented to it. Both of these methods were

compared against 11 other methods across a range of tests including k-fold cross validation, ROC

curve and AUC evaluation, variable amount of testing data to evaluate redundancy and single image

analysis.
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8.2 RESEARCH OBJECTIVES AND ANSWERS

At the onset of the study a few key research questions were identified. These are addressed as

follows:

1. What current ship detection method can be improved to increase overall ship detection in medium

resolution SAR imagery? Three main contributions were made in this thesis. The first was

that additional data was used during the detection stage. A novel method which makes use of

historic transponder data was proposed. The method extends on the conventional CA-CFAR

prescreening step to allow for more varied threshold specifications on a per-pixel basis. The

second was improvement of existing methods that operate on medium resolution imagery. Most

SAR ship detection research focuses on higher resolution data because of the similarity between

ships and SAR artifacts in medium resolution image which can be mitigated when using many

more pixels to describe ships in high resolution SAR imagery. Methods specifically tailored to

work on these higher resolutions were often directly applied to work on lower resolution imagery.

As such this thesis addressed this problem by introducing two methods that helped to build upon

previous lower resolution method to deal with the smaller ships present in current SAR imagery

and make use of machine learning techniques. The third contribution was the creation of an

dataset which could help to provide objective evaluations across SAR ship detection studies.

2. Can operational ship detection be accomplished by utilizing machine learning and related

methods? Across the various tests performed in this thesis it was proved that by utilizing

various machine learning methods state-of-the-art ship detection methods could be created that

balanced training time with excellent computational and detection performance. Specifically, by

leveraging the usefulness of the simple CA-CFAR method and template feature extraction and

training the CA-CFAR-based Haar-like cascade classifier was shown to be the best performing

method across a number of metrics and scenarios.

3. Are the current performance metrics used for ship detection results sufficient to underline

performance differences between methods in a meaningful manner across different datasets?

The thesis demonstrated that while sufficient to describe the performance of the system the typical

metrics of DA and FAR vary widely in their interpretation across studies. Where some studies
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would completely disregard ships without transponder data, others would highlight detection

accuracies without detailing false alarm rates, especially across multiple images. Furthermore,

as mentioned above, balancing DA and FAR becomes difficult for the general case and the thesis

introduced the MCC metric to the SAR ship detection community to help objectively select what

trade-offs between the two are acceptable. Due to the fact that the MCC takes all the confusion

matrix factors into account it can be used to identify methods which perform well in the general

case and was specifically designed for heavily skewed class distributions, as is the case with

SAR ship detection.
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“Very deep learning for ship discrimination in Synthetic Aperture radar imagery,” in IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), July 2016, pp. 104 -

107.

– C. P. Schwegmann, W. Kleynhans, B. P. Salmon, L. W.Mdakane, and R. G. V. Meyer,

“Ships as salient objects in Synthetic Aperture radar imagery,” in IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), July 2016, pp. 6898 - 6901.

• Co-Author International Conference Papers:

– W. Kleynhans, B. P. Salmon, C. P. Schwegmann and V. Seotlo, “Ship Detection in South

African oceans using a combination of SAR and historic LRIT data,” in IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), July 2013, pp. 1521 - 1524.

– B. P. Salmon, W. Kleynhans, C. P. Schwegmann, and J. C. Olivier, “Proper comparision

among methods using a Confusion Matrix,” in IEEE International Geoscience and Remote

Sensing Symposium (IGARSS), July 2015, pp. 3057 - 3060.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

137



CHAPTER 8 CONCLUSION

– W. Kleynhans, B. P. Salmon, C. P. Schwegmann, and L. Mdakane, “Use of Sentinel-1

data for vessel detection in South African oceans: Early results,” in IEEE radar Conference,

Oct. 2015, pp. 431 - 434.

In addition to the above, the results of this research has directly fed into a SAR ship detection platform

currently being developed at the Council for Science and Industrial Research related to the “Oceans

and Coasts Vessel Tracking Tool”.

8.4 FUTURE WORK

The CHAAR method represents a combination of classical machine learning by selecting a fixed set of

features but also sides with the more modern approach of letting the training of the system determine

which of the overcomplete feature set is necessary to correctly discriminate ships. The machine learning

community has recently been inundated with research into the newest machine learning technique

known as deep learning. Instead of manually selecting features, these new machine learning techniques

create their own features unlikely to be created using classical feature engineering methods. This

places the onus of selecting salient features on the network and leaves the architecture composition

up to the researcher. While posting initial high performance results Deep Learning methods need to

be thoroughly investigated to determine if these new techniques are able to successfully discriminate

ships in a wide variety of SAR imagery. Furthermore, additional avenues for Deep Learning research

include high quality ship classification as the classification of optical imagery was the primary driver

behind the development of Deep Learning.

8.5 CLOSING

This thesis detailed two novel methods that showed improved performance when compared to current

state-of-the-art methods across a number of metrics. Each of these methods have their own advantages

and disadvantages and their usage and designed goals might not necessarily align with all specifications

for all systems. This means care needs to be taken before blindly selecting either as the final stage in

the an MDA system.
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