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Abstract

The 2008/9 financial crisis intensified the search for realistic return models, that capture

real market movements. The assumed underlying statistical distribution of financial re-

turns plays a crucial role in the evaluation of risk measures, and pricing of financial instru-

ments. In this dissertation, we discuss an empirical study on the evaluation of the traditional

portfolio risk measures, and option pricing under the hybrid Brownian motion model, de-

veloped by Shaw and Schofield. Under this model, we derive probability density functions

that have a fat-tailed property, such that “25σ” or worse events are more probable. We then

estimate Value-at-Risk (VaR) and Expected Shortfall (ES) using four equity stocks listed on

the Johannesburg Stock Exchange, including the FTSE/JSE Top 40 index. We apply the his-

torical method and Variance-Covariance method (VC) in the valuation of VaR. Under the VC

method, we adopt the GARCH(1,1) model to deal with the volatility clustering phenomenon.

We backtest the VaR results and discuss our findings for each probability density function.

Furthermore, we apply the hybrid model to price European style options. We compare the

pricing performance of the hybrid model to the classical Black-Scholes model.
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Glossary

• The random variables X1,X2, . . . ,Xn are said to be independent and identically dis-

tributed (i.i.d), if they share the same probability density function and are indepen-

dent of each other.

• Probability generating function (PGF)

Let X be a discrete random variable taking non-negative integers {0,1,2, . . .}. The PGF

of X is given by

GX(z) = E[zX]

=
∞∑
x=0

zxP(X = x) =
∞∑
x=0

zxp(x)

where P(X = x) = p(x).

Properties of a PGF

•GX(0) = p(0).

•GX(1) = 1.

• p(n) =
( 1
n!

) dn
dzn

(
GX(z)

)∣∣∣∣∣
z=0
.

•E[X] = G′X(1).

•Var[X] = G′′X(1) +G′X(1)− (G′X(1))2.

• Supremum (sup) definition: Let X be an ordered set, and let A ⊆ X be non-empty and

bounded above. We say A has a smallest upper bound or an supremum, if there is a

point in X, denoted by sup(A) such that the sup(A) is an upper bound for A, and if

there exist another upper bound for A say b, then sup(A) ≤ b.

• Infimum (inf) definition: Let X be an ordered set, and let A ⊆ X be non-empty and

bounded below. We say A has a greatest lower bound or an infimum, if there is a point

15



in X, denoted by inf(A) such that the inf(A) is a lower bound, and if there exist another

lower bound for A say b, then inf(A) ≥ b.

• The k-period (say daily) log-return at time t is given by, log
(
St
St−k

)
·

• The distribution function of a random variableX is defined by FX(x) = P(X ≤ x), where

FX is a cumulative function of X.

• Value-at-Risk (VaR)

Given some confidence level α ∈ (0,1). The VaR of a portfolio at the confidence level α

is given by the smallest number l such that the probability that the loss L exceeds l is

not larger than (1−α). Mathematically we write

V aRα = inf{l ∈R : P(L > l) ≤ 1−α} = inf{l ∈R : FL(l) ≥ α},

where FL is the loss distribution.

• Expected Shortfall (ES)

For a loss L with E(|L|) <∞ and the distribution function FL, the expected shortfall at

the confidence level α ∈ (0,1) is defined as

ESα =
1

1−α

∫ 1

α
qu(FL)du

=
1

1−α

∫ 1

α
V aRu(L)du

where qu(FL) is the quantile function of FL.

• Backtesting is a method used to validate the VaR model, by periodically comparing

the estimated VaR value to the observed P& L.

• Central moments of a continuous random variable:

Let X be a continuous random variable with a density function f (x). We define the rth

central moments as

µr = E[(X −µX)r] =
∫ ∞
−∞

(x −µX)rf (x)dx,

where r is a positive integer greater than one, and µX = E[X].

• The skewness of a random variable X is a measure of symmetry of the probability

distribution, defined by the ratio

E

[(
X −µ
σ

)3]
=
µ3

σ3
X

·
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• The kurtosis of a random variable X is a measure of heaviness of the tails of the distri-

bution function, defined by the ratio

E

[(
X −µ
σ

)4]
=
µ4

σ4
X

·

• A leptokurtic distribution is a statistical distribution with heavier or fatter tails than

the Normal distribution.

• One dimensional Laplace Transform

The Laplace transform of a function f (t) is defined as

L{f (s)} =
∫ ∞

0
e−stf (t)dt,

where t is a real variable, and s ∈C is a complex variable.

• A characteristic function: Let X be a random variable with a CDF FX and a PDF fX(x).

The characteristic function is defined as

ϕX(t) = E[eitX] =
∫ ∞
−∞
eitxfX(x)dx =

∫ ∞
−∞
eitxdFX(x)·

• Fourier Transform

A Fourier transform of a function f : R→C (integrable) is defined as

F [f (t)] = F(ω) =
∫ ∞
−∞
e−iωtf (x)dt·

and the inverse Fourier transform is defined as

F −1[F(ω)] = f (t) =
1

2π

∫ ∞
−∞
e−iωtF(ω)dω·

for any real number ω and x.

• Unit step function or Heaviside step function is a discontinuous function, defined as

H(x) =


0 if x < 0

1
2 if x = 0

1 if x > 0

• The Residue theorem

Let f (z) be analytic on a simply connected set G at a finite number of poles. Then it

follows for each closed curve C in G, which does not go through a pole of f that�
C
f (z)dz = 2πi

n∑
j=1

Res(f ;aj),

where a1, a2, . . . , an are the poles of f (z) in the interior of C.
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• Laurent expansion

If f is analytic for |z − a| <R, then we have the following for each such z that

f (z) =
∞∑
n=0

an(z − a)n,

where an =
1

2πi

�
|ξ−a|<r

f (ξ)
(ξ − a)n+1dξ =

f n(a)
n!

, where 0 < r <R.

• The Convolution theorem

Let F(s) and G(s) denote the Laplace transforms of f (t) and g(t) respectively. Then the

product given by H(s) = F(s)G(s) is the Laplace transform of the convolution of f and

g, denoted by

h(t) = (f ∗ g)(t) =
∫ t

0
f (τ)g(t − τ)dτ =

∫ t

0
g(τ)f (t − τ)dτ
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Chapter 1

Introduction

1.1 Overview

It is well-known that equity returns are not well captured by a Gaussian probability den-

sity function, see [EFM05, Dan11]. In general, the distribution of equity returns exhibits

a high excess of kurtosis and skewness, see [Fam65, Man63]. A distribution that displays

a high excess of kurtosis has a higher peak and heavier tails, compared to the Gaussian

distribution, see [RMF05, Fam65]. If the underlying asset is not well captured by a statis-

tical distribution, then risk measures and pricing of derivatives are not well estimated, see

[EFM05, SS15]. One major factor that contributed to the failure of Long-Term Capital Man-

agement, was the underestimation of risk measures (e.g. VaR) and mispricing of derivatives.

They applied Gaussian models which did not anticipate fat-tails, see [Jor00]. Two essential

features of equity returns are volatility clustering and the statistical distribution of equity

returns, see [RMF05, Fam65, Con01]. The GARCH (1,1) model has been widely used to

model volatility clustering, see [FZ+04]. VaR and ES are tools used by financial institutions

to estimate market and credit risk, see [EFM05, C+10].

Statistical distributions that capture greater likelihoods of extreme price movement are

the most recommended distributions for evaluating risk measures, see [EFM05, MF00]. A

number of authors have proposed different statistical distributions, that attempt to cap-

ture the real market distribution of equity returns. The distributions range from sim-

ple ones to more complex ones, see [MF00, Dan11]. The Student-t and skew-Student-
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t distributions have been studied extensively in risk management, see [EFM05, MLR14].

[BM+12, BCY08, BMK09] were the first ones to apply the Pearson type IV distribution, in

conjunction with GARCH(1,1) model to evaluate VaR and ES.

Pricing and hedging of financial instruments are of foremost importance for financial in-

stitutions, see [Hul06]. There is progress in developing option pricing models that are re-

alistic. Many models have been developed that aim to improve the Black-Scholes (1973)

model, see [BCC97, Bjö09, Miy11]. Examples of such models include the Merton model

(1973) (stochastic interest rate), Bates model (1991) (jump-diffusion), Heston model (1993)

(stochastic volatility) etc. Every option pricing model is based on some assumptions. The

common assumptions include: (i) how to model the underlying price process, (ii) modelling

volatility and interest rate process. According to [BCC97], an option pricing model is as-

sessed by pricing errors and hedging performance.

In this research, we aim to implement the hybrid model developed by [SS15]. We com-

pute standard risk measures under the distributions we obtain under this model, and we

price European style options.

1.2 Objectives

The main objective of this research is to study the model of returns developed by [SS15],

that results in fat tails distributions, and its implications for portfolio risk measures, option

pricing, hedging and calibration.

The minor objectives are the following:

To show the derivation of the arithmetic-geometric hybrid SDE following the work of [SS15].

To derive fat-tailed distributions and show that the probability of large losses is more prob-

able under this model, other than in the Gaussian distribution. To investigate implications

for portfolio risk evaluation under the distributions we obtain from this model. To fit our

model to four shares listed on the JSE and compute VaR and ES. To backtest all VaR results

by using the Success-Failure ratio and the Kupiec Likelihood ratio test. We also study the

properties of a coherent risk measure. The final objective of the dissertation is to apply the
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hybrid SDE to price European style options, discuss hedging and calibration.

Highlights of the arithmetic-geometric model:

1. Addresses the risk posed by technical trading in a market.

2. This model is a simple SDE with constant parameters, that produces fat-tailed distri-

butions, without resorting to Lévy Processes nor stochastic volatility models.

3. The probability of a “25σ” or worse event is much more probable under this model,

other than in the Black-Scholes model.

1.3 Structure of the dissertation

In Chapter 2, we introduce and derive the arithmetic-geometric hybrid Brownian Motion

model following the work of [SS15]. We provide an explicit solution of the model and its

moments. In Chapter 3, we derive the quantilised Fokker-Planck equation (QFPE), associ-

ated with the hybrid SDE, following the work of [SS08]. The QFPE is then applied to derive

equilibrium fat-tailed probability distributions, i.e. the Pearson type IV and the Student-t

distribution. Under non-equilibrium market conditions, we apply the Fokker-Planck equa-

tion on the hybrid SDE, to derive fat-tailed distributions.

In Chapter 4, we introduce the empirical data we use in this dissertation. We analyse the

first four moments of our data and apply the QQ-plot to test for normality. We apply the

method of maximum likelihood, to fit the Pearson type IV and Student-t distributions to our

data. We test how well the Pearson type IV and Student-t distributions fitted our data, by ap-

plying the QQ-plot method. In Chapter 5, we present the definitions of the most common

risk measures and different methods of evaluating them. We discuss the main two meth-

ods of estimating VaR which includes, the Historical method and Variance-covariance (VC)

method. Under the VC method, we adopt the GARCH model to compute VaR, following the

work of [EFM05, BM+12, BCY08, BMK09, SMNZ12, SZ13]. We apply the success-failure

ratio, and the Kupiec likelihood method, to backtest VaR results. We discuss the properties

of a coherent risk measure, introduced by [ADEH99].
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Furthermore, we fit the non-equilibrium probability density distributions to our data. Once

more we compute VaR estimates and backtest our results. In Chapter 6, we apply the hy-

brid SDE to price European style call options. We calibrate the model and apply the Crank-

Nicolson finite difference scheme to compute European call options. Finally, in Chapter 7,

we discuss our findings and possible future research.
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Chapter 2

The Arithmetic-Geometric Hybrid

Brownian Motion Model

We remarked earlier that the share price returns are not well captured by the Normal distri-

bution. In the 1960’s authors like Mandelbrot (1963) and Fama (1965) observed an excess of

kurtosis and skewness in financial asset returns. A distribution that displays excess in kur-

tosis has heavier tails and higher peak than the Normal distribution, see [EFM05, Dan11]. In

this chapter, we present a model for asset returns developed by [SS15]. In the next section,

we derive the arithmetic-geometric hybrid SDE and its solution.

2.1 Model derivation

2.1.1 Fundamental and technical traders

In this model, we consider two types of market traders namely, the fundamental and tech-

nical traders. We consider a liquid market containing an asset with share price St at time

t ≥ 0, and the trading period [0,T ]. The price St will continuously fluctuate up and down,

due to the demand and supply of St. The buyer-initiated trades will force prices to increase,

while the seller-initiated trades will force prices to decrease. The net effect on the market

prices over a small period is described by the log-returns.
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We define the log-return Xt on the asset St over a period [0, t] by :

Xt = log
(
St
S0

)
· (2.1)

We assume that (Xt) (real-valued stochastic process) describes the current state of the mar-

ket. We study the influence of fundamental and technical traders in a market. Both types

of traders are seeking information about the general movement of an asset price, and trade

based on that information but their techniques of obtaining such information differs. In this

model, one set of traders consist those who are trading independently of the current value

of (Xt), these will include fundamental traders. The second set of traders consist those who

trade based on the historical performance of (Xt), these will include technical traders (i.e.

{Xs |0 ≤ s ≤ t}).

The market state (Xt) is driven by the buy and sell orders to the market. We are inter-

ested in knowing the waiting time between the trade orders, and the size of the trade order.

We first consider buy orders based on fundamental trading. At some time ∆t, we consider

a time interval (t, t + ∆t) ⊂ [0,T ] with ∆t � T , where buy orders occur in many sizes of M.

Let Y (t) be a discrete random variable taking non-negative integers {0,1,2, · · · }, to denote

the number of buy trades arriving at time t, and define Ni to be a discrete integer-valued

r.v. denoting the number of sizes in each buy order for i = 1, . . . ,Y . The N ′i s are assumed

to be i.i.d. with a common density function N . In total the number of buy orders based on

fundamental trading is

I =M ×
Y∑
i=0

Ni =M ×Z (2.2)

where Z =
Y∑
i=0

Ni . We apply the probability generating function (PGF) of Z to compute

the mean and variance of equation (2.2), [SS15] use a probabilistic argument to show the

following results. The PGF of Z is given by

GZ(z) = E[zZ]

GZ(z) = E[z
∑Y
i=0Ni ]

= E(E(z
∑Y
i=0Ni |Y )) (by the Tower property)

= E[E[zN0zN1 · · ·zNY |Y ]] N ′i s are i.i.d.

= E((GN (z))Y )

= GY (GN (z)) by definition of GY

(2.3)
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By the property of a PGF,

E[Z] = G′Z(1)

= G′Y (GN (z))G′N (z)|z=1

= G′Y (GN (1))G′N (1)

= G′Y (1)G′N (1)

= E[Y ]E[N ] = E[Y ]n̄

(2.4)

where n̄ = E[N ], and

Var[Z] = G′′Z(1) +G′Z(1)− [G′Z(1)]2

= G′′Y (GN (z))[G′N (z)]2 +G′Y (GN (z))G′′N (z)|z=1 +E[Z]− [E[Z]]2

= G′′Y (1)n̄2 +E[Y ]G′′N (1) +E[Y ]n̄− (E[Y ])2n̄2

= Var[Y ]n̄2 +E[Y ]Var[N ] ·

(2.5)

We analyse the distributions of Y and Ni , and their first two moments, in order to make

progress. We assume that the inter-trade arrival times follow a renewal process1.

We derive the mean and variance of Y (t) and Ni , from a characteristic function between

the time trades, following the work of [SS15] and adding some steps. Let the time between

the trades be denoted by P (t) and let fP (t) denote the PDF of P (t). Finally let

Sn =
n∑
i=1

Pi , where n ∈R. (2.6)

The relationship between Y (t)(the number of buy trades arriving at time t) and P (t) is given

by

P[Y (t) < n] = P(Sn > t) = 1−FSn(t) (?)

where FSn(t) is the cumulative distribution function of Sn. We relate Y (t) to P (t) by consid-

ering the characteristic function of P , denoted by

ψP (ω) = E[eiωP ] =
∫ ∞

0
eiwsfP (s)ds · (2.7)

From equation (2.7), it follows that, the characteristic function of Sn is given by ψSn(ω) =

[ψP (ω)]n. Our task now is to find the FSn(t) function in order to solve (?). The CDF FSn(t)

1See Appendix A for a formal definition.
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is given by the convolution of the density function fSn(t) = F′Sn(t) and the Heaviside step

function (see the Glossary) θ(x) that is one for x > 0 and zero elsewhere.

FSn(t) =
∫ t

−∞
fSn(s)ds

=
∫ ∞
−∞
θ(t − s)fSn(s)ds

= (θ ∗ fSn)(t)·

(2.8)

The Fourier transform of the convolution, is the product of the Fourier transforms, see

[AS64]. The Fourier transform of FSn(t) is given by

F [FSn(ω)] = ψSn(ω)F (θ(ω)),

where

F (θ(ω)) =
∫ ∞
−∞
θ(t)eiωtdt =

∫ ∞
0
eiωtdt (2.9)

since θ(t) is one for t > 0. Equation (2.9) diverges if ω is real. Hence, ω = a+ ib and w̄ = a− ib

(complex conjugate). The solution of equation (2.9) is in [SS15], but we add some steps.

From equation (2.9) we have∫ ∞
0
eiωtdt =

∫ ∞
0
eit(a+ib)dt

=
∫ ∞

0
eaite−btdt

=
∫ ∞

0
e−bt cos(at)dt + i

∫ ∞
0
e−bt sin(at)dt

= lim
k→∞

∫ k

0
e−bt cos(at)dt + i lim

k→∞

∫ k

0
e−bt sin(at)dt·

Applying integration by parts twice we have∫ k

0
e−bt cos(at)dt =

e−bt

b2 + a2

(
asin(at)− bcos(at)

)∣∣∣∣∣k
0

=
ae−bksin(ak)− be−bk cos(ak) + b

b2 + a2

∴ lim
k→∞

∫ k

0
e−bt cos(at)dt =

1
b2 + a2 lim

k→∞

(
ae−bk sin(ak)− be−bk cos(ak) + b

)
=

b

b2 + a2 by the Squeeze theorem.

Similarly

lim
k→∞

∫ k

0
e−bt sin(at)dt =

a

b2 + a2 ·
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Therefore ∫ ∞
0
eiωtdt =

b

b2 + a2 + i
(

a

b2 + a2

)
=
ai + b
b2 + a2 ×

i
i

=
bi − a

i(a2 + b2)
= − ω̄

i(a2 + b2)
·

Substituting

a =
ω+ ω̄

2
and b =

ω − ω̄
2i
·

Therefore

a2 + b2 =
(
ω+ ω̄

2

)2

+
(
ω − ω̄

2i

)2

=
1
4

(ω+ ω̄)2 − 1
4

(ω − ω̄)2 =ωω̄.

Finally

F (θ(ω)) =
∫ ∞

0
eiωtdt = − ω̄

i(a2 + b2)
= − ω̄

iωω̄
= − 1

iω
=
i
ω
·

Thus

FSn(t) = F −1[FSn(ω)]

= F −1[ψSn(ω)
i
ω

]

=
i

2π

�
C

ψSn(ω)e−iωt

ω
dω ·

(2.10)

From (?) we have

P[Y (t) < n] = P(Sn > t) = 1− i
2π

�
C

[ψP (ω)]ne−iωt

ω
dω ·

From probability theory we know that

P[Y (t) = n] = P[Y (t) < n+ 1]−P[Y (t) < n]

=
1

2πi

�
C
e−iωt

[ψP (ω)]n

ω
dω − 1

2πi

�
C
e−iωt

[ψP (ω)]n+1

ω
dω

=
1

2πi

�
C
e−iωt

(ψP (ω)− 1)
ω

[ψP (ω)]ndω ·

The PGF GY (t)(p) of Y (t) is obtained by taking the geometric series expansion of [ψP (ω)]n.

Thus

GY (t)(p) =
i

2π

�
C
e−iωt

(1−ψP (ω))
ω(1− pψP (ω))

dω · (2.11)

We estimate the mean and variance by

E[Y (t)] = G′Yt (1) =
i

2π

�
C
e−iωt

(ψP (ω))
ω(1−ψP (ω))

dω, (2.12)

Var[Y (t)] = G′′Yt (1) + (G′Yt (1))− (G′Yt (1))2 (2.13)
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where

G′Yt (p) =
i

2π

�
C
e−iωt

ωψP (ω)(1−ψP (ω))
ω2(1−ψP (ω))2 dω ·

G′′Yt (1) =
i
π

�
C
e−iωt

(ψ2
P (ω))

ω(1−ψP (ω))2dω ·
(2.14)

To calculate the moments we need to simplify ψP (ω), [SS15] applies the expansion of the

form

ψP (ω) = 1 + iωm1P −
1
2
ω2m2P −

i
6
ω3m3P + · · · (2.15)

We consider the integrand of equations (2.12- 2.14) and apply the residue theorem to sim-

plify the mean and variance. From the equations of the mean and variance, we have the

roots at ω = 0 and ψP (ω) = 0. By the Laurent expansion we have

f (ω0) =
1

2πi

�
C

f (ω)
ω −ω0

dω · (2.16)

So �
C

f (ω)
ω

dω = 2πi · f (0) = 2πi ·
ψP (0)

1−ψP (0)
from equation (2.12), (2.17)

where

f (ω) =
e−iωtψP (ω)
1−ψP (ω)

· (2.18)

We observe, by definition

f ′(0) =
1

2πi

�
C

f (ω)
ω2 dω︸        ︷︷        ︸
=I

=
1

2πi

�
C

e−iωtψP (ω)
ω2(−im1P + 0.5ωm2P + · · · )

dw, (2.19)

so, I = 2πif ′(0).

Differentiating the integrand of equation (2.19) with the quotient rule w.r.t. ω and sub-
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stituting ω = 0, we obtain

d
dω

(
e−iωtψP (ω)

(−im1P + 0.5ωm2P + · · · )

)
=

(−im1P + 0.5ωm2P + · · · )[−ite−iωtψP (ω) + e−iωtψ′P (ω)]− [e−iωtψP (ω)][0.5m2P + · · · ]
(−im1P + 0.5ωm2P + · · · )2 ·

Substituting ω = 0,

=
(−im1P )[−itψP (0) +ψ′P (0)]−ψP (0)(0.5m2P + · · · )

(−im1P )2 . From (2.15),ψP (0) = 1 and ψ′P (0) = im1P

=
(−im1P )[−it + im1P ]− (0.5m2P + · · · )

(−im1P )2

=
t
m1P

+ 1− 0.5m2P + · · ·
(m1P )2

∴ E[Y (t)] =
t
m1P

+O(1) = λt +O(1), where λ = 1/E[P ].

(2.20)

Similarly,

Var[Y (t)] =
(m2P −m2

1P )t

m3
1P

+O(1) =
Var[P ]
E[P ]3 +O(1) = λ3Var[P ] +O(1)· (2.21)

It follows from equation (2.20) that the mean of Y (t) is given by

E[Y (t)] ∼ λP∆t, (2.22)

where λP = 1/E[P ], and P (t) is a non-negative r.v. giving the inter-arrival times.

The variance follows from equation (2.21)

Var[Y (t)] ∼ Var[P ]λ3
P∆t or Var[Y (t)] ∼ γPλP∆t (2.23)

where γP = Var[P ]λ2
P .

We return to fundamental buy orders moments, and we denote λB and γB in a similar man-

ner as λP and γP . So from equation (2.4) we have

E[Z] = λB∆tn̄, (2.24)

and from equation (2.5) we have

Var[Z] = λB∆t(γBn̄
2 + Var[N ]). (2.25)

It then follows from equations (2.24) that the expectation of total collection of buy orders

(MB) under fundamental trading is given by

E[MB] =MλB∆tn̄ (2.26)
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and standard deviation (sd) of (MB) follows from equation (2.25)

sd(MB) =M
√
λB∆t(γBn̄2 + Var[N ]) · (2.27)

We follow the same procedure with the fundamental sell (MS) orders and obtain an expected

value of

E[MS] =MλS∆tn̄, (2.28)

and a standard deviation of

sd(MS) =M
√
λS∆t(γS n̄2 + Var[N ]) · (2.29)

The net effect of fundamental trades is given by

MF =MB −MS · (2.30)

The mean of MF is given by

E[MF] =M(λB −λS)∆tn̄ · (2.31)

We assume that the fundamental buyers and sellers are trading based on different strategy,

so we assume independence. Hence, the variance of MF is given by

Var[MF] =M2∆t[λB(γBn̄
2 + Var[N ]) +λS(γS n̄

2 + Var[N ])] · (2.32)

We assume that the above parameters under fundamental trading are not functions of Xt.

Now we focus on technical traders, which we model in a similar style as for the fundamental

traders. We denote the arrival rates for buying and selling as µB and µS respectively, and ρ as

the correlation between arrival rates of buy and sell trades. The net effect of technical trades

is denoted by (MT ). Following the same procedure as above, the mean and the variance is

respectively given by

E[MT ] =M(µB −µS)∆tn̄T (2.33)

Var[MT ] =M2∆t(µBαT +µSβT − 2ρT
√
µBµSαT βT ) (2.34)

where

αT = γTB n̄
2
T + Var[NT ] and βT = γTS n̄

2
T + Var[NT ] ·

The buying and selling of stocks cause price changes which are described by the price im-

pact function. Let us suppose the current state of the market (Xt) is known at some t > 0,
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and it will change at time (t +∆t) by a quantity ∆tX = Xt+∆t −Xt. We define a log-return im-

pact function I (q) (which is non-decreasing), that is a function with I (0) = 0 (i.e. no orders

implies no price impact), such that the aggregate of buy and sell orders of both trades have

a log-return impact of the form

∆tX = I (∆tMF +∆tMT ) · (2.35)

The return impact function can be complicated2, in this dissertation we use a linear impact

function. For some fixed constant κ > 0, we write:

∆tX = κ × (∆tMF +∆tMT ) · (2.36)

The return impact function I is just a description of the order book [Sch15], and we assume

it is linear. By linearising the return impact function we enforce the Markov property, so

that the process {Xs|0 ≤ s ≤ t} is now represented by the current value of Xt. So we have

E[∆tMF] = µF∆t & Var(∆tMF) = σ2
F∆t and

E[∆tMT ] = −µT (Xt)∆t & Var(∆tMF) = σ2
T (Xt)∆t

(2.37)

The minus sign is included without any loss of in generality.

We assume that fundamental and technical traders are independent of each other. From

equations (2.37) and (2.31) we obtain a discrete-time SDE, and we approximate the noises

of the trade arrival models by two independent Brownian motions.

∆tX = κM([n̄(λB −λS)−µn̄TX]∆t + s1∆W
1
t + s2∆W

2
t ) (2.38)

where

s1 =

√
Var[MF]
∆tM2 , s2 =

√
Var[MT ]
∆tM2 · (2.39)

We re-write equation (2.38) as

∆tX = (µ1 −µ2Xt)∆t +Σ1∆tW
1 +Σ2∆tW

2

2The return impact function can be of the form I (x) = (κx)α with 0 < α < 1 or I (x) ∝ xα .
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where

α = κM

µ1 = αn̄(λB −λS)

µ2 = αµn̄T

Σ1 = αs1

Σ2 = αs2

A SDE is obtained from the equation above by taking limits as ∆t→ 0, replacing ∆t = tn+1−tn
by dt, ∆tW =Wt+∆t −Wt by dWt and ∆tX = Xt+∆t −Xt by dXt.

dXt = (µ1 −µ2Xt)dt +Σ1dW
1
t +Σ2dW

2
t

Xt = X0 +
∫ t

0
(µ1 −µ2Xs)ds+

∫ t

0
Σ1dW

1
s +

∫ t

0
Σ2dW

2
s ·

(2.40)

To complete the model we assume that the fundamental trading parameters are indepen-

dent of Xt, hence we assume these parameters to be constant over a single trading period.

However, they may change daily. Conversely, we assume technical trading parameters to be

dependent on Xt. The general hybrid model takes the form

dXt = (µ1 − f (Xt))dt + σ1dW
1
t + g(Xt)dW

2
t · (2.41)

In this dissertation, we consider an SDE of the form3

dXt = (µ1 −µ2Xt)dt + σ1dW
1
t + σ2XtdW

2
t , t > 0, X0 = x · (2.42)

In the SDE above we note the following, the parameters (µ1 and σ1 that are independent

of Xt) represent fundamental trades (Arithmetic Brownian motion), and the parameters (µ2

and σ2 that are dependent of Xt) represent technical trades (Geometric Brownian motion).

We reduce equation (2.42) to an SDE with a single noise term, see [Sch15, Chapter 5]. Let

ρ ∈ [−1,1] be the correlation between W 1
t and W 2

t (i.e ρ = Corr(W 1
t ,W

2
t )), then we re-write

the SDE for (Xt) as follows

dXt = (µ1 −µ2Xt)dt +
√
σ2

1 + σ2
2X

2
t + 2ρσ1σ2XtdWt , t > 0, X0 = x· (2.43)

The existence of a strong solution of the SDE (2.42) is guaranteed by the following theorem.

3Another interesting hybrid SDE is the Arithmetic-CIR model of the form dXt = (µ1 − µ2Xt)dt + σ1dW
1
t +

σ2
√
|Xt |dW 2

t , see [SS15, Sch15]
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Theorem 1 Existence and Uniqueness

Let (Xt) satisfy the following SDE

dXt = µ(Xt)dt + σ (Xt)dWt, t > 0, X0 = x·

Let µ(x), σ (x) : R→ R be functions satisfying the Lipschitz condition and a Hölder condition of

order α, α > 1/2 respectively, that there exist a constant K such that

|σ (x)− σ (y)| ≤ K |x − y|α ∀x,y ∈R·

Then the strong solution of the SDE (Xt) exists and is unique.

The proof of this theorem is given by [Kle05, Theorem 5.4].

Definition 1 A Lipschitz and a Hölder condition A function f satisfies a Hölder condition of

order α, 0 < α < 1, on [a,b] (R) if there is a constant K > 0, so that for all x,y ∈ [a,b]

|f (x)− f (y)| ≤ K |x − y|α ∀x,y ∈R·

A Lipschitz condition is a Hölder condition with α = 1,

|f (x)− f (y)| ≤ K |x − y| ∀x,y ∈R·

2.2 Explicit solution of the hybrid SDE

We give an explicit solution of the SDE (2.42). We introduce the integrating factor It

It = exp
[
− σ2W

2
t +

(
µ2 +

1
2
σ2

2

)
t

]
· (2.44)

By Itô’s lemma

dIt = It(µ2 + 0.5σ2
2 )dt + It(−σ2)dW 2

t +
1
2
Itσ

2
2dt

= (µ2 + σ2
2 )Itdt − σ2ItdW

2
t ·

(2.45)

We define a new random variable Vt = XtIt and apply Itô’s lemma on V (t), i.e.

dVt = XtdIt + ItdXt + dXtdIt

= Xt((µ2 + σ2
2 )Itdt − σ2ItdW

2
t ) + It((µ1 −µ2Xt)dt + σ1dW

1
t + σ2XtdW

2
t )

− ρσ1σ2Itdt − σ2
2 ItXtdt

= It((µ1 − ρσ1σ2)dt + σ1dW
1
t ) ·

(2.46)
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We integrate (2.46) using condition V0 = 0 = X0, and obtain

Vt =
∫ t

0
Is((µ1 − ρσ1σ2)ds+ σ1dW

1
s ) · (2.47)

So we obtain

Xt =
∫ t

0
(Is · I−1

t )((µ1 − ρσ1σ2)ds+ σ1dW
1
s ) (2.48)

where

(Is · I−1
t ) = exp

[
σ2(W 2

t −W 2
s ) + (µ2 +

1
2
σ2

2 )(s − t)
]
· (2.49)

Lastly, we define a time reversal u = t − s with the associated Brownian motions W̃i , and

finally, we have

Xt =
∫ t

0
((µ1 − ρσ1σ2)du + σ1dW̃

1
u )× exp

[
σ2W̃

2
u − (µ2 +

1
2
σ2

2 )u
]
· (2.50)

We re-write equation (2.50) in terms variable, ν = 1 + 2µ2

σ2
2

i.e. d.o.f

Xt =
∫ t

0
((µ1 − ρσ1σ2)du + σ1dW̃

1
u )× exp

[
σ2W̃

2
u −

ν
2
σ2

2u

]
· (2.51)

Figure 2.1: Simulating the hybrid Geometric model sample paths with X0 = 10,T = 1,σ1 =

0,σ2 = 0.3,ρ = 0.
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2.3 Dynamic moments of the hybrid SDE

We analyse the moment evolution of the hybrid SDE. We define

mk(t) = E[Xkt ], t ≥ 0, k ∈N (2.52)

and apply Itô’s lemma on Xkt .

dXkt = kXk−1
t dXt +

1
2
k(k − 1)Xk−2

t (dXt)
2

= kXk−1
t ((µ1 −µ2Xt)dt + σ1dW

1
t + σ2XtdW

2
t )

+
1
2
k(k − 1)Xk−2

t (σ2
1dt + σ2

2X
2
t dt + 2ρσ1σ2Xtdt),

so we have

dXkt
dt

= kµ1X
k−1
t − kµ2X

k
t +

1
2
k(k − 1)σ2

1X
k−2
t +

1
2
k(k − 1)σ2

2X
k
t + k(k − 1)ρσ1σ2X

k−1
t · (2.53)

Taking expectation, we obtain

dmk(t)
dt

+ (kµ2 −
1
2
k(k −1)σ2

2 )mk(t) =
1
2
k(k −1)σ2

1mk−2(t) + (kµ1 + k(k −1)ρσ1σ2)mk−1(t) (2.54)

with m0 = 1 and mk(0) = 0, k ≥ 1.

For the mean we set k = 1. So
dm1(t)
dt

+µ2m1(t) = µ1 · (2.55)

To find the explicit formula for the mean, we solve the ODE (2.55). We multiply equation

(2.55) by the integrating factor eµ2t, so we have

eµ2t
dm1(t)
dt

+µ2m1e
µ2t = µ1e

µ2t · (2.56)

We solve equation (2.56), and obtain

E[Xt] =m1 =
µ1

µ2
(1− e−µ2t) · (2.57)

The mean settles down to µ1/µ2 if µ2 is strictly positive and grows exponentially if negative.

For the variance, we consider the special case where ρ = 0 = µ1 (we will explore this special

in detail later on).

From equation (2.51) with ρ = 0 = µ1 we have

Xt =
∫ t

0
σ1dW̃1ue

(σ2W̃2u− ν2σ
2
2u), (2.58)
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so we calculate

E[X2
t ] = σ2

1

∫ t

0
E(e2(σ2W̃2u− ν2σ

2
2u))du

= σ2
1

∫ t

0
e−νσ

2
2ue2σ2

2udu using the fact that E[eαWt ] = e
α2
2 t,

hence the variance is given by

Var(Xt) =
σ2

1

σ2
2 (ν − 2)

[1− e−σ
2
2 (ν−2)t] · (2.59)

In general, for the moments we have

m(x) = E
x[Xt] =

µ1

µ2
+
(
x −

µ1

µ2

)
e−µ2t,

assuming that ν > 2

E
x[X2

t ] = h(x) + (x2 − h(x))e−(2µ2−σ2
2 )t

where h(x) = 2µ2
1/µ2+σ2

1
2µ2−σ2

2
− 2(µ1−µ2x)

µ2−σ2
2

, see [Sch15, Chapter 5].

If µ2 > σ
2
2 /2 the market settles down otherwise it explodes exponentially, which gives rise

to large price movements so that the 25σ (extreme events), or worse events are significantly

probable.
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Figure 2.2: Gaussian density function with k − sigma events.
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Let us assume that, losses are normally distributed and we are interested in the probability

of a 25σ or worse events. Following the work of [DCHW08]. we first consider a 2σ event

(i.e. 2 standard deviations or more away from the mean), the probability of such event un-

der the standard Gaussian density function is approximately 2.275%. We expect to have a

2σ loss event on one trading day4 out of 1/2.275%=43.96 (i.e. approximately one day out of

44 days). Let us now assume that losses obey the Student-t distribution with 4 d.o.f. Under

the Student-t distribution, the probability of a 2σ event is approximately 26.52%, we expect

to see such event once out of 4 trading days. In the following table, we estimate the proba-

bilities for 3,4 and 5 sigma events.

Number of sigma event
Probability of such event Expected occurrence (days)

Gaussian Student-t Gaussian Student-t

2 0.02275 0.26517 43.96 3.77

3 0.00135 0.07877 740.76 12.69

4 3.20455×10−5 0.02683 31205.61 37.27

5 2.98336×10−6 0.01059 3351920.30 94.35

Table 2.1: Various sigma events and their probabilities, under the Gaussian and the

Student-t (4 d.o.f) distributions.

We observe as the number of sigma events gets bigger their respective probabilities de-

cline. In the Gaussian distribution, the probabilities decrease significantly compared to the

Student-t distribution. This implies that extreme movements are more likely to occur in the

Student-t distribution, other than in the Gaussian distribution. We now look at the famous

quote by the CFO of Goldman Sachs David Vinar when he said, “ We were seeing things that

were 25-standard deviation moves, several days in a row” after they suffered huge losses.

We are interested in the question: how likely is a 25σ event? Following the same calcu-

lations, as in Table 2.1, the probability of a 25σ or worse event is 3.057×10−138 in the Gaus-

sian distribution. We expect to have a 25σ event one trading day out of 1/3.057 × 10−138 =

3.057 × 10136 days. Under the Student-t distribution with 4 d.o.f the probability of a 25σ

event is 4.83× 10−6, which we expect to see in once in 2.06× 105 trading days.

4We assume that there are 250 trading days in a year.
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2.4 Chapter Summary

In this chapter, we introduced the Arithmetic-Geometric hybrid Brownian motion model,

that was developed by [SS15]. The model is based on two types of market participants

namely, the fundamental and technical traders. The fundamental traders trade indepen-

dently of the current value of (Xt), while technical traders trade based on the historical per-

formance of (Xt). We derived the SDE of the model in equation (2.42), where the Arithmetic

Brownian motion part is related to the fundamental traders, and the Geometric Brownian

motion part is related to the technical traders. The model has five parameters σ1,σ2,µ1,µ2

and ρ where, σ1 is the fundamental volatility related to the economy, σ2 is the technical

volatility, µ1 and µ2 is the fundamental and technical drift respectively and ρ represent

the relationship between W 1
t and W 2

t . In Section 2.2 we explicitly derived the solution of

the SDE, and in Section 2.3 we derived the dynamic moments of the SDE. In the next two

chapters, we use this model to derive fat-tailed distributions.

38



Chapter 3

Probability Density Distributions

In this chapter, we first derive the quantilised Fokker-Planck equation (QFPE) related to

the SDE in equation (3.1), following the work of [SS08]. We use the QFPE to derive proba-

bility distributions from an SDE. In simple terms, a quantile function Q(·) of a probability

distribution, is the inverse of its CDF (F), provided that F is continuous and monotonic

increasing, see [Csö83].

Definition 2 Quantile function

Let X be a random variable on a probability space (Ω,F ,P), with a cumulative distribution func-

tion

F(x) = P{ω ∈ Ω : X(ω ≤ x)},x ∈ R. A quantile function is defined as Q(u) = F−1(u) = inf{x :

F(x) = u} for 0 ≤ u ≤ 1 and F is continuous, i.e. F(Q(u)) = u ∈ [0,1].

3.1 The Quantilised Fokker-Planck Equation

We analyse a time-dependent quantile function, where (Xt) is a stochastic process defined

as

dXt = µ(t,Xt)dt +Σ(t,Xt)dWt, (3.1)

where µ and Σ are deterministic functions of X and t. We define f (x, t) to be a PDF consis-

tent with equation (3.1). Let Q(u,t) denote a quantile function associated with the SDE in

equation (3.1), where 0 ≤ u ≤ 1.
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The quantile function is denoted by the integral condition:

F(Q(u,t), t) =
∫ Q(u,t)

−∞
f (x, t)dx = u · (3.2)

Differentiating equation (3.2) with respect to (w.r.t.) u, we obtain

f (Q(u,t), t)
∂Q(u,t)
∂u

= 1 · (3.3)

We differentiate equation (3.3) and obtain,

∂f (Q(u,t), t)
∂Q

(
∂Q(u,t)
∂u

)2

+ f (Q(u,t), t)
∂2Q(u,t)
∂u2 = 0 · (3.4)

We re-write equation (3.4) as

∂2Q(u,t)
∂u2 = −

∂ log(f (Q(u,t), t))
∂Q

(
∂Q(u,t)
∂u

)2

· (3.5)

Since the quantile function is time-dependent, we go back to equation (3.2) and differentiate

it w.r.t. t, and we obtain

f (Q(u,t), t)
∂Q(u,t)
∂t

+
∫ Q(u,t)

−∞

∂f (x, t)
∂t

dx = 0 · (3.6)

By equation (3.3), we re-write equation (3.6) as follows

∂Q(u,t)
∂t

= −∂Q
∂u

∫ Q(u,t)

−∞

∂f (x, t)
∂t

dx · (3.7)

We apply the Fokker-Planck equation1 applied to equation (3.1) which gives,

∂f (x, t)
∂t

=
∂
∂x

[
−µ(xt, t)f (xt, t) +

1
2
∂
∂x

(Σ2(xt, t)f (xt, t))
]
· (3.8)

We substitute equation (3.8) into equation (3.7) and integrate to obtain

∂Q(u,t)
∂t

= −∂Q
∂u

[
−µ(Q,t)f (Q,t) +

1
2

(
Σ2(Q,t)

∂f

∂Q
+ f

∂Σ2(Q,t)
∂Q

)]
· (3.9)

We use equations (3.3) and (3.4) to completely eliminate f and its derivative, and obtain

∂Q
∂t

= µ(Q,t)− 1
2
∂Σ2(Q,t)
∂Q

+
Σ2(Q,t)

2

(
∂Q
∂u

)−2
∂2Q

∂u2 · (3.10)

Equation (3.10) is known as the quantilised Fokker-Planck equation (QFPE) associated with

the SDE in equation (3.1). This is the second order non-linear PDE.

1The Fokker-Planck equation is a PDE that describes the time evolution of the probability density func-

tion of a stochastic process, see [Bjö09, Proposition 5.12].
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In the next section, we apply the QFPE to derive fat-tailed distributions namely, the Pearson

Type IV and the Student-t distributions under equilibrium conditions i.e. when equation

(3.10) is equal to zero.

1
2
∂Σ2(Q,t)
∂Q

−µ(Q,t) =
Σ2(Q,t)

2

(
∂Q
∂u

)−2
∂2Q

∂u2 · (3.11)

Comparing equation (2.43) with equation (3.1) we observe that,

µ = (µ1 −µ2Q) and Σ2 = σ2
1 + σ2

2Q
2 + 2ρσ1σ2Q, (3.12)

note that ∂Σ
2

∂Q = 2σ2
2Q+ 2ρσ1σ2.

Plugging equation (3.12) into equation (3.11) we obtain

∂2Q

∂u2

(
∂Q
∂u

)−2

=
2[(ρσ1σ2 −µ1) + (σ2

2 +µ2)Q]

(σ2
1 + σ2

2Q
2 + 2ρσ1σ2Q)

· (3.13)

In order to obtain equilibrium PDF’s we need to solve equation (3.13), but before we do that,

we study the Pearson family distributions.

3.2 Pearson Family Distributions

The Pearson distribution types are obtained by considering a PDF f such that,

d
dx

(logf ) =
a+ x −λ

B0 +B1(x −λ) +B2(x −λ)2 (3.14)

for various constants a,λ,B0,B1 and B2, see [Pea94, KSO48].
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Figure 3.1: The diagram of the Pearson curve family (downloaded from http://stats.

stackexchange.com/questions/236118/fitting-distribution-for-data-in-r)

Figure (3.1) represents the Pearson family curve for each range of skewness and kurtosis.

The x-axis is β2 = kurtosis and β1 = squared skewness. Type 0: Normal distribution, Type

I: Beta distribution, Type II: Student-t distribution, Type III: Gamma distribution, Type IV:

Not related to any standard distribution, Type V: Inverse gamma distribution, Type VI: F-

distribution and Type VII: Student’s t-distribution/t-location-scale distribution.

Remark: From Figure (3.1) we observe that the Pearson Type IV distribution is suitable

for a financial data that exhibits a high excess of kurtosis and a moderate skewness. Em-

pirical studies of financial data indicate that a very high excess kurtosis but only moderate

skewness is usually observed, see [Pea94, Man63, SS15]. Therefore, we expect the Pearson

type IV distribution to model our financial data well, see [BM+12, SS15, SMNZ12].

In equation (3.14) the parameter a determines a stationary point. We set a = 0, set X = x−λ,

see [KSO48]. So we re-write equation (3.14) as

d
dX

(logf ) =
X

B0 +B1X +B2X2 · (3.15)

The explicit solution of the density function f is found by integrating equation (3.15),

[Pea94] distinguish three main types of distributions according to the roots of the denom-

inator on the right-hand side of equation (3.15). We have real roots of opposite sign, real

roots of the same sign and imaginary roots. Our interest is the imaginary roots, which will

lead us to the Pearson type IV distribution, other cases will be investigated elsewhere.
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So we consider a quadratic equation

h(X) = B0 +B1X +B2X
2. (3.16)

The roots of equation (3.16) are given by

h(X) =
−B1 ±

√
B2

1 − 4B0B2

2B2
for B2 > 0·

We have imaginary roots if B2
1 − 4B0B2 < 0, so we assume that 4B0B2 −B2

1 > 0 and B2 , 0. We

complete the square and transform equation (3.16) into

h(X) = B2

{(
X +

B1

2B2

)2

+
B0

B2
−
B2

1

4B2
2

}
· (3.17)

Going back to equation (3.15) we have

d
dX

(logf ) =
X

B2

{(
X + B1

2B2

)2

+ B0
B2
− B2

1
4B2

2

} =
X

B2

{
(X +γ)2 + δ2

} , (3.18)

where γ = B1
2B2

and δ2 = B0
B2
− B2

1
4B2

2
·

We integrate equation (3.18) to obtain the explicit solution of the density function f .∫
X

B2

{
(X +γ)2 + δ2

}dX =
1
B2

∫
X{

(X +γ)2 + δ2

}dX

=
1
B2

∫
(u −γ)
δ2 +u2du by substituting u = (X +γ) ∴ du = dX

=
1
B2

∫
u

δ2 +u2du −
1
B2

∫
γ

δ2 +u2du

∫
u

δ2 +u2du =
1
2

ln |δ2 +u2|+ k1 and
∫

γ

δ2 +u2du =
γ arctan(u/δ)

δ
+ k2

so by substituting back u = (X +γ) and simplify we obtain

=
1
2 ln |(X +γ)2 + δ2| − γ arctan(X+γ

δ )
δ

B2
+ k, where k = k1 + k2 ·
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Hence,

logf = logk +
1

2B2
log

{
(X +γ)2 + δ2

}
−
γ

B2δ
arctan

(
X +γ
δ

)
· (3.19)

Therefore,

f (X) = k
[
(X +γ)2 + δ2

] 1
2B2

exp
[
−
γ

B2δ
arctan

(
X +γ
δ

)]
· (3.20)

Equation (3.20) is the Pearson Type IV distribution that is characterised by five parameters

(λ,a,ν,m and k) . The derivation of the Pearson type IV was adopted from [Pea94] and

[KSO48, Chapter 6].

Parameter Definition

λ : Translation from the centre of the distribution function.

a : Scale of the distribution function (always > 0).

ν : Measure of skewness.

m : Shape factor (always > 0).

k : Normalisation factor.
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Figure 3.2: Illustrates the Pearson-IV distribution function demonstrating the effect of

skewness and kurtosis, with parameters λ = 10, a = 2.
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3.2.1 The Pearson Type IV Distribution PDF

Equation (3.20) is usually written in the form

f (x) = k
[
1 +

(
x −λ
a

)2]−m
exp

[
− ν arctan

(
x −λ
a

)]
(3.21)

where

m =
1

2B2
, ν =

γ

2B2δ
and a = δ.

Unfortunately, both [Pea94, KSO48] do not show how to find the constant k. The derivation

of the constant k is done by [Hei04], where he shows how to calculate the normalisation

factor k. It is given by

k =
22m−2|Γ (m+ iν/2)|2

πaΓ (2m− 1)
=

Γ (m)
√
πaΓ (m− 1/2)

∣∣∣∣∣Γ (m+ iν/2)
Γ (m)

∣∣∣∣∣2 · (3.22)

Now it becomes an easy task to solve (3.13), we transform it using equation (3.5) to

d
dQ

(logf (Q)) = −
2[(ρσ1σ2 −µ1) + (σ2

2 +µ2)Q]

(σ2
1 + σ2

2Q
2 + 2ρσ1σ2Q)

· (3.23)

Comparing equation (3.23) with equation (3.15) we read-off

B0 = σ2
1 , B1 = 2ρσ1σ2 and B2 = σ2

2 .

To obtain parameters that are consistent with [SS15], we need to calculate γ,δ,m and ν, note

they write ν2 in place for ν. So we have that

γ =
B1

2B2
=

2ρσ1σ2

2σ2
2

∴ λ = −ρσ1

σ2
·

δ =

√
B0

B2
−
B2

1

4B2
2

=

√
σ2

1

σ2
2

−
4ρ2σ2

1σ
2
2

4σ4
2

∴ a =
σ1

σ2

√
1− ρ2·

ν = 1 + 2
µ2

σ2
2

(degress of freedom)·

m =
1
2

(ν + 1) = 1 +
µ2

σ2
2

and,

ν2 =
2(µ1σ2 + ρσ1µ2)

σ1σ
2
2

√
1− ρ2

·

3.2.2 The Pearson Type IV Distribution Moments

After we have derived the PDF for the Pearson type IV distribution, the next step is to find

the moments. We are mainly interested in finding the third and fourth moments, which

45



measure the skewness and kurtosis of a PDF respectively. We re-write equation (3.21) in a

simpler form as,

y = y0

[
1 +

(
x
a

)2]−m
exp

[
− ν arctan

(
x
a

)]
· (3.24)

Let x = a tan(θ) ∴ tan(θ) = x
a ∴ θ = tan−1(xa ). Hence

y = y0
1

(1 + tan2(θ))m
e−νθ

= y0
1

sec2m(θ)
e−νθ

= y0 cos2m(θ)e−νθ ·

Changing the limits of integration such that x = tan−1(∞) = π
2 and x = tan−1(−∞) = −π2 . We

define the moments

µn =
∫ ∞
−∞
y0 cos2m(θ)e−νθxndx

=
∫ ∞
−∞
y0 cos2m(θ)e−νθan tann(θ)asec2(θ)dθ where dx = asec2(θ)dθ

= y0a
n+1

∫ π/2

−π/2
cos2m−n−2(θ)sinn(θ)e−νθdθ,

= y0a
n+1

∫ π/2

−π/2
cosr−n(θ)sinn(θ)e−νθdθ where r = 2m− 2.

Hence integrating by parts with cosr−n(θ)sinn(θ) as one term, we obtain∫
udv = uv −

∫
vdu where u = e−νθ and dv = cosr−n(θ)sinn(θ).

µn =
y0a

n+1

r −n+ 1

{
(n−1)

∫ π/2

−π/2
cosr−n+2(θ)sinn−2(θ)e−νθdθ−ν

∫ π/2

−π/2
cosr−n+1(θ)sinn−1(θ)e−νθdθ

}
·

(3.25)

Hence,

µn =
a

r −n+ 1

{
(n− 1)aµn−2 − νµn−1

}
provided r > n− 1 with µ0 = 1, µ1 = 0 · (3.26)

So we have:

The mean

µ1 = λ− aν
r

(m > 1) · (3.27)

The variance

µ2 =
a2

r2(r − 1)
(r2 + ν2) (m > 3/2) · (3.28)
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The third moment

µ3 = − 4a3ν(r2 + ν2)
r3(r − 1)(r − 2)

(m > 2) · (3.29)

The fourth moment

µ4 =
3a4(r2 + ν2)[(r + 6)(r2 + ν2)− 8r2]

r4(r − 1)(r − 2)(r − 3)
(m > 5/2) · (3.30)

Equations (3.27 - 3.30) are used to fit financial data to the Pearson type IV distribution, by

using the method of moments, see [BCY08, SZ13].

3.3 The Student-t Distribution PDF

We consider the special case when µ1 = 0 = ρ in the SDE (2.43), so we obtain the SDE

dXt = −µ2Xtdt +
√
σ2

1 + σ2
2X

2
t dWt, (3.31)

as before we obtain the quantile ODE from equation (3.13)

∂2Q

∂u2

(
∂Q
∂u

)−2

=
2(σ2

2 +µ2)Q

(σ2
1 + σ2

2Q
2)

(3.32)

where

a =
σ1

σ2

λ = 0

ν2 = 0

k =
Γ (ν+1

2 )

a
√
πΓ (ν2 )

m and ν remain the same as in the Pearson Type IV distribution. So we obtain the Student-t

PDF

f (x) =
Γ
(
ν+1

2

)
√
aπΓ (ν2 )

(
1 + x2/a

)− ν+1
2 . (3.33)

3.3.1 The Student-t Distribution Moments

We do not prove the following results since they are very well-known. See for example

[Sha11] where he derives the moments from the first principle. The expected value and the
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skewness of the Student-t distribution are equal to zero (i.e. just like a Normal distribution).

The variance is given by ν
ν−2 if ν > 2, and the excess kurtosis is given by 6

ν−4 if ν > 4.

We have shown above that under equilibrium conditions we are able to derive the Pear-

son Type IV and the Student-t distributions from a simple SDE model. However, it is not

common for a market to remain at equilibrium for a long period especially during finan-

cial panics, see [SS15, Sch15]. Thus in the next section, we explore non-equilibrium density

functions, from the SDE point of view and the full Fokker-Planck equation following the

work by [SS15].

3.4 Non-equilibrium Density Function: A Special Case

In this section, we next analyse the full Fokker-Planck equation on the general SDE (2.43)

to obtain the density function. We have

∂f (x, t)
∂t

=
∂
∂x

[
− (µ1 −µ2x)f (x, t) +

1
2
∂
∂x

[(σ2
1 + σ2

2 x
2 + 2ρσ1σ2x)f (x, t)]

]
(3.34)

with the initial condition f (x,0) = δ(x) ,where δ(x) is the Dirac delta function. We state the

property of the δ(x) function, see [AS64] for proof,

∫ b

a
ϕ(x)δ(x)dx =



ϕ(0) if a < 0 < b

0 if 0 < [a,b]
1
2ϕ(0+) if a = 0
1
2ϕ(0−) if b = 0

We introduce the Laplace transform w.r.t. time, so we define

f̃ (x,s) =
∫ ∞

0
f (x, t)e−stdt · (3.35)

By the definition of Laplace transform we have,

sf̃ − δ(x,0) =
∂
∂x

[
− (µ1 −µ2x)f̃ +

1
2
∂
∂x

[(σ2
1 + σ2

2 x
2 + 2ρσ1σ2x)f̃ ]

]
· (3.36)

We consider two independent solutions for equation (3.36), where x > 0 and x < 0

sf̃ =
∂
∂x

[
− (µ1 −µ2x)f̃ +

1
2
∂
∂x

[(σ2
1 + σ2

2 x
2 + 2ρσ1σ2x)f̃ ]

]
· (3.37)
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such that f̃ is continuous at x = 0 and differentiable. Integrating equation (3.36) with limits

of −a to a and setting a→ 0 we have∫ a

−a
(sf̃ − δ(x,0))dx =

∫ a

−a

∂
∂x

[
− (µ1 −µ2x)f̃ +

1
2
∂
∂x

[(σ2
1 + σ2

2 x
2 + 2ρσ1σ2x)f̃ ]

]
dx

∫ a

−a
sf̃ (x,s)dx→ 0 and

∫ a

−a
δ(x,0)dx = 1 ·

So we have the condition about zero

−1 =
σ2

1

2

(
∂f̃

∂x
(0+, s)−

∂f̃

∂x
(0−, s)

)
⇒
∂f̃

∂x
(0+, s)−

∂f̃

∂x
(0−, s) = − 2

σ2
1

· (3.38)

We first consider the case where σ2 = 0 = µ2 in equation (3.37),

sf̃ =
∂
∂x

[−µ1f̃ +
1
2
∂
∂x

(σ2
1 f̃ )]

=
∂
∂x

[−µ1f̃ +
1
2
σ2

1 f̃
′]

= −µ1f̃
′ +

1
2
σ2

1 f̃
′′·

So we solve the ODE
1
2
σ2

1 f̃
′′ −µ1f̃

′ − sf̃ = 0 (3.39)

with the roots:
µ1

σ2
1

±

√
µ2

1 + 2sσ2
1

σ2
1

and the junction condition at zero we obtain

f̃ (x,s) =
eµ1x/σ

2
1√

µ2
1 + 2sσ2

1


exp

[
− x
σ2

1

√
µ2

1 + 2sσ2
1

]
if x > 0

exp
[

+ x
σ2

1

√
µ2

1 + 2sσ2
1

]
if x < 0

Inversion of the two cases2 leads to the Gaussian density function, i.e. f (x, t) = L−1{f̃ (x,s)}

f (x, t) =
1√

2πσ2
1 t

exp[−(x −µ1t)
2/(2σ2

1 t)] · (3.40)

We next consider a very interesting case when ρ = 0 = µ1.

sf̃ =
∂
∂x

[
µ2xf̃ +

1
2
∂
∂x

(σ2
1 f̃ + σ2

2 x
2f̃ )

]
= µ2f̃ +µ2xf̃

′ +
σ2

1

2
f̃ ′′ + σ2

2 f̃ + σ2
2 xf̃

′ + σ2
2 xf̃

′ +
σ2

2

2
x2f̃ ′′

2Using the identity 29.3.84 in [AS64].
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∴
1
2

(σ2
1 + σ2

2 x
2)f̃ ′′(x,s) + (µ2 + 2σ2

2 )xf̃ ′(x,s) + (µ2 + σ2
2 − s)f̃ (x,s) = 0· (3.41)

Equation (3.41) is transformed by setting

f̃ (x,s) = (σ2
1 + σ2

2 x
2)−(1+µ2/σ

2
2 )g(x,s), (3.42)

computing f̃ ′(x,s) and f̃ ′′(x,s) on equation (3.42) and simplify, then the ODE (in terms of

g(x,s)) is given by

(σ2
1 + σ2

2 x
2)g ′′(x,s)− 2µ2xg

′(x,s)− 2sg(x,s) = 0· (3.43)

We solve the ODE by using the change of independent variables, we introduce z(x) such that

dz
dx

=
1√

σ2
1 + σ2

2 x
2
, (3.44)

where

z(x) =
1
σ2

sinh−1
(
σ2x
σ1

)
· (3.45)

Re-writing equation (3.43) in terms of z, we have

d2g

dz2 − (2µ2 + σ2
2 )

1
σ2

tanh(σ2z)
dg

dz
− 2sg = 0, (3.46)

expressing equation (3.46) using ν = 1 + 2µ2/σ
2
2 , we obtain

d2g

dz2 − νσ2 tanh(σ2z)
dg

dz
− 2sg = 0· (3.47)

We consider the case when ν = 0, then we solve equation (3.47) (in terms of g) together with

equation (3.42) to obtain

f̃ (x,s) =
1√

σ2
1 + σ2

2 x
2

1
√

2s

 e−
√

2sz(x) if x,z > 0

e+
√

2sz(x) if x,z < 0

The inversion of the two cases3 leads to the Bougerol identity function, i.e. f (x, t) = L−1{f̃ (x,s)}

f (x, t) =
1√

2πt(σ2
1 + σ2

2 x
2)

exp
{
−1

2σ2
2 t

[sinh−1(σ2x/σ1)]2
}
· (3.48)

3Using the identity 29.3.84 in [AS64].
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Figure 3.3: Gaussian vs Bougerol identity PDFs, with σ1 = σ2 = 1 and t = 1/252,1/2,1 and

3 respectively. For small t the Gaussian and the Bougerol PDFs look identical, however as t

gets large they differ considerably.

In Figure (3.4) we plot the log-PDF’s for the Gaussian (3.40), Student-t (3.33) with 4 d.o.f,

Pearson-IV (3.21) and the special case hybrid model (Bougerol) in equation (3.48) (for pa-

rameters σ1 = σ2 = 0.5 and t = 2). We observe that as time passes the Bougerol, Student-t

and Pearson-IV distributions spreads out more in a manner that is consistent with the phe-

nomenon of variance explosion [SS15].
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Figure 3.4: Illustrates the Log-PDF’s for the Gaussian, Student-t (4 d.o.f), Bougerol identity

and Pearson-IV with a mean = 0, sigma = 1.5, skewness = 0.7 and a kurtosis = 10.

3.5 Non-equilibrium Density Function: A General Case

In a special case we solved the ODE in equation (3.47) for ν = 0, in a general case we solve

the ODE for ν ≥ 0. From equations (3.45 - 3.47), we change the independent variable to

u = sinh−1(σ2x/σ1) = σ2z(x)· (3.49)

We set k = 2s/σ2
2 and use the identity tanh(u) =

eu − e−u

eu + e−u
to re-write equation (3.47) as follows

(eu + e−u)
(
d2g

du2 − kg(u)
)

= ν(eu − e−u)
dg

du
· (3.50)

We simplify equation (3.50) by setting

w = e−u =
(
σ2x
σ1

+

√
1 +

σ2
2 x

2

σ2
1

)−1

· (3.51)

So we have u = − logw and d/du = −w d/dw, and the ODE in equation (3.50) can be written

as follows (
1
w

+w
)[
w2 dg

2

dw2 +w
dg

dw
− kg(w)

]
= ν

(
w − 1

w

)
w
dg

dw
· (3.52)
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To solve the ODE in equation (3.52) we seek the Frobenius power series solution, which is

written in the form

g(w) =
∞∑
n=0

anw
n+r (a0 , 0), r > 0 (3.53)

then we compute

dg

dw
=
∞∑
n=0

an(n+ r)wn+r−1, r > 1 (3.54)

dg2

dw2 =
∞∑
n=0

an(n+ r)(n+ r − 1)wn+r−2, r > 2 (3.55)

Plugging equations (3.53 - 3.55) in equation (3.52), we obtain(
1
w

+w
)[
w2

∞∑
n=0

an(n+ r)(n+ r − 1)wn+r−2 +w
∞∑
n=0

an(n+ r)wn+r−1 − k
∞∑
n=0

anw
n+r

]
= ν

(
w2 − 1

) ∞∑
n=0

an(n+ r)wn+r−1 ·

Grouping the terms:

wr−1 : (r2 + νr − k)a0 = 0 ∴ r2 + νr − k = 0 since a0 , 0. So we have

r =

√
ν2

4
+ k − ν

2
(3.56)

wr : (r2 + 2r + 1− k + ν(1 + r))︸                          ︷︷                          ︸
?

a1 = 0 ∴ a1 = 0 since (?) is non-zero for r > 0 in equation (3.56).

Since a1 = 0 we ignore all the odd terms in the general sequence.

wr+1 : a2(4r + 4 + 2ν) = 2νra0, so we obtain the following recurrence relation

an+2 = −an
(n− ν)(n+ 2r)

(n+ 2)(n+ 2 + 2r + ν)
, n = 0,2,4, · · · (3.57)

We compute the coefficients an for n = 0,2,4, · · ·

For n = 0

a2 =
a0νr

(2 + 2r + ν)
· (3.58)

For n = 2

a4 = −a2(2− ν)(2 + 2r)
4(4 + 2r + ν)

= − a0νr(2 + 2r)(2− ν)
4(2 + 2r + ν)(4 + 2r + ν)

(3.59)
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and so on. So we have

g(w) = wr(a0w
0 + a2w

2 + a4w
4 + · · · )

= a0w
r

(
1 +

νr
(2 + 2r + ν)

w2 − νr(2 + 2r)(2− ν)
4(2 + 2r + ν)(4 + 2r + ν)

w4 + · · ·
)
·

(3.60)

[SS15] show that we can write equation (3.60) in a compact form using the hypergeometric

function. So we write equation (3.60) as follows,

g(w) = a0w
r
2F1(r, (−ν/2);r + (ν/2) + 1;−w2) · (3.61)

The Gauss hypergeometric series is defined as follows

2F1(a,b;c;z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (3.62)

where (a)n, (b)n and (c)n are defined by the Pochhammer symbol. The Pochhammer symbol

(α)n is defined as

(α)n = α(α + 1)(α + 2) · · · (α +n− 1) where (α)0 ≡ 1 and n is a positive integer.

=
Γ (α +n)
Γ (α)

·
(3.63)

In equation (3.61) we have a = r, b = −ν/2, c = r+(ν/2)+1 and z = −w2. So the hypergeometric

series in equation (3.61) is given by

2F1(r, (−ν/2);r + (ν/2) + 1;−w2) =
∞∑
n=0

(r)n(−ν/2)n
(r + (ν/2) + 1)n

(−w2)n

n!

= 1 +
r(ν/2)

(r + (ν/2) + 1)
w2 − r(r + 1)(−ν/2)(−ν/2 + 1)

(r + ν/2 + 1)(r + ν/2 + 2)
w4

2
+ · · ·

= 1 +
νr

(2r + ν + 2)
w2 − νr(2r + 2)(2− ν)

4(2r + ν + 2)(2r + ν + 4)
w4 + · · ·

(3.64)

Clearly equation (3.61) is the same as equation (3.60).

We re-write equation (3.62) using equation (3.63) as follows

2F1(a,b;c;z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
=

Γ (c)
Γ (a)Γ (b)

∞∑
n=0

Γ (a+n)Γ (b+n)
Γ (c+n)

zn

n!
· (3.65)

The hypergeometric function was first introduced by John Wallis in 1655, which was further

studied by, Gauss (1812), Kummer (1836), Reimann (1857) and Thomae (1879). Hypergeo-

metric functions are special functions which arise from a solution of ODE’s, see [Sla].
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If a = 1 and b = c in equation (3.65), then the hypergeometric series is reduced to a geo-

metric series.

To complete our solution we determine a0, which is given by

a0 =
σν1

σ2Ψ (ν,r)
(3.66)

where

Ψ (ν,r) =
d
dw

[
wr2F1(r,−(ν/2);r + (ν/2) + 1;−w2)

]∣∣∣∣∣
w=1
· (3.67)

Using the following identities from [AS64].

2F1(a,b;a− b+ 1;−1) = 2−a
√
π

Γ (1 + a− b)
Γ (1 + (a/2)− b)(Γ (1/2 + (a/2)))

for (1 + a− b , 0,−1,−2, · · · )

(3.68)

2F1(a,b;a− b+ 2;−1) = 2−a
√
π(b − 1)−1Γ (a− b+ 2) × (3.69)[

1
Γ (a/2)Γ (3/2 + (a/2)− b)

− 1
Γ (1/2 + (a/2))Γ (a+ (a/2)− b)

]
for (a− b+ 2 , 0,−1,−2, · · · )

so with a = r and b = −ν/2 we have

Ψ (ν,r) =
21−r√πΓ (r + (ν/2 + 1))
Γ (r/2)Γ (0.5(r + ν + 1))

· (3.70)

So the Laplace transform for the general case is given by

f̃ (x,s) =

{
σν1 2r−1wrΓ (r/2)Γ (0.5(r + ν + 1))× 2F1(r,−(ν/2);r + (ν/2) + 1;−w2)

}
√
πσ2Γ (r + (ν/2) + 1)(σ2

1 + σ2
2 x

2)0.5(ν+1)
· (3.71)

To obtain a PDF for the general case we need to apply the Laplace inverse transform on

equation (3.71) (which is difficult).

We test the general case by substituting values for ν, where ν is an even integer. We start

with ν = 0 (in equation 3.71) to obtain the special case Laplace transform. We obtain the

following

f̃ (x,s) =
2r−1wrΓ (r/2)Γ (0.5(r + 1)× 2F1(r,0;r + 1;−1))

σ2
√
πΓ (r + 1)

√
σ2

1 + σ2
2 x

2

=
wrΓ (r/2)

2σ2Γ (r + 1)
√
σ2

1 + σ2
2 x

2
using the identity in equation (3.68) .
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Using the gamma property Γ (α) = (α − 1)Γ (α − 1) for α > 0, we obtain

⇒ f̃ (x,s) =
wr

rσ2

√
σ2

1 + σ2
2 x

2
(3.72)

where

k =
2s

σ2
2

, r =
√
k =

√
2s

σ2
2

=

√
2s
σ2

w = e−u ∴ wr = e−ur = e−
√

2sz(x) ·

Equation (3.72) is the same as the one we obtained for a special case above.

Similarly for ν = 2

f̃ (x,s) =
σ2

1

2σ2(σ2
1 + σ2

2 x
2)3/2

(
wr

r
+
wr+2

r + 2

)
=

σ2
1

2σ2(σ2
1 + σ2

2 x
2)3/2

×
[
e−[
√
k+1−1][u(x)]
√
k + 1− 1

+
e−[
√
k+1+1][u(x)]
√
k + 1 + 1

] (3.73)

where

k =
2s

σ2
2

, r =
√
k + 1− 1, u(x) = sinh−1(σ2x/σ1) = σ2z(x) ·

[SS15, Sch15] show that for the case ν = 2, the Laplace inverse transform of equation (3.73)

gives the following PDF

f (x, t) =
σ1 exp[−(u(x)2/2tσ2

2 )− (tσ2
2 /2)]

√
2πt(σ2

1 + σ2
2 x

2)

+
σ2

1σ2

2(σ2
1 + σ2

2 x
2)3/2

×
[
Φ

(
|u(x)|+ tσ2

2√
tσ2

)
−Φ

(
|u(x)| − tσ2

2√
tσ2

)] (3.74)

where Φ is the standard Normal CDF. This PDF has the following properties:

• Zero mean.

• Variance is σ2
1 t, ∀σ2, t.

• As t→ 0 the asymptotic behavior is of the Gaussian form

f (x, t) ∼
σ1 exp[−u(x)2/2tσ2

2 ]
√

2πt(σ2
1 + σ2

2 x
2)
∼

exp[−x2/2tσ2
1 ]

√
2πtσ1

·

• as t→∞ the density takes the form of the scaled Student-t distribution with 2 d.o.f .

f (x, t) ∼
σ2

1σ2

2(σ2
1 + σ2

2 x
2)3/2

·
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Figure 3.5: Gaussian vs PDF ν = 2, with σ1 = σ2 = 1 and t = 1/252,1/2,1 and 3 respectively.

For ν = 4

f̃ (x,s) =
σ4

1

4σ2(σ2
1 + σ2

2 x
2)5/2

(
wr(r + 3)
r(r + 2)

+
2wr+2

r + 2
+
wr+4(r + 1)

(r + 2)(r + 4)

)
=

σ4
1

4σ2(σ2
1 + σ2

2 x
2)5/2

×
[
(
√
k + 4 + 1)e−[

√
k+4−2][u(x)]

√
k + 4(

√
k + 4− 2)

+
2e−[

√
k+4+1][u(x)]
√
k + 4

+

(
√
k + 4− 1)e−[

√
k+4+2][u(x)]

√
k + 4(

√
k + 4 + 2)

] (3.75)

where

k =
2s

σ2
2

, r =
√
k + 4− 2, u(x) = sinh−1(σ2x/σ1) = σ2z(x) ·

We cannot find an explicit inverse Laplace transform for the case ν = 4 (equation 3.75), nei-

ther does [SS15] nor [Sch15], give explicit PDF for this case. One has to employ numerical

methods to find the inverse Laplace transform, see [AW92].

We have already examined the cases when ν = 0 (special case) and ν ≥ 0 (general case).

Lastly, we examine the case when ν < 0. For this case, we apply the Legendre symmetry in

[AS64].

2F1(c − a,c − b;c;z) = (1− z)a+b−c2F1(a,b;c;z) · (3.76)

Recall that we have a = r, b = −ν/2, c = r + (ν/2) + 1 and z = −w2. So we have

2F1(r, (−ν/2);r + (ν/2) + 1;−w2) = (1 +w2)ν+1
2F1((r/2) + 1, r +ν + 1; r + (ν/2) + 1;−w2) · (3.77)
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Also recall that

w =
(
σ2x
σ1

+

√
1 +

σ2
2 x

2

σ2
1

)−1

∴ w2 + 1 =
2w
σ1

√
σ2

1 + σ2
2 x

2 ·

(3.78)

So the Laplace transform for the case ν < 0 is given by

f̃ (x,s) =
2r+νwr+ν+1Γ (r/2)Γ (0.5(r + ν + 1))

√
πσ1σ2Γ (r + (ν/2) + 1)

× 2F1((r/2) + 1, r + ν + 1;r + (ν/2) + 1;−w2) (3.79)

where r =

√
ν2

4
+ k − ν

2
·

For ν = −2

f̃ (x,s) =
wr−1

σ1σ2(r − 1)

=
w
√
k+1

σ1σ2
√
k + 1

(3.80)

where

r =
√
k + 1 + 1 ·

The Laplace inverse transform of equation (3.80) leads to the Generalized Bougerol Identity,

f (x, t) =
1√

2πt(σ2
1 + σ2

2 x
2)

exp
{
−
σ2

2 t

2
− u(x)2

2σ2
2 t

}
, where u(x) = sinh−1(σ2x/σ1) · (3.81)
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Figure 3.6: Gaussian vs Generalized Bougerol identity PDFs, with σ1 = σ2 = 1 and

t = 1/252,1/2,1 and 3 respectively.
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For ν = −4

f̃ (x,s) =
1

2σ1σ2

(
wr−1

r − 1
+
wr−3

r − 3

)
=

1
2σ1σ2

(
w
√
k+4+1

√
k + 4 + 1

+
w
√
k+4−1

√
k + 4− 1

) (3.82)

where

r =
√
k + 4 + 2 ·

[Sch15] show that the Laplace inverse transform is given by

f (x, t) = e−2σ2
2 t

√(1 + σ2x/σ1)2√
2πσ2

1 t
e−u(x)2/2t


+
e
σ2

2 t
2

2a
×
[
Φ

(
|u(x)|+ tσ2√

t

)
−Φ

(
|u(x)| − tσ2√

t

)] (3.83)

where

a =
σ1

σ2

√
1− ρ2, u(x) = sinh−1(σ2x/σ1) = σ2z(x)

where Φ is the standard Normal CDF.
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Figure 3.7: Gaussian vs PDF ν = −4, with σ1 = σ2 = 1 and t = 1/252,1/2,1 and 3 respec-

tively.

3.6 Chapter Summary

In this chapter we have derived the Pearson type-IV distribution subsequently, we derived

the Student-t distribution based on the hybrid SDE. In Figure (3.2) we illustrated the flex-
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ibility of the Pearson type-IV distribution, in terms of being able to capture skewness and

kurtosis, based on some choices of parameters. Both the Person type-IV and the Student-t

distributions were derived under equilibrium conditions in the QFPE. However, as we re-

marked earlier it not usual for a market to remain at equilibrium especially during financial

turbulence, hence we explored the full Fokker-Planck equation under non-equilibrium con-

ditions. Under special cases where ν = 0,2,−2 and ν = −4 we explicitly derived the PDF’s for

the non-equilibrium cases. For large values of ν, it becomes difficult to explicitly compute

the Laplace inverse transform, as a consequence it becomes difficult to explicitly derive a

PDF.

In the next chapter, we fit our model to the market data using the density functions de-

rived in this chapter.
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Chapter 4

Empirical Data and Distribution Fitting

4.1 Empirical Data

In this chapter, we investigate empirically the distributions obtained from the hybrid SDE.

We analyse four South African shares and the FTSE/JSE Top 40 index. We investigate the

normality assumption and fit our distributions to the market data. We randomly selected

four shares which include Barclays Africa, Nedbank, Old Mutual and Standard Bank. We

include the FTSE/JSE Top 40 index which consists of the top 40 largest companies listed

on the Johannesburg Stock Exchange (JSE). The closing prices for each share was obtained

from google finance (https://www.google.com/finance). We start by calculating daily log

returns using equation (2.1), all shares exclude dividends.

Table (4.1) summarises the first four statistical moments of our shares, Figures (4.1a - 4.5a)

displays the daily closing returns of our shares on different dates. The dates for Barclays

Africa (20-07-2005 to 01-06-2016), FTSE/JSE Top 40 (05-06-2006 to 01-06-2016), Nedbank

(29-09-2003 to 01-06-2016), Old Mutual (28-08-2003 to 01-06-2016) and Standard Bank

(30-09-2003 to 01-06-2016).
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Company Mean Variance Skewness Excess Kurtosis No. of Obs.

Barclays Africa 1.7609× 10−4 0.0194 -0.0623 6.6555 2716

FTSE/JSE Top 40 7.9264× 10−4 0.0182 0.3101 9.1825 2494

Nedbank 3.0500× 10−4 0.0187 0.0027 5.9124 3167

Old Mutual 1.5755× 10−4 0.0259 -0.2338 17.4072 3193

Standard Bank 4.2719× 10−4 0.0187 -0.0267 6.2421 3168

Table 4.1: Statistical data summary for each share and the index.

Remarks: the mean and variance of the log returns is relatively small for all shares. We

observe that the kurtosis is greater than three for all shares, which indicate that our data

deviate significantly the Normal distribution1. In general, we can already observe that the

Normal distribution does not fit our data well (we expected this from the literature) since

the skewness is non-zero and the kurtosis is greater than three. We next apply the quantile-

quantile (QQ) plot technique to further test our data for normality.
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Figure 4.1: Barclays Africa share price and daily log returns.

1The excess kurtosis for a standard Normal distribution is three and the skewness is zero.
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(a) Nedbank share price history.
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Figure 4.2: Nedbank share price and daily log returns.
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(a) Old Mutual share price history.
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Figure 4.3: Old Mutual share price and daily log returns.
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(a) Standard Bank share price history.
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Figure 4.4: Standard Bank share price and daily log returns.
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(a) FTSE/JSE Top40 share price history.
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Figure 4.5: FTSE/JSE Top40 share price and daily log returns.

4.2 Normality Test

We noted in Table (4.1) that the log-returns of all the shares deviate significantly from the

Normal distribution. There are many different methods that can be used to test for nor-

mality. One simple method is to use the QQ-plot2 that we have already highlighted, other

methods include hypothesis testing technique such as Jarque-Bera, Shapiro-Wilk test etc,

see [MLR14].

Remarks: Figures (4.6a - 4.10a) represent the QQ-plot test for normality. The histogram

figures represent the log-returns fitted with the Normal distribution, we observe the excess

in kurtosis throughout our shares as indicated by our results in Table (4.1). If the fitted data

is normally distributed then, the returns would lie in the straight line in the QQ-plot. In

this case, it clearly does not fit, it deviates significantly from the straight line. The skewness

does not seem to be a huge problem in this case, but we have a huge deviation in the tails. In

the next section, we fit the PDF’s we derived in equation (3.48) (Student-t), and the Pearson

type-IV distribution in equation (3.50) to see if it can fit our data better.

2The QQ-plot is a simple graphical method of testing the goodness of fit of observed returns to the Nor-

mal distribution.
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(a) Barclays Africa log return histogram.
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(b) Barclays Africa qq-plot.

Figure 4.6: Barclays Africa qq-plot normality test.
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(a) Nedbank log return histogram.
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Figure 4.7: Nedbank qq-plot normality test.
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Figure 4.8: Old Mutual share qq-plot normality test.
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(a) Standard Bank share price log return

histogram.
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Figure 4.9: Standard Bank qq-plot normality test.
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(a) FTSE/JSE Top40 share price log return

histogram.
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(b) FTSE/JSE Top40 qq-plot.

Figure 4.10: FTSE/JSE Top40 qq-plot normality test.

4.3 Fitting Equilibrium Distributions

We now fit the Pearson type-IV and Student-t distributions to the market data, to attempt

to address the issue of fat-tails. The Pearson type-IV distribution is characterised by five pa-

rameters we discussed in equation (3.20). There are many different methods that can be used

to estimate the parameters of a distribution, see [Pea94]. We apply the method of maximum

likelihood estimation (MLE), which is the most recommended method, see [Hei04, Pea94].
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The MLE method involves evaluating the maximum likelihood function, and the estimates

are obtained by maximising the log-likelihood.

Suppose X is a continuous r.v. with a PDF f (X; ~θi) where ~θi = (θ1, . . . ,θk) are unknown

parameters for the N independent observations X1,X2, · · · ,XN . The likelihood function is

given by

L(X1,X2, · · · ,Xn|θ1,θ2, · · · ,θk) =
N∏
i=1

f (Xi ; ~θi)

and the logarithmic function is

Λ = lnL =
N∑
i=1

lnf (Xi ; ~θi)

so the MLE of θ1,θ2, · · · ,θk are obtained by maximising L or by maximising Λ which is usu-

ally much easier to work with than L, see [Hei04, Pea94].

In the case of the Pearson-IV (in 3.20) we optimise the log likelihood given by

− lnL =m
N∑
i=1

ln
[
1 +

(
xi −λ
a

)2]
+ ν

N∑
i=1

tan−1
(
xi −λ
a

)
−N lnk

where there are N sample size and xi data points, see [Hei04].

Since there is no analytical expression for the MLE of the Pearson-IV distribution, we use

the statistical program in R (pearsonMSC), it has the built-in function for computing MLE,

and we obtain results that are summarised in the table below.

Company m̂ ν̂ λ̂ â

Barclays Africa 2.63036 0.15458 0.00118 0.02979

FTSE/JSE Top 40 1.96488 0.04756 -0.00029 0.01944

Nedbank 2.92261 0.27027 0.00188 0.03180

Old Mutual 1.71884 -0.07387 -0.00126 0.02113

Standard Bank 2.76866 0.13890 0.00073 0.03027

Table 4.2: Maximum likelihood parameter estimators of the Pearson type-IV distribution.

The log likelihood for the Student-t (3.33) is given by

lnL =
N∑
i=1

ln
(
Γ
(
ν+1

2

)
√
aπΓ (ν2 )

(
1 + x2

i /a
)− ν+1

2

)
·
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Again no explicit solution exist, so we use the R statistical program (stdFit), and the results

are summarised in the table below.

Company ˆMean ˆStandard deviation ˆd.o.f

Barclays Africa 1.5455× 10−5 0.019828 4.2665

FTSE/JSE Top 40 6.408× 10−4 0.020157 2.9319

Nedbank 9.05037× 10−5 0.018883 4.8550

Old Mutual 5.462× 10−4 0.032034 2.4344

Standard Bank 2.944× 10−4 0.019013 4.5387

Table 4.3: Maximum likelihood parameter estimators of the Student-t distribution.

The MLE for the Gaussian distribution is well known is Statistics, see [Pea94]. The estimate

are

µ̂n =
1
n

N∑
i=1

xi and σ̂2
n =

1
n

N∑
i=1

(xi − µ̂)2 ·

Company µ̂ σ̂

Barclays Africa 0.0001760867 0.0194334260

FTSE/JSE Top 40 0.0007926401 0.0181831017

Nedbank 0.0003050014 0.0187247156

Old Mutual 0.000157551 0.025905585

Standard Bank 0.0004271856 0.0187251489

Table 4.4: Maximum likelihood parameter estimators of the Normal distribution.

In Figures (4.11 - 4.15) we fit the Pearson type IV and the Student-t distribution to the mar-

ket data, using the parameters we have estimated in Tables (4.2 - 4.4). Our results indicate

that both the Pearson-IV and Student-t distributions fit the market data much better (com-

pared to the Normal distribution).

In Figures (4.16a - 4.20a) we further verify that the Pearson-IV and Student-t distributions

fit the market data well, by using the QQ-plot.
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Figure 4.11: Barclays Africa distribution fit.
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Figure 4.12: FTSE/JSE Top40 distribution fit.
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Nedbank
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Figure 4.13: Nedbank distribution fit.
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Figure 4.14: Old Mutual distribution fit.
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Standard Bank
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Figure 4.15: Standard Bank distribution fit.

(a) Barclays Africa Student-t QQ plot.
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(b) Barclays Africa Pearson-IV QQ plot.

Figure 4.16: Barclays Africa Student-t and Pearson-IV QQ plots.
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(a) FTSE/JSE Top40 Student-t QQ plot.
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(b) FTSE/JSE Top40 Pearson-IV QQ.

Figure 4.17: FTSE/JSE Top40 Student-t and Pearson-IV QQ plots.

(a) Nedbank Student-t QQ plot.
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Figure 4.18: Nedbank Student-t and Pearson-IV QQ plots.

(a) Old Mutual Student-t QQ plot.
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Figure 4.19: Old Mutual Student-t and Pearson-IV QQ plots.
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(a) Standard Bank Student-t QQ plot.
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(b) Standard Bank Pearson-IV QQ plot.

Figure 4.20: Standard Bank Student-t and Pearson-IV QQ plots.

4.4 Chapter Summary

We have introduced and analysed our empirical data that we will work with in our com-

putation of risk measures. Table (4.1) summarises the first four moments of our empirical

data. In all shares, the skewness is relatively small (close to zero), but the excess kurtosis is

greater than three in all shares. Indicating that our data exhibit heavier tails than the Gaus-

sian distribution. We then applied the QQ-plot method to test for normality. Figures (4.6a -

4.10a) represent our empirical data fitted with the Normal distribution. From the QQ-plots,

it is clear that the Normal distribution does not capture the data very well, especially in the

tails, which is something we anticipated.

We then fitted the Pearson type-IV and the Student-t distributions to the market data, using

the method of maximum likelihood. Pearson type-IV distribution is characterised by four

parameters i.e. λ,a,ν andmwhich we described their meaning in Section 3.2. The estimates

of these parameters are summarised in Table (4.2). Similarly, we fitted the Student-t distri-

bution which is characterised the mean, standard deviation and degrees of freedom. The

estimates for Student-t distribution are summarised in Table (4.3).

Finally, we re-fitted the Pearson type-IV and the Student-t distribution using the estimates

in Tables (4.3) and (4.4) respectively. Figures (4.11 - 4.15) represents the market data fitted

by the above distributions. Both distributions seem to capture the excess kurtosis better
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than the Normal distribution. To verify our results we did the QQ-plot test once more, and

the results are captured in Figures (4.16a - 4.20a). In the next chapter, we compute portfolio

risk measures based on the above distributions.
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Chapter 5

Portfolio Risk Measures

In this chapter, we introduce theoretical definitions of the general risk measures and meth-

ods of evaluating them. The general measures of risk are volatility, Value-at-Risk (VaR) and

expected shortfall (ES), see [EFM05, MF00, Dan11].

VaR is the most popular risk measure, despite its well-known flaws, see [Hul06, ADEH99].

Intuitively VaR is defined as the worst expected loss over a given period at a specified con-

fidence level i.e. VaR attempts to provide a single number summarising the total risk in a

portfolio of financial assets, see [Hul06]. We define VaR in terms of P&L using quantiles.

Definition 3 Quantiles

Given α ∈ (0,1). The number q is an α−quantile of a random variable X if one of the following

equivalent properties is satisfied:

1. P(X ≤ q) ≥ α ≥ P(X < q).

2. P(X ≤ q) ≥ α and P(X ≥ q) ≥ 1−α.

3. FX(q) ≥ α and FX(q−) ≤ α, where FX is the cumulative distribution of X, see [ADEH99].
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Since Ω is finite, then there is a finite left quantile (q−α) and a finite right quantile (q+
α) s.t.

q−α = inf{x ∈R|P(X ≤ x) ≥ α} = inf{x ∈R|FX(x) ≥ α}

= sup{x ∈R|P(X ≤ x) < α} = sup{x ∈R|FX(x) < α}

q+
α = inf{x ∈R|P(X ≤ x) > α} = inf{x ∈R|FX(x) > α}

= sup{x ∈R|P(X ≤ x) ≤ α} = sup{x ∈R|FX(x) ≤ α}

See [ADEH99].

Definition 4 Value-at-Risk (VaR)

Given α ∈ (0,1), the V aRα at a level α of the P&L X distribution is the negative of the q+
α i.e.

V aRα(X) = − inf{x ∈R|P(X ≤ x) > α} = − inf{x ∈R|FX(x) > α}·

Note: If X is a continuous r.v. with the density function of the P&L denoted by fX(x), we

have

P(X ≤ −V aRα(X)) = α or α =
∫ −V aRα(X)

−∞
fX(x)dx·

The figure below illustrates the VaR equation for a continuous r.v. There are two main

parameters in the computation of VaR, that is the confidence level α (usually set at 95% or

99%) and the time period over which VaR is estimated (usually in days).
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Figure 5.1: An example of α% VaR marked by a vertical line.
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5.1 Methods for Evaluating VaR

There are numerous methods of calculating VaR, each method has it own pros and cons,

see [EFM05, Hul06]. VaR methods can be classified into two distinct groups, one group

is parametric and the other is non-parametric, see [JR09]. Parametric methods assume

that financial returns follow a particular statistical distribution, and non-parametric meth-

ods do not assume any distribution in the valuation of VaR. In this dissertation, we apply

two traditional methods of calculating VaR i.e. the Historical method (HS) and Variance-

Covariance (VC) method. Under the VC method, we adopt the GARCH(1,1) model to cope

with the volatility clustering phenomenon1, that is usually present in financial returns, see

[Man63, BM+12].

5.1.1 Historical Method

The HS method is very popular in practice as it is very simple to understand and imple-

ment, see [EFM05, MLR14]. This method applies empirical quantiles to compute VaR,

whereby theoretical quantiles of a loss distribution are computed from the historical data,

see [EFM05]. We first sort the financial returns in an ascending order and for some given

confidence level (1 −α) we estimate VaR by determining the (1 −α) quantile of the returns

distribution.

The advantage of the HS method is that it does not assume any statistical distribution, there-

fore it avoids the biases caused by estimating the parameters of a statistical distribution, see

[EFM05, JR09]. [HW98] proposed a procedure for using GARCH or EWMA (exponentially

weighted moving average), in conjunction with historical method when computing VaR. The

HS method can be modified for a particular distribution by using Monte Carlo simulation,

see [EFM05, Dan11].

1Volatility clustering phenomenon is best described [Man63], he defines it as the observation where

“large changes tend to be followed by large changes, and small changes tend to be followed by small

changes”. This means we observe many days with high volatility, followed by many days with low volatil-

ity.
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5.1.2 Analytic Variance-Covariance Approach

The VC method is also known as the delta-normal or model-building method. This method

originally assumed that returns are jointly normally distributed i.e. Xt ∼ N (µ,Σ) where µ

is the mean vector and Σ is the variance-covariance matrix, and that the P&L in a portfolio

value is linearly dependent on all risk factor returns, see [EFM05, MF00, Dan11]. The VC

method can be adjusted for non-normal distributions, see [EFM05, Dan11, BM+12]. The

weakness of this method is the assumption of a linear relationship between actual losses

distribution, and the risk factor changes. The advantage of this method is that it has an

analytical formula for computing VaR, and the volatility of financial data can be modelled

by volatility models e.g. EWMA or GARCH model, see [EFM05, Dan11]. In this paper,

we use the GARCH(1,1) model, following the work of [BM+12, BCY08, SMNZ12, SZ13]. A

summary of the GARCH model is provided in Appendix B and the code is found in [Dan11,

Chapter 5].

The GARCH(1,1) is described by the following equation:

σ2
t =ω+αR2

t−1 + βσ2
t−1, (5.1)

where Rt−1 is actual return on day t − 1, σ2
t−1 is the volatility of the return on day t − 1, α

and β are the expected return and variance constants respectively. There are two parameter

restrictions on the GARCH(1,1) model, (i) we requireω,α,β > 0 (to ensure positive volatility

forecast), (ii) α+β < 1 (to ensure covariance stationarity). Under the VC approach we follow

the following steps, firstly a distribution (e.g. Normal, Student-t, or Pearson) is fitted to the

daily returns data, to estimate model parameters. Secondly the GARCH(1,1) model is fitted

to the returns to estimate the parameters in equation (5.1). Lastly, we calculate daily VaR as

described below.

We use the Gaussian results for comparison purposes.

Gaussian Approach

Suppose that the loss distribution is normally distributed with the conditional mean µt and

the conditional variance σ2
t . We fix an α ∈ (0,1) then VaR is computed by the following
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analytical formula:

VaRα(t) = µt + σtΦ
−1(α), (5.2)

where Φ denotes the standard Normal distribution and Φ−1 is the α−quantile of Φ , and

µt,σ
2
t are modelled by the GARCH(1,1) model. See [EFM05, Chapter 2] for proof.

Student-t Approach

We obtain similar results for the Student-t distribution. VaR is computed by the following

analytical formula:

VaRα(t) = µt + σtT
−1
ν (α), (5.3)

where T −1
ν denotes the α−quantile of the Student-t distribution. See [EFM05, Chapter 2] for

proof.

Pearson Type-IV Approach

The VaR computation under the Pearson type-IV distribution is given by the following ana-

lytical formula:

VaRα(t) = µt + σtF
−1
Pearson-IV(α), (5.4)

where the F−1
Pearson-IV denotes the α−quantile of the Pearson type-IV distribution. See [SMNZ12]

for proof.

5.2 Expected Shortfall

The alternative risk measure to VaR is the expected shortfall (ES) also known as Condi-

tional VaR (CVaR), Expected Tail Loss (ETL) or Average VaR (AVaR), see [MF00, Dan11].

VaR answers the question, “How much can I lose with α probability over a certain period?”,

while ES answers the question, “What is the expected loss when losses exceed VaR?”, see

[Hul06, Dan11].

[Dan11, EFM05] defines expected shortfall as follows:
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Definition 5 (Expected Shortfall)

The Expected Shortfall (ES) is the expected value of our losses (X), if the losses exceeds VaR:

ESα = E[X |X > V aRα]· (5.5)

5.3 Backtesting Methods

Backtesting is a procedure of comparing the estimated losses with the actual observed P&L.

The purpose of backtesting is to validate the forecasting risk model (i.e. VaR), see [Dan11,

BM+12]. Daily losses that exceed the model estimate are referred to as violations. Whenever

daily losses exceed the VaR estimate, a VaR violation is said to have occurred. VaR models

should always be backtested so that financial institutions do not underestimate nor overes-

timate their risk, see [BM+12, BCY08, SMNZ12].

The main question is, how do you decide to accept or reject results produced by a VaR

model given some confidence level. We discuss two popular methods of backtesting VaR

models. One method is to record the number of violations and evaluate failure rate which

is the proportion of VaR exceeds in a total number of observations. The second method was

introduced by [Kup95]. The Kupiec test assists in making a decision whether the number of

violations is acceptable or not, so we can accept or reject the model, see [Kup95, SMNZ12].

Success-Failure Ratio (LR) Test

Let N be a total number of observations and z be a number of violations for a given α

confidence level. We denote the failure rate by f = z/N . The test is conducted by comparing

the failure rate with the confidence level. An ideal model should have f = α otherwise we

might overestimate or underestimate the risk for a given confidence level. If the failure rate

is greater than the α-value, then a model underestimate the risk conversely if the failure rate

is less than the α-value, then a model overestimates the risk. An acceptable model should

have a failure rate close to the α-value, see [SMNZ12].
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Kupiec Likelihood Ration Test

We apply the Kupiec Likelihood (LR) method to test whether we can accept or reject a model,

based on the number of violations. The LR test assumes that, the number of violations (z)

in a sample size of N is binomially distributed as z ∼ B(N,α). Hence, the probability of z

excess occurring over the N period is given by αz(1 − α)N−z, where α is the probability of

exceeding VaR on a given day. The Kupiec LR is given by

LR = 2log[f z(1− f )N−z]− 2log[αz(1−α)N−z], (5.6)

which is distributed by χ2 with one degree of freedom. The LR tests the null hypothesis, the

failure rate is equal to the respecified VaR level α.

Statistically we write

H0 : f = α vs H1 : f , α ·

The test statistic rejects H0 if LR > χ2(1) or if the α-value:= P(LR > χ2(1)) < α, if H0 is

rejected then the model is considered to be inaccurate.

5.4 Properties of a Coherent Risk Measure

[ADEH99] study market risks in an incomplete markets and present four properties that a

risk measure should satisfy. A risk measure that satisfies the properties is called coherent.

Let a risk measure be denoted by ϕ(·) : G → R, where G is the set of all risks (i.e. set of all

real-valued functions on Ω), G can be identified with R
n, where n = card(Ω). We list the

following properties for a coherent risk measure as in the paper [ADEH99] with finite a Ω.

The properties can be extended to infinite Ω, see [Del02].

Definition 6 (Coherent risk measure)

A risk measure ϕ(·) is called a coherent risk measure if it satisfies the following conditions:

1. Monotonicity For all X and Y ∈ G with X ≤ Y , we have ϕ(Y ) ≤ ϕ(X).

Interpretation: if portfolio Y produces higher returns than portfolio X, then the risk of

portfolio Y must be less than or equal to the portfolio X (the least returns).
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2. Subadditivity For all X and Y ∈ G, then ϕ(X +Y ) ≤ ϕ(X) +ϕ(Y ).

Interpretation: the portfolio risk of the sum (X + Y ), should be less than or equal to the

individual risk. This property is also known as diversification.

3. Positive homogeneity For all c ≥ 0 and all X ∈ G then ϕ(cX) = cϕ(X).

Interpretation: this simply means if the portfolio doubles then the risk doubles by the same

factor.

4. Translation invariance For all X ∈ G and a real number c we have, ϕ(X + c) = ϕ(X) − c.

Interpretation: adding c to the portfolio is like adding cash, so the risk of X + c is less than

the risk of X by the amount of cash.

We comment on property number 2 (subadditivity) in relation to volatility, VaR and ES.

If subadditivity property holds for some risk measure then, the risk of the portfolio (sum)

is less than or equal to the sum of the individual assets. [ADEH99, Dan11] show that the

volatility and ES are both coherent risk measures but VaR is not since it generally violates

the subadditivity property. The subadditivity property only holds under the Gaussian dis-

tribution, where VaR is proportional to volatility, see [Dan11] for examples. In the case of

non-Gaussian distributions the subadditivity property of VaR is violated, see [Dan11].

5.5 Risk Measures using Standard Probability Density Func-

tions

The VaR, ES and backtesting estimates were computed under the Normal, Student-t and

Pearson-IV distribution for a one-day holding period at 99% confidence level. Backtesting

was done throughout the sample for each company.
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5.5.1 VaR, ES and Backtesting Results

VaR Results

(a) Gaussian VaR by integration. (b) Student-t VaR by integration.
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Figure 5.2: Standard distributions VaR by numerical integration.

Company Historical

Barclays Africa 5.18%

FTSE/JSE Top 40 5.53%

Nedbank 5.23%

Old Mutual 6.94%

Standard Bank 5.06%

Table 5.1: One day VaR at a 99% confidence level using Historical method.
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Figure 5.3: Historical VaR for different alpha’s.

Company Normal Distr Student-t Distr Pearson-IV Distr

Barclays Africa 3.62% 5.5% 5.3%

FTSE/JSE Top 40 4.61% 6.08% 6.02%

Nedbank 4.63% 6.72% 5.01%

Old Mutual 4.49% 7.84% 7.41%

Standard Bank 4.00% 5.80% 5.20%

Table 5.2: One day VaR at a 99% confidence level using Variance-Covariance method.
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(a) Normal VaR by CV.
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(b) Student-t VaR by CV.
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(c) Pearson-IV VaR by CV.

Figure 5.4: Variance-Covariance VaR for different alpha’s.

ES Results

Company Historical

Barclays Africa 6.79%

FTSE/JSE Top 40 7.52%

Nedbank 6.90%

Old Mutual 11.43%

Standard Bank 6.46%

Table 5.3: One day ES at a 99% confidence level using Historical method.
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Company Normal Distr Student-t Distr Pearson-IV Distr

Barclays Africa 5.10% 7.12% 7.12%

FTSE/JSE Top 40 6.67% 7.93% 7.93%

Nedbank 6.31% 9.11% 9.11%

Old Mutual 7.53% 12.39% 12.39%

Standard Bank 5.36% 7.65% 7.66%

Table 5.4: One day ES at a 99% confidence level using Variance-Covariance method.

Backtesting VaR results2

Company Failure rate LR Test Decision

Barclays Africa 0.037234 125 Reject H0.

FTSE/JSE Top 40 0.013611 2.95632 Do not reject H0.

Nedbank 0.014209 5.01309 Do not reject H0.

Old Mutual 0.030692 89.0492 Reject H0.

Standard Bank 0.024305 46.78851 Reject H0.

Table 5.5: Backtesting Variance-Covariance (Normal distribution) VaR at 99%.

Company Failure rate LR Test Decision

Barclays Africa 0.006259 4.428255 Do not reject H0.

FTSE/JSE Top 40 0.007206 2.18234 Do not reject H0.

Nedbank 0.001194 3.86272 Do not reject H0.

Old Mutual 0.007829 1.641672 Do not Reject H0.

Standard Bank 0.011568 1.06828 Do not reject H0.

Table 5.6: Backtesting Variance-Covariance (Student-t distribution) VaR at 99%.

2The χ2(1) = 6.635.
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Company Failure rate LR Test Decision

Barclays Africa 0.008837 0.38652 Do not reject H0.

FTSE/JSE Top 40 0.007206 2.18234 Do not reject H0.

Nedbank 0.027102 2.60491 Do not reject H0.

Old Mutual 0.008456 0.81139 Do not reject H0.

Standard Bank 0.008523 0.73516 Do not reject H0.

Table 5.7: Backtesting Variance-Covariance (Pearson-IV distribution) VaR at 99%.

In graphs (5.5 - 5.9) we plot the backtesting results for VaR and daily log returns (black).

We calculate VaR (using variance-covariance approach) under Student-t (green), Normal

(purple) and PearsonIV (blue), and historical method (red).
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Figure 5.8: Backtesting Old Mutual using the HS, Normal, Student-t and PearsonIV VC-
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5.6 Risk Measures using Non-Standard Probability Density

Functions

In this section we extend the previous section, by computing risk measures using non-

equilibrium density functions, we derived in section (3.4) and (3.5). We derived a special

case PDF for ν = 0 in equation (3.48), and the general case for ν ≥ 0 in equation (3.71) and

ν ≤ 0 in equation (3.79). We aim to investigate the effect of ν on VaR. We have the following

PDF’s for ν = {0,2,−2,−4}. The effect of ν on the PDF’s is given by the following figure.

For ν = 0 (Bougerol Identity)

f (x, t) =
1√

2πt(σ2
1 + σ2

2 x
2)

exp
{
−1

2σ2
2 t

[sinh−1(σ2x/σ1)]2
}
· (5.7)

For ν = 2

f (x, t) =
σ1 exp[−(u(x)2/2tσ2

2 )− (tσ2
2 /2)]

√
2πt(σ2

1 + σ2
2 x

2)

+
σ2

1σ2

2(σ2
1 + σ2

2 x
2)3/2

×
[
Φ

(
|u(x)|+ tσ2

2√
tσ2

)
−Φ

(
|u(x)| − tσ2

2√
tσ2

)]
,

(5.8)

where Φ is the standard Normal CDF.

For ν = −2 (Generalized Bougerol Identity)

f (x, t) =
1√

2πt(σ2
1 + σ2

2 x
2)

exp
{
−
σ2

2 t

2
− u(x)2

2σ2
2 t

}
, where u(x) = sinh−1(σ2x/σ1) · (5.9)

For ν = −4

f (x, t) = e−2σ2
2 t

√(1 + σ2x/σ1)2√
2πσ2

1 t
e−u(x)2/2t


+
e
σ2

2 t
2

2a
×
[
Φ

(
|u(x)|+ tσ2√

t

)
−Φ

(
|u(x)| − tσ2√

t

)]
,

(5.10)

where

a =
σ1

σ2

√
1− ρ2, u(x) = sinh−1(σ2x/σ1) = σ2z(x)

and Φ is the standard Normal CDF.
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Figure 5.10: Shows the effect of ν on the PDF’s, with σ1 = σ2 = 1 and t = 1/252,1/2,1 and 3

respectively.

We fit the non-equilibrium distributions using the MLE function in Matlab.

5.6.1 Distribution Fitting

ν σ̂1 σ̂2

0 0.499815905743740 1.409327029349859

-2 0.498825190695306 1.406533517818738

2 0.513886541366686 1.408474043575879

-4 0.519828582202129 1.401727420337593

Table 5.8: Barclays Africa: maximum likelihood parameter estimators of non-equilibrium

distributions.

ν σ̂1 σ̂2

0 0.499815905743740 1.075469954027268

-2 0.497323063514015 1.070106025253909

2 0.520318821309506 1.074373160480211

-4 0.529851907174183 1.060581410621951

Table 5.9: FTSE/JSE Top 40: maximum likelihood parameter estimators of non-

equilibrium distributions.
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ν σ̂1 σ̂2

0 0.499815905739469 0.915328485061770

-2 0.495668079803303 0.907732441824942

2 0.524449601301280 0.914382634621584

-4 0.536901184641203 0.893854835282527

Table 5.10: Nedbank: maximum likelihood parameter estimators of non-equilibrium dis-

tributions.

ν σ̂1 σ̂2

0 0.499815905743661 0.962112665600021

-2 0.496258512232988 0.955264917631601

2 0.523178653450586 0.961078795916083

-4 0.534658680948590 0.942876319191007

Table 5.11: Old Mutual: maximum likelihood parameter estimators of non-equilibrium

distributions.

ν σ̂1 σ̂2

0 0.499815905743739 1.163917053676783

-2 0.497897229003689 1.159449047451732

2 0.518330100892248 1.162853669722373

-4 0.526657411586139 1.151602007088079

Table 5.12: Standard Bank: maximum likelihood parameter estimators of non-equilibrium

distributions.

5.6.2 VaR and Backtesting Results

For the non-equilibrium cases we could not derive an analytical formula for VaR as in the

three cases, and we are not aware of any such formula. Hence, we apply direct numerical

integration to compute VaR.
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(a) VaR at t = 1/252.
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(b) VaR at t = 1/2.
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(c) VaR at t = 1.
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(d) VaR at t = 3.

Figure 5.11: Non-Standard distributions VaR by numerical integration with σ1 = σ2 = 1.
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Figure 5.12: Barclays non-equilibrium distributions VaR.
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Figure 5.13: FTSE/JSE Top 40 non-equilibrium distributions VaR.
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Figure 5.14: Nedbank non-equilibrium distributions VaR.
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Figure 5.15: Old Mutual non-equilibrium distributions VaR.
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Figure 5.16: Standard bank non-equilibrium distributions VaR.

PDF Failure rate Decision

ν = 0 0.008869 Do not reject H0.

ν = −2 0.008863 Do not reject H0.

ν = 2 0.09783 Reject H0.

ν = −4 0.09819 Reject H0.

Table 5.13: Backtesting Barclays non-equilibrium distributions at 99%.

PDF Failure rate Decision

ν = 0 0.009087 Do not reject H0.

ν = −2 0.009083 Do not reject H0.

ν = 2 0.09832 Reject H0.

ν = −4 0.09848 Reject H0.

Table 5.14: Backtesting FTSE/JSE Top 40 non-equilibrium distributions at 99%.

96



PDF Failure rate Decision

ν = 0 0.008983 Do not reject H0.

ν = −2 0.008990 Do not reject H0.

ν = 2 0.09836 Reject H0.

ν = −4 0.09858 Reject H0.

Table 5.15: Backtesting Nedbank non-equilibrium distributions at 99%.

PDF Failure rate Decision

ν = 0 0.008750 Do not reject H0.

ν = −2 0.008747 Do not reject H0.

ν = 2 0.09615 Reject H0.

ν = −4 0.09649 Reject H0.

Table 5.16: Backtesting Old Mutual non-equilibrium distributions at 99%.

PDF Failure rate Decision

ν = 0 0.008946 Do not reject H0.

ν = −2 0.008957 Do not reject H0.

ν = 2 0.09826 Reject H0.

ν = −4 0.09855 Reject H0.

Table 5.17: Backtesting Standard bank non-equilibrium distributions at 99%.

5.7 Chapter Summary

We have introduced the most common risk measures i.e. VaR, ES and volatility. We dis-

cussed two methods of estimating VaR namely, the Historical and Variance-Covariance

method. Under the Variance-Covariance method, we applied the GARCH(1,1) model to

deal with the phenomenon of volatility clustering. We compute VaR and ES using the meth-

ods we have discussed here. We backtest each method, to verify the accuracy of each model.

Our results indicate that the Pearson type IV and Student-t distributions perform well.
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We also studied the properties of a coherent risk measure introduced by [ADEH99]. VaR

is a coherent risk measure under Gaussian distribution, see [ADEH99, Dan11]. Statistical

distributions that exhibit fat-tails violets the subaddictivity property of VaR, see [ADEH99,

Dan11]. On the other hand, volatility and ES are coherent risk measures, see [ADEH99,

Dan11] for proof. Furthermore we computed VaR under non-equilibrium distributions. We

estimate σ1 and σ2 constants for the non-equilibrium distributions using the MLE in Mat-

lab. The non-equilibrium distributions produced reasonable results but no better than the

Student-t and the Pearson-IV distributions. The PDFs for ν = 0 and ν = −2 seem to produce

good results based on our backtesting results. We observed that the VaR estimates get large,

as time increases. In Figure (5.10) we observed the effect of ν on the densities at different

times. For small t the densities are identical, but as t increases they deviate from each other

significantly. This might justify the deviation of VaR estimates for each density function.
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Chapter 6

Option Pricing and Calibration

In this chapter, we apply the hybrid SDE to price European style options. We derive a PDE

for the model and calibrate it. Lastly, we apply the Crank-Nicolson finite difference (FD)

scheme to price options. If a model has more sources of noise (e.g. Wiener process) than

risky assets, then by the Meta-theorem it is considered to be incomplete1. The hybrid SDE

in equation (2.42) it consists of one risky asset (share) and two sources of noise (i.e. W 1
t and

W 2
t ), which makes it incomplete. In a special case where W 1

t and W 2
t are perfectly corre-

lated, the model will be complete. Here we consider both cases.

The Meta-theorem2 is a general rule of thumb of determining if a model is complete or

not, it is stated as follows.

The Meta-theorem: Let N denote the number of risky assets in the model, excluding the

risk-free asset (money account), and R denote the number of random sources of noise in the

model. Then we generically have the following relations:

1. The model is arbitrage-free if and only if N ≤ R.

2. The model is complete if and only if N ≥ R.

3. The model is complete and arbitrage-free if and only if N = R.

1In practise markets are generically incomplete due to market imperfections like transition cost, stochas-

tic interest rates and volatility, see [Bra13, Bjö09].
2See [Bjö09, Chapter 8].
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An arbitrage portfolio/strategy is a trading strategy with zero initial cost, zero chance of

making a loss, and a non-zero chance of making a profit. We formally define it below.

Definition 7 An arbitrage strategy/portfolio h is a trading strategy, such that

• V h
0 = 0

• V h
T ≥ 0

• E[V h
T ] > 0

See [Bjö09, Definition 2.2].

6.1 Option Pricing

Definition 8 Market Completeness

A market is said to be complete if every contingent claim in the market can be replicated. Alter-

natively, assume that the model is arbitrage-free. Then the market is complete if and only if the

martingale measure is unique. See, [Bjö09, Definition 3.12 and Proposition 3.14].

Let ht = (φ1
t ,φ

2
t ) be a portfolio vector where φ1

t is the number of the units of the bond (Bt)

held at time t, and φ2
t is the number of the units of the stock (St) held at time t. The value

process of the portfolio h is defined by

V h
t = φ1

t Bt +φ2
t St, t = 0,1, · · ·

We next define a self-financing portfolio.

Definition 9 A trading strategy/portfolio h is said to be self-financing if the following condition

is satisfied ∀t = 0,1, · · · ,T − 1

φ1
t (1 +R) +φ2

t St = φ1
t+1 +φ2

t+1St

where R is the spot rate, see [Bjö09, Chapter 2 & 6].

Intuitively, a portfolio h is said to be self-financing if the portfolio (φ1
t+1,φ

2
t+1) at time t + 1,

is solely financed by a portfolio (φ1
t ,φ

2
t ) at time t.
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Definition 10 A contingent claim X is said to be hedgeable or replicable, if there exists a self-

financing portfolio h, such that V h(T ) = X , P− a.s. [Bjö09, Definition 2.8].

Definition 11 A European call (put) option gives the holder the right to buy (sell) an asset (the

underlying) for an agreed amount K (the strike price) on a specified future date T (maturity). See

[Bjö09, Definition 7.3].

Proposition 1 Suppose that there exists a self-financing portfolio h such that, the value process

V h has the dynamics dV h(t) = k(t)V h(t)dt where k(t) is an adapted process. Then it must hold

that k(t) = r(t) ∀t, where r(t) is the risk-free rate. Otherwise there exist an arbitrage opportunity.

See [Bjö09, Proposition 7.6.1] for proof.

We recall the arithmetic-geometric hybrid Brownian motion model,

dSt = (µ1 −µ2St)dt +
√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2StdWt , t > 0, S0 = x· (6.1)

The parameter ρ in equation (6.1) represents the correlation between the two noises in equa-

tion (2.42). In the special case where ρ = ±1 i.e. if there is perfect correlation between

the two sources of noise, then the underlying model becomes complete, see [BC12, Sch15,

Bjö09].

Case: ρ ± 1 (Complete)

In this case, we follow the classical derivation of the Black-Scholes PDE3. Let V (S,t) be any

European style derivative, where the value of the derivative depends on both the underlying

asset St and time t. Let Bt denote the riskless bank account with dynamics

dBt
Bt

= rdt· (6.2)

We construct a portfolio Π which consists of one derivative and g shares i.e.

Πt = Vt + gSt· (6.3)

Taking the differentials and by the self-financing assumption we obtain,

dΠt = dVt + gdSt· (6.4)

3The general results (PDE) for any SDE of the form dS(t) = µ(t,S(t))S(t)dt + σ (t,S(t))S(t)dW (t) is given by

[Bjö09, Chapter 7].
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Then by Itô’s Lemma on V (S, t)

dVt =
∂V
∂t
dt +

∂V
∂S

dS +
1
2
∂2V

∂S2 (dS)2

=
∂V
∂t
dt +

∂V
∂S

(
(µ1 −µ2St)dt +

√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2StdWt

)
+

1
2
∂2V

∂S2

(
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

)
dt

=
(
∂V
∂t

+ (µ1 −µ2St)
∂V
∂S

+
1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2V

∂S2

)
dt

+
√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

∂V
∂S

dWt

(6.5)

Hence,

dΠt =
(
∂V
∂t

+ (µ1 −µ2St)
∂V
∂S

+
1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2V

∂S2

)
dt

+
√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

∂V
∂S

dWt + g
(
(µ1 −µ2St)dt +

√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2StdWt

)
=

(
∂V
∂t

+ (µ1 −µ2St)
[
∂V
∂S

+ g
]

+
1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2V

∂S2

)
dt

+
√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

[
∂V
∂S

+ g
]
dWt·

(6.6)

We take g = −∂V
∂S

i.e. short
∂V
∂S

shares. Hence,

dΠt =
(
∂V
∂t

+
1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2V

∂S2

)
dt (6.7)

At this stage our portfolio is riskless. However, as S and t change, ∂V
∂S will also change.

Hence, to keep the portfolio riskless, ∂V∂S must be adjusted accordingly, see [Bjö09, Hul06].

By the assumption of no-arbitrage, the portfolio must earn the same as the risk-free account.

dΠt = rΠtdt = r(Vt −
∂V
∂S

S)dt· (6.8)

Equating equation (6.7) and (6.8), we obtain the PDE for the hybrid SDE

∂V
∂t

+ rS
∂V
∂S

+
1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2V

∂S2 − rV = 0· (6.9)

Remark: The quantity ∂V
∂S is called the delta of the derivative. One can thus replicate any

European style derivative with the underlying share S by holding delta-many shares, at any

time. This procedure of hedging is called delta-hedging. Also note that µ1 and µ2 do not ap-

pear in the PDE (6.9) therefore they are insignificant to pricing European style derivatives,

see [Bjö09].
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To find the price of a European call option (C(S, t)), we must solve the following initial-

boundary value problem (IBVP)4:

∂C
∂t + rS ∂C∂S + 1

2(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2C
∂S2 − rC = 0·

C(0, t) = 0, ∀t·

C(S,t) ∼ S as S→∞·

C(S,T ) = max(ST −K,0)·

Case : ρ , ±1 (Incomplete)

If the market is incomplete, then from Definition 8, we have the following:

• It is impossible to perfectly hedge or to replicate a contingent claim.

• There is no unique martingale measure to price a contingent claim, as a consequence,

there is no unique price for a contingent claim.

The fundamental challenge of pricing a contingent claim in an incomplete market is the

uniqueness of a risk-neutral measure, see[Bjö09, Miy11]. The best thing we can do in this

case is to build an internally coherent price system, which is consistent with the market

prices and is arbitrage-free, see [Bra13, Bjö09]. In other words, we need to fix a risk-neutral

measure, which will be consistent with the market prices. Our goal is to find a “fair”

(arbitrage-free) price for a European call/put option, we have the following:

• The underlying is modelled by the hybrid model.

• The European call/put option is a function of the underlying and is evaluated at time

T .

The problem set up here is very similar to that of the Black-Scholes model (complete and

arbitrage-free). So we mimic the Black-Scholes model.

If incompleteness of a market is caused by having fewer underlying assets, than the random

sources of noise, [Bjö09] proposes the following methods to mitigate for incompleteness:

4We show in the case of incomplete market how to solve such IBVP using the Crank-Nicolson scheme.
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1. We can enlarge the market by adding one more asset (not money account) in the mar-

ket without introducing, any new random noise. Then we can expect the market to be

complete, by the Meta-theorem.

2. We can set a benchmark price for a particular contingent claim, then other contingent

claims will be uniquely be determined by the price of a benchmark. Then by the Meta-

theorem, we expect the market to be complete.

Since we cannot set up a perfect and self-financing hedging portfolio in an incomplete mar-

ket, that replicates the contingent claim. The best thing we can do is to set up a portfolio

that replicates the final pay-off of the claim on average, see [KW12, Bra13, Bjö09]. The port-

folio we set up will not offset all the risk, and this will have significant consequences on the

variance of the hedging portfolio. In fact, the variance of a hedging portfolio in an incom-

plete market is never zero, see [BC12, BC10].

We proceed as follows, we consider two fixed derivative securities Y and Z5 (written in

terms of the process Xt) of the form:

Y = Φ(X(T ))·

Z = Ψ (X(T )),

where Φ and Ψ are deterministic real-valued functions (e.g. payoff function). Our objective

is to study the price process of Y and Z. In order to make progress, we make the following

assumptions:

• The market is frictionless and liquid for each of the derivative securities Y and Z.

• The market price process of the derivative securities are of the form:

Λ(t,Y ) = F(t,Xt)·

Λ(t,Z) = G(t,Xt),

5[Bra13, Chapter 2] uses zero-coupon bonds to derive similar results.
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where F and G are real-valued functions based on the underlying Xt. We apply Itô’s Lemma

on F and G.

dF(t,Xt) =
∂F
∂t
dt +

∂F
∂X

dX +
1
2
∂2F

∂X2 (dX)2

=
∂F
∂t
dt +

∂F
∂X

(
(µ1 −µ2Xt)dt +

√
σ2

1 + σ2
2X

2
t + 2ρσ1σ2XtdWt

)
+

1
2
∂2F

∂X2

(
σ2

1 + σ2
2X

2
t + 2ρσ1σ2Xt

)
dt

=
(
∂F
∂t

+ (µ1 −µ2Xt)
∂F
∂X

+
1
2

(σ2
1 + σ2

2X
2
t + 2ρσ1σ2Xt)

∂2F

∂X2

)
dt

+
√
σ2

1 + σ2
2X

2
t + 2ρσ1σ2Xt

∂F
∂X

dWt

= µFF(t,Xt)dt + σFF(t,Xt)dWt ·

(6.10)

Similarly,

dG(t,Xt) = µGG(t,Xt)dt + σGG(t,Xt)dWt (6.11)

where

µF =
∂F
∂t

+ (µ1 −µ2Xt)
∂F
∂X

+
1
2

(σ2
1 + σ2

2X
2
t + 2ρσ1σ2Xt)

∂2F

∂X2

/
F(t,Xt)

σF =
√
σ2

1 + σ2
2X

2
t + 2ρσ1σ2Xt

∂F
∂X

/
F(t,Xt)

and µG is similar to µF as well as σG to σF . We proceed in a similar fashion as in the Black-

Scholes model (hedging portfolio), by setting up a portfolio that replicates the final pay-off

of the claims Y and Z. Hence, we set up a self-financing portfolio based on F and G, with

portfolio weights wF and wG respectively. The portfolio weights must be chosen appropri-

ately so that the portfolio is riskless. We state the following Lemma [Bjö09, Lemma 6.4] for

a self-financing portfolio.

Lemma 1 A portfolio-consumption pair (h,c) is self-financing if and only if:

dV h(t) = V h(t)
N∑
i=1

ui(t)
dSi
Si(t)

− c(t)dt

where V h is the value process corresponding to the portfolio h, c(t) is the amount of cash spent on

consumption per unit time, Si(t) is the share price at time t and ui(t) is the relative portfolio with
N∑
i=1

ui(t) = 1. See [Bjö09, Chapter 6] for proof.
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So by Lemma 1 we have

dV = V
(
wF ·

dF
F

+wG ·
dG
G

)
= V (wF · (µFdt + σFdWt) +wG · (µGdt + σGdWt))

= V (wF ·µF +wG ·µG)dt +V (wFσF +wGσG)dWt·

(6.12)

In order to make this portfolio riskless we need to eliminate the dWt-term6, i.e. we must

choose wF and wG such that wFσF +wGσG = 0, and the weights wF and wG must sum up to

one. So we need to solve the following equations:


wF +wG = 1·

wFσF +wGσG = 0·

This simplifies to


wF = − σG

σF−σG ·

wG = σF
σF−σG ·

Now plugging wF and wG into equation (6.12) we obtain

dV = V
(
µG · σF −µF · σG

σF − σG

)
︸                ︷︷                ︸

k(t)

dt·
(6.13)

At this stage our portfolio is riskless. Then by Proposition 1:

µG · σF −µF · σG
σF − σG

= r·

∴
µF − r
σF

=
µG − r
σG
·

(6.14)

The left-hand side is independent of G and the right-hand side is independent of F, which

means that equation (6.14) is independent of F nor G. Equation (6.14) is formalised by the

following Proposition.

Proposition 2 Assume that the market for derivatives is arbitrage-free. Then there exists a uni-

versal process λ(t) such that, with probability one and for all t, we have

µF(t)− r(t)
σF(t)

= λ(t) (6.15)

regardless of the choice of the derivative F.

6The hedging error is the cost of making this portfolio riskless.
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Remarks: the quantity µF(t) − r(t) is the excess rate of return of the asset F. Thus the ratio
µF(t)− r(t)
σF(t)

is interpreted as the excess rate of return per unit of volatility. The variable λ(t) is

commonly known as “the market price of risk” or the “the price volatility risk”, see [Bjö09,

Bra13]. If the market is arbitrage-free, then all derivative securities will have the same

market price of risk, regardless of the choice of the derivative contract [Bjö09]. However,

it is possible to have a different drift and volatility for two assets, but equation (6.14) must

still hold. This means we can use real-world observations to estimate risk-neutral volatility.

Substituting equations for µF and σF in equation (6.15), we obtain the following PDE:

∂F
∂t

+ (µ1 −µ2Xt)
∂F
∂X

+
1
2

(σ2
1 + σ2

2X
2
t + 2ρσ1σ2Xt)

∂2F

∂X2 − rF = λ
√
σ2

1 + σ2
2X

2
t + 2ρσ1σ2Xt

∂F
∂X
·

∂F
∂t

+
(
(µ1 −µ2Xt)−λ

√
σ2

1 + σ2
2X

2
t + 2ρσ1σ2Xt

)∂F
∂X

+
1
2

(σ2
1 + σ2

2X
2
t + 2ρσ1σ2Xt)

∂2F

∂X2 − rF = 0·

(6.16)

Proposition 3 Assume the absence of arbitrage, the pricing function F(t,x) of the T-claim Φ(X(T ))

solves the following boundary value problem:

∂F
∂t

(t,x) +AF(t,x)− rF(t,x) = 0, (t,x) ∈ (0,T )×R,

F(T ,x) = Φ(x), x ∈R,

where

AF(t,x) =
(
(µ1 −µ2xt)−λ

√
σ2

1 + σ2
2 x

2
t + 2ρσ1σ2xt

)
∂F
∂x + 1

2(σ2
1 + σ2

2 x
2
t + 2ρσ1σ2xt)

∂2F
∂x2 ·

So the value of the derivative security F is given by

F(t,x) = e−r(T−t)EQ

t,x[Φ(X(T ))]· (6.17)

In this case, the market price of risk (λ) acts as a martingale measure Q, see [Bjö09].

Earlier we mentioned that in an incomplete market there is no unique arbitrage-free price

for derivative security since there is no unique martingale measure. However, in Proposition

3, we derived a PDE, which when solved will give a particular value. Also, recall Proposi-

tion 2 which states that in an arbitrage-free market all derivative securities must have the

same market price of risk.

In a complete market, the price of a derivative is unique because the martingale measure
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(Q), or equivalently the market price of risk (λ) is obtained within the model, see [Bjö09].

In an incomplete market there are multiple martingale measures, so to price derivatives we

need to fix a martingale measure i.e. fix a market price of risk. There is a lot of literature

on how to determine the market price of risk, see for example [Hul06]. The market for

traded derivative instruments determines the market price of risk. The PDE is dependent

on r,µ1& µ2,σ1& σ2,Φ(x) and λ. The parameters λ,σ1,σ2 are not directly observable from a

market, they must be estimated.

Suppose from Proposition 2 we know the exact form of µ and σ (we assume these are con-

stants), and in order to price a claim we need to know λ. We assume there exist a market for

claims Φi(X(T )), i = 1, · · · ,n in equation (6.17), and that λ takes the form

λ = λ(t,x,β), β ∈Rk·

The vector β must be chosen in a way that the theoretical prices are close as possible to the

observed/market prices. We estimate σ1,σ2 via a process called calibration. In the next sec-

tion, we discuss calibration in detail.

To find the price of a European call option (C(S,t)), we must solve the following IBVP:

∂C
∂t +

(
(µ1 −µ2St)−λ

√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

)
∂C
∂S + 1

2(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)

∂2C
∂S2 − rC = 0·

C(0, t) = 0, ∀t·

C(S, t) ∼ S as S→∞·

C(S,T ) = max(ST −K,0)·

The finite difference scheme is the most common method used to solve PDE’s. There are

three main schemes:

• Explicit method.

• Implicit method.

• Crank-Nicolson method.

The Crank-Nicolson (CN) method is an average of the explicit and implicit method, which

makes it more superior in terms of stability, convergence and consistency, see [FN13, AP05].
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6.1.1 The Crank-Nicolson Method

We now solve the PDE for the hybrid model using the CN scheme:

rC =
∂C
∂t

+
(
(µ1−µ2St)−λ

√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

)∂C
∂S

+
1
2

(σ2
1 +σ2

2S
2
t + 2ρσ1σ2St)

∂2C

∂S2 (6.18)

over the grid, 0 ≤ t ≤ T and Smin ≤ S ≤ Smax. The parameters r,σ1,σ2,µ1,µ2,ρ > 0. The PDE is

solved by approximating the partial derivatives with finite differences. Smax is a sufficiently

large asset price, and Smin is a smallest asset price (usually set at zero). The domain for

the PDE (6.10) is unbounded with respect to the asset price, so we bound it by Smax for

computational purposes , see [AP05]. The grid on the domain consists of points (S,t) such

that

S = 0,∆S,2∆S, . . . ,M∆S ≡ Smax·

t = 0,∆t,2∆t, . . . ,N∆t ≡ T ·

with Cnm = C(n∆t,m∆S). There are three basic FD schemes to approximate the partial

derivatives:

The forward difference

∂C
∂S

=
Cm+1,n −Cn,m

∆S
+O(∆S),

∂C
∂t

=
Cm,n+1 −Cn,m

∆t
+O(∆t)·

The backward difference

∂C
∂S

=
Cn,m −Cn,m−1

∆S
+O(∆S),

∂C
∂t

=
Cn,m −Cn−1,m

∆t
+O(∆t)·

The central difference

∂C
∂S

=
Cm+1,n −Cn,m−1

2∆S
+O(∆S),

∂C
∂t

=
Cm,n+1 −Cn−1,m

2∆t
+O(∆t) ·

The second-order difference

∂2C

∂S2 =
Cm+1,n − 2Cm,n +Cm−1,n

(∆S)2 +O(∆S2) ·

Depending on the combinations of the schemes, we have either the explicit or implicit

method, see [AP05]. We define an array of N + 1 equally spaced grid points, i.e. t0, t1, . . . , tN

to discretise time. Similarly, we define an array of M + 1 equally spaced grid points, i.e.

S0,S1, . . . ,SM to discretise the underlying asset. So we have:

∆t = tn+1 − tn ≡
T
N
, ∆S = Sm+1 − Sm ≡

Smax − Smin

M
·

109



This leads us to a rectangular region on the (t,St) plane, with boundaries (0,Smax) and (0,T ).

The Crank-Nicolson method applies central approximation for ∂C
∂t ,

∂C
∂S and ∂2C

∂S2 . Hence we

have the following approximation for the differential equations in (6.18):

∂C
∂t

=
Cnm −Cn−1

m

∆t
+O(∆t)·

∂C
∂S

=
1
2

(
Cn−1
m+1 −C

n−1
m−1

2∆S
+
Cnm+1 −C

n
m−1

2∆S

)
+O(∆S)·

∂2C

∂S2 =
1
2

(
Cn−1
m+1 − 2Cn−1

m +Cn−1
m−1

(∆S)2 +
Cnm+1 − 2Cnm +Cnm−1

(∆S)2

)
+O(∆S2)·

Discretisation of the PDE

Cnm −Cn−1
m

∆t
+
(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
· 1

2

(
Cn−1
m+1 −C

n−1
m−1

2∆S
+
Cnm+1 −C

n
m−1

2∆S

)
+

1
2

(σ2
1 + σ2

2m
2∆S2 + 2ρσ1σ2m∆S) · 1

2

(
Cn−1
m+1 − 2Cn−1

m +Cn−1
m−1

(∆S)2 +
Cnm+1 − 2Cnm +Cnm−1

(∆S)2

)
=
r
2

(
Cnm +Cn−1

m

)
+O(∆t,∆S

2)

∴ Cnm −Cn−1
m +

∆t

4∆S
·
(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
·
(
Cn−1
m+1 −C

n−1
m−1 +Cnm+1 −C

n
m−1

)
+

∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
·
(
Cn−1
m+1 − 2Cn−1

m +Cn−1
m−1 +Cnm+1 − 2Cnm +Cnm−1

)
=
r∆t
2

(
Cnm +Cn−1

m

)
+ O(∆2

t ,∆t∆S
2)︸          ︷︷          ︸

local truncation error

. Ignoring the error term, we have

(
∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
− ∆t

4∆S

(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

))
Cn−1
m−1

+
(
− r∆t

2
− ∆t

2∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
− 1

)
Cn−1
m

+
(

∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
+

∆t

4∆S

(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

))
Cn−1
m+1

=
(
− ∆t

4∆S

(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
− ∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

))
Cnm−1

+
(

∆t

2∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
+
r∆t
2
− 1

)
Cnm+(

− ∆t

4∆S

(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
− ∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

))
Cnm+1

(6.19)
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We simplify equation (6.19) as

−amCn−1
m−1 + (1− bm)Cn−1

m − cmCn−1
m+1 = amC

n
m−1 + (1 + bm)Cnm + cmC

n
m+1, where (6.20)

am =
(

∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
− ∆t

4∆S

(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

))
·

bm = −r∆t
2
− ∆t

2∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
·

cm =
(
∆t

4∆S

(
(µ1 −mµ2∆S)−λ

√
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
+

∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

))
·

A Matrix System

ACn−1 = BCn +Dn−1 +Dn, where n =N,. . . ,1.

Cn =



Cn1

Cn2
...

CnM−1


, Dn =



a1C
n
0

0
...

0

cM−1C
n
M



A =



1− b1 −c1 0 · · · 0 0

−a2 1− b2 −c2 · · · 0 0

−a3 1− b3 · · · 0 0
...

...
. . .

...
...

0 0 · · · −aM−1 1− bM−1



B =



1 + b1 c1 0 · · · 0 0

a2 1 + b2 c2 · · · 0 0

a3 1 + b3 · · · 0 0
...

...
. . .

...
...

0 0 · · · aM−1 1 + bM−1
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In a complete case (6.9) we follow similar steps as above to obtain:

am =
∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
− rm∆t

2
·

bm = −r∆t
2
− ∆t

2∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
·

cm =
rm∆t

2
+

∆t

4∆S2

(
σ2

1 + σ2
2m

2∆S2 + 2ρσ1σ2m∆S

)
·

Discretisation of the PDE introduces some error in the Crank-Nicolson scheme, see [FN13,

AP05]. There are three main factors that characterise a numerical scheme, that is consis-

tency, stability, and convergence, see [Str04]. We study these factors in the next section.

6.1.2 Convergence, Consistency and Stability

Consistency: an FD scheme is said to be consistent if the scheme converges to the PDE, as

the time and space tend to zero. Stability: an FD scheme is said to be stable if the distance

between the exact and approximation solution remains bounded, as the number of steps

gets large. Convergence: an FD scheme is said to converge, if the distance between the exact

and approximation solution, tends to zero as time and space tend to zero, see [MM98]. We

state the following mathematical conditions for convergence and consistency from [MM98,

Str04].

Definition 12 Convergence and Consistency

For a given PDE, Λu = f and a finite difference (FD) scheme Λk,hv = f , a FD scheme is said to be

consistent with a PDE if for any smooth function φ(t,x),

Λφ−Λk,hφ→ 0 as k,h→ 0,

the convergence is pointwise-convergence at each point (t,x).

We show that the CN finite difference scheme is consistent with the PDE (6.9, 6.18). We

have Λ from the PDE in (6.18)

Λφ = φt +
(
(µ1 −µ2St)−λ

√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

)
φS +

1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)φSS − rC.

112



Substituting

φt =
φnm −φn−1

m

k
+O(∆t)·

φS =
1
2

(
φn−1
m+1 −φ

n−1
m−1

2h
+
φnm+1 −φ

n
m−1

2h

)
+O(∆S)·

φSS =
1
2

(
φn−1
m+1 −φn−1

m +φn−1
m−1

h2 +
φnm+1 − 2φnm +φnm−1

h2

)
+O(∆S2)·

We compute the Taylor’s series expansion of the function φ in t and S about (tn,Sm),

φn−1
m = φnm − kφt +

1
2
k2φtt +O(k3)

φn−1
m+1 = φnm − kφt +

1
2
k2φtt + hφS +

1
2
h2φSS − khφtS +O(k3) +O(h3)

φn−1
m−1 = φnm − kφt +

1
2
k2φtt − hφS +

1
2
h2φSS + khφtS +O(k3) +O(h3)

φnm+1 = φnm + hφS +
1
2
h2φSS +O(h3)

φnm−1 = φnm − hφS +
1
2
h2φSS +O(h3)

Therefore,

Λk,hφ = φt −
1
2
kφtt +

(
(µ1 −µ2St)−λ

√
σ2

1 + σ2
2S

2
t + 2ρσ1σ2St

)
(φS −

1
2
kφtS)

+
1
2

(σ2
1 + σ2

2S
2
t + 2ρσ1σ2St)φSS − rC

Thus,

Λφ−Λk,hφ→ 0 as (k,h)→ 0. Therefore, this scheme is consistent.

Theorem 2 The stability condition

A one-step finite difference scheme is stable in a stability region Λ if and only if there is a constant

K (independent of θ,k and h) such that

|g(θ,k,h)| ≤ 1 +Kk

with (k,h) ∈Λ. If g(θ,k,h) is independent of k and h, then the stability condition is

|g(θ)| ≤ 1

See [Str04] for proof.

We show that the CN finite difference scheme is stable with the PDE (6.9, 6.18) using Von

Neumann Stability analysis.
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Definition 13 Von Neumann Stability Analysis

A finite difference scheme that approximate Cnm is said to be stable if the substitution Cnm = gneimθ

satisfies the condition that |g(θ)| ≤ 1 or |g(θ)|2 ≤ 1 where, g(θ) is the amplification factor and θ

is the phase angle, see [Str04].

From equation (6.20) we make the substitution Cnm = gneimθ,

−amCn−1
m−1 + (1− bm)Cn−1

m − cmCn−1
m+1 = amC

n
m−1 + (1 + bm)Cnm + cmC

n
m+1

−amgn−1ei(m−1)θ + (1− bm)gn−1eimθ − cmgn−1ei(m+1)θ = amg
nei(m−1)θ + (1 + bm)gneimθ + cmg

nei(m+1)θ,

by the identity, eiθ = cos(θ) + i sin(θ). Thus

g(θ) =
(1− bm)− cos(θ)(am + cm) + i sin(θ)(am − cm)
(1 + bm) + cos(θ)(am + cm)− i sin(θ)(am − cm)

·

Thus, |g(θ)|2 ≤ 1, hence the scheme is stable.

6.2 Model Calibration

We approximate σ1 and σ2 since these parameters are not obtained directly from the mar-

ket. For a model to be realistic it needs to return the current prices or at least approximately,

that implies that we need to fit these parameters to our model. The process of fitting param-

eters to the model is called calibration. Calibration is based on the assumption that there

are sufficiently many liquidly traded contingent claims, see [KW12]. The standard cali-

bration procedure minimises the distance between model prices (Fmodel) and market prices

(Pmarket). There are various types of error measure, in this dissertation, we use the sum of

squared errors (SSE) i.e.

SSE(x) =
N∑
i=1

∣∣∣Pmarket
i (x)−Fmodel

i (x)
∣∣∣2, (6.21)

where N is the total number of market prices and x = (x1, .....,xn)T is a vector of model

parameters. We want to find a parameter vector x∗ that best fits the model prices to market

prices, i.e. Pmarket
i (x) ≈ Fmodel

i (x), i = 1, . . . ,N . Then the calibration procedure can be viewed

as an optimization problem of the form

min
xεχ

f (x), ξ ⊆R
n,

where ξ is the admissible domain of the model parameters, x1, ...,xn, see [KW12, Miy11].
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Let {Cmodel(Ki ,Ti), i = 1,2, . . . ,N } denote N model prices of European call options based

on the hybrid model, where K is the strike price and T is the maturity. Also denote N mar-

ket prices of European call options by {Cmarket(Ki ,Ti), i = 1,2, . . . ,N }. For each i, we define a

function of σ1 and σ2 by

fi(σ1,σ2) = Cmarket(Ki ,Ti)−Cmodel(Ki ,Ti) · (6.22)

Then we estimate the parameters by minimizing the function

min
(σ1,σ2)

N∑
i=1

|fi(σ1,σ2)|2 · (6.23)

We use the Black-Scholes prices as the market prices and the hybrid prices as model prices.

Smin 0

Smax 170

K 145

r 0.075

T 82/252

λ 0.11193

Table 6.1: European option inputs.

We use the optimx function in R to minimize equation (6.23), see the code in the Appendix.
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Figure 6.1: Calibration results.
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Parameter Estimate

σ̂1 0.076

σ̂2 1.014

Table 6.2: Fitted parameters for the hybrid model.

6.3 Results

In Figure (6.2) we plot the surface of the European call option value using the CN-method

for the PDE in (6.18). In Figure (6.3a) we compare market and model prices for both PDE’s

in (6.9 and 6.18). In Figure (6.3a) we plot the absolute error and the Black-Scholes European

call option prices. In Figure (6.3) we plot the delta7 of a call option vs a share price. We use

inputs in Table (6.1) and (6.2).
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Figure 6.2: European Call Option for the incomplete case.

7We apply the FD method to estimate the delta (∆) i.e. ∆ = fi+1−fi
2δ where fi is a price of a European call

option (PDE in 6.18), and δ is a small number. Other Greeks can be computed using FD method.
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Figure 6.3: European Call option results.
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Figure 6.4: Absolute errors and the delta of the hybrid model.

6.4 Chapter Summary

In this chapter, we have applied the hybrid SDE in Chapter 2 to price European style call

options, in a complete and incomplete market set up. The hybrid SDE has two sources of

noise and one risky asset, which makes it incomplete by the Meta-theorem. In a special case

where the two sources of noise are perfectly correlated, the underlying model is complete.

The main difficulty of pricing contingent claims in an incomplete market is the uniqueness
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of a martingale measure. In an incomplete market there are multiple measures, so to price

we need to fix a measure. We followed the techniques by [Bra13, Bjö09, Hes93] to derive the

PDE in terms of market price of risk.

In an incomplete market, the market price of risk acts as a martingale measure, see [Bra13,

Bjö09]. The market price of risk λ =
µ− r
σ

then µ = r +λσ . The drift (µ) is equal to the risk-

free rate plus the market price of risk, dependent on volatility (σ ). If λ = 0 then µ = r, which

leads us to a risk-neutral world, see [Bra13, Bjö09]. We solved the PDE for European style

options using the Crank-Nicolson method and calibrated our model to the market prices

using the least squares method. Our results are consistent with results of [IL13]. An alterna-

tive approach to pricing and hedging in an incomplete market, is to minimise the expected

squared hedging errors, this method is called variance-optimal hedging, see [BC10, SS08].
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Chapter 7

Conclusion

In this dissertation, we studied [SS15] model and applied it in computations of risk mea-

sures such as Value-at-Risk and Expected Shortfall. Finally, we applied the model to price

European style options in two settings, namely pricing in a complete and in an incomplete

market set up.

Chapter 2 was devoted to the derivation of the arithmetic-geometric hybrid Brownian Mo-

tion model. In this model, we consider two types of market traders namely, the fundamental

and technical traders. Both these types of traders are seeking information about the under-

lying asset St, and trade based on that information. However, their method of seeking such

information differs. The underlying (St) price will fluctuate up and down based on the de-

mand and supply of St. The net effect on the market prices over a short period of time is

described by the log-returns (Xt), which we defined in equation (2.1). We assume that (Xt) is

sufficient in describing the current state of the market. In this model, fundamental traders

trade independently of the current value of (Xt), while technical traders trade based on the

historical performance of (Xt) i.e. {Xs |0 ≤ s ≤ t}.

The current market state (Xt) is determined by the buy and sell orders to the market. We

derived the mean and variance of the counting process of the number of trades, from a

characteristic function of the inter-arrival distribution following the work of [SS15]. Af-

ter a lengthy argument, we derived the mean and standard deviation of the fundamental

and technical traders. The buying and selling of (St) cause price fluctuations, which we

119



described the linear return impact function1 in equations (2.35 - 2.36). Lastly, we approxi-

mate the trade arrival model by two independent Brownian motions. We naturally obtained

a discrete-time stochastic equation in (2.38). A hybrid SDE is obtained by taking limits in

equation (2.42). It is clear from the SDE that, the Arithmetic Brownian motion is related

to the fundamental trades and the Geometric Brownian motion is related to the technical

trades. We introduced the correlation (ρ) between the two Brownian motions and re-wrote

the SDE in equation (2.42) with a single noise in equation (2.43). The hybrid SDE has five

parameters, namely σ1,µ1,σ2,µ2 and ρ.

We then showed the strong solution of the hybrid SDE exists using Theorem 1. In section

2.2 we provided the explicit solution of the hybrid SDE and showed how to simulate sample

paths in Figure (2.1). In Section 2.3 we calculated the mean of the hybrid SDE and a vari-

ance for the special case when (ρ = 0 = µ1) in equation (2.59). In Table (2.1) we calculated

the probability of sigma-events (extreme movements) under the Gaussian and Student-t (4

d.o.f) distribution. Extreme events are greatly probable in the Student-t distribution com-

pared to the Gaussian distribution. The reason is that the Student-t distribution has fat-tails

compared to the Gaussian distribution, see [DCHW08].

In Chapter 3 we derived the quantilised Fokker-Planck equation (QFPE 3.1) associated with

the general SDE in equation (3.1). We then applied the QFPE in equation (3.10) to derive

equilibrium fat-tail distributions, following the work of [SS08, SS15]. In Section 3.2 we de-

rived the Pearson type IV distribution, and the Student-t distribution in Section 3.3. Both

these distributions have fat-tail property, however, the Pearson type IV distribution is much

more flexible than the Student-t distribution. Both these distributions were derived under

equilibrium conditions in the QFPE. However, the market turns to be unstable in times of

financial panics. We, therefore, applied the full Fokker-Planck equation2 on the hybrid SDE

under non-equilibrium conditions. Under special cases where ν = {0,2,−2,−4} we explicitly

derived the PDF’s, captured by Figures (3.3, 3.6, 3.5, 3.7). For large values of ν (d.o.f), it be-

comes impossible to explicitly derive the PDF’s. All the non-equilibrium densities display

the variance explosion phenomenon.

1The return impact function is simply a description of the order book, see [Sch15].
2The Fokker-Planck equation is a PDE that describes the time evolution of the probability density func-

tion of a stochastic process, see [Bjö09, Chapter 5].
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In Chapter 4 we introduced and analysed our data, we downloaded four stocks of the top

four financial institutions in South Africa (Barclays Africa, Nedbank, Old Mutual and Stan-

dard Bank), and the FTSE/JSE Top 40 index. We computed the first four moments of our

data, and the results are captured in the Table (4.1). All shares display moderate skewness

and excess in kurtosis (heavy tails). In Section 4.2 we fitted the Gaussian distribution in

our data and applied the QQ-plot to test for normality. Figures (4.6a - 4.10a) capture the

normality test results. It is clear from our results that the Normal distribution greatly un-

derestimates the tails. We then fitted the Pearson type IV and the Student-t distributions in

our data, using the method of maximum likelihood. The Pearson type IV and the Student-t

distributions fitted our data much better, we further verified our results by applying the

QQ-plot. The results for distribution fitting of the Pearson type IV and the Student-t distri-

butions are captured in Tables (4.2 - 4.3) and Figures (4.11 - 4.20a).

In the next chapter, we analysed Value-at-Risk (VaR) and the Expected Shortfall (ES) using

the Historical method and the Variance-Covariance (VC) method. We estimated one-day

VaR and ES at 99% confidence level for all the stocks and the index. We use the Pearson

type IV and Student-t distributions. Under the VC method, we adopted the GARCH(1,1)

model, to deal with the volatility clustering following the work of [BM+12, BCY08, BMK09,

SMNZ12, SZ13]. Based on the results obtained, the Pearson type IV and the Student-t distri-

butions produced good results, whereas the Normal distribution produced mediocre results,

as we expected. This is not surprising since the Normal distribution has thin tails. We ap-

plied the Success-failure ratio (LR) test and the Kupiec likelihood ratio test, to backtest our

VaR estimates. Backtesting results indicate that the Pearson type IV and the Student-t dis-

tributions produced consistent VaR estimates, compared to the Normal distribution. Our

results are consistent with those of [MLR14, BMK09, SMNZ12]. All the VaR, ES and back-

testing results are in Section 5.5.1. One major drawback of VaR is that it is not a coherent

risk measure while volatility and ES are coherent, see [ADEH99].

Furthermore we computed VaR estimates using non-equilibrium density functions in equa-

tions (5.7 - 5.10). We fitted the distributions to our data using the method of maximum

likelihood and applied numerical integration to compute VaR. The non-equilibrium dis-

tributions produced good and consistent results, but no better than the Pearson type IV

and the Student-t distributions. The reason for that might be because both equilibrium

(the Pearson type IV and the Student-t distributions) and non-equilibrium densities have
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heavy tails. Adopting the GARCH(1,1) model to the non-equilibrium distributions requires

further work. Finally, in Chapter 6, we applied the hybrid SDE to price European style

options. The hybrid SDE (2.42) has two sources of noise and one risky asset, then by the

Meta-theorem, the hybrid SDE is considered to be incomplete. However, the hybrid SDE

can be reduced to an SDE with a single noise (2.43), by taking the correlation between the

two sources of noise. We, therefore, priced options in a complete and incomplete market set

up. We then applied the Crank-Nicolson method to price options and calibrated our model

using the method of least squares. Further research can be done by implementing minimum

variance hedging techniques under the hybrid model.
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Appendix A

Stochastic Calculus And The

Black-Scholes Theory

In this chapter, we present important results from stochastic calculus which we use in this

dissertation and the theory of the Black-Scholes model. We omit proofs in this chapter, de-

tailed proofs will be referenced. Throughout this chapter, we model an asset in continuous

time stochastic processes, in a probability space (Ω,F ,P). The main sources for this chapter

are [Øks03, Fam65, Bjö09].

Definition 14 Stochastic Process

A stochastic process is a collection of random variables {X(t)}. For any t, t = 0,1, . . .T , X(t) is a

random variable on (Ω,F ).

Definition 15 Random variable

A random variable (X) on a probability space (Ω,F ,P) is a function X : Ω→ R which assigns a

number X(ω) to every outcome ω ∈Ω.

A Markov process is a particular type of stochastic process, where only the current value of

a random variable is relevant for predicting the future. It is also known as the memoryless

process.
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Definition 16 The Markov Property

Let (Ω,F ,P) be a probability space, with a bounded Borel function f : Rn→R. Then a stochastic

process (Xt) is called Markovian if

E[f (Xt+h)|Ft] = E[f (Xh)]

for t,h ≥ 0. See proof in [Øks03, Chapter 7].

Definition 17 A Renewal Process

Let X1,X2, · · · be independent and identically distributed random variables with P[Xk > 0] = 1.

We define the partial sums as follows

X1 = Z1

Xn = Zn −Zn−1, n > 0, Z0 = 0

...

Zn =
n∑
i=1

Xi , n ∈N.

The sequence Z1,Z2, · · · is called the renewal times and is increasing, and the sequence X1,X2, · · ·

is called the inter-renewal times. Then the process {N (t) : t ≥ 0} given by

N (t) =
∞∑
n=1

1{Zn≤t} =


1 if Zn ≤ t

0 otherwise.

is called the renewal process.

A.1 The Black-Scholes Model

Under the Black-Scholes model we consider two assets, one is the risk-free asset (money

account or bond) with price Bt at time t, described by the following dynamics:

dBt
Bt

= rdt (A.1)

where r is the non-negative interest rate.

The other asset is the stock (risky asset) with the price Xt at time t, described by the fol-

lowing dynamics:

dXt = µXtdt + σXtdWt (A.2)
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where µ ∈ R is a constant mean rate of return, σ > 0 is a constant volatility, and (Wt)t≥0 is a

standard Brownian motion.

A.2 Wiener Process

Definition 18 A stochastic process Wt is called a Wiener process if the following hold.

1. W (0) = 0 a.s.

2. The process Wt has independent increment, i.e. if r < s ≤ t < u then W (u) −W (t) and

W (s)−W (r) are independent stochastic variables.

3. For s < t the stochastic variable W (t)−W (s)

has Gaussian distribution i.e. N (0,
√
t − s) with mean 0 and variance

√
t − s.

4. Wt has continuous trajectories.

A.3 Itô Formula

Suppose the process (Xt) has a stochastic differential given by

dXt = µ(Xt, t)dt + σ (Xt, t)dWt

where µ(Xt, t) and σ (Xt, t) are adapted processes, and let f be a C1,2-function. Define the

process Z by Z(t) = f (t,X(t)). Then Z has a stochastic differential given by

df (t,Xt) =
∂f

∂t
(t,Xt)dt +

∂f

∂x
(t,Xt)dXt +

1
2
∂2f

∂x2 (t,Xt)(dXt)
2
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dt dW 1
t dW 2

t

dt 0 0 0

dW 1
t 0 dt 0

dW 2
t 0 0 dt

Table A.1: Itô’s multiplication table, where W 1
t and W 2

t are two independent Weiner pro-

cesses.

A.4 The Black-Scholes PDE

Let V (t,Xt) = f (t,Xt) be a European style contingent claim, whose value depends on both

the underlying (Xt) and time. The function f solves the Black-Scholes PDE

∂f

∂t
(t,x) + (r − q)

∂f

∂x
(t,x) +

1
2
σ2x2∂

2f

∂x2 (t,x)− rf (t,x) = 0 (A.3)

where q is the dividend yield, and r is the continuously compounded risk-free rate. The

Black-Scholes PDE is derived via delta-hedging strategy, which involves continuous trad-

ing in the underlying asset. The Black-Scholes imperfections are well captured by [Hul06,

Bjö09].

A.5 Hedging Basics

In this section we discuss the basic hedging strategy for European style contingent claims.

Let us assume we have some option with payoff h(XT ), where the stock price is modelled by

the GBM or by the hybrid SDE. We want to replicate the payoff h(XT ) by using a portfolio

of underlying asset and the risk-free asset. We consider a vector of a hedging strategy φ̄t =

(φ1
t ,φ

2
t ), where φ1

t represents the number of the units of the underlying asset held at time

t, and φ2
t represents the number of units of the riskless bond held at time t. We require

E[
∫ T

0
φ1
t ]dt < ∞ and E[

∫ T
0
φ2
t ]dt < ∞. The solution of the ODE in equation (A.1) is Bt = ert

with B0 = 1. Then the value of this portfolio (Φt) at time t is Φt = φ1
tXt +φ2

t e
rt In order for

this portfolio to replicate the payoff at time T , we require

φ1
TXT +φ2

T e
rT = h(XT ) (A.4)
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This portfolio is assumed to be self-financing, in differential form,it is written as

d(φ1
tXt +φ2

t e
rt) = φ1

t dXt + rφ2
t e
rtdt· (A.5)

In a complete market equation (A.4) is easily achieved, but in an incomplete market, the

equality does not always hold, see [KW12, BC12, BC10].
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Appendix B

GARCH and Conditional Volatility

The volatility forecast models in time series of financial data has been popular since the

1980’s. In recent years volatility forecast models have been used in estimating risk measures,

see [BM+12, BCY08]. The first such model was developed in 1982 by Engel, the Autore-

gressive Conditional Heteroscedasticity (ARCH) model, which was further generalised by

Bollerslev (1986) to Generalised Autoregressive Conditional Heteroscedasticity (GARCH)

model. The GARCH model is used to estimate conditional mean and variance of financial

data. The conditional variance depends on the all the past innovations of order p, but all

previous conditional variances of order q.

B.1 ARCH and GARCH (p,q) Model

The ARCH Model

σ2
t =ω+

h∑
i=1

αiR
2
t−i (B.1)

where h is the number of lags. The parameters must satisfy the following conditions, see

[Dan11]:

1. ∀i = 1, . . . ,h, αi ,ω > 0 To ensure positive volatility forecasts

2.
∑h
i=1αi < 1 To ensure covariance stationarity so that unconditional volatility is defined.

One major drawback with the ARCH model concerns the long lag (h) lengths required to

capture the impact of historical returns on current volatility. So by including lagged volatil-
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ity during ARCH model creation we have the potential to incorporate the impact of histori-

cal returns, see [Dan11].

A general GARCH (p,q) model is described as follows:

Rt |Ωt−1 ∼ Ψ (µt,σ
2
t ) (B.2)

µt = c+ ρRt−1 (B.3)

σ2
t =ω+

p∑
i=1

αie
2
t−i +

q∑
j=1

βie
2
t−j and (B.4)

et = Rt −µt (B.5)

where Rt is the return, µt is the conditional mean, σ2
t is the conditional variance, Ωt−1 is

the set of all information available at time t, and Ψ (µt,σ
2
t ) is the conditional distribution of

Rt. The parameters satisfy the conditions p > 0, q ≥ 0, ω > 0 and αi ,βj ≥ 0 for i = 1, . . . ,p,

j = 1, . . . ,p.

The most common GARCH type model is the GARCH (1,1) model. Substituting p = q = 1 in

the above equations we have

µt = ρRt−1 (B.6)

σ2
t =ω+α(Rt−1 −µt−1)2 + βσ2

t−1 (B.7)

where |ρ| < 1, α,β > 0 and α + β < 1.

The unconditional volatility is given by

E(ω+αR2
t−1 + βσ2

t−1) = ω+ασ2 + βσ2, where σ2 =ω+ασ2 + βσ2.

⇒ σ2 =
ω

1−α − β
.

Definition 19 Autocorrelation function

A autocorrelation function (ACF) ρ(h) of a co-variance process (Xt)t∈Z is

ρ(h) = ρ(Xh,X0), ∀h ∈Z (B.8)

where h is a lag.
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(a) Barclays Africa Autocorrelations of

the entire sample data.
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(b) JSE Autocorrelations of the entire

sample data.
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(c) Nedbank Autocorrelations of the en-

tire sample data.
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Figure B.1: Standard Bank Autocorrelations of the entire sample data.
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Company ω α β σ2
t+1

Barclays Africa 1.15396× 10−5 0.09448 0.87418 0.00024

FTSE/JSE Top 40 9.70991× 10−6 0.10738 0.86522 0.00038

Nedbank 1.00783× 10−5 0.08011 0.89097 0.00039

Old Mutual 5.4403× 10−6 0.00784 0.90992 0.00037

Standard Bank 7.38973× 10−6 0.08351 0.89510 0.00029

Table B.1: GARCH(1,1) parameter estimates under the Normal distribution.

Company ω α β σ2
t+1

Barclays Africa 8.8329× 10−6 0.08742 0.88938 0.00024

FTSE/JSE Top 40 8.4975× 10−6 0.11516 0.87145 0.00037

Nedbank 9.897312× 10−6 0.08151 0.890313 0.00039

Old Mutual 4.92554× 10−6 0.08752 0.904423 0.00038

Standard Bank 7.53362× 10−6 0.08474 0.893843 0.00027

Table B.2: GARCH(1,1) parameter estimates under the Student-t distribution.

Company ω α β σ2
t+1

Barclays Africa 1.37901× 10−5 0.09549 0.87932 0.00029

FTSE/JSE Top 40 3.92088× 10−5 0.02771 0.71392 0.00039

Nedbank 4.89233× 10−6 0.02794 0.95752 0.00040

Old Mutual 2.06528× 10−5 0.09572 0.81371 0.00035

Standard Bank 2.68447× 10−5 0.09272 0.82644 0.00031

Table B.3: GARCH(1,1) parameter estimates under the PearsonIV distribution.
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Appendix C

Codes

C.1 R Calibration

Pr ices1 <− read . csv2 ( ”C: / Users /INNOCENTMBONA/ Desktop / Univers i ty Work /R work\\

/ P r e t o r i a /MSc / Pr ices1 . csv ” , header=FALSE )

> dat=data . frame ( ( Market P r i c e s=Pr ices1 [ , 1 ] ) , Model P r i c e s=Pr ices1 [ , 2 ] )

> min . RSS<−function ( data , const ) {

+ with ( data , sum ( ( const [1]+ const [ 2 ] *Market Pr ices −Model P r i c e s ) ˆ 2 ) )

+ }

> r e s u l t<−optim ( const=c ( 0 , 1 ) , min . RSS , data=dat )

> plot ( Model P r i c e s ˜ Market P r i c e s , data=dat , main=” Least square r e g r e s s i o n ” )

> abline ( a = r e s u l t $ const [ 1 ] , b = r e s u l t $ const [ 2 ] , col = ” red ” )

C.2 The Crank Nicolson FD Matlab

1 % Matlab Code : Evaluates an European Call / Put option by the

2 % Crank−Nicolson Scheme method under the hybrid model . The code was

adopted from ” http : / /www. goddardconsulting . ca /matlab− f i n i t e −

d i f f −crank−nicolson . html”

3

4 funct ion [V, Cvector ]= eHybrid (K, S0 , r , Sharevec , timevec , sigma1 , sigma2

, rho , lambda , OptionType )
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5

6 % Inputs : K − S t r i k e p r i ce

7 % : S0 − Share pr i ce

8 % : r − Risk f r e e i n t e r e s t r a t e

9 % : Sharevec − Vector of stock p r i c e s ( i . e . gr id points )

10 % : tvec − Vector of times ( i . e . gr id points )

11 % : oType − must be ’PUT’ or ’CALL ’ .

12 %

13 % Output : V − the option pr ice .

14 % : Cvector − the option pr ice vector .

15

16 %% The Crank−Nicolson Method

17

18 % Number of gr id points

19 M = length ( Sharevec ) −1;

20 N = length ( timevec ) −1;

21

22 % Number of gr id s i z e s

23 dt =( timevec ( end )−timevec ( 1 ) ) /M; % Time step

24 ds =( Sharevec ( end )−Sharevec ( 1 ) ) /N; % Share step

25

26 % Matrix c o e f i c i e n t s for the Crank−Nicolson method

27 m = 0 :M;

28

29 SIGMA=sigma1 ˆ2+ sigma2 ˆ2*m. ˆ 2 * ds+2* rho * sigma1 * sigma2 *m*ds ;

30

31 % Incomplete Case

32

33 mu1=0.01;mu2=0.02;

34 Am=( dt / (4* ds ˆ 2 ) ) * (SIGMA) −( dt / (4* ds ) ) * ( ( mu1−m. *mu2*ds )−lambda . * s q r t (

SIGMA) ) ;

35 Bm=−( r *dt ) /2−( dt / (2* ds ˆ 2 ) ) * (SIGMA) ;
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36 Cm=( dt / (4* ds ) ) * ( ( mu1−m. *mu2*ds )−lambda . * s q r t (SIGMA) ) +( dt / (4* ds ˆ 2 ) )

* (SIGMA) ;

37

38 % Complete Case

39 % Am=( dt / (4* ds ˆ 2 ) ) * (SIGMA) −(( dt *m* r ) / ( 2 ) ) ;

40 % Bm=−( r *dt ) /2−( dt / (2* ds ˆ 2 ) ) * (SIGMA) ;

41 % Cm=(( dt *m* r ) / ( 2 ) ) +( dt / (4* ds ˆ 2 ) ) * (SIGMA) ;

42

43 % Pre−a l l o c a t e the output

44 OptionPrice ( 1 :M+1 ,1:N+1) = nan ;

45

46 % Boundary condi t ions

47 switch OptionType

48 case ’CALL ’

49 % Speci fy the expiry time boundary condit ion

50 OptionPrice ( : , end ) = max( Sharevec−K, 0 ) ;

51 % Put in the minimum and maximum pr ic e boundary condi t ions

52 % assuming that the l a r g e s t value in the Svec i s

53 % chosen so that the fol lowing i s true for a l l time

54 OptionPrice ( 1 , : ) = 0 ;

55 OptionPrice ( end , : ) = ( Sharevec ( end )−K) *exp(− r * timevec ( end

: −1 : 1 ) ) ;

56 case ’PUT ’

57 % Speci fy the expiry time boundary condit ion

58 OptionPrice ( : , end ) = max(K−Sharevec , 0 ) ;

59 % Put in the minimum and maximum pr ic e boundary condi t ions

60 % assuming that the l a r g e s t value in the Svec i s

61 % chosen so that the fol lowing i s true for a l l time

62 OptionPrice ( 1 , : ) = (K−Sharevec ( 1 ) ) *exp(− r * timevec ( end : −1 : 1 )

) ;

63 OptionPrice ( end , : ) = 0 ;

64 end

65
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66 % Tridiagonal matrixs

67 C = −diag (Am( 3 :M) , −1) + diag (1−Bm( 2 :M) ) − diag (Cm( 2 :M−1) , 1 ) ;

68 [ L ,U] = lu (C) ;

69 D = diag (Am( 3 :M) , −1) + diag (1+Bm( 2 :M) ) + diag (Cm( 2 :M−1) , 1 ) ;

70

71 % Solve at each node

72 o f f s e t = zeros ( s i z e (D, 2 ) , 1 ) ;

73 fo r idx = N: −1:1

74 i f length ( o f f s e t )==1

75 o f f s e t = Am( 2 ) * ( OptionPrice ( 1 , idx )+OptionPrice ( 1 , idx +1) ) +

. . .

76 Cm( end ) * ( OptionPrice ( end , idx )+OptionPrice ( end , idx +1) ) ;

77 e l s e

78 o f f s e t ( 1 ) = Am( 2 ) * ( OptionPrice ( 1 , idx )+OptionPrice ( 1 , idx +1) )

;

79 o f f s e t ( end ) = Cm( end ) * ( OptionPrice ( end , idx )+OptionPrice ( end

, idx +1) ) ;

80 end

81 OptionPrice ( 2 :M, idx ) = U\ ( L\ (D*OptionPrice ( 2 :M, idx +1) + o f f s e t )

) ;

82 end

83

84 % Calculate the option pr ice

85 V= interp1 ( Sharevec , OptionPrice ( : , 1 ) , S0 ) ;

86 Cvector=OptionPrice ( : , 1 ) ;

87 % Plot the value of the option value , V( S , t ) , as a funct ion of S

88 % at times : t =0 , T/2 and T ( maturity ) .

89 f i g u r e ( 1 ) ;

90 plot ( Sharevec , OptionPrice ( : , 1 ) ’ , ’ r− ’ , Sharevec , OptionPrice ( : , round ( (

N+1) /2) ) ’ , ’ g− ’ , Sharevec , OptionPrice ( : ,N+1) ’ , ’b− ’ ) ;

91 x l a b e l ( ’ S ( t ) ’ ) ;

92 y l a b e l ( ’V( S , t ) ’ ) ;

93 legend ( ’ t = 0 ’ , ’ t = T/2 ’ , ’ t = T ’ )

135



94 t i t l e ( ’ Value of European Call Option within the Crank−Nicolson

Method ’ ) ;

95

96 % % Figure of the Value of the option , V( S , t )

97 f i g u r e ( 2 ) ;

98 sur f ( timevec , Sharevec , OptionPrice ( 1 :M+1 ,1:N+1) ) ;

99 t i t l e ( ’ European Call Option value , V( S , t ) , within the Crank−

Nicolson Method ’ )

100 x l a b e l ( ’ t ’ )

101 y l a b e l ( ’ S ’ )

102 z l a b e l ( ’V( S , t ) ’ )

103

104 %% Black−Scholes

105 % S0 = 0 : 1 : 1 8 0 ;

106 % K = 145;

107 % r = 0 . 0 7 6 ;

108 % sigma = 0 . 0 7 6 ;

109 % for T=82/252: −0.05:0

110 % plot ( S0 , b l s p r i c e ( S0 ,K, r ,T , sigma ) ) ;

111 % hold on ;

112 % end

113 % grid on

114 % f i g u r e ( 3 ) ;

115 % t i t l e ( ’ The Black−Scholes Pr ices ’ )

116 % x l a b e l ( ’ Share Price ’ )

117 % y l a b e l ( ’ Option Prices ’ )

118 end

136



Bibliography

[ADEH99] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent

measures of risk. 9(3):203–228, 1999.

[AP05] Yves Achdou and Olivier Pironneau. Computational methods for option pric-

ing. 2005.

[AS64] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions:

with formulas, graphs, and mathematical tables. 55, 1964.

[AW92] Joseph Abate and Ward Whitt. The [f]ourier-series method for inverting trans-

forms of probability distributions. 10(1):5–87, 1992.

[BC10] Suleyman Basak and Georgy Chabakauri. Dynamic mean-variance asset allo-

cation. 23(8):2970–3016, 2010.

[BC12] Suleyman Basak and Georgy Chabakauri. Dynamic hedging in incomplete mar-

kets: a simple solution. 25(6):1845–1896, 2012.

[BCC97] Gurdip Bakshi, Charles Cao, and Zhiwu Chen. Empirical performance of alter-

native option pricing models. 52(5):2003–2049, 1997.

[BCY08] Malay Bhattacharyya, Abhishek Chaudhary, and Gaurav Yadav. Conditional

var estimation using [p]earson’s type iv distribution. 191(2):386–397, 2008.
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