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Abstract 

Shewhart-type attribute charts are known to be inefficient for small changes in monitoring 

nonconformities. An alternative way is to use a time-weighted chart to monitor the time between 

events (TBE). We propose a one-sided Generally Weighted Moving Average control chart to 

monitor the time between events (TBE); regarded as the GWMA-TBE chart. To aid the 

implementation of the chart, the necessary design parameters are provided. An extensive 

performance analysis shows that the GWMA-TBE chart is better than the well-known EWMA 

and Shewhart charts at detecting very small to moderate changes. Finally, a summary and some 

conclusions are provided. 
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1. Introduction

Since its introduction by Walter A. Shewhart in the 1920‟s, statistical quality control (SQC) has 

found a variety of applications ranging from health care monitoring to financial fraud detection. 

In general, an item that does not comply with the standards is labelled a nonconforming or 

defective item. The traditional Shewhart-type attribute charts such as the c -chart or p -chart (see 

Montgomery, 2009) are used to monitor a process when the number of nonconformities or the 

number of defective items is of interest; these charts use the number of nonconformities or the 

number of defective items in regular, typically equi-spaced, time intervals and are known to be 

ineffective in detecting small shifts. Such rare events are frequently found in today‟s high-

performing technological environment wherein the rate of failures can be very small. An 

alternative and perhaps more appealing way to monitor the rate of failures (called the Poisson 

rate) is to use control charts based on the inter-arrival times of nonconforming items. These 

charts are especially useful when the occurrence of defective items is rare and the rate of 

occurrence is very small. Such charts are called time between events (TBE) charts and are 

typically based on the following two assumptions: (a) the occurrence of failures in a process 

follows a homogeneous Poisson process, and (b) the inter-arrival times between two consecutive 

events follow an exponential distribution. A number of TBE control charts can be found in the 

literature. The Cumulative Sum (CUSUM) chart to monitor the time between events, which is 

simply called the exponential CUSUM chart, was proposed by Vardeman and Ray (1985); the 

optimal design of the exponential CUSUM chart was given by Gan (1994) and an algorithm for 

computing the average run-length ( ARL) of the chart was subsequently given by Gan and Choi 
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(1994). The design and performance of the Exponentially Weighted Moving Average (EWMA) 

chart for the exponential distribution was studied by Gan (1998). A Shewhart-type chart for the 

time between events (also assuming an exponential distribution) was studied by Xie et al. (2002). 

In addition, Zhang et al. (2007) studied the performance of the Shewhart-type time between 

events chart for the gamma distribution. 

Time-weighted control charts such as the CUSUM and EWMA have been shown to be efficient 

in detecting small sustained upward or downward step shifts in a process – see Montgomery 

(2009) for more details and references on the theory, design and application of the classical 

EWMA and CUSUM charts for the normal distribution. Capitalising on the efficiency of the 

EWMA chart, Sheu and Lin (2003) proposed a Generally Weighted Moving Average (GWMA) 

control chart for the normal distribution; this chart is a generalisation of the EWMA chart and 

has been shown to be more effective than the EWMA, CUSUM and Shewhart-type charts (see 

Hsu et al., 2009) in detecting very small shifts. For more details on the recent developments on 

the GWMA charts, the interested reader is referred to the works of Sheu and Yang (2006), Sheu 

and Chiu (2007), Chiu and Sheu (2008), Chiu (2009), Sheu and Hsieh (2009), Sheu et al. (2012), 

Teh et al. (2012), Sheu et al. (2013), Huang et al. (2014), Huang (2014), Lu (2015), Aslam et al. 

(2015) and Chakraborty et al. (2016). 

As noted, for example, by Zhang et al. (2005) and Balakrishnan et al. (2015), the quick detection 

of any deterioration in a process is of utmost importance from a practical point of view. In the 

current context, i.e., monitoring the time between events, process deterioration can occur 

following an increase in the failure rate. So, for a high quality process, a small reduction in 
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process performance needs to be detected as early as possible. This does not imply that process 

improvement is not important. Quite to the contrary, as mentioned by Maravelakis and 

Castagliola (2009), an improvement in a process usually occurs after corrective action has taken 

place, but the time of the change is usually known and a control chart is not needed to detect the 

change/improvement. For this reason, a one-sided control chart to detect process deterioration is 

pursued here. 

In this article, we construct a one-sided GWMA chart based on the gamma distribution for 

monitoring the time between events (often regarded as the time between failures); this chart is 

labelled the GWMA-TBE chart and can be used in detecting a sustained downward step shift in a 

process. The proposed chart includes the one-sided EWMA and Shewhart charts as special cases, 

and it differs in two ways from the currently available TBE charts: (i) The interdependency of 

the GWMA charting statistics is explicitly taken into consideration, and (ii) we specifically focus 

on a one-sided GWMA-TBE chart based on the gamma distribution. The proposed one-sided 

GWMA-TBE chart is thus run-length unbiased (by construction) which is unlike the currently 

available two-sided control charts (based on the exponential distribution) which are biased. Note 

that a control chart is “biased” when the out-of-control average run-length (denoted by 1ARL ) is 

larger than its in-control value (denoted by 0ARL ) and therefore takes longer to detect a shift in 

the process; this is an undesirable property and normalizing transformations often do not 

completely eliminate this problem. 

The rest of this article is organised as follows: The general theory and background on the 

GWMA-TBE chart are given in Section 2. In Section 3, the run-length distribution for the 
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scenario when the parameters are known is studied; this includes the in-control (IC) design and 

the out-of-control (OOC) performance. The GWMA-TBE chart for the scenario when the 

parameters are unknown is studied in Section 4; this includes the effects of parameter estimation 

on the performance as well as the design of the Phase II GWMA-TBE chart. In Section 5, we 

show how the proposed chart can also be used to monitor the variance of a normal distribution. 

An illustrative example is provided in Section 6 and we finally conclude with some remarks in 

Section 7. 

2. The GWMA Time Between Events (GWMA-TBE) control chart

Let the random variables  ~  jY iid Exp  , j   1,2,3,…, denote the inter-arrival times between

consecutive failures in a homogeneous Poisson process with rate parameter 1/ . The continuous 

random variable
1

k

j

j

X Y


 , which is the sum of the inter-arrival times of k  consecutive

failures, then denotes the time until the 
thk  failure and is known to follow a ( ,Gamma k  ) 

distribution. The probability density function (p.d.f.) of X  is given by 

 
 

/ 1

; , ,    0 ,  0 and   0.
Γ

x k

k

e x
f x k x k

k



 


 

     (1) 

Note the following regarding the p.d.f. in (1): 

i. The expected value and variance of X  are  E X k  and   2var X k ; 

ii. Although the parameter 0k   can theoretically be any positive real number, in the

developments that follow it is assumed that k  is a known/specified positive integer, i.e., 
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1,2,3,k  , and selected by the practitioner. For example, if we set 3k  , the random 

variable X   denotes the total time between three consecutive failures; 

iii. If 1k  , the p.d.f. in (1) reduces to that of an exponential distribution and we would be

interested in monitoring the time until one failure; 

iv. It is assumed that 0 denotes the in-control (IC) standard/value for the parameter  ; this is

known as the “standard known” case and denoted by Case K. We primarily focus on the 

scenario when the parameter   is known, but we also deal with the situation when    is 

unknown and estimated from an in-control (IC) Phase I reference sample before online 

monitoring can start in Phase II; the latter scenario is referred to as the “standard unknown” 

case and denoted by Case U; 

v. Our objective is to construct a control chart to monitor   for a sustained downward step

shift, i.e., a decrease in the inter-arrival times, which would be indicative of deterioration in 

the process. The key focus is to detect small or very small shifts as quickly as possible. 

The GWMA-TBE control chart is constructed by taking a weighted average of a sequence of the 

'iX s . To this end, let N  be the discrete random variable denoting the number of samples until 

the next occurrence of an event since its last occurrence. Then, by summing over all values of N

, we can write 

   
1 1

Pr Pr[ ] 1.
t

i i

N i Pr N i N t


 

        (2) 

A generally weighted moving average (GWMA) is a weighted moving average (WMA) of a 

sequence of iX  statistics where the probability  Pr N i  is regarded as the weight iw  for the 
thi



7 

most recent statistic 1t iX    among the last t  of iX  statistics. In other words, the probability 

 Pr 1N   is the weight 1w  for the latest observation tX  and the probability  Pr N t  is the

weight tw  for the most out-dated observation 1X . The probability  Pr N t  is considered as the

weight for the starting value, denoted by 0Z , which is typically taken as the in-control (IC) 

expected value of the statistic under consideration, i.e.,  0 0| ICiZ E X k  . Therefore, the 

charting statistic for the GWMA-TBE chart is defined as 

   1

0

0

1

forPr   Pr 1,2,3,
t

t t i

i

Z N i X N t Z t 



       (3) 

As in Sheu and Lin (2003), the distribution of N  is taken to be  Pr N i    1i iq q
 
 , where 

0 1q   and 0   are the two parameters; this is the discrete two-parameter Weibull 

distribution (see Nakagawa and Osaki, 1975). So, the weights are given by  1i i
iw q q

 
  . By 

substituting 0 0Z k  and the probability mass function (p.m.f.) of the two-parameter discrete 

Weibull distribution in equation (3), the charting statistic for the GWMA-TBE chart simplifies to 

  1

1

1

for 1,2,3,
t

i i t
t t i

i

Z q q X q k t
  



 



        (4) 

Note that the GWMA-TBE chart reduces to an EWMA chart when 1   and 1q   , where 

0 1   is the smoothing parameter of the EWMA chart. The EWMA chart further reduces to 

the Shewhart chart when 0q   and 1  . The GWMA chart can therefore be viewed as a 

generalization of the EWMA and Shewhart-type charts with an additional parameter   which 

provides more flexibility in designing the chart. We introduce the EWMA-TBE and the 

Shewhart-TBE charts as special cases. 
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A closer look at the choice of weights for the GWMA chart shows that the weights 

 1i i
iw q q

 
  , i  1,2,3,…, are decreasing in i  for a fixed 0 1q   and 0 1  ; this 

implies that more weight is given to more recent observations in the sequence of 'iX s . A proof 

of this result is given in the Appendix. 

The in-control (IC) expected value and variance of the charting statistic tZ  are given by 

      1

1 0 0

1

| IC  
t

i i t
t t i

i

E Z q q E X q k k
  

 

 



     (5) 

and 

      
2

1 2
1 0

1

| IC  
t

i i
t t i t

i

var Z q q var X Q k
 



 



         (6) 

respectively, where   
2

1

1

.
t

i i
t

i

Q q q
 



   

The exact time-varying (symmetric) control limits (  & e eUCL LCL ) and centerline ( eCL ) of a 

two-sided GWMA-TBE chart are given by 

2
0 0 0/ ande e t eUCL LCL k L Qk CL k       (7) 

where L 0 is the distance of the control limits from the centerline and the subscript “e” denotes 

the exact control limits. 

The steady-state control limits are used when the process has been running for several time 

periods and are based on the asymptotic variance of the charting statistic (see Lucas and 

Saccucci, 1990). The steady-state control limits and the centerline are given by 

2
0 0 0,/ ands s sUCL LCL k L Qk CL k        (8) 
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where the subscript “s” denotes the steady-state control limits and m .li t
t

Q Q


  

As we are primarily interested in detecting deterioration in the process, i.e., a decrease in the 

waiting times between failures, only a lower control limit is used in the design and 

implementation of the proposed GWMA-TBE chart; this limit is given by 

2
0 0 .sLCL k L Qk    (9) 

A GWMA-TBE chart for detecting improvement in a process can be designed in a similar 

manner but not pursued here any further for the sake of brevity. 

The following two points are worth noting here: 

i. The quantity tQ  is a monotonically increasing and convergent function of t  (see the Appendix 

for more details). To this end, Table 1 shows the value of tQ  for different choices of the 

parameters  ,q   and various values of t . We observe that the change in tQ  is almost 

negligible for t   10. Due to the quick convergence of tQ , the exact control limits also quickly 

converge towards the steady-state limits. Hence, the steady-state lower control limit is used in 

order to simplify the application/implementation of the proposed chart. For the sake of 

notational simplicity, we will use LCL  hereafter to denote the steady-state lower control limit 

in (9); 

ii. If any tZ  plots on or below LCL , the process is declared out-of-control (OOC) and a search for 

assignable causes is initiated. Otherwise, the process is considered to be in-control (IC), which 

implies no change in   has occurred, and the charting procedure continues on. 

In the ensuing section, we discuss the design of the proposed GWMA-TBE chart in more detail. 



10 

Table 1: tQ  values for different  ,q α  combinations.

t q  0.5, α  0.5 q  0.5, α  0.9 q  0.5, α  1.3 

5 0.2751 0.3208 0.3691 

10 0.2773 0.3215 0.3691 

50 0.2778 0.3215 0.3691 

100 0.2778 0.3215 0.3691 

t q  0.7, α  0.5 q  0.7, α  0.9 q  0.7, α  1.3 

5 0.1074 0.1555 0.2227 

10 0.1107 0.1614 0.2239 

50 0.1129 0.1618 0.2239 

100 0.1129 0.1618 0.2239 

t q  0.9, α  0.5 q  0.9, α  0.9 q  0.9, α  1.3 

5 0.0132 0.0274 0.0667 

10 0.0143 0.0360 0.0866 

50 0.0160 0.0427 0.0887 

100 0.0163 0.0427 0.0887 
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3. The design and implementation of GWMA-TBE chart

Performance measures are needed to design and compare the performance of control charts. The 

traditional approach of evaluating a control chart is to obtain the run-length distribution and its 

associated characteristics. The run-length is a discrete random variable that represents the 

number of samples which must be collected (or, equivalently, the number of charting statistics 

that must be plotted) in order for the chart to detect a shift or give a signal. An intuitively 

appealing and popular measure of a chart‟s performance is the average run-length ( ARL), which 

is the expected number of charting statistics that must be plotted in order for the chart to signal 

(see Human and Graham, 2007). Clearly, for an efficient control chart, one would like to have 

the in-control ARL (denoted 0ARL ) to be “large” and the out-of-control ARL  (denoted 1ARL ) 

to be “small”. Although other measures such as the standard deviation of the run-length  SDRL

and various upper and lower percentiles could be and have been used to supplement the 

evaluation of control charts, the ARL  is the most widely used measure due to its intuitive 

appealing interpretation. Therefore, we use primarily the ARL  to design and compare the 

performance of the proposed GWMA-TBE chart. 

The design of a control chart typically involves solving for the combination of the chart‟s 

parameters, i.e., q ,   and L , so as to obtain a pre-specified in-control average run-length 

denoted by *

0ARL  for a given or selected value of k . The computational aspects of the run-length 

distribution for the GWMA-TBE chart are discussed next; this is followed by the design of the 

GWMA-TBE chart. 
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3.1  The run-length distribution of the GWMA-TBE chart 

There are numerous methods to calculate the run-length distribution of a time-weighted chart 

like the GWMA chart and we investigate here three approaches: (i) An exact approach based on 

closed-form expressions, (ii) A Markov chain approach, and (iii) Monte Carlo Simulation. Each 

method is discussed in more detail below along with their pros and cons. It should be noted that 

ultimately we used computer simulation and double-checked the results by using the Markov 

chain approach for the EWMA-TBE chart; these results are available upon request. 

3.1.1 Exact approach

Suppose the run-length random variable is denoted by R  and that iA  denotes the signalling 

event at the 
thi  sample.  The non-signalling event is therefore given by [  ]c

i iA Z LCL   for i 

1,2,3,.... Then, in general, the run-length distribution can be written as 

   1 c

1
Pr Pr  

r

i ri
R r A A




  
   , for r   1,2,3,.... For any 1i  , we can re-write the event 

[ ]c
i iA Z LCL  , as [ ]c

i i iA X L  , where 0
1

1

LCL qk
L

q





  and 

  1

1 02
 

, 2,3,4,
1

i j j i
i jj

i

LCL q q X q k
L i

q

  



 
  

  



 (10) 

The run-length distribution can therefore be written as 

     1 1 1Pr 1 1 Pr an ,d Pr r rR X L R r I I            (11) 

where r 1 1
Pr   Pr  { }

r rc
i i ii i

I A X L
 

     
     for 2,3,4,r  ; see the Appendix for more 

details. 
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Since the iX ‟s are assumed to be independent ( ,Gamma k  )  random variables, we have

 
1 2

1

; ,   ,

r

r

r i i

iL L L

I f x k dx
  



 
   

 
   (12) 

where  ; ,if x k   is the p.d.f. given in (1). 

The ARL can also be expressed in terms of r  I  as (see the Appendix for more details) 

r

1

1 .
r

ARL I




   (13)

To analytically evaluate expressions (12) and (13) is time-consuming and uneconomical for two 

reasons: 

a. The lower bounds in the integrals of rI , i.e., the iL ‟s given in equation (12), are mutually 

dependent and functions of the sequence of preceding statistics 1 X , 2 X ,…, 1  iX  ; these 

bounds cannot be economically recursively updated and is therefore a computationally 

expensive approach; 

b. The number of terms in expression (12) that needs to be evaluated increases dramatically

as r  increases; 

As mentioned before, if we set 0q   and 1  , we obtain the Shewhart-TBE chart. In this 

special case, the lower control limit in (10) reduces to iL LCL  for 1i   and the probability of a 

signal is given by  Pr[ | ~ ,1/ ]i iX LCL X Gamma k  , where the lower control limit can be

obtained by solving the expression   *
0Pr | ~ ,1 ] 1/i iX LCL X Gamma k ARL    .
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For the EWMA charts, using the Markov chain approach, the probability mass function (p.m.f.), 

ARL and the variance (VARL) of the run-length random variable R  can be obtained as (see 

Theorems 5.2 and 7.4 of Fu and Lou, 2003),  P R r    r 1 1 ξQ I Q  for 1,2,3,...r  ,

 
1

  1 ARL


 ξ I Q  and VARL     
2 21  ARL


  ξ I Q I Q , where the sub-matrix matrix 

 Q Q  is called the essential transition probability sub-matrix,  I  is the identity matrix, 1 ξ

is the „initial probability vector‟ such that 1j   when the process mean i.e. 0k , is in the thj

state and j   0 for all other j  with 
1

1j

j






 ,  
T

11 1,1, ,1    is the unit vector and   denotes 

the number of transient states in the state space Ω . The Markov chain results for the one-sided 

EWMA-TBE chart are available upon request from the corresponding author. The interested 

reader is also referred to the work by Graham et al. (2011a and 2011b) for more details. 

The prime obstacle using the Markov chain approach for the GWMA chart is the fact that the 

GWMA chart‟s plotting statistic cannot be viewed as following a first-order Markov chain. In 

fact, obtaining tZ  requires all the tX ‟s from start-up, i.e., 1 0, , ,t tX X X  . This complication 

arises due to the repeated exponentiation (so-called “bottom-up” tetration) in the weights 

 1i i
iw q q

 
   of the charting statistics. This implies that tZ  depends on all 1 2 1, , ,t tZ Z Z   . To 

this end, note that the probability  1 1Pr | , ,t tZ Z Z  can be approximated by * *
1Pr |t tY Y 

   ,

where *

1( , , )t t t mY Z Z     and m  is the threshold beyond which the weights are approximately 

zero (see Appendix). So, { *, , 1, 2, }tY t m m m     becomes a first-order Markov chain and we 

can use the results from Fu and Lou (2003) for , 1,..t m m  .. For 1,2, , 1t m   , one still has 

3.1.2 Markov chain approach 



15 

to use the exact approach. The major difficulty in using the Markov Chain approach for the 

GWMA-TBE chart is in defining the state-space of the first-order Markov chain {

*, , 1, 2 }tY t m m m     as it depends on the state-space of 1( , , )t t mZ Z   , which is the 

Cartesian product Ωm , , 1, 2t m m m   ... 

Due to the above-mentioned difficulties with the exact approach and the Markov chain approach, 

extensive simulation has been used to calculate the run-length distribution for the proposed 

GWMA-TBE chart. To this end, it is important to note that, Sheu and Lin (2003), Sheu and Yang 

(2006) and Lu (2015) also mentioned that it is difficult to obtain the run-length distribution of the 

GWMA charts by using the exact approach or the Markov chain approach. The simulation 

approach is discussed next. 

3.1.3 Monte Carlo simulation approach

The simulation algorithm uses the stochastic representation of the GWMA-TBE chart and is 

done according to the following five steps: 

i. Select a combination of the design parameters, i.e., ( , ,q L ), set 0 1   and calculate the

control limit according to expression (9); 

ii. Generate an individual observation from a ( ,1Gamma k ) distribution and calculate the charting

statistic  tZ  according to expression (4) with the starting value taken as 0Z k ; 

iii. If tZ LCL , the process is considered to be in-control and a run-length counter is incremented; 

iv. Steps (ii) and (iii) are repeated and tZ  is sequentially updated until tZ LCL ; when this event 

occurs, a signal is given and the process is declared to be out-of-control. The simulation stops 

and the run-length is recorded; 
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v. Steps (ii)–(iv) are repeated 10,000 times.

We have also used simulation for the EWMA-TBE chart in order to be consistent and be able to 

compare them with the Markov chain approach. The 10,000 simulated run-lengths can be used to 

empirically calculate the characteristics of the run-length distribution. 

3.2 The in-control (IC) design of the GWMA-TBE chart 

For a given or chosen value of k , the two parameters q  and   are varied over a certain range 

and for each ( ,q  ) combination, the values of the charting constant, i.e. L 0, are obtained so 

that the attained in-control ARL is close to (in this case slightly above or below due to the use of 

simulation) the nominal or specified value *

0ARL . The typical industry standards for the *

0ARL

are 370 or 500 and we consider the former in our study. The typical recommendation for the 

smoothing parameter 0 1   for an EWMA chart is to choose smaller values for smaller shifts 

(see Montgomery, 2009, page 423). Because the GWMA chart reduces to an EWMA chart when 

1q    and 1  , a larger value of q , i.e. closer to 1, should be a reasonable choice for the 

GWMA chart to detect small shifts. To this end, Sheu and Lin (2003) noted that ( ,q  ) 

combinations in the intervals 0.5 q  0.9 and 0.5    1 enhanced the sensitivity of the 

GWMA- X  chart and outperformed the EWMA- X  chart for small shifts (i.e., less than 1 

standard deviations in the location). The same range of ( ,q  ) values were also considered by 

Sheu and Yang (2006), Teh et al. (2012), Sheu et al. (2013), and Lu (2015). In our simulation 

study, we set k   1,2,3,4,5 and considered the range q  0.5,0.6,0.7,0.8,0.9,0.95 and   

0.5,0.6,0.7,0.8,0.9,1.0,1.3, respectively. 
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Using simulation along with a grid search algorithm, we obtained the charting constant L 0 for 

the chosen ( ,q  ) combination and specified value of k , so that the attained 0ARL  is 

approximately equal to *
0 370ARL  ; the values of L  determined in this way are presented in 

Table 2 along with the attained 0ARL  values. The L  values in Table 2 will be useful for the 

design and implementation of the GWMA-TBE chart; this includes designing an EWMA or 

Shewhart-type TBE chart. For example, if we choose 2k   and let q 0.8,  0.7, a value of 

L 1.953 leads to an attained 0ARL  equal to 370.05. To highlight the design parameters of the 

EWMA and Shewhart-type TBE charts, the row for 1.0   have been highlighted. 

From Table 2, we note in general that multiple combinations of the parameters  , ,q L  will

yield the same 0ARL  for some chosen or specified value of k . This is somewhat challenging 

because, apart from desiring a sufficiently large 0ARL , the 1ARL  should be small for an effective 

GWMA-TBE chart. Therefore, the ( , ,q L ) combination with the minimum 1ARL  for a 

specified shift   is said to be the optimal combination. The optimal design of the GWMA-TBE 

chart consists of specifying the desired 0ARL  and 1ARL  values as well as the magnitude of the 

process shift that is anticipated and then select the ( , ,q L ) combination that provides the 

desired  ARL performance; typically, the ( , ,q L ) combination with the minimum 1ARL  is 

selected. The solution to this problem is an optimization problem in 3-dimensional space. 

Although a detailed study on the optimal design for the GWMA-TBE chart is out-of-scope for 

this paper, in the next section we investigate and comment on the “near optimal” design given 

the out-of-control (OOC) ARL values for different shift sizes. 
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Table 2: Values of L  for the GWMA-TBE chart for different ( q , α ) when k  = 1, 2, 3, 4, 5 

and 0 
*ARL  370. 

q Shewhar

t 

k α 0.5 0.6 0.7 0.8 0.9 0.95 q  = 0 

1 0.50 1.3

43 

36

9.6

4 

1.4

27 

37

0.5

0 

1.5

12 

37

0.2

0 

1.5

94 

37

1.1

9 

1.6

20 

37

1.3

4 

1.5

52 

37

0.3

4 

0.60 1.3

84 

37

2.6

4 

1.4

82 

37

2.2

1 

1.5

85 

36

9.9

4 

1.6

87 

37

1.2

7 

1.7

28 

37

0.9

6 

1.6

15 

37

0.2

7 

0.70 1.4

13 

37

2.2

2 

1.5

20 

37

0.8

2 

1.6

35 

37

0.0

2 

1.7

50 

37

0.0

6 

1.8

06 

37

0.9

6 

1.6

89 

37

0.5

5 

0.80 1.4

32 

36

9.1

8 

1.5

44 

37

1.0

4 

1.6

65 

37

0.6

2 

1.7

92 

37

1.8

6 

1.8

68 

37

0.7

9 

1.7

64 

37

0.5

9 

0.90 1.4

44 

36

8.6

1 

1.5

59 

37

2.7

9 

1.6

81 

37

1.9

8 

1.8

08 

37

1.1

2 

1.8

93 

37

0.8

2 

1.8

18 

37

0.9

9 

EWM

A (1.0) 

1.4

51 

37

3.8

5 

1.5

63 

36

9.1

0 

1.6

85 

37

2.0

3 

1.8

11 

37

0.9

0 

1.9

07 

37

1.4

0 

1.8

59 

37

0.0

5 

0.00

2706 

3

7

0 

1.30 1.4

47 

36

8.1

0 

1.5

49 

37

2.7

9 

1.6

56 

37

2.2

4 

1.7

70 

37

1.0

9 

1.8

80 

37

0.0

1 

1.8

91 

37

0.7

3 

2 0.50 1.6

26 

37

0.3

0 

1.6

94 

37

1.3

0 

1.7

62 

37

1.7

1 

1.8

17 

37

1.5

2 

1.8

08 

37

0.2

7 

1.7

17 

37

0.3

2 

0.60 1.6

67 

37

0.2

0 

1.7

47 

37

0.3

3 

1.8

27 

37

0.6

0 

1.8

97 

36

9.9

6 

1.8

93 

37

0.5

9 

1.7

46 

37

0.5

3 

0.70 1.6

98 

37

2.8

4 

1.7

86 

37

0.9

4 

1.8

73 

37

0.2

6 

1.9

53 

37

0.0

5 

1.9

60 

37

1.3

4 

1.8

02 

37

0.6

1 

0.80 1.7

21 

37

1.3

4 

1.8

13 

37

1.7

4 

1.9

07 

37

0.8

5 

1.9

89 

37

0.1

6 

2.0

06 

37

0.3

7 

1.8

56 

37

0.9

0 

0.90 1.7 37 1.8 37 1.9 37 2.0 37 2.0 37 1.9 37
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36 0.4

2 

31 0.5

4 

27 0.6

6 

11 1.2

8 

34 0.8

2 

04 0.2

4 

EWM

A (1.0) 
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48 
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1.0

3 
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42 
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5 

1.9

35 
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0.8

1 
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19 
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4 

2.0

45 
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0.1

6 

1.9

44 
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0.6

0 

0.07
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3

7

0 
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58 
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2 
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42 
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6 
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23 
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09 
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78 
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13 

37

0.0

9 
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25 
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0.4

1 
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33 
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0.3
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46 
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2 
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72 
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3 
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50 
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9 
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28 
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0.8

3 
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91 
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0.7

4 
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92 
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3 

0.90 1.8

89 

37
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0.3

3 
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45 
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6 
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08 
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3 
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95 
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3 
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38 
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0.2

4 
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00 
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4 
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77 
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2 
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0.0

0 
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15 
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0.9

5 
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10 
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4 
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72 
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0.2

4 
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0712 

3

7
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3 
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6 

2.0

49 

37

0.5

8 
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3 
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36 
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4 0.50 1.8

92 

37

0.4

8 
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38 
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1 
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7 
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4 
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72 
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4 
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59 
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1 
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25 
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3 

1.9

82 
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5 
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38 
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7 
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76 
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5 
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29 
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0.5

2 
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55 
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0 
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52 
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1.0

2 

2.0

15 
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9.4

1 

2.0

79 
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9 

2.1

22 
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2 

2.0

75 
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0.4

9 

1.8

77 
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0.7

8 

0.80 1.9

72 
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4 
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40 
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0.2

1 

2.1

08 
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0.1

5 
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53 
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0.6

7 
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07 
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0.2

6 

1.9

17 
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5 
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87 
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57 
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23 
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70 
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33 
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56 
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7
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78 
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3.3 The out-of-control (OOC) performance of the GWMA-TBE chart 

To study the out-of control (OOC) performance of the proposed GWMA-TBE chart, we used all 

the combinations of the design parameters shown in Table 2; these combinations ensure that the 

0ARL ‟s are close to 370 (when 1  , i.e., no shift occurred) and therefore guarantee that all the 

charts are at an equal footing. Because we use only a lower control limit (as we are interested in 

a sustained downward step shift), we only focus on values for 1   and we specifically use    

0.975, 0.95, 0.925, 0.9, 0.85, 0.8, 0.7, 0.5 and 0.25. Also, we do not consider any shifts    0.25, 

i.e., more than a 75% decrease, as the Shewhart-type charts are well-known to be more efficient

than the GWMA and/or EWMA charts for large changes. 

The results for the OOC performance comparisons are shown in Tables 3, 4 and 5 for 

1,2 and 3k  , respectively, and for some combinations of  , ,q L . The results for 4,  5k   and

other combinations of  , ,q L  are not presented here for conciseness, but are available from the

authors upon request. Note the following: 

i. Each cell in Tables 3, 4 and 5 displays the ARL , the standard deviation of the run-length (

SDRL ) as well as the 5
th

, 25
th

, 50
th

, 75
th

 and 95
th

 percentiles;

ii. The tables include the results for the EWMA and the Shewhart-type TBE charts. The

highlighted columns in the tables display the results for the EWMA chart whereas the 

columns on the right-hand side display the results for the Shewhart-type chart; 

Although these tables are dense and contain lots of information, a quick comparison of the 

results reveals the following main points: 
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i. Both the GWMA-TBE and the EWMA-TBE charts outperform the Shewhart-type TBE chart

for all values of  k  and for all shifts; this includes the scenario where   decreases to a 

quarter of its original value, i.e., when    0.25; 

ii. The GWMA-TBE can be designed to outperform the EWMA-TBE chart for very small to

moderate shifts; this can be done using a suitably selected combination of  , ,q L . For

example, consider Table 3 with the results for   1k   and focus on the section where 0.8q  : 

The three GWMA charts with  0.5  , 0.7 and 0.9 all outperform the EWMA chart when 

1.    The same is true for other values of k  and  , ,q L .   This clearly illustrates the

benefit of the additional design parameter ( ) in constructing a GWMA control chart; 

iii. As the value of k  increases, the performance for both the GWMA-TBE and EWMA-TBE

charts improves. For instance, when  k   1 and     0.9, the 1ARL  for a GWMA-TBE chart 

with q  0.9,   0.7, L 1.806 is 125.37 while the 1ARL  for GWMA-TBE chart  when

 k   2 and     0.9 and q  0.9,   0.7, L 1.960 is 93.96 . This result indicates that a 

higher value of k  improves the sensitivity of the GWMA and EWMA charts. However, 

caution should be applied when implementing these charts in practice since a larger value of 

k  also implies more observations/failures has to be collected before a decision can be made 

about the status of the process.  The specific choice of k  is left to the practitioners; 

iv. As mentioned earlier, the optimal design of the GWMA-TBE chart typically consists of

specifying the desired 0ARL  and 1ARL  values as well as the magnitude of the process shift (

 ) that is anticipated and then select the ( , ,q L ) combination that provides the desired 

 ARL performance. However, Chan and Zang (2000) argued that it is also important to take 
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Table 3: IC and OOC ARL, SDRL  as well as the 5
th

, 25
th

, 50
th 

(or )MDRL , 75
th

 and 95
th

percentiles of the run-length for different combinations of  , ,q α L  when 1k .
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Table 4: IC and OOC ARL, SDRL  as well as the 5
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Table 5: IC and OOC ARL, SDRL  as well as the 5
th

, 25
th

, 50
th 

(or )MDRL , 75
th

 and 95
th

percentiles of the run-length for different combinations of  , ,q α L  when 3k .
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into account the SDRL  relative to the ARL  when designing an EWMA chart; i.e.; they 

added the constraint that SDRL ARL ; this was done to avoid large variation in the run-

length distribution. So, using their criterion for the optimal design of the EWMA chart for the 

proposed GWMA-TBE chart, the optimal design would consist of specifying the desired 

0ARL  and 1ARL  values as well as the magnitude of the process shift ( ) that is anticipated 

and then select the ( , ,q L ) combination that provides the desired  ARL performance subject 

to the constraint that .SDRL ARL  We used both definitions to obtain the “near optimal 

design”. Note that, we specifically refer to this as the “near optimal design” because in the 

way the design was carried out, i.e., the two parameters q  and   were varied over a certain 

range and for each ( ,q  ) combination that was investigated the value of the charting 

constant, i.e., L 0, was obtained so that the attained in-control ARL  is close to the nominal 

or specified value *

0ARL .  This approach might exclude the “true” optimal design. 

Using the results in Tables 3, 4 and 5, the “near optimal” design would be those ( , ,q L ) 

combinations that result in the smallest 1ARL  for a specified shift ( ) given the 0 370ARL 

; with or without the constraint SDRL ARL . 

Table 6 provides the “near optimal” combinations of the parameters ( , ,q L ) as well as the 

1ARL  values for different   and k   1, 2, 3, 4 and 5. From Table 6, we observe the 

following: 

a. For smaller shifts, i.e., for values of   closer to 1, a larger value of q  (closer to 1) and a

smaller value of   (closer to 0.5) works best. The converse also holds, i.e., for larger 
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Table 6: Near optimal  , ,q α L  combinations with corresponding ARL  values.

No 
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shifts, a smaller value of q  (closer to 0.5) and larger value of   (greater and equal to 1) 

works best; 

b. The EWMA-TBE chart, i.e. when 1  , only features as the optimal design for    0.7.

This result confirms the fact that a GWMA chart can be designed to outperform an EWMA 

chart for very small, small and moderate shifts. 

3.4. The zero-state versus the steady-state average run-length 

The out-of-control average run-lengths ( 1ARL ) of the previous sections are called the zero-state 

ARL‟s and are based on the assumption that the shift occurs at start-up, i.e., at time 1t  . 

However, it is also of interest to see whether a GWMA-TBE chart designed for optimal 

performance at start-up works well if the shift occurs later in the process, say at time t   50, 

100, 150, 300, etc. This is called the steady-state performance and the ARL  is referred to as the 

steady-state ARL; the assumption is basically that a stable process has been operating in-control 

for some time before the shift occurs. We calculated the steady-state ARL  for some ( , ,q L ) 

combinations when 1,2k   and compared it to the zero-state ARL . The results are presented in 

Table 7 and from this table we observe the following: 

i. The zero-state and steady-state ARL  are the same for all practical purposes. The minor

differences that are observed are due to the inherent simulation variability; 

ii. The GWMA-TBE chart generally performs similar or, in many cases, better than the

EWMA-TBE chart when    0.7 (i.e., for very small, small or moderate shifts). For    0.7 

(i.e., for larger shifts), the EWMA-TBE chart generally performs better than the GWMA-

TBE. These results hold irrespective of when the shift has occurred; 
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Table 7: The zero-state and steady-state ARL values for the GWMA-TBE chart. 
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iii. Both the GWMA-TBE and EWMA-TBE charts outperform the Shewhart-TBE; this is a

result that was also observed when studying the results of Tables 3, 4 and 5 with the zero-

state ARL‟s. 

Note that the charting statistics for the Shewhart-TBE chart are mutually independent, 

irrespective of the time the shift occurs, and therefore the time of shift can always be taken as 

1t    when considering the OOC run-length. 

4. Phase II GWMA-TBE chart

When the in-control (IC) value of the parameter   is unknown, it is typically estimated from an 

in-control Phase I sample (the so-called reference or calibration sample) before prospective (i.e., 

online) monitoring starts in Phase II; this scenario is referred to as the “standard unknown” case 

and denoted by Case U.  Note that the Phase I sample is taken when the process was thought to 

operate in-control and without any special causes of concern (see Montgomery (2009), page 

198). The point estimate of   is denoted by ̂  and is used to estimate the starting value 0Z  and 

to estimate the Phase II lower control limit of the GWMA-TBE chart; in both cases, ̂   is 

substituted for the known parameter value 0 . The charting statistic and estimated lower control

limit of the GWMA-TBE chart in Case U are defined as follows: 

  1

1

1

for 1,2,3,ˆ
t

i i t
t t i

i

Z q q X q k t
  



 



         (14) 

and 

2ˆ ˆ .ˆLCL k L Qk     (15) 
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The Phase II GWMA-TBE chart operates in the same manner as the GWMA-TBE chart of Case 

K, i.e., the charting statistic in (14) is plotted on a control chart with the ˆLCL  given in (15) and

if a point plots on or below the lower control limit the chart signals and the process is declared 

OOC so that a search for assignable causes is started. 

The following points should be noted: 

i. Obtaining an in-control Phase I reference sample is an important problem in its own right,

but we do not study this problem here. We assume that we have an in-control Phase I 

reference sample. The interested reader is referred to Chakraborti et al. (2008) for an in-depth 

overview of Phase I control charting procedures as well as the operation and implementation 

of these charts; 

ii. To estimate the unknown value of  , a suitable point estimator is required.  We use the

Maximum Likelihood Estimator (MLE) which is also the Uniform Minimum Variance 

Unbiased Estimator (UMVUE). To this end, if we let  1 2, , , ~ ,mX X X iidGamma k 

denote the IC Phase I reference sample of size 1m , the MLE is given by 
1

/ˆ
m

i

i

X km




and follows a ( , /Gamma km km ) distribution; 

iii. Because a point estimate is substituted for the unknown parameter value in Case U, the

starting value and lower control limits are both random variables (as indicated by the ^ -

notation). Therefore, it is of interest to examine the effects of estimation on the Phase II run-

length distribution and hence the performance and robustness of the GWMA-TBE chart 

using the design parameters of Case K. Stated differently, we want to know if the design 

parameters for the Case K GWMA-TBE chart may be used for the Phase II GWMA-TBE 
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chart in Case U. To this end, it is important to stress that, given a point estimate ̂  

(calculated using an in-control Phase I sample), we obtain the conditional Phase II run-length 

distribution and we observe the conditional performance of the GWMA-TBE chart.  That is, 

the observed performance of the chart is based on that specific in-control Phase I sample.  

Thus, the conditional performance and the conditional run-length distribution will be 

different for each practitioner based on his/her own in-control Phase I sample.  Therefore, the 

conditional performance does not give us a complete insight into the overall performance of 

the chart. In order to get an overall picture and a more general idea about the effects of 

parameter estimation, we study the unconditional run-length distribution; this unconditional 

distribution can be thought of as the run-length distribution averaged over all possible values 

of the parameter estimates. Focusing on the average run-length ( ARL), we can write the 

aforementioned statements mathematically as follows: 

      ˆ

0

| ˆ ˆ| ˆ ˆ  ,UARL E E R E R f d


   


        (16) 

where UARL  denotes the unconditional ARL,  | ˆE R  denotes the conditional ARL , i.e.,

the expectation of the run-length  R  conditional on a point estimate ̂ , and  ˆf   denotes

the p.d.f. of ̂ . Similar expressions can be obtained for other characteristics of the run-length 

distribution as well. 

4.1 Effects of parameter estimation on the performance of the Phase II GWMA-TBE chart 

To assess if the design parameters for the Case K GWMA-TBE chart may be used for the Phase 

II GWMA-TBE chart in Case U, a simulation study was performed to calculate the in-control 



44 

and out-of-control average run-length of the Phase II GWMA-TBE chart. Without loss of 

generality, we simulated the in-control Phase I sample from a  ,1Gamma k  distribution. We

used m  50, 100, 500 and 1000 with four sets of design parameters: 

i. ( 1, 0.95, 0.5, 1.552k q L    ), ( 1, 0.95, 1, 1.859)k q L    ,

ii. ( 2, 0.95, 0.5, 1.717k q L    ), ( 2, 0.95, 1, 1.944k q L    ).

Note that the first and second sets use 1k   whereas the third and fourth sets use 2k  . Also, 

the first and third sets result in GWMA-TBE charts whereas the second and fourth sets result in 

EWMA-TBE charts. 

The results are displayed in panels (a), (b), (c) and (d) of Figure 1. These graphs display the 

ARL curves, i.e., ARL on the vertical axis versus the size of the shift ( ) on the horizontal axis. 

The graphs also display the corresponding ARL-curve of Case K and is used as the reference to 

which we compare the ARL-curves of Case U. The ARL values are shown in the data tables 

below the graphs for ease of reference. From these graphs, we observe the following points: 

i. The in-control ARL in Case U is substantially larger than the corresponding in-control ARL

in Case K; in some cases even greater than 1,000. The out-of-control ARL  in Case U is also 

larger than the corresponding out-of-control ARL  of Case K. Only if  0.5 do we see that 

the charts perform relatively similar; 

ii. The smaller the in-control Phase I reference sample is, i.e., the smaller the value of m , the

larger the difference between the Case U and Case K and ARL  is. For the Case U chart 

(based on the design parameters of the Case K chart), to perform anything like the Case K 

chart requires more than 1,000 Phase I observations; 
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Figure 1:     values for the GWMA-TBE chart for unknown   when          . 

(a) (                        ) (b) (                        ) 

(c) (                        ) (d) (                        ) 
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iii. The EWMA-TBE chart is less impacted (compared to the GWMA-TBE chart) by the

estimation from Phase I which is seen by looking at the ARL  values on the vertical axis. 

The above observations demonstrate that in those scenarios where it is unrealistic to wait a long 

time to gather the necessary Phase I observations, an alternative and more realistic approach is 

needed since we cannot use the Case K design parameters. To this end, one should adjust the 

control limit, i.e., contract the control limit. This is investigated next. 

4.2 The in-control (IC) design of the Phase II GWMA-TBE chart 

The design of the Phase II GWMA-TBE chart requires one to use expression (16) and adjust the 

width of the lower control limit ( L ) so that the in-control unconditional ARL  is equal to a pre-

specified value such as 370. This means we want to solve for the value of  L  that satisfies the 

following equation: 

      ˆ0

0

| , | ,  ˆ ˆ ˆ 3ˆ 70.UARL E E R IC E R IC f d


   


       (17) 

The integral in equation (17) can be approximated by using computer simulation and calculating 

the average of a sufficiently large number of in-control conditional average run-lengths, i.e., 

calculating  
1

1
| , ,ˆ

N

j

E R IC
N




 N  denotes the number of simulations and  ˆ| ,E R IC  denotes the

conditional in-control average run-length. Using a search algorithm, we have found the value of 

L  that satisfies  
1

1
| , 370ˆ

N

j

E R IC
N




  for some ( , )q   combinations. These values are 

displayed in Table 8 along with the value of L  for the Case K chart; the latter correspond to the 

values listed in Table 2. From Table 8, we observe that the value of L  converges to the Case K 
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Table 8: Design parameters for the Phase II GWMA-TBE chart in Case U. 

m  

k q α 50 100 500 1000 Case 

K 

1 0.95 0.50 0.927 1.099 1.387 1.463 1.552 

1.00 1.383 1.586 1.789 1.819 1.859 

2 0.50 1.020 1.240 1.551 1.625 1.717 

1.00 1.422 1.649 1.868 1.901 1.944 
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value as the number of observations increases.  So, the smaller the value of m , the narrower the 

control limits should be to compensate for the large ARL  we observed in Figure 1. 

In the next two sections, we discuss a generalization of the proposed GWMA chart and an 

illustrative example is provided in order to demonstrate the application of the proposed chart. 

5. GWMA-TBE for monitoring the variance

The proposed GWMA chart based on the  ,Gamma k   distribution can also be used to monitor

the known in-control (IC) variance of a normal distribution for a sustained downward step shift. 

To this end, if ijX  denotes the j th
 observation in the i th

 sample of size 1n , where

 2
0~ ,  ijX iidN    for 1,2,3,i  , 1,2, ,j n  , and 2

0  is the known in-control (IC) 

standard/value for the variance, the statistic 
  2

2
0

1

2

in S




is distributed as 

0

1
, 1

2

n
Gamma k 

 
  

 
, where  

22

1

1

1

n

i ij i

j

S X X
n 

 

  denotes the sample variance. If the 

mean of the normal distribution is known beforehand and equal to 0 , the sample variance will 

be calculated as  
22

0

1

1 n

i ij

j

S X
n




  and the statistic 
2

2
02
inS


is distributed 

0, 1
2

n
Gamma k 

 
  

 
. So, the design parameters given in Table 2 can be used to construct a 

GWMA chart to monitor the known variance. For example, if samples of size  n 5 is taken 

from a normal distribution with known variance and unknown mean, it follows that 

 
2

2
0

2
~  2,1iS

Gamma


. So, using Table 2 and setting ( 0.95,  1.0, 1.944q L   ) will result in an 
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EWMA chart with an in-control ARL  of 370.60. The corresponding out-of-control  ARL

performance of the EWMA chart, for monitoring the variance, can be found from Table 4 with 

2 2
1 0/   . Note that, in this case, when 1  , there would have been a decrease in the variance 

which would be equivalent to an improvement in the process. 

Note that if the variance is unknown and has to be estimated from an in-control Phase I reference 

sample using the pooled variance estimator
2  pS  with 1v  degrees of freedom, for example the 

statistic 
2

1

2
2

i

p

v S

v S
  follows an 

2 1,v vF distribution, where 2v  denotes the degrees of freedom for a 

future or Phase II sample variance 2
iS . The proposed GWMA-TBE chart is, however, not suited 

for this scenario. 

6. Illustrative example

To illustrate the application of the proposed GWMA-TBE chart, a simulated dataset is used. 

Because the proposed GWMA-TBE chart is for monitoring a high-performance process, for 

which failure rate is assumed to be very small, the known value of the in-control (IC) process 

failure rate is taken as 01/ 1/ 5000 0.0002   ; this implies the time until the 
thk  failure, X ,  

follows a (Gamma k , 5000) distribution. 

The simulated dataset consists of 50 random observations from a ( 2Gamma k  , 4000)  

distribution. If we assume that the known value of   is 5000, the simulated dataset may be 

viewed as observations from an out-of-control (OOC) process following a shift of    

4000/5000 = 0.8; this is a deterioration in the process. Note that, because 2k  , we will be 



50 

monitoring the total time between two consecutive failures. Also, because the preceding 

developments assumed that 1  , the simulated data has to be scaled by dividing by 0 5000.

Two sets of design parameters are used: ( q  0.9, 0.7  , L 1.960) and ( 0.q  9, 1.0  , 

L 2.045). The first set results in a GWMA-TBE chart whereas the second set results in an 

EWMA-TBE chart (because 1.0  ) with smoothing parameter 1 0.9     0.1. These two 

sets of parameters are chosen for the illustration purposes only of the proposed chart and any 

other combination can be chosen in this regard. However, while choosing a parameter 

combination in practice, it is important to note that, a larger value of q  and a smaller value of   

usually works well for smaller shifts, i.e., for values of   closer to 1. 

From Table 2, we can see that both charts are designed so that their 0 370ARL  . From Table 4, 

we observe that the GWMA-TBE chart has an OOC ARL  of 40.53 while the EWMA-TBE chart 

has an OOC ARL of 46.63. So, we would expect the GWMA-TBE chart to signal before the 

EWMA-TBE chart. 

The lower control limits are calculated using equation (9) and are equal to 1.546 and 1.336, 

respectively. The charting statistics are calculated using equation (4) with 0 1  ; this means the

starting value is taken as 2. 

Figure 2 displays the GWMA-TBE and EWMA-TBE charts. From this figure, we observe that 

the GWMA-TBE chart signals at time 30 whereas the EWMA-TBE chart signals at time 34. 

Note that it is expected that the GWMA-TBE chart outperforms the EWAM chart for these 

choices of the design parameters. 
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(a) GWMA-TBE chart 

(b) EWMA-TBE chart 

Figure 2: GWMA-TBE chart and EWMA-TBE chart for the example. 



52 

7. Concluding remarks

Efficient control charts are crucial to improve the quality of a process. To this end, an efficient 

control chart should detect any change as quickly as possible since the faster a change is detected 

the quicker a corrective action can be taken. However, when monitoring nonconformities or 

defects, the traditional Shewhart-type attribute charts (such as the c -chart and the p -chart) are 

known to be inefficient at detecting small changes quickly and poor to detect changes when the 

failure rate is very small. For this reason, we have proposed a time-weighted chart, which 

sequentially accumulates all the information over time, and monitor the time between events 

(TBE), i.e., the time between consecutive defects. Accumulating all historical information 

provides greater sensitivity to detect small changes effectively. We have specifically proposed a 

one-sided Generally Weighted Moving Average (GWMA) control chart based on the gamma 

distribution to monitor the TBE; this chart has been called the GWMA-TBE chart. It has been 

shown that the proposed GWMA chart includes the one-sided Exponentially Weighted Moving 

Average (EWMA) and Shewhart-type charts as special cases. We have investigated the scenarios 

when the scale parameter of the gamma distribution is known (referred to as the “standard 

known”) as well as when it is unknown (referred to as the “standard unknown”). It has been 

shown that when one estimates the unknown parameter from an in-control Phase I reference 

sample, the run-length (and in particular the ARL) is adversely affected. Three methods for 

calculating the run-length distribution and the associated characteristics of the run-length 

distribution have been investigated; this includes (i) Exact closed-form expressions, (ii) A 

Markov chain approach, and (iii) Monte Carlo Simulation. Due to the difficulties of numerically 

evaluating the closed-form expression and using the Markov chain approach for the GWMA-



53 

TBE chart, we have used computer simulation. To aid the implementation of the chart, the 

necessary design parameters for Case K and Case U have been provided, which guarantees that 

the in-control ARL is equal to a specified nominal value. An extensive performance analysis has 

been carried-out and a set of near optimal design parameters have been provided.  The 

performance analysis has shown that the GWMA-TBE chart is better than the well-known 

EWMA and Shewhart charts at detecting very small to moderate changes. We have also shown 

how the GWMA-TBE chart can be used to monitor the variance of a normal distribution. 
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Appendix 

A1. Decreasing weights 

We consider two scenarios: 

i. For 1   and 0 1q  , we have    1 1 1
i i i

iw q q q q
      which is decreasing function of  i

because 0 1q  ; 

ii. For 0 1   and 0 1q  , we have  1i iq q
 
  for all i . We can then re-write the weights 

      1 1 1
1

i i i ii
iw q q q q

     
    . Now, because  1i

q



 is a decreasing function for all i ,   iw

will be decreasing if the remaining part of the product, i.e., 
  1

1
i i

q
  

 , is decreasing. To 

show this, we need to show that the exponent of q  viz.,   * 1iw i i
    is decreasing for 

1,2,3,i   and 0 1  . 

It can be easily shown that for 1n  non-decreasing pairs of positive real numbers  , ,i ia b i   

1(1) n , such that      1 1i ia b i n   , 

   1 1

1

.
2 2

n n
ni ii i i i

i

a b a b 



 


 
  (i) 

If ia a  and ib b  for all i  such that a b , then we can re-write the inequality in (i) as 

2 2
.

nn na b a b  
  
 

 (ii) 

Taking  
1

1 nb i  ,  
1

1 na i   in (ii) for some integer 1i  , we get
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   
1 1

1 1

2
.

n

n ni i
i

 
   

  
 

 (iii) 

Since 1  , we can write 
1

n
   for some positive integer 1n   and replacing 

1

n
   in (iii), 

we get, 
   

    * *
1

1 1
1 1      

2
i i

i i
i i i i i w w

 
   



  
         . Therefore, 

 * 1iw i i
    is decreasing for 1,2,3,i   and 0 1  . This implies that  11

i i
q

  
  is 

decreasing since 0 1q  . Thus, we have 
    1 1

1
i i i

iw q q
   

  to be decreasing for 

1,2,3,i   and 0 1  , which completes the proof. 

A2.   
2

1

1






 
α αi i

t

i

Q q q  is convergent as t  , for 0 1 q , 0α  

We have       
2

1 2 1 12

1 1 1 1

2
t t t t

i i ii i i
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i i i i
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      

   

        .  We consider two scenarios: 

i. For 0q  ,   
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i i
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i

Q q q
 







    which is trivial. 

ii. For 0 1q  , we have    1 1 2i ii i iq q q q q
    
   . Substituting  1i iq q
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 by 2iq



, it 

follows that 
   2 1 2 12 2 2
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i ii i i
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 21 1t
tQ q
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   . 
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So, for 0 1q  , the monotonically increasing sequence { ; 1,2,3, }tQ t    is bounded above and 

is therefore convergent. Further, 0 1 tQ   for all values of t , which implies that 0 lim 1t
t

Q


   

and so there exists a number (denoted by Q ) in the interval (0,1) such that  lim t
t

Q Q


  for 

0 1q  . This completes the proof. 

A3.   1  Pr r rR r I I  , where 
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r ii
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A4. ARL  1+
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Because   r 1 rPr R r I I   , we have  
1

 Pr
r

ARL r R r
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  . Upon expanding and re-arranging 

some of the terms, we obtain 
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as required. 




