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Abstract

An exploratory analysis in low-dimensional objective space of the vector evaluated

particle swarm optimization (VEPSO) algorithm is presented. A novel visualization

technique is presented and applied to perform the exploratory analysis. The exploratory

analysis together with a quantitative analysis revealed that the VEPSO algorithm con-

tinues to explore without exploiting the well-performing areas of the search space. A

detailed investigation into the influence that the choice of archive implementation has on

the performance of the VEPSO algorithm is presented. Both the Pareto-optimal front

(POF) solution diversity and convergence towards the true POF is considered during

the investigation. Attainment surfaces are investigated for their suitability in efficiently

comparing two multi-objective optimization (MOO) algorithms. A new measure to ob-

jectively compare algorithms in multi-dimensional objective space, based on attainment

surfaces, is presented. This measure, referred to as the porcupine measure, adapts the

attainment surface measure by using a statistical test along with weighted intersection

lines. Loosely based on the VEPSO algorithm, the multi-guided particle swarm opti-

mization (MGPSO) algorithm is presented and evaluated. The results indicate that the

MGPSO algorithm overcomes the weaknesses of the VEPSO algorithm and also out-

performs a number of state of the art MOO algorithms on at least two benchmark test

sets.

Keywords: Multi-guided particle swarm optimizer, vector evaluated particle swarm

optimizer, attainment surface, porcupine measure, particle swarm visualization.
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“The important thing is not to stop questioning. Curiosity has its own

reason for existing. One cannot help but be in awe when he contemplates

the mysteries of eternity, of life, of the marvelous structure of reality. It is

enough if one tries merely to comprehend a little of this mystery everyday.”

Albert Einstein (1879 - 1955)

“You can teach a student a lesson for a day; but if you can teach him to

learn by creating curiosity, he will continue the learning process as long as

he lives.”

Clay P. Bedford (1903 - 1991)
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Chapter 1

Introduction

“On September 12, 1997, the Mars Global Surveyor (MGS) entered an

elliptical orbit around Mars, beginning a 20-year period of continuous robotic

scientific exploration at the Red Planet. After 18 months of aerobraking to

circularize its orbit around the Red Planet, MGS began its science and map-

ping mission, during which it returned more than 240,000 images over 4.8

Martian years, contributing a wealth of new information about Mars, its at-

mosphere and its satellites. Although MGS stopped transmitting in November

2006, by that time it had been joined at Mars by three other orbiters and on

the surface by two rovers.”

One of the most fascinating problems today is the optimization of interplanetary

trajectory in the Solar System, using gravitational fly-bys to reduce fuel consumption

and mission duration. Ideally, both fuel consumption and mission duration must be

minimized. However, higher fuel consumption typically leads to short mission durations,

and vice-versa. The lack of analytical solutions and the presence of discontinuity makes

this a complex multi-objective optimization (MOO) problem. An exhaustive search of

the space of input variables is impractical even with today’s high-performance super-

computers.

The problem mentioned above is but one example of a class of problems, known

as MOO problems, which are well-suited for solving using computational intelligence

techniques. The objective of this thesis is to develop a particle swarm-based MOO

1
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algorithm capable of solving such a MOO problem.

Section 1.1 provides the motivation for this study. Section 1.2 lists the objectives of

this study, followed by a list of the contributions made throughout this study in Section

1.3. Finally, an outline for the remainder of this thesis is given in Section 1.4.

1.1 Motivation

Whether you are an aerospace engineer trying to find the optimal trade-off between the

fuel consumption and mission duration for your spacecraft, or an investor trying to find

the optimal trade-off between the risk and profit for a portfolio, finding the optimal

trade-off solutions is critical to achieving success.

The field of multiple-criteria decision-making (MCDM) deals with this class of prob-

lems, referred to as MOO problems, which have multiple often contradictory solutions.

The solution to a MOO problem is not a single solution, but rather a set of optimal

trade-off solutions. The objective of a MOO algorithm is to find this optimal trade-off

set of solutions.

This study presents a new multi-objective particle swarm-based algorithm capable

of solving complex MOO problems. Past studies have shown that particle swarm-based

algorithms are capable of solving MOO problems. However, the algorithms often deviate

from the simplicity of the basic particle swarm optimization (PSO) algorithm leading to

less desirable complex implementations. The algorithm presented in this study focuses

on retaining the simplicity of the basic PSO algorithm.

1.2 Objectives

The main objective of this study is to develop a multi-objective particle swarm-based

algorithm to solve MOO problems. In working towards this goal, the following sub-

objectives have been identified:

• to provide an overview of existing computational intelligence techniques that can

be used to solve a MOO problem.
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• to investigate the exploration behavior of the vector evaluated particle swarm op-

timization (VEPSO) algorithm. The investigation includes the development of a

novel visualization technique to visualize the candidate solutions, within decision

space, of an algorithm over multiple iterations.

• to investigate the effect that different archive implementations has on the perfor-

mance of the VEPSO algorithm.

• to develop a quantitative measurement that can be used to compare multiple

Pareto-optimal fronts (POFs) found by two or more algorithms in a statistically

sound manner through the use of attainment surfaces.

• to propose a multi-swarm multi-objective PSO algorithm to solve MOO problems

based on the findings of the above-mentioned studies.

• to investigate the performance of the above-mentioned algorithm. The perfor-

mance investigation includes usage of the quantitative comparative measurement

developed in this study.

• to compare the performance of the above-mentioned algorithm with state of the

art MOO algorithms.

1.3 Contributions

The main contributions of this study are:

• The introduction of a new PSO-based multi-swarm multi-objective algorithm ca-

pable of solving MOO problems.

• Theoretical derivation of the order-1 and order-2 stable regions for the proposed

algorithm’s control parameter values.

• The finding that the proposed algorithm is capable of solving MOO problems.

The results show that the proposed algorithm exhibits increased exploitation when

compared with the VEPSO.



Chapter 1. Introduction 4

• The finding that the proposed algorithm is highly competitive when compared with

both other particle swarm based algorithms as well as the state of the art MOO

algorithms.

• The introduction of a new quantitative measure, referred to as the porcupine mea-

sure, that can be used to compare multiple POFs found by two or more algorithms

in a statistically sound manner through the use of attainment surfaces.

• The finding that the quantitative attainment surface-based measurement proposed

by Knowles and Corne [67] may lead to misleading results for non-concave POFs.

• The introduction of a novel visualization technique to visualize the search behaviour

of the candidate solutions over a number of iterations. The proposed visualization

technique revealed previously undiscovered behavior of the VEPSO algorithm.

• The introduction of a particle movement diversity measurement capable of measur-

ing the diversity of a particle’s position over a number of iterations. The measure

gives an indication of how much a particle is moving around.

• The introduction of three candidate solution dispersion measurements. The mea-

surements, when used together, indicate the dispersion of the candidate solutions

for a population-based MOO algorithm.

• The finding that the cause of the VEPSO’s weak performance is related to the lack

of exploitation of the already found well-performing regions of the search space.

• The first detailed analysis of the influence that the archive management algorithm

has on an algorithm’s POF solution diversity and convergence towards the true

POF.

• The introduction of the hypersurface contribution bounded archive deletion ap-

proach. The hypersurface contribution deletion approach selects solutions to re-

move from the archive based on the size of the hypersurface region that the solution

contributes to the POF.



Chapter 1. Introduction 5

• The finding that the spacing measurement by Schott [96] and the distribution

measurement by Goh and Tan [44] both suffer from a solution pairing problem

leading to misleading diversity measurement results.

• The introduction of the crowding distribution measurement that addresses the

pairing problem identified in the spacing and distribution measurements.

1.4 Dissertation Outline

• Chapter 2 covers all the relevant computational intelligence techniques and back-

ground on which the subsequent chapters build. PSO, MOO, multi-objective PSO,

and multi-objective performance measures are discussed.

• Chapter 3 presents an investigation into the exploration behavior of the VEPSO

algorithm. The investigation shows that the VEPSO algorithm continues to ex-

plore and does not exploit the well-performing regions of the POF. Modifying the

velocity update equation by adding a weighted archive guide is shown to increase

exploitation.

• Chapter 4 presents an investigation into the influence that the choice of archive

implementation has on the VEPSO algorithm’s performance. The diversity of the

POF and overall closeness to the true POF is investigated.

• Chapter 5 introduces the porcupine measure, a quantitative measure that can

be used to compare the POFs found by two or more algorithms. The porcupine

measure makes use of attainment surfaces to statistically analyze an algorithm’s

POF, and gives researchers additional insight into a MOO algorithm’s overall per-

formance.

• Chapter 6 introduces multi-guided particle swarm optimization (MGPSO). A

thorough performance analysis comparing MGPSO’s performance with other MOO

algorithms is presented. The comparison included both particle swarm-based and

the state of the art MOO algorithms. The results show that MGPSO performs

on-par and even exceeds the performance of the other algorithms.
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• Chapter 7 presents a parameter sensitivity analysis for the MGPSO’s parameters.

The optimization procedure and optimized parameter values, as used throughout

this study, is presented.

• Chapter 8 provides a summary of all the findings and conclusions of the presented

work. Ideas for future research, based on the presented work, is also given.

• Appendix A provides a list of the important acronyms used or newly defined in

the course of this work, as well as their associated definition.

• Appendix B lists and defines the mathematical symbols used in this work, cate-

gorized according to the relevant chapter in which they appear.

• Appendix C provides a list of the parameter configurations for the additional

algorithms used throughout this study.

• Appendix D lists all the publications derived from this work.

Note that this thesis makes extensive use of color figures and is best read in color.



Chapter 2

Background

“Wonder is the beginning of wisdom.”

Socrates (470 - 399 BC)

Development of a new multi-objective particle swarm-based algorithm requires the

application a number of computational intelligence techniques. This chapter provides

background insight into the various computational intelligence paradigms that influenced

the work presented in this study. PSO, MOO, multi-objective PSO, multi-objective

measurements, and multi-objective test sets are covered.

PSO, which forms the basis for the work presented in this study, is covered in Section

2.1. The section takes an in-depth look at all the equations and parameters involved in

driving the particle swarm’s search behavior. Different neighborhood structures and a

discussion on convergence and stability is also given.

An overview of MOO is given in Section 2.2, followed by an in-depth look at the

VEPSO algorithm, a multi-swarm, multi-objective PSO algorithm, in Section 2.3.

Measurements to quantify the performance of a multi-objective algorithm are dis-

cussed in Section 2.4. The multi-objective toolkits and test problems used throughout

this study are discussed in Section 2.5, followed by a summary of this chapter in Section

2.6.

7
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2.1 Particle Swarm Optimization

Kennedy and Eberhart [62] introduced PSO in 1995. PSO is a stochastic population-

based single objective optimization algorithm with its roots in the simulation of the

social behavior of birds in a flock. PSO has been shown to be more successful in solving

complex problems than traditional evolutionary computation (EC) algorithms [63]. PSO

has also been applied to a variety of real-world problems, including optimizing equipment

design parameters and fuel expenditure models for space missions [51, 120].

The basic PSO algorithm is presented in Section 2.1.1. Variations of the PSO ve-

locity update equation is discussed in Section 2.1.2. PSO neighborhoods are presented

in Section 2.1.3. Finally, PSO parameter sensitivity and convergence are discussed in

Section 2.1.4.

2.1.1 Basic Particle Swarm Optimization

PSO’s population, referred to as a swarm, consists of individuals referred to as particles.

Each particle is represented by an nx-dimensional vector, xi, representing a candidate

solution to an optimization problem. The quality of the candidate solution is determined

by evaluating an objective function, f(xi), also known as a fitness function.

Particles move through the search space guided by an inertia velocity component, a

cognitive component and a social component. The cognitive component is a randomly

weighted difference between the current particle position and the previously found best

performing particle position, referred to as the particle’s personal best position. The

social component is a randomly weighted difference between the current particle posi-

tion and the neighborhood best position. A particle’s neighborhood is determined by a

neighborhood topology and allows for information regarding the well-performing regions

of the search space to be shared among particles. The social component represents the

socio-psychological tendency to emulate the success of neighboring particles.

Kennedy and Eberhart [62] formally defined the particle position and velocity update

equations as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (2.1)
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with

vi(t+ 1) = vi(t) +ϕ1(yi(t)− xi(t)) +ϕ2(ŷi(t)− xi(t)) (2.2)

where xi(t) is particle i’s position at iteration t, vi(t) is particle i’s velocity at iteration t,

ϕ1 and ϕ2 are vectors with components sampled uniformly random between 0 and 2, yi(t)

is particle i’s personal best position at iteration t, and ŷi(t) is particle i’s neighborhood

best position at iteration t.

Figure 2.1 illustrates the different components of the velocity update equation along

with the resulting velocity for the next iteration.

Analysis of the PSO velocity update equation, as shown in Equation (2.2), showed

that extreme differences between the personal best position, yi(t), or the neighborhood

best position, ŷi(t), and the particle position, xi(t), may lead to an “explosion” in the

particle’s velocity, vi(t), where the velocity increases towards infinity [105]. An explosive

velocity is undesirable as it may cause particles to leave the search space and thus

negatively influence the overall search performance. In order to prevent an explosive

velocity, the velocity, vi, is clamped into the range [vmin,vmax] with vmin = −vmax [14].

Well-performing values for vmin and vmax are problem dependent [97]. Shi and Eberhart

[97] noted that when one lacks prior knowledge, setting vmin and vmax proportional to

the search domain is a good starting point. The ideal proportion is, however, problem

dependent.

Eberhart and Kennedy [30] studied the vectors ϕ1 and ϕ2 and defined them as

f1

f2

vi(t) ϕ1(yi(t)− xi(t))

ϕ2(ŷi(t)− xi(t))

vi(t+ 1)

Figure 2.1: Particle velocity components.
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ϕ1 = c1r1 andϕ2 = c2r2, where r1 and r2 are vectors with components sampled uniformly

random between 0 and 1. The constants c1 and c2 are positive real numbers referred to as

the cognitive and social acceleration coefficients respectively. These constants regulate

the maximum step size a particle can take per iteration. The cognitive acceleration

coefficient, c1, regulates the maximum step size in the direction of the particle’s personal

best position while the social acceleration coefficient, c2, regulates the maximum step

size in the direction of the neighborhood best position.

2.1.2 Velocity Variants

Shi and Eberhart [98] reasoned that the inertia velocity term, vi(t), represents the

PSO local search ability while the cognitive term, c1r1(yi(t) − xi(t)), and social term,

c2r2(ŷi(t)−xi(t)), represent the global search ability. Shi and Eberhart further reasoned

that different problems would benefit from different balances between the exploitation

and exploration search ability. In order to regulate the trade-off between exploitation

and exploration, Shi and Eberhart added an inertia weight, w, to the inertia velocity

term. The inertia weight can be a positive constant or a positive linear or non-linear

function of time. Early results indicated that the addition of the inertia weight improved

PSO’s performance [97]. The resulting PSO velocity update equation with the inertia

weight incorporated is defined as follows:

vi(t+ 1) = wvi(t) + c1r1(yi(t)− xi(t)) + c2r2(ŷi(t)− xi(t)) (2.3)

Large inertia weights may also lead to an “explosion” in a particle’s velocity due to

a gradual buildup of velocity over time. An inertia weight less than 1 reduces the

contribution made by the inertia velocity component and depending on the values of the

acceleration coefficients may lead to a velocity that tends towards zero [105]. An inertia

weight greater than 1 increases the contribution made by the inertia velocity component

and will eventually lead to the maximum velocity being reached, leading to divergent

particle behavior. The PSO algorithm with inertia weight incorporated is presented in

algorithm listing 1. Note that algorithm listing 1 is for a synchronous PSO where all the

personal best and neighborhood best positions are updated before updating the particle

velocities and positions.
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Clerc [12] proposed using a constriction factor to improve convergence of the PSO

algorithm. The constriction factor, χ, is defined as a function of φ1 and φ2. The resulting

PSO velocity update equation with the constriction factor incorporated is defined as

follows:

vi(t+ 1) = χ
(
vi(t) + φ1r1(yi(t)− xi(t)) + φ2r2(ŷi(t)− xi(t))

)
(2.4)

with

χ =
2

|2− φ−
√
φ2 − 4φ|

(2.5)

where φ = φ1 + φ2, φ > 4.

Small values for the constriction factor, χ ≈ 0, encourage exploitation and faster

convergence. Larger values for the constriction factor, χ ≈ 1, encourage exploration and

slow convergence.

Clerc and Kennedy [14] found that clamping the particle velocity to [vmin,vmax] is

not necessary when adding the constriction factor to the velocity update equation.

Eberhart and Shi [31] found that the inertia weight in Equation (2.3) is functionally

equivalent to the constriction factor in Equation (2.4) if the inertia weight, w, is set to χ,

and c1 = χφ1 and c2 = χφ2 meet the conditions φ = φ1 + φ2, φ > 4. The PSO with the

constriction factor can thus be considered a special case of the PSO with inertia weight.

2.1.3 Neighborhood Topologies

Kennedy and Eberhart’s [62] proposed PSO made use of a fully connected, also known

as the star, neighborhood. The star neighborhood connects all particles with all other

particles, as illustrated in Figure 2.2(a). The entire swarm belongs to one neighborhood

where every particle is attracted to the global best position. This fast sharing of infor-

mation leads to faster convergence when compared to other neighborhoods. The faster

convergence also increases the possibility of getting stuck in local optima [105]. PSOs

that use the star neighborhood are referred to as global best, or gbest, PSOs.

Eberhart and Kennedy [30] also proposed a ring neighborhood where, in the case

of the neighborhood size, nr = 2, each particle only communicates with its immediate

adjacent neighbors as illustrated in Figure 2.2(b). PSOs that use the ring neighborhood

are referred to as local best, of lbest, PSOs. Particles attempt to imitate their best
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Algorithm 1 Particle Swarm Optimization

1: Create and initialize a swarm, S, of ns particles uniformly within a predefined hy-

percube of dimension nx;

2: Let f be the objective function;

3: Let yi represent the personal best position of particle i, initialized to xi(0);

4: Let ŷi represent the neighborhood best position of particle i, initialized to xi(0);

5: Initialize vi(0) to 0;

6: Let t = 0;

7: repeat

8: for each particle i = 1, ..., ns do

9: if f(xi) < f(yi) then

10: yi = xi(t);

11: end if

12: for particles ı̂ with particle i in their neighborhood do

13: if f(yi) < f(ŷı̂) then

14: ŷı̂ = yi;

15: end if

16: end for

17: end for

18: for each particle i = 1, ..., ns do

19: vi(t+ 1) = wvi(t) + c1r1(yi(t)− xi(t)) + c2r2(ŷi(t)− xi(t));

20: xi(t+ 1) = xi(t) + vi(t+ 1);

21: end for

22: t = t+ 1;

23: until stopping condition is true

performing neighbor moving towards the neighborhood best position. Note that, as

shown in Figure 2.2(b), the neighborhoods for each particle overlap with that of its

neighbor. This overlap facilitates the sharing of information among all the particles and

helps to improve convergence on a single solution. Note that the gbest PSO can be seen

as a special case of the lbest PSO where the neighborhood size is equal to the swarm size
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minus one.

Kennedy [61] investigated the wheel neighborhood where all particles are effectively

isolated from one another, and all the information exchange takes place through the

focal particle. The wheel neighborhood is illustrated in figure 2.2(d). The focal particle

compares fitnesses of all the particles and attempts to imitate the best particle in its

neighborhood. If the focal particle’s fitness improves, that improvement is propagated

through to the rest of the particles. The focal particle serves as a buffer, slowing the

speed at which information is propagated through the swarm.

Kennedy [60] proposed PSOs with no neighborhood, also referred to as individual best

PSOs. In the individual best PSO, the velocity update equation does not have a social

term. No information is exchanged between any of the particles. In effect, particles in

the individual best PSO are hill-climbers. Particles may converge on multiple different

solutions. Due to the lack of information sharing, the individual best PSO generally

performs the worst of all the PSO neighborhoods.

Kennedy [60] also investigated small world inspired neighborhoods. Inspired by work

done by Watts and Strogatz [112], small world neighborhoods randomize a small pro-

portion of the connections, or shortcuts, between particles in order to achieve a high

level of clustering with a greatly reduced average distance between particles. Watts and

Strogatz called this high level of clustering with a reduced average distance the “small

world” effect, in reference to the work done by Milgram [76], showing the hastened effect

that small world shortcuts have on the spread of a disease through a population.

Kennedy and Mendes [64] introduced the Von Neumann neighborhood, a grid-like

neighborhood that extends the lbest PSO neighborhood to two dimensions. Figure 2.2(c)

illustrates a flattened section of the Von Neumann neighborhood. Particles share infor-

mation with their direct neighbors (above, below, left, and right) based on the grid

positions. Kennedy and Mendes found that PSOs using the Von Neumann neighbor-

hood outperformed PSOs using other neighborhoods for a number of problems.

A variety of other neighborhood structures have been investigated. Kennedy and

Mendes [64] also presented the idea of random neighborhoods where no fixed neighbor-

hood structure exists beforehand. Mendes et al. [75] investigated the performance of

three hand-tuned neighborhoods, namely Square, Pyramid, and 4Cluster. Mendes et al.
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(a) Star (b) Ring

(c) Von Neumann (d) Wheel

Figure 2.2: PSO neighborhood topologies.

found that the Pyramid neighborhood structure performed slightly better in some cases

where the star neighborhood structure performed poorly.

While no one neighborhood is superior to all the other, it has been claimed that fully-

connected neighborhoods tend to perform better for unimodal problems, while lesser-

connected neighborhoods tend the perform better for multimodal problems [61, 64, 75].

An exhaustive comparison between the gbest and lbest PSOs, carried out by Engelbrecht

[33], showed that neither neighborhood outright outperforms the other for any problem

class. As with the other PSO parameters, the best performing neighborhood structure

was shown to be problem dependent.

2.1.4 Parameter Sensitivity and Convergence

Various studies have found that PSO is sensitive to the control parameter choices, specif-

ically the inertia weight, acceleration coefficients, and velocity clamping [4, 60, 97, 99].

Wrong initialization of these parameters may deter the swarm from converging.
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Eberhart and Shi [31] found empirically that a constant inertia weight, w, of 0.7298

and acceleration coefficients, c1 and c2, of 1.49618 will lead to convergent behavior. It

should be noted that Eberhart and Shi only studied a limited selection of problems

and care should be taken when selecting the control parameters for any other problem.

Further studies by Clerc [13] and Suganthan [101] showed that non-constant, or adaptive,

inertia weight values could also lead to convergent behavior. However, a recent, more

exhaustive, study by Harrison et al. [49] showed that adaptive strategies, in general, do

not perform well. In many cases, adaptive strategies lead to divergent behaviour coupled

with excessive invalid particles, and thus infeasible solutions, or lead to prohibitively low

particle step sizes caused by rapid convergence.

While the empirical studies show that the choice of inertia weight is extremely im-

portant to ensure convergent behavior, Clerc and Kennedy [14] showed that for some

problems velocity clamping was still required to prevent “explosive” particle velocities.

Clerc and Kennedy did, however, not take into consideration that the inertia weight

might be dependent on c1 and c2 as explained below.

Various theoretical studies have been conducted with the goal of better understanding

the behavior of particle trajectories to derive heuristics to select parameter values that

would lead to, or guarantee convergence to an equilibrium state [9, 7, 14, 41, 56, 59, 81,

82, 89, 90, 104, 105, 106, 113, 115].

Cleghorn and Engelbrecht [9] generalized the work done by Van den Bergh and En-

gelbrecht [106], Van den Bergh [105], and Trelea [104] and found that convergence is

guaranteed for parameter values that satisfy the following relation:

c1 + c2 < 2(1 + w), for − 1 < w < 1, c1 > 0 and c2 > 0 (2.6)

Gazi [41] expanded the region derived by Kadirkamanathan et al. [59] and found that

convergence is guaranteed for parameter values that satisfy the following relation:

c1 + c2 <
24(1 + w)

7
, for − 1 < w ≤ 0

c1 + c2 <
24(1− w)2

7(1 + w)
, for 0 < w ≤ 1 (2.7)

Poli [89], Poli and Broomhead [90] and Jiang et al. [56] independently found that con-
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vergence is guaranteed for parameter values that satisfy the following relation:

c1 + c2 <
24(1− w)2

7− 5w
, for − 1 ≤ w ≤ 1 (2.8)

Cleghorn [7] and Cleghorn and Engelbrecht [10] developed an objective function

specifically designed for the convergence analysis of PSO variants. Using this purpose

built objective function, Cleghorn and Engelbrecht [9] showed with the support of em-

pirical evidence that the region defined by Equation (2.8) matched almost perfectly the

convergence behavior of a non-simplified gbest PSO.

Take note that the experimental work presented in this study does not make use of

velocity clamping. Instead, values for the inertia weight, w, and acceleration coefficients,

c1 and c2 are carefully chosen to avoid “explosive” particle velocities.

2.2 Multi-objective Optimization

Many real-world optimization problems deal with optimizing problems that have more

than one objective [20]. The objectives are typically in conflict with one another. Zotes

and Peñas [120], for example, modeled the trade-off between fuel consumption, and thus

mission cost, and mission duration as a multi-objective problem (MOP). The shorter the

mission duration, the higher the fuel consumption and vice-versa. The solution for MOP

is a set of optimal trade-off solutions. MOO algorithms can be used to solve MOPs.

Sections 2.2.1 and 2.2.2 formally introduce MOO and the definitions commonly found

in the literature [19, 25, 54, 93, 94, 107, 116].

2.2.1 Multi-objective Problem

Let S ⊆ Rnx denote the nx-dimensional search space (also referred to as the decision

space), and F ⊆ S the feasible space as determined by constraints. If there are no

constraints, F = S. O denotes the nm-dimensional objective space. A MOP translates

a decision vector, x ∈ F , to an objective vector, q, such that q ∈ O.

Definition 2.1. Decision vector A decision vector, x = (x1, x2, . . . , xnx) ∈ F , is an

nx-dimensional vector representing values chosen for an optimization problem.
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Definition 2.2. Objective vector An objective vector, q = (q1, q2, . . . , qnm) ∈ O, is an

nm-dimensional vector representing possible solutions for an optimization problem.

Definition 2.3. Multi-objective problem Without loss of generalization a MOP,

f(x), with nm objectives is of the form:

min f(x) = (f1(x), f2(x), ..., fnm(x)) (2.9)

with x ∈ F , fm : Rnx → R for all m ∈ [1, nm], and F ⊂ Rnx is the feasible space as

determined by constraints.

The duality principle [23] allows for the generalization of Definition (2.3) to include

maximization objectives, f
′
m(x), by rewriting them as minimization objectives, fm(x),

where fm(x) = −f ′
m(x).

Figure 2.3 illustrates a decision space, F , its corresponding objective space, O, along

with a decision vector, x, and the corresponding objective vector, f(x).

2.2.2 Pareto-optimality

In order to ensure understanding and consistency when discussing Pareto-optimality, a

number of frequently used definitions are listed:

x1

x2

x3
F

f1

f2

O
x f(x)

Figure 2.3: Decision and objective space.
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Definition 2.4. Pareto-dominance A decision vector x1 ∈ F dominates a decision

vector x2 ∈ F (denoted by x1 ≺ x2) if and only if fm(x1) ≤ fm(x2) ∀ m ∈ [1, nm] and

∃ m ∈ [1, nm] such that fm(x1) < fm(x2).

Definition 2.5. Weak Pareto-dominance A decision vector x1 ∈ F weakly domi-

nates a decision vector x2 ∈ F (denoted by x1 � x2) if and only if fm(x1) ≤ fm(x2) ∀ m ∈
[1, nm].

Definition 2.6. ε-dominance A decision vector x1 ∈ F ε-dominates a decision vector

x2 ∈ F (denoted by x1 ≺ε x2), for some ε > 0, if and only if fm(x1)
1+ε

≤ fm(x2) ∀ m ∈
[1, nm] and ∃ m ∈ [1, nm] such that fm(x1)

1+ε
< fm(x2).

Definition 2.7. Pareto-optimal A decision vector x1 ∈ F is said to be Pareto-optimal

if no decision vector x2 ∈ S exists such that x2 ≺ x1.

Definition 2.8. Pareto-optimal set A set P ⊆ F ∈ Rnx is said to be the Pareto-

optimal set (POS) if it contains only Pareto-optimal decision vectors. P is formally

defined as P = {x1 ∈ F | @ x2 ∈ F : x2 ≺ x1}.

Definition 2.9. Pareto-optimal front A set Q ⊆ O ∈ Rnm is said to be the POF

if it contains only objective vectors for Pareto-optimal decision vectors. Q is formally

defined as Q = {f(x) | x ∈ P}.

Figure 2.4 depicts a Pareto-optimal front along with the corresponding objective

space. Next, a number of definitions for specific solutions that are often used when

discussing MOO, are listed:

Definition 2.10. Ideal Objective Vector The ideal objective vector, z∗, is a vector

with components consisting of the optimal objective values for each of the nm objective

functions. z∗ is formally defined as z∗ = (f ∗1 , f
∗
2 , . . . , f

∗
nm

) where f ∗m is the optimal

objective value for objective m ∈ [1, nm].

Definition 2.11. Utopian Objective Vector The utopian objective vector, z∗∗, is a

vector with components marginally smaller than that of the ideal objective vector, z∗. z∗∗

is formally defined as z∗∗ = (z∗1 − ε1, z
∗
2 − ε2, . . . , z

∗
nm
− εnm) where εm > 0 ∀ m ∈ [1, nm].
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Definition 2.12. Nadir Objective Vector The nadir objective vector, znad, is a vector

with components consisting of the worst objective values in the Pareto-optimal set, P, for

each of the nm objective functions. znad is formally defined as znad = (f ∗∗1 , f ∗∗2 , . . . , f ∗∗nm
)

where f ∗∗m = fm(x1) with x1 ∈ P | @ x2 ∈ P : fm(x2) > fm(x1).

Figure 2.5 depicts a Pareto-optimal front along with the ideal objective, utopian

objective, and nadir objective vectors.

f1

f2

O

Q

Figure 2.4: Pareto-optimal front.

f1

f2

z∗

znad

z∗∗

Figure 2.5: Ideal (z∗), Utopian (z∗∗), and Nadir (znad) objective vectors.
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2.3 Particle Swarm based Multi-objective Optimiza-

tion

The success of PSO as a single-objective optimizer has motivated research into extensions

that enable PSO to solve MOPs. The first such extension was proposed in an unpublished

manuscript by Moore and Chapman [77] in 1999. Since this first proposal, much research

has been put into developing additional extensions that enable PSO to solve MOPs. By

2006, over twenty-five such extensions have been proposed [17]. This study considers one

such extension, proposed by Parsopoulos and Vrahatis [84, 85] in 2002, named VEPSO.

For more information on other multi-objective PSO algorithms, the interested reader is

referred to [17, 32, 86].

Section 2.3.1 provides the necessary background overview of VEPSO, followed by a

discussion of alternative VEPSO knowledge transfer strategies (KTSs) in Section 2.3.2.

2.3.1 Vector Evaluated Particle Swarm Optimization

In 2002, Parsopoulos and Vrahatis [84, 85] proposed a MOO adaptation of PSO named

vector evaluated particle swarm optimization (VEPSO). Parsopoulos and Vrahatis adopted

the main ideas of the vector evaluated genetic algorithm (VEGA) by Schaffer [95] to fit

the PSO framework.

VEGA constructs the mating pool by selecting individuals according to their fit-

ness for each of the objectives separately. Afterwards, the mating pool is shuffled, and

crossover and mutation are applied as per the normal genetic algorithm (GA) to generate

the next generation’s population.

Based on these ideas, VEPSO uses two subswarms in the case of two-objective MOPs,

one for each of the objectives. Each subswarm is evaluated according to one of the

objectives. The change in velocities is based on information coming from the other

swarm. Specifically, the best particle position for one subswarm is selected as the best

performing particle position from the other subswarm. Parsopoulos and Vrahatis [84]

found that VEPSO outperformed VEGA for a number of the tested problems.

The selection of the best performing particle position from the other swarm is referred

to as the ring KTS [87]. Figure 2.6 illustrates the flow of information for the ring KTS
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S1S2

(a) Two subswarms

S1

S2

S3

(b) Three sub-

swarms

Figure 2.6: Ring knowledge transfer strategy

between the subswarms in the case of two- and three-objective MOPs.

The velocity update equation for VEPSO is identical to that of the basic PSO, as

defined in equation (2.3), with the exception that the neighborhood best position, ŷi(t),

also referred to as the KTS guide, is selected as the best performing particle position

from the other subswarm. The velocity and position update equations for VEPSO’s

second subswarm, S2, are thus defined as follows:

S2.vi(t+ 1) = wS2.vi(t) + c1r1(S2.yi(t)− S2.xi(t)) + c2r2(S1.ŷi(t)− S2.xi(t)) (2.10)

S2.xi(t+ 1) = S2.xi(t) + S2.vi(t+ 1) (2.11)

where S2.ŷi(t) is the KTS guide for particle i at iteration t, selected as the best performing

particle position from the subswarm S1.

During each iteration, VEPSO stores the Pareto-optimal solutions in an archive.

The archive contains only non-dominated solutions, and once the algorithm stops, the

solutions in the archive form the Pareto-optimal set. Parsopoulos and Vrahatis [84, 85]

did not provide any detail on how to implement the archive. When Parsopoulos et al.

[88] introduced a parallel variant of VEPSO, they specified the archive implementation

to match that of Jin et al. [58]. Algorithm 2 provides pseudo-code for a basic archive

maintenance algorithm similar to that of Jin et al. [58]. Algorithm 3 presents the VEPSO

algorithm.

2.3.2 Knowledge Transfer Strategies

Grobler [45] and Harrison et al. [47, 48] evaluated variations to the ring KTS as used in
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the basic VEPSO algorithm. Grobler and Engelbrecht [46] and Grobler [45] evaluated the

random KTS that randomly selects the swarm from which the best performing particle

position is selected. Experimental results showed that the random KTS significantly

outperformed the ring KTS along with several other KTS variations also evaluated by

Grobler.

Harrison et al. [48] proposed KTSs based on parent-centric crossover (PCX) [28]. For

the parent-centric crossover archive (PCXA) KTS, the KTS guide is calculated as the

offspring of PCX applied to three randomly selected non-dominated solutions from the

archive. PCXA is based on the assumption that areas in the decision space around the

non-dominated solutions are worth exploring.

Harrison et al. [48] found that the PCXA KTS achieved the best spread of solutions

as defined by Goh and Tan’s [44] solution distribution measure.

The work presented in this thesis makes use of the random and PCXA KTSs.

2.4 Multi-objective Performance Measures

Comparing different optimization techniques empirically requires a means to define the

quality of an algorithm’s performance. In the case of MOO, the definition of quality is

Algorithm 2 Basic Archive Maintenance

1: for each particle i = 1, ..., ns do

2: if xi is not dominated by any solution in the archive

3: and xi is not similar to any solutions in the archive then

4: Remove all archive solutions that are dominated by xi;

5: if archive is not full then

6: Add xi to the archive;

7: else

8: Discard xi;

9: end if

10: end if

11: end for
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Algorithm 3 Vector Evaluated Particle Swarm Optimization

1: for each objective m = 1, ..., nm do

2: Create and initialize a swarm, Sm, of nsm particles uniformly within a predefined

hypercube of dimension nx;

3: Let fm be the objective function;

4: Let Sm.yi represent the personal best position of particle Sm.xi, initialized to

Sm.xi(0);

5: Let Sm.ŷi represent the KTS guide of particle Sm.xi;

6: Initialize Sm.vi(0) to 0;

7: end for

8: Let t = 0;

9: repeat

10: for each objective m = 1, ..., nm do

11: for each particle i = 1, ..., Sm.ns do

12: if fm(Sm.xi) < fm(Sm.yi) then

13: Sm.yi = Sm.xi(t);

14: end if

15: Update the archive with the solution Sm.xi;

16: end for

17: end for

18: for each objective m = 1, ..., nm do

19: for each particle i = 1, ..., Sm.ns do

20: Select Sm.ŷi using a KTS;

21: Sm.vi(t+1) = wSm.vi(t)+c1r1(Sm.yi(t)−Sm.xi(t))+c2r2(Sm.ŷi(t)−Sm.xi(t));
22: Sm.xi(t+ 1) = Sm.xi(t) + Sm.vi(t+ 1);

23: end for

24: end for

25: t = t+ 1;

26: until stopping condition is true
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substantially more complex than for a single objective optimization problem, because

the optimization goal itself consists of multiple, often contradictory, objectives.

In order to define quality, the goals for MOO must first be defined. Zitzler et al. [118]

defined the goals for a MOO algorithm as follows:

1. minimize the distance between the obtained Pareto-optimal front and the true

Pareto-optimal front,

2. to find a set of solutions with a good, in most cases uniform, distribution, and

3. maximize the extent of the obtained Pareto-optimal front.

An alternative definition with only two goals was defined by Deb [24]:

1. to find a set of solutions as close as possible to the Pareto-optimal front, and

2. to find a set of solutions as diverse as possible.

Both definitions define a quality POF as having a good spread of solutions that are as

close as possible to the true POF. Sections 2.4.1 through 2.4.3 discuss some of the popular

MOO measurements, as used throughout this study, that measure closeness to the true

POF, diversity, and combinations of both closeness to the true POF and diversity.

2.4.1 Closeness to the Pareto-optimal Front

Generational Distance

Van Veldhuizen and Lamont [108, 109] introduced the generational distance (GD) mea-

sure to quantify the distance from the obtained POF to the true POF. The GD measure

is calculated as

GD =

√∑|Q|
i=1 d

2
i

|Q| (2.12)

where Q is the obtained POF and di is the Euclidean distance between the i′th solution

in the obtained POF and the nearest solution in the true POF, Qtrue.
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2.4.2 Diversity among the Pareto-optimal Front

Maximum Spread

Zitzler [116] introduced the maximum spread measure to quantify the length of the

diagonal of a hyper-box formed by the extreme function values. Tan et al. [102] modified

the maximum spread measure to normalize the objective function values. The maximum

spread measure is calculated as

D̄ =

√√√√ 1

nm

nm∑
m=1

(
max∗m −min∗m

maxtrue,m −mintrue,m

)2

(2.13)

with

max∗m = min
{ |Q|

max
k=1
{qk,m},maxtrue,m

}
(2.14)

and

min∗m = max
{ |Q|

min
k=1
{qk,m},mintrue,m

}
(2.15)

where Q is the obtained POF, |Q| is the cardinality of the set Q, maxtrue,m and mintrue,m

are the maximum and minimum values reached by the true POF for the m’th objective.

Spacing

Schott [96] introduced the spacing measure in 1995 to quantify the diversity of the POF.

The spacing measure is formally defined as

S̄ =

√√√√ 1

|Q| − 1

|Q|∑
k=1

(
d̄∗ − d∗k

)2

(2.16)

with

d∗k = min
ql∈Q∧l 6=k

nx∑
j=1

|qk,j − ql,j| (2.17)

and

d̄∗ =

|Q|∑
k=1

d∗k
|Q| (2.18)

where Q is the set of solutions that make up the obtained POF.

When the solutions are near uniformly spread, the resulting spacing, S̄, values will

be small.
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Solution Distribution

Goh and Tan [44] introduced the distribution measure in 2007, based on the spacing

measure. The distribution measure is formally defined as

D =
1

|Q|

√√√√ 1

|Q|

|Q|∑
k=1

(
dk − d̄

)2

(2.19)

with

d̄ =
1

|Q|

|Q|∑
k=1

dk (2.20)

where dk is the Euclidean distance in objective space between the k’th solution and its

nearest neighbor in Q.

When the solutions are near uniformly spread, the resulting distribution, D, values

will be small.

Spread

Deb et al. [29] introduced the spread measure to quantify the distance between solutions

while also taking the extreme solutions into account. The spread measure is calculated

as

∆ =

∑nm

m=1 d
e
m +

∑|Q|
k=1 |dk − d̄|∑nm

m=1 d
e
m + |Q|d̄ (2.21)

with

d̄ =
1

|Q|

|Q|∑
k=1

dk (2.22)

where dk can be any distance measure between neighboring solutions, and dem is the

distance between the extreme solutions of |Q| and the true POF corresponding to the

m’th objective.

An ideal distribution will have ∆ = 0 if the distances between solutions are equal

and |Q| contains the extreme solutions of the true POF, otherwise ∆ > 0.
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2.4.3 Closeness and Diversity of the Pareto-optimal Front

Hypervolume

Zitzler and Thiele [117] introduced the hypervolume (HV) measure to quantify the vol-

ume, in objective space, covered by the hypercubes, Vk, for each solution qk ∈ Q, where

Vk is the hypercube constructed between the reference point W and the solution qk.

Because the hypercube volumes overlap, the HV measure is defined as the union of all

the hypercubes. The HV measure is calculated as

HV = volume(∪ Vk) ∀ qk ∈ Q (2.23)

Zitzler and Thiele [117] defined the reference point W as the zero vector, 0.

Zitzler [116] noted that it is stated by Van Veldhuizen [107] that the HV measure

may be misleading if the POF is non-convex. Zitzler concluded that this fact simply

indicates that the coverage of the objective space is only one of several possible criteria

that should be used to evaluate the quality of the POF. In contrast to Zitzler and Thiele

[117], more recent studies all use the nadir vector, znad, as the reference point. When

using the nadir vector as the reference point, the quality of the POF increases as the

HV increases, whereas when using the zero vector the quality of the POF increases as

the HV decreases.

Zitzler [116] also noted that the HV values for two sets, A and B, cannot be used

to derive whether either set entirely dominates the other. In conclusion, it is found that

the HV measure alone is not enough to fully understand and quantify the POF. It is

recommended that additional performance measures should be used in conjunction with

the HV .

Calculation of the hypervolume becomes expensive as the number of Pareto-optimal

solutions and the number of dimensions increase, so does the complexity of the overlap

calculations. Note that faster calculation algorithms do exist [5].

Inverted Generational Distance

Coello Coello and Reyes-Sierra [16, 91] introduced the inverted generational distance
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(IGD) measure. The IGD measure is calculated as

IGD =

√∑|Qtrue|
k=1 d2

k

|Qtrue|
(2.24)

where Qtrue is the true POF and dk is the distance between the k′th solution in the true

POF and the nearest solution in the known POF, Q.

The quality of the IGD measure depends on the quality of the true POF, Qtrue.

Ishibuchi et al. [55] investigated the difficulties in specifying the reference points that

make up the true POF. Ishibuchi et al. also showed how uniform sampling of reference

points from the known true POF leads to counter-intuitive results, highlighting the

importance of selecting the right solutions for the set Qtrue. The work presented in this

study made use of the true POF sets from the jMetal framework [80] for all the IGD

calculations. The true POF sets in the jMetal framework were mathematically derived

using the function definitions.

Attainment Surface

Fonseca and Fleming [35] presented a non-quantitative way to asses the performance of

the POF obtained by a MOO algorithm. Given a set of non-dominated solutions, Q ⊆ O,

a boundary function that divides the objective space, O, into two regions, i.e. the region

weakly dominated by Q and the region not dominated by Q, can be found. Fonseca and

Fleming called this boundary function, which can also be seen as the locus of the family

of tightest objective vectors known to be attainable, the attainment surface.

Fonseca and Fleming described a method to compute the x%-attainment surface,

using randomly generated intersection lines that takes multiple optimization runs into

account, where x can be chosen arbitrarily. The x%-attainment surface, in conjunction

with statistical tests, can be used to compare POFs obtained from multiple MOO algo-

rithms. Zitzler [116] noted that a drawback of the attainment surface approach is that

no clear way is given how to express the quality difference between POFs obtained from

two different algorithms. Zitzler did, however, note that Fonseca and Fleming’s approach

allows for meaningful statistical interpretations and is well suited for visualizing the POF

over several runs.

A more thorough treatment of attainment surfaces is given in chapter 5.
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2.5 Test Problem Sets

When attempting to better understand the strengths and weaknesses of an algorithm, it

is important to have a strong understanding of the problem at hand. This is as true for

the field of MOO as it is for any other field. For a MOO algorithm, the performance in

terms of the two primary goals of convergence and diversity must be evaluated. For an

accurate evaluation, a number of problem characteristics must be covered [24]. Firstly,

the problems should present a challenge for convergence. Multimodality, deception, and

isolated optima are known problem areas for convergence for single objective problems.

Secondly, POFs with convexity or non-convexity, discreteness, and non-uniformity prop-

erties provide a challenge for diversity.

The two benchmark problem sets used throughout this study are discussed next. Take

note that to avoid confusion the notation and symbols used throughout this section are

kept similar to original papers that introduced these benchmark problem sets.

2.5.1 Zitzler-Deb-Thiele’s Test Problems

Zitzler et al. [118] framed six test problems, referred to as the Zitzler-Deb-Thiele (ZDT)

test problems, ZDT1 through ZDT6. The ZDT problems were constructed following the

process described by Deb [24]. All six ZDT problems have two objectives defined as

minimize f1(x)

minimize f2(x) = g(x)h(f1(x), g(x)) (2.25)

The six ZDT test problems vary in the way that the functions f1(x), g(x), and h(x)

are defined. The POF is formed by g(x) = 1 in all functions, except ZDT5. ZDT5 is a

Boolean function defined over bit-strings and is not considered in the work presented in

this thesis.

The remaining five ZDT test problems are defined as follows:
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ZDT1

f1(x) = x1

g(x) = 1 +
9

n− 1

n∑
i=2

xi

h(f1, g) = 1−
√
f1

g
(2.26)

where n = 30, and xi ∈ [0, 1]. ZDT1 has a convex POF.

ZDT2

f1(x) = x1

g(x) = 1 + 9
n∑
i=2

xi
n− 1

h(f1, g) = 1−
(
f1

g

)2

(2.27)

where n = 30, and xi ∈ [0, 1]. ZDT2 is the non-convex, concave POF counterpart to

ZDT1.

ZDT3

f1(x) = x1

g(x) = 1 + 9
n∑
i=2

xi
n− 1

h(f1, g) = 1−
√
f1

g
−
(
f1

g

)
sin(10πf1) (2.28)

where n = 30, and xi ∈ [0, 1]. The sine function in h(x) causes discontinuity in the

POF. Take note that the discontinuity is only in the POF. The decision space is not

discontinuous. ZDT3 has discrete features; its POF consists of several non-contiguous

convex parts.
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ZDT4

f1(x) = x1

g(x) = 1 + 10(n− 1) +
n∑
i=2

(x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√
f1

g
(2.29)

where n = 10, x1 ∈ [0, 1] and x2, . . . , xn ∈ [−5, 5]. The best local POF is formed with

g(x) = 1.25. ZDT4 is multimodal and contains 219 local POFs.

ZDT6

f1(x) = 1− e−4x1 sin6(6πx1)

g(x) = 1 + 9

(∑n
i=2 xi
n− 1

) 1
4

h(f1, g) = 1−
(
f1

g

)2

(2.30)

where n = 10, and xi ∈ [0, 1]. ZDT6 has a non-convex, concave POF presenting two

challenges. Firstly, the POF solutions are non-uniformly distributed along the global

POF with the POF biased towards solutions where f1(x) is near one. Secondly, the

density of the solutions is lowest near the POF and highest away from the POF.

2.5.2 Walking Fish Group Test Problems

Huband et al. [52, 53] proposed a test suite, referred to as the Walking Fish Group

(WFG) test problems, that consists of nine scalable MOPs, WFG1 through WFG9. All
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the WFG problems are of the following form:

given z = {z1, . . . , zk, zk+1, . . . , zn}
minimize fm(x) = DxM + Smhm(x1, . . . , xM−1) ∀ m ∈ [1,M ]

where x = {x1, . . . , xM}
= {max(tpM , A1)(tp1 − 0.5) + 0.5, . . . ,

max(tpM , AM−1)(tpM−1 − 0.5) + 0.5, tpM}
tp = {tp1, . . . , tpM} ←[ tp−1 ← [ . . .←[ t1 ←[ z[0,1]

z[0,1] = {z1,[0,1], . . . , zn,[0,1]}

=

{
z1

z1,max

, . . . ,
zn

zn,max

}
(2.31)

where

• M is the number of objectives, x is a set of M underlying parameters, where xM is

an underlying distance parameter and x1:M−1 are underlying position parameters;

• z is a set of k + l = n ≤ M working parameters, where the first k working

parameters are position-related parameters and the last l working parameters are

distance-related parameters;

• D > 0 is a distance scaling constant;

• A1:M−1 ∈ 0, 1 are degeneracy constants, and for each Ai = 0 the dimensionality of

the POF is reduced by one;

• h1:M are shape functions;

• S1:M > 0 are scaling constants; and

• t1:p are transition vectors where “←[” indicates that each transition vector is created

from another vector via transformation functions.

The domain of all zi ∈ z is [0, zi,max] where all zi,max > 0. Note that all xi ∈ x will have

domain [0, 1].

Shape functions determine the nature of the POF, and map parameters with domain

[0, 1] onto the range [0, 1]. The following shape functions are defined:
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Linear

linear1(x1, . . . , xM−1) =
M−1∏
i=1

xi

linearm=2:M−1(x1, . . . , xM−1) = (
M−m∏
i=1

xi)(1− xM−m+1)

linearM(x1, . . . , xM−1) = 1− x1 (2.32)

When h1:M = linearm, the POF is a linear hyperplane, where
∑M

m=1 hm = 1.

Convex

convex1(x1, . . . , xM−1) =
M−1∏
i=1

(1− cos(xi
π

2
))

convexm=2:M−1(x1, . . . , xM−1) = (
M−m∏
i=1

(1− cos(xi
π

2
)))(1− sin(xM−m+1

π

2
))

convexM(x1, . . . , xM−1) = 1− sin(x1
π

2
) (2.33)

When h1:M = convexm, the POF is purely convex.

Concave

concave1(x1, . . . , xM−1) =
M−1∏
i=1

(1− sin(xi
π

2
))

concavem=2:M−1(x1, . . . , xM−1) = (
M−m∏
i=1

sin(xi
π

2
))(cos(xM−m+1

π

2
))

concaveM(x1, . . . , xM−1) = cos(x1
π

2
) (2.34)

When h1:M = concavem, the POF is purely concave, and a region of the hypersphere of

radius one is centered at the origin, where
∑M

m=1 h
2
m = 1.

Mixed convex/concave (α > 0, A ∈ {1, 2, . . . })

mixedM(x1, . . . , xM−1) = (1− x1 −
cos(2Aπx1 + π

2
)

2Aπ
)α (2.35)
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Equation (2.35) causes the POF to contain both convex and concave segments, the

number of which is controlled by A. The overall shape is controlled by α: when α > 1,

the overall shape is convex, when α < 1, the overall shape is concave, and when α = 1,

the overall shape is linear.

Disconnected (α, β > 0, A ∈ {1, 2, . . . })

discM(x1, . . . , xM−1) = 1− (x1)α cos2(A(x1)βπ) (2.36)

Equation (2.36) causes the POF to have disconnected regions, the number of which is

controlled by A. The overall shape is controlled by α: when α > 1, the overall shape

is convex, when α < 1, the overall shape is concave, and when α = 1, the overall shape

is linear. The location of the disconnected regions is controlled by β: larger values of β

push the location of the disconnected regions towards larger values of x1, and vice versa.

Transformation functions map input parameters with domain [0, 1] onto the range [0, 1].

For brevity, a weighted product reduction function (analogous to the weighted sum

reduction function) has been omitted. The following transformation functions have been

defined:

Bias: Polynomial (α > 0, α 6= 1)

b poly(y, α) = yα (2.37)

When α > 1, y is biased towards zero, and when α < 1, y is biased towards one.

Bias: Flat Region (A,B,C ∈ [0, 1], B < C,B = 0 ⇒ A = 0 ∧ C 6= 1, C = 1 ⇒ A =

1 ∧B 6= 0)

b flat(y, A,B,C) = A+ min(0, by −Bc)A(B − y)

B

−min(0, bC − yc)(1− A)(y − C)

1− C (2.38)

Values of y between B and C – the area of the flat region – are all mapped to the value

of A.
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Bias: Parameter Dependent (A ∈ (0, 1), 0 < B < C)

b param(y,y′, A,B,C) = yB+(C−B)v(u(y′))

v(u(y′)) = A− (1− 2u(y′))|b0.5− u(y′c+ A| (2.39)

A, B, C, and the secondary parameter vector y′ together determine the degree to which

y is biased by being raised to an associated power, values of u(y′) ∈ [0, 0.5] are mapped

linearly onto [B,B + (C −B)A], and values of u(y′) ∈ [0.5, 1] are mapped linearly onto

[B + (C −B)A,C].

Shift: Linear (A ∈ (0, 1))

s linear(y, A) =
y − A

|bA− yc+ A| (2.40)

Shift: Deceptive (A ∈ (0, 1), 0 < B � 1, 0 < C � 1, A−B > 0, A+B < 1)

s decept(y, A,B,C) = 1 + (|y − A| −B)

(by − A+Bc(1− C + A−B
B

)

A−B

+
bA+B − yc(1− C + 1−A−B

B
)

1− A−B +
1

B

)
(2.41)

A is the global minimum of the transformation. B is the “aperture” size of the well/basin

leading to the global minimum at A, and C is the value of the deceptive minima. There

are always two deceptive minima.

Shift: Multimodal (A ∈ {1, 2, . . . }, B ≥ 0, (4A+ 2)π ≥ 4B,C ∈ (0, 1)

s decept(y, A,B,C) =
1 + cos((4A+ 2)π(0.5− |y−C|

2(bC−yc+C)
)) + 4B( |y−C|

2(bC−yc+C)
)2

B + 2
(2.42)

A controls the number of minima, B controls the magnitude of the “hill sizes” of the

multi-modality, and C is the value for which y is mapped to zero. When B = 0, 2A+ 1

values of y, one at C, are mapped to zero, and when B 6= 0, there are 2A local minima,

and one global minimum at C. Larger values of A and smaller values of B create more

difficult problems.
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Reduction: Weighted Sum (|w| = |y|, w1, . . . , w|y| > 0)

r sum(y,w) =

∑|y|
i=1 wiyi∑|y|
i=1wi

(2.43)

The constant weight vector w forces an algorithm to treat the parameter vector, y,

differently.

Reduction: Non-separable (A ∈ {1, . . . , |y|}, |y| mod A = 0)

r nonsep(y, A) =

∑|y|
j=1(yj +

∑A−2
k=0 |yj − y1 + (j + k) mod |y|)

|y|
A
dA

2
e(1 + 2A− 2dA

2
e)

(2.44)

A controls the degree of non-separability, noting that

r nonsep(y, 1) = r sum(y,1)

Bias transformations impact the search process by biasing the fitness landscape. Shift

transformations move the location of optima. In the absence of any shift, all distance-

related parameters would be extremal parameters, with optimal value at zero. Shift

transformations can be used to set the location of parameter optima, subject to skewing

by bias transformations. Setting the location of parameter optima using shift transfor-

mations is useful if medial and extremal parameters are to be avoided. It is recommended

that all distance-related parameters be subjected to at least one shift transformation.

The deceptive and multimodal shift transformations make the corresponding problem

deceptive and multimodal, respectively. The flat region transformation can have a sig-

nificant impact on the fitness landscape and can also be used to create a many-to-one

mapping from the POF to the POS.

To ensure problems are well designed, the following restrictions apply:

Constants

Constants must be fixed values and cannot be tied to the value of any parameter.
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Primary Parameters

For any given transition vector, all the parameters of the originating transition vector

must be employed exactly once as a primary parameter, counting parameters that appear

independently as primary parameters, and in the same order in which the parameters

appear in the originating transition vector.

Secondary Parameters

Care must be taken to avoid cyclical dependencies in b param. If a is a primary pa-

rameter of b param, and b is a secondary parameter, the a depends on b. If b likewise

depends on c, the a depends, indirectly, on c. To prevent cyclical dependencies, no two

parameters should be dependent on one another. A parameter should also not depend

on itself.

Shifts

Parameters should only be subjected to a maximum of one shift transformation.

Reductions

Reduction transformation should belong to transition vectors that are closer to the un-

derlying parameter vector than any shift transformations.

b flat

When A = 0, b flat should only belong to transition vectors that are further away from

the underlying parameter vector than any shift or reduction transformation.

The constant values and domains of the working parameters for the nine WFG test

problems are defined as follows:
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Constants

Sm=1:M = 2m

A1 = 1

A2:M−1 =

0 for WFG3

1 otherwise
(2.45)

The settings for S1:M ensure that the POFs have dissimilar trade-off magnitudes, and

the settings for A1:M−1 ensure that the POFs are not degenerate, except in the case of

WFG3, which has a one-dimensional POF.

Domains

zi=1:n,max = 2i (2.46)

The working parameters have domains of dissimilar magnitude.

Finally, the shape and transformations for the nine WFG test problems are defined as

follows:

WFG1

Shape hm=1:M−1 = convexm

hM = mixedM , with α = 1 and A = 5

t1 t1i=1:k = yi

t1i=k+1:n = s linear(yi, 0.35)

t2 t2i=1:k = yi

t2i=k+1:n = b flat(yi, 0.8, 0.75, 0.85)

t3 t3i=1:n = b poly(yi, 0.02)

t4 t4i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)),

(2((i−)k/(M − 1) + 1), . . . , 2ik/(M − 1)))

t4M = r sum((yk+1, . . . , yn), (2(k + 1), . . . , 2n)) (2.47)
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WFG2

Shape hm=1:M−1 = convexm

hM = discM , with α = β = 1 and A = 5

t1 t1i=1:k = yi

t1i=k+1:n = s linear(yi, 0.35)

t2 t2i=1:k = yi

t2i=k+1:n = r nonsep((yk+2(i−k)−1, yk+2(i−k)), 2)

t3 t3i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), (1, . . . , 1))

t3M = r sum((yk+1, . . . , yk+l/2), (1, . . . , 1)) (2.48)

WFG3

Shape hm=1:M = linearm

t1 t1i=1:k = yi

t1i=k+1:n = s linear(yi, 0.35)

t2 t2i=1:k = yi

t2i=k+1:n = r nonsep((yk+2(i−k)−1, yk+2(i−k)), 2)

t3 t3i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), (1, . . . , 1))

t3M = r sum((yk+1, . . . , yk+l/2), (1, . . . , 1)) (2.49)

WFG4

Shape hm=1:M = concavem

t1 t1i=1:n = s multi(yi, 30, 10, 0.35)

t2 t2i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), (1, . . . , 1))

t2M = r sum((yk+1, . . . , yn), (1, . . . , 1)) (2.50)
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WFG5

Shape hm=1:M = concavem

t1 t1i=1:n = s decept(yi, 0.35, 0.001, 0.05)

t2 t2i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), (1, . . . , 1))

t2M = r sum((yk+1, . . . , yn), (1, . . . , 1)) (2.51)

WFG6

Shape hm=1:M = concavem

t1 t1i=1:k = yi

t1i=k+1:n = s linear(yi, 0.35)

t2 t2i=1:M−1 = r nonsep((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), k/(M − 1))

t2M = r nonsep((yk+1, . . . , yn), l) (2.52)

WFG7

Shape hm=1:M = concavem

t1 t1i=1:k = b param(yi, r sum((yi+1, . . . , yn), (1, . . . , 1)),
0.98

49.98
, 0.02, 50)

t1i=k+1:n = yi

t2 t2i=1:k = yi

t2i=k+1:n = s linear(yi, 0.35)

t3 t3i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), (1, . . . , 1))

t3M = r sum((yk+1, . . . , yn), (1, . . . , 1)) (2.53)
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WFG8

Shape hm=1:M = concavem

t1 t1i=1:k = yi

t1i=k+1:n = b param(yi, r sum((y1, . . . , yi−1), (1, . . . , 1)),
0.98

49.98
, 0.02, 50)

t2 t2i=1:k = yi

t2i=k+1:n = s linear(yi, 0.35)

t3 t3i=1:M−1 = r sum((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), (1, . . . , 1))

t3M = r sum((yk+1, . . . , yn), (1, . . . , 1)) (2.54)

WFG9

Shape hm=1:M = concavem

t1 t1i=1:n−1 = b param(yi, r sum((yi+1, . . . , yn), (1, . . . , 1)),
0.98

49.98
, 0.02, 50)

t1n = yn

t2 t2i=1:k = s decep(yi, 0.35, 0.001, 0.05)

t2i=k+1:n = s multi(yi, 30, 95, 0.35)

t3 t3i=1:M−1 = r nonsep((y(i−1)k/(M−1)+1, . . . , yik/(M−1)), k/(M − 1))

t3M = r nonsep((yk+1, . . . , yn), l) (2.55)

2.6 Summary

The objective of this chapter was to provide background information on all the vari-

ous computational intelligence techniques, performance measures, and benchmark suites

employed throughout this study. Specific focus was placed on particle swarm optimiza-

tion, multi-objective optimization, multi-objective particle swarm optimization, multi-

objective measurements, and multi-objective benchmark suites. Particle swarm opti-

mization was presented along with the various velocity update models, neighborhood

structures, and convergence and stability criteria were discussed. Definitions that are

commonly found in multi-objective optimization literature were given and explained.
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Vector evaluated particle swarm optimization was discussed as an example of a multi-

objective particle swarm optimization algorithm. A discussion on multi-objective perfor-

mance measures was given. Finally, a detailed overview of two multi-objective problem

toolkits and their associated test problems, as used throughout this study, was given.

The next chapter investigates the exploration behavior of the vector evaluated particle

swarm optimization algorithm using the aforementioned test sets.
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Vector Evaluated Particle Swarm

Optimization Exploration Behaviour

“The eye sees only what the mind is prepared to comprehend.”

Robertson Davies (1913 - 1995)

The previous chapter presented VEPSO, a PSO variant that deals with MOO. Previ-

ous studies by Fieldsend [34] and Matthysen et al. [74] have shown that VEPSO suffers

from a stagnation problem. In order to better understand the VEPSO search process

and why the search stagnates, this chapter presents an explorative analysis of VEPSO

in low-dimensional objective space. A new candidate solution visualization approach is

introduced to visually analyze the search process of VEPSO. The newly introduced vi-

sualization approach can also be applied to other MOO algorithms. The main objective

of the analysis is to better understand why VEPSO stagnates and fails to find better so-

lutions as the number of iterations increases. It is hypothesized that the stagnation and

poor performance can be attributed to a lack of exploitation. In order to test the lack

of exploitation hypothesis, an archive-guided PSO algorithm is developed and compared

against VEPSO. A number of new quantitative measurements are introduced to assist

with validating the lack of exploitation hypothesis.

Section 3.1 presents and discusses the POFs obtained from running the VEPSO al-

gorithm. The behavior of the candidate solutions, the solutions in objective space that

43
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each particle’s current position represents, is investigated. Section 3.2 presents an analy-

sis of candidate solution dispersion in order to identify why the VEPSO performs poorly.

Section 3.3 introduces and presents an analysis of an archive-guided PSO algorithm that

attempts to address the shortcomings of the VEPSO algorithm. Section 3.4 presents an

analysis of the movement diversity of the candidate solution using the newly introduced

candidate solution movement diversity measure. Finally, Section 3.5 presents a summary

of the findings of this chapter.

3.1 Explorative Analysis

The analysis presented in this section made use of the VEPSO algorithm using a ring

KTS with a maximum archive size of 150 with distance based pruning [2]. The results

presented were taken over 30 independent runs of 2000 iterations. The inertia weight,

w, was set to 0.729844, and the acceleration constants, c1 and c2, were set to 1.49618.

Figures 3.1(a) through 3.1(e) show the POF for the ZDT1 through ZDT6 problems

and Figures 3.2(a) through 3.2(i) show the POF for the WFG1 through WFG9 problems.

Visual inspection of the POFs has shown that the VEPSO algorithm managed to find a

close approximation to the POF for the majority of test problems. However, in many of

the cases, the POF is not smooth and have a poor spread. Additionally, for test problem

ZDT4 the POF is not found. Increasing the number of iterations did not improve the

found POFs, and it is concluded, as with previous studies, that the VEPSO algorithm

stagnates [34, 74].

In order to better understand why the VEPSO stagnates, the behavior of the can-

didate solutions represented by the objective vectors was tracked and plotted. Figures

3.3(a) through 3.3(j) show the resulting plots for ZDT1 through ZDT6 and figures 3.4(a)

through 3.4(r) show the resulting plots for WFG1 through WFG9. For each problem,

the candidate solution plots for each of the two swarms, representing the two objectives,

are presented. Visual inspection of the figures shows that the particles continue to move

around the objective space without converging towards the POF. The particle movement

almost seems random.

As stated in the previous chapter, Deb [25] defined the two distinct goals for a MOO
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Figure 3.1: VEPSO calculated POFs for ZDT problems

algorithm as follows:

1. discover solutions as close to the Pareto-optimal solutions as possible, and

2. find solutions as diverse as possible in the obtained non-dominated front.

In contrast to these goals, the candidate solution plots show that the particles are not

moving towards or spreading along the POF.
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Figure 3.2: VEPSO calculated POFs for WFG problems
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Figure 3.3: VEPSO swarms S1 and S2 candidate solutions for iterations 1-2000 (darker color

represents lower iterations, lighter color indicates higher iterations) for ZDT1 through ZDT6

3.2 Candidate Solution Dispersion

To further analyze the behavior of the particles, the candidate solution dispersion is

measured quantitatively using three new measurements. These three measurements,

when interpreted together, show whether the particles are exploiting by moving closer

to and spreading along the POF, or exploring by moving further away from the POF.
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Figure 3.4: VEPSO swarms S1 and S2 candidate solutions for iterations 1-2000 (darker color

represents lower iterations, lighter color indicates higher iterations) for WFG1 through WFG8
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Figure 3.4: VEPSO swarms S1 and S2 candidate solutions for iterations 1-2000 (darker color

represents lower iterations, lighter color indicates higher iterations) for WFG9

3.2.1 Measuring Dispersion

The first measurement tracks whether the candidate solutions are moving towards the

POF, by measuring the average distance between each candidate solution and the point

[0, 0]. The first measurement is formally defined as:

Dl =
1

no

no∑
k=1

|qk| (3.1)

where qk is candidate solution k with length |qk|. no is the number of candidate solutions.

Large values for Dl indicate that the candidate solutions are far away from the POF,

exploring more, while small values indicate that the candidate solutions are closer to the

POF, exploiting more. A plot of Dl against the number of iterations shows whether the

particles are moving closer to or further away from the POF. For algorithms that explore

initially and exploit later, the expected result would be a decreasing value for Dl as the

iterations increases. This measure is not intended to measure how closely the POF is

being approximated, but rather only to give a general idea of the candidate solutions’

movement in the objective space.

The second measurement quantifies the spread of the candidate solutions by mea-

suring the average angle between lines drawn from the candidate solutions to the point

[0, 0]. The second measurement is formally defined as:

Dθ =
1

no − 1

no−1∑
k=1

αk (3.2)
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where αk is the angle between the k’th and k + 1’th lines. Large values for Dθ indicate

that the candidate solutions are spread out more, covering a larger part of the objective

space, presumably along or parallel to the POF. Small values indicate that the candidate

solutions are less spread out.

The third measurement quantifies how even the spread of the candidate solutions are

by measuring the standard deviation between the angles obtained from measurement

two. The third measurement is formally defined as:

Dσ =

√√√√ 1

no − 2

no−1∑
k=1

(αk −Dθ)2 (3.3)

Small values for Dσ indicate that the candidate solutions are spread evenly, presumably

along or parallel to the POF. Large values for Dσ indicate that the candidate solutions

are not spread evenly and could be scattered in clusters. Both Dθ and Dσ need to be

viewed together to get an understanding of the candidate solutions’ spread. Large values

for Dθ and small values for Dσ would be ideal, because it indicates a large even spread.

Small values for Dθ or large values for Dσ indicates a less optimal spread of the candidate

solutions.

Note that the three new measurements differ from the existing measurements, such as

generational distance [107] and spread [27], in that the existing measurements evaluate

only the non-dominated solutions and not the candidate solutions of the current parti-

cle positions. This chapter focuses on exploring the behavior of the current candidate

solutions and not the non-dominated solutions that have already been found.

3.2.2 Dispersion Analysis

The dispersion measurement results for VEPSO are presented in figures 3.5(a) through

3.5(ap). For each problem, the Dl, Dθ and Dσ values are plotted for iterations 1 through

500. For ZDT1 to ZDT4 and ZDT6, the POF lies in the area where f1(x) ≤ 1 and

f2(x) ≤ 1. Based on where the POF lies, it can be concluded that, if the particles are

exploring close to the POF, the Dl value should be close to or approaching 1. The figures

show Dl values that are much larger in the majority of swarms. Seven of the 12 ZDT

swarms had Dl values exceeding 4. For ZDT4 observe that the Dl values exceed 150
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indicating extremely poor performance. The resulting POF also confirms this. After

around iteration 50 little change in the Dl values can be noted for all the ZDT problems.

The best Dl values were around 2 for ZDT1, ZDT2, and ZDT3.

For WFG1 through WFG9, the POF lies in the area where f1(x) is close to 4 for

f2(x) = 0 and f2(x) is close to 2 for f1(x) = 0. Well-performing values for Dl should

thus approach 2.5. Similar to the ZDT problems, after around iteration 50 no further

improvement in Dl can be noted for any of the WFG problems except for WFG9. In the

case of WFG9, improvement in Dl can be noted up to around iteration 300.

Increasing the number of iterations also led to no notable improvement in Dl val-

ues, confirming that the algorithm stagnates. The Dθ and Dσ measurements showed

no notable change as the number of iterations increased. The results indicate that the

particles are not exploiting or refining the already found POF as the number of itera-

tions increases. The exploration behavior of the VEPSO remains constant after around

iteration 50 and does not focus on more exploitation.

3.3 Increasing Exploitation

In this section, the archive-guided PSO is introduced in Section 3.3.1 to address the

issues with VEPSO identified in the previous section. The exploration behavior of the

newly introduced archive-guided PSO is then compared against VEPSO in Section 3.3.2.

3.3.1 Archive-guided Particle Swarm Optimization

The archive-guided PSO increases the pull towards the POF by adding an archive guide

term to the velocity update equation. The archive guide is randomly weighted along

with the global guide such that the social influence of the velocity update remains pro-

portionally weighted against the inertia and cognitive terms. This prevents the social

term from overwhelming the search process. The archive-guided PSO velocity update

equation is formally defined as follows:

vi(t+ 1) = wvi(t) + c1r1(yi(t)− xi(t)) + λic2r2(ŷi(t)− xi(t))

+ (1− λi)c3r3(âi(t)− xi(t)) (3.4)
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Figure 3.5: VEPSO dispersion results for ZDT and WFG problems (solid dark blue indicates

values for S1 and dashed light red indicates values for S2)
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Figure 3.5: VEPSO dispersion results for ZDT and WFG problems (solid dark blue indicates

values for S1 and dashed light red indicates values for S2)
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Figure 3.5: VEPSO dispersion results for ZDT and WFG problems (solid dark blue indicates

values for S1 and dashed light red indicates values for S2)

where λi is a constant, random number, uniformly sampled from 0 to 1, c3 > 0 is an

acceleration constant, and r3 is a random vector with components uniformly sampled

from 0 to 1, âi(t) is a randomly selected solution from the archive for particle i at

iteration t. The archive term now allows for information exchange between the swarms
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as both swarms submit and select from the archive. For the archive-guided PSO, ŷi(t)

is the global best particle of the current swarm.

The addition of the archive term forces the information exchange to only exchange

particle positions that improve one or more objectives, thus pulling the particles closer to

the POF. On the other hand, the VEPSO random KTS allows the exchange of particle

positions that attract particles away from the POF. The only requirement for a particle

to be selected by the random KTS is that the particle must be well performing relative

to the local objective of the randomly selected swarm.

3.3.2 Comparative Analysis

The archive-guided PSO algorithm was executed on the same ZDT and WFG test sets.

The dispersion measurement results are presented in figures 3.6(a) through 3.6(ap).

The results show a notable improvement in both the Dl and Dθ ±Dσ measurements for

a number of problems. For ZDT1 to ZDT3 and ZDT6 at least one of the swarms have

a near ideal Dl value of 1. Also, note that the dispersion angle kept on improving for

ZDT1 and ZDT2 up to around iteration 250. This indicates that the particles were more

spread out along or parallel to the POF. The most promising result was noted for ZDT4:

Dl kept on decreasing while Dθ showed a corresponding increase. Take note that the Dθ
values were still considerably lower than any of the other results.

For the WFG test set the number of problems with Dl values lower than 3 increased

to 7 from only one previously. It should also be noted that the results show that,

typically, one of the swarms per problem performed much better while the other seemed

to maintain poorer Dl values. Increasing the number of iterations did not improve the

results.

The candidate solution dispersion measurements indicate that the archive-guided

PSO should perform better than the VEPSO as the search focused more on areas in

the objective space close to the POF. To confirm this, the POFs were plotted. Figures

3.7(a) through 3.7(e) show the POF for the ZDT1 through ZDT6 problems and figures

3.8(a) through 3.8(i) show the POF for the WFG1 through WFG9 problems. It should

be noted that archive-guided PSO failed to find a well-formed POF for ZDT4 in 12 of

the 30 samples. A sample where a well-formed POF was found is shown here. It should
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Figure 3.6: Archive-guided PSO dispersion results for ZDT and WFG problems (solid dark

blue indicates values for S1 and dashed light red indicates values for S2)
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Figure 3.6: Archive-guided PSO dispersion results for ZDT and WFG problems (solid dark

blue indicates values for S1 and dashed light red indicates values for S2)
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Figure 3.6: Archive-guided PSO dispersion results for ZDT and WFG problems (solid dark

blue indicates values for S1 and dashed light red indicates values for S2)

also be noted that VEPSO failed to find the POF for ZDT4 in all 30 samples.

Visual inspection of the POFs reveals that the POFs as found by the archive-guided

PSO are much smoother for the majority of problems. WFG6 is a notable exception

where the POF was slightly more jagged than the one found by VEPSO. The density
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Figure 3.7: Archive-guided PSO calculated POFs for ZDT problems

of the POF is also much more consistent with archive-guided PSO than with VEPSO.

WFG2, WFG3, WFG4, WFG7, and WFG8 are good examples where the found POF is

much denser and smoother than the one found by VEPSO.

In order to understand why archive-guided PSO outperformed VEPSO, the candidate

solution movement over the iterations are plotted. Figures 3.9(a) through 3.9(j) show

the resulting plots for ZDT1 through ZDT6 and figures 3.10(a) through 3.10(r) show the

resulting plots for WFG1 through WFG9.

Visual inspection shows that, for ZDT1, ZDT2, ZDT3, ZDT4, WFG2, WFG3, WFG5

and WFG7, one of the two swarms are much more focused on refining the POF. This

correlates with our candidate solution dispersion measurements that indicated one of the
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Figure 3.8: Archive-guided PSO calculated POFs for WFG problems
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Figure 3.9: Archive-guided PSO swarms S1 and S2 candidate solutions for iterations 1-2000

(darker color represents lower iterations, lighter color indicates higher iterations)

swarms were more focused on exploitation. In the case of WFG2, a sinus like wave pattern

can be seen. The lower left edges of this pattern make up the POF. It is interesting to

note that the search kept on exploring the dominated region between the POF sections

for WFG2. WFG8 and WFG9 seemed to have proved most challenging as the search

kept exploring and did not seem to converge towards the POF. The quality and density

of the POFs found by the archive-guided PSO can be attributed to the fact that the
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Figure 3.10: Archive-guided PSO swarms S1 and S2 candidate solutions for iterations 1-2000

(darker color represents lower iterations, lighter color indicates higher iterations)
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Figure 3.10: Archive-guided PSO swarms S1 and S2 candidate solutions for iterations 1-2000

(darker color represents lower iterations, lighter color indicates higher iterations)

algorithm focuses much more on refining the POF than VEPSO.

3.4 Candidate Solution Movement Diversity

The candidate solution plots in the previous section showed that, for a number of swarms

for both VEPSO and archive-guided PSO, the particles kept on exploring dominated re-

gions of the objective space. The particles are clearly exploring more of the objective

space at higher iterations than would have been desired. However, the plots did not

show how large a region each of the particles explored. In this section, a new move-

ment diversity measurement is introduced to understand more about the behavior of the

individual particles. Section 3.4.1 describes the newly introduced movement diversity

measure, followed by an analysis of the movement diversity results in Section 3.4.2.

3.4.1 Measuring Movement Diversity

The movement diversity measurement quantifies the degree of dispersion of a particle

over a set number of iterations. The movement diversity measurement is based on the

swarm diversity measurement [69, 111]. Instead of calculating the diversity over the

position of the particles in the swarm, the movement diversity is calculated using the

positions each particle occupied over the last nt iterations. For this study, nt was chosen
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to be 20. The movement diversity measure is formally defined as:

∆d(S, t) =
1

ns

ns∑
i=1

1

nt

nt−1∑
∆t=0

√√√√ nx∑
j=1

(xij(t−∆t)− x̄ij(t))2 (3.5)

with

x̄ij(t) =
1

nt

nt−1∑
∆t=0

xij(t−∆t) (3.6)

where S is the swarm, t is the iteration, ns is the number of particles in the swarm S,

nt is the number of iterations over which the movement diversity is calculated, nx is

the number of components of particle position xi, xij(t) is the j’th component of the

i’th particle position, and x̄ij(t) is the average of the j’th component of the i’th particle

position over the last nt iterations.

The larger the movement diversity, the larger the region of the decision space that

has been explored. The smaller the movement diversity, the smaller the region of the

decision space that has been explored, indicating more exploitation. Ideally, the move-

ment diversity should be large during the initial phase of the search, exploring more of

the decision space, and smaller during the latter phase, exploiting more of the already

found solutions.

Unlike the Dl, Dθ and Dσ candidate solution dispersion measurements, the movement

diversity focuses on particle behavior in the decision space and not in the objective space.

The movement diversity focuses exclusively on the movement, or path, of the particle,

over nt iterations. It is not a measure of how much the particles in the swarm are

clustered or spread out.

3.4.2 Movement Diversity Analysis

Figures 3.11(a) through 3.11(e) show the movement diversity for ZDT1 through ZDT6.

Figures 3.12(a) through 3.12(i) show the movement diversity for WFG1 through WFG9.

Both VEPSO and archive-guided PSO swarms S1 and S2 are shown. Note that the

remainder of this thesis uses the notation, algorithm:Sm, to refer to the swarm Sm for

the corresponding algorithm.

For all the ZDT problems, the archive-guided PSO:S2 swarm had the lowest move-

ment diversity, and the archive-guided PSO:S1 swarm maintained the second lowest
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Figure 3.11: Movement diversity for VEPSO and archive-guided PSO

diversity. Archive-guided PSO:S2 maintained a significantly lower movement diversity

than VEPSO:S2. A comparison of the movement diversity results with the candidate so-

lution plots shows that the low movement diversity is due to the fact that the algorithm

has found the POF and is only focusing on minor improvements to the already found

front. This clearly shows that archive-guided PSO:S2 is exploiting much more than the

corresponding VEPSO swarm. It can be noted that the archive-guided PSO:S2 swarm

movement diversity did not reach zero and the particles kept on moving about towards

the end of the search.

Note that both VEPSO and archive-guided PSO keep track of the nondominated

solutions by storing them in an archive [2, 68]. When a new solution is added to the

archive, all the solutions that are dominated by the new solution are removed from the

archive. At any time, the archive contains the solutions that represent the best POF
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Figure 3.12: Movement diversity for VEPSO and archive-guided PSO

found thus far.

The continued movement of the archive-guided PSO:S2 swarm can be attributed to

the use of the randomly selected archive position in the velocity update equation of the

archive-guided PSO. Effectively, the particles are moving on the POF attempting to
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improve the POF. The large difference between the archive-guided PSO:S1 and archive-

guided PSO:S2 movement diversities may be attributed to the construction of the ZDT

problems. The ZDT function f1(x) is always defined as f1(x) = x1 where x1 ∈ (0, 1).

The values for x2..nx , where nx is the number of dimensions of x, is irrelevant for function

f1(x). It is hypothesized that this causes a situation in swarm S1 where x1 is quickly op-

timized to a value of 0 while the x2..nx values retain a higher diversity of non-zero values.

These non-zero values for x2..nx lead to worse f2(x) values that can only be improved

through the archive guide, because both the personal best and local best positions con-

sider only the f1(x) function value. Similarly, this could explain why S2 manages to find

the POF, seemingly so much easier when looking at the candidate solution plots because

function f2(x) takes all the components of x into account. While the archive-guided

PSO results show more clearly that there is a potential problem, the VEPSO algorithm

may also be susceptible to this problem. A more thorough investigation will need to be

conducted to confirm this hypothesis.

A similar trend can be noted for the movement diversity of S1 and S2 for the WFG

problems. Only WFG5 and WFG9 resulted in non-similar trends for the movement

diversity. The archive-guided PSO candidate solution plots for WFG5 show that the

archive-guided PSO:S1 particles were exploring closer to the POF than the archive-

guided PSO:S2 particles. The lower movement diversity for archive-guided PSO:S1 can

be attributed to the fact that the particles were busy exploiting more whereas the archive-

guided PSO:S2 particles were still exploring more. Similarly, the VEPSO:S1 are exploring

a slightly smaller area than VEPSO:S2 when looking at the candidate solution plots

and this is reinforced by the resulting movement diversity plot. Note, however, that

for WFG5 both VEPSO and archive-guided PSO maintained a fairly high movement

diversity indicating a high level of exploration were still taking place.

Similar to WFG5, for WFG9 the movement diversity for both VEPSO and archive-

guided PSO swarms indicate that a high level of exploration were still taking place. From

the candidate solution plot for archive-guided PSO:S2 the expectation is set that archive-

guided PSO:S2 would have the lowest movement diversity because the candidate solution

plot indicate the swarm is exploiting slightly more than the other swarms for WFG9.

This is however not the case, and VEPSO:S1 maintained a lower movement diversity.
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This may be due to the complexity of the WFG9 problem. Further investigation is

required to confirm this.

For WFG2, WFG3, and WFG7 the movement diversity shows that the archive-guided

PSO particles are moving significantly less than the corresponding VEPSO particles.

The candidate solution plots confirm that this is again due to exploitation of the already

found VEPSO.

In general, the movement diversity measurement results show that the VEPSO parti-

cles, for both swarms, were exploring much more than the corresponding archive-guided

PSO particles. The lower movement diversity indicates that the algorithm focuses more

on exploitation of the already found well-performing areas of the decision space. However,

there are exceptions where a lower movement diversity was noted while the candidate

solution plot indicated that the particles were still exploring far away from the VEPSO.

3.5 Summary

This chapter presented an explorative analysis in low-dimensional objective space of the

VEPSO algorithm’s search behavior. The use of two objective problems allowed for

the visualization of the candidate solutions in the objective space. The visualization

of the candidate solutions aided in investigating the exploration-exploitation behavior

of VEPSO. The ZDT and WFG test sets were used as benchmark problems for this

analysis. The obtained POFs for each of the problems were plotted. In many cases the

POFs were jagged, and the solutions were not evenly spread along the POF.

A hypothesis for VEPSO’s poor performance was presented. In order to investigate

further, the movement of the candidate solutions was plotted. The plots showed that

VEPSO continues to explore and does not focus on refining (or exploiting) the already

found POF, confirming the hypothesis. Three new measurements were introduced to

quantify the dispersion of the particles in the objective space. These measurements

focus on measuring the candidate solutions rather than the Pareto optimal solutions.

The archive-guided PSO was introduced to address the lack of POF refinement that

was noted in the VEPSO results. The archive-guided PSO was shown to spend more

time refining the POF than VEPSO. The resulting POFs reflected the performance im-
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provement when compared to VEPSO. The candidate solution movement plots reflected

the fact that more time was spent refining solutions near or on the POF.

A new quantitive measurement was introduced to measure the particle movement

diversity. The movement diversity measurement reveals the extent of areas in the decision

space that particles are exploring. Larger movement diversities indicate that the particles

are focusing more on exploration and less on exploitation. The movement diversity was

calculated for VEPSO and archive-guided PSO for all the ZDT and WFG problems.

The results confirmed that the archive-guided PSO focuses more on exploitation when

compared to VEPSO. Additionally, a potential weakness in the archive-guided PSO

algorithm was noted for the ZDT problems where swarm S1 tended to perform poorly

when compared to swarm S2. Further investigation needs to be conducted to determine

if there is truly a problem and if the VEPSO algorithm may be susceptible to a similar

problem.

Non-zero movement diversities were noted for all the problems. In the case of the

archive-guided PSO, this can be attributed to the use of a randomly selected archive

guide in the velocity update equation.

In general, it was shown that the archive-guided PSO algorithm outperformed the

VEPSO algorithm due to the increased exploitation.

The next chapter presents an investigation of the effect that various archive imple-

mentations have on VEPSO’s performance.



Chapter 4

Vector Evaluated Particle Swarm

Optimization Archive Management

“A retentive memory may be a good thing, but the ability to forget is the

true token of greatness.”

Elbert Hubbard (1856 - 1915)

The previous chapter investigated the exploration behavior of VEPSO. The explo-

ration behavior analysis showed that VEPSO does not exploit the known well-performing

regions of the search space. The lack of exploitation, in turn, leads to poor quality POFs.

The POF is constructed using the non-dominated solutions found in VEPSO’s archive.

When introducing VEPSO, Parsopoulos and Vrahatis [84, 85] did not describe the man-

agement of the VEPSO archive in detail. This chapter presents an analysis of the effect

of various archive management strategies (AMSs) on the performance of VEPSO. The

main objective is to identify the influence of various AMSs on the resulting POFs. To

achieve this objective, various AMSs are discussed followed by a POF diversity and per-

formance analysis. A weakness in two of the diversity measures used during the POF

diversity analysis is identified and analyzed.

70
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4.1 Introduction

Various studies have been conducted to analyze the performance of the VEPSO algo-

rithm [47, 74]. These studies use quantitative performance measures to compare the

performance of the VEPSO algorithm against other well-known MOO algorithms. Hel-

big and Engelbrecht [50] investigated the effect that the AMS has on performance

in the context of dynamic environments using the dynamic vector evaluated parti-

cle swarm optimization (DVEPSO) algorithm. While studying the performance of a

newly introduced KTS, Harrison et al. [47] compared the VEPSO algorithm against

the optimized multi-objective particle swarm optimization (OMOPSO) [92] and speed-

constrained multi-objective particle swarm optimization (SMPSO) [79] algorithms. In

contrast to OMOPSO and SMPSO, VEPSO’s AMS is not well defined.

This chapter presents and evaluates eight different bounded AMSs. One of the eval-

uated AMSs, the hypersurface contribution AMS, is also introduced in this chapter. In

addition to the different AMSs, the effect that the size limit of the archive has on the

POF’s diversity is also evaluated. A critical weakness in Schott’s [96] spacing and Goh

and Tan’s [44] distribution measures are identified and analyzed. The crowding distri-

bution measure is introduced to address the weakness of the aforementioned diversity

measures. A performance evaluation, using the IGD measure to compare the various

AMSs, is used to identify the best performing AMS for VEPSO.

The remainder of this chapter is structured as follows: Section 4.2 provides a more

detailed overview of archive management and the various AMSs used throughout this

study. A POF diversity analysis is presented in Section 4.3. The diversity measure

results contained some discrepancies. Section 4.4 presents and validates a hypothesis

as to why some of the measures may yield misleading results. Section 4.5 presents a

performance analysis of the different AMSs and their influence on the resulting POFs.

Finally, Section 4.6 provides a summary of the findings of this chapter.

4.2 Archives

While several different AMSs have been developed for MOO algorithms [3, 47, 79, 92],

it is well known that more research in archive management is needed to further the
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performance of multi-objective optimization algorithms [3, 110].

This section discusses the basics of archive management in Section 4.2.1 and the

various deletion approaches used by bounded AMSs in Section 4.2.2.

4.2.1 Archive Management

Archives store non-dominated solutions found during the search process. Typically, an

optimization algorithm will submit solutions to be stored in the archive at the end of

each iteration. A new solution is only admitted into the archive if none of the existing

solutions in the archive dominate the new solution. When a new solution is admitted,

all the solutions in the archive that are dominated by the new solution are removed.

Archives can be bounded or unbounded.

Bounded archives limit the number of solutions that can be kept in the archive, A.

The archive limit can be preset or dynamically adapted [72]. Once the archive size limit

is reached, new solutions can only be admitted if existing solutions in the archive are

removed. If no solutions in the archive are dominated by the new solution, the solution

can either not be admitted [58], or a deletion approach (also known as a removal function

or pruning method) can be used to remove a solution from the archive [3, 68].

Algorithm 4 provides pseudo-code for a bounded AMS with a deletion approach to

maintain the archive size.

4.2.2 Deletion Approaches

The experimental work presented in this chapter made use of a bounded AMS with the

following eight deletion approaches:

Crowding Distance

First introduced by Deb et al. [29], crowding distance was introduced to estimate the

density of solutions surrounding a particular solution. The crowding distance of a Pareto-

optimal solution is calculated as the average distance between the two points on either

side of the specified point along each of the objectives. When the archive is full, the

solution with the smallest crowding distance is removed from the archive.
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Algorithm 4 Bounded archive management strategy with a deletion approach

1: for each particle i = 1, ..., ns do

2: if xi is not dominated by any solution in the archive

3: and xi is not similar to any solutions in the archive then

4: if xi dominates any solution a in the archive then

5: Remove all archive solutions that is dominated by xi;

6: Add xi to the archive;

7: else

8: Add xi to the archive;

9: if archive size exceeds archive size limit then

10: Select a solution a from the archive using a deletion approach;

11: Remove solution a from the archive;

12: end if

13: end if

14: end if

15: end for

It should be noted that various enhancements to the crowding distance have been

proposed to improve the accuracy of the solution density estimation when more than

two objectives are used [38, 70, 103].

Distance

Bart-Beielstein et al. [3] proposed a relative distance based measure. The relative

distance is defined as the sum of the Euclidean distance between the specified solution

and all other solutions in the archive. The distance deletion fitness is defined as:

fdel,u =

|A|∑
l=1,l 6=u

(√√√√ nm∑
m=1

( aum − alm
max(am)−min(am)

)2
)−1

(4.1)

with a ∈ A. When the archive is full, the solution with the highest deletion fitness,

fdel,u, is removed from the archive.
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Nearest Neighbor

Harrison et al. [47] used a nearest neighbor deletion approach. The nearest neighbor

is calculated similarly to the distance approach. However, instead of computing the

distance between each pair of solutions in the archive, only the nn-closest neighboring

solutions, calculated using the Euclidean distance, are used in the calculation.

Random

The random deletion approach removes a randomly selected solution from the archive.

Hypervolume Contribution

Zitzler and Thiele [117] proposed a measure that, in the two-dimensional case, calculates

the area of the rectangle defined by the points (0, 0) and a = (a1, a2). The proposed

measure came to be known as the hypervolume measure.

Jiang and Cai [57] introduced an archive based on the idea of the minimum reduction

in hypervolume. Each solution in the archive is ranked according to the amount that the

solution contributes to the hypervolume measure. When the archive is full, the solution

that contributes the least to the hypervolume is removed from the archive.

Calculating the hypervolume is computationally expensive [40]. Bader and Zitzler

[1] proposed a Monte Carlo simulation based approach for efficient estimation of the

hypervolume measure.

Hypersurface Contribution

Based on the idea of hypervolume contribution, a hypersurface contribution based archive

is proposed. The hypersurface contribution for a solution in the archive a is calculated

as the hypersurface area contributed to the POF by the solution. The extreme solutions

a1 and a4 have hypersurface contributions set to∞. Figure 4.1 depicts the hypersurface

contribution calculation |a12 − a22|+ |a31 − a21| for a non-dominated solution a2 for the

two objectives case.

Similar to the hypervolume contribution archive, when the hypersurface archive is

full, the solution that contributes the least to the hypersurface is removed from the
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f1

f2

a12 − a22

a31 − a21

a1 = (a11, a12)

a2 = (a21, a22)

a3 = (a31, a32)

a4 = (a41, a42)

Figure 4.1: Hypersurface contribution calculation

archive.

ε-dominance

Sierra and Coello Coello [92] introduced the OMOPSO algorithm using an ε-dominance

based archive to store the non-dominated solutions.

Laumanns [71] termed ε-dominance as defined in definition 2.6 as multiplicative ε-

dominance. An alternative additive definition defines the ε-dominance relation as εm +

fm(x1) < fm(x2).

Mostaghim and Teich [78] found that ε-dominance based archives in multi-objective

PSO outperformed other archiving techniques in some cases.

Note that the ε-dominance based archive, in contrast to the other archives presented

here, do not impose a limit on the number of entries. The εm parameters must be tweaked

until the algorithm generates the desired number of solutions.

Adaptive Grid

Coello Coello and Lechuga [18] proposed subdivision of the objective space into hyper-

cubes. Between 30 and 50 divisions were proposed as being optimal. Bart-Beielstein et

al. [3] proposed an adaptive grid variant based on the idea proposed by Coello Coello and

Lechuga. The adaptive grid proposed by Bart-Beielstein et al. resizes the hypercubes

every iteration. The edge lengths of the hypercube are determined as:

ěm =
c̈ (max(am)−min(am))

|A| (4.2)
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with a ∈ A, where m ∈ [1, nm] is the dimension of the hypercube edge and c̈ ∈ [0, 1] is

a selection pressure. Bart-Beielstein et al. set c̈ to 0.5. The hypercube grid coordinate,

č, for an archive solution a is calculated as:

čm =

⌊
am −min(am)

ěm

⌋
(4.3)

The deletion fitness is defined as:

fdel,u = |H|2 (4.4)

where |H| is the number of solutions with the same hypercube grid coordinate. When the

archive is full, a solution with the highest deletion fitness, fdel,u, is randomly selected and

removed from the archive. The number of divisions is defined as
⌊
ns

c̈

⌋
. For a swarm with

50 particles with c̈ = 0.5 this results in
⌊

50
0.5

⌋
= 100 hypercube divisions per dimension.

4.3 Archive’s Influence on Diversity

This section presents an evaluation of the impact that the archive size limit and choice

of AMS have on VEPSO’s resulting POF’s diversity. A discussion on how to measure

the influence on diversity is given in Section 4.3.1, followed by a diversity analysis in

Section 4.3.2.

4.3.1 Measuring Pareto-optimal Front Diversity

The analysis presented in this section made use of the four POF diversity measures

presented in Section 2.4.2, namely maximum spread by Zitzler [116], distribution by

Goh and Tan [44], spacing by Schott [96], and spread by Deb et al. [29].

The diversity was measured for VEPSO (Random) and VEPSO (PCXA) with archive

size limits, 50, 150, and 500, in combination with the AMSs presented in the previous

section. Each archive size limit and deletion approach combination were tested using

the ZDT test set. The results presented were taken over 30 independent runs of 2000

iterations of each algorithm for each problem. The inertia weight, w, was set to 0.729844,

and the acceleration constants, c1 and c2, were set to 1.49618, nn was set to 2 for the

nearest neighbor deletion approach.
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4.3.2 Pareto-optimal Front Diversity Analysis

Figures 4.2 through 4.9 depict the measurement values for the four measures for ZDT1

through ZDT6 over 2000 iterations for archive sizes 50, 150, and 500. The next four

subsections present an analysis for each of the measurements followed by a summary of

the analysis.

Spread – ∆

Figures 4.2 and 4.3 depict the ∆ (spread) values for the VEPSO (Random) and VEPSO

(PCXA) algorithms, respectively. Results for each of the eight AMSs are shown. From

figures 4.2(a), 4.2(d), and 4.2(g), the effect of the archive size is clearly visible. Seven

of the eight AMSs for VEPSO (Random) had similar ∆ values up to the point where

the archive size was reached. The ε-dominance AMS, which does not have a fixed size

limit, was the exception. Figures 4.10(a) through 4.10(c) depict the number of solutions

in the archive corresponding to the ∆ values in figures 4.2(a) through 4.2(c). Once the

archive size was reached, the ∆ decreased only in the cases where the crowding distance,

hypervolume contribution, and hypersurface contribution AMSs were used.

For archive size 50, the random and adaptive grid AMSs performed worse than all

the other approaches. For ZDT1, ZDT2, and ZDT6 with an archive size of 150, and

ZDT with an archive size of 500, the distance AMS led to worse ∆ values than even the

random AMS once the archive size limit was reached. In most cases, the ∆ values for

the ε-dominance AMS tended to improve faster than the other AMSs but then stagnates

consistently at a level worse than the crowding distance AMS. While the ε-dominance

AMS results do look promising, this was due to the lack of a fixed archive size limit. The

εm parameter also proved to be extremely sensitive to the performance tuning. Values

for εm, which would consistently, over multiple algorithm runs, lead to specified archive

sizes, could not be found for certain problems such as ZDT6.

In contrast to VEPSO (Random), the resulting ∆ values for VEPSO (PCXA) are

much more consistent for the different archive sizes. This can be attributed to the

VEPSO (PCXA) algorithm reaching the archive size much faster than the VEPSO (Ran-

dom) algorithm, as can be noted in figures 4.11(a) through 4.11(c). The speed at which

the archive size was reached, reduced the number of iterations where the ∆ values were
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Figure 4.2: VEPSO (Random) spread, ∆, over archive sizes 50, 150 and 500 for ZDT1 through

ZDT6
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Figure 4.3: VEPSO (PCXA) spread, ∆, over archive sizes 50, 150 and 500 for ZDT1 through

ZDT6
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Figure 4.4: VEPSO (Random) maximum spread, D̄, over archive sizes 50, 150 and 500 for

ZDT1 through ZDT6
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Figure 4.5: VEPSO (PCXA) maximum spread, D̄, over archive sizes 50, 150 and 500 for

ZDT1 through ZDT6
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Figure 4.6: VEPSO (Random) spacing, S̄, over archive sizes 50, 150 and 500 for ZDT1

through ZDT6
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Figure 4.7: VEPSO (PCXA) spacing, S̄, over archive sizes 50, 150 and 500 for ZDT1 through

ZDT6
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Figure 4.8: VEPSO (Random) distribution, D, over archive sizes 50, 150 and 500 for ZDT1

through ZDT6
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Figure 4.9: VEPSO (PCXA) distribution, D, over archive sizes 50, 150 and 500 for ZDT1

through ZDT6
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Figure 4.10: VEPSO (Random) ZDT1 number of solutions over archive sizes 50, 150 and 500

similar for the eight AMSs. Similar to VEPSO (Random), the ε-dominance AMS was

an exception to this pattern for ZDT6. Once the archive size was reached, the crowd-

ing distance, hypervolume contribution, hypersurface contribution, or ε-dominance AMS

performed best. For all the problems, except ZDT4, with archive sizes 150 and 500, the

distance AMS performed worse than even the random AMS in terms of the ∆. The

adaptive grid AMS performed on-par with the random AMS. For archive size 50, the

nearest neighbor AMS performed equally to the distance AMS, including achieving the

worst performance on ZDT3.

For ZDT4 the ∆ was erratic for both VEPSO (Random) and VEPSO (PCXA) for

all the AMSs over all three archive sizes. The ∆ did not converge to any value.

For ZDT6 the archive size was reached much faster than in the case of ZDT1, ZDT2,

and ZDT3. Similar behavior for the ∆ can be noted once the archive size was reached.

Overall it is shown that ∆ is extremely sensitive to the choice of the AMS in cases

where the archive size is reached. For smaller archives, the archive size is reached faster

and the effect on the ∆ is thus larger in these cases. The crowding distance, hypervolume

contribution, and hypersurface AMSs achieved better ∆ values when compared to the

nearest neighbor, distance, adaptive grid, and random AMSs. The ε-dominance AMS

performed well when the εm parameter value is well-tuned.
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Figure 4.11: VEPSO (PCXA) ZDT1 number of solutions over archive sizes 50, 150 and 500

Maximum Spread – D̄

D̄ proved to be a much more consistent than ∆ when comparing different archive sizes

and AMSs. For VEPSO (Random) ZDT1, there was no notable difference in the D̄ value

after around 100 iterations, with only the nearest neighbor and distance AMSs showing

a slightly improved D̄ with an archive size of 50. The distance and nearest neighbor

AMSs showed the most notable variance in the D̄ value for ZDT3 over the archive sizes.

Figures 4.4(g) through 4.4(i) depict the D̄ for ZDT3 with archive sizes 50, 150 and 500.

For smaller archive sizes, the distance and nearest neighbor AMSs achieved slightly lower

D̄ values. For ZDT4, the D̄ value is somewhat erratic, with a general decrease up to

around iteration 1000.

For VEPSO (PCXA) the D̄ value behavior was similar to VEPSO (Random) with

the random AMS D̄ values being slightly erratic. The performance in the case of ZDT4

was notably less erratic. ZDT3 showed a similar pattern with the distance and nearest

neighbor AMSs showing a slight improvement in D̄ for smaller archive sizes.

Overall, the D̄ value provided more consistent results over the eight AMSs and varying

archive sizes. The D̄ value showed sensitivity on ZDT3 to the archive size when using

the distance or nearest neighbor AMSs. No discernible pattern could be seen between

the D̄ value and when the archive size was reached.
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Spacing – S̄

For VEPSO (Random) on ZDT1 though ZDT6, the S̄ value showed little to no sensitivity

towards the choice of AMS for archive sizes larger than 50. For ZDT1 through ZDT3

with archive size 50, the hypervolume contribution and hypersurface contribution AMSs

maintained a higher S̄ value than the other AMSs once the archive size was reached.

For ZDT6 with archive size 50, only the hypersurface contribution AMS maintained a

higher S̄ value than the other AMSs. Again, somewhat erratic S̄ values can be noted

for ZDT4.

For VEPSO (PCXA) on ZDT1 and ZDT2, the S̄ value showed extreme sensitivity

when using the hypersurface contribution and hypervolume contribution AMSs with an

archive size of 50. Figure 4.15(a) depicts the S̄ value for ZDT1. Note the high variation

in S̄ values. In contrast to the ∆ measure shown earlier, the S̄ measure achieved lower

values for the larger archive sizes. Similarly, for both VEPSO (Random) and VEPSO

(PCXA), smaller S̄ values were achieved for larger archive sizes on ZDT6. For VEPSO

(PCXA) on ZDT1 through ZDT3, and ZDT6, the S̄ measure did not show sensitivity

towards the choice of crowding distance, ε-dominance, distance and nearest neighbor

AMSs for a fixed archive size. A slight sensitivity towards the adaptive grid AMS can

be noted.

Overall, it can be noted that S̄ showed little to no sensitivity towards the choice of

AMS for all archive sizes larger than 50.

Distribution – D

For VEPSO (Random), the D values showed sensitivity only towards the AMS for ZDT1

through ZDT3 with archive size 50 where the hypervolume contribution and hypersurface

contribution AMSs achieved higher D values. D values for ZDT4 were, similar to the

other measures, erratic.

A similar pattern can be noted for VEPSO (PCXA) as for VEPSO (Random), with

only ZDT1 and ZDT3 showing sensitivity towards the hypervolume contribution and

hypersurface contribution AMSs.

Overall, it can be noted that D had the least sensitivity to the archive size and choice

of AMS between all the tested measures.
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Summary

The experimental results showed that all the tested measures exhibited sensitivity to-

wards the choice of AMS and archive size in at least some cases. The results indicate

that ∆ had the highest resolution of all the measures, but also had the highest sensitivity

towards the choice of AMS and archive size. D was the least sensitive and can also be

reasoned to have had the lowest resolution of all the measures. S̄ had the highest sen-

sitivity towards the hypersurface contribution and hypervolume contribution AMSs. D̄

proved to be the most consistent measurement as it only measures the extent of the POF

and not the diversity of the solutions that make up the POF. Due to the use of solutions

from the archive, VEPSO (PCXA) was influenced more than VEPSO (Random) by the

choice of AMS. Overall, the crowding distance AMS generally yielded good results for

all the POF diversity measures.

The objective of this Section was to evaluate the hypothesis that the diversity is

influenced by the choice of AMS. The experimental results using the ZDT problems

with different AMSs confirmed this hypothesis. From the experimental results it can

be concluded that care must be taken when choosing the archive size and AMS as the

impact on the POF diversity can be notable. Comparing diversity measures between

algorithms should not be done without taking the archive size into account.

An investigation into why the S̄ and D measures displayed less sensitivity to changes

in the archive size and AMS is presented in the next section.

4.4 Misleading Pareto-optimal Front Diversity Mea-

sures

The previous section showed that the distribution, D, and spacing, S̄, measures displayed

the least sensitivity towards both the archive size and AMS. A more detailed analysis

of the distribution, D, and spacing, S̄, calculations reveal a potential weakness that

could explain the lack of sensitivity. Section 4.4.1 presents the pairwise hypothesis as

the cause of the lack of sensitivity. Section 4.4.2 introduces the crowding distribution

measure to address the pairwise weakness, followed by an analysis that validates the
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pairwise hypothesis in Section 4.4.3.

4.4.1 Pairwise Hypothesis

As presented in section 2.4.2, distribution calculates dk as the Euclidean distance in

objective space between solution k and its nearest neighbor in Q. Similarly, spacing

calculates dk as the Manhattan distance between solution k and its nearest neighbor in

Q. In each case, the distance between solution k and its nearest neighbor in Q is used

in the diversity calculation.

Using the nearest neighbor solution in objective space creates a pairwise combination

problem where two solutions select each other during the diversity calculation. Figure

4.12 depicts two example POFs for discussion purposes. Figure 4.12(a) illustrates a well-

spread POF with a nearly equal distribution of solutions. Potential nearest neighbor

pairings for the first example are (A,B), (B,C), (D,E), and (E,F ). Note that the

(C,D) pairing is not used in any calculation as it is not the nearest neighbor pairing. In

the second example illustrated in figure 4.12(b), the solutions that make up the POF are

clustered. In this case, the nearest neighbor pairings would be (A,B), (C,D), (E,F ),

and (F,G). The diversity calculations will not take the larger distances between B and

C or D and E into consideration, which in turn, would lead to misleading diversity

measurement values. As long as the distances between the solutions that make up the

nearest neighbor pairings are close to equal, the spacing and distribution measurement

values would indicate a good diversity.

Adapting the distribution and spacing calculations to take more than one nearest

neighbor into account would not solve the problem. In figure 4.12(b) a grouping of three

solutions, (E,F,G), can easily be formed without taking the distance between D and E

into account. Similarly, in actual POFs, solutions can be grouped into groups of three

or more solutions that would still be susceptible to the same problem as the pairwise

groupings; that is, not to take all the distances between solutions into account.
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Figure 4.12: POF solution distribution examples

4.4.2 Crowding Distance based Distribution

In order to verify the hypothesis that the nearest neighbor pairwise groupings affect the

resulting distribution and spacing values, a new diversity measure is introduced. The

new diversity measure is based on crowding distance, and avoids the pairwise problem

by using sorted sets to determine the next neighbor for the distance calculation. The

crowding distribution is defined as:

C =
1

|Q| − 1

|Q|∑
k=1

|d̄− dk| (4.5)

with

d̄ =
1

|Q|

|Q|∑
k=1

dk (4.6)

and

dk =
nm∑
j=1

(
d∗k,j − qk,j

)
(4.7)

where

d∗k,m =

min{qu,m} if qu ∈ Q : qu,m > qk,m

0 otherwise
(4.8)

and nm is the number of objectives, dk is calculated for solution qk ∈ Q ⊆ Rnm , similar

to the crowding distance, as the sum of the differences between qk,m and qk+1,m; qk+1,m
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is the next solution in the set Q ordered by the m’th objective. Figure 4.13 illustrates

the crowding distance hypercube and the distances used by the crowding distribution

calculation; fm : k + 1 denotes the next solution in the set Q ordered by the m’th

objective.

The crowding distribution is not subject to the pairwise problem due to the use of

the crowding distance based calculation of dk.

It should be noted that the distance calculations used in the distribution and spacing

calculations cannot be changed to avoid the pairwise problem. Selecting the neighboring

solution from a set sorted by objective function will not scale to more than two objectives.

On the other hand, the proposed crowding distribution measure can be used for problems

with more than two objectives.

4.4.3 Analysis

Figures 4.14(a) through 4.26(e) depict the measurement values for the three measures,

the number of solutions in the archive for ZDT1 through ZDT6 over 2000 iterations as

well as a selection of the resulting POFs. For VEPSO (Random) on ZDT1, ZDT2, and

ZDT3, the crowding distribution, C, measurement values stopped decreasing around

iteration 400 for the distance, random, and adaptive grid AMSs. The discontinuation

in the decrease of the measurement values for C deviates from the measurement values

for distribution, D, and spacing, S̄, where a continued decrease can be noted. From

f1

f2
k − 1

k
k + 1

(a) Crowding distance

f1

f2
f2 : k + 1

k
f1 : k + 1

(b) Crowding distribution

Figure 4.13: Crowding distance and distribution calculation hypercubes
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Figure 4.14: VEPSO (Random) spacing, S̄, distribution, D, crowding distribution, C, with

archive size 50 for ZDT1 through ZDT6
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Figure 4.15: VEPSO (PCXA) spacing, S̄, distribution, D, crowding distribution, C, with

archive size 50 for ZDT1 through ZDT6
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Figure 4.16: VEPSO (Random) number of solutions

figures 4.16(a) through 4.16(c) it can be noted that the archive limit is reached around

iteration 400. This corresponds to where the C measurement values start to deviate

from the D and S̄ measurement values. Figures 4.18(a) through 4.19(e) show the POFs

obtained for iterations 100, 250, 500, 750, and 1000 for the VEPSO (Random) algorithm

with the distance and nearest neighbor AMSs. A large gap in the POF in figure 4.18(e)

can be noted. The nearest neighbor AMS POF, in turn, shows a much better spread

of solutions. The POFs clearly confirm that the C measurement values represent the

actual spread of solutions whereas the D and S̄ measurement values give a misleading

indication of the actual spread of solutions.

The POFs shown in figures 4.20(a) through 4.21(e) confirm that a similar misleading

indication between the actual spread and the D and S̄ measurement values exists. In
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Figure 4.17: VEPSO (PCXA) number of solutions

this case, a degradation in the visible diversity of the solutions can be noted between

the POF for iteration 500 shown in figure 4.21(c) and the POF at iteration 1000 shown

in figure 4.21(e).

The ZDT4 results were erratic for all three diversity measures. It should also be

noted that none of the ZDT4 algorithms reached the archive size limit. The ZDT6 C

results show that the distance AMS had the highest diversity and the crowding and

nearest neighbor AMSs had the lowest diversity. The D and S̄ results did not reveal the

same trend. The POFs shown in figures 4.22(a) through 4.23(e) confirm that the D and

S̄ measurement values are misleading and that there is a notable difference in the spread

of solutions as indicated by the C measurement values.

For VEPSO (PCXA) on ZDT1, the distance AMS had higher C values than that
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Figure 4.18: VEPSO (Random) with distance AMS POF for ZDT1
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Figure 4.19: VEPSO (Random) with nearest neighbor AMS POF for ZDT1
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Figure 4.20: VEPSO (Random) with crowding distance AMS POF for ZDT3
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Figure 4.21: VEPSO (Random) with random AMS POF for ZDT3
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Figure 4.22: VEPSO (Random) with crowding distance AMS POF for ZDT6
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Figure 4.23: VEPSO (Random) with distance AMS POF for ZDT6
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of the other archive management strategies. Again, this pattern does not match the

D results where the hypersurface contribution and hypervolume contribution AMSs had

higher diversities. For ZDT1, the hypersurface contribution D and S̄ measurement values

start high and then gradually decreases, whereas the C measurement values start lower

and then gradually increases. For ZDT1 the random and adaptive grid AMSs had an

unstable S̄ value as visible in figure 4.15(a). Similar to the ZDT1 result, the S̄ values

for ZDT2 were unstable for the random and adaptive grid AMSs. No notable difference

in D values could be noted for the eight AMSs. The distance AMS had slightly higher

C values.

For ZDT3 the C measurement values again show varying performance for the eight

AMSs whereas the S̄ and D measurement values showed only a varying performance for

the hypersurface contribution and hypervolume AMSs. Figures 4.24(a) through 4.26(e)

clearly show that the AMSs achieved notably different spreads as reflected in the C

measurement values. Figures 4.25(e) is an excellent example of the pairwise grouping

problem. Clusters of solutions are clearly visible, and the corresponding S̄ and D mea-

surement values give no indication of the degraded spread of solutions.

Similar to the VEPSO (Random) results for ZDT4, the diversity measures were

erratic. For ZDT6, in contrast to the D and S̄ results, the C values showed notable

differences in the results achieved by the AMSs. Only the hypersurface contribution and

the hypervolume contribution showed a difference in the S̄ measurement values.

Overall, the results indicate that the distribution, D, and spacing, S̄, measurement

values were misleading whereas the crowding distribution, C, measurement values gave

a more accurate indication of the actual spread of solutions on the POF. The results

confirm the hypothesis that the distribution, D, and spacing, S̄, measures are susceptible

to a pairwise grouping problem where larger distances in the actual spread of solutions

are ignored. This, in turn, leads to misleading measurement values.

It should also be noted that the crowding distribution measurement calculation uses

the same crowding distance calculation as the crowding distance AMS. The use of the

same crowding distance calculation could lead to a selection bias problem where the

crowding distance AMS could wrongly achieve slightly better results than other diversity

measures. This bias should not affect the findings in this section as the objective of this
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Figure 4.24: VEPSO (PCXA) with crowding distance AMS POF for ZDT3
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Figure 4.25: VEPSO (PCXA) with distance AMS POF for ZDT3
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Figure 4.26: VEPSO (PCXA) with random AMS POF for ZDT3

section was to show that the distribution and spacing measurement calculations are

insensitive and misleading due to the pairwise grouping problem.

4.5 Archive Management Strategy’s Influence on Per-

formance

This section presents an evaluation of the impact that the choice of AMS has on VEPSO’s

performance. A discussion on how to measure the influence on performance is given in

Section 4.5.1, followed by a performance analysis in Section 4.5.2.

4.5.1 Measuring Performance

The results for the VEPSO (Random) and VEPSO (PCXA) algorithms are presented in

this section. The performance was measured using the well-known IGD measurement, as
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described in section 2.4.3. The true POF sets from the jMetal framework [80] were used

for all the IGD calculations. Each KTS was evaluated using the eight AMSs presented

earlier in this chapter. The results presented were taken over 30 independent runs of

2000 iterations of each algorithm using the ZDT and 2-objective WFG test sets. The

inertia weight, w was set to 0.729844, and the acceleration constants, c1 and c2, were set

to 1.49618, nn was set to 2 for the nearest neighbor AMS.

4.5.2 Performance Analysis

The next two subsections present an analysis of the performance for each of the VEPSO

KTSs followed by a summary of the analysis.

VEPSO (Random)

Figures 4.27(a) through 4.27(e) and 4.28(a) through 4.28(i) depict the average IGD

measurement values for ZDT1 through ZDT6 and WFG1 through WFG9 for the VEPSO

with a random KTS. For 12 of the 14 problems, the nearest neighbor and distance AMSs

performed notably worse than all the other AMSs. It should be noted that, in nine cases,

the random AMS performed on-par with the other AMSs. In the remaining cases, the

random AMS performed on-par with the adaptive grid AMS. For 12 of the cases, the IGD

measurement values for the nearest neighbor and distance AMSs increase after an initial

decrease, indicating that the POF approximation degrades the longer the algorithm runs.

For ZDT4 the hypervolume contribution and crowding distance AMSs performed notably

worse than all other AMSs.

A statistical analysis of the performance of the various AMSs is presented in Table 4.1.

IGD measurement values for each of the AMSs were compared with all the other AMSs

using the Mann-Whitney U [43] test with a confidence level of 95%. If a statistically

significant difference was detected a win was recorded for the AMS and a loss was

recorded for the other AMS. The difference between the wins and losses were computed

and is also listed. A ranking was assigned according to the win-loss difference [48]. The

overall wins, losses, difference, and rank across all the problems are shown.

The results indicate that the crowding distance AMS performed overall best, followed

by the ε-dominance and hypersurface contribution AMSs. The crowding distance AMS
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Figure 4.27: VEPSO (Random) Inverted Generational Distance for ZDT1 through ZDT6

recorded only three losses compared to 70 wins. The ε-dominance AMS ranked first for

seven of the 14 problems including for ZDT4 where the crowding distance AMS ranked

second to last. The ε-dominance AMS however recorded nine losses compared to 67 wins,

ranking second overall. The distance and nearest neighbor AMSs performed statistically

the worst. The distance AMS recorded 75 losses compared to a single win, while the

nearest neighbor AMS recorded 72 losses with only four wins.

It can also be noted that overall, the results for the ZDT and WFG functions tend

to correspond with one another.
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Figure 4.28: VEPSO (Random) Inverted Generational Distance for WFG1 through WFG9
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Table 4.1: VEPSO (Random) archive management strategy comparison

Archive Result
ZDT Function WFG Function

Overall
1 2 3 4 6 1 2 3 4 5 6 7 8 9

Crowding Distance

Wins 6 6 5 0 5 7 0 5 6 7 7 5 4 7 70

Losses 0 0 0 0 1 0 0 0 1 0 0 0 1 0 3

Difference 6 6 5 0 4 7 0 5 5 7 7 5 3 7 67

Rank 1 1 1 6 2 1 1 2 2 1 1 1 2 1 1

Hypersurface Contribution

Wins 4 6 5 0 4 5 0 3 2 4 6 3 2 4 48

Losses 1 0 0 0 3 2 0 1 3 2 1 0 2 2 17

Difference 3 6 5 0 1 3 0 2 -1 2 5 3 0 2 31

Rank 3 1 1 6 4 3 1 3 6 3 2 3 5 3 3

Hypervolume Contribution

Wins 4 5 4 0 5 4 0 2 2 4 5 2 2 4 43

Losses 1 2 2 5 1 3 0 3 2 2 2 2 1 2 28

Difference 3 3 2 -5 4 1 0 -1 0 2 3 0 1 2 15

Rank 3 3 4 8 2 4 1 6 4 3 3 4 3 3 4

Nearest Neighbor

Wins 0 0 0 1 0 1 0 0 0 0 1 0 0 1 4

Losses 6 6 6 0 6 6 0 6 6 6 6 6 6 6 72

Difference -6 -6 -6 1 -6 -5 0 -6 -6 -6 -5 -6 -6 -5 -68

Rank 7 7 7 1 7 7 1 7 7 7 7 7 7 7 7

Distance

Wins 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Losses 6 6 6 0 6 7 0 6 6 6 7 6 6 7 75

Difference -6 -6 -6 1 -6 -7 0 -6 -6 -6 -7 -6 -6 -7 -74

Rank 7 7 7 1 7 8 1 7 7 7 8 7 7 8 8

ε-dominance

Wins 4 4 4 1 7 6 0 6 7 6 4 5 7 6 67

Losses 0 3 0 0 0 1 0 0 0 1 3 0 0 1 9

Difference 4 1 4 1 7 5 0 6 7 5 1 5 7 5 58

Rank 2 4 3 1 1 2 1 1 1 2 4 1 1 2 2

Adaptive Grid (c = 0.5)

Wins 2 2 2 1 2 3 0 2 2 2 2 2 2 2 26

Losses 4 4 4 0 4 4 0 2 2 4 4 3 1 4 40

Difference -2 -2 -2 1 -2 -1 0 0 0 -2 -2 -1 1 -2 -14

Rank 5 5 5 1 5 5 1 4 4 5 5 6 3 5 5

Random

Wins 2 2 2 1 2 2 0 2 3 2 2 2 2 2 26

Losses 4 4 4 0 4 5 0 2 2 4 4 2 2 4 41

Difference -2 -2 -2 1 -2 -3 0 0 1 -2 -2 0 0 -2 -15

Rank 5 5 5 1 5 6 1 4 3 5 5 4 5 5 5
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VEPSO (PCXA)

Figures 4.29(a) through 4.29(e) and 4.30(a) through 4.30(i) depict the average IGD

measurement values for ZDT1 through ZDT6 and WFG1 through WFG9 for the VEPSO

(PCXA). For 12 of the 14 problems, the IGD measurement values showed notable worse

performance for the distance and nearest neighbor AMSs in comparison with all the

other AMSs. For 11 of the problems, the IGD measurement value increased after a rapid

initial decrease for the distance and nearest neighbor AMSs. For ZDT1 and ZDT6 the

adaptive grid and random AMSs performed notably worse than all the other AMSs,

excluding the distance and nearest neighbor AMSs which performed overall the worst.

Table 4.2 lists the statistical analysis results. Similar to the VEPSO (Random), the

0.00

0.01

0.02

0.03

0.04

0 500 1000 1500 2000

iteration

IG
D

(a) ZDT1

0.020

0.024

0.028

0 500 1000 1500 2000

iteration

IG
D

(b) ZDT2

0.00

0.01

0.02

0.03

0 500 1000 1500 2000

iteration

IG
D

(c) ZDT3

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000

iteration

IG
D

(d) ZDT4

0.000

0.005

0.010

0.015

0.020

0.025

0 500 1000 1500 2000

iteration

IG
D

(e) ZDT6

0.000

0.025

0.050

0.075

0.100

0 500 1000 1500 2000
iteration

nu
m

be
r o

f s
ol

ut
io

ns

Crowding Distance

e−dominance

Distance

Random

Hypervolume Contribution

Hypersurface Contribution

Adaptive Grid

Nearest Neighbor

Figure 4.29: VEPSO (PCXA) Inverted Generational Distance for ZDT1 through ZDT6
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Figure 4.30: VEPSO (PCXA) Inverted Generational Distance for WFG1 through WFG9

statistical analysis showed that the crowding distance AMS performs best, followed by

the ε-dominance and hypersurface AMSs. The ε-dominance AMS ranked first for nine of

the 14 problems, three more than the crowding distance AMS. However, the ε-dominance
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Table 4.2: VEPSO (PCXA) archive management strategy comparison

Archive Result
ZDT Function WFG Function

Overall
1 2 3 4 6 1 2 3 4 5 6 7 8 9

Crowding Distance

Wins 5 1 7 0 5 6 0 6 6 7 2 6 6 7 64

Losses 2 1 0 0 2 0 0 1 1 0 0 1 1 0 9

Difference 3 0 7 0 3 6 0 5 5 7 2 5 5 7 55

Rank 3 5 1 1 3 1 1 2 2 1 2 2 2 1 1

Hypersurface Contribution

Wins 6 1 5 0 4 5 0 2 5 5 6 2 2 5 48

Losses 1 0 1 0 3 2 0 2 2 2 0 2 2 2 19

Difference 5 1 4 0 1 3 0 0 3 3 6 0 0 3 29

Rank 2 2 2 1 4 3 1 3 3 3 1 3 3 3 3

Hypervolume Contribution

Wins 4 1 5 0 6 4 0 2 3 4 2 2 2 4 39

Losses 3 0 1 0 0 3 0 2 3 3 1 2 2 3 23

Difference 1 1 4 0 6 1 0 0 0 1 1 0 0 1 16

Rank 4 2 2 1 1 4 1 3 4 4 4 3 3 4 4

Nearest Neighbor

Wins 0 1 0 0 1 1 0 0 0 0 1 0 0 1 5

Losses 6 1 7 0 6 6 0 7 6 6 6 6 6 6 69

Difference -6 0 -7 0 -5 -5 0 -7 -6 -6 -5 -6 -6 -5 -64

Rank 7 5 8 1 7 7 1 8 7 7 7 7 7 7 8

Distance

Wins 0 4 1 0 0 0 0 1 0 0 0 0 0 0 6

Losses 6 0 6 0 7 7 0 6 6 6 7 6 6 7 70

Difference -6 4 -5 0 -7 -7 0 -5 -6 -6 -7 -6 -6 -7 -64

Rank 7 1 7 1 8 8 1 7 7 7 8 7 7 8 7

ε-dominance

Wins 7 0 2 0 6 6 0 7 7 6 3 7 7 6 64

Losses 0 7 5 0 0 0 0 0 0 1 1 0 0 1 15

Difference 7 -7 -3 0 6 6 0 7 7 5 2 7 7 5 49

Rank 1 8 6 1 1 1 1 1 1 2 2 1 1 2 2

Adaptive Grid (c = 0.5)

Wins 2 1 3 0 2 2 0 2 2 2 2 2 2 2 24

Losses 4 1 3 0 4 4 0 2 4 4 2 2 2 4 36

Difference -2 0 0 0 -2 -2 0 0 -2 -2 0 0 0 -2 -12

Rank 5 5 4 1 5 5 1 3 6 5 6 3 3 5 6

Random

Wins 2 1 3 0 2 2 0 2 2 2 2 2 2 2 24

Losses 4 0 3 0 4 4 0 2 3 4 1 2 2 4 33

Difference -2 1 0 0 -2 -2 0 0 -1 -2 1 0 0 -2 -9

Rank 5 2 4 1 5 5 1 3 5 5 4 3 3 5 5

AMS did have six more losses than the crowding distance AMS. The ε-dominance AMS

was also ranked eight for ZDT2 and sixth for ZDT3, a trend that was not visible for

any of the WFG problems. The distance and nearest neighbor AMSs again performed
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the worst. The difference between the wins and losses for both the distance and nearest

neighbor AMSs was −64. The distance AMS did however record one more win for a

total of six wins, thus ranking above the nearest neighbor AMS. It is noteworthy that,

overall, the adaptive grid AMS ranked sixth, while random AMS ranked fifth, both with

24 wins. The results indicate that the adaptive grid AMS overall performed no better

than the random AMS when compared with the other AMSs over all the problems.

Summary

Overall, for both the VEPSO (Random) and VEPSO (PCXA), the crowding distance

AMS performed best. The proposed hypersurface contribution AMS showed promise

and was only outperformed by the crowding distance and ε-dominance AMSs. The

hypersurface contribution AMS also outperformed the hypervolume contribution AMS.

Further research is required to establish how the various AMSs’ performance scale to

more objectives. It should be noted that the computational complexity of the hypervol-

ume contribution and hypersurface contribution AMS is notably higher than that of the

crowding distance AMS.

The ε-dominance AMS ranked second overall; only the crowding distance AMS out-

performed the ε-dominance AMS. For each of the problems, the εm value needed to be

tuned to store around 50 solutions. This tweaking process can be tedious and requires

prior exposure to the problem, making the ε-dominance AMS less ideal to use in many

situations.

It is noteworthy that, overall, the ε-dominance AMS outperformed the adaptive grid

AMS. Similar to the adaptive grid AMS, the ε-dominance AMS limits the number of

solutions using a hypercube approach. In the case of the adaptive grid AMS, the hy-

percube grid is fixed, whereas in the ε-dominance AMS, the hypercube is relative to the

objective vector position. In contrast to the adaptive grid AMS, the ε-dominance AMS

limits the number of solutions within the hypercube to a single solution. Further tuning

of the selection pressure parameter, c̈, may increase the performance of the adaptive grid

AMS. Similar to the tuning of the εm parameter, tuning the selection pressure, c̈, is not

desirable.

Overall, the results indicated that the distance and nearest neighbor AMSs performed
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worse than all other AMSs, including the random AMS. Based on the results presented

in this section, it is never advisable to use the distance or nearest neighbor AMSs.

4.6 Summary

This chapter presented an investigation of the effect of various AMSs on the performance

of the VEPSO algorithm. The objective was to identify if VEPSO is sensitive towards

the choice of AMS and if so, to determine the impact on VEPSO’s performance.

Seven different bounded AMSs were reviewed. An eighth AMS, the hypersurface

contribution AMS, based on the hypervolume contribution AMS, was introduced.

An analysis of the effect of different AMSs on the diversity of the resulting POF using

four diversity measures was presented. The diversity analysis showed that VEPSO is sen-

sitive towards the choice of AMS. A discrepancy was noted in the diversity measurement

results. Further investigation revealed that the discrepancy is due to a pairwise group-

ing weakness that exists in the distribution and spacing measurement calculations. A

crowding distribution measurement was introduced to address and confirm the weakness

and show how the weakness could be avoided.

Finally, a performance analysis using the well known IGD measure was conducted.

The results reaffirmed the diversity analysis results that VEPSO is sensitive towards

the choice of AMS. Additionally, the results indicated that the crowding distance AMS

was the overall best performing AMS. The newly introduced hypersurface AMS showed

promise, ranking third behind the ε-dominance, outperforming all the other AMSs. The

results also indicated that the distance and nearest neighbor AMSs performed worse

than all other AMSs and should thus be avoided. It can be noted that even the random

AMS outperformed the distance and nearest neighbor AMSs.

This chapter also showed how little information about a MOO algorithm’s perfor-

mance is revealed by the measurements. In the next chapter, a new comparative mea-

surement, the porcupine measure, is introduced.



Chapter 5

Porcupine Measure

“The empiricist... thinks he believes only what he sees, but he is much

better at believing than at seeing.”

George Santayana (1865 - 1952)

The previous chapter investigated the effect that the choice of archive implemen-

tation has on the performance of VEPSO. The findings highlighted the need for more

quantitative performance measures to analyze a MOO algorithm’s performance. The

main objective of this chapter is to introduce a newly developed performance measure,

named the porcupine measure, to quantitatively compare POFs. The new measure is

based on attainment surfaces, introduced by Fonseca and Fleming [35] over twenty years

ago.

Despite being introduced over twenty years ago, Fonseca and Fleming’s attainment

surfaces have not been widely used. This chapter also investigates some of the short-

comings that may have led to the lack of adoption of attainment surface based perfor-

mance measures. The quantitative measure based on attainment surfaces, introduced by

Knowles and Corne [67], is analyzed. Improvements to Knowles and Corne’s approach

for two objective Pareto-optimal front (POF) comparisons are also proposed.

112
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5.1 Introduction

Attainment surfaces provide researchers in MOO with a means to accurately visualize

the region dominated by a POF. In many studies, POFs are shown by joining the non-

dominated solutions using a curve. Fonseca and Fleming reasoned that using a curve

to join the solutions is incorrect. The use of a curve creates a false impression that

intermediate solutions exist between any two non-dominated solutions. In reality, there

is no guarantee that any intermediate solutions exist. Fonseca and Fleming suggested

that instead of a curve, the non-dominated solutions can be used to create an envelope

that separates the dominated and non-dominated space. The envelope formed by the

non-dominated solutions is referred to as an attainment surface.

The remainder of this chapter is organized as follows. Section 5.2 presents the back-

ground and related work. Two-dimensional attainment surfaces are introduced in Section

5.3, followed by the generalization to nm-dimensions in Section 5.4. Finally, the findings

of this chapter are summarised in Section 5.5.

5.2 Background and Related Work

Fonseca and Fleming [35] suggested that the non-dominated solutions that make up the

POF be used to construct an attainment surface. The attainment surface’s envelope is

defined as the boundary in the objective space that separates those points which are

dominated by, or equal to at least one of the non-dominated solutions that make up the

POF, from those points which no non-dominated solution dominates or equals. Figure

5.1 depicts an attainment surface and the corresponding POF.

The attainment surface envelope is identical to the envelope used during the calcu-

lation of the hypervolume metric [107, 117]. In contrast to the hypervolume calculation,

in the case of an attainment surface, the envelope is, however, not used directly in the

calculation of a performance metric. Instead, the attainment surface can be used to

visually compare algorithms’ performance by plotting the attainment surfaces for both

algorithms.

For stochastic algorithms, variations in the performance over multiple runs (also

referred to as samples) are expected. Fonseca and Fleming [35] described a procedure
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Figure 5.1: Example Pareto optimal front and attainment surface.

to generate an attainment surface that represents a given algorithm’s performance over

multiple independent runs.

The attainment surface for multiple independent runs is computed by first determin-

ing the attainment surface for each run’s POF. Next, a number of random imaginary

lines is chosen pointing in the direction of improvement for all the objectives. For each

line, the intersection points with each of the lines and the attainment surfaces are calcu-

lated. Figures 5.2(a) and 5.2(b) depict three attainment surfaces with intersection lines

and intersection points.

For each line, the intersection points can be seen as a sample distribution that is

uni-dimensional and can thus be strictly ordered. By calculating the median for each of

the sample distributions, the objective vectors that are likely to be attained in exactly

50% of the runs can be identified. The envelope formed by the median points is known

as the 50% grand attainment surface. Similar to how the median is used to construct the

50% grand attainment surface, the lower and upper quantiles (25th and 75th percentiles)

are used to construct the 25% and 75% grand attainment surfaces.

The sample distribution approach can also be used to compare performance between

algorithms: In order to compare two algorithms, two sample distributions, one for each of

the algorithms, are calculated per intersection line. Standard non-parametric statistical
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test procedures can then be used to determine if there is a statistically significant differ-

ence between the two sample distributions. Using the statistical test results, a combined

grand attainment surface, as depicted in figure 5.2(c), can be constructed showing the

regions where each of the algorithms outperforms the other. Fonseca and Fleming [35]

suggested that suitable test procedures include the median test, its extensions to other

quantiles, and tests of the Kolmogorov-Smirnov type [43].

Knowles and Corne [67] extended the work done by Fonseca and Fleming and used at-

tainment surfaces to quantify the performance of their Pareto Archives Evolution Strat-

egy (PAES) algorithm. Knowles and Corne identified four variables in the approach
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Figure 5.2: Attainment surfaces.
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proposed by Fonseca and Fleming, namely:

• how many comparison lines should be used,

• where the comparison lines should go,

• which statistical test should be used to compare the univariate distribution,

• and in what form should the results be presented.

Knowles and Corne found that their experimental results indicated that at least 1000

lines should be used. In order to generate the intersection lines, the minimum and

maximum values for each objective over the non-dominated solutions were found. The

objective values were then normalized according to the minimum and maximum values

into the range [0, 1]. Intersection lines were then generated as equally spread lines from

the origin rotated from (0, 1) to (1, 0), effectively rotating 90◦ covering the complete

POF.

For nm-objective function MOPs, where nm > 2, Knowles and Corne suggested using

a grid-based approach where points are spread equally on the nm, (nm − 1)-dimensional

hyperplanes. Each hyperplane corresponds to an objective value fixed at the value 1.0.

The intersection lines are drawn from the origin to these equally spread out points. In

the case of 3 objective function MOPs, a 6 × 6 grid would result in 108, (3 × 6 × 6)

points and thus 108 intersection lines. Similarly, using a 16× 16 grid on a nm-objective

function MOP would result in 768 intersection lines, and so forth.

For statistical significance testing, Knowles and Corne used the Mann-Whitney U

test [43] with a 95% confidence level.

Finally, Knowles and Corne found that a convenient way to report the comparison

results were to use simple value pairs [a, b], hereafter referred to as the KC measure,

where a gives the percentage of space for which algorithm A was found to be statistically

superior to algorithm B and b gives the percentage where algorithm B was found to be

statistically superior to algorithm A. Note that 100− (a+ b) gives the percentage where

neither algorithm was found to be statistically superior to the other.

Knowles and Corne [67] generalized the definition of the comparison to compare

more than two algorithms. For nh algorithms, the above comparison is done for all
(
nh

2

)
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algorithm pairs. For each algorithm, h, two percentages are reported: ah, the region

where algorithm h was not beaten by any other algorithm, and bh, the region where

algorithm h beats all the other (nh − 1) algorithms. Note that ah ≥ bh as the region

described by bh is contained in the region described by ah.

Knowles [66] found that visualizing attainment surfaces in three-dimensions was dif-

ficult due to the intersection lines not being evenly spread. As an alternative, Knowles

presented an algorithm, inspired by the work done by Smith et al. [100], to visually draw

summary attainment surfaces using axis-aligned lines. The algorithm was found to be

particularly well suited for drawing three-dimensional attainment surfaces.

Da Fonseca et al. [22] continued work on attainment surfaces by introducing the em-

pirical attainment function (EAF). The EAF is a mean-like, first-order moment measure

of the solutions found by a multi-objective optimizer. The EAF allows for intuitive visual

comparisons between bi-objective optimization algorithms by plotting the solution prob-

abilities as a heat map [73]. Fonseca et al. [36] studied the use of the second-order EAF,

which allows for the pairwise relationship between random Pareto-set approximations,

to be studied.

It should be noted that calculation of the EAF for three or more dimensions is not

trivial [37]. Efficient algorithms to calculate the EAF for two and three dimensions have

been proposed [37].

5.3 2-dimensional Attainment Surface

This section presents a discussion of 2-dimensional attainment surfaces and how they are

used to calculate the KC measure. A bias in the KC measure calculation is identified and

analyzed. Section 5.3.1 presents a discussion of the intersection line generation approach

used by Knowles and Corne. A new attainment surface shaped intersection lines (ASSIL)

generation approach is presented in Section 5.3.2, followed by a more scalable approach

named weighted attainment surface shaped intersection lines (WASSIL) in Section 5.3.3.
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5.3.1 Generating Intersection Lines

The attainment surface calculation approach presented by Fonseca and Fleming [35] did

not describe in detail how to generate the intersection lines. Instead, it was only stated

that a random number of intersection lines, each pointing in the direction of improve-

ment for all the objectives, should be used. This approach worked well to construct a

visualization of the attainment surface.

When Knowles and Corne [67] extended the intersection line approach to build a

quantitative comparison measure, they needed the lines to be equally spread. If the lines

were not equally spread, as depicted in figure 5.2(b), certain regions of the attainment

surface would contribute more than others, leading to misleading results.

Figure 5.3 depicts two example attainment surfaces with rotation-based intersection

lines. Figure 5.3(a) depicts a concave attainment surface. Visually, the rotation-based

intersection lines look to be equally spread. Figure 5.3(b), however, depicts a convex

attainment surface. Visually, the regions between the intersection lines are larger closer

to the objective axes. Clearly, the rotation-based intersection lines are not equally spaced

for convex shaped fronts.

An evaluation of the rotation-based and random intersection line approaches is pre-
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Figure 5.3: Attainment surfaces with rotation-based intersection lines.
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sented in this section using six artificially generated POF test cases based on the ones

used by Knowles and Corne [67]. Figure 5.4 depicts the six artificially generated POF

test cases. Each of these artificially generated POF test cases was tested using six POF

shape geometries, namely concave, convex, line, mixed, and disconnected. Figure 5.5

depicts the five POF shape geometries. Figures 5.6 through 5.11 depict the POFs with

the corresponding attainment surfaces used for the evaluation.

For each of the artificially generated POFs, the true KC measure is known. Table 5.2

summarises the true KC measure and the KC measure with rotation-based and random

intersection lines. For each of the approaches, 1000 intersection lines were used for

the calculation. Results with a deviation from the true KC measure greater than 5%,

indicating less accurate and thus less desirable results, are shown in bold. For POF test

cases 1 through 3, only two of the 15 measurements using the random intersection line

generation approach had a deviation less than 5%. Overall, 50% of the measurements

using the random intersection line generation approach had a deviation greater than 5%.

This confirms that the random intersection line generation approach is not well suited

for the KC measure calculation.

The rotation-based intersection line generation approach presented by Knowles and

Corne fared better than the random intersection line generation approach. Only seven of

the 30 measurements using the rotation-based intersection line generation approach had

a deviation greater than 5%. Case 1 with a convex POF fared worse with a deviation of

almost 15% for both algorithms. Four of the five case 2 measurements using the rotation-

based intersection line generation approach had a deviation greater than 5%. For the

remaining case 2 measurement, a deviation of at least 3% is noted. The results indicate

the rotation-based intersection line generation approach outperformed, with respect to

accuracy, the random intersection line generation approach. However, the results also

indicate that the rotation-based intersection line generation approach too is not well

suited for the KC measure calculation and that the results vary based on the POF shape

and the spread of the solutions.
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Figure 5.4: Test case Pareto-optimal fronts. Dots represent algorithm A and triangles repre-

sent algorithm B.
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Figure 5.5: Test case Pareto-optimal front geometries.
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Figure 5.6: Pareto-optimal fronts and attainment surfaces for case 1 with various geometries.

Dots represent algorithm A and triangles represent algorithm B.
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Figure 5.7: Pareto-optimal fronts and attainment surfaces for case 2 with various geometries.

Dots represent algorithm A and triangles represent algorithm B.
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(e) Case 3: Disconnected

Figure 5.8: Pareto-optimal fronts and attainment surfaces for case 3 with various geometries.

Dots represent algorithm A and triangles represent algorithm B.
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Figure 5.9: Pareto-optimal fronts and attainment surfaces for case 4 with various geometries.

Dots represent algorithm A and triangles represent algorithm B.
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Figure 5.10: Pareto-optimal fronts and attainment surfaces for case 5 with various geometries.

Dots represent algorithm A and triangles represent algorithm B.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(a) Case 6: Concave

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(b) Case 6: Convex

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(c) Case 6: Line

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(d) Case 6: Mixed

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f1(x)

f 2
(x

)

(e) Case 6: Disconnected

Figure 5.11: Pareto-optimal fronts and attainment surfaces for case 6 with various geometries.

Dots represent algorithm A and triangles represent algorithm B.
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Table 5.1: KC measure with rotation-based and random intersection lines result comparison

Case Geometry True
Intersection Line Generation Approach

Rotation-based Random

Case 1

Concave [73.27, 26.73] [71.00, 29.00] [77.10, 22.90]

Convex [70.37, 29.63] [85.10, 14.90] [84.40, 15.60]

Line [70.00, 30.00] [74.60, 25.40] [77.80, 22.20]

Mixed [69.67, 30.33] [73.20, 26.80] [78.50, 21.50]

Disconnected [77.50, 22.50] [82.70, 17.30] [86.40, 13.60]

Case 2

Concave [50.00, 50.00] [41.00, 59.00] [64.60, 35.40]

Convex [86.60, 13.40] [83.00, 17.00] [96.40, 3.60]

Line [66.67, 33.33] [59.00, 41.00] [82.20, 17.80]

Mixed [66.99, 33.01] [59.60, 40.40] [81.80, 18.20]

Disconnected [60.00, 40.00] [51.60, 48.40] [73.80, 26.20]

Case 3

Concave [79.21, 20.79] [73.80, 26.20] [92.10, 7.90]

Convex [97.81, 2.19] [97.20, 2.80] [ 99.90, 0.10]

Line [86.67, 13.33] [83.00, 17.00] [97.30, 2.70]

Mixed [88.01, 11.99] [84.80, 15.20] [96.40, 3.60]

Disconnected [90.00, 10.00] [87.30, 12.70] [97.30, 2.70]

Case 4

Concave [50.00, 50.00] [50.00, 50.00] [50.90, 49.10]

Convex [50.00, 50.00] [50.00, 50.00] [52.30, 47.70]

Line [50.00, 50.00] [50.00, 50.00] [49.10, 50.90]

Mixed [55.71, 44.29] [54.30, 45.70] [54.00, 46.00]

Disconnected [69.14, 30.86] [73.00, 27.00] [78.70, 21.30]

Case 5

Concave [50.00, 50.00] [50.00, 50.00] [49.60, 50.40]

Convex [50.00, 50.00] [50.00, 50.00] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [49.60, 50.40]

Mixed [45.56, 54.44] [45.30, 54.70] [40.70, 59.30]

Disconnected [45.43, 54.57] [45.00, 55.00] [41.30, 58.70]

Case 6

Concave [50.00, 50.00] [50.00, 50.00] [52.40, 47.60]

Convex [50.00, 50.00] [50.00, 50.00] [47.80, 52.20]

Line [50.00, 50.00] [50.00, 50.00] [48.00, 52.00]

Mixed [42.47, 57.53] [42.90, 57.10] [38.20, 61.80]

Disconnected [45.00, 55.00] [44.70, 55.30] [43.50, 56.50]
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5.3.2 2-dimensional Attainment Surface Shaped Intersection

Lines

In order to address the unequal spacing of the rotation-based intersection lines, a new

approach to place the intersection lines are proposed. To compensate for the shape

of the front, the intersection lines can be positioned on a line, pointing either inward

or outward, based on the shape of the attainment surfaces being compared. The line

connects the extreme values of the attainment surfaces. Figure 5.12 depicts the inward

and outward intersection line approaches for a convex shaped front. The regions are

clearly more equally spread for the inward intersection line approach.

However, the direction of the intersection lines is less desirable for comparison pur-

poses. At the edges, the intersection lines are parallel with the opposite objective’s axis.

Intuitively, it is more desirable that the intersection lines should be parallel to the closest

objective’s axis. Another disadvantage of the inward and outward approaches is that the

approach to be selected depends on the shape of the front, which is typically unknown.

For attainment surfaces that are not fully convex or concave neither approach is suitable.

An alternative approach referred to as ASSIL, is to generate the intersection lines
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Figure 5.12: Attainment surfaces with outward/inward intersection lines.



Chapter 5. Porcupine Measure 127

along the shape of the attainment surface. In order to equally spread the intersection

lines, the Manhattan distance is used to calculate equal spacings for the intersection lines

along the attainment surface. Figure 5.13 depicts the Manhattan distance calculation

between two points on the POF, q3 and q1 in this case. ASSIL is generated as described

in Algorithm 5.

Algorithm 5 Attainment surface shaped intersection line generation

1: Let Q = {qk : k ∈ {1, 2, ..., nq}} be the optimal POF with nq solutions and qk =

(qk1, qk2);

2: Let k = 1;

3: Let nl be the desired number of intersection lines;

4: for ul = 1..nl do

5: Let d = (ul − 1)× (qnq1−q11)+(q12−qnq2)

nl−1
;

6: while d < (qk1 − q11) + (q12 − qk2) do

7: k = k + 1;

8: end while

9: if d = (qk1 − q11) + (q12 − qk2) then

10: Let q̂ = qk;

11: else if d ≤ (q(k+1)1 − q11) + (q12 − qk2) then

12: Let q̂ = (q11 + (d− (q12 − qk2)), qk2);

13: else

14: Let q̂ = (q(k+1)1, q12 − (d− (q(k+1)1 − q11)));

15: end if

16: Let θ = d
(qnq1−q11)+(q12−qnq2)

× π
2
;

// Finally, draw the generated intersection line

17: drawIntersectionLine(from = (q̂1 − sinθ, q̂2 − cosθ), to = (q̂1 + sinθ, q̂2 + cosθ));

18: end for

Figure 5.14 depicts the ASSIL approach. Generating the intersection lines along

the shape of the attainment surface allows for an equal spacing of the intersection lines

independent of the shape of the front. For all shapes that the attainment surface can

assume, be it convex, concave or mixed, the intersection lines are equally spread out.
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Figure 5.13: Attainment surface with Manhattan distance calculations.
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Figure 5.14: Attainment surfaces with unbiased ASSIL.
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The proposed KC measure using ASSIL is compared against the KC measure using

rotation-based and randomly generated intersection lines. The KC measure is calculated

as shown in Algorithm 6.

Algorithm 6 KC measure

1: Let total = 0;

2: Let winsA = 0;

3: Let winsB = 0;

4: for each intersection line l do

5: Let O be the strict ordering of the intersection points for algorithms A and B

on intersection line l;

6: Let OA ⊂ O be the ordering of the intersection points for algorithm A on inter-

section line l;

7: Let OB ⊂ O be the ordering of the intersection points for algorithm B on inter-

section line l;

8: if OA is statistically significantly less than OB then

9: winsA = winsA + 1;

10: else if OB is statistically significantly less than OA then

11: winsB = winsB + 1;

12: end if

13: total = total + 1;

14: end for

15: Return [100winsA
total

, 100winsB
total

];

Table 5.2 summarises the true KC measure, the KC measure with rotation-based

and random intersection lines, and the KC measure with ASSIL results. For each of the

approaches, 1000 intersection lines were used for the calculation.

As expected, the ASSIL generation approach produced results much closer to the

true KC measure: The closer the POFs being compared are to the true POF, the more

accurate the comparison using the ASSIL generation approach becomes.

Tables 5.3 and 5.4 present a comparison of the varying results obtained from using

the various intersection line generation approaches. The tables show comparisons using
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Table 5.2: KC measure with ASSIL result comparison

Case Geometry True
Intersection Line Generation Approach

Rotation-based Random ASSIL

Case 1

Concave [73.27, 26.73] [71.00, 29.00] [76.80, 23.20] [73.20, 26.80]

Convex [70.37, 29.63] [85.10, 14.90] [85.60, 14.40] [70.30, 29.70]

Line [70.00, 30.00] [74.60, 25.40] [79.30, 20.70] [70.00, 30.00]

Mixed [69.67, 30.33] [73.20, 26.80] [82.10, 17.90] [69.80, 30.20]

Disconnected [77.50, 22.50] [82.70, 17.30] [86.90, 13.10] [77.50, 22.50]

Case 2

Concave [50.00, 50.00] [41.00, 59.00] [67.60, 32.40] [50.00, 50.00]

Convex [86.60, 13.40] [83.00, 17.00] [96.40, 3.60] [86.60, 13.40]

Line [66.67, 33.33] [59.00, 41.00] [81.30, 18.70] [66.60, 33.40]

Mixed [66.99, 33.01] [59.60, 40.40] [81.60, 18.40] [66.90, 33.10]

Disconnected [60.00, 40.00] [51.60, 48.40] [75.80, 24.20] [60.00, 40.00]

Case 3

Concave [79.21, 20.79] [73.80, 26.20] [92.60, 7.40] [79.20, 20.80]

Convex [97.81, 2.19] [97.20, 2.80] [ 99.90, 0.10] [97.80, 2.20]

Line [86.67, 13.33] [83.00, 17.00] [96.50, 3.50] [86.60, 13.40]

Mixed [88.01, 11.99] [84.80, 15.20] [95.60, 4.40] [87.90, 12.10]

Disconnected [90.00, 10.00] [87.30, 12.70] [97.60, 2.40] [90.00, 10.00]

Case 4

Concave [50.00, 50.00] [50.00, 50.00] [49.00, 51.00] [50.00, 50.00]

Convex [50.00, 50.00] [50.00, 50.00] [50.60, 49.40] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [54.00, 46.00] [50.00, 49.90]

Mixed [55.71, 44.29] [54.30, 45.70] [50.70, 49.30] [55.70, 44.30]

Disconnected [69.14, 30.86] [73.00, 27.00] [77.80, 22.20] [69.10, 30.90]

Case 5

Concave [50.00, 50.00] [50.00, 50.00] [49.50, 50.50] [50.00, 50.00]

Convex [50.00, 50.00] [50.00, 50.00] [50.40, 49.60] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [49.20, 50.80] [50.00, 50.00]

Mixed [45.56, 54.44] [45.30, 54.70] [43.40, 56.60] [45.60, 54.40]

Disconnected [45.43, 54.57] [45.00, 55.00] [45.40, 54.60] [45.40, 54.60]

Case 6

Concave [50.00, 50.00] [50.00, 50.00] [48.00, 52.00] [50.00, 50.00]

Convex [50.00, 50.00] [50.00, 50.00] [49.50, 50.50] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [49.30, 50.70] [50.00, 50.00]

Mixed [42.47, 57.53] [42.90, 57.10] [37.70, 62.30] [42.50, 57.50]

Disconnected [45.00, 55.00] [44.70, 55.30] [44.10, 55.90] [45.00, 55.00]
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Table 5.3: Intersection line comparison between VEPSO (V), SMPSO (S), and OMOPSO

(O)

Problem Intersections V vs O V vs S S vs O

ZDT1

Rotational [14.9,66.4] [6.1,80.6] [79.4, 1.1]

Inward [25.6, 55.5] [13.8,65.4] [70.2, 3.9]

Outward [19.8, 62.7] [8.7, 75.6] [77.3, 1.6]

ASSIL [22.5, 60.1] [11.4, 72.2] [72.5, 4.3]

ZDT2

Rotational [8.4, 64.3] [2.9, 73.6] [58.9, 3.9]

Inward [8.0, 63.4] [2.0, 74.3] [56.3, 0.9]

Outward [10.4, 62.7] [4.2, 70.5] [60.1, 5.7]

ASSIL [9.0, 63.9] [3.4, 72.6] [60.0, 3.8]

ZDT3

Rotational [13.4,77.9] [3.9, 90.8] [81.4, 7.3]

Inward [7.1,61.6] [2.1,83.2] [72.4, 10.5]

Outward [16.4, 73.2] [4.9, 87.7] [78.4, 8.7]

ASSIL [12.5, 72.9] [3.2, 89.3] [74.8, 9.5]

ZDT4

Rotational [0.0, 99.9] [0.0, 99.9] [99.9, 0.0]

Inward [0.0,87.9] [0.0,88.1] [80.9, 0.0]

Outward [0.0, 100.0] [0.0, 100.0] [100.0, 0.0]

ASSIL [0.0, 100.0] [0.0, 97.7] [93.7, 0.0]

ZDT6

Rotational [40.1,13.3] [15.2,25.9] [58.9, 11.1]

Inward [64.6, 2.8] [15.6,35.3] [73.3,0.7]

Outward [50.6, 7.8] [6.1,52.9] [64.5,5.0]

ASSIL [59.4, 4.3] [10.9, 41.8] [52.3, 14.1]

the VEPSO, OMOPSO and SMPSO algorithms using the ZDT and 2-objective WFG

test sets.

Variations in the results between the different intersection line generation approaches

can be seen. ZDT1, ZDT3, ZDT4, and ZDT6 all show variations in the results greater

than 5% for each of the comparisons. WFG1, WFG2, WFG5, WFG6, and WFG9 all

show variations in the results greater than 5% for at least one of the comparisons. The

variations are indicative of the bias towards certain attainment surface shapes shown by

the various intersection line generation approaches. The results indicate that the KC

measure with ASSIL is well suited for POF comparisons.
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Table 5.4: Intersection line comparison between VEPSO (V), SMPSO (S), and OMOPSO

(O)

Problem Intersections V vs O V vs S S vs O

WFG1

Rotational [0.0, 99.9] [0.2, 96.9] [28.6, 65.8]

Inward [0.0, 100.0] [0.2, 97.6] [38.4,55.6]

Outward [0.0, 99.9] [0.2, 97.5] [26.6, 68.0]

ASSIL [0.0, 99.9] [0.2, 97.5] [27.2, 67.2]

WFG2

Rotational [0.0, 99.9] [0.0, 99.9] [0.0,65.5]

Inward [0.0, 100.0] [0.0, 100.0] [0.0,86.6]

Outward [0.0, 99.9] [0.0, 99.9] [0.0,63.9]

ASSIL [0.0, 99.9] [0.0, 99.9] [0.0, 73.1]

WFG3

Rotational [0.0, 99.9] [0.0, 99.9] [0.0, 88.8]

Inward [0.0, 100.0] [0.0, 100.0] [0.0, 87.3]

Outward [0.0, 99.9] [0.0, 99.9] [0.0, 89.2]

ASSIL [0.0, 99.9] [0.0, 99.9] [0.0, 88.8]

WFG4

Rotational [0.0, 99.9] [0.0, 99.9] [99.9, 0.0]

Inward [0.0, 100.0] [0.0, 100.0] [100.0, 0.0]

Outward [0.0, 99.9] [0.0, 99.9] [99.9, 0.0]

ASSIL [0.0, 99.9] [0.0, 99.9] [99.9, 0.0]

WFG5

Rotational [16.9, 20.0] [0.1, 62.7] [52.4, 2.0]

Inward [10.1, 21.0] [0.2, 59.8] [39.9, 0.5]

Outward [18.6, 23.4] [0.2, 64.4] [55.0, 2.9]

ASSIL [16.2, 19.1] [0.2, 61.1] [50.3, 1.7]

WFG6

Rotational [25.6, 13.5] [0.0, 99.9] [99.9, 0.0]

Inward [9.9, 13.5] [0.0, 100.0] [100.0, 0.0]

Outward [29.6, 13.7] [0.0, 99.9] [99.9, 0.0]

ASSIL [23.3, 13.7] [0.0, 99.9] [99.9, 0.0]

WFG7

Rotational [0.0, 99.9] [0.0, 99.9] [0.0, 92.7]

Inward [0.0, 100.0] [0.0, 100.0] [0.0, 95.4]

Outward [0.0, 99.9] [0.0, 99.9] [0.0, 92.6]

ASSIL [0.0, 99.9] [0.0, 99.9] [0.0, 93.2]

WFG8

Rotational [0.0, 99.9] [0.0, 99.9] [0.0, 94.6]

Inward [0.0, 100.0] [0.0, 100.0] [0.0, 95.8]

Outward [0.0, 99.9] [0.0, 99.9] [0.0, 94.4]

ASSIL [0.0, 99.9] [0.0, 99.9] [0.0, 95.1]

WFG9

Rotational [8.0, 30.3] [0.0, 99.9] [99.9, 0.0]

Inward [2.6,41.1] [0.0, 100.0] [100.0, 0.0]

Outward [8.8, 27.9] [0.0, 99.9] [99.9, 0.0]

ASSIL [7.1, 31.5] [0.0, 99.9] [99.9, 0.0]
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5.3.3 Weighted 2-dimensional Attainment Surface Shaped In-

tersection Lines

As an alternative to the equally spread intersection lines used by ASSIL, intersection

lines can be generated along the shape of the POF, at least one intersection line per

attainment surface line segment. Because the attainment surface segments are not all

of equal lengths, a weight is associated with each intersection line to balance the KC

measure result. The WASSIL generation algorithm is given in Algorithm 7.

Algorithm 7 Weighted attainment surface shaped intersection line generation

1: Let Q = {qk : k ∈ {1, 2, ..., nq}} be the optimal POF with nq solutions and qk =

(qk1, qk2);

2: for each attainment line segment sl do

3: Let wl = length(sl);

// If wl exceeds a predefined threshold, sl can be subdivided to increase the

// measurement’s accuracy

4: Let ĉ be the center of sl;

5: Let θ = π(c1+(max(qk2)−c2))
2d

with k ∈ {1, 2, ..., nq};
6: Let p̂ = (sin θ, cos θ);

// Finally, draw the generated intersection line from (ĉ− p̂) to (ĉ + p̂)

7: drawIntersectionLineWithWeight(from = ĉ− p̂, to = ĉ + p̂, weight = wl);

8: end for

Figure 5.15 depicts a convex POF with WASSIL generated intersection lines. The fig-

ure clearly shows that the intersection lines are positioned along the attainment surface,

and due to the positioning, the lines are angled slightly differently from the intersection

lines in figure 5.3(b). The WASSIL algorithm should, for the test cases, result in a

weighted KC measure result that matches the true KC measure result.

Note that the weighted KC measure is calculated as shown in Algorithm 8.
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Algorithm 8 Weight adjusted KC measure
1: Let wtotal = 0;

2: Let wA = 0;

3: Let wB = 0;

4: for each intersection line l do

5: Let wl be the weight associated with l;

6: Let O be the strict ordering of the intersection points for algorithms A and B

on intersection line l;

7: Let OA ⊂ O be the ordering of the intersection points for algorithm A on inter-

section line l;

8: Let OB ⊂ O be the ordering of the intersection points for algorithm B on inter-

section line l;

9: if OA is statistically significantly less than OB then

10: wA = wA + wl;

11: else if OB is statistically significantly less than OA then

12: wB = wB + wl;

13: end if

14: wtotal = wtotal + wl;

15: end for

16: Return [100wA

wtotal
, 100wB

wtotal
];

Table 5.5 summarises the true KC measure, the KC measure with rotation-based

and random intersection lines, the KC measure with ASSIL, and the KC measure with

WASSIL results. For each of the approaches, 1000 intersection lines were used for the

calculation.

Results with a deviation from the true KC measure greater than 5%, indicating less

accurate and thus less desirable results, are shown in bold. For POF test cases 1 through 3

only two of the 15 measurements using the random intersection line generation approach

had a deviation less than 5%. Overall, 50% of the measurements using the random

intersection line generation approach had a deviation greater than 5%. This confirms

that the random intersection line generation approach is not well suited for the KC
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Table 5.5: KC measure with WASSIL result comparison

Case Geometry True
Intersection Line Generation Approach

Rotation-based Random ASSIL WASSIL

Case 1

Concave [73.27, 26.73] [71.00, 29.00] [79.90, 20.10] [73.20, 26.80] [73.27, 26.73]

Convex [70.37, 29.63] [85.10, 14.90] [87.40, 12.60] [70.30, 29.70] [70.37, 29.63]

Line [70.00, 30.00] [74.60, 25.40] [78.80, 21.20] [70.00, 30.00] [70.00, 30.00]

Mixed [69.67, 30.33] [73.20, 26.80] [78.30, 21.70] [69.80, 30.20] [69.67, 30.33]

Disconnected [77.50, 22.50] [82.70, 17.30] [87.60, 12.40] [77.50, 22.50] [77.50, 22.50]

Case 2

Concave [50.00, 50.00] [41.00, 59.00] [67.00, 33.00] [50.00, 50.00] [50.00, 50.00]

Convex [86.60, 13.40] [83.00, 17.00] [97.20, 2.80] [86.60, 13.40] [86.60, 13.40]

Line [66.67, 33.33] [59.00, 41.00] [85.60, 14.40] [66.60, 33.40] [66.67, 33.33]

Mixed [66.99, 33.01] [59.60, 40.40] [82.10, 17.90] [66.90, 33.10] [66.99, 33.01]

Disconnected [60.00, 40.00] [51.60, 48.40] [77.40, 22.60] [60.00, 40.00] [60.00, 40.00]

Case 3

Concave [79.21, 20.79] [73.80, 26.20] [93.20, 6.80] [79.20, 20.80] [79.21, 20.79]

Convex [97.81, 2.19] [97.20, 2.80] [100.00, 0.00] [97.80, 2.20] [97.81, 2.19]

Line [86.67, 13.33] [83.00, 17.00] [96.60, 3.40] [86.60, 13.40] [86.67, 13.33]

Mixed [88.01, 11.99] [84.80, 15.20] [95.70, 4.30] [87.90, 12.10] [88.01, 11.99]

Disconnected [90.00, 10.00] [87.30, 12.70] [97.50, 2.50] [90.00, 10.00] [90.00, 10.00]

Case 4

Concave [50.00, 50.00] [50.00, 50.00] [49.40, 50.60] [50.00, 50.00] [50.00, 50.00]

Convex [50.00, 50.00] [50.00, 50.00] [48.70, 51.30] [50.00, 50.00] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [52.30, 47.70] [50.00, 49.90] [50.00, 50.00]

Mixed [55.71, 44.29] [54.30, 45.70] [51.00, 49.00] [55.70, 44.30] [55.71, 44.29]

Disconnected [69.14, 30.86] [73.00, 27.00] [76.70, 23.30] [69.10, 30.90] [69.14, 30.86]

Case 5

Concave [50.00, 50.00] [50.00, 50.00] [48.90, 51.10] [50.00, 50.00] [50.00, 50.00]

Convex [50.00, 50.00] [50.00, 50.00] [47.80, 52.20] [50.00, 50.00] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [51.00, 49.00] [50.00, 50.00] [50.00, 50.00]

Mixed [45.56, 54.44] [45.30, 54.70] [43.40, 56.60] [45.60, 54.40] [45.56, 54.44]

Disconnected [45.43, 54.57] [45.00, 55.00] [40.60, 59.40] [45.40, 54.60] [45.43, 54.57]

Case 6

Concave [50.00, 50.00] [50.00, 50.00] [51.70, 48.30] [50.00, 50.00] [50.00, 50.00]

Convex [50.00, 50.00] [50.00, 50.00] [48.60, 51.40] [50.00, 50.00] [50.00, 50.00]

Line [50.00, 50.00] [50.00, 50.00] [51.70, 48.30] [50.00, 50.00] [50.00, 50.00]

Mixed [42.47, 57.53] [42.90, 57.10] [38.50, 61.50] [42.50, 57.50] [42.47, 57.53]

Disconnected [45.00, 55.00] [44.70, 55.30] [42.60, 57.40] [45.00, 55.00] [45.00, 55.00]
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Figure 5.15: Convex POF and attainment surface with WASSILs.

measure calculation.

The rotation-based intersection line generation approach presented by Knowles and

Corne fared better than the random intersection line generation approach. Only seven of

the 30 measurements using the rotation-based intersection line generation approach had

a deviation greater than 5%. Case 1 with a convex POF fared worse with a deviation

of almost 15% for both algorithms. Four of the five case 2 measurements using the

rotation-based intersection line generation approach had a deviation greater than 5%.

For the remaining case 2 measurement, a deviation of at least 3% can be noted. While

the rotation-based intersection line generation approach outperformed, with respect to

accuracy, the random intersection line generation approach, the results indicate that

the rotation-based intersection line generation approach to is not well suited for the KC

measure calculation and that the results vary based on the POF shape and the spread

of the solutions.

As expected, the WASSIL generation approach produced the same results as the

actual KC measure: The closer the POFs being compared are to the true POF, the

more accurate the comparison using the WASSIL generation approach becomes.
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5.4 nm-dimensional Attainment Surface

For nm-dimensional problems, Knowles and Corne [67] recommended using a grid-based

intersection line generation approach as explained in section 5.2. Similar to the rotational

approach for 2-dimensional problems, the grid-based approach will lead to unbalanced in-

tersection lines when measuring irregularly shaped POFs. Figure 5.16 shows an example

of an irregularly shaped 3-dimensional attainment surface.

Section 5.4.1 discusses the challenges that need to be addressed in order to generate

intersection lines for nm-dimensional attainment surfaces. Section 5.4.2 and 5.4.3 intro-

duces two algorithms to generate nm-dimensional attainment surface intersection lines.

Finally, Section 5.4.4 presents a stability analysis of the two proposed algorithms.

5.4.1 Generalizing attainment surface intersection line gene-

ration to nm-dimensions

For 2-dimensional problems, the ASSIL approach generates balanced intersection lines.

Intuitively, generalization of the ASSIL approach for nm-dimensions requires the calcu-

lation of equally spread points over the nm-dimensional attainment surface.

Calculating equally spread points requires that the surface is divided into equally

sized nm − 1 dimensional hypercubes. For the 3-dimensional case, this requires that the
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Figure 5.16: 3-dimensional attainment surface.
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attainment surface is divided into equally sized squares. The intersection vectors are

positioned from the middle of each square. The length of the square’s edges is set to

the greatest common divider of the lengths of the edges that make up the attainment

surface. Even for simple cases, this will lead to an excessive number of squares. The

more squares, the higher the computational cost of the measure.

In order to lower the computational cost of the measure, the number of squares

needs to be reduced. Because the square edge lengths are based on the greatest common

divider, there is no way to reduce the number of squares as long as the squares must

be equal in size. If the square sizes differ in size, the resulting KC measure will become

biased to areas with smaller squares. Areas with smaller squares will carry more weight

in the overall KC measure calculation as there will be more of them.

In contrast to the ASSIL approach, the WASSIL approach does not require the

intersection lines to be equally spread, instead only a weight factor must be known for

each intersection line. For the 3-dimensional case, the weight factor for each intersection

line is calculated as the area of the squares that make up the attainment surface. The

weight factor for each square is thus calculated by multiplying the square’s edge, or rather

side, lengths. The weight factor can also be based on the size of rectangles, instead of

squares, in the 3-dimensional case (hyper-rectangles in the nm-dimensional case).

The next section introduces an algorithm to generate weighted attainment surface

intersection lines for nm-dimensional attainment surfaces.

5.4.2 Porcupine Measure (Naive Implementation)

This section presents the naive implementation for the nm-dimensional attainment sur-

face based quantitative measurement, named the porcupine measure. The naive imple-

mentation uses each of the nm-dimensional values from each Pareto-optimal point to

subdivide the attainment surface in each of the dimensions. Figure 5.17 depicts an ex-

ample of the subdivision approach for each of the three dimensions. Figure 5.18 depicts

the attainment surface, in 3-dimensional space, with the subdivisions visible.

In addition to the calculation of the hyper-rectangles, the center point, and intersec-

tion vector needs to be calculated. The naive implementation of the porcupine measure

is summarized in Algorithm 9.
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Figure 5.17: Top, front, side view of attainment surface with naive subdivisions.

Algorithm 9 Porcupine measure (naive implementation) – Part 1 of 2

1: Let Q = {qk : k ∈ {1, 2, ..., nq}} be the POF that corresponds with the attainment

surface;

2: for each of the m objective space basis vectors, em, with m ∈ {1, 2, ..., nm} do

3: Project the attainment surface parallel to the basis vector, em, onto the orthogonal

(nm − 1)-dimensional subspace;

4: Subdivide the projected attainment surface in each of its (nm − 1)-dimensions at

every Pareto-optimal point qk ∈ Q into hyper-rectangles (figure 5.17 depicts the

hyper-rectangle subdivisions for the three 2-dimensional projected attainment

surfaces of a 3-dimensional attainment surface);

5: for each hyper-rectangle do

6: Let ĉ be the center point of the hyper-rectangle;

7: Let wh be the weight of the hyper-rectangle, equal to the product of the hyper-

rectangle edge lengths;

8: for each dimension m do

9: Let minm be the smallest of the m’th dimensional values of all the Pareto-

optimal points where at least one other dimensional value is less or equal to

that of the corresponding center vector’s dimensional value;

10: Let maxm be the largest of the m’th dimensional values of all the Pareto-

optimal points;

11: end for
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Figure 5.18: 3-dimensional attainment surface with naive subdivisions.

Algorithm 9 Porcupine measure (naive implementation) – Part 2 of 2

12: Let p̂ be the intersection vector, calculated as p̂m = ĉm−minm

maxm−minm
, where p̂m is the

m’th component of the vector p̂;

13: drawIntersectionLineWithWeight(from = ĉ− p̂, to = ĉ + p̂, weight = wh);

14: end for

15: end for

Using the intersection lines generated by the above algorithm, two algorithms can

now be compared using a nonparametric statistical test, such as the Mann-Whitney U

test [43]. The porcupine measure is defined, similar to the weighted KC measure, as the

weighted sum of the intersection lines where a statistically significant difference exists

over the sum of all the weights (i.e. the percentage of the surface area of the attainment

surface, as determined by the weights, where one algorithm statistically performs superior

to another).

Figure 5.19 depicts an attainment surface with subdivisions and intersection vectors

generated using the naive approach. The porcupine measure’s name is derived from the

fact that the intersection vectors resemble the spikes of a porcupine.

The naive implementation presented in this section is easy to implement but results

in more subdivisions than necessary.
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Figure 5.19: 3-dimensional attainment surface with naive subdivisions and intersection vec-

tors.

5.4.3 Porcupine Measure (Optimized Implementation)

The large number of subdivisions that result from using the naive implementation of the

porcupine measure creates a computational complexity problem when performing the

statistical calculations required by the porcupine measure. To reduce the computational

cost of the porcupine measure, the naive implementation can be optimized by subdividing

the attainment surface only as necessary to accommodate the shape of the attainment

surface. Figure 5.20 depicts an attainment surface with the subdivision lines (dashed)

as generated by the optimized implementation.

Note that the algorithm yields the minimum number of subdivisions such that the

results are independent of the dimension ordering of the Pareto-optimal points. This is

per design to allow for reproducibility and increased stability of the results.

The optimized implementation of the porcupine measure is summarized in Algorithm

10.

Algorithm 10 Porcupine measure (optimized implementation) – Part 1 of 3

1: Let Q = {qk : k ∈ {1, 2, ..., nq}} be the POF that corresponds with the attainment

surface;

2: Let qmax be the nadir vector;

3: for each of the m objective space basis vectors, em, with m ∈ {1, 2, ..., nm}, do
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Algorithm 10 Porcupine measure (optimized implementation) – Part 2 of 3

4: Project the attainment surface parallel to the basis vector, em, onto the orthogonal

(nm − 1)-dimensional subspace

5: for each of the Pareto-optimal points, qk ∈ Q do

6: Let q̂ be the vector with dimensional values set to the minimum dimensional

values that are dominated or the corresponding qmax value if no minimum exist;

7: Let Q̂ be the set of non-dominated points that dominate q̂ but not qk;

8: for each dimension m do

9: Let Qm be the set of all the m’th dimensional values of the points in Q̂ that

fall inside the range [qkm, q̂m];

10: end for

11: Let Qmin be the set of all the minimum points that will affect the calculation of

p;

12: Let Qmax be the set of all the maximum points that will affect the calculation

of p;

13: Add all dimensional values of the points in Qmin and Qmax that fall inside the

range [qkm, q̂m] to the corresponding Qm set;

14: Add additional values to the Qm sets to limit the hyper-rectangle edge lengths

to ∆max;

15: Subdivide the projected attainment surface into hyper-rectangles in each its m

dimensions for every value in the Qm sets;

16: for each hyper-rectangle do

17: Let ĉ be the center point of the hyper-rectangle;

18: Let wh be the weight of the hyper-rectangle, equal to the product of the hyper-

rectangle edge lengths;

19: for each dimension m do

20: Let minm be the smallest of the m’th dimensional values of all the Pareto-

optimal points where at least one other dimensional value is less or equal

to that of the corresponding center vector’s dimensional value;

21: Let maxm is the largest of the m’th dimensional values of all the Pareto-

optimal points;

22: end for
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Algorithm 10 Porcupine measure (optimized implementation) – Part 3 of 3

23: Let p̂ be the intersection vector, calculated as p̂m = cm−minm

maxm−minm
, where p̂m is

the m’th component of the vector p̂;

24: drawIntersectionLineWithWeight(from = ĉ− p̂, to = ĉ + p̂, weight = wh);

25: end for

26: end for

27: end for

Similar to the naive implementation, the porcupine measure is defined as the weighted

sum of the intersection lines where a statistically significant difference exists over the

sum of all the weights (i.e. the percentage of the surface area of the attainment surface,

as determined by the weights, where one algorithm statistically performs superior to

another).

Figure 5.21 depicts an attainment surface with subdivisions and intersection vec-

tors generated using the optimized implementation. As can be seen in the figure, the

optimized implementation resulted in notably fewer subdivisions and intersection vec-

tors. The lower number of intersection vectors considerably reduces the computational

complexity of the measure.

q1

q2

q3

q1 q2

q3

q4

q5

q6

q7

Figure 5.20: 3-dimensional attainment surface with optimized subdivisions.
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Figure 5.21: 3-dimensional attainment surface with optimized subdivisions and intersection

vectors.

5.4.4 Stability Analysis

In order to determine the stability of the optimized implementation compared to the

naive implementation, 30 independent runs of each measure were executed. For each run,

the porcupine measure was calculated using the POFs as calculated by 30 independent

runs of each of the algorithms being compared. A total of 30 × 30, or 900, runs were

executed for each algorithm being compared.

Table 5.6 lists the mean, standard deviation (σ), minimum, and maximum for the

naive and optimized implementations of the porcupine measure. The maximum edge

length for the optimized implementations of the porcupine measure was set to 0.1.

Experimental results showed that a maximum edge length of 0.1 for the optimized

implementation yielded best results when compared with the naive implementation. In-

creasing the maximum edge length decreased the statistical significance of the optimized

implementation of the porcupine measure’s results when compared with the naive imple-

mentation. Decreasing the maximum edge length did not affect the statistical significance

of the results.

Statistical testing was performed to determine if there were any statistically signifi-

cant differences between the naive and optimized implementation’s results. The Mann-

Whitney U test was used with a confidence level of 95%.
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The purpose of the statistical testing was to determine if there was any information

loss due to using the optimized implementation when compared to the naive implemen-

tation. The results indicated that for 52 out of the 54, or 96%, of the measurements

there were no statistically significant difference. Only for two measurements, namely

OMOPSO in the WFG3 OMOPSO vs. VEPSO comparison and the SMPSO in the WFG3

VEPSO vs. SMPSO comparison, a statistically significant difference could be noted. In

spite of the statistically significant difference, the ranking of the algorithms in the result

did not change. Based on the results it can, therefore, be concluded that the optimized

implementation yields the same results as the naive implementation and no information

was lost. As no information was lost when using the optimized implementation, it can be

concluded that the optimized implementation can be used when conducting comparisons.

The mean standard deviation of the optimized implementation’s results was 2.743,

and the maximum standard deviation was 7.022. The conclusion that can be drawn from

the data is that the optimized implementation of the porcupine measure is very robust

as measurement values for each of the samples were close to the average.

For the experimentation done for this study, the runtime of the optimized implemen-

tation was notably faster than that of the naive implementation. A difference in the

orders of a few magnitudes was noticeable.

The computational complexity of the naive implementation is directly proportional to

the size of the Qm sets. It should be noted that, for the tested algorithms with a POF size

of 50 points, tested over 30 samples, the optimal POF had a typical size of ±1250 points.

The size of the Qm sets were thus ±1250 points. For three dimensions, this results in a

minimum computational complexity of at least 12503 or rather 1, 953, 125, 000 (almost

two billion). The optimized implementation resulted in a much reduced computational

complexity because only the necessary subdivisions were made. The size of the Qm sets

were much smaller. For the three-dimensional case, the maximum edge length leads to a

minimum complexity of at least ( 1
0.1

)3, or rather 1000 times lower than that of the naive

version.
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Table 5.6: Naive vs Optimized Porcupine measure (3-objective WFG problem set)

Problem Algorithm
Naive Optimized

Mean σ Min Max Mean σ Min Max

WFG1

OMOPSO 3.054 2.178 0.2596 9.4 3.092 2.245 0.5106 9.728

SMPSO 32.34 6.054 17.29 43.92 32.38 6.132 16.57 42.92

OMOPSO 1.308 1.11 0.2418 4.886 1.32 1.153 0.2445 5.071

VEPSO 43.55 4.06 30.43 52.71 43.16 4.031 32.27 52.73

VEPSO 19.62 6.619 8.857 47.63 18.73 4.149 8.679 28.34

SMPSO 6.631 2.949 0.8017 17.61 6.701 2.782 3.491 17.05

WFG2

OMOPSO 49.88 6.116 32.83 60.57 49.29 6.517 30.85 60.54

SMPSO 0.01869 0.06869 0.0 0.3711 0.01736 0.06466 0.0 0.3442

OMOPSO 59.43 4.403 47.63 67.35 59.64 4.397 47.61 66.87

VEPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VEPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SMPSO 59.76 4.612 46.3 66.91 59.83 4.716 46.26 67.61

WFG3

OMOPSO 26.98 4.088 18.44 37.32 28.99 4.524 20.43 43.72

SMPSO 3.099 2.262 0.1569 8.927 3.078 2.097 0.2126 7.497

OMOPSO 62.55 3.341 55.16 68.42 66.07 3.722 58.36 73.14

VEPSO 0.5199 0.1456 0.2931 0.8233 0.5875 0.1695 0.2527 0.8897

VEPSO 1.177 0.48 0.2131 2.315 1.243 0.5278 0.2095 2.5

SMPSO 59.17 3.402 52.04 64.47 62.57 3.668 55.66 69.12

WFG4

OMOPSO 26.78 2.433 22.7 30.65 26.37 2.919 20.3 31.05

SMPSO 9.348 1.915 5.002 13.57 9.306 1.989 5.122 13.62

OMOPSO 63.0 4.539 55.21 75.74 63.82 4.798 55.75 77.11

VEPSO 0.02337 0.03589 0.0 0.1569 0.02468 0.04244 0.0 0.1929

VEPSO 0.02615 0.09773 0.0 0.533 0.02406 0.08814 0.0 0.4763

SMPSO 71.11 3.919 62.78 80.38 71.92 4.072 63.2 82.07

WFG5

OMOPSO 25.67 4.393 17.47 34.0 25.79 4.472 17.55 34.4

SMPSO 17.61 3.64 11.16 27.63 17.65 3.824 10.68 27.83

OMOPSO 26.21 2.314 22.2 30.72 26.31 2.432 21.48 31.12

VEPSO 17.94 2.65 10.6 22.42 17.54 2.691 10.56 21.72

VEPSO 25.13 4.301 14.71 33.27 25.12 4.463 13.9 33.76

SMPSO 5.143 1.277 2.736 8.069 5.187 1.338 2.539 8.049

WFG6

OMOPSO 10.21 2.398 6.651 15.76 10.55 2.356 7.035 15.89

SMPSO 45.3 3.61 37.82 53.57 45.62 3.754 38.12 54.17

OMOPSO 11.93 4.704 6.098 22.65 12.29 4.854 5.991 23.65

VEPSO 16.05 5.158 5.421 25.88 16.53 5.414 5.566 26.5

VEPSO 1.02 0.8952 0.01929 3.795 1.046 0.9204 0.007599 3.983

SMPSO 20.61 6.907 8.904 37.24 20.94 7.022 8.945 37.69

WFG7

OMOPSO 38.86 3.64 31.77 44.27 39.28 3.516 32.12 44.38

SMPSO 3.892 0.9721 1.684 5.522 3.888 1.018 1.641 5.507

OMOPSO 74.41 2.681 67.75 78.68 74.72 2.743 67.8 79.15

VEPSO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

VEPSO 0.001361 0.007456 0.0 0.04084 9.506e-05 0.0005206 0.0 0.002852

SMPSO 73.39 2.598 68.5 77.94 73.69 2.682 68.92 79.15

WFG8

OMOPSO 41.21 4.789 31.08 49.28 41.55 4.954 30.95 49.24

SMPSO 3.049 0.948 1.443 5.066 3.106 0.9568 1.54 5.088

OMOPSO 70.18 3.918 63.04 77.36 70.49 3.847 63.4 77.46

VEPSO 6.884e-05 0.0002857 0.0 0.001467 0.0 0.0 0.0 0.0

VEPSO 0.1489 0.2362 0.0 1.023 0.1458 0.223 0.0 0.869

SMPSO 62.88 3.841 56.14 72.58 63.15 3.861 56.65 73.03

WFG9

OMOPSO 15.89 2.462 11.12 21.29 15.87 2.47 11.48 21.66

SMPSO 37.58 3.03 32.14 43.94 37.68 3.048 31.95 44.27

OMOPSO 20.7 2.526 16.86 25.28 20.61 2.515 16.9 26.05

VEPSO 23.59 1.801 19.21 26.88 24.0 1.795 19.61 27.51

VEPSO 1.206 0.7576 0.2238 3.162 1.219 0.8411 0.2526 3.605

SMPSO 21.91 5.093 12.24 31.96 21.8 5.307 11.12 32.25
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5.5 Summary

This chapter investigated shortcomings that may have led to the lack of adoption of

attainment surface based quantitative measurements for MOO. It was shown that the

quantitative measure proposed by Knowles and Corne could result in misleading results

for convex POFs when using rotational intersection lines. The ASSIL and WASSIL

generation approaches were proposed. The ASSIL and WASSIL generation approaches

were shown not to be biased against any attainment surface shape.

An algorithm for an nm-dimensional attainment surface based quantitative measure,

named the porcupine measure, was presented. Additionally, a computationally optimized

implementation of the porcupine measure was introduced and analyzed. The results indi-

cated that the optimized implementation performed as well as the naive implementation.

The porcupine measure allows for a quantitative comparison between nm-dimensional

POFs through the use of attainment surfaces. The porcupine measure provides addi-

tional information on an algorithm’s performance when compared to another algorithm,

which was previously not quantifiable.



Chapter 6

Multi-guided Particle Swarm

Optimization

“No great discovery was ever made without a bold guess.”

Isaac Newton (1643 - 1727)

This chapter presents a proposal for a new PSO based MOO algorithm, named MG-

PSO. The exploration behavior of MGPSO is analyzed using the candidate solution visu-

alization technique presented in Section 3.1. A thorough performance analysis using the

IGD measure along with the ZDT and WFG test sets covering both 2 and 3-objective

problems is presented. A comparative analysis using the attainment surface inspired

porcupine measure, introduced in Section 5.4, is also presented.

Section 6.1 introduces MGPSO. Section 6.2 describes the experimental procedure

used throughout this chapter. A performance analysis is presented in Section 6.3 followed

by a comparative analysis of MGPSO versus the state of the art MOO algorithms in

Section 6.4. Finally, the conclusions are given in Section 6.5.

6.1 Multi-guided Particle Swarm Optimizer

MGPSO is loosely based on VEPSO and attempts to address the shortcomings of the

VEPSO algorithm that have been identified throughout this thesis. Similar to VEPSO,

148
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MGPSO is a multi-swarm algorithm where each objective is represented by a subswarm.

Particles in each subswarm are evaluated using the corresponding objective function. The

personal best and neighborhood best particles are also updated using the corresponding

objective function fitness value.

In contrast to VEPSO, MGPSO does not make use of a KTS. Instead, MGPSO retains

the neighborhood guide and adds an additional archive guide term. The addition of the

archive guide term was inspired by the results from the explorative study of VEPSO in

Section 3.3. The explorative study showed that the addition of an archive term might

lead to good results. The MGPSO velocity update equation is formally defined as:

vi(t+ 1) = wvi(t) + c1r1(yi(t)− xi(t)) + λic2r2(ŷi(t)− xi(t))

+ (1− λi)c3r3(âi(t)− xi(t)) (6.1)

where vi(t) is the velocity of particle i at iteration t, w is the inertia weight, c1, c2 and

c3 are the acceleration coefficients, r1, r2, and r3 are random vectors with components

sampled uniformly from (0, 1), xi(t) is the position of particle i at iteration t, yi(t) is

the personal best particle position of particle i at iteration t, yi(t) is the neighborhood

guide for particle i at iteration t, âi(t) is the archive guide for particle i at iteration t,

and λi is the exploitation tradeoff coefficient for particle i. λi is initialized as a random

constant sampled uniformly from (0, 1). λi controls the amount of influence that the

archive guide has on the particle’s velocity and thus the amount of exploitation of the

already found POF. Smaller λi values increase the influence of the archive guide while

simultaneously decreasing the influence of the neighborhood guide. Larger λi values

decrease the influence of the archive guide while simultaneously increasing the influence

of the neighborhood guide. As both the neighborhood and archive guide represent social

behavior, λi maintains the balance between the social and cognitive influences on the

particle’s velocity.

Inspired by the findings in Section 4.5, the MGPSO archive is a bounded archive using

the crowding distance AMS. For easier comparison with other algorithms, the default

archive size is set equal to the total number of particles in the subswarms.

The archive guide, âi(t), is selected, from a competition pool, as the solution with

largest corresponding crowding distance in the archive. The competition pool is con-
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structed by randomly selecting a predefined number of solutions from the archive. Em-

pirical experimentation showed that tournament sizes of 2 and 3 yielded good results.

By using crowding distance as part of the archive guide selection process, the MGPSO

is guided to focus more on sparsely populated areas of the objective space.

MGPSO differs from the archive-guided PSO introduced in Section 3.3 by specifying

the archive management strategy, as well as using crowding distance based tournament

selection to select the archive guide, âi(t).

The MGPSO algorithm is formally defined in Algorithm 11.

Algorithm 11 Multi-guided Particle Swarm Optimization – Part 1 of 2

1: for each objective m = 1, ..., nm do

2: Create and initialize a swarm, Sm, of nsm particles uniformly within a predefined

hypercube of dimension nx;

3: Let fm be the objective function;

4: Let Sm.yi represent the personal best position of particle Sm.xi, initialized to

Sm.xi(0);

5: Let Sm.ŷi represent the neighborhood best position of particle Sm.xi, initialized

to Sm.xi(0);

6: Initialize Sm.vi(0) to 0;

7: Initialize Sm.λi ∼ U(0, 1);

8: end for

9: Let t = 0;

10: repeat

11: for each objective m = 1, ..., nm do

12: for each particle i = 1, ..., Sm.ns do

13: if fm(Sm.xi) < fm(Sm.yi) then

14: Sm.yi = Sm.xi(t);

15: end if

16: for particles ı̂ with particle i in their neighborhood do

17: if fm(Sm.yi) < fm(Sm.ŷı̂) then

18: Sm.ŷı̂ = Sm.yi;

19: end if
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Algorithm 11 Multi-guided Particle Swarm Optimization – Part 2 of 2

20: end for

21: Update the archive with the solution Sm.xi;

22: end for

23: end for

24: for each objective m = 1, ..., nm do

25: for each particle i = 1, ..., Sm.ns do

26: Select a solution, Sm.âi(t), from the archive using tournament selection;

27: Sm.vi(t+ 1) = wSm.vi(t) + c1r1(Sm.yi(t)− Sm.xi(t))
+Sm.λic2r2(Sm.ŷi(t)− Sm.xi(t))
+(1− Sm.λi)c3r3(Sm.âi(t)− Sm.xi(t)));

28: Sm.xi(t+ 1) = Sm.xi(t) + Sm.vi(t+ 1);

29: end for

30: end for

31: t = t+ 1;

32: until stopping condition is true

6.2 Experimental Procedure

MGPSO was executed with 50 particles, divided between the subswarms, for each of

the ZDT, 2-objective WFG, and 3-objective WFG problems. Optimized values for the

number of particles per subswarm, the inertia weight, w, the acceleration coefficients, c1,

c2, and c3, the number of particles per subswarm, and the tournament size were used.

An analysis of the influence these parameters have on the performance of MGPSO, the

parameter optimization procedure, and the optimized parameters used throughout this

chapter is presented in chapter 7.

The MGPSO algorithm was implemented and executed using the CIlib framework1

[15, 83]. The results presented were taken over 30 independent runs of 2000 iterations

for each algorithm for each problem.

1https://cirg-up.github.io/cilib/
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6.3 Exploration and Performance Analysis

POFs obtained through the MGPSO are shown in figures 6.1(a) through 6.1(e) for the

ZDT problems, figures 6.2(a) through 6.2(i) for the 2-objective WFG problems, and

figures 6.3(a) through 6.3(i) for the 3-objective WFG problems. The figures show that

MGPSO managed to obtain a close approximation of the true POFs for almost all of

the test problems. The POF for ZDT4 shows that MGPSO was not able to obtain a

close approximation and the problem was particularly challenging for MGPSO to solve.

The ZDT4 result indicates that the MGPSO is susceptible to getting stuck in local

optima under certain conditions. Further work is required to fully analyze MGPSO’s

susceptibility to local optima.

Section 6.3.1 presents a discussion of the MGPSO’s exploration behavior, followed

by a performance analysis in Section 6.3.2. A comparison of the obtained POFs is given

in Section 6.3.3. Finally, a summary of the findings is given in Section 6.3.4.

6.3.1 Exploration Behavior

In order to study the exploration behavior of MGPSO, the candidate solutions repre-

sented by the particle positions were tracked and plotted. For each of the 2-objective

problems, two candidate solution plots were generated, one for each of the sub-swarms.

Figures 6.4(a) through 6.4(j) show the candidate solution plots for the ZDT problems and

figures 6.5(a) through 6.5(r) show the candidate solution plots for the WFG problems.

The candidate solution plots for the majority of the problems show that at least

one swarm in the case of the ZDT problems and both swarms in the case of the WFG

problems tend to explore the region close to the true POF. MGPSO’s search behavior

is much more focused on exploiting the well-performing region close to the POF when

compared to VEPSO’s more exploration focused behavior. The exploration first, followed

by exploitation, pattern clearly aligns with the two goals for a MOO algorithm as defined

by Deb [25].

For S2 on the ZDT1 problem, denoted ZDT1:S2, a second line of solutions near the

POF is also clearly visible. This line represents a local minimum POF. Similar local

minima lines that are visible for ZDT2:S2 and ZDT4:S2.
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Figure 6.1: MGPSO calculated POFs for ZDT problems

For the majority of the WFG problems, the search is focused in the region close to

the POF. A notable exception is WFG5:S2, where the swarm size for S2 was zero as a

result of the optimized values from Chapter 7. That is, there were no particles in S2. The

particles in S1 were enough to find the POF as reflected by the candidate solution plot

for WFG5:S1 where a well-defined POF can be seen. For WFG9:S1, the search seems to

be actively exploring both an area close to the POF as well as the region making up the

far end away from the POF. In contrast to WFG9:S1, for WFG9:S2 the search is much

more focused on the well-performing POF region.



Chapter 6. Multi-guided Particle Swarm Optimization 154

1

2

3

4

5

1.0 1.5 2.0 2.5

f1(x)

f 2
(x

)

(a) WFG1

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(b) WFG2

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(c) WFG3

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(d) WFG4

0

1

2

3

4

0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(e) WFG5

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(f) WFG6

0

1

2

3

4

0.0 0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(g) WFG7

0

1

2

3

4

0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(h) WFG8

0

1

2

3

4

0.5 1.0 1.5 2.0

f1(x)

f 2
(x

)

(i) WFG9

Figure 6.2: MGPSO calculated POFs for 2-objective WFG problems
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Figure 6.3: MGPSO calculated POFs for 3-objective WFG problems

6.3.2 Performance Analysis

While the candidate solution plots show the exploration behavior, no information re-

garding the quality of the found solutions are given. In order to measure the quality of

the solutions quantitatively, the IGD was calculated for each of the problems. The true
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Figure 6.4: MGPSO swarms S1 and S2 candidate solutions for iterations 1-2000 (darker color

represents lower iterations, lighter color indicates higher iterations)

POF sets from the jMetal framework [80] were used for all the IGD calculations.

For comparison purposes, the IGD values for VEPSO with the random KTS, VEPSO

with PCXA KTS, SMPSO [79] and OMOPSO [92] are also given. SMPSO and OMOPSO

have been shown to perform well for a variety of MOPs. A summary of the control

parameter values for SMPSO and OMOPSO is provided in Appendix C.

Figures 6.6(a) through 6.7(i) depict the mean IGD for each of the ZDT and 2-objective
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Figure 6.5: MGPSO swarms S1 and S2 candidate solutions for iterations 1-2000 (darker color

represents lower iterations, lighter color indicates higher iterations)
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Figure 6.5: MGPSO swarms S1 and S2 candidate solutions for iterations 1-2000 (darker color

represents lower iterations, lighter color indicates higher iterations)

WFG problems. Figures 6.8(a) through 6.8(i) depict the mean IGD for each of the 3-

objective WFG problems.

The figures indicate that MGPSO managed to successfully explore and exploit the

well-performing regions of the search space. The figures additionally show that MGPSO

outperformed VEPSO for the majority of the test problems, especially when considering

the 3-objective test problems. Only SMPSO performed better than MGPSO in a few of

the 2-objective problems.

For the majority of the problems, the best-performing IGD measurement values were

achieved in less than 500 iterations. WFG1 is a notable exception where the IGD mea-

surement value continued to decrease, albeit very slowly, all the way up to iteration

2000.

For each of the test sets a win, loss, difference, ranking was calculated to statis-

tically rank the performance of MGPSO. IGD measurement values for each algorithm

were compared with all the other algorithms using the Mann-Whitney U [43] test with

a confidence level of 95%. If a statistically significant difference was detected, a win

was recorded for the algorithm, and a loss was recorded for the other algorithm. The

difference between the wins and losses were then computed and listed in the table.

Table 6.1 lists the ranking for the ZDT test set, table 6.2 lists the ranking for the

2-objective WFG test set, and table 6.3 lists the ranking for the 3-objective WFG test

set.
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Figure 6.6: PSO inverted generational distance for ZDT problems

For the ZDT test set, MGPSO was ranked second while SMPSO was ranked first.

For each of the ZDT problems, MGPSO recorded only a single loss, indicating that

only SMPSO, that recorded no losses, won against it. VEPSO with the random KTS

performed worst, followed by OMOPSO.

For the 2-objective WFG test set, MGPSO was ranked first followed by SMPSO. For

six of the 2-objective WFG problems, MGPSO ranked first. For the remaining three

problems, MGPSO ranked second twice and third once. For all three problems where

MGPSO did not rank first, SMPSO did rank first. For the 2-objective WFG4 problem,

OMOPSO also beat MGPSO. VEPSO with the random KTS performed worst, followed

by VEPSO with the PCXA KTS.

Finally, for the 3-objective WFG test set, MGPSO ranked not only first overall, but

also ranked first for each individual problem. Only for the 3-objective WFG6 problem
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Figure 6.7: PSO inverted generational distance for 2-objective WFG problems

did SMPSO rank jointly first with MGPSO. Similar to the ZDT and 2-objective WFG

results, SMPSO ranked second overall for the 3-objective WFG test set. VEPSO with

the PCXA KTS performed worst, followed by VEPSO with the random KTS.

Overall, the IGD statistical analysis presented here clearly shows that MGPSO per-
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Figure 6.8: PSO inverted generational distance for 3-objective WFG problems

formed on par with leading PSO based multi-objective optimizers. MGPSO’s lowest

rank was 3 out of 5 for only one of the 23 problems. MGPSO was ranked first for 15 of

the 23 tested problems. Overall, both of the tested VEPSO variants performed poorly,

in terms of IGD, when compared to the other algorithms.
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Table 6.1: Multi-objective PSO algorithms inverted generational distance ranking for ZDT1

through ZDT6

Algorithm Result
ZDT Function

Overall
1 2 3 4 6

MGPSO

Wins 2 3 3 3 3 14

Losses 1 1 1 1 1 5

Difference 1 2 2 2 2 9

Rank 2 2 2 2 2 2

SMPSO

Wins 4 4 4 4 4 20

Losses 0 0 0 0 0 0

Difference 4 4 4 4 4 20

Rank 1 1 1 1 1 1

OMOPSO

Wins 1 2 1 2 0 6

Losses 3 2 3 2 3 13

Difference -2 0 -2 0 -3 -7

Rank 4 3 4 3 4 4

VEPSORandom

Wins 0 1 0 0 0 1

Losses 4 3 4 4 3 18

Difference -4 -2 -4 -4 -3 -17

Rank 5 4 5 5 4 5

VEPSOPCXA

Wins 2 0 2 1 2 7

Losses 1 4 2 3 2 12

Difference 1 -4 0 -2 0 -5

Rank 2 5 3 4 3 3

6.3.3 Pareto-optimal Front Comparison

In addition to quantifying the performance of MGPSO using IGD, the porcupine measure

introduced in the previous chapter was also used. Results for the porcupine measure is

reported using a value pair [a, b], where a indicates the percentage of the attainment

surface where algorithm A performed statistically significantly better than algorithm B,

and b indicates the percentage where algorithm B performed statistically significantly

better than algorithm A.

Table 6.4 presents the porcupine measure for comparisons between MGPSO and

other PSO-based MOO algorithms. Percentages that exceed those of the algorithm

being compared against by more than 5% are shown in bold. For ease of reading, the red

bolded values indicate that the attainment surface found by MGPSO outperformed the
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Table 6.2: Multi-objective PSO algorithms inverted generational distance ranking for 2-

objective WFG1 through WFG9

Algorithm Result
2-objective WFG Function

Overall
1 2 3 4 5 6 7 8 9

MGPSO

Wins 4 4 4 2 3 3 4 3 3 30

Losses 0 0 0 2 1 0 0 0 1 4

Difference 4 4 4 0 2 3 4 3 2 26

Rank 1 1 1 3 2 1 1 1 2 1

SMPSO

Wins 2 2 2 4 4 3 2 2 4 25

Losses 2 1 2 0 0 0 2 2 0 9

Difference 0 1 0 4 4 3 0 0 4 16

Rank 3 2 3 1 1 1 3 3 1 2

OMOPSO

Wins 3 2 3 3 0 0 3 3 0 17

Losses 1 1 1 1 4 3 1 0 4 16

Difference 2 1 2 2 -4 -3 2 3 -4 1

Rank 2 2 2 2 5 4 2 1 5 3

VEPSORandom

Wins 0 0 0 0 1 2 0 0 2 5

Losses 4 4 4 4 3 2 4 4 2 31

Difference -4 -4 -4 -4 -2 0 -4 -4 0 -26

Rank 5 5 5 5 4 3 5 5 3 5

VEPSOPCXA

Wins 1 1 1 1 2 0 1 1 1 9

Losses 3 3 3 3 2 3 3 3 3 26

Difference -2 -2 -2 -2 0 -3 -2 -2 -2 -17

Rank 4 4 4 4 3 4 4 4 4 4

attainment surface of the algorithm being compared against by more than 5%, while blue

bolded values indicate that the attainment surface found by MGPSO was outperformed

by the attainment surface of the algorithm being compared to by more than 5%.

The porcupine measure results show that MGPSO performed favorably when com-

pared against the PSO-based MOO algorithms using the ZDT, 2-objective WFG, and

3-objective WFG test sets. For 78 of the 92 comparisons, MGPSO performed statis-

tically significantly better than the algorithm being compared against. For 42 of the

comparisons, MGPSO performed statistically significantly better than the algorithm be-

ing compared against by more than 90%. MGPSO only performed worse by more than

5% for 10, or less than 11%, of the comparisons. For four of the comparisons, neither

algorithm outperformed the other by more than 5%.
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Table 6.3: Multi-objective PSO algorithms inverted generational distance ranking for 3-

objective WFG1 through WFG9

Algorithm Result
3-objective WFG Function

Overall
1 2 3 4 5 6 7 8 9

MGPSO

Wins 4 4 4 4 4 3 4 4 4 35

Losses 0 0 0 0 0 0 0 0 0 0

Difference 4 4 4 4 4 3 4 4 4 35

Rank 1 1 1 1 1 1 1 1 1 1

SMPSO

Wins 3 2 2 3 2 3 3 2 3 23

Losses 1 2 2 1 2 0 1 2 1 12

Difference 2 0 0 2 0 3 2 0 2 11

Rank 2 3 3 2 3 1 2 3 2 2

OMOPSO

Wins 2 3 3 2 0 0 2 3 0 15

Losses 2 1 1 2 4 3 2 1 4 20

Difference 0 2 2 0 -4 -3 0 2 -4 -5

Rank 3 2 2 3 5 4 3 2 5 3

VEPSORandom

Wins 0 1 1 1 3 0 1 1 1 9

Losses 3 3 3 3 1 3 3 3 2 24

Difference -3 -2 -2 -2 2 -3 -2 -2 -1 -15

Rank 4 4 4 4 2 4 4 4 3 4

VEPSOPCXA

Wins 0 0 0 0 1 2 0 0 1 4

Losses 3 4 4 4 3 2 4 4 2 30

Difference -3 -4 -4 -4 -2 0 -4 -4 -1 -26

Rank 4 5 5 5 4 3 5 5 3 5

It can be noted that MGPSO was only significantly outperformed, where the algo-

rithm that is compared against performed better for more than 50% of the POF, only

in 4 of the comparisons against SMPSO on ZDT3, ZDT4, the 2-objective WFG4, and

WFG9 problems and only once against OMOPSO on ZDT3. SMPSO and OMOPSO

managed to outperform MGPSO only for 10 of the 92 comparisons.

Except for the comparison against SMPSO for the ZDT problems, the results over-

whelmingly show that MGPSO outperformed the other PSO-based MOO algorithms.

For the comparison against SMPSO for the ZDT problems, only on ZDT6 did MGPSO

outperform SMPSO. This result corresponds with the findings of the IGD statistical

analysis.
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Table 6.4: Multi-objective PSO algorithms porcupine measure

Problem Objectives
MGPSO vs

SMPSO OMOPSO VEPSORND VEPSOPCXA

ZDT1 2 [8.3, 9.2] [71.4, 3.5] [85.6, 3.3] [7.2, 8.9]

ZDT2 2 [4.0, 10.1] [52.8, 5.0] [92.9, 1.1] [100.0, 0.0]

ZDT3 2 [2.3, 85.9] [37.6, 56.7] [96.3, 0.0] [86.3, 0.0]

ZDT4 2 [0.0, 87.7] [67.9, 0.0] [100.0, 0.0] [100.0, 0.0]

ZDT6 2 [31.6, 4.6] [48.7, 15.1] [45.5, 6.9] [5.7, 6.9]

WFG1 2 [99.9, 0.0] [99.9, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG2 2 [99.9, 0.0] [99.9, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG3 2 [99.9, 0.0] [99.9, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG4 2 [0.0, 78.3] [28.7, 34.7] [99.9, 0.0] [99.9, 0.0]

WFG5 2 [5.1, 11.0] [45.7, 4.2] [55.4, 1.4] [37.0, 0.1]

WFG6 2 [30.1, 2.4] [99.9, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG7 2 [99.9, 0.0] [99.8, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG8 2 [77.2, 0.6] [43.5, 33.3] [99.9, 0.0] [99.9, 0.0]

WFG9 2 [0.0, 99.9] [89.1, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG1 3 [78.0, 4.9] [83.0, 2.7] [90.2, 0.8] [80.6, 0.9]

WFG2 3 [81.2, 0.2] [16.7, 27.7] [100.0, 0.0] [100.0, 0.0]

WFG3 3 [89.1, 8.5] [81.4, 14.1] [92.4, 6.5] [91.1, 7.9]

WFG4 3 [58.6, 11.4] [62.7, 15.1] [100.0, 0.0] [100.0, 0.0]

WFG5 3 [71.4, 11.1] [41.5, 38.5] [44.3, 12.4] [83.1, 0.0]

WFG6 3 [19.4, 11.3] [59.7, 13.9] [84.8, 0.0] [72.9, 0.0]

WFG7 3 [99.9, 0.0] [81.7, 1.3] [100.0, 0.0] [100.0, 0.0]

WFG8 3 [86.4, 0.0] [65.7, 15.2] [99.9, 0.0] [100.0, 0.0]

WFG9 3 [4.9, 17.8] [39.6, 31.8] [49.9, 7.9] [60.7, 3.9]

6.3.4 Summary

The results presented in this section showed that MGPSO performed well when compared

against PSO-based MOO algorithms for 2 and 3-objective problems. MGPSO also con-

sistently outperformed OMOPSO, VEPSO with random KTS, and VEPSO with PCXA

KTS for the majority of the tested problems.

The results also show that MGPSO is scalable to 3-objectives without sacrificing

performance when compared to the other PSO-based MOO algorithms. The IGD re-

sults showed that MGPSO outperformed all the PSO-based MOO algorithms for the

3-objective WFG problems. The porcupine measure results show that, for only two

of the 3-objective WFG problems, did MGPSO not outperform the algorithms being
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compared against.

Overall, the results show that MGPSO is highly competitive when compared against

PSO-based MOO algorithms.

6.4 Comparative Analysis

In order to rank MGPSO’s performance for solving MOO problems, a comparison against

the state of the art MOO algorithms was carried out. The non-dominated sorting genetic

algorithm II (NSGA II) by Deb et al. [26, 29], multi-objective evolutionary algorithm

based on decomposition (MOEA/D) by Zhang and Li [114], strength Pareto evolution-

ary algorithm 2 (SPEA2) by Zitzler et al. [119], and Pareto envelope-based selection

algorithm II (PESA-II) by Corne et al. [21] algorithms were selected for the purposes of

the empirical comparison. NSGA II, MOEA/D, SPEA2 and PESA-II have been shown

to perform well for a variety of MOPs. A summary of the control parameter values for

the algorithms being compared against is provided in Appendix C.

6.4.1 Performance Analysis

Figures 6.9(a) through 6.9(e), figures 6.10(a) through 6.10(i), and figures 6.11(a) through

6.11(i) respectively depict the IGD for the ZDT, 2-objective WFG, and 3-objective WFG

test sets.

The figures show that MGPSO performed favorably against the leading MOO al-

gorithms. For ZDT1, ZDT2, and ZDT6, the IGD for MGPSO decreased significantly

faster than that of the other algorithms. However, for ZDT2, the IGD leveled out

significantly higher than that of the other algorithms. For the 2-objective WFG2, MG-

PSO significantly outperformed all the other algorithms. For ZDT4, MGPSO performed

significantly worse than the other algorithms; the obtained POF also shows the weak

performance.

For both the 2-objective and 3-objective WFG1 problems, NSGA II performed no-

tably better than any of the other MOO algorithms, including MGPSO. For the 2-

objective WFG2 and WFG6 problems, MGPSO outperformed all the other MOO algo-

rithms. MGPSO performed generally well on the 3-objective WFG with PESA-II and
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Figure 6.9: MOO inverted generational distance for ZDT problems

MOEA/D generally performing poor compared to the other MOO algorithms.

Tables 6.5, 6.6, and 6.7 list the wins, losses, difference, and ranking for the ZDT, 2-

objective WFG, and 3-objective WFG test sets respectively. In all three cases, MGPSO

ranked first overall.

For the ZDT test set, MGPSO ranked first for all the problems except ZDT4 where

MGPSO ranked last and NSGA II first. MOEA/D and NSGA II ranked second and

third, respectively, for the ZDT problems. MOEA/D ranked jointly first for ZDT4

and ZDT6. MOEA/D and NSGA II both achieved 12 wins behind MGPSO’s 15 wins.

MGPSO recorded losses for only ZDT4.

For the 2-objective WFG test set, MGPSO ranked first for six of the nine problems.

MGPSO ranked second for WFG1 and WFG8, and fourth for WFG4. NSGA II ranked

second overall and ranked jointly first for WFG1, WFG4, and WFG8. SPEA2 performed
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Figure 6.10: MOO inverted generational distance for 2-objective WFG problems

the worst, followed by PESA-II in fourth place.

For the 3-objective WFG2 test set, MGPSO performed even better than on the

3-objective problems. MGPSO ranked first for all but two of the problems. For the

remaining two problems, WFG1 and WFG8, MGPSO ranked second. MGPSO recorded
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Figure 6.11: MOO inverted generational distance for 3-objective WFG problems

34 wins and only two losses, followed by NSGA II with 29 wins and seven losses. NSGA II

ranked jointly first for WFG1 and WFG8 and second for the remaining seven problems.

PESA-II ranked last, followed by MOEA/D in fourth place.
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Table 6.5: State of the Art MOO algorithms inverted generational distance ranking for ZDT1

through ZDT6

Algorithm Result
ZDT Function

Overall
1 2 3 4 6

MGPSO

Wins 4 4 4 0 3 15

Losses 0 0 0 4 0 4

Difference 4 4 4 -4 3 11

Rank 1 1 1 5 1 1

NSGA II

Wins 2 2 3 3 2 12

Losses 2 2 1 0 2 7

Difference 0 0 2 3 0 5

Rank 3 3 2 1 3 3

MOEA/D

Wins 3 3 0 3 3 12

Losses 1 1 3 0 0 5

Difference 2 2 -3 3 3 7

Rank 2 2 5 1 1 2

SPEA2

Wins 0 0 1 2 0 3

Losses 3 4 2 2 4 15

Difference -3 -4 -1 0 -4 -12

Rank 4 5 3 3 5 4

PESA-II

Wins 0 1 0 1 1 3

Losses 3 3 2 3 3 14

Difference -3 -2 -2 -2 -2 -11

Rank 4 4 4 4 4 4

6.4.2 Pareto-optimal Front Comparison

Table 6.8 depicts the porcupine measure results for MGPSO compared against the state

of the art MOO algorithms.

The porcupine measure results again show that MGPSO performed favorably when

compared against the state of the art MOO algorithms using the ZDT, 2-objective WFG,

and 3-objective WFG test sets. For 66 of the 92 comparisons, MGPSO performed sta-

tistically significantly better than the algorithm being compared against. For 30 of the

comparisons, MGPSO performed statistically significantly better than the algorithm be-

ing compared against by more than 90%. MGPSO only performed worse by more than

5% for 21, or less than 23%, of the comparisons. For five of the comparisons, neither

algorithm outperformed the other by more than 5%.
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Table 6.6: State of the Art MOO algorithms inverted generational distance ranking for 2-

objective WFG1 through WFG9

Algorithm Result
2-objective WFG Function

Overall
1 2 3 4 5 6 7 8 9

MGPSO

Wins 3 4 4 0 4 4 4 1 3 27

Losses 1 0 0 3 0 0 0 1 0 5

Difference 2 4 4 -3 4 4 4 0 3 22

Rank 2 1 1 4 1 1 1 2 1 1

NSGA II

Wins 4 2 2 4 2 3 2 4 2 25

Losses 0 2 1 0 2 1 1 0 0 7

Difference 4 0 1 4 0 2 1 4 2 18

Rank 1 3 2 1 3 2 2 1 2 2

MOEA/D

Wins 1 2 2 0 3 0 2 1 0 11

Losses 2 1 1 3 1 4 1 1 1 15

Difference -1 1 1 -3 2 -4 1 0 -1 -4

Rank 3 2 2 4 2 5 2 2 3 3

SPEA2

Wins 1 1 1 2 0 1 0 0 0 6

Losses 2 2 3 2 4 3 4 4 3 27

Difference -1 -1 -2 0 -4 -2 -4 -4 -3 -21

Rank 3 4 4 3 5 4 5 5 5 5

PESA-II

Wins 0 0 0 3 1 2 1 1 1 9

Losses 4 4 4 1 3 2 3 1 2 24

Difference -4 -4 -4 2 -2 0 -2 0 -1 -15

Rank 5 5 5 2 4 3 4 2 3 4

NSGA II, MOEA/D, and PESA-II significantly outperformed MGPSO for ZDT4.

MGPSO was also outperformed by NSGA II for ZDT3, and slightly (6.2%) by MOEA/D

for ZDT6. MGPSO outperformed SPEA2 for all the ZDT problems. MGPSO was

significantly outperformed by NSGA II, SPEA2, and PESA-II for the 2-objective WFG4

problem. MOEA/D only managed to slightly (8.5%) outperform MGPSO for the 2-

objective WFG4 problem. MGPSO was also significantly outperformed by NSGA II

and SPEA2 for the 2-objective WFG1 problem and by NSGA II and PESA-II for the

2-objective WFG8 problem. For the 3-objective WFG problems, NSGA II managed to

outperform MGPSO for WFG1, WFG2, WFG4, WFG5, and WFG8. In addition to

NSGA II, only SPEA2 for WFG2 managed to outperform MGPSO for the 3-objective

WFG problems.
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Table 6.7: State of the Art MOO algorithms inverted generational distance ranking for 3-

objective WFG1 through WFG9

Algorithm Result
3-objective WFG Function

Overall
1 2 3 4 5 6 7 8 9

MGPSO

Wins 3 4 4 4 4 4 4 3 4 34

Losses 1 0 0 0 0 0 0 1 0 2

Difference 2 4 4 4 4 4 4 2 4 32

Rank 2 1 1 1 1 1 1 2 1 1

NSGA II

Wins 4 3 3 3 3 3 3 4 3 29

Losses 0 1 1 1 1 1 1 0 1 7

Difference 4 2 2 2 2 2 2 4 2 22

Rank 1 2 2 2 2 2 2 1 2 2

MOEA/D

Wins 2 1 1 1 1 1 1 1 1 10

Losses 2 3 3 3 3 3 3 3 3 26

Difference 0 -2 -2 -2 -2 -2 -2 -2 -2 -16

Rank 3 4 4 4 4 4 4 4 4 4

SPEA2

Wins 1 2 2 2 2 2 2 2 2 17

Losses 3 2 2 2 2 2 2 2 2 19

Difference -2 0 0 0 0 0 0 0 0 -2

Rank 4 3 3 3 3 3 3 3 3 3

PESA-II

Wins 0 0 0 0 0 0 0 0 0 0

Losses 4 4 4 4 4 4 4 4 4 36

Difference -4 -4 -4 -4 -4 -4 -4 -4 -4 -36

Rank 5 5 5 5 5 5 5 5 5 5

With the exception of the comparison against NSGA II for the 3-objective WFG

problems, the results overwhelmingly show that MGPSO outperformed the other MOO

algorithms. For the 3-objective WFG problems, MGPSO outperformed NSGA II for only

WFG3 and WFG7. However, the IGD statistical analysis and IGD graphs indicated that

MGPSO outperformed NSGA II, at least, in terms of the IGD measure. On the other

hand, the porcupine measure indicated that there are areas of the attainment surface

where NSGA II outperformed MGPSO, at least, in terms of the quality of the solutions

found.
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Table 6.8: State of the Art MOO algorithms porcupine measure

Problem Objectives
MGPSO vs

NSGAII MOEA/D SPEA2 PESA-II

ZDT1 2 [49.8, 1.6] [76.4, 3.6] [97.9, 0.0] [86.1, 0.0]

ZDT2 2 [34.5, 1.8] [67.0, 7.4] [98.8, 0.0] [66.8, 0.0]

ZDT3 2 [0.6, 77.6] [100.0, 0.0] [44.3, 1.2] [29.0, 27.3]

ZDT4 2 [15.8, 75.3] [0.0, 82.9] [45.3, 29.7] [32.9, 63.2]

ZDT6 2 [80.7, 0.4] [37.9, 44.1] [99.7, 0.1] [99.9, 0.0]

WFG1 2 [17.3, 78.8] [92.8, 2.0] [25.0, 69.7] [46.4, 50.9]

WFG2 2 [99.2, 0.0] [99.9, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG3 2 [99.9, 0.0] [90.7, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG4 2 [0.0, 99.9] [20.0, 28.5] [1.3, 97.4] [4.5, 92.7]

WFG5 2 [43.8, 4.7] [42.1, 36.2] [97.6, 0.0] [89.5, 0.0]

WFG6 2 [99.9, 0.0] [99.9, 0.0] [99.9, 0.0] [99.9, 0.0]

WFG7 2 [95.1, 0.0] [81.5, 2.9] [99.9, 0.0] [99.9, 0.0]

WFG8 2 [0.0, 99.7] [28.0, 45.6] [35.6, 7.3] [17.3, 70.6]

WFG9 2 [0.0, 7.0] [99.7, 0.0] [29.4, 0.1] [9.0, 0.0]

WFG1 3 [5.5, 89.8] [86.9, 9.2] [64.4, 25.2] [68.7, 25.5]

WFG2 3 [29.2, 50.8] [60.0, 20.7] [28.5, 55.0] [89.2, 1.4]

WFG3 3 [57.6, 22.5] [84.2, 15.0] [71.3, 13.7] [56.7, 31.1]

WFG4 3 [2.7, 78.3] [64.8, 21.7] [50.4, 3.9] [90.7, 5.7]

WFG5 3 [6.9, 55.7] [50.9, 38.8] [42.3, 15.1] [90.7, 3.6]

WFG6 3 [10.0, 13.7] [69.3, 9.2] [93.9, 0.0] [94.1, 3.1]

WFG7 3 [26.8, 5.7] [71.3, 12.4] [100.0, 0.0] [90.4, 6.5]

WFG8 3 [0.09, 82.5] [69.6, 22.0] [37.8, 38.8] [94.4, 2.5]

WFG9 3 [18.0, 16.0] [54.0, 34.9] [40.5, 7.0] [85.6, 7.9]

6.4.3 Summary

The results presented in this section showed that MGPSO performed well when compared

against the state of the art MOO algorithms for 2 and 3-objective problems. MGPSO

also consistently outperformed MOEA/D, SPEA2, and PESA-II for the majority of the

tested problems.

The results also show that MGPSO is scalable to 3-objectives without sacrificing

performance when compared to the other state of the art MOO algorithms. The IGD

results showed that MGPSO ranked overall first for the ZDT, the 2-objective WFG,

and the 3-objective WFG test sets. The porcupine measure results showed that, while

MGPSO outperformed NSGA II in terms of the IGD measure, NSGA II found higher
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quality solutions for the majority of the 3-objective WFG problems for larger percentages

of the attainment surface than MGPSO did.

Overall, the results show that MGPSO is highly competitive when compared to the

state of the art MOO algorithms.

It should be noted that the only conclusion that can be drawn from the results pre-

sented in this chapter is that MGPSO is highly competitive. An absolute finding that

MGPSO outperforms the other MOO algorithms can not be made due to the difficulties

in conducting a fair comparison. The results presented in this chapter was obtained by

running the competing algorithms with recommended parameter values as provided in

the literature with a fixed population size for a fixed number of iterations. If a fixed

function evaluation budget is used, varying population sizes may yield different results

for the different algorithms. The objective of this section was to determine if MGPSO

performs on-par with the state of the art MOO algorithms, and this objective has been

met through the presented analysis and results.

6.5 Summary

This chapter introduced MGPSO, a multi-objective PSO algorithm. MGPSO was com-

pared against current MOO PSOs and the state of the art MOO algorithms. IGD and

the porcupine measure were used to evaluate MGPSO’s performance.

The results indicated that MGPSO performed on-par with the state of the art MOO

algorithms, and in many cases outperformed the algorithms against which it was com-

pared. MGPSO was shown to perform well on both 2- and 3-objective problems using the

ZDT and WFG test sets. MGPSO was ranked overall first in five of the six IGD-based

statistical analysis results. The porcupine measure also showed that MGPSO tended to

outperform the competing algorithms and managed to find higher quality solutions for

the majority of the POFs that make up the attainment surfaces for the tested problems.

Overall, MGPSO succeeded in solving the MOO test problems evaluated in this study

and was shown to be highly competitive compared to the other PSO-based and state of

the art MOO algorithms. MGPSO should be considered a good candidate algorithm for

solving MOO algorithms.
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Multi-guided Particle Swarm

Optimization Parameter Sensitivity

Analysis

“The skeptic does not mean him who doubts, but him who investigates or

researches, as opposed to him who asserts and thinks that he has found.”

Miguel de Unamuno (1864 - 1936)

The previous chapter introduced the MGPSO and evaluated its performance. The

performance evaluation made use of optimized control parameter values. The main

objective of this chapter is to discuss the process used to obtain the optimized MGPSO

control parameter values and to perform a theoretical stability analysis of the MGPSO

control parameter values. A summary of the MGPSO’s optimized control parameter

values for the ZDT, the 2-objective WFG, and the 3-objective WFG is also given.

The parameter optimization process presented in this chapter makes use of the pa-

rameter space exploration technique using parallel coordinates described by Franken [39].

The optimized control parameter values obtained using the technique presented in this

chapter was used to obtain the MGPSO’s experimental results shown in the previous

chapter.

Section 7.1 introduces parameter optimization, followed by a discussion of the MG-

PSO’s control parameter optimization process in Section 7.2. The control parameter

175
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parallel coordinate plots and control parameter optimization results are given in Section

7.3. Section 7.4 presents a theoretical derivation of the order-1 and order-2 stable regions

for the MGPSO algorithm. Finally, a summary of the findings is given in Section 7.5.

7.1 Introduction

Over the years researchers have applied various approaches to optimize an algorithm’s

control parameter values [39]. The methods applied by researchers to select optimal

control parameter values include, but is not limited to:

• One-factor-at-a-time design allows each control parameter value to be optimized in

isolation by fixing the values of all the other control parameters. While efficient in

terms of computations required, an obvious drawback to the one-factor-at-a-time

design approach is that interdependencies between the control parameters are not

taken into account.

• Factorial design improves on the one-factor-at-a-time design approach by capturing

the control parameter interdependencies by evaluating all possible control param-

eter value combinations. The computational cost associated with the factorial

design approach makes it unsuitable for all but the most trivial cases.

• Random sampling improves on the factorial design approach by sampling random

control parameter value combinations instead of evaluating all possible combina-

tions. For each control parameter, only a lower and upper boundary is required for

the sampling process. While random sampling improves the computational cost,

the nature of random number generators often leads to the exploration of only a

small region of the parameter space.

• Low-discrepancy sequences improve on the random sampling approach by sam-

pling parameter value combinations using low-discrepancy sequences (also known

as quasi-random numbers). Low-discrepancy sequences seem random but are in

reality much more uniformly spread out over the parameter space. The primary

objective of a finite low-discrepancy sequence is to attempt to fill the unit hy-

percube as uniformly as possible. Various low-discrepancy sequences generators
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have been proposed, namely Van der Corput sequences, Halton sequences, Faure

sequences, Sobol sequences and Niederreiter sequences [42]. Low-discrepancy se-

quence approaches reduce the computational cost while still allowing exploration

of large areas of the parameter space.

Procedures, such as F-Race, for automated selection and evaluation of control parameter

value combinations have also been proposed [6, 65]. These procedures often rely on

statistical significance tests in an attempt to optimize the control parameter values within

a fixed computational budget.

7.2 Analyzing Control Parameter Sensitivity

Franken [39] presented a visual analysis technique to explore the control parameter space

of an algorithm. Franken proposed plotting the results for all the evaluated control

parameter value combinations on a parallel coordinate plot. Each control parameter

value combination is represented by a single pattern on the parallel coordinate plot. The

color for each pattern is determined according to how well the control parameter value

combination being represented, performed. By adjusting the colors and highlighting the

region of the well-performing patterns a researcher can visually explore the parameter

space.

In the case of MGPSO, the following control parameter values must be optimized:

• Number of particles per subswarm Sm.ns (denoted |Sm|) for m = {1, 2, ..., nm},

• the tournament selection competition pool size (T ),

• inertia weight (w), and

• the three acceleration coefficients (c1, c2, c3).

In order to optimize the control parameter values, values were sampled for each parameter

from the following predefined parameter value domains:

• |Sm| ∈ {0, 1, . . . , 50} with m ∈ {1, . . . , nm} such that
∑ |Sm| = 50,

• T ∈ {2, 3},
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• w ∈ {0.05, 0.075, 0.1, . . . , 0.95}, and

• c1, c2, c3 ∈ {0.50, 0.55, 0.6, . . . , 1.9}.

Experimentation showed that these control parameter values could lead to well-performing

results and, as such, is well suited for the control parameter sensitivity analysis approach

described in this chapter. For each control parameter value combination, the IGD was

calculated and plotted onto the parallel coordinate plot. As many control parameter

value combinations as possible should be evaluated to identify the well-performing areas

of the parameter space. For this study, over 2500 control parameter value combinations

were evaluated per problem.

The control parameter sensitivity analysis should be repeated for each of the problems

being optimized. In the case of this study, the control parameter sensitivity analysis was

performed 23 times, once for each problem in the ZDT, 2-objective WFG, and 3-objective

WFG test sets. The true POF sets from the jMetal framework [80] were used for all the

IGD calculations.

Take note that Franken’s analysis technique requires an absolute measurement value

to optimize, as such the porcupine measure is not a suitable measure due to its compar-

ative and multi-output nature.

7.3 Parameter Sensitivity Analysis

Figures 7.1 through 7.5, 7.6 through 7.14, and 7.15 through 7.23 present the parallel

coordinate plots for the ZDT, 2-objective WFG, and 3-objective WFG test sets, respec-

tively. The top 2.5% well-performing control parameter value combinations, shown as

solid black lines, are highlighted in green. The top 10 well-performing control parameter

value combinations are shown as dashed orange lines, and the best performing control

parameter value combination is shown as a solid red line.

For ZDT1 through ZDT6 a clear pattern is visible where well-performing control

parameter value combinations have more particles in subswarm S2 than in subswarm S1.

Both tournament pool sizes T = 2 and T = 3 performed well. The inertia weight, w, did

not show much sensitivity; however, the top 10 values seemed to cluster for at least three
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Figure 7.1: MGPSO control parameter value parallel coordinate plot for ZDT1
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Figure 7.2: MGPSO control parameter value parallel coordinate plot for ZDT2
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Figure 7.3: MGPSO control parameter value parallel coordinate plot for ZDT3

|S1|
1

50

|S2|
0

49

T

2

3

w
0.05

0.95

c1

0.5

1.9

c2

0.5

1.9

c3

0.5

1.9

IGD

0.1000137

1.793746

Figure 7.4: MGPSO control parameter value parallel coordinate plot for ZDT4
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Figure 7.5: MGPSO control parameter value parallel coordinate plot for ZDT6

|S1|
1

50

|S2|
0

49

T

2

3

w
0.05

0.95

c1

0.5

1.9

c2

0.5

1.9

c3

0.5

1.9

IGD

0.0348302

0.05545215

Figure 7.6: MGPSO control parameter value parallel coordinate plot for WFG1 (2 objective)
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Figure 7.7: MGPSO control parameter value parallel coordinate plot for WFG2 (2 objective)
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Figure 7.8: MGPSO control parameter value parallel coordinate plot for WFG3 (2 objective)
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Figure 7.9: MGPSO control parameter value parallel coordinate plot for WFG4 (2 objective)
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Figure 7.10: MGPSO control parameter value parallel coordinate plot for WFG5 (2 objective)
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Figure 7.11: MGPSO control parameter value parallel coordinate plot for WFG6 (2 objective)
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Figure 7.12: MGPSO control parameter value parallel coordinate plot for WFG7 (2 objective)



Chapter 7. Multi-guided Particle Swarm Optimization Parameter Sensitivity
Analysis 185

|S1|
1

50

|S2|
0

49

T

2

3

w
0.05

0.95

c1

0.5

1.9

c2

0.5

1.9

c3

0.5

1.9

IGD

0.005934173

0.02136204

Figure 7.13: MGPSO control parameter value parallel coordinate plot for WFG8 (2 objective)

|S1|
1

50

|S2|
0

49

T

2

3

w
0.05

0.95

c1

0.5

1.9

c2

0.5

1.9

c3

0.5

1.9

IGD

0.001623788

0.007540695

Figure 7.14: MGPSO control parameter value parallel coordinate plot for WFG9 (2 objective)
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Figure 7.15: MGPSO control parameter value parallel coordinate plot for WFG1 (3 objective)
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Figure 7.16: MGPSO control parameter value parallel coordinate plot for WFG2 (3 objective)
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Figure 7.17: MGPSO control parameter value parallel coordinate plot for WFG3 (3 objective)
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Figure 7.18: MGPSO control parameter value parallel coordinate plot for WFG4 (3 objective)
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Figure 7.19: MGPSO control parameter value parallel coordinate plot for WFG5 (3 objective)
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Figure 7.20: MGPSO control parameter value parallel coordinate plot for WFG6 (3 objective)
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Figure 7.21: MGPSO control parameter value parallel coordinate plot for WFG7 (3 objective)
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Figure 7.22: MGPSO control parameter value parallel coordinate plot for WFG8 (3 objective)
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Figure 7.23: MGPSO control parameter value parallel coordinate plot for WFG9 (3 objective)

of the five ZDT problems. At least one of the acceleration coefficients, c1, c2, or c3, showed

sensitivity for each of the ZDT problems. c1 showed high sensitivity preferring larger

values for ZDT1, ZDT2, ZDT3, and ZDT4, while c3 showed high sensitivity preferring

larger values for ZDT1, ZDT2, and ZDT6. Larger c3 values indicate the search process

prefers a larger influence by the archive guide. The requirement for a larger influence

by the archive guide is most likely a necessity arising from the fact that subswarm S2

is much larger than subswarm S1. Also keep in mind that for all the ZDT problems,

f1(x) makes use of only x1 and is thus much more trivial to solve than f2(x). Through

the archive guide, the MGPSO is thus facilitating the search to optimize both objectives

while allowing more particles to optimize f2(x) directly.

For the 2-objective WFG problems, no general pattern regarding subswarm sizes can

be seen. For WFG1 and WFG5 smaller sizes for the S2 subswarm and larger size for

the S1 subswarm are preferred. For WFG4 and WFG9, the opposite, namely smaller

sizes for the S1 subswarm and larger sizes for the S2 subswarm are preferred. It should

be noted that, in the case of WFG5, extreme sensitivity towards larger sizes for the S1

subswarm can be noted. Again, little sensitivity towards the tournament pool size can

be noted. When considering only the top 10 control parameter value combinations, the
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inertia weight, w, showed sensitivity towards larger values for WFG2, WFG3, WFG4,

WFG5, and WFG8. For WFG1 and WFG6 smaller w values are preferred. Sensitivity

towards larger c1 values can be noted for WFG1. For c2, larger values are preferred for

WFG2, WFG3, WFG7, and WFG8. For c3, larger values are preferred for WFG1, WFG5,

WFG6, and WFG7. Only WFG4 and WFG8 showed little to no sensitivity towards any

of the c1, c2, or c3 values. However, it can be noted that in the case of WFG4 and WFG8,

control parameter combinations with small c2 values had corresponding large c3 values

and vice versa.

For the 3-objective WFG problems, again, no general pattern regarding subswarm

sizes can be seen. Smaller subswarm sizes for S3 are preferred for WFG2, WFG4, WFG5,

and WFG9. Little to no sensitivity towards the tournament pool size can be noted,

although the best performing control parameter value combination typically made use

of a tournament size of 3. Smaller values for the inertia weight, w, are preferred for

WFG1, WFG2, WFG6, WFG7, and WFG9. For each problem, at least one of c1, c2, or

c3 showed sensitivity, with c3 being the most sensitive on WFG2, WFG5, WFG6, WFG7,

WFG8, and WFG9.

Table 7.1 lists the optimized MGPSO control parameter values for each of the ZDT,

2-objective WFG and 3-objective WFG problems.

It is noteworthy that, for the 2-objective WFG5 and 3-objective WFG4 and WFG5

problems, at least one subswarm size is zero. That is, there is no particle in that sub-

swarm. Effectively, this indicates that MGPSO is able to find well-performing solutions

for the objective that is represented by that subswarm without directly evaluating par-

ticle positions against that objective. It is hypothesized that indirect optimization still

takes place, because the archive takes all the objectives into account, noting that the

archive can contain only non-dominated solutions. The crowding distance selection ap-

proach to select archive guides results in guiding particles in the remaining subswarm

to indirectly optimize the objective without a subswarm. Note that cases with a very

small number of particles for one of the subswarms typically have a larger c3 value. This

correlates with the hypothesis that indirect optimization of the objective corresponding

to the swarm with the fewer number of particles takes place. Also, note that the inverse

is not true, large c3 values do not indicate that there is a small number of particles
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Table 7.1: Optimized MGPSO parameters

Problem Objectives |S1| |S2| |S3| T w c1 c2 c3

ZDT1 2 33 17 3 0.475 1.80 1.10 1.80

ZDT2 2 8 42 3 0.075 1.60 1.35 1.90

ZDT3 2 8 42 3 0.050 1.85 1.90 1.90

ZDT4 2 5 45 2 0.175 1.85 1.35 1.85

ZDT6 2 1 49 3 0.600 1.85 1.55 1.80

WFG1 2 45 5 3 0.275 1.65 1.80 1.75

WFG2 2 24 26 2 0.750 1.15 1.70 1.05

WFG3 2 31 19 2 0.600 1.60 1.85 0.95

WFG4 2 2 48 2 0.100 0.80 1.65 1.70

WFG5 2 50 0 2 0.600 0.80 1.60 1.85

WFG6 2 19 31 2 0.525 0.65 0.60 1.65

WFG7 2 29 21 2 0.450 1.20 1.85 1.55

WFG8 2 37 13 3 0.750 1.00 1.65 1.05

WFG9 2 13 37 2 0.275 1.00 0.50 1.70

WFG1 3 37 4 9 2 0.125 1.20 1.30 1.75

WFG2 3 24 25 1 2 0.275 1.25 1.40 1.70

WFG3 3 29 10 11 2 0.525 1.65 1.75 0.75

WFG4 3 29 21 0 2 0.275 1.75 0.50 1.05

WFG5 3 2 48 0 3 0.575 0.60 1.85 1.75

WFG6 3 5 30 15 3 0.300 0.90 0.90 1.90

WFG7 3 10 22 18 2 0.425 1.45 1.50 1.40

WFG8 3 4 23 23 3 0.425 0.95 1.75 1.85

WFG9 3 4 45 1 2 0.275 1.25 0.75 1.50

in one of the subswarms. The generally large c3 values indicate that the archive term

contributes to the success of the MGPSO and validates its addition.

Also note that for three of the problems, one of the subswarms sizes is 1. Normally,

this would indicate that the particle effectively performs hill-climbing. However, in

the case of the MGPSO, the archive guide would still guide the particle towards other

solutions through the crowding distance-based archive guide selection mechanism.

7.4 Stability Criteria

This section presents a theoretical derivation of the order-1 and order-2 stable regions

for the MGPSO algorithm.
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In order the derive order-1 and order-2 stable regions for the MGPSO the following

general theorem of Cleghorn and Engelbrecht [11] is used:

Theorem 7.1. The following properties hold for all PSO variants of the form:

xk(t+ 1) = xk(t)α + xk(t− 1)β + γt (7.1)

where k indicates the vector component, α and β are well defined random variables, and

(γt) is a sequence of well defined random variables. In the context of this work, a random

variable is said to be well defined if it has an expectation and a variance.

1. Assuming it converges, particle positions are order-1 stable for every initial condi-

tion if and only if ρ(A) < 1, where

A =

[
E[α] E[β]

1 0

]
and it =

[
E[γt]

0

]
(7.2)

2. The particle positions are order-2 stable if ρ(B) < 1 and (jt) converges, where

B =



E[α] E[β] 0 0 0

1 0 0 0 0

0 0 E[α2] E[β2] 2E[αβ]

0 0 1 0 0

0 0 E[α] 0 E[β]


and

jt =



E[γt]

0

E[γ2
t ]

0

0


(7.3)

under the assumption that the limits of (E[γtα]) and (E[γtβ]) exist.



Chapter 7. Multi-guided Particle Swarm Optimization Parameter Sensitivity
Analysis 194

3. Assuming that x(t) is order-1 stable, then the following is a necessary condition

for order-2 stability:

1− E [α]− E [β] 6= 0 (7.4)

1− E
[
α2
]
− E

[
β2
]
−
(

2E [αβ]E [α]

1− E [β]

)
> 0 (7.5)

4. The convergence of E[γt] is a necessary condition for order-1 stability, and the

convergence of both E[γt] and E[γ2
t ] is a necessary condition for order-2 stability.

The MGPSO’s update equation (6.1), can be put into the form of equation (7.1) by

setting

α = (1 + w)− c1r1 − λc2r2 − (1− λ)c3r3

β = −w
γt = c1r1y(t) + λc2r2ŷ(t) + (1− λ)c3r3â(t)

In order to utilize theorem 7.1, the following modeling assumption is used:

Definition 7.1. Non-stagnant distribution assumption:

It is assumed that ŷi (t), yi (t), and âi (t) are random variables sampled from a time

dependent distribution, such that ŷi (t), yi (t), and âi (t) have well defined expectations

and variances for each t and that lim
t→∞

E[ŷi(t)], lim
t→∞

E[yi(t)], lim
t→∞

E[âi(t)], lim
t→∞

V [ŷi(t)],

lim
t→∞

V [yi(t)] and lim
t→∞

V [âi(t)] exist.

It is clear from part 4 of theorem 7.1 that the non-stagnant distribution assumption is

a necessary condition for order-1 and order-2 stability. In order to obtain the criteria for

order-1 stability, part 1 of theorem 7.1 is used. Specifically, the following expectations

are needed

E[α] = (1 + w)− c1

2
− λc2

2
− (1− λ)c3

2

E[β] = −w

E[γt] =
1

2
(c1E[y(t)] + λc2E[ŷ(t)] + (1− λ)c3E[â(t)]) .
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Given the non-stagnant distribution assumption, it follows by the sum of conver-

gent sequences that E[γt] converges, and therefore it converges. The criteria for order-1

stability is determined by coefficients that satisfy ρ(A) < 1. After some algebraic ma-

nipulation, the following criteria for order-1 stability is obtained:

|w| < 1 and 0 < c1 + λc2 + (1− λ)c3 < 4(w + 1), (7.6)

or in the case of c = c1 = c2 = c3,

|w| < 1 and 0 < 2c < 4(w + 1). (7.7)

In order to obtain the conditions necessary for order-2 stability, part 3 of theorem 7.1

is used. The calculation of additional expected values is needed. In order to calculate

E[α2], α2 is first calculated as

α2

= ((1 + w)− cr1 − λcr2 − (1− λ)cr3)2

= (1 + w)2 − c1r1(1 + w)− λc2r2(1 + w)− (1 + w)(1− λ)c3r3

− c1r1(1 + w) + c2
1r

2
1 + λc1c2r1r2 + (1− λ)c1c3r1r3

− λc2r2(1 + w) + λc1c2r1r2 + λ2c2
2r

2
2 + λ(1− λ)c2c3r2r3

− (1 + w)(1− λ)c3r3 + (1− λ)c1c3r1r3+

+ λ(1− λ)c2c3r2r3 + (1− λ)2c2
3r

2
3

(7.8)

Application of the expectation operator leads to

E[α2]

= (1 + w)2 − c1

2
(1 + w)− λc2

2
(1 + w)− (1 + w)(1− λ)

c3

2

− c1

2
(1 + w) +

c2
1

3
+ λ

c1c2

4
+ (1− λ)

c1c3

4

− λc2

2
(1 + w) + λ

c1c2

4
+ λ2 c

2
2

3
+ λ(1− λ)

c2c3

4

− (1 + w)(1− λ)
c3

2
+ (1− λ)

c1c3

4
+ λ(1− λ)

c2c3

4

+ (1− λ)2 c
2
3

3

(7.9)
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Let c = c1 = c2 = c3, then after some algebraic manipulation, equation (7.9) becomes

E[α2]

= (1 + w)2 − c(1 + w)− λc(1 + w)− (1 + w)(1− λ)c

+ c2

(
1

3
+
λ

2
+

1− λ
2

+
λ2

3
+
λ(1− λ)

2
+

(1− λ)2

3

)
= (1 + w)((1 + w)− 2c) +

c2

6

(
λ2 − λ+ 7

)
The following expectations are also needed:

E[αβ] = −wE[α] = −w((1 + w)− c)
E[β2] = w2

(7.10)

In order to obtain the conditions necessary for order-2 stability, first consider the condi-

tion of equation (7.4) in part 3 of theorem 7.1:

1 + E[α] + E[β] 6= 0

c1 + λc2 + (1− λ)c3 6= 0 (7.11)

or if c = c1 = c2 = c3, simply c 6= 0.

Now consider the condition of equation (7.5) in part 3 of theorem 7.1:

1− E[α2]− E[β2]−
(

2E[αβ]E[α]

1− E[β]

)
> 0

=⇒ 2c− 2wc+

(
2wc2

(1 + w)

)
− c2

6

(
λ2 − λ+ 7

)
> 0

Solving the quadric form equal to 0 leads to

c <
12(1− w2)

(λ2 − λ+ 7)(w + 1)− 12w
(7.12)

Merging the conditions for order-2 in equations (7.12) and (7.11) with the conditions for

order-1 stability of equation (7.7) leads to the following criteria for order-1 and order-2

stability:

0 < c <
12(1− w2)

(λ2 − λ+ 7)(w + 1)− 12w
, |w| < 1 (7.13)

This merger is possible because the region defined by equation (7.12) is a subset of the

region defined by equation (7.7). It should be noted that the conditions derived for
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order-2 stability are only the necessary conditions. To verify that they are sufficient,

part 2 of theorem 7.1 is used. Given the complexity of symbolically solving ρ(B) < 1, an

empirical approach is utilized in line with that used by Cleghorn and Engelbrecht [11].

The experimental procedure is as follows: 109 random combinations of the form {w, c, λ}
were constructed such that equations (7.11) and (7.12) were satisfied. It was then tested

whether or not ρ(B) < 1. It was found that in 100% of the cases, if equations (7.11) and

(7.12) were satisfied, then the condition ρ(B) < 1 held. This provides strong evidence

that the conditions of equation (7.13) are both necessary and sufficient for order-1 and

order-2 stability.

7.5 Summary

This chapter presented a discussion of the parameter optimization technique applied

to find best values for the control parameters of the MGPSO. Correlation between the

extremely small subswarm sizes and large c3 values was noted. This indicated that

MGPSO has the ability to indirectly optimize an objective function by increasing the

weight of the contribution of the archive guide term in the MGPSO velocity update

equation. Because the archive only contains non-dominated solutions as determined

using all the objective functions, the effect of all the objective functions is still considered.

For the majority of the problems evaluated, a large c3 value was found to be optimal.

This again emphasizes that the addition of the MGPSO’s archive term plays a large role

in guiding the particles to well-performing regions of the search space.

Finally, a theoretical derivation of the order-1 and order-2 stable regions for the

MGPSO algorithm was presented. Selecting control parameter values that fall within

the derived stability criterion will ensure stability and avoid explosive particle velocities.



Chapter 8

Findings and Conclusions

“He who knows all the answers has not been asked all the questions.”

Confucius (551 - 479 BC)

This chapter summarises the major findings of the work done for this study, sum-

marises the conclusions drawn from the study, and provides a number of suggestions for

future work that can be pursued as a result of this work.

Section 8.1 presents the summary of findings and conclusions, followed by suggestions

for future work in Section 8.2.

8.1 Summary of Findings and Conclusions

This study aimed to develop a multi-objective particle swarm-based algorithm to solve

multi-objective optimization (MOO) problems. An investigation into the exploration

behavior of the vector evaluated particle swarm optimization (VEPSO) algorithm, and

the effect that the archive management strategy has on VEPSO’s performance led to the

development of the multi-guided particle swarm optimization (MGPSO) algorithm.

Background was provided on particle swarm optimization (PSO), MOO, multi-objective

PSO, and MOO test sets to aid in the development of a new multi-objective particle

swarm-based algorithm. The test sets presented were used throughout this study to

benchmark the performance of various algorithms and variations of the algorithms.

198
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An explorative investigation into the exploration behavior of the VEPSO algorithm

was presented. A novel visualization of the candidate solutions representing the current

particle positions was developed. The candidate solution plots showed that the VEPSO

particles continue to explore the objective space even after the well-performing region

close to the Pareto-optimal front (POF) has been discovered. To aid in understanding

the VEPSO algorithm’s exploration behavior, new quantitative measures were developed

to quantify the particle position dispersion. The dispersion measurements indicated that

the VEPSO particles were not exploiting the already found well-performing regions close

to the POF. A new quantitative measure to quantify particle movement diversity was

developed. The particle movement diversity measure showed that the VEPSO particle’s

continue to move and do not converge in any meaningful way.

To further understand VEPSO’s overall performance, VEPSO’s archive management

was investigated. The original VEPSO proposal did not specify how the archive should

be managed, leaving the implementation detail to the algorithm’s user. A thorough inves-

tigation into the influence that various archive management strategies has on VEPSO’s

overall performance, was carried out. A new hypersurface contribution archive was pro-

posed. Early results indicated that the hypersurface archive shows much promise that

merits further investigation. The archive management analysis showed that the choice

of archive implementation greatly influences the POF’s diversity as well as the overall

performance as measured using the inverted generational distance (IGD) measure. Over-

all, the bounded archive with the crowding distance deletion approach outperformed the

competing approaches. The diversity analysis further showed that two existing POF

diversity measures, namely spacing, and distribution, could give misleading results due

to a pairwise grouping problem. A new crowding distance based distribution measure,

named crowding distribution, was proposed to address the pairwise grouping problem.

In order to better quantify the performance of two MOO algorithms being compared,

the porcupine measure was developed. The porcupine measure is based on Knowles and

Corne’s work to quantify the results for Fonseca and Fleming’s grand attainment surface.

Knowles and Corne’s measure, named the KC measure, is dependent on the generation

of intersection lines to statistically compare the attainment surfaces for two or more

algorithms. The accuracy of Knowles and Corne’s proposal is shown to be dependent on
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the shape of the POF. Two alternative intersection line generation approaches, named

attainment surface shaped intersection lines (ASSIL) and weighted attainment surface

shaped intersection lines (WASSIL), were proposed. Using a number of artificial POFs

with known true KC measure values, both approaches were shown to lead to more accu-

rate KC measure values. The WASSIL approach was further extended for n-dimensional

attainment surface comparisons, and named the porcupine measure. A more computa-

tionally optimized version of the porcupine measure was proposed and shown to perform

on-par with the more computationally intensive version.

The lessons learned from the VEPSO exploration behavior and archive management

studies were combined to develop the MGPSO. A thorough comparison of MGPSO’s

performance against current MOO PSO algorithms, as well as the state of the art MOO

algorithms, was presented. Both IGD and the newly introduced porcupine measure was

used as performance measures. The results indicate that MGPSO is highly competitive

and performs on-par, or exceeds the performance of the competing algorithms.

The MGPSO control parameter values were optimized using a parallel coordinate

visualization technique. The parallel coordinate plots allow for the parameter space to be

visually explored. Control parameter inter-dependencies were discussed. The optimized

parameters were used to obtain all the experimental results given in this study.

With optimized parameter values, MGPSO was shown to outperform all the compet-

ing algorithms with statistical significance for five of the six ranking tables as presented

in Sections 6.3.2 and 6.4.1. The results overwhelmingly support the conclusion that MG-

PSO is well suited to optimize multi-objective problems (MOPs) and very competitive

with two or three objective functions.

Finally, a theoretical stability analysis was conducted to derive the order-1 and order-

2 stable regions for the MGPSO control parameter values.

8.2 Future Work

Throughout this study, several new ideas for future research have been identified. A

summary of each of these ideas is given below.
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Candidate Solution Visualization Enhancements

The candidate solution plots as presented in this study greatly aided in the understand-

ing of the VEPSO algorithm’s exploration behavior. The approach, as presented in this

study, is however limited to two dimensions corresponding to two objectives. The can-

didate solution visualization would be able to assist in researching the behavior of more

algorithms if the visualization can be extended to cater for more dimensions.

One possible way to deal with additional dimensions would be to project the multi-

dimensional candidate solution onto a two-dimensional plot. Multiple projections can

be made with each showing candidate solutions for a different “range” of values for

the dimensions that are reduced by the projection. For example, consider a 3-objective

problem with candidate solutions qk ∈ Q with qk = (qk1, qk2, qk3). For each candidate

solution qk, qk1 and qk2 can be projected directly on a 2-dimensional plot. To plot values

for the remaining dimension qk3, multiple plots need to be generated. For each plot,

candidate solutions with qk3 values that fall within a specified range get plotted. The

ranges can be configured as desired. For example, ranges for qk3 can be configured as

follows: plot 1 contains all the projected candidate solutions with qk3 ∈ [0, 0.1), plot 2

contains all the projected candidate solutions with qk3 ∈ [0.1, 0.2), and so forth.

Another enhancement would be to use a heatmap of sorts, instead of using a plain

scatterplot, where each grid block is colored based on the iteration of the last candidate

solution that fell inside that block. This approach would still allow a researcher to

visually see the area, in objective space, being explored in later iterations, albeit in a

controllable resolution. Following this approach, the resolution of the plots could be

lowered enough to interpret many more plots together.

Archives in Higher Dimensions

The experimental results presented in this study highlighted the importance that the

archive implementation has on the overall performance of an algorithm. The eight

bounded archive implementations presented in this study were evaluated in low-dimensional

objective space. That is, only two objectives were used during the evaluation.

A thorough investigation into the scalability of the various archive implementations

must be conducted to determine which archive implementation is best for many-objective
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optimization problems. In addition to performance, computational complexity must also

be evaluated during such a study. The hypervolume contribution archive may perform

well in higher dimensions, but the improved performance may come with an unacceptable

computational and complexity cost.

Hypersurface Contribution Archive Scalability

The hypersurface contribution archive proposed in this study showed great promise in

the archive implementation evaluation presented. A scalability study must be conducted

to evaluate the effect of more objectives on the hypersurface contribution archive’s overall

performance.

Simplification of the Porcupine Measure Implementation

The porcupine measure assists in the comparison of multiple POFs by adding a much-

needed quantitative measurement value. As seen in the MGPSO performance analysis,

the porcupine measure adds invaluable information about an algorithm’s performance

when the number of objectives increases beyond two, where even basic POF comparisons

become too complex.

While the pseudo-code implementation of the porcupine measure is simple enough,

the practical implementation is still fairly complex. Additional work needs to be done

to further simplify the porcupine measure’s implementation. The simpler the measure’s

implementation, the higher the probability that the measure will become commonly used

and accepted.

Improved λi Initialization Approaches

The randomly initialized λi component forms a critical part of the MGPSO’s velocity

update equation. The λi component controls the weighted contribution trade-off between

the neighborhood guide and the archive guide. While a random initialization strategy

was shown to lead to good performance, a more thorough study on initialization strategies

for λi should be conducted.

Sampling values from a non-uniform distribution, using, for example, a quasi-random

low-discrepancy sequence, such as a Sobol sequence, should be investigated with the pur-
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pose of optimizing the MGPSO’s performance through the assignment of more optimal

λi values.

Variable λi values that change over the number of iterations should also be investi-

gated. Varying λi’s value could allow for the MGPSO’s behavior to switch from a more

neighborhood, or local objective, focus to a more archive, or multi-objective, focus over

time.

Subswarm Specific Parameter Values

The MGPSO algorithm as presented in this study separates the particles into subswarms,

one per objective function. Because each subswarm focuses on optimizing a different ob-

jective, the particles in each subswarm can be fine-tuned to optimize their assigned

objective function. Past studies have shown that PSO is sensitive to the problem be-

ing optimized, and optimized parameters can greatly improve overall performance. By

tuning or optimizing the values for the inertia weight, w, and acceleration coefficients,

c1, c2, and c3, separately for each subswarm, the MGPSO’s performance may be able to

further improve.

Different Neighborhood Structures

The MGPSO algorithm as presented in this study makes use of the fully-connected

neighborhood structure. For the basic PSO the choice of a neighborhood structure, as

discussed in Section 2.1.3, can influence the convergence rate and overall performance.

A thorough investigation of the effect of different neighborhood structures on the MG-

PSO’s performance should be conducted. Attention should be paid to the MGPSO’s

convergence rate, the quality of the found POF, and the susceptibility to local minima.

Multi-guided Particle Swarm Optimization for Many-objective Optimization

The results presented in this study showed that MGPSO is well-suited for MOO, that

is, the optimization of problems with two or three objectives. Further study is required

to understand how MGPSO could be adapted to deal with many-objective optimization

problems. That is, the optimization of problems with more than three objectives.



Chapter 8. Findings and Conclusions 204

Multi-guided Particle Swarm Optimization with Constraints

Many real-world problems have constraints that must be met for solutions to be valid.

In this study, the problems that were considered do not have any constraints. Constraint

handling adaptations of MGPSO should be investigated.

Multi-guided Particle Swarm Optimization in Dynamic Environments

Many real-world problems are not static by nature, instead, the search space changes

or morphs during the search process. When the environment changes during the search

process, the environment is referred to as a dynamic environment. Applicability of

MGPSO to dynamic environments should be investigated.

Multi-guided Particle Swarm Optimization Stability Criteria Validation

While the modeling assumption utilized in Section 7.4 is minimal, it is still required to

empirically verify whether or not the newly derived stability criteria are truly represen-

tative of the unsimplified PSO variant under consideration. Validation can be done by

utilizing a method for empirically investigating the convergence region of PSO variants

as proposed by Cleghorn and Engelbrecht [8, 10].
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Francisco Luna, and Enrique Alba. SMPSO: A New PSO-based Metaheuristic for

Multi-objective Optimization. In Proceedings of the IEEE Symposium on Multi-

Criteria Decision-Making, number 2, pages 66–73, 2009. ISBN 9781424427642.

doi: 10.1109/MCDM.2009.4938830.

[80] Antonio J. Nebro, Juan J. Durillo, and Matthieu Vergne. Redesigning the jMetal

Multi-Objective Optimization Framework. Proceedings of the Companion Publi-

cation of the 2015 Annual Conference on Genetic and Evolutionary Computation,

pages 1093–1100, 2015. ISSN 9781450321389. doi: 10.1145/2739482.2768462.

[81] Ender Ozcan and Chilukuri K. Mohan. Analysis of a simple particle swarm op-

timization system. Intelligent Engineering Systems through Artificial Neural Net-

works, pages 253–258, 1998.

[82] Ender Ozcan and Chilukuri K. Mohan. Particle swarm optimization: Surfing the

waves. Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999,

3(2):1939–1944, 1999. ISSN 10944087. doi: 10.1109/CEC.1999.785510.

[83] Gary Pampara, Andries P. Engelbrecht, and Theuns Cloete. CIlib: A collaborative

framework for Computational Intelligence algorithms-Part I. In Proceedings of the

IEEE International Joint Conference on Neural Networks, pages 1750–1757, 2008.

doi: 10.1109/IJCNN.2008.4634035.

[84] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Recent approaches to global

optimization problems through Particle Swarm Optimization. Natural Computing,

1(2):235–306, 2002.



Bibliography 216

[85] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Particle swarm optimization

method in multiobjective problems. In Proceedings of the ACM Symposium on

Applied Computing, pages 603–607, 2002. ISBN 1-58113-445-2. doi: 10.1145/

508791.508907.

[86] Konstantinos E. Parsopoulos and Michael N. Vrahatis. Multi-Objective Particles

Swarm Optimization Approaches. In IGI Global, number November 2014, pages

20–42. 2008. ISBN 9781599044989. doi: 10.4018/978-1-59904-498-9.ch002.

[87] Konstantinos E. Parsopoulos, Dimitris K. Tasoulis, Nicos G. Pavlidis, Vassilis P.

Plagianakos, and Michael N. Vrahatis. Vector Evaluated Differential Evolution for

Multiobjective Optimization. In Proceedings of the IEEE Congress on Evolutionary

Computation, volume 1, pages 204–211, 2004. ISBN 0-7803-8515-2. doi: 10.1109/

CEC.2004.1330858.

[88] Konstantinos E. Parsopoulos, Dimitris K. Tasoulis, and Michael N. Vrahatis. Mul-

tiobjective Optimization using Parallel Vector Evaluated Particle Swarm Opti-

mization. In Proceedings of the IASTED International Conference on Artificial

Intelligence and Applications, volume 2, pages 823–828, 2004.

[89] Riccardo Poli. Mean and variance of the sampling distribution of particle swarm

optimizers during stagnation. IEEE Transactions on Evolutionary Computation,

13(4):712–721, 2009. ISSN 1089778X. doi: 10.1109/TEVC.2008.2011744.

[90] Riccardo Poli and David Broomhead. Exact Analysis of the Sampling Distribution

for the Canonical Particle Swarm Optimiser and Its Convergence During Stagna-

tion. Proceedings of the Conference on Genetic and Evolutionary Computation,

pages 134–141, 2007. doi: 10.1145/1276958.1276977.

[91] Margarita Reyes-Sierra and Carlos A. Coello Coello. A New Multi-Objective Parti-

cle Swarm Optimizer with Improved Selection and Diversity Mechanisms. Techni-

cal report, Evolutionary Computation Group at CINVESTAV-IPN, México, 2004.
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Appendix A

Acronyms

This appendix lists terms and acronyms used throughout this study in alphabetical order:

HV Hypervolume.

AMS Archive management strategy.

ASSIL Attainment Surface Shaped Intersection Lines.

DVEPSO Dynamic Vector Evaluated Particle Swarm Optimization.

EC Evolutionary Computation.

GA Genetic Algorithm.

GD Generational Distance.

IGD Inverted Generational Distance.

KTS Knowledge Transfer Strategy.

MCDM Multiple-criteria Decision-making.

MGPSO Multi-guided Particle Swarm Optimization.

MOEA/D Multi-objective Evolutionary Algorithm based on Decomposition.

MOO Multi-objective Optimization.
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MOP Multi-objective Problem.

NSGA II Non-dominated Sorting Genetic Algorithm II.

OMOPSO Optimized Multi-objective Particle Swarm Optimization.

PCX Parent-centric Crossover.

PCXA Parent-centric Crossover Archive.

PESA-II Pareto Envelope-based Selection Algorithm II.

POF Pareto-optimal Front.

POS Pareto-optimal Set.

PSO Particle Swarm Optimization.

SMPSO Speed-constrained Multi-objective Particle Swarm Optimization.

SPEA2 Strength Pareto Evolutionary Algorithm 2.

VEGA Vector Evaluated Genetic Algorithm.

VEPSO Vector Evaluated Particle Swarm Optimization.

WASSIL Weighted Attainment Surface Shaped Intersection Lines.

WFG Walking Fish Group.

ZDT Zitzler-Deb-Thiele.



Appendix B

Symbols

This appendix lists symbols used throughout this study.

A set of non-dominated archive solution

â represent a non-dominated solution in the archive

âi(t) represent the archive guide of particle i at iteration t

C crowding distribution

c1, c2, c3 acceleration constants

c̈ adaptive grid selection pressure

č adaptive grid, grid coordinate

D distribution measure by Goh and Tan [44]

D̄ maximum spread measure by Zitzler [116]

Dl dispersion length

Dσ dispersion angle standard deviation

Dθ dispersion angle average

em standard basis vector for the m’th dimension

ěm length of the adaptive grid’s hypercube edge for objective m

F feasible space

f objective function

fm minimization objective function for objective m (e.g. f1)
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f ′m maximization objective function for objective m (e.g. f ′1)

f ∗m optimal objective value for objective m

f ∗∗m worst objective value for objective m of a Pareto-optimal solution

fdel,u archive management strategy’s deletion fitness

GD generational distance by Van Veldhuizen and Lamont [108, 109]

|H| number of solutions in the same grid coordinate

h algorithm index

i particle index

j generic vector component index

k Pareto-optimal solution index

m objective function index

nh number of algorithms

nk number of Pareto-optimal solutions

nl number of intersection lines

nm number of sub-objectives

nn nearest neighbor archive management strategy neighborhood size

no number of objective vectors (also known as candidate solutions)

nq number of Pareto-optimal solutions

nr ring neighborhood structure size

ns number of particles (also know as swarm size)

nt number of iterations used for movement diversity calculation

nx particle dimension

O objective space

P Pareto-optimal set

Q set of non-dominated solutions that make up the Pareto-optimal front (POF)

Qtrue set of non-dominated solutions that make up the true POF

qk solution k (also referred to as objective vector k)

ql solution l (also referred to as objective vector l)
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r1, r2, r3 uniform random vectors with components between 0 and 1

S search space

S̄ spacing measure by Schott [96]

Sm sub-swarm for sub-objective m

T competition pool size

t current iteration

Vk hypercube formed between solution qk and a reference point W
vmin minimum particle velocity

vmax maximum particle velocity

W reference point for hypercube calculation

w inertia weight

xi(t) position of particle i at iteration t (also referred to as a decision vector)

xij(t) j’th component of the objective vector i at iteration t

yi represent the cognitive guide of particle i

ŷi represent the social guide of particle i

z∗ ideal objective vector

z∗∗ utopian objective vector

znad nadir objective vector

∆ spread measure

∆t iteration iterator used for movement diversity calculation

εm a small positive constant for objective m

ϕ1,ϕ2 uniform random vectors with components between 0 and 2

λi exploitation tradeoff coefficient for particle i

σ standard deviation

φ1, φ2 acceleration constants when using a constriction factor

χ constriction factor

≺ Pareto-dominance operator

� weak Pareto-dominance operator

≺ε ε-dominance operator



Appendix C

Parameter Configurations

This appendix provides a list of the parameter configurations for the additional algo-

rithms used throughout this study. The experimental work for the below listed algo-

rithms were conducted using the jMetal framework [80] with the recommended well-

performing parameter configurations found throughout the literature [21, 29, 79, 92,

114, 119]. Tables C.1 through C.6 list the parameter configurations.

Table C.1: MOEA/D parameters

Parameter Value

Crossover Operator Differential Evolution Crossover

CR 1.0

F 0.5

Mutation Probability 1
number of variables

Mutation Distribution Index 20.0

Mutation Operator Polynomial Mutation

Selection Operator Binary Tournament Selection with Ranking using Crowding Distance

Neighborhood Selection Probability 0.9

Neighborhood Size 20

Function Type Tchebycheff

Maximum Number of Replaced Solutions 2

Population Size 50

Result Population Size 50
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Table C.2: NSGA II parameters

Parameter Value

Crossover Probability 0.9

Crossover Distribution Index 20.0

Crossover Operator Simulated Binary Crossover (SBX)

Mutation Probability 1
number of variables

Mutation Distribution Index 20.0

Mutation Operator Polynomial Mutation

Selection Operator Binary Tournament Selection with Ranking using Crowding Distance

Population Size 50

Table C.3: OMOPSO parameters

Parameter Value

Mutation Probability 1
number of variables

Uniform Mutation Perturbation 0.5

Nonuniform Mutation Perturbation 0.5

η Problem dependent (tuned according to number of solutions desired)

Archive Type Bounded with a deletion approach

Archive Size 50

Archive Deletion Approach Crowding Distance based

Swarm Size 50

Table C.4: PESA-II parameters

Parameter Value

Crossover Probability 0.9

Crossover Distribution Index 20.0

Crossover Operator Simulated Binary Crossover (SBX)

Mutation Probability 1
number of variables

Mutation Distribution Index 20.0

Mutation Operator Polynomial Mutation

Bisections 5

Archive Size 50

Population Size 50
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Table C.5: SMPSO parameters

Parameter Value

Mutation Probability 1
number of variables

Mutation Distribution Index 20.0

Mutation Operator Polynomial Mutation

Archive Type Bounded with a deletion approach

Archive Size 50

Archive Deletion Approach Crowding Distance based

Swarm Size 50

Table C.6: SPEA2 parameters

Parameter Value

Crossover Probability 0.9

Crossover Distribution Index 20.0

Crossover Operator Simulated Binary Crossover (SBX)

Mutation Probability 1
number of variables

Mutation Distribution Index 20.0

Mutation Operator Polynomial Mutation

Selection Operator Binary Tournament Selection with Ranking using Crowding Distance

Population Size 50
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Derived Publications

This appendix lists publications derived from the work presented in this study in order

of publication date:

• C. Scheepers and A. P. Engelbrecht, Vector Evaluated Particle Swarm Optimiza-

tion Exploration Behavior Part I: Explorative Analysis. In Proceedings of the IEEE

Congress on Evolutionary Computation, 2016.

• C. Scheepers and A. P. Engelbrecht, Vector Evaluated Particle Swarm Optimiza-

tion Exploration Behavior Part II: Quantitative Analysis. In Proceedings of the

IEEE Congress on Evolutionary Computation, 2016.

• C. Scheepers and A. P. Engelbrecht, Vector Evaluated Particle Swarm Optimiza-

tion Archive Management: Pareto Optimal Front Diversity Sensitivity Analysis.

In Proceedings of the IEEE Symposium Series on Computational Intelligence, 2016.

• C. Scheepers and A. P. Engelbrecht, Misleading Pareto Optimal Front Diversity

Metrics : Spacing and Distribution. In Proceedings of the IEEE Symposium Series

on Computational Intelligence, 2016.

• C. Scheepers and A. P. Engelbrecht, Vector Evaluated Particle Swarm Optimiza-

tion: The Archive’s Influence on Performance. In Proceedings of the IEEE Congress

on Evolutionary Computation, 2017.
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• C. Scheepers and A. P. Engelbrecht, Quantified Pareto-optimal Front Compar-

isons using Attainment Surfaces. In Proceedings of the IEEE Symposium Series on

Computational Intelligence, 2017.

• C. Scheepers and A. P. Engelbrecht, Comparing Performance of Multi-objective

Algorithms using the Porcupine Measure. Currently under review, 2017.

• C. Scheepers and A. P. Engelbrecht, Multi-guided Particle Swarm Optimization: A

Multi-swarm Multi-objective Particle Swarm Optimizer. Currently under review,

2017.
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