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ABSTRACT

Early bactericidal activity of tuberculosis drugs is conventionally assessed using statistical re-

gression modeling of colony forming unit (CFU) counts over time. Typically, most CFU counts

deviate little from the regression curve, but gross outliers due to erroneous sputum sampling

are occasionally present and can markedly influence estimates of the rate of change in CFU

count, which is the parameter of interest. A recently introduced Bayesian nonlinear mixed

effects (NLME) regression model was adapted to offer a robust approach that accommodates

both outliers and potential skewness in the data. At its most general, the proposed regression

model fits the skew Student t distribution to residuals and random coefficients. Deviance infor-

mation criterion statistics and compound Laplace-Metropolis marginal likelihoods (CLMMLs)

were used to discriminate between alternative Bayesian NLME regression models. We present

a relatively easy method to calculate the marginal likelihoods required to determine CLMMLs,

by adapting methods available in currently available statistical software. The robust method-

ology proposed in this paper was applied to data from six clinical trials. The results provide

strong evidence that the distribution of CFU count is often heavy tailed and negatively skewed

(suggesting the presence of outliers). Therefore, we recommend that robust regression models,

such as those proposed here, should be fitted to CFU count.
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1 Robust Regression Models in Tuberculosis Research

1.1 Robust Regression Modeling

Conventional regression models, such as ordinary least squares models, do not accommodate

heavy tails or skewness in the distribution of the data. Models which are not “robust” to

deviations from certain assumptions may yield biased or misleading results, and such bias may

go unnoticed. Robust models are designed to avoid the restrictions of conventional modeling

techniques when certain assumptions do not necessarily hold.1 A regression model should

give statistically sound and unbiased results even when there are deviations from the usual

assumptions, such as the assumption of normality of residuals, or absence of gross outliers.

Individual data points are generally considered outlying observations (“outliers”) if they

do not follow the pattern (or trend) of the majority of the remainder of the data, or if they

are considered to be “extreme” in some sense. Outliers in the data may cause bias in the

estimates of parameters of interest, or may inflate Type I and Type II error rates.2 In the field

of biopharmaceutical research, for example, outliers may adversely affect the interpretation of

treatment group comparisons. Regardless of how an outlying observation is defined, a robust

regression model should maintain the validity of inferences made, and the influence of outliers

on statistical inferences should be small.

In the past, there has been great interest in robust regression techniques (for example,

see earlier work by Tukey3 and Huber4, respectively based on contaminated distributions and

M-estimation). However, use of these older methods has been limited due to their complex

and computationally intensive implementation.5 More recently, robust models based on heavy

tailed and asymmetrical distributions, in a Bayesian framework, have been suggested (see

Gelman et al.6 and Sahu et al.7). One important advantage of Bayesian inference is that it does

not rely on asymptotic approximations, as classical inference methods often do for complex
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models.8 Bayesian methods are therefore attractive for inference in complex models such as

robust nonlinear mixed effects (NLME) regression modeling.9–11

1.2 Early Bactericidal Activity of Tuberculosis Drugs

In the clinical development of anti-tuberculosis (TB) drugs the assessment of their bactericidal

activity is of interest.12 The rate of decline in colony forming unit (CFU) count over specified

time intervals is an important surrogate marker for the conventional Phase III efficacy endpoint

of TB trials, namely the proportion of relapse-free patients after two years of follow-up follow-

ing 6 months of treatment.12 In early Phase II (Phase IIa) trials, the early bactericidal activity

(EBA) of an anti-TB drug can be characterized by the rate of change (decline), during the first

two weeks of treatment, in CFU count collected from sputum samples of TB patients.13 The

rate of decline in CFU count is typically assessed using statistical regression modeling of CFU

count over time.14

1.3 Need for Robust Regression Models in Tuberculosis Research

Measuring CFU count requires assays of multiple sputum plates per sputum sample, dilution

of samples, waiting periods for culture growth, and labor intensive counting procedures for

CFUs.15 Furthermore, sputum samples are prone to contamination.16 Due to such factors,

gross outliers in CFU count are occasionally observed. These outliers can markedly influence

estimates of the rate of change in CFU count, which is the parameter of interest. In addition,

individual profiles may include zero CFU counts which do not follow the remainder data pat-

tern over time. Such implausible zero CFU counts can cause the CFU versus time profiles to

be highly erratic.17

Finally, some treatment regimens occasionally exhibit remarkable decline in CFU count

over time in a subset of patients (Diacon et al.13; Pa-Z-M regimen) so that the distribution of

the patient-specific slopes (which characterize the rate of decline in CFU count) may be heavy
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tailed.

EBA trials usually include only a small number of patients per treatment group (say

15 patients; Diacon et al.13). Outliers in such small datasets can have a great impact on the

statistical validity of the associated findings.18

Gillespie et al.17 has suggested that, when fitting regression models to CFU counts, it is

important to exclude implausible data points which do not adhere to the expected longitudinal

biologic pattern. Gillespie et al.17 and Gillespie et al.19,20 applied an iterative approach for

exclusion of outliers in CFU count. However, it is difficult or impossible to specify objective

decision rules for identification and exclusion of outliers, so that it seems attractive to accom-

modate outliers using robust regression techniques, rather than to exclude specific data points

from the analysis.

As indicated above, a subset of CFU counts might be reported as zero or “no count”

values. Genuine zero CFU counts will typically occur when, for a given patient profile, CFU

counts are observed over time to decline to near zero values, just prior to observing one or

more zero CFU counts. Thus, genuine zero CFU counts will typically occur towards the

end of a CFU versus time profile. However, CFU counts of zero should be confirmed to

be “genuine”, that is, they must be distinguished from missing values or from contaminated

or otherwise invalid data. Genuine zero CFU counts are valid data and must be included in

the analysis. The database, however, does not always indicate whether a zero CFU count is

genuine, contaminated, missing or invalid. One approach is to include zero CFU counts in the

analysis whilst limiting the potential outlier problem by using a robust regression method.

Various authors (Hafner et al.21, Davies et al.14, Davies et al.22, Rustomjee et al.23,

Sloan et al.24) have used repeated measures linear, and mixed effects bi-exponential or multi-

exponential regression models for log(CFU) count, assuming normal distributions for both

the residuals, random effects and random coefficients in these models. Such mixed effects

regression models can lead to improved precision of estimates of random effects relative to
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their fixed effects counterparts, yield appropriate fixed effects estimates and standard errors,

and may reduce the bias caused by missing data.14

Burger and Schall25 proposed a class of biphasic Bayesian NLME regression models for

log(CFU) count which is more flexible than bi-exponential regression models. The Bayesian

implementation of the biphasic regression model was based on vague prior distributions and

specified normal distributions for residuals and random coefficients. This Bayesian NLME

regression model has been applied to EBA datasets of recently published clinical trials.12,26,27

In the present paper the conventional normal regression model of Burger and Schall25

is adapted to offer a robust approach that accommodates outliers and potential skewness. In

particular this regression model specifies the skew Student t distribution for residuals and ran-

dom coefficients. The empirical performance of the proposed methodology is investigated in

a wide range of datasets.

2 OUTLINE OF THE PRESENT PAPER

Section 3 provides an overview of the conventional normal NLME regression model fitted

by Burger and Schall25, and proposes an extension of the regression model to increase its

robustness to outliers and skewness. This section also introduces deviance information crite-

rion (DIC) statistics and compound Laplace-Metropolis marginal likelihoods (CLMMLs) to

discriminate between alternative Bayesian mixed effects regression models. The calculation

of CLMMLs, because of the required multidimensional integrals, is known to be challenging

and cumbersome. An approach is introduced through which marginal likelihoods can be cal-

culated relatively easily by adapting methods available in SAS R© and the R project. Section 4

provides applications of the methodologies introduced in Section 3 using CFU count datasets

of recently published clinical trials. Section 5 presents a simulation study to compare the per-

formance of the various regression models. Section 6 provides a discussion of the results and
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key findings of this study.

3 BAYESIAN MIXED EFFECTS REGRESSION MODELS

3.1 Nonlinear Mixed Effects Regression Model

The Bayesian NLME regression model proposed by Burger and Schall25 is as follows:

log(yi jk) = αi j−β1i j · ti jk−β2i j · γi j · log

e
ti jk−κi j

γi j + e
−

ti jk−κi j
γi j

e
κi j
γi j + e

−
κi j
γi j

+ εi jk (1)

where log(yi jk) is the log(CFU) count for patient i = 1, . . . ,N j in treatment group j = 1, . . . ,J

at timepoint k = 1, . . . ,Ti j, and ti jk ≥ 0 & εi jk are the corresponding measurement times and

residuals.

Note that, in the context of this model, zero counts are specified as censored observa-

tions.23 CFU counts discussed in this paper are calculated as CFU = (CFU1 +CFU2)/2×

20×10dilution, where CFU1 and CFU2 are the counts from two replicate culture plates, and the

factor 20× 10dilution compensates for the dilution used in the counting process. The smallest

possible count above zero is 1 for one of the two plates, and zero for the other plate, and there-

fore the smallest value of log10(CFU) from a non-zero count is 1 (if dilution = 0). Thus, on

the logarithmic scale to the base of 10, a zero count is specified as a left-censored value of 1.

The model includes the following random coefficients: Intercepts (αi j); two slopes char-

acterizing the rate of change over time (β1i j and β2i j); node (or inflection point) at which tran-

sition from one slope to another occurs (κi j); “smoothness” parameter governing the “speed”

of transition (γi j).

The terms αi j, β1i j, β2i j, κi j and γi j are the sums of fixed effects and associated random
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coefficients, namely:

µi j =


αi j

β1i j

β2i j

 =


α j

β1 j

β2 j

+


u0i j

u1i j

u2i j

= µ j +


u0i j

u1i j

u2i j


and κi j

γi j

 =

κ j

γ j

+
u3i j

u4i j


where µi j =

(
αi j,β1i j,β2i j

)′ (or
[
u0i j,u1i j,u2i j

]′) and µ j =
(
α j,β1 j,β2 j

)′ are respectively the

vectors of random and mean intercepts and slopes, and respectively,
(
κi j,γi j

)′ (or
[
u3i j,u4i j

]′)
and

(
κ j,γ j

)′ are the vectors of random and mean nodes and smoothness parameters.

The regression model has been fitted using OpenBUGS.28 Posterior samples were moni-

tored using iteration and autocorrelation plots, and Brooks-Gelman-Rubin statistics of parallel

chains.25,29,30

3.2 Specification of Residuals and Random Coefficients

Table 3.1 provides a summary of the various specifications of the Bayesian mixed effects

regression model in Equation (1) which will be fitted to log(CFU) count.
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Table 3.1: Model Specifications for Bayesian Mixed Effects Regression Models

Distributions

Random

Regression Model No. Residuals Coefficients

RNCN 1 Normal Normal

RTCN 2 Student t Normal

RSTCN 3 Skew Student t Normal

RSTCT 4 Skew Student t Student t

Regression model RSTCT is the most general regression model considered and has the largest

flexibility (with respect to robustness) for both the residuals and random coefficients of the

regression model in Equation (1). Since the normal distribution can be considered a Student t

distribution with infinite degrees of freedom, the four models in Table 3.1 are nested.

The corresponding distributions specified for residuals and random coefficients are dis-

cussed below in detail.

Regression Model 1 (RNCN): Residuals: Normal

Random Coefficients: Normal

The conventional model by Burger and Schall25 incorporated the assumption that the residuals

follow i.i.d. normal distributions, i.e.:

εi jk|σ2
ε j
∼ N(0,σ2

ε j
)

where 0 and σ2
ε j are the mean and residual variances, respectively, of the corresponding normal

distribution.
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The random coefficients µi j were assumed to follow tri-variate normal distributions, and

truncated normal distributions were specified for κi j and γi j. Ωµ j, σ2
κ j

and σ2
γ j

are respectively

the covariance matrices of µi j, and scale parameters of κi j and γi j. Detail on the specification

of associated random effects and prior distributions is provided in the relevant paper.

This regression model contains no robust properties since both residuals and random co-

efficients are assumed to follow conventional normal distributions which do not accommodate

outliers of any nature.

Regression Model 2 (RTCN): Residuals: Student t

Random Coefficients: Normal

The conventional model (Model 1) can incorporate the assumption that the residuals follow

i.i.d. Student t distributions, i.e.:

εi jk|σ2
ε j
,v j ∼ T (0,σ2

ε j
,v j)

where 0, σ2
ε j and v j are the mean, scale parameters and degrees of freedom, respectively, of

the corresponding Student t distribution. The degrees of freedom v j are assigned uniform prior

distributions, namely v j ∼U(2,100).

The specification of the Student t distribution can accommodate heavily tailed residuals

(depending on the degrees of freedom v j) in CFU count which, in this regard, is more flexible

than the normal distribution.
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Regression Model 3 (RSTCN): Residuals: Skew Student t

Random Coefficients: Normal

The conventional model (Model 1) can incorporate the assumption that the residuals follow

i.i.d. skew Student t distributions, i.e.:

εi jk|σ2
ε j
,δ j,v j ∼ ST (0,σ2

ε j
,δ j,v j)

where 0, σ2
ε j, δ j and v j are the mean, scale and skewness parameters, and degrees of freedom,

respectively, of the corresponding skew Student t distribution. The skewness parameters are

assigned normal prior distributions, namely δ j ∼ N(0,104).

A slightly revised reparameterization of the density function of εi jk|σ2
ε j
,δ j,v j by Sahu et

al.7 can be written as:

P
(

εi jk|σ2
ε j
,δ j,v j

)

=2
(

σ
2
ε j
+δ

2
j

)− 1
2

Γ

(
v j+1

2

)
Γ
(v j

2

)√
v jπ

1+

[
εi jk +

(v j
π

) 1
2

Γ

( v j−1
2

)
Γ

( v j
2

) δ j

]2

v j

(
σ2

ε j +δ 2
j

)

−

v j+1
2

·

P

Qi jk ≤
δ j
√

v j +1

[
εi jk +

(v j
π

) 1
2

Γ

( v j−1
2

)
Γ

( v j
2

) δ j

]

σε j

√
σ2

ε j +δ 2
j

√√√√v j +

[
εi jk +

(v j
π

) 1
2

Γ

( v j−1
2

)
Γ

( v j
2

) δ j

]2(
σ2

ε j +δ 2
j

)−1


where P

(
Qi jk ≤ xi jk

)
denotes the cumulative distribution function, evaluated at xi jk, of the

Student t distribution with mean, scale parameter and degrees of freedom of 0, 1 and v j + 1,

respectively.

The Student t distribution is a special case of the skew Student t distribution when δ j = 0.
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The skew Student t distribution is negatively skewed for δ j < 0, and positively skewed for

δ j > 0. In this regard, the skew Student t distribution is more flexible than the conventional

Student t distribution.

The skew Student t distribution can be hierarchically specified by normal, truncated

normal and gamma distributions as follows7:

εi jk|σ2
ε j
,δ j,v j,ξ1i jk,ξ2i jk ∼ N

ξ1i jk−
(v j

π

) 1
2

Γ

(
v j−1

2

)
Γ
(v j

2

)
 ·δ j,

σ2
ε j

ξ2i jk



ξ1i jk|ξ2i jk ∼ T N
(

0,
1

ξ2i jk

)
I(0,∞)

ξ2i jk ∼ G
(v j

2
,
v j

2

)
Based on law of total probability, the set of nuisance parameters (ξ1i jk and ξ2i jk) integrated out

results in the skew Student t distribution:

P
(

εi jk|,σ2
ε j
,δ j,v j

)
=∫

P
(

εi jk|,σ2
ε j
,δ j,v j,ξ1i jk,ξ2i jk

)
·P
(
ξ1i jk|ξ2i jk

)
P
(
ξ2i jk

)
d
(
ξ1i jk,ξ2i jk

)
Section A of the supplementary material provides OpenBUGS example code for the imple-

mentation of regression model RSTCN for a typical 14-day EBA study.

Regression Model 4 (RSTCT): Residuals: Skew Student t

Random Coefficients: Student t

Model 3 can incorporate the assumption that the vectors of random intercepts and slopes follow

i.i.d. tri-variate Student t distributions, i.e.:

µi j|µ j,Ωµ j,w j ∼ T3(µ j,Ωµ j,w j)
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where µ j are the vectors of mean intercepts and slopes, and Ωµ j and w j are scale matrices and

degrees of freedom, respectively, of the corresponding tri-variate Student t distribution. The

degrees of freedom w j are assigned uniform prior distributions, namely w j ∼U(2,100).

The tri-variate Student t distribution can accommodate heavily tailed intercepts and

slopes (depending on the degrees of freedom w j) which, in this regard, is more flexible than

the tri-variate normal distribution. In general, the specification of the Student t distribution for

both random effects (intercepts and slopes) and residuals may provide a more robust modeling

approach for outliers in any of the latter components of the given model.

3.3 Model Comparison

DIC statistics and CLMMLs will be used to discriminate among the regression models in

Table 3.1.

3.3.1 Deviance Information Criterion

Although DIC statistics can be obtained directly from OpenBUGS,31 it should be noted that,

for regression models RSTCN and RSTCT, the likelihood of the normal distribution (specified

in OpenBUGS) is conditional on a set of nuisance parameters. The DIC statistics obtained

from OpenBUGS for these regression models are therefore not appropriate and should not be

reported. The probability and cumulative density functions of the skew Student t distribution

should thus be specified explicitly.

3.3.2 Compound Laplace-Metropolis Marginal Likelihood

For calculation of CLMMLs, the methodology proposed by Lewis and Raftery32 suggests the

Laplace method to approximate the required integrals (the marginalization of random effects

for each patient in the trial). However, the use of Laplace’s method for multidimensional inte-

grals can be challenging. In order for asymptotic Laplace approximations to be reliable, an ad-
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equate amount of observations associated with each patient’s likelihood should be available.33

In the current application the latter requirement is problematic since individual profiles with a

significant amount of missing data do usually occur in EBA trials.

An approach to address the aforementioned concerns associated with Laplace approxi-

mated integrals is described here in detail. The approach provides a generalized methodology

for the regression models in Table 3.1 and is reasonably easy to implement with SAS R© and

the R project.

For regression model RNCN, the associated CLMML can be calculated by marginalizing

the random effects for each patient using the multidimensional numerical integration library

“R2Cuba” of the R project.34 This integration package uses numerical techniques which do

not rely on asymptotic theory, and is particularly appropriate for high dimensional integration.

The marginal likelihood of patient i in treatment group j is expressed as follows:

P
(

yi j|µ̂ j, κ̂ j, γ̂ j,Ω̂µ j, σ̂
2
κ j
, σ̂2

γ j
, σ̂2

ε j

)
=
∫

P
(

yi j|µi j,κi j,γi j, µ̂ j, κ̂ j, γ̂ j,Ω̂µ j, σ̂
2
κ j
, σ̂2

γ j
, σ̂2

ε j

)
d
(
µi j,κi j,γi j

)
Here, µ̂ j, κ̂ j, γ̂ j, Ω̂µ j, σ̂2

κ j
, σ̂2

γ j
and σ̂2

ε j are respectively the mean of the posterior distribution of

µ j, κ j, γ j, Ωµ j, σ2
κ j

, σ2
γ j

and σ2
ε j, yi j denote Ti j×1 vectors containing

(
log[yi j1], . . . , log[yi jTi j ]

)′,
and

P
(

yi j|µi j,κi j,γi j, µ̂ j, κ̂ j, γ̂ j,Ω̂µ j, σ̂
2
κ j
, σ̂2

γ j
, σ̂2

ε j

)
= L

(
µi j,κi j,γi j, σ̂

2
ε j,k = 1, . . . ,Ti j|yi j

)
·P
(

µi j|µ̂ j,Ω̂µ j

)
·P
(

κi j|κ̂ j, σ̂
2
κ j

)
·P
(

γi j|γ̂ j, σ̂
2
γ j

)

Let |R(µ j,κ j,γ j,σ
2
ε j, j=1,...,J)| and s(µ j,κ j,γ j,σ

2
ε j, j=1,...,J) respectively denote the determinant of the

correlation matrix and the sum of the logarithm of the standard deviations of the posterior

distributions of µ j, κ j, γ j and σ2
ε j. These quantities can respectively be calculated using the
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SAS R© procedures CORR and IML. Finally, the CLMML for regression model RNCN can be

written as:

log( f̂ [y]) = 7 · log(2π) · J+ 1
2

log |R(µ j,κ j,γ j,σ
2
ε j, j=1,...,J)|+ (2)

s(µ j,κ j,γ j,σ
2
ε j, j=1,...,J) +

N

∑
i=1

J

∑
j=1

i∈{ j}

P
(

yi j|µ̂ j, κ̂ j, γ̂ j,Ω̂µ j, σ̂
2
κ j
, σ̂2

γ j
, σ̂2

ε j

)
+

J

∑
j=1

(
P
[
µ̂ j

]
+P

[
Ω̂
−1
µ j

]
+P

[
κ̂ j
]
+P

[
γ̂ j
]
+P

[
σ̂

2
κ j

]
+P

[
σ̂

2
γ j

]
+P

[
σ̂
−2
ε j

])

The following libraries of the R project are used for the specification of the relevant density

and cumulative distribution functions in Equation (2):

• The normal and Student t distribution included in library “sn” (skewness parameters

equal to 0).35

• The multivariate normal distribution included in library “mnormt”.36

• The truncated normal distribution included in library “truncnorm”.37

• The Wishart distribution included in library “mixAK”.38

The remainder density and cumulative distribution functions are calculated from the default

packages (or “functionalities”) included in the R project.

The parameterization of the skew Student t distribution included in library “sn” differs

to that used for regression model RSTCT.7 These counterparts should therefore be specified

explicitly.

Section B of the supplementary material provides SAS R© and R example code for the

calculation of the CLMML of regression model RNCN.
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4 APPLICATION

The robust methodology proposed here was applied to a wide range of datasets, namely from

the following six clinical trials: CL00139, CL00740, CL01041, NC00113, NC002 (EBA sub-

study)12 and NC00326. Thus our database consists of six datasets, containing data for 68, 65,

67, 85, 45 and 99 patients, respectively (429 patients in total).

Section 4.1 presents the results of a preliminary investigation of the observed CFU count

from clinical trials listed above, and results from regression models fitted jointly to the data of

all patients (per trial) are discussed in Section 4.2.

4.1 Preliminary Investigation

Figure C.1 through C.6 in the supplementary material show the observed log(CFU) count over

time for each study by treatment group. A visual inspection of the log(CFU) versus time

profiles suggests the following:

• Data within individual profiles: Outliers and skewness in CFU count seem to be present

in some trials. In addition, the zero CFU counts (or left-censored log(CFU) counts)

may cause heavy tails and skewness in the distribution of the residuals and random

coefficients. For further illustration purposes, Figure D.1 in the supplementary material

depicts the reciprocal of conditional posterior ordinates (ICPOs),42 based on regression

model RNCN, for each observed data point of the NC003 trial. A significant amount of

ICPOs are estimated to be larger than 100, and therefore give indication that extreme

outliers are present in the data.

• Differences between individual profiles: Outliers in the rates of decrease of CFU count

over time seem to be present in some trials. In particular, the Pa-Z-M treatment group

of the NC001 trial contains two profiles with a substantial amount of zero CFU counts

toward the end of the observation period. These two profiles (versus the remainder) em-
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pirically show very high EBA over the 14-day treatment period. For further illustration

purposes, box and whisker plots for posterior estimates of by-patient EBACFU j(0−14),

based on regression model RNCN, are shown in Figure E.1 (supplementary material) by

treatment group of the NC001 trial.

Given these observations, the full set of regression models was fitted to each dataset for as-

sessment of model robustness.

4.2 Regression Fits

For regression model RSTCT, 2 700 000 iterations were simulated. Among those 2 700 000

iterations, the initial 200 000 iterations were discarded (burn-in). The thinning factor was set

to 200 to reduce autocorrelation.

Plots of observed log(CFU) count together with fits of regression models RNCN and

RSTCT are included in Figure 4.1a and Figure 4.1b for two specific patients in the NC003

trial. These profiles contain a CFU count at Day 11 (Figure 4.1a) and a zero (left-censored)

CFU count at Day 13 (Figure 4.1b) which respectively appear to be potentially contaminated

and biologically highly implausible. Figure 4.1a and Figure 4.1b clearly illustrate that the

regression model with heavy tailed and skew distributions (RSTCT) is associated with more

robust fits relative to the normal distribution (RNCN).

Figure 4.2a (429 patients) and Figure 4.2b (32 treatment groups) respectively present the

posterior estimates of by-patient and mean EBACFU j(0−14) for regression models RNCN and

RSTCT by trial and treatment group. As indicated by Davies et al.14 and Burger and Schall25,

EBA estimates calculated from mixed effects regression models are generally shrunken to-

wards their corresponding mean estimates. However, despite this “shrinkage effect”, extreme

outliers in CFU count can still have a significant impact on the estimation of and inferences

on EBA. In view of the fits presented in Figure 4.1a and Figure 4.1b, regression model RSTCT

in Figure 4.2a and Figure 4.2b, compared to regression model RNCN, clearly provides a larger
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shrinkage effect with respect to EBA. That is, regression model RSTCT yields smaller EBA

estimates than regression model RNCN. The EBA estimates of the skew Student t regression

model therefore appear to be more robust to outliers than those of the conventional normal

regression model.

Figure 4.3a and Figure 4.3b respectively present the posterior estimates of v j and δ j

for regression model RSTCT by trial and treatment group. The estimates for the degrees of

freedom and skewness parameters provide evidence that the CFU counts are heavy tailed and

slightly skewed: Figure 4.3a shows that the estimates of degrees of freedom are below 10 in

16 out of 32 cases [heavy tailed], and Figure 4.3b that the estimate of the skewness parameter

is below 0 in 28 out of 32 cases [skewed to the left]). All estimates for the degrees of freedom

of the vectors of random intercepts are above 30 (data not shown) which suggests that their

distributions are not heavy tailed (that is, for all practical purposes follow normal distributions).

As a case in point, the Pa-Z-M regimen of the NC001 trial (see Section 4.1) includes two

patients with zero CFU counts observed towards the end of the data profiles. As a result, the

EBA estimates for these patients are substantially larger than the overall mean. In this regard

the regression model RSTCT provides a slightly smaller, but significant, EBACFU j(0− 14)

estimate (for Pa-Z-M of the NC001 trial) than regression model RNCN.

Model comparison statistics for the various Bayesian mixed effects regression models

fitted are provided in Table 4.1. The results presented in Table 4.1 suggest the following:

• Both model comparison statistics, namely DICs and CLMMLs, select models with Stu-

dent t distributed residuals (RTCN) over the normal distribution (RNCN) in all cases.

• The DIC statistics select the skew Student t distribution (RSTCN and RSTCT) for the

residuals over the standard (symmetric) Student t distribution (RTCN), whereas the CLMMLs

generally select the standard Student t distribution (RTCN).

• Overall, the CLMMLs select the normal distribution for random intercepts and slopes
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Figure 4.1: Observed and Fitted log(CFU) Versus Time Profiles: RNCN and RSTCT
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Note: RNCN: Residuals and random coefficients assumed to follow normal distributions. RSTCT: Residuals and random coefficients respec-
tively assumed to follow skew Student t and tri-variate Student t distributions. CFU: Colony forming unit. Censored: Zero CFU counts, on
the logarithmic scale to the base of 10, specified as left-censored values of 1.
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Figure 4.2: Posterior Estimates of By-Patient and Mean EBACFU j(0−14): RNCN and RSTCT

(a) By-Patient (n = 429)
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(b) Mean (N = 32)
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distributions. RSTCT: Residuals and random coefficients respectively assumed to follow skew Student t and tri-variate Student t distributions.
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Figure 4.3: Posterior Estimates of v j and δ j: RSTCT
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(RSTCN) over the Student t distribution (RSTCT), whereas the DICs have no preference

(DIC differences are negligible).

Table 4.1: Comparison of Bayesian NLME Regression Models Using DICs and CLMMLs

Trial Model Comparison Statistic RNCN RTCN RSTCN RSTCT

CL001 DIC 1178{4} 1080{3} 1013{2} 1012{1}

CLMML -1004{2} -979{1} -1012{4} -1009{3}

CL007 DIC 1807{4} 1351{3} 1232{1} 1233{2}

CLMML -1223{4}-1102{1} -1119{2} -1143{3}

CL010 DIC 821{4} 760{3} 743{1} 745{2}

CLMML -861{2} -849{1} -906{4} -901{3}

NC001 DIC 1635{4} 1526{3} 1487{1} 1488{2}

CLMML -1382{2}-1365{1} -1396{3} -1407{4}

NC002 DIC 1002{4} 764{3} 708{2} 707{1}

CLMML -749{3} -692{1} -741{2} -757{4}

NC003 DIC NE 2318{3}2287{1, 2}2287{1, 2}

CLMML -2087{4}-1855{1} -1880{2} -1918{3}

Note: DIC: Deviance Information Criterion. CFU: Colony forming unit. CLMML: Compound

Laplace-Metropolis marginal likelihood on the logarithmic scale. NE: Not estimable. NLME:

Nonlinear mixed effects. Superscripts indicate the ranking of model comparison statistics from

most favored to least favored.
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5 SIMULATION STUDY

In this section we report the results of a simulation study to assess the performance of the

proposed regression models. Datasets were simulated from the RSTCT regression model where

model parameters were chosen to mimic log(CFU) count versus time profiles of the Pa-Z-M

and Rifafour treatment groups in the NC001 trial (see Diacon et al.13).

The slope parameters for the two treatments were chosen as β11 = 0.32, β21 = −0.22,

β12 = 0.22 and β22 = −0.25, while the following parameter values were chosen for both

treatments ( j = 1,2): α j = 7, κ j = 5, γ j = 1, δ j = −0.5, v = 2, w j = 25, σ2
ε j
= 0.15 and

Ωµ j =


0.30 0.01 −0.01

0.01 0.02 −0.0001

−0.01 −0.0001 0.0005

.

In summary, the aforementioned parameter values mimic profiles that contain heavy

tailed residuals but are only slightly skewed to the left. The EBA for Pa-Z-M and Rifafour are

respectively EBACFU1(0−14) = 0.25714 and EBACFU2(0−14) = 0.14857.

Accuracy and precision characteristics such as bias, standard error (SE), and root mean

square error (RMSE) of the EBACFU j(0− 14) estimates for the two treatment groups were

calculated. The corresponding empirical coverage probability of the 95% Bayesian credibility

intervals (BCIs) was also calculated.

The four candidate models (RNCN, RTCN, RSTCN and RSTCT) were fitted to the sim-

ulated datasets (simulated from RSTCT). The simulation study was based on 5000 simulated

datasets, each dataset consisting of 15 profiles per treatment. For simplicity, the regression

models fitted κi j and γi j as fixed effects.

From Table 5.1, we observe that the bias of EBACFU j(0−14) estimates is close to zero

for all models, probably due to the fact that the skewness in the data is negligible. The SE and

RMSE suggest that the robust regression models (RTCN, RSTCN and RSTCT) perform better

relative to the conventional normal model (RNCN). The coverage probability of the 95% BCI
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of the conventional normal model is somewhat higher than the nominal value (the 95% BCIs

are conservative), whereas the robust regression models yield coverage probabilities that are

quite close to the nominal value.

Table 5.1: Simulation Study of Bayesian NLME Regression Models: Accuracy and Precision

of EBACFU j(0−14) Estimates, and Coverage of 95% BCIs

Treatment Group Description RNCN RTCN RSTCN RSTCT

1 Bias −0.0107 −0.0149 −0.0173 −0.0184

SE 0.0496 0.0414 0.0414 0.0414

RMSE 0.0508 0.0440 0.0449 0.0453

95% BCI Coverage 96.7 95.5 94.5 94.8

2 Bias −0.0091 −0.0150 −0.0159 −0.0161

SE 0.0564 0.0416 0.0420 0.0407

RMSE 0.0572 0.0442 0.0449 0.0438

95% BCI Coverage 96.6 95.0 94.9 94.9

Note: BCI: Bayesian credibility interval. RMSE: Root mean square error. SE: Standard error.

6 DISCUSSION

Conventional regression models assume that the data follow normally distributed residuals

which do not accommodate heavy tails or asymmetrical skewness in the distribution of the

data. Robust regression models are designed to safeguard cases where the normality assump-

tion does not necessarily hold. Robust NLME regression models using Bayesian approaches

are relatively easy to implement, and are advantageous in the sense that they do not rely on

asymptotic approximations as classical inference methods do for complex models.
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In the clinical development of anti-TB drugs the assessment of their EBA of TB drugs

is of interest. EBA is typically assessed using statistical regression modeling of CFU count

over time. Outliers in CFU count due to erroneous sputum sampling can cause the data versus

time profiles to be erratic, and accordingly yield potential heavy tails and skewness in the

distribution of the residuals of model fits. Typically, most CFU counts deviate little from

the regression curve, but gross outliers are occasionally present and can markedly influence

estimates of the rate of change in CFU count which is the parameter of interest.

The conventional normal regression model of Burger and Schall25 was adapted to of-

fer a robust approach that accommodates outliers and potential skewness. In particular this

regression model specified the skew Student t distribution for residuals, and the multivariate

Student t distribution for random coefficients.

DIC statistics and CLMMLs were used to discriminate between alternative Bayesian

mixed effects regression models. In this context, we presented a relatively easy method to cal-

culate the marginal likelihoods required to determine CLMMLs, by adapting methods available

in SAS R© and the R project. It should be noted that the DIC statistic assesses model adequacy

and prediction conditional on the random effects of the regression model (estimates on a by-

patient basis), whereas the CLMML assesses the aforementioned on an overall (or marginal)

basis.

Applying the proposed methodology to data from six clinical trials suggests that Bayesian

NLME fits of data profiles containing outliers, based on the Student t distribution, are more

plausible than fits based on the normal distribution. The degrees of freedom and skewness

parameters of the fitted Student t distributions provide evidence that the distribution of CFU

count is often heavy tailed and slightly skewed to the left (suggesting the presence of outliers).

Both model comparison statistics (DICs and CLMMLs) select models with Student t

distributed residuals over the normal distribution. The DIC statistics indicate that building

skewness into residuals improves model fit, whereas the CLMMLs do not. Thus the CLMMLs
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generally do not suggest that the distribution of random intercepts and slopes is heavy tailed.

Even though the model comparison statistics do not provide consensus on which of the

four candidate models is preferred, there is a clear indication that models which accommodate

heavy tailed residuals are preferred (that is, the conventional normal model is not preferred

in all cases). Furthermore, the simulation study suggested that the proposed robust regression

models have good properties in terms of accuracy, precision and credibility interval coverage.

For further clinical development of anti-TB drugs, it is essential that statistical conclusions

based on data from EBA studies are appropriate (regardless of problems associated with CFU

counting processes such as contamination). We recommend that robust regression models

such as those proposed here should be fitted to verify findings or conclusions drawn from the

analysis of CFU count.

7 DATA ACCESSIBILITY

The programming code supporting this paper has been included as part of the supplementary

material.
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