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Summary

In this mini-dissertation the importance of having an automated object classi�cation

procedure for classifying nanoparticles in nanoscale images (or referred to as nano-

images in this mini-dissertation) is discussed, and a detailed overview of such a pro-

cedure, proposed by [70] is provided, with emphasis on applying the procedure to

nanoimages of gold nanoparticles. In the process a simpli�ed approach to classify-

ing occluded objects when dealing with homogeneously shaped objects is introduced.

Nanotechnology is a technology that deals with measurements obtained in nano-scale

(one billionth of a metre), and for ease of reference these images will henceforth be

referred to as nanoimages. The focus is restricted to nanoimages, obtained using a

Transmission Electron Microscope (TEM). A common phenomenon that occurs during

the image capturing is occlusion of objects in the image. This occlusion leads to some

unwanted results during the image analysis phase, making the use of a more sophis-

ticated classi�cation algorithm necessary. An automated classi�cation algorithm that

successfully deals with occluded objects in nanoimages [70] is discussed and a detailed

discussion on the implementation of this algorithm is provided. The techniques used in

the algorithm involve a combination of several Bayesian techniques to classify the ob-

jects in the nanoimage. Markov Chain Monte Carlo (MCMC) sampling techniques are

used to simulate the unknown posterior, with samplers ranging from the Metropolis-

Hastings and Reversable Jumps MCMC samplers to Monte Carlo Metropolis Hastings

samplers used in obtaining the simulated posterior. Since one of the main objectives of

this investigation will be the processing of images, a discussion on the most widely used

image processing techniques is provided, with speci�c focus on how these techniques

are used to extract objects of interest from the image. An overview of nanotechnology

and its applications is provided, along with a variability study for the capturing of

nanoimages using TEM. The aim of the study is to introduce controlled variability in

the sampling through imposing speci�c sampling conditions, in order to determine if

imposing these conditions signi�cantly a�ects the measurements obtained. This vari-

ability study, according to our knowledge, is the �rst performed at this level of detail,

and provides very useful considerations when performing a nanoimage study.
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Chapter 1

Introduction

Nanotechnology is a fast growing research �eld with its main applications in medical

and material sciences. This technological �eld relates to the manipulation of matter

at nanoscale (one billionth of a meter), and is an interdisciplinary research �eld with

opportunities to develop smarter devices and more precise solutions. Image analysis in

Nanotechnology has important applications, with potential to employ nanoparticles as

biomarkers, sensors, and drug targeting agents [97], and enables the quanti�cation of

physical properties in nanoimages. Opportunities and risks associated with the devel-

opment of nanoengineered products must be understood at nanoscale and bulk scale,

from synthesis to implementation. Nanoparticles have increased surface to volume ra-

tio compared to their bulk form, making them more reactive and useful in material

manipulation studies [115].

In applications, size and size distribution of nanoparticles is of primary concern. How-

ever, particle occlusion is most often an unwanted phenomenon occurring during the

image analysis. Occlusion occurs when the three-dimensional sampling material (in

the case of Fig. 1.1 the sampling material is colloidal gold) is captured onto a two-

Figure 1.1: Gold nanoparticle images with occluded particles, obtained using TEM.
Note: particles classi�ed using ImagePro R© software are highlighted in red.

11



CHAPTER 1. INTRODUCTION 12

dimensional image. When this is done, distinct particles appear as one (bigger or oddly

shaped) particle due to the collapsing of the third dimension. Think of it as having two

cars parked next to one another: when viewing the cars from the side, it may appear

as one car, but when moving to the front or the back (the third dimension), the second

car becomes clear. An example of occlusion during image analysis is shown in Figure

1.1, where it can be seen that the automated image analysis software, ImagePro R©, ne-

glects some nanoparticles (those not highlighted in red) in the Transmission Electron

Microscopy (TEM) nanoimage. The nanoparticles that are not classi�ed are often oc-

cluded, and the software identi�es these particles as being `too big' to be a nanoparticle,

and excludes them from the classi�cation process. This shortcoming can potentially

lead to unwanted results for particle size measurements and subsequent particle size

distributions, and analysis and inferences thereof.

To ensure consistent results with regards to sampled images, measurements ob-

tained from a variety of images sampled under varying imaging conditions are com-

pared. Analysing the variability in measurements from sampling schemes under varying

conditions, such as di�erent levels of magni�cation or time delays between measure-

ments, is a crucial aspect in experimental design, and such analyses help in the identi-

�cation of the sources of variability and possibly control for them. It has been shown

that nanoparticles exhibit fractal properties [90], which enables the modeling of bulk

scale1 behaviour using the fractal approach. The fractal approach is a useful modeling

technique when similar patterns or structures occur at progressively smaller or bigger

scales, with the statistical information remaining in tact [90]. However, since this ap-

proach is heavily dependent on accurate nanoparticle measurements, it is crucial that

the measurements obtained are consistent, so that accurate conclusions can be drawn

from samples obtained under various sampling conditions. It is therefore important

to understand the source of variability (if any) at the nanoscale, before attempting to

draw conclusions at the bulk scale. Even though there is widespread interest towards

nanoresearch in literature, there is a paucity of studies dealing with sampling scheme

stability and accuracy of image measurements obtained. A preliminary analysis on

variability in measurements made using TEM under varying imaging conditions com-

monly used is conducted, which, to the best of our knowledge, is the �rst of its kind

being reported in this level of detail.

In this mini-dissertation a semi-automated Bayesian technique [70] to combat the

problems faced with occlusion in images obtained using TEM is investigated. The tech-

nique uses several statistical techniques that are powerful in dealing with classi�cation

problems where the number of objects that need to be classi�ed are unknown a priori,

1Bulk scale as referred to in this mini-dissertation refers to the end product stage.
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and where the dimensionality between objects is potentially di�erent from object to

object. That is, the number of known and/or unknown parameters needed to de�ne the

object are potentially di�erent between objects (for example, a triangle has more pa-

rameters than a circle, and as such needs to be modelled in di�erent dimensions). Using

a Bayesian framework, and due to the nature of the sampling scene and the assump-

tions made, the posterior distribution used for inference has an unknown normalising

constant. The technique, as proposed by [70], can be seen as a two-stage sampler, where

a Markov Chain Monte Carlo (MCMC) setting is used to sample the parameters from

the pseudo posterior distribution, with an additional Monte Carlo Metropolis Hastings

(MCMH) step to account for the unknown normalising constant. The MCMC steps

use a variety of samplers to sample the parameters needed to characterise each ob-

ject, with an additional sampler for the number of objects. The samplers used include

Metropolis-Hastings-within-Gibbs, Independence and Reversible-Jumps MCMC sam-

plers, each with its own set of complications and considerations. As a result, the tech-

niques can be quite di�cult to grasp at �rst sight. A version of this technique for dealing

with homogeneously shaped gold nanoparticles is discussed, and some notes relating to

the implementation steps for understanding of the algorithm when applied to a more

general Bayesian object classi�cation problem for nanoscale images is also provided.

Though other parametrizations to this problem exists (see for example [62] and [119]),

the speci�c aim of this mini-dissertation is to make the algorithm proposed by [70] easier

to understand for a �rst time reader. A successful implementation of this algorithm in

an image analysis software package, such as ImagePro R©, may lead to great gains in bet-

ter classi�cation of occluded nanoparticles, and subsequently more accurate size mea-

surements and size the three main sampling conditions distributions can be obtained.

As part of the investigation, an introductory discussion on the basics of image

processing techniques is provided, along with a broad overview of the �eld of nan-

otechnology and its applications. The remainder of this mini-dissertation is set out as

follows: Chapter 2 provides some necessary background to image processing, Chapter

3 gives an overview of nanotechnology and its applications. This chapter also gives

the results of variability study, with Chapter 4 providing a discussion of the Bayesian

object classi�cation algorithm considered for this investigation. Chapter 5 provides

some concluding remarks and further recommendations.



Chapter 2

Image Processing Basics

2.1 Introduction

The �rst techniques used for processing digital two-dimensional image data were mainly

signal processing operators, generalized to two-dimensional data. Since then, the range

of applications of image analysis techniques have extended to almost all engineering

and scienti�c �elds such as visual inspection, quality and security control, document

imaging, remote sensing, microscopy, biology and medical image processing [13, 2, 111].

These widespread �elds of application have led to numerous image analysis challenges,

which is in turn the origin of many approaches that have been (and are still being)

developed for analysing image data. A common technique used in image processing is

mathematical morphology. Mathematical morphology is used for the analysis of spatial

structures, and in image processing, is used to investigate the interaction between an

image and a certain chosen structuring element (structuring elements are discussed in

Section 2.5.1). An image, as referred to in this text, is de�ned as a two-dimensional

function f(x, y), where x and y are spatial coordinates, and the amplitude of f at

any pair of coordinates (x, y) is called the intensity of the image at that point [46].

In practice, images are de�ned over a rectangular frame, referred to as the de�nition

domain of the image or the image plane. However, when acquiring an image (a process

referred to as sensing1), the input is on a continuous scale. It is therefore necessary to

convert the continuous sensed data into digital (discrete) form. This is done through

sampling and quantization, which is discussed in detail below.

2.2 Sampling and quantization

The input for a sensed image is continuous with respect to the x- and y- coordinates,

as well as in amplitude. To create a digital image, the function is sampled in both

1More details on image sensing can be found in [46, 95, 2]
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CHAPTER 2. IMAGE PROCESSING BASICS 15

Figure 2.1: Image sensing example - obtaining a discretized image from a continuous
image scene [46].

coordinates and in amplitude. Digitizing the coordinate values is called sampling and

digitizing the amplitude values is called quantization [46]. Gonzalez [46] gives the

following example of image sensing and corresponding digitization:

Figure 2.1 shows how an image is acquired in general, while Figure 2.2 shows

the result of digitization of a sensed image2. Sampling and quantization allow us

to represent digitized images as M× N matrices [123, 95]:

f =


f(0, 0) f(0, 1) · · · f(0,N− 1)

f(1, 0) f(1, 1) · · · f(1,N− 1)
...

...
...

f(M− 1, 0) f(M− 1, 1) · · · f(M− 1,N− 1)

 . (2.1)

The representation in (2.1) de�nes a digital image, where each matrix element is re-

ferred to as a picture element (or pixel). Note that the only requirement for M and N

are that they must be nonnegative integers.

2.3 Background to morphology in discrete space

Even though the �eld of mathematical morphology was designed for Euclidean spaces,

most image analysis technologies rely on the processing of discrete spatial data, since

digital images are de�ned in discrete space. Morphology was therefore simpli�ed from

the Euclidean space, R2, to the discrete space, Z2, by sampling R2. Because prior

knowledge about the sampled object is seldom available, a network of points evenly

2Both images were sourced from Gonzalez [46].
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Figure 2.2: Image digitization, an example of how a digitization network can be set up
to sample from the continuous image [46].

distributed at the nodes of either a triangular or square grid is considered as sampling

scheme [111, 13]. In practice, majority of spatial data is sampled according to the

square network. As described above, discrete images are de�ned by associating a

numerical value with each point of the digitization network. Rather than a strict point

measurement, each point value usually represents the mean value of the sensed signal

averaged over the sampling window, and the sampling points can therefore be seen as

the centers of convex polygons, called meshes. Square grids lead to square meshes, and

in the context of digital image processing, these meshes are called pixels, as de�ned in

(2.1).

2.3.1 Discrete images and graphs

Binary and greyscale images are distinguished by the range of the values given to the

points (pixels) of the digitization network. Both are mono-channel images because a

single scalar value is stored for each pixel. Multi-channel images refer to those images

where a vector of scalar values is associated with each pixel, such as red, green and

blue (RGB) components of a colour image [46].

Binary images

The value of a pixel in a binary image is either 0 or 1, depending on whether the pixel

belongs to the image foreground or background [111]. On a white support, foreground

images are printed in black, and background in white. The opposite is valid for black

support.

A binary image f is a mapping of a subset Df of Z2 (called the de�nition domain
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(a) Coins (b) A puppy (c) Rice grains

Figure 2.3: Examples of binary images on a black support, obtained through thresh-
olding of greyscale images

of f) into the set {0, 1} [111], i.e:

f : Df ⊂ Z2 −→ {0, 1} .

Therefore, for each pixel p ∈ Df of the image de�nition domain, f(p) is either 0 or

1. Note that this de�nition can be extended to an n-dimensional image: an image

whose de�nition domain is a subset of the n-dimensional discrete space Zn . In this

chapter, as well as in subsequent chapters, n will be restricted to 2. In a binary image

the sets of black and white pixels are dual sets, that is, pixels that do not belong to

the former necessarily belong to the other and visa versa [111]. That is, if FG denotes

the foreground pixels and BG the background pixels, with the full image set S, then

FG = S \ BG or FG = BGc and simultaneously, BG = S \ FG or BG = FGc,

where A \B denotes the relative complement of B in A (i.e. the set of all elements in

A that are not in B [111]). Figure 2.3 shows examples of binary images of coins3, a

puppy4 and rice grains5 (obtained through thresholding - refer to section 2.4.2 for more

information). Note that each pixel in the image is either black (f(p) = 0) or white

(f(p) = 1).

Greyscale images

The range of values for the pixels of a greyscale image is not restricted to {0, 1}, but
is extended to a larger, yet �nite, set of non-negative integers. Denote this set by Nf .
In formal terms, a greyscale image f is a mapping of a subset Df of Z2, (called the

de�nition domain of f) into a bounded set of non-negative integers [111]. That is:

f : Df ⊂ Z2 −→ {0, 1, . . . , tmax} ,
3Original image sourced from http://inperc.com/ on 10 November 2014.
4Original image sourced from http://www.photomaskportal.com on 10 November 2014.
5Original image sourced from http://blogs.mathworks.com on 10 November 2014.

http://inperc.com/wiki/index.php?title=A_graph,_non-tree_representation_of_the_topology_of_a_gray_scale_image_by_Saveliev
http://www.photomaskportal.com/blog/grayscale-photomasks
http://blogs.mathworks.com/steve/2008/01/28/logical-indexing/
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(a) Coins (b) A puppy (c) Rice grains

Figure 2.4: Examples of greyscale images, where each pixel in the image is a varying
tone of grey.

where tmax is the maximum value of the data type used for storing the image6. In

other words, for all pixels p of the image de�nition domain, the mapping f (p) belongs

to the set {0, 1, . . . , tmax}. For greyscale images tmax is commonly set to 255, therefore

256 grey levels. Figure 2.4 shows examples of greyscale images of coins7, a puppy8 and

rice grains9. Note that each pixel of the de�nition domain is a varying tone of grey,

i.e. belongs to the set {0, 1, . . . , 255}.

Multi-channel images

Amulti-channel image consists of an array of mono-channel images (binary or greyscale)

de�ned over a common de�nition domain, and hence a vector of scalar values is associ-

ated with each pixel in the domain. The number of available channels determines the

dimensionality. In other words, if f denotes a multi-channel image with m channels,

then the values of each pixel p in the de�nition domain of f de�ne a m-dimensional

vector:

f (p) = (f1 (p) , f2 (p), . . . , fm (p)).

A direct set representation of a multi-channel image cannot be obtained, and con-

sequently each channel fi of a multi-channel image is (usually) processed as a single

greyscale image (that is, independently of the other channels). Many types of multi-

channel images exist depending on the information that is collected for each image

pixel. For example, colour images are multi-channel images containing three channels,

one for each primary colour in the RGB colour model.

This text will focus on mono-channel images, speci�cally on greyscale (tmax = 255,

6tmax=2
K-1 for values coded on K bits, that is, for an image with a 256 grey level, K = 8, or an

8-bit image
7Original image sourced from http://inperc.com/ on 10 November 2014.
8Original image sourced from http://www.photomaskportal.com on 10 November 2014.
9Original image sourced from http://blogs.mathworks.com on 10 November 2014.

http://inperc.com/wiki/index.php?title=A_graph,_non-tree_representation_of_the_topology_of_a_gray_scale_image_by_Saveliev
http://www.photomaskportal.com/blog/grayscale-photomasks
http://blogs.mathworks.com/steve/2008/01/28/logical-indexing/
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Table 2.1: 1-D signal f

x 0 1 2 3 4 5 6 7 8 9 10 11

f(x) 0 1 1 2 3 3 2 4 2 1 1 0

with 256 levels) and binary images.

Graphs and sub-graphs

In morphology greyscale images are represented as a topographical relief, by linking

each pixel in the image with a height (or elevation) proportional to the intensity of the

pixel. In other words, the values of an image are seen as heights of a surface above

the image plane. This morphological representation will enable the application of set

transformations to greyscale images. That is, greyscale images are considered as sets

through their graphs and sub-graphs.

The graph G of an image f is the set of points (x, t) such that the pixel x belongs

to the image plane of f and t = f (x ) [111]:

G (f ) =
{

(x, t) ∈ Z2 ×Nf | t = f (x )
}
.

The sub-graph SG of an image f is the set of points of Z2 × Nf lying below the

graph of the image and over the image plane:

SG(f ) =
{

(x, t) ∈ Z2 ×Nf | 0 ≤ t ≤ f (x )
}
.

Figure 2.5 shows the graph and sub-graph of the 1D image signal given in Table

2.1. This concept is similarly extended to two-dimensional graphics.

2.4 Image operations

2.4.1 Discrete geometry

Graphs

When computing operations involving some neighbourhood relationships, the use of

a digitization network is not enough. By using graphs, one can de�ne neighbourhood

relationships between points of the digitization network in the following manner: a

graph G linked to a digitization network is a pair (V,E) of vertices V , and edges E

[17, 27], where
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Figure 2.5: Graph and sub-graph of the 1D signal f given in Table 2.1

• V = {v1 , v2 , . . . , vn} is a set of vertices representing the points of the digitization

network,

• E ={e1, e2, . . . , em} is a group of unordered pairs (vi, vj) of vertices represented

by edges or arcs.

Further to this, if a graph does not contain any loop (i.e. (vi, vj) type edge) and if

there exists one or less arcs linking any given pair of vertices, it is said to be a simple

graph. A graph is planar if it can be drawn in the plane without intersecting any pair

of edges [111]. The neighbours of a vertex v in a graph G = (V ,E ), are denoted by

NG (v) = {v′ ∈ V | (v, v′) ∈ E} ∪ {v},

and the vertices v ′ are said to be G−adjacent to the vertex v [111]. Similarly the neigh-

bours of a vertex v with a given value h are denoted byN h
G (v) = {v′ ∈ NG (v) | f (v′) = h}.

The foreground neighbourhood of v , denoted by N≥G (v), is de�ned as:

N≥G (v) = {v′ ∈ NG (v) | f (v′) ≥ f (v)} ,

i.e. all those neighbours of the vertex v whose function values are greater than or

equal to that of v . Consequently, the backgroundneighbourhood of a vertex v is de�ned

as the set of neighbours of v having strictly lower values than v , and is denoted by

N<
G (v). In addition to this we de�ne the foreground FG of a pixel v of an image f



CHAPTER 2. IMAGE PROCESSING BASICS 21

(a) Example of a 4−connected
pixel (in black), with the 4
neighbours labelled N1, N2, N3
and N4 (in blue)

(b) Example of a 8−connected
pixel (in black), with the 8
neighbours labelled N1 to N8
(in blue)

Figure 2.6: 4- and 8-connectivity in a discretized image.

as the threshold of f for intensity values greater than f (v): FG (v) = Tt>f(v)(f). A

threshold for intensity values lower than f (v) de�nes the background BG of a pixel v :

BG (v) = Tt<f(v)(f).

A sequence v0 , v1 , ..., vk of vertices of a graph G is said to be a path of length k

if vi and vi+1 are neighbours for all i = 0 , 1 , ..., k − 1 and (vi, vi+1) ∈ E [111]. The

length of a path is the number of edges of the considered path. In general we denote

by π (vi  vj) a path in the graph G, and π (vi  h vj) refers to a path whose vertices

all have value h.

Grids and connectivity

The graph connectivity of a set is de�ned as follows: if a path can join each pair of

points in a set, with all points being in the set under consideration, then the set is

a connected set. Two pixels p and q of an image f are Gh-connected if and only if

there exists a path  h whose end points are p and q , denoted by π (p h q). The

corresponding connected components de�ne the Gh-connected components of pixels of

a greyscale image, and is denoted by CCh
G (also referred to as �at zones) [111]. In

a discretized image, neighbouring pixels are usually connected through either 4− or

8−connectivity [2]. Figure 2.6 shows an example of how (a) 4− and (b) 8−connectivity
is de�ned in a discretized image. As can be seen from Figure 2.6, with 4−connectivity
each pixel will have 4 neighbours, N1, N2, N3 and N4, and with 8−connectivity, each
pixel has neighbours N1 to N8.

A transformation directly linked to the concept of connectivity is the connected

component labelling of a binary image. It is formed by setting each pixel that belongs

to a connected component equal to speci�c grey level value, with di�erent values used

for each connected component. The resulting image is referred to as a label image.

There exists many algorithms for labelling binary images, see for example [111, 2]. In
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(a) Original binary image f (b) Connected component la-
belling of binary image f

Figure 2.7: Connected component labelling of a binary image.

Figure 2.7 an example of connected component labelling of an image of the earlier

sample image containing three circles.

Discrete lines

Lines and line segments are fundamental geometric elements used by many neighbour-

hood image analysis operators. In discretized images a line or a line segment is di�erent

to lines in the Euclidean space, due to images being de�ned in discrete space and is

therefore a set of pixels connected through 4− or 8−connectivity:

• Connected discrete lines: Suppose that S is a digital path, i.e. an 8-connected

set of pixels all but two of which have exactly two 8-neighbours in S , with the

exceptional two (the endpoints) having only one. It can be shown that a digital

8-connected path L is a digitization of a straight line segment if and only if it

satis�es the chord property, that is, the line segment joining any two points of L

lies everywhere within a distance of 1 of S [111].

• Angular resolution: In some applications, an image transformation that is invari-

ant to image rotation is created by computing image transformations along all

possible line orientations. In a discrete grid, the angular resolution of a discrete

line segment depends on its length, and in a square grid only 2λ− 2 orientations

can be de�ned with a connected line segment of odd length equal to λ pixels, and

whose middle and extreme pixels are matched by the Euclidean line of the same

orientation [111]. An example of this concept is illustrated in Figure 2.8, where

it can be seen that the number of lines that can be drawn in discrete space is

limited by the size of the grid.

Figure 2.9 shows examples of a line de�ned in Euclidean space, and in discrete space

through 4− and 8−connectivity.
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Figure 2.8: Example of the concept of angular resolution in discrete space.

(a) Line drawn in Euclidean
space

(b) Line drawn in discrete space,
using 4−connectivity

(c) Line drawn in discrete space,
using 8−connectivity

Figure 2.9: Lines in Euclidean and discrete space.
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2.4.2 Image to image transformations

In morphological image analysis the transformations considered are image to image

transformations as the transformed image has the same de�nition domain as the input,

and is a mapping of this de�nition domain onto the set of non-negative integers. The

notation Ψ will be used to denote an image to image transformation. In general, an

image to image transformation Ψ can be represented as g = Ψ (f) [123], where

• f is the input image

• g is the output image

• Ψ is the operator whose output depends on the de�ned neighbours of each pixel

(x, y), e.g. 4− or 8−connectivity.

The identity transformation, denoted by id is de�ned as ∀f, id[f(x, y)] = f(x, y).

The set of images that are not altered by the given transformation is called the

domain of invariance . For example, since the id transformation does not alter any

image, its domain of invariance is the set of all images. When the transformed image

is used as input for a second transformation, and so forth, the iterated image trans-

formation is denoted by Ψ (n). That is Ψ (n) = Ψ (n−1 )Ψ , the nth iteration of an image

transformation Ψ . Note that Ψ (0 ) = id .

Point image transformations

In the case of point image transformations, the output values of a given pixel p =(x, y)

is a function of the input values of the input pixel, without taking into account the

values of any other pixels. In other words, the neighbourhood size is set to 1 × 1 (a

single pixel). In mathematical terms, a point image operator Ψ may be represented by

S = Ψ(r), where

S = g(x, y),

r = f(x, y).

Note that this notation is used to make it clear that a neighbourhood size of a single

pixel is used. The basic point image transformations are the additive image o�set and

multiplicative image scaling operators [19]. The additive image o�set operator may

be de�ned as S = Ψ +
b (r) = r + b, for some scalar b, that is g(x, y) = Ψb[f(x, y)] =

f(x, y) + b. Note that the resulting output must still lie within the image de�nition

domain, i.e. |r + b| ≤ tmax, or alternatively clip those values falling outside of the

image range. In other words, if S < 0, then S = 0, or if S > tmax then S = tmax. The
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multiplicative image scaling operator can be represented by:

S = Ψ×b(r) = r × b,

with the scalar b chosen such that the resulting output S lies within the image de�nition

domain, that is S ∈ [0, tmax]. A simple way to handle over�ows, where S < 0 or

S > tmax, is to clip those values falling outside of the allowable range to the endpoint

values. That is, if S < 0, then S = 0, and likewise if S > tmax then S = tmax. An

alternative to clipping is to allow any values for the output value S during calculation,

and to re-scale the �nal image so that S lies within the image de�nition domain.

Combining the additive image o�set and multiplicative image scaling operators leads

to linear point operators [19], for example, a linear point operator can be de�ned as

S = a× r+ b = a×f + b, for some scalars a and b. One of the widely used point image

operators is the threshold operator : The threshold operator sets all pixels of the input

image lying in a given range of values, equal to 1, with the remaining ones being set

to 0 [123, 111]. More formally, the threshold operator T for given range [ti, tj], sets all

pixels (x, y) of the input image f with values in the interval [ti, tj] to 1 and the others

to 0:

Ψ(p) = T[ti,tj ][f (p)] =

1 if ti ≤ f (p) ≤ tj

0 otherwise.

In other words, thresholding can be seen as dividing pixels in a greyscale image into two

classes, C1 and C2. For a grey level f (p) all the pixels with grey level ti ≤ f (p) ≤ tj

will form a class C1 and all the others will form a di�erent class C2. Figure 2.3 shows

examples of binary images of coins, a puppy and rice grains, obtained through thresh-

olding. The threshold operator used in this example is Otsu's threshold, where the

threshold tj is selected by maximising the between class variance [2]. Otsu's proposed

algorithm is derived from the viewpoint of discriminant analysis, and is an automatic

thresholding operator [92]. Note that Otsu's threshold only speci�es a single threshold

value, and not an interval.

Neighbourhood image transformations

In contrast to point image transformations, the output value of a neighbourhood image

transformation at a given pixel is a function of the values of the pixels falling within a

neighbouring region, centered around the input pixel. Some of the most fundamental

neighbourhood image transformations include the spatial convolution and the cross-

correlation.

1. The spatial convolution, denoted by *, involves an input image f together with

a second image g, whose origin is usually located at the center of its de�nition
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(a) Image f (b) Image g (c) Output image f ∗ g

Figure 2.10: Spatial convolution of f by g: f ∗ g.

domain Dg, with the de�nition domain of g typically smaller than that of f . The

output of the convolution at a given pixel p of f is then de�ned by the weighted

sum of the pixels of f falling within Dg when the origin of Dg coincides with p,

and the weights de�ned by the values of g [111]:

[f ∗ g] (p) =
∑
b∈Dg

[f (p− b) g (b)] . (2.2)

Figure 2.10 shows an example of a spatial convolution of image f , an image with

three circles, of which two overlap, by image g, an image with a single circle. As

can be seen from Figure 2.10, the result of the spatial convolution is an image

with the weighted sum of the pixels taken whenever the origin of image g is placed

over a given pixel p. Note that the e�ect of this is most visible on the border of

the circles, where the weighted sum leads to an expansion of the border.

2. The cross-correlation C of two images f and g is de�ned as [111]

[C (f, g)] (p) =
∑
b∈Dg

[f (p+ b) g (b)] .

Thus, in the two-dimensional case, the cross-correlation of f with g comes down

to the convolution of f with the 180◦ rotation of g, say g180. Also, if the image

g is symmetric in its origin (g (p) = g (−p)) then spatial convolution and cross-

correlation are identical transformations. Figure 2.11 shows an example of the

cross-correlation between image f , and image g, while Figure 2.12 shows the

convolution of f with the 180◦ rotation of g, g180. Note that since the image used

for g in the operation is symmetric in its origin, the resulting cross-correlations

are identical, with both also identical to the spatial convolution in Figure 2.10.

3. The translation of an image f by vector b is denoted by f−b and is de�ned as:
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(a) Image f (b) Image g (c) Output image C (f, g)

Figure 2.11: Cross correlation of f and g: C (f, g).

(a) Image f (b) Image g180 (c) Output image f ∗ g180

Figure 2.12: Spatial convolution of f by g180: f ∗ g180.

f−b (p) = f (p − b). The translation of an image can only be applied to images

de�ned over an evenly distributed network of points.

2.4.3 Image �ltering

In general, an image �lter is de�ned as a neighbourhood image operator. When using

this de�nition, image �lters can perform a wide variety of tasks, including such tasks

as noise reduction, edge detection, compensation for incorrect focusing, and motion

blur. Mathematical morphology provides us with image �lters for performing the �rst

two of the above mentioned tasks, and in addition to this, morphological �lters are

especially suited to the extraction or suppression of image objects. Several �lters exist

in literature, but we restrict the discussion in this section to smoothing �lters (or low-

pass �lters), speci�cally that of the median �lter and Gaussian �lter. For discussions

on other �lters, the reader is referred to [2, 19, 107, 13].
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Median �lter

The median �lter replaces the value of a pixel p = (x, y) by the median of the grey

levels f (p) in the neighbourhood of that pixel, with the original value of the pixel

included in the computation of the median [46]. Mathematically, the median �lter is

de�ned as

Ψmed (f ) = median {f (y1) , . . . , f (yn)} ,

where N = {y1, . . . , yn} ⊆ Z2 is a suitably chosen neighbourhood [2, 19]. Median �lters

are e�ective in dealing with impulse noise and salt-and-pepper noise and as noted by

[19], a median �lter is a special case of a rank �lter, Ψq, for which the qth rank is chosen

rather than the median.

Gaussian �lter

The Gaussian �lter in image processing is a smoothing �lter based on a convolution

operator. Mathematically the �lter is de�ned as [107, 95]

ΨGaussian (x , y) = [f ∗ g] (x, y) = f ∗
[

1√
2πσ

exp

{
−(x2 + y2)

2σ2

}]
,

where σ is the standard deviation of the distribution, and the operator ∗ is used

as de�ned in (2.2). In other words, Gaussian �ltering is achieved by convolving the

Gaussian distribution function, g, with the input image f . In image processing however,

a discrete representation is required, since the Gaussian function above is nonzero for

x, y ∈ (−∞,∞) and therefore an in�nitely large convolution kernel is required [107].

Practically it is reasonable to truncate the �lter window since the function decays

rapidly. There are several implementation strategies to obtain a discrete Gaussian

kernel, for example, one strategy is to sample values from the continuous function at

the center point of the pixel, whereas another strategy is to discretise the function

itself [95, 107]. Once a suitable kernel is chosen, in this case through truncation of

the Gaussian function, the �lter is applied using a standard convolution method, as

de�ned earlier.

Figure 2.13 shows examples of noisy images of random blobs10 containing Gaussian

noise, and coins containing salt and pepper noise respectively. The salt and pepper

noise was added by thresholding random pixels in the image, using the Numpy [63]

package in Python11, and the Gaussian noise was added using the Numpy [63] and

Scipy [64] packages in Python. As can be seen from the images, the median �lter is

e�ective in removing salt and pepper noise, while the Gaussian �lter is e�ective in

smoothing out Gaussian noise. Note however that since both �lters are smoothing

10Image obtained using Python code obtained from http://scipy-lectures.github.io on 7 June 2015.
11Code used to add noise was obtained from http://stackover�ow.com on 12 June 2015.

http://scipy-lectures.github.io/advanced/image_processing/auto_examples/plot_clean_morpho.html
http://stackoverflow.com/questions/22937589/how-to-add-noise-gaussian-salt-and-pepper-etc-to-image-in-python-with-opencv
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(a) Original image (b) Noisy image (c) Median �lter
applied to image

(d) Gaussian �lter
applied to image

(e) Original image (f) Noisy image (g) Median �lter
applied to image

(h) Gaussian �lter
applied to image

Figure 2.13: Filtering noisy images: a) Random blobs, and b) Coins.

�lters, the resulting images can sometimes be blurred (as a result of oversmoothing).

Restoration of blurred images is not in the scope of this chapter, and the reader is

referred to [2] for a detailed discussion on this topic.

2.4.4 Image segmentation

Image segmentation consists of dividing an image into di�erent regions, where each

region has certain properties. Once an image has been segmented into regions, neigh-

boring relationships can be investigated by performing image measurements, and seg-

mentation is therefore a crucial element in the quantitative interpretation of image

data. Mathematically image segmentation can be described as follows [2]: A complete

segmentation of an image R = f (x, y) relates to identifying a �nite set of regions

{R1, . . . , RN} such that

1. R = ∪Ni=1Ri, that is, the combination of all the regions must be the original

image,

2. Ri ∩ Rj = ∅ =; ∀ i 6= j, in other words no overlapping regions must exist in the

segmentation,

3. P (Ri) > 0; ∀ i = 1, . . . , N , that is each region must consist of at least one pixel,

and

4. P (Ri ∪Rj) = 0; ∀ i 6= j, so that no pixel belongs to more than one region.



CHAPTER 2. IMAGE PROCESSING BASICS 30

(a) Image f (b) Image g (c) Point-wise
minimum [f ∧ g]

(d) Point-wise
maximum [f ∨ g]

Figure 2.14: Point-wise minimum and maximum of a sample image.

Several possibilities exist for image segmentation, but most segmentation algorithms are

based on either pixel discontinuity or pixel similarity. As noted by [2], algorithms that

focus on pixel discontinuity are often interested in line and/or edge detection, whereas

algorithms that focus on pixel similarity often has the aim of grouping together pixels of

homogeneous intensity into the same regions. Examples of image segmentation include

thresholding (such as Otsu's threshold), edge detection (such as Canny's algorithm),

clustering and the watershed transformation [2, 46]. The latter of these, the watershed

transformation, will be discussed later in this chapter.

2.4.5 Image measurements

Image measurements aim at using numerical values to characterise the objects of an

image. This includes measurements such as number of objects in an image, average

size of an object, mean intensity of an object, compared to mean background intensity,

shapes of the objects identi�ed and overlapping of objects, to name a few.

2.4.6 Set operators applied to images

The basic set operators, ∪ and ∩ becomes the point-wise maximum operator and

point-wise minimum operator respectively, when working with greyscale images. The

point-wise maximum ∨ and point-wise minimum ∧ between two images f and g (having

identical de�nition domains) are de�ned as follows for each point p = (x, y) [111]:

[f ∨ g] (p) = max [f (p) , g (p)] ,

[f ∧ g] (p) = min [f (p) , g (p)] .

Figure 2.14 shows examples of the point-wise minimum and maximum operators applied

to a sample image. Note that these operators can alternatively be represented in terms
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(a) Original image f (b) Image complement {[f ]

Figure 2.15: Image complement {[f ] for a binary image.

of unions and intersections of sub-graphs [111]:

SG[f ∨ g](p) = SG[f(p)] ∪ SG[g(p)],

SG[f ∧ g](p) = SG[f(p)] ∩ SG[g(p)].

Starting from two arbitrary transformations Ψ1 and Ψ2, one can create a new transfor-

mation by applying the point-wise minimum or maximum to these two transformations:

[Ψ1 ∨Ψ2][f ](p) = Ψ1[f(p)] ∨Ψ2[f(p)],

[Ψ1 ∧Ψ2][f ](p) = Ψ1[f(p)] ∧Ψ2[f(p)].

Another set operator is complementation, where the complement { of f , denoted by f c,

is de�ned for each pixel p as the maximum value of the data type used (i.e. tmax=255)

minus the value of the image f at p = (x, y) [111]:

{[f ](p) = f c(p) = tmax − f (p) .

Figure 2.15 shows an example of the complementation operator applied to a sample

binary image. The set di�erence between two sets X and Y , denoted by X \ Y , is

de�ned as the intersection between X and the complement of Y : X \ Y = X ∩ Y c,

and applies to binary images only, an example of which is shown in Figure 2.16.

2.4.7 Ordering relations

To determine the ordering of two sets, the inclusion relation is used.

1. A partially ordered set S is a set which has a relation⊆ and for all sets A,B ,C ∈ S

satis�es[111]:

• A ⊆ A(re�exivity)
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(a) Image f (b) Image g (c) Set di�erence f\g

Figure 2.16: Set di�erence f\g of a binary image.

• A ⊆ B and B ⊆ A if and only if A = B (anti-symmetry)

• if A ⊆ B and B ⊆ C then A ⊆ C (transitivity).

2. A totally ordered set S is a partially ordered set which satis�es the following

strengthened form of the anti-symmetry property:

• For any two sets A and B in S , exactly one of A ⊂ B , A = B or A ⊃ B is

true.

The partial ordering ≤ is de�ned on greyscale images as follows:

f ≤ g ⇔ ∀ p, f (p) ≤ g (p) .

Equivalently, for all grey levels t , the cross-section of f at level t is included in the

cross-section of g at level t ,and so:

f ≤ g ⇔ ∀ p, f (p) ≤ g (p)⇔ ∀ t, p, CSt[f ](p) ⊆ CSt[g](p).

In other words, f ≤ g ⇔SG[f(p)] ⊆SG[g(p)] ∀p.

2.4.8 Discrete distances and distance functions

The ability to measure how far points are separated in an image is often required in

image analysis, and is the reason why the concept of distance is widely used during

image analysis. A measurement d for a given space E is a function that associates with

any two points p and q of E a non-negative real number, while satisfying the following

conditions [111]:

1. d (p, q) ≥ 0 and d (p, q) = 0⇔ p = q

2. d (p, q) = d (q, p)

3. d (p, q) ≤ d (p, r) + d (r, q).
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The discrete distance dG between two pixels p and q in the graph G is the shortest path

πi (p q) linking p to q :

dG (p, q) = min
i
{card (πi (p q)) | πi (p q) path linking p to q in G} .

If the underlying graph is 4−connected, the metric is known as the city-block metric,

denoted by d4. The city-block metric simpli�es to d4 ((x1, y1) , (x2, y2)) =| x2 − x1 |
+ | y2 − y1 |, where (xi, yi) are the coordinates of pixel pi . An 8−connected graph

de�nes a chessboard metric, denoted by d8, where d8 simpli�es to d8 ((x1, y1) , (x2, y2)) =

max {| x2 − x1 |, | y2 − y1 |}.
The distance function D on a binary image f associates each pixel p of the de�nition

domain Df of f with its distance to the nearest zero-valued pixel:

[D (f)] (p) = min {d (p, q) | f (q) = 0} ,

where d (p, q) = d4 or d (p, q) = d8 depending on whether 4−connectivity or 8−connectivity
is used.

2.4.9 Image transformation properties

Knowledge of the properties of a transformation will allow us to predict its behavior

and assist us in choosing appropriate transformations. Table 2.2 summarises some of

the most widely used image transformation properties.

2.5 Erosion and Dilation

2.5.1 Structuring elements (SE)

A structuring element (SE) is a small set used to probe the image under study. Recall

that the sub-graph of an n−dimensional image corresponds to an n + 1−dimensional

set, and therefore we can use n + 1−dimensional SE's to investigate n−dimensional

images. For simplicity, n−dimensional SE's are commonly used, that is to use subsets

of the image de�nition domain. Operations using such so-called �at SE's are dimen-

sionless, in other words, the shape of �at SE's does not depend on the scaling of the

image grey levels.

Fundamental morphological operators require that an origin is de�ned for each SE,

as this allows the user to position an SE at a given pixel. An SE placed at a given

point p means that the SE's origin matches with p. Most often �at and symmetric SE's

are used, with the shape and size of each SE to be adapted according to the geometric

properties of the image under consideration and the aim of the outcome. Note that
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(a) Elementary cross (b) Elementary square (c) (Elementary) Disk of radius
r = 3

(d) Cross of size r = 5 (e) Disk of radius r = 5 (f) Octagon disk of radius r = 6

Figure 2.17: Examples of some basic structuring elements, with origins indicated by
circled pixels. Individual pixels are denoted by squares.

the size of the SE under consideration will have an in�uence on the operator applied

to the image, for example, for a larger SE, more of the image will be eroded when the

erosion operator is applied. Figure 2.17 shows examples of some basic SE's used in

image processing, with varying SE sizes.

2.5.2 Erosion

When probing a set with a SE, the question must be asked if the SE �ts the set (where

the set under study represents either the objects of a binary image or the sub-graph

of a greyscale image). The eroded set will be the locus of points where the answer to

this question is true. The erosion of a set X by a SE B is denoted by εB (X ) and is

de�ned as the locus of points p such that B is included in X when the SE's origin is

placed at p:

εB (X) = {p| Bp ⊆ X } . (2.3)
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Note that (2.3) can be rewritten in terms of an intersection of set translations, with

the translations (as de�ned in Section 2.4.2) being determined by the SE:

εB (X) =
⋂
b∈B

X−b. (2.4)

When this de�nition is extended to greyscale images, the erosion of an image f by struc-

turing element B is denoted by εB (f) and is de�ned as the minimum of all translations

of f by the vector −b of B :

εB (f) =
∧
b∈B

f−b.

Hence, the eroded value at a given pixel p is the minimum value of the image in the

window de�ned by the SE when its origin is placed at p:

εB[f (p)] = minb∈Bf (p+ b) .

The Minkowski subtraction, denoted by �, of a set B to a set X is the intersection of

the translations of X by the vectors of B :

X �B =
⋂
b∈B

Xb.

Note the similarity to the de�nition of the erosion given in (2.4). From the latter

equation, we see that εB (X) = X � B̌, with B̌ the complement set of B:

εB (X) =
⋂
b∈B

X−b

=
⋂
−b∈B

Xb

=
⋂
b∈B̌

Xb

= X � B̌.

To illustrate the basic concept of the erosion operator, Figure 2.18 shows an exam-

ple where a simple binary image is eroded, using some of the elementary structuring

elements.

As can be seen from the example, the choice of structuring element is crucial when

performing this operation, as the resulting image will di�er depending on the choice

of structuring element. This is also true for the choice of the size of the structuring

element, as can be seen in Figure 2.19. In short, the erosion operator shrinks the

objects, but expands the object's background, and is useful for removing smaller objects

that should not be classi�ed as an object in the image.
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(a) Original image f to
be eroded

(b) Erosion of f by
elementary cross

(c) Erosion of f by
elementary square

Figure 2.18: Erosion of a simple binary image.

(a) Original image f to be eroded(b) Erosion of f by elementary
cross

(c) Erosion of f by elementary
square

(d) Erosion of f by elementary
disk

(e) Erosion of f by disk of radius
r = 5

(f) Erosion of f by disk of radius
r = 6

Figure 2.19: Erosion of a sample binary image using di�erent structuring elements and
di�erent sizes of structuring element.
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2.5.3 Dilation

The dilation is the dual operator of the erosion and is based on the question: �Does

the SE hit the set?� The dilated set is the locus of points where the answer to this

question is true. In set terms, the dilation of a set X by a SE B , denoted by δB (X),

is de�ned as the locus of points p such that B hits X when its origin is placed at p:

δB (X) = {p | Bp ∩ X 6= ∅} . (2.5)

Note that (2.5) can be rewritten in terms of a union of set translations, with the

translations being de�ned by the SE:

δB (X) =
⋃
b∈B

X−b. (2.6)

When the de�nition of set dilation is extended to greyscale images; the dilation of an

image f by SE B , denoted by δB (f), is de�ned as the maximum of the translation of

f by the vectors −b of B :

δB (f) =
∨
b∈B

f−b.

In other words, the dilated value of a given pixel p is the maximum value of the image

in the window de�ned by the SE when its origin is placed at p:

δB[f (p)] = maxb∈Bf (p+ b) .

The Minkowski addition, denoted by ⊕, of a set B to a set X is the union of the

translations of X by the vectors of B :

X ⊕B =
⋃
b∈B

Xb.

Note the similarity to the de�nition of the dilation (2.6). From the latter equation, we

see that δB (X) = X ⊕ B̌:

δB (X) =
⋃
b∈B

X−b

=
⋃
−b∈B

Xb

=
⋃
b∈B̌

Xb

= X ⊕ B̌.
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(a) Original image f to
be dilated

(b) Dilation of f by
elementary cross

(c) Dilated of f by
elementary square

Figure 2.20: Dilation of a simple binary image.

To illustrate the basic concept of the erosion operator, Figure 2.20 shows an example

where a simple binary image is eroded, using some of the elementary structuring ele-

ments. As with the erosion operator, the choice of structuring element in�uences the

�nal image obtained from dilation, as seen in Figure 2.21.

In short, the dilation operator expands the objects, but shrinks the object's back-

ground.

2.5.4 Properties of erosion and dilation

Duality

The dilation and the erosion are dual transformations with respect to complementation:

εB = {δB{.

This means that any erosion of an image is equivalent to the dilation of the comple-

mented image, and then taking the complement of the resulting image (and visa versa).

The duality can be demonstrated as follows:

δB (f c) = ∀b∈B [tmax − f−b]

= tmax − ∧b∈B [f−b]

= tmax − εB (f)

= [εB (f)]c .

The result of this duality property shows that erosion and dilation do not transform

the objects and their background in the same manner. Erosion shrinks the objects,

while the opposite happens with the object's background (and through the duality the

opposite is valid for dilation). It is also clear from this that erosion and dilation are not

self-dual. Moreover, there is no inverse transformation for the dilation and the erosion.
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(a) Original image f to be dilated(b) Dilation of f by
elementary cross

(c) Dilation of f by
elementary square

(d) Dilated of f by elementary
disk

(e) Dilation of f by disk of radius
r = 5

(f) Dilation of f by disk of radius
r = 6

Figure 2.21: Dilation of a sample binary image using di�erent structuring elements and
di�erent sizes of structuring element.
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Increasingness

Erosion and dilation are invariant to translations, and also preserve the ordering rela-

tion on images, in other words, they are increasing transformations:

f ≤ g ⇒

{
εB (f) ≤ εB (g)

δB (f) ≤ δB (g)
.

Distributivity

The dilation distributes the point-wise maximum operator ∨ and the erosion distributes

the point-wise minimum operator ∧:

δB (∨ifi) = ∨iδB (fi) ,

εB (∧ifi) = ∧iεB (fi) .

Composition

The following equations concern the composition of dilation and erosion:

δB2δB1 = δ(δB2
B1),

εB2εB1 = ε(εB2
B1).

A morphological operation with a large SE can therefore be decomposed into a series

of operations each using a smaller SE. For example, eroding/dilating using an SE of

size n is the same as eroding/dilating n times with the corresponding SE of size 1:

δnB := δ
(n)
B .

Ordering relations

The erosion with a SE is less than or equal to the dilation with the same SE: εB ≤ δB.

Furthermore, if the structuring element B contains its origin, the following holds:

εB ≤ id ≤ δB ⇔ B contains its origin.
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2.5.5 Morphological gradients

Basic morphological gradients

A common assumption in image analysis is that objects in an image have similar grey

levels, that are di�erent to the area surrounding the object. Therefore, object bound-

aries can be found where there are high grey level variations. Gradient operators use

these variations to enhance the objects. When there is noise in the image, it should be

�ltered before applying a gradient operator to avoid enhancing the noise component.

Morphological gradients use an SE to improve variations in pixel intensity in the neigh-

bourhood of the SE. The erosion/dilation for example, returns for each pixel the mini-

mum/maximum value of the image in the neighbourhood of the SE. By combining these

elementary operators, variations in pixel intensity can be enhanced . The combinations

currently used are:

1. the di�erence between dilation and erosion;

2. the di�erence between dilation and the original image

3. the di�erence between the original image and its erosion.

Only symmetric SE's that contain their origin are considered, as this assures that the

arithmetic di�erence is always non-negative.

The basic morphological gradient is de�ned as the arithmetic di�erence between the

dilation and erosion by the elementary SE B , of the considered grid. This morphological

gradient is denoted by ρ:

ρB = δB − εB. (2.7)

The reader is referred to [111] for more on gradients. Figure 2.22 shows examples of

gradients obtained from the erosion and dilation operations performed in Sections 2.5.2

and 2.5.3.

2.6 Opening and Closing

Since the erosion of an image removes all objects that cannot contain the SE, and

reduces the size of the rest, an operator that will recover most (or at least some) of

the objects removed or reduced by the erosion is required. This leads to the de�nition

of the morphological opening. This operator dilates the resulting image after the

erosion, using the same SE. In general, not all objects are recovered in full, as objects
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(a) Original image f (b) Gradient using δB−εB(c) Gradient using δB − f (d) Gradient using f − εB

Figure 2.22: Morphological gradients.

that are removed by the erosion are not recovered at all. The dual operator for the

morphological opening is the morphological closing. Important to note, is that openings

�lter the foreground regions, while closings �lter the background regions. For example,

to �lter out noisy pixels with high intensity values, an opening should be used. If there

is symmetric noise in the image, the closing of an opened image or the opening of a

closed image can be performed.

2.6.1 Morphological opening

The opening γ of an image f by SE B, denoted by γB (f), is de�ned as the erosion of

f by B followed by the dilation with same SE B:

γB (f) = δB [εB (f)] , (2.8)

i.e. γB = δBεB. In (2.8) it is essential to consider the re�ected SE for the dilation, if

the chosen SE is not symmetric. In this text the focus will only be on symmetric SE's,

and therefore the re�ected SE is the same as the original SE. Although the opening is

de�ned in terms of erosion and dilation in (2.8), it possess a geometric formulation in

terms of SE �t using the question introduced for erosion: �Does the SE �t the set?�

Each time the answer to this question is a�rmative, the whole SE must be kept (for

the erosion, it is the origin of the SE that is kept). Therefore the opened set is the

union of all SE's �tting the set:

γB (X) = ∪x {Bx | Bx ⊆ X} . (2.9)

Figure 2.23 shows an example of a noisy image12, with an opening performed using

an elementary cross structuring element. Note that the noise in the image has been

added by thresholding random pixels in the image, using the Numpy [63] package in

12Image obtained from http://cs.wellesley.edu on 10 November 2014.

http://cs.wellesley.edu/~cs332/assignments/assign2.html
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(a) Noisy image f (b) Opening of f by elementary cross

Figure 2.23: Opening applied to a noisy image.

Python13 As can be seen from Figure 2.23, the opening is successful in removing the

background noise in the image.

2.6.2 Morphological closing

The closing of an image f by SE B, denoted φB (f), is de�ned as the dilation of f with

a SE B followed by the erosion with the same SE B:

φB (f) = εB [δB (f)] , (2.10)

i.e. φB = εBδB. Using set formalism, we have the following question for de�ning a

closing: �Does the SE �t the background of the set?� If yes, then all points of the SE

belong to the complement of the closing of the set:

φB (X) = [∪x {Bx | Bx ⊆ Xc}]c . (2.11)

An equivalent formulation, using the intersection of all translations of the complement

of the SE B such that it contains X, is given by:

φB (X) = ∩x {Bc
x | X ⊆ Bc

x} . (2.12)

Figure 2.24 shows an example of a noisy image, with an closing performed using an

elementary cross structuring element. As can be seen from Figure 2.24, the closing is

successful in removing the foreground noise in the image.

13Code used to add noise was obtained from http://stackover�ow.com on 12 June 2015.

http://stackoverflow.com/questions/22937589/how-to-add-noise-gaussian-salt-and-pepper-etc-to-image-in-python-with-opencv
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(a) Noisy image f (b) Closing of f by elementary cross

Figure 2.24: Closing applied to a noisy image.

2.6.3 Properties of openings and closings

Duality

When an opening is applied to a set, it is examined from the inside as the SE has to

�t the set. More precisely, if an object pixel cannot contain the SE, it is removed by

the opening. A closing will do the opposite as it adds background pixels that cannot

contain the SE. Hence, opening an image is the same as the closing of the complemented

image and then complementing the resulting image. That is, openings and closings are

dual transformations with respect to set complementation:

γB = {φB{.

This can be demonstrated by expanding the right hand term of the above:

{φB{ = {εBδB{

= {εB{εB

= {{δBεB

= δBεB

= γB.

Ordering relations

Openings are anti-extensive transformations as they remove object pixels, and closings

are extensive transformations as they add objet pixels. These transformations therefore
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satisfy the following ordering relationship:

γB ≤ id ≤ φB.

It follows that by simply performing the arithmetic di�erence between the input image

and the opened image (or the arithmetic di�erence between the closing and the original

image), we get an image of the pixels that have been modi�ed by the opening (closing).

Increasingness and idempotence

Morphological openings γ and closings φ are both increasing transformations:

f ≤ g ⇒

{
γB (f) ≤ γB (g)

φB (f) ≤ φB (g)
.

Openings and closings therefore maintain ordering relations between images, and con-

secutive applications of openings or closings will not further modify the image. To

show this, note from (2.9) that the opening of a set X by an SE B can be written as

the union of translations Bi of B for some i: γB (X) = ∪iBi. It follows that:

γB [γB (X)] = ∪x {Bx | Bx ⊆ ∪iBi}

= ∪iBi

= γB (X) .

Similarly for a closing we have that:

φ [φB (X)] = ∩x
{
B{x|Bx ⊇ X

}
= ∩x

{
B{x|Bx ⊇ ∩iBi

}
= ∩iBi

= φB (X) .

The idempotence property is an important property of a �lter as it ensures that

the image will not be further modi�ed when repeating the transformation.

2.6.4 Watershed Transformation

The watershed transformation is a powerful tool for segmentation in images. With

this algorithm, the grey level image is considered as a topographic relief, with every

pixel assigned to a catchment basin of a regional minima [2]. The image intensity is
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considered as the altitude in the topographic relief. Every regional minima zone is then

used to obtain the watershed lines that separate the regions. In other words, each pixel

will �ow along a descending path to a local minimum, and when the altitude of �water�

gradually increases, two catchment basins will reach at some points, called watershed

points [107]. A collection of watershed pixels on the contour is then considered as the

watershed line. A common �aw of standard watershed algorithms is over-segmentation

[2, 35]. Watershed from markers is an e�ective way to reduce over segmentation, in

which case the watershed is performed as a �ooding process where each marker is

associated with a colour. The catchment basins are then �lled uniformly with water,

and when water of distinct colours are about to merge, a wall is put up to prevent

these colours merging. The walled of regions are then the catchment basins associated

with the markers [35]. The markers used in the algorithm are obtained by getting the

regional maxima of a �ltered image, with the input image usually being a gradient of

the original image. In cases where the objects contain a natural �border� around the

foreground objects.

Many algorithms exist for the watershed transformation, and the one discussed here

is that of the minimum-cost path for the watershed from markers transform, as de�ned

in [35]. The minimum-cost path between two pixels p and q is given by the minimal

cost of all the paths connecting p and q:

C∗ (p, q) = min
i
{C (πi (p q))} ,

where πi (p q) is a path linking p to q in G. The cost of a connected path from

p1 to pn is given by:

C (p1, . . . , pn) =
[
C1 (pn) , C2 (pn)

]
,

C1 (p1) = 0,

C1 (pn) = max
{
C1 (p1) , f (p2) , . . . , f (pn)

}
, for n > 1,

C2 (pn) =
n−1
max
j=0

{
C1 (pn) , C1 (pn−j)

}
.

where f is the input image or the gradient of the input image, and C1 (pn) is the

maximum pixel value f (pi) and pi in the path π (p1  pn). Next, the catchment basin

of CBk associated with the marker Lk is given by the pixels p with less than or equal

path cost from this marker than any other marker:

CBk = {p : C∗ (Lk, p) ≤ C∗ (Lj, p) j 6= k} ,

where the image is modelled as a graph and each pixel is a node. C∗ (L, p) is the
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(a) Overlapping objects (b) Distances (c) Separated objects

Figure 2.25: Watershed transform applied to an image of red blood cells.

minimum-cost path from any pixel of region L to pixel p,

C∗ (L, p) = min {C∗ (l, p) : l ∈ L} .

The algorithm proposed in [35], with input image f and output (and labelled image

input) L is a form of a Hierarchical FIFO queue (HFQ), which has two operations:

• inHFQ (p, v): insert pixel p with priority v

• outHFQ: remove the pixel wit the lowest priority. For pixels with equal priority,

the FIFO policy is used.

The algorithm is as follows:

1. Initialisation: for L (p) 6= 0 : inHFQ (p, 0)

2. Propagation:

while HFQ is not empty:

p← outHFQ

for each non-labelled q neighbour of p:

L (q)← L (p)

inHFQ (q, f (q))

Some alternatives and improvements to this algorithm are discussed in [35]. In

Figure 2.25 an example of a watershed is shown. In this example the original image

is �ltered using a median �lter, after which Otsu's threshold is applied. The resulting

image (a) is then used as input into the marker based watershed transform. The

markers are generated as local maxima of the distance to the background. As can be

seen from this example, there is over segmentation in the image due to the �holes�

inside the foreground objects in the image, but addressing this is outside the scope of

this work. From this example it can also be seen that objects that lie too far over the

image border are disregarded in the �nal transformation.
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2.7 Image pre-processing using mathematical mor-

phology

In this section the techniques discussed throughout this chapter are applied towards

solving the greater goal of this work. Here mathematical morphology techniques are

used to pre-process images in order to obtain input values for the Bayesian object

classi�cation algorithm that will be discussed in Chapter 4. The pre-processing will be

done on images of gold nanoparticles obtained using TEM, and is discussed in more

detail in Chapter 3. The structure of the pre-processing can be set out as follows:

1. Filter the original image to remove Gaussian and impulse noise, by using a Gaus-

sian and/or median �lter.

2. Threshold the �ltered image to obtain a binary image, using Otsu's threshold.

3. Apply the opening operator to the image to remove unwanted objects in the

image.

4. Since the image does not contain natural object borders, obtain the gradient.

5. Use the image gradient to obtain markers for the watershed transform.

6. Apply the watershed transform.

7. Obtain image measurements needed for the starting values Bayesian object clas-

si�cation algorithm, most important of which is the number of objects in the

image.

Figure 2.26 shows an example where pre-processing was done on an image of gold

nanoparticles. For this example, the watershed transformation segmented the image

into 31 objects. As can be seen from Figure 2.26, there is some over-segmentation

present, and crucially, some of the occluded objects are classi�ed as a single object.

The latter will be addressed in Chapter 4.

2.8 Summary

In this chapter a basic introduction to image processing and mathematical morphology

is provided. The theory of some of the widely used morphology techniques is discussed

and various examples are provided. A combination of these techniques are used to set

up a process for the pre-processing of images of gold nanoparticles. The results of this

pre-processing will be used Chapter 4 and will serve as input into the Bayesian object

classi�cation algorithm. It is also seen from the examples in this chapter that many
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(a) Original image (b) Gaussian �lter applied to image

(c) Otsu's threshold and opening ap-
plied to image

(d) Gradient of �ltered image

(e) Image with small (less than 5th per-
centile) objects removed

(f) Watershed transformation applied
to image, displayed on a white support.

Figure 2.26: Gold nanoparticle images: image pre-processing steps.
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manual inputs are required for the morphological operators, and that the results of

the pre-processing need some additional work to enable better classi�cation. However,

since this will be addressed in more detail in Chapter 4, no further work was done here

on improving the pre-processing steps. The next chapter will go into more detail on

nanotechnology and the challenges faced when obtaining images of nanoparticles.



Chapter 3

Fractal properties of nanoimage

measurements

3.1 Background

In this chapter some of the concepts introduced in Chapter 2 are used in a variability

study, where it is tested whether the measurements obtained from the sample im-

ages are consistent (discussed in detail later in this chapter). Having already covered

some basic mathematical morphology concepts enables the use of these operators to

pre-process the images obtained during sampling. Analysing the variability in measure-

ments from sampling schemes under varying conditions is a crucial aspect in experi-

mental design. Such analyses help in the identi�cation of the sources of variability and

possibly control for them. These conditions can refer to, amongst others, di�erences

in sampling techniques, di�erences in instrumentation settings (such as magni�cation)

and di�erences in sample preparation (such as waiting time). Experimental designs

that are reliant on crucial user (manual) input are particularly vulnerable to variabil-

ity, as di�erent users may approach the problem in di�erent manners. For example,

one user may choose to use instrument defaults, where as another user may change the

default settings based on experience or prior knowledge. In this study, an important

aspect investigated is the di�erence in particle behavior at the nanoscale where the

analysis will be performed, compared to the bulk scale where the results are imple-

mented. Since the samples are dependent on user input, the main focus of this study

will be to identify possible sources of variability that may in�uence results obtained.

It has been shown that nanoparticles exhibit fractal properties [90], which enables the

modeling of bulk scale behavior using the fractal approach. However, since this ap-

proach is heavily dependent on accurate nanoparticle measurements, it is crucial that

the measurements obtained are consistent, so that accurate conclusions can be drawn

from samples obtained under various sampling conditions. It is therefore important

53
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to understand the source of variability (if any) at the nanoscale, before attempting to

draw conclusions at the bulk scale.

Even though there is widespread interest towards nanoresearch in literature, there

is a paucity of studies dealing with sampling scheme stability and accuracy of image

measurements obtained. The focus of this chapter will be to conduct a preliminary

analysis on variability in measurements made using TEM under varying imaging con-

ditions commonly used. In the present study, it was decided to use a relatively ho-

mogeneous sample in order to minimise inherent sample variability and thus reveal

other sources of variability at play during the analysis, which may likely in�uence the

accuracy of the results obtained. The next section provides a brief overview of nan-

otechnology, followed by some basics of imaging techniques in nanotechnology, after

which the variability analysis is discussed.

3.2 Nanotechnology: A brief overview

Nanotechnology, simply de�ned as the manipulation of matter at nanoscale (one bil-

lionth of a meter), is an emerging interdisciplinary �eld with vast opportunities for

development and the design of smarter devices and more precise solutions to problems

faced in some of the applications where this technology is currently used [127, 124, 82].

Applications exist in various �elds, including biology [121], medicine [126, 6] and

biotechnology [49, 55]. In the biomedical �eld nanotechnology advancements have

led to numerous commercially available nanoproducts [29, 106, 56], with a number of

nanobased products under clinical trial [126]. Research and development of nanobased

products for the use as potential drug cues in cancer treatment [48, 58, 68], Alzheimer's

treatment [105, 103], Parkinson's disease [80], dermatology [34] and several other med-

ical �elds [7, 38, 108, 109, 121], are also receiving great interest. Image analysis in nan-

otechnology has important applications, where there is potential to employ nanopar-

ticles as biomarkers, sensors, and drug targeting agents [124, 120, 114, 59]. With the

rapid advancements in nanoresearch [72], nanoengineered products are becoming more

and more available to the consumer. It is therefore crucial that both opportunities and

risks associated with the development of these products are better understood at both

nanoscale as well as bulk scale, from synthesis to implementation.

An important aspect of nanoparticles is the increased surface to volume ratio of

nanoparticles compared to their bulk form [115]. The increased surface area makes the

particles more reactive and useful in material manipulation studies. Unintended side

e�ects of nanotechnology can thus have a detrimental impact on the future develop-

ment of the technology. These side e�ects, such as toxicity, are of great concern in

nanoresearch as current knowledge gained from studying particles at nanoscale might

present entirely new risks when used in their bulk form [91]. This has led to particular
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interest in the study of toxicity in nanoparticles, where metal nanoparticles have shown

to be tremendously toxic [61].

Due to the ease of preparation and modi�cation [26], the homogeneity of the size

of its nanoparticles and unique optical properties [97], and various applications, the

material chosen for the present study is commercially-produced colloidal gold. These

nanoparticles are being extensively used in drug delivery systems [97, 44], cancer treat-

ment [74, 51, 58], Alzheimer's disease detection and treatment [105, 20], biochem-

istry [37], tumour therapy [50], and biology [31, 120]. Studies on the toxicity of

gold nanoparticles showed that gold nanoparticles can translocate between di�erent

organs [33, 73, 125]; and that biodistribution of gold nanoparticles occur after injec-

tion [74, 10, 112]. It has also been found that gold nanoparticles can induce oxidative

stress [76], and aggravates seizure activity in mice [66]. There is size dependent particle

distribution present in gold nanoparticles and the toxicity e�ect vary with particle size

[33, 112, 25].

3.3 Imaging nanoparticles

Particle size, morphology, surface properties, and compositional information of nanopar-

ticles play a vital role in deciding on the interactions and behavior of nanoparticles in

their bulk form [102]. As a result, it is important to characterise nanoparticle properties

such as diameter, particle size distribution, and surface area - all relevant for subse-

quent application implementation [52, 69]. Some of the most common methods used in

characterisation include Analytical Ultracentrifugation (AUC), UV-Vis Spectroscopy,

Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and

Dynamic Light Scattering (DLS) [26, 30].

AUC is a high speed centrifuge machine that is useful in characterizing nanoparti-

cle sedimentation rates, the occurrence of agglomeration and its resulting size as well

as the absorbance and molecular weights of particles [18, 22, 128, 11, 28]. UIV-Vis

spectroscopy is a technique that is useful in giving an overview of particle sizes, aggre-

gation of particles and concentration of particles [16, 5, 52]. SEM is used to generate

surface information from `bulk' samples. The electron beam is scanned repeatedly in a

raster pattern over a given area and reveals surface information from samples as well

as their size, shape and presence of surface defects, amongst others [81, 53, 94, 21].

In cases where the SEM samples for imaging are mono-layered, there should be little

to no di�erence in the results obtained using TEM. However, when this is not the

case, SEM is not useful in providing details on individual particles. DLS is commonly

used to measure the hydrodynamic diameter of nanoparticles [67, 18], and is useful in

giving information on coating of nanoparticles that is often missed by TEM diameter

measurements. An important additional advantage is that the number of particles
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(a) Magni�cation of 250 000
times

(b) Magni�cation of 500 000
times

Figure 3.1: Gold nanoparticle images obtained at instrument magni�cations of (a) 250
000, and (b) 500 000 times obtained using TEM. Note: manual measurements indicated
on (b).

measured is orders of magnitude greater. However, TEM is perhaps the most used tool

in nanoparticle characterisation. It uses energetic electrons to provide morphological

information on the material samples by producing high quality two-dimensional images

[30, 32, 1]. By scattering beam electrons by atoms in a sample, an image is formed

in the TEM. Atoms that have large molecular weights will be more electron-dense,

and will scatter electrons by larger angles. As these electrons do not reach the image

plane, it creates dark regions in the image. Scattered and unscattered electrons then

lead to an image that contains varying degrees of grey levels. Unlike SEM, TEM does

not allow the user to determine if a feature is located at the top, middle or bottom of

a sample as all this information with be imaged at the same time in two dimensions,

and the best results are gained when samples do not exceed 100nm thickness. With

thicker samples, multiple collisions between illuminating electrons and sample atoms

heating damage along with lower image quality can be caused. Another fundamental

requirement for TEM is for samples to be completely dry before imaging occurs, as

`wet' samples will degrade the high-vacuum environment inside the column, which can

lead to contamination of the microscope.

Figure 3.1 shows examples of gold nanoparticles, visible as dark objects against

a grey background, obtained using TEM at two di�erent instrument magni�cations.

The TEM images used throughout this chapter was sourced by sta� from the National

Centre for Nanostructured Materials of the CSIR, South Africa. As can be seen from

these images, there is some variation in size and shape amongst these, and that there

is a trade-o� between the ease of manual measurement at higher magni�cation at the

expense of the number of particles visible in the �eld of view.

TEM provides images of the silhouettes of individual particles, although occluded

particles may prove challenging. In contrast, other methods do not provide the re-
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searcher with information from individual particles but only measurements of bulk

samples instead.

3.4 A variability analysis of nanoscale image mea-

surements

3.4.1 Sample preparation and considerations

The material chosen for this study is colloidal gold, due to the homogeneity of the size

of gold nanoparticles [97]. Homogeneity in particle size is an important aspect in this

experimental design, since di�erences in particle size will immediately indicate variabil-

ity in the samples. Pre-prepared samples in an aqueous suspension are used for TEM,

where particles have an average particle size of 10nm. TEM samples are supported by a

3mm grid where a nm thin layer of carbon is laid to act as an electron-transparent sup-

port for the nanomaterials during imaging. The gold solution is dispersed on the �lm

by placing a drop of gold colloid on the �lm, drawing excess solutions using a �lter pa-

per before drying, to ensure a mono-dispersed preparation is formed1. A JEOL-JEM

2100 TEM instrument (JEOL, Japan2) was used to obtain images, and ImagePro R©

software (Media Cybernetics, USA3) was used to analyse these images, as well as to

calculate sample statistics from the images obtained. The data used throughout this

study was sourced by sta� from the National Centre for Nanostructured Materials of

the CSIR, South Africa.

3.4.2 TEM operational procedures

Electromagnetic lenses used in electron microscopes su�er from a condition known

as hysteresis, where the previous magnetic history of a lens a�ects the focal length of

such lenses, and thus image magni�cation in the case of the objective lens. Accordingly,

even under optimal operational procedures, size variation of a feature in an object of

approximately 5% is not uncommon [122]. Various microscope conditions were tested

in order to establish the in�uence � if any � of instrument operation upon the variability

of outputs, and these were:

C1: Three magni�cation levels 500 000, 250 000 and 100 000.

C2: Five minute time delay The TEM was allowed a �ve minute stabilization time

before the �rst measurement, and then another �ve minutes prior to each sub-

sequent measurement in the three repetitions. This setting aimed to reduce

1Information obtained on 2014/06/18 at http://ls-ncnsm.csir.co.za/
2More information available at http://www.jeol.co.jp
3More details and software packages available at http://www.mediacy.com.

http://ls-ncnsm.csir.co.za/
http://www.jeol.co.jp/en/products/detail/JEM-2100.html
http://www.mediacy.com/index.aspx?page=Home
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hysteresis by allowing microscope lens currents �ve minutes to stabilize before

image recording in triplicate at each of the magni�cations used.

C3: Upwards magni�cation This condition tested the presence of hysteresis by imme-

diately recording three images in succession after the magni�cation was changed

from (a) 100 000 to 250 000, and (b) 100 000 to 500 000. (The time delay be-

tween magni�cation changes to image recording did not exceed 30 seconds in each

instance.)

C4: Down to 30 000 and up Magni�cation was reduced from 500 000 to 30 000 times

and back up to 500 000 before recording three images immediately. The large

change in magni�cation tested the presence of hysteresis, but in a more severe

manner than C3 above.

3.4.3 Sampling scheme and statistics

To further reduce variability in this preliminary study, the same 5 particles (as shown in

Fig. 3.1(b)) were measured under the various sampling conditions (described in C1-C4

above). The measurements reported (in nanometers) represent the longest diameter of

each particle, with each measurement taken in the same place for each particle. Diam-

eters were drawn manually on images using a mouse as opposed to using a thresholding

function and automated measurement software.

Conditions C1-C4 were all chosen for the speci�c purpose of attempting to introduce

controlled variability in the sampling, in order to determine if imposing these conditions

signi�cantly a�ects the measurements obtained. Since, in practice, researchers and

technicians will not all use the same imaging conditions, it is crucial to examine whether

sampling under varying conditions leads to stable measurements, or not. The sample

measurements obtained from this scheme are given in Table 3.1, and the corresponding

summary statistics are given in Tables 3.2 and 3.3. The key points of the summary

statistics are discussed in Table 3.4.

Based on the observations made, along with visual inspection of the distributions,

there appears to be no obvious outliers present in the data. These distributions are

given in Figure 3.2 for Particle 1, with the rest of the distributions provided in Appendix

A. Note that the x-axes in these �gures are measured on a continuous scale, with

midpoints at intervals of length 0.5 shown on the graphs. Since outliers can impact

analysis, leading to incorrect conclusions, outlier testing and removal is an important

step in any statistical investigation. As such, the inter-quartile range (IQR) outlier

test is used to assess if any of the measurements are outliers. When the results of the

IQR outlier tests were considered, there were no signi�cant outliers in the data. The

basic conditions for the IQR test are:



CHAPTER 3. FRACTAL PROPERTIES OF NANOIMAGE MEASUREMENTS 59

Table 3.1: Sample data for sampling conditions C1-C4 for three repetitions for each of
5 nanoparticles as shown in Figure 3.1.

First
Sampling
Condition

(C1)

Second
Sampling
Condition

Repetition
Particle

1
Particle

2
Particle

3
Particle

4
Particle

5

500 C2 1 8.77 7.89 9.45 9.68 9.52
500 C2 2 8.19 8.4 9.88 9.96 9.36
500 C2 3 8.14 8.24 9.3 9.97 9.54
500 C3(b) 1 8.4 8.83 9.94 9.51 9.3
500 C3(b) 2 8.4 8.35 9.72 9.94 9.2
500 C3(b) 3 8.25 8.19 9.19 9.62 9.41
500 C4 1 8.19 8.93 9.51 9.8 9.53
500 C4 2 7.98 9.46 9.82 9.35 9.25
500 C4 3 8.24 8.35 9.98 9.67 9.3
250 C2 1 9.5 9.27 10.79 10.7 10.44
250 C2 2 9.27 9.44 10.27 10.87 10.68
250 C2 3 9.6 8.88 10.33 10.76 10.79
250 C3(a) 1 9.15 8.92 10.68 9.75 10.09
250 C3(a) 2 9.27 9.85 10.79 10.71 10.33
250 C3(a) 3 9.62 9.5 10.32 9.99 10.33
100 C2 1 9.11 9.04 9.94 10.37 10.18
100 C2 2 9.73 8.62 9.73 10.02 10.29
100 C2 3 9.18 7.51 9.45 9.18 10.01
100 - 1 9.11 9.04 9.94 10.37 10.18
100 - 2 9.73 8.62 9.73 10.02 10.29
100 - 3 9.18 7.51 9.45 9.18 10.01
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Table 3.2: TEM sample statistics

Descriptive Particle Mean Median Skewness Kurtosis Std.
dev.

Range

Complete
sample

1 8.91 9.11 -0.16 -1.54 0.60 1.75
2 8.71 8.83 -0.26 -0.40 0.64 2.34
3 9.91 9.88 0.52 -0.49 0.47 1.60
4 9.97 9.96 0.29 -0.68 0.50 1.69
5 9.91 10.01 0.04 -1.39 0.51 1.59

Repetition
1

1 8.89 9.11 -0.46 -0.84 0.46 1.31
2 8.85 8.93 -2.08 5.06 0.44 1.38
3 10.04 9.94 0.57 -1.04 0.52 1.34
4 10.03 9.80 0.46 -1.60 0.45 1.19
5 9.89 10.09 -0.24 -1.89 0.43 1.14

Repetition
2

1 8.94 9.27 -0.23 -2.12 0.74 1.75
2 8.96 8.62 0.47 -1.89 0.60 1.50
3 9.99 9.82 1.69 2.29 0.40 1.07
4 10.12 10.02 0.24 -0.10 0.51 1.52
5 9.91 10.29 -0.20 -2.34 0.62 1.48

Repetition
3

1 8.89 9.18 -0.12 -2.38 0.66 1.48
2 8.31 8.24 0.54 -0.09 0.71 1.99
3 9.72 9.45 0.43 -2.02 0.48 1.14
4 9.77 9.67 0.84 0.92 0.55 1.58
5 9.91 10.01 0.51 -0.65 0.54 1.49
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Table 3.3: TEM sample statistics (continued)

Descriptive Particle Mean Median Skewness Kurtosis Std.

dev.

Range

100 000

Magni�cation

1 9.34 9.18 0.92 -1.88 0.30 0.62
2 8.39 8.62 -0.67 -1.88 0.71 1.53
3 9.71 9.73 -0.24 -1.87 0.22 0.49
4 9.86 10.02 -0.62 -1.88 0.55 1.19
5 10.16 10.18 -0.35 -1.88 0.13 0.28

250 000

Magni�cation

1 9.40 9.39 -0.05 -2.31 0.20 0.47
2 9.31 9.36 0.16 -0.85 0.37 0.97
3 10.53 10.51 0.07 -3.00 0.25 0.52
4 10.46 10.71 -1.01 -1.20 0.47 1.12
5 10.44 10.39 0.14 -0.76 0.26 0.70

500 000

Magni�cation

1 8.28 8.24 1.23 2.51 0.22 0.79
2 8.52 8.35 0.95 0.73 0.47 1.57
3 9.64 9.72 -0.39 -1.45 0.29 0.79
4 9.72 9.68 -0.37 -0.74 0.22 0.62
5 9.38 9.36 0.12 -1.61 0.13 0.34

Five minute

time delay

1 9.05 9.18 -0.71 -0.75 0.58 1.59
2 8.59 8.62 -0.36 -0.77 0.64 1.93
3 9.90 9.88 0.56 -0.41 0.49 1.49
4 10.17 10.02 -0.36 -0.52 0.56 1.69
5 10.09 10.18 -0.16 -1.46 0.52 1.43

Upwards

magni�cation

1 9.01 9.15 -0.29 -1.35 0.54 1.48
2 8.76 8.83 -0.21 0.21 0.70 2.34
3 9.97 9.94 0.30 -0.79 0.54 1.60
4 9.90 9.94 0.31 0.20 0.46 1.53
5 9.90 10.09 -0.72 -1.54 0.47 1.13

Down to 30

000 and up

1 8.14 8.19 -1.48 N/A 0.14 0.26
2 8.91 8.93 -0.13 N/A 0.56 1.11
3 9.77 9.82 -0.90 N/A 0.24 0.47
4 9.61 9.67 -1.14 N/A 0.23 0.45
5 9.36 9.30 1.52 N/A 0.15 0.28
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Table 3.4: Sample statistics summary

Sampling
condition

Summary

Repetition
samples • Mean measurements across di�erent repetitions in the sampling

scheme seem to be consistent (this is tested in the next section).

• The medians being close to the means suggests approximate sym-
metry in the data. This is con�rmed by the skewness measure-
ments, with the exception of particle 2, repetition 1 and particle 3,
repetition 2, where it is observed that these particles are negatively
and positively skewed, respectively.

• The kurtosis measurements vary across both the individual parti-
cles as well as the di�erent repetitions. For those particles where
the kurtosis is much greater than 0, the distribution will have very
sharp peaks, whereas those particles with kurtosis much less than
0 have a multiple peaks, lower than that of a Normal distribution.

• Even though there is varying results for the skewness and kurtosis,
the standard deviation and range is consistently low, and close to
the overall sample results, indicating that the values observed are
clustered closely together.

Magni�cation
level

samples
• The means and medians across di�erent magni�cation levels exhibit

some variation. The means, however, are consistently close to the
medians for each magni�cation level.

• The skewness measurements vary from approximately symmetric
to skewed for the di�erent paricles at di�erent magni�cation levels.

• The kurtosis, with the exception of particle 1 and 2 at 500 000 times
magni�cation, is consistently negative, indicating that its central
peak is lower and broader, and its tails are shorter and thinner
than that of a Normal distribution. For kurtosis measurements
much less than zero, there are multiple peaks in the distributions
per magni�cation level. For particle 1 and 2, at 500 000 times
magni�cation, the distributions are �at, as the kurtosis is greater
than 0.

• Both the standard deviation and range measurements are consis-
tently lower than the overall sample versions.

• This, combined with the observations made for the mean and me-
dian, gives indication that there are di�erences in the distributions
for the di�erent magni�cation levels .

Note: Table continued on next page.
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Sampling
condition

Summary

Imaging
condition • The means for the di�erent conditions appear to be close to the

overall sample mean for all particles, with the respective medians
close to the means.

• The skewness measurements across di�erent conditions mostly in-
dicate moderately skew distributions, with the distributions for the
�Down to 30 000 and up� condition being highly skewed.

• There is negative kurtosis for majority of the conditions and par-
ticles, indicating that the distributions, compared to the Normal
distribution, have a central peak that is lower and broader, with
shorter and thinner tails.

• For all sampling conditions, apart from �Down to 30 000 and up�,
the standard deviation and ranges are approximately the same as
that of the overall sample for each of the particles.

• For the �Down to 30 000 and up� condition the smaller sample size
impacts the standard deviation and range.

• Compute the inter-quartile range: IQR=Q3-Q1, with Q3 the third quartile, and

Q1 the �rst quartile.

• Compute the upper and lower bounds for testing as: U = Q3 + 1.5× IQR and

L = Q1− 1.5× IQR.

• If a measurement lies below L or above U the measurement is considered an

outlier.

3.4.4 Investigating equality in distributions

We next proceed with testing whether the di�erent conditions C1-C4 under which

sampling took place have any in�uence on the results obtained. To that e�ect, we

test for equality of the underlying distribution of the data from di�erent measurement

conditions. Since the sample size is small (n = 5), and given that normality tests are

impacted heavily by sample size, and on visual inspection of the sample distributions,

it was decided to use nonparametric tests for the analysis of equality of distribution.

Speci�cally, we considered the Kolmogorov-Smirnov test, the Wilcoxon Rank Sum test

and the Ansari-Bradley test. The Wilcoxon rank sum test and the Ansari-Bradley

test outperform the Kolmogorov-Smirnov test when the spreads and shapes, and the
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Figure 3.2: Sample distributions (Particle 1). This �gure shows the distribution of
the intensity values measured, split into the following categories: Repetition, Magni-
�cation and Other conditions. Repetition further splits the samples into the di�erent
repetitions, magni�cation into the di�erent magni�cation levels used and conditions
into the remainder of the sampling conditions. For each main group the distributions
are split between the di�erent levels, for example between repetitions 1, 2 and 3. Each
sub-graph shows on the x-axis the intensity values and on the y-axis the percentage of
observations within the range corresponding to the x-axis value.
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median and shapes of the two distributions are the same [93]. Since the observations

in Table 3.4 and visual inspection of the sample distributions indicate that this is not

the case, these tests are not expected to outperform the Kolmogorov-Smirnov test.

We therefore use Empirical Distribution Function (EDF) goodness of �t tests with

the two-sample Kolmogorov-Smirnov test statistic to test the hypothesis H0: Equal

distributions against Ha: Unequal distributions. Details on the test is described in

[113, 98, 84]. Note that though other techniques, like Q-Q plots, exist, it was decided

to use the two-sample Kolmogorov-Smirnov test due to the abovementioned reasons,

and not to consider other techniques. The procedure used for this study is as follows:

• For each condition under consideration (C1-C4), divide the data so that only two

of the levels are present (for example, keep only Repetition 1 and Repetition 2

data).

• For each pair, test the null hypothesis speci�ed above. Exact, rather than ap-

proximate tests, are performed due to small sample sizes.

• Test at a signi�cance level of α = 0.05, reject H0: Equal distributions in favour

of Ha: Unequal distributions if p-value < 0.05.

From the p-values obtained, given in Table 3.5, the following conclusions are made:

• Since all p-values for di�erent repetition comparisons are ≥ 0.05, we cannot reject

H0: Equal distributions, and conclude that repeating the sampling does not cause

changes in the underlying distribution.

• Since all but one of the p-values for di�erent sampling conditions comparisons

are ≥ 0.05, we cannot reject H0: Equal distributions, and conclude that sam-

pling under the di�erent conditions does not cause changes in the underlying

distribution.

• For the di�erent magni�cation levels, there are varying results for the p-values,

with majority of the p-values < 0.05. We can conclude that there is su�cient

evidence supporting the alternative hypothesis that sampling at di�erent magni-

�cation levels causes di�erences in measurements obtained.

The results of the initial study makes it clear that magni�cation levels have an

impact on the measurement results. It is important to note that greater sample sizes,

and therefore more particles and sampling repetitions, can have a signi�cant impact

on the results obtained.
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Table 3.5: p-values for the Kolmogorov-Smirnov test.

Comparison Particle 1 Particle 2 Particle 3 Particle 4 Particle 5

Rep1 & 2 0.5412 0.5412 0.5412 0.5412 0.5412
Rep1 & 3 0.5412 0.2032 0.5412 0.5412 0.9375
Rep2 & 3 0.9375 0.2032 0.2032 0.5412 0.9375

Mag 100 & 250 0.4413 0.1389 0.0050 0.1389 0.0310
Mag 100 & 500 0.0015 0.8186 0.9942 0.0815 0.0015
Mag 250 & 500 0.0015 0.0257 0.0015 0.0135 0.0015

5 Min & Down 30 0.1314 0.9639 0.9639 0.1314 0.1314
5 min & 100 up 0.9794 0.9794 1.0000 0.6994 0.6994

Down 30 & 100 up 0.0222 0.9639 0.9639 0.4910 0.2700

3.5 Concluding remarks and recommendations

In this preliminary study we have investigated the impact of varying imaging con-

ditions on the measurements obtained using TEM. Commercially-produced aqueous

colloidal gold is used for the investigation, where the average particle sizes are 10

nm. Di�erent imaging conditions are considered, with three samples obtained for each

condition. Sample statistics gave an indication that there is variation amongst di�er-

ent magni�cation levels, which was con�rmed with EDF tests, using the two-sample

Kolmogorov-Smirnov test statistic. The tests also con�rmed that repeated sampling

under the same conditions does not cause variation amongst the measurements ob-

tained. This was also the case for sampling under di�erent imaging conditions, such

as time delay.

With initial results indicating that image measurements at varying magni�cation

levels in TEM do cause variation in the measurements, the recommendation is made

that magni�cation levels be carefully selected prior to obtaining samples using TEM.

Given that instrument calibration is done at low and intermediate magni�cation (less

than 200 000), it is possible the variation observed originates from the extrapolation of

this relationship to higher magni�cations. Conducting an actual calibration at higher

magni�cation (rather than using extrapolated values) would almost certainly address

this problem. Following on from the results of the preliminary study, further investi-

gation will be done to explore the accuracy and repeatability of sample measurements

obtained when using TEM in combination with image analysis software capable of

performing thresholding and automated measurements. The automated measurement

approach that will be used to conduct the study can be outlined as follows:

1. Capture images using TEM at 100 000 times magni�cation. This commonly

used magni�cation level has proven to be a good compromise between particle

visibility and image size (and therefore number of particles in the image);

2. Apply a simple thresholding to the image using ImagePro R©;
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3. Obtain several di�erent images from the same sample image, by selecting a num-

ber of non-overlapping areas in the sample image. This allows the user to obtain

similar samples from independent regions with a varying number of particles in

each new image;

4. For each of the new images obtain a selection of measurements using the built-in

capabilities of ImagePro R©. These include measurements such as:

• Mean region diameter,

• Circularity,

• Fractal dimension,

• Roundness,

• Maximum and minimum diameter,

• Mean centroid;

5. Convert the RGB image to an 8-bit greyscale image, followed by blob detection is

done using 8-connectivity, where areas are restricted to a predetermined minimum

and maximum number of pixels;

6. Perform a watershed segmentation to split touching particles, using the default

setting in ImagePro R©;

7. Identify and remove �oddly� shaped particles using visual inspection.

Performing such a study is necessary to ensure consistent sample measurements are

obtained using either manual measurements, or the built-in capabilities of ImagePro R©.



Chapter 4

Object classi�cation in nanoimages

4.1 Background to object classi�cation in nano-

images

As discussed in Chapter 3, the characterisation of nanoparticle properties (such a

diameter, particle size distribution and surface area) is important for application im-

plementation [102]1. As such we need to have a reliable method for identifying the

nanoparticles in the nanoimage, from which we can then be able to obtain their char-

acteristics. In the TEM analysis, occlusion of particles provide challenges in recognising

these particles, and the object classi�cation procedure must therefore be able to cor-

rectly identify these occluded particles. The aim of this chapter is to discuss the detail

of such a method, and to provide an illustration of the implementation of this method.

To set the scene, a brief overview of some recent work on object classi�cation in

nanoimages is provided. Huitink et al. [57], in 2010, present a multivariate statistical

approach to analyse nanoparticles and their boundaries. The technique used includes

a semi-supervised learning procedure, with an embedded Bayesian multiclass logistic

regression method to classify possible object shapes (e.g. circles, ellipses, triangles).

The procedure in [57] is outlined as follows:

1. An edge detection algorithm detects object boundaries, where edges are identi�ed

as all the line segments on which colour di�erences are signi�cantly high;

2. After noise removal and collecting only those boundaries that form complete

closed shapes, the centroids of each of the shapes are found;

3. The identi�ed shapes are classi�ed into groups of similar shapes;

1As discussed in Chapter 3, application implementation relates to the development and design of
smarter devices and more precise solutions to problems faced in some of the applications where this
technology is currently used [127, 124, 82].

68
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4. Finally, the most probable shapes are identi�ed - using a Bayesian multiclass re-

gression method - and overlapping particles are separated into individual shapes.

The procedure in [57] is e�ective in capturing 85%− 95% of the shapes present in the

images. The results of [57] are fundamental to the work done by Park et al. [94] (2011)

and Konomi et al. [70] (2013) since the results give a �nite set of possible shapes that

the nanoparticles can take.

Park et al. [94], in 2011, present a multi-stage, semi-automated procedure that

can be used in morphological analysis of nanoparticles. The procedure makes use of

several statistical learning tools, including multidimensional scaling, semi-supervised

clustering, multiclass classi�cation, peak detection, and functional principle component

analysis (fPCA). The procedure in [94] is outlined as follows:

1. Particle boundaries are extracted using an edge detection algorithm, and a simple

thresholding rule is applied to remove unnecessary edges;

2. The extracted boundaries are changed into parametric curves, to ensure invari-

ance under rotation, scaling and translation;

3. By using a rotationally invariant similarity measure on the space of parametric

curves and a non-linear projection of these parametric curves to a low dimensional

Euclidean space, a rotationally invariant, reduced dimension feature set is created

that can be used in shape clustering;

4. Graph-based semi-supervised learning is used, where labeled and unlabeled data

are represented as vertices in a connected graph, to label the data;

5. Convexity analysis is used to split a composite boundary into individual bound-

aries, each of which becomes an incomplete boundary;

6. A k−nearest neighbour classi�er is used to classify a nanoparticle with incomplete

neighbour information;

7. A shape recovery method, using fPCA, is used to estimate the missing part of an

incomplete boundary;

8. Finally, summary statistics of the morphology of the nanoparticles are obtained,

using

(a) the size distribution,

(b) the shape distribution, and

(c) the distribution of the aspect ratios.
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The procedure suggested in [94] is successful in recognising 94− 100% of particles for

images with small number of overlapping particles, and 78 − 95% of particles for im-

ages with a multitude of overlapping particles. The drop o� in classi�cation success

from images with small overlap to those with more overlapping particles makes the

procedure less useful in applications where TEM images are used, due to the challenge

faced with occlusion of objects in these images.

In 2013, Konomi et al. [70] address this issue by presenting an automatic image seg-

mentation and classi�cation procedure, which simultaneously detects the boundaries

and classi�es the nanoparticles into one of the predetermined shape families. A high

level outline of the procedure proposed in [70] is given in Figure 4.1, and can brie�y

be described as follows:

1. By treating each particle in the image as an object, it is possible to specify each

object uniquely using a set of object parameters, such as, but not limited to,

scale, location, and rotation. Since these parameters will vary from object to

object, the parameters are assumed unknown. More details on the speci�cation

of objects are provided in Sections 4.4.1 and 4.4.2;

2. The objects are then modelled as a Markov Point Process (MPP), using the Area

Interaction Process Prior (AIPP). Since there is di�erent degree of overlapping

from image to image, the parameters of the AIPP are assumed unknown. For

now the following may be noted: An MPP is a point process with the property

that its distribution possesses a density that is a Markov function [99]. A brief

introduction to MPPs and more details on the AIPP speci�cation used in this

analysis are discussed in Section 4.2;

3. A Bayesian framework is used to infer the object parameters. This requires

the speci�cation of prior distribution(s) for the unknown parameters of interest.

In a closed form Bayesian analysis the posterior distribution can be obtained

analytically. However, in this instance, the unknown AIPP parameters lead to an

intractable normalising constant, which in turn leads to an intractable posterior.

The priors used in this analysis are discussed in Section 4.4.5;

4. Owing to the complexity in obtaining the posterior distribution, an alternative

approach is needed. A Markov Chain Monte Carlo (MCMC) framework is used

to simulate the unknown posterior distribution, and is particularly useful in this

analysis due to the presence of an unknown normalising constant.

Since an appropriate theoretical overview of the techniques used in this analysis has

not yet been provided in this chapter, we only give a brief overview of the steps in

Figure 4.1, with Figure 4.2 providing further detail on step Main 4 in Figure 4.1. After
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Figure 4.1: Outline of Konomi et al 's procedure, showing the main steps (or compo-
nents) that make up the algorithm. Note that step `Main 4' is further outlined in
Figure 4.2. [70].
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Figure 4.2: MCMC diagram detailing further the steps followed to obtain the posterior
distribution, that is, step `Main 4' in Figure 4.1. The steps in this diagram are divided
into `MCMC Inner' and `MCMC Outer' steps, where multiple repeats of the `MCMC
Inner' steps can occur in a single `MCMC Outer' step.

the theoretical background to the techniques have been provided, detailed descriptions

of steps Main 1 - Main 4 are provided in Sections 4.4 and 4.5. The aim in this chapter

is to use this method to classify the objects in the nanoimage of gold nanoparticles

obtained using TEM, with the main motivation being that this method is an automated

classi�cation algorithm that can deal with occluded objects. The remainder of this

chapter is set out as follows: Section 4.2 gives a brief introduction to MPPs and

provides a de�nition for the AIPP; Section 4.3 provides an overview of MCMCmethods;

in Section 4.4 we discuss the details of steps Main 1, Main 2 and Main 3 as labeled in

Figure 4.1. In Section 4.5 details of step Main 4 in Figure 4.1, or alternatively steps

MCMC 1, MCMC Inner 1 - MCMC Inner 4 and MCMC Outer 1 - MCMC Outer 3

as labeled in Figure 4.2 is provided. Section 4.7 provides details of the simulation
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results of this algorithm, implemented in Matlab R©, with Section 4.9 providing some

concluding remarks and recommendations.

4.2 Markov Point Processes (MPPs) and the Area

Interaction Process (AIPP)

Since the speci�cation of an AIPP is fundamental to the occlusion algorithm used in

this study, we provide here an overview of MPPs and in particular the AIPP. Some

preliminary notation and de�nitions are needed, as provided in [99]:

• (X,X , µ) is a �nite measure space, with the σ−�eld X containing all singletons2;

• (Xe,Xe, ν) is the corresponding exponential space, as de�ned in [23], that is, Xe

is the union of the classes X1, . . . , Xn ⊆ X[99];

• ν is the distribution of the Poisson process with mean measure µ;

• if t1, t2, t3, . . . are independent EXP (λ) random variables, with Tn = t1 + t2 +

. . .+tn for n ≥ 1, and T0 = 0, then N (s) = max {n : Tn ≤ s} is a called a Poisson

process, and N (s) ∼ POI (λs)[36] (see [36] for a detailed discussion on Poisson

processes);

• an environment E (A) of A ⊂ X is de�ned as E (A) = {ξ | ξ ∼ η for some η ∈ A}
and `∼' is a measurable symmetric re�exive relation;

• a function f : Xe is called a Markov function if and only if there is a function

g : X ×Xe such that

f (x ∪ y) = f (x) g (y, x ∩ E (y)) , for all x ∈ Xe, y ∈ X.

Then a point process on X is a measurable map from a probability space3 to (Xe,Xe),

with its distribution being the probability induced on Xe, and a Markov Point Process

(MPP) is a point process whose distribution has a density with respect to ν, which

is a Markov function [99]. Based on the theory provided on MPPs by [99], Baddeley

2

� A �nite measure space is a measurable space with a �nite number of nonnegative measures [15],

� a σ−�eld (or σ−algebra) X is a non-empty collection of subsets of X such that (i) X is in X ,
(ii) if a set A is in X then so is the complement of A, and (iii) if An is a sequence of elements
of X then the union of all of the elements {Ai}ni=1 is in X [15].

� a singleton is a set with exactly one element.

3A probability space is a measurable space (S,S , P ), with P a measure de�ned on S , with
P (S) = 1 [15].
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and van Lieshout in 1995 [9] introduced an MPP called the Area Interaction Process

Prior (AIPP). The general case of the AIPP is de�ned as follows [9]: The AIPP in a

compact region A ⊆ Rd is the process with density

p (c) = αβn(c)γ−ν(U(c)),

with respect to the unit rate Poisson process (λ = 1) on A, where

• c = {c1, . . . , cm} , ci ∈ X;

• n (c) = m is the total number of points;

• β, γ, r are the parameters;

• α is the normalising constant;

• ν is a �nite Borel regular measure, that is for each set X ⊆ Rd there exists a

Borel set B ⊃ X (an element of the σ−�eld generated by the open sets), such

that ν (B) = ν (X); and

• U (c) = ∪mi=1Z (ci) with Z a myopically continuous function that assigns to each

ci ∈ X a compact set Z (ci) ⊆ X.

For the study at hand, consider the case where we wish to model the objects in an

observed image y = {yt : t ∈ T} , where the image space T is a �nite set, and in the

case of a greyscale image t ∈ T ranges over the set {0, 1, . . . , 255} (as discussed in

Chapter 2). Denote by X the (�nite) set of possible parameter vector values that can

be used to represent the objects, so that a point c ∈ X represents an object R (c) ⊆ T ,

then an object con�guration is an unordered list of objects c = {c1, . . . , cm} , ci ∈ X
[8]. Further denote by S (c) = ∪mi=1R (ci) the silhouette formed by taking the union of

all the objects in the con�guration. Using this setting, an overlapping object model

can be speci�ed using the AIPP, de�ned as

p (c) = αβn(c)γ|S(c)|,

with parameters β > 0, δ ≥ 1, and |S (c)| is the area, or pixel count, of the silhouette

[8]. We discuss the speci�cation of objects in the image in Sections 4.4.1 and 4.4.2,

with details on the AIPP used in the occlusion algorithm provided in Section 4.4.3.

4.3 Markov Chain Monte Carlo methods

Real world statistical problems involve observed data x that we wish to use in deter-

mining some unknown quantity (or vector of quantities) θ of interest. In the Bayesian

framework [79, 45], data analysis amounts to
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1. specifying a sampling model X for the observed data x, conditional on the un-

known parameter θ,

X ∼ f (x | θ) , x ∈ X ; θ ∈ Θ,

where f (·) is the probability density function (pdf) or probability mass function

(pmf) depending on the application at hand, X ⊆ Rn is the sampling space and

Θ is the parameter space ;

2. specifying a marginal distribution π (θ) for θ, the prior distribution,

θ ∼ π (θ) , θ ∈ Θ;

3. using Bayes' theorem to compute the posterior distribution,

π (θ | x) =
π (θ)L (θ | x)´
π (θ)L (θ | x) dθ

, θ ∈ Θ, (4.1)

where L (θ | x) ∝ f (x | θ) is referred to as the likelihood of θ given x.

Since we are interested in the characteristics of the posterior distribution (such as the

mean and variance), we must be able to draw samples from π (θ | x). This can be

done using direct sampling techniques (for closed form case), or Monte Carlo meth-

ods (for more complicated cases where a closed form is not attainable). One of the

most well-known direct sampling techniques, the Inverse CDF method, relies on get-

ting the inverse distribution function to perform sampling. The inverse CDF method

[100] generates a random variable X with a cumulative distribution function F by

�rst sampling a random variable U ∼ UNI(0, 1) from a standard uniform distri-

bution, then applying the inverse transformation to obtain the desired distribution

X = F−1 (U) = min {x | F (x) ≥ U}. It is a common occurrence that an analytical

form for F is unknown or it is impractical to obtain the inverse form of the distribution

function F . In such instances, Monte Carlo methods are popular to generate samples

from the target distribution [42]. With Monte Carlo methods, the aim is to generate

samples from a given probability distribution and to use these samples to estimate ex-

pectations of functions under this distribution (such as the mean or variance). Monte

Carlo methods rely on the fact that π (θ) f (x | θ) is proportional to a density [100].

With these methods, given some measurable function h (θ), the Law of Large Numbers

is used to calculate
´
h (θ) π (θ) f (x | θ) dθ, since, given that we are able to generate

random variables {θi}Ki=1 from π (θ), the average 1
K

∑K
i=1 h (θi) f (x | θi) almost surely

converges to
´
h (θ) π (θ) f (x | θ) dθ as K −→ ∞ [100]. In addition, if an i.i.d (inde-

pendent and identically distributed) sample of θ's can be obtained from the posterior
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π (θ | x), then [100]

lim
K−→∞

(
1

K

K∑
i=1

h (θi)

)
= E [h (θ) | x] =

´
h (θ)π (θ) f (x | θ) dθ´
π (θ) f (x | θ) dθ

.

In one of the commonly used Monte Carlo methods, an importance function g (θ),

with the support of g (θ) including the support of | h (θ) | π (θ) f (x | θ), is used to

generate random variables {θi}Ki=1, and 1
K

∑K
i=1 h (θi)ωi (θi) is used to approximate´

h (θ) π (θ) f (x | θ) dθ, with ωi = f (x | θi) π (θi) /g (θi) [100]. The reader is referred

to [42] for a detailed overview of this method known as the Importance algorithm and

other Monte Carlo methods.

Alternatives to Monte Carlo methods have been proposed to address the problem of

intractable normalising constants. One of the approaches, Markov Chain Monte Carlo

(MCMC), has proven to be particularly useful and popular, and in some cases the

only feasible approach [110]. A Markov chain is a sequence of random variables{
X(i) : i = 0, 1, 2, . . .

}
with the Markov property:

p (x, y) = P
(
X(t+1) ∈ A | X(0) = x0, X

(1) = x1, . . . , X
(t) = xt

)
= P

(
X(t+1) ∈ A | X(t) = xt

)
,

for t = 0, 1, . . . , with x, y two states, where A ∈ X is some measurable set [79] and

let P = {p (x, y)} be the transition matrix. In other words, given the present state,

the next state is dependent only on the current state and independent of past states.

The basic idea behind MCMC is as follows: Suppose we want to generate samples

from a distribution f (x), with x ∈ X ⊆ Rn but cannot do this directly. However, if

we were able to construct a Markov chain with state space X (from which we are able

to simulate) with f (x) the invariant distribution of the Markov chain, we could run

the chain for a su�ciently long period to obtain simulated values from which we can

study features of f (x) [110]. In order for f to be the invariant distribution it must

satisfy f (·) × P (·) = f (·), but it is also su�cient for the transition matrix to satisfy

the detailed balance condition [36]

f (x) p (x, y) = f (y) p (y, x) , for all x 6= y. (4.2)

To visualise this, think of the invariant as having f (x) litres of some liquid at the

starting position in container x (and f (y) litres in container y), and when a transition

is made in the Markov chain, a fraction, p (x, y), of the liquid is moved from x to

y. This transition is repeated a number of times, until all the transitions have been
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made to reach an equilibrium state - for example when the weight of the containers

are appropriately spread for transportation. If at the end of all the transitions the

distribution of liquid between x and y has remained the same then f (x) is an invariant

distribution. That is, for each fraction p (x, y) of liquid transferred from the f (x) litres

of liquid (transferred from x to y), the same amount of liquid is transferred back from

y to x, expressed as a fraction of liquid, p (y, x), from the starting f (y) litres of liquid.

For the detailed balance condition, the amount of liquid that is transferred from x to

y in one transition is exactly balanced by the amount of liquid being transferred back

from y to x.

The discussion which follows will concentrate on key ideas and concepts of MCMC,

with focus on implementation strategies speci�cally in relation to object classi�cation

in nanoimages. For a detailed overview of MCMC methods that includes appropriate

theoretical frameworks, the reader is referred to [79, 14, 116, 45]. In order to implement

a MCMC strategy, some algorithms are needed that allows the construction of chains

with speci�ed equilibrium distributions. In sections 4.3.1 to 4.3.5 some of the key

algorithms applicable to this investigation are discussed.

4.3.1 The Gibbs algorithm

The Gibbs algorithm, �rst introduced by Geman and Geman in 1984 [41], was popu-

larised by Gelfand and Smith in a 1990 paper [40], where they demonstrated the value

of using the Gibbs algorithm in the Bayesian analysis framework. The Gibbs algorithm

is an iterative sampling scheme, in which sampling is done as follows: Suppose samples

need to be drawn from a target density f (x) , x ∈ X ⊆ RK , with x = (x1, . . . , xK)′

and we denote by

fk (xk | x1, . . . , xk−1, xk+1, . . . , xK) , k = 1, . . . , K (4.3)

the set of conditional distributions, from which samples can be generated.

1. Given an arbitrary starting point x(0) =
(
x

(0)
1 , . . . , x

(0)
K

)
∈ X from f

(
x(0)
)
> 0,

iterate for t = 1, 2, . . .;

2. For k = 1, . . . , K, generate

1 x
(t)
1 ∼ f1

(
x1 | x(t−1)

2 , . . . , x
(t−1)
K

)
,

...

k x
(t)
k ∼ fk

(
xk | x(t)

1 , . . . , x
(t)
k−1, x

(t−1)
k+1 , . . . , x

(t−1)
K

)
,

...
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K x
(t)
K ∼ fK

(
xK | x(t)

1 , . . . , x
(t)
K−1

)
.

It has been shown that the distribution of x(t) =
(
x

(t)
1 , . . . , x

(t)
K

)′
, denoted by ft (x),

will converge to f (x) [79, 101]. Note that for iteration k, x
(t)
i rather than x

(t−1)
i is

used for i = 1, . . . , k− 1, since the updated x
(t)
i will already have been generated. The

Gibbs algorithm will therefore be useful when the conditional distributions f (t) are

more tractable, i.e. can be sampled from, compared to the target density f (x).

4.3.2 Metropolis-Hastings Algorithm

Metropolis et al. [85] introduced the Metropolis algorithm, which was later gener-

alised to the Metropolis-Hastings algorithm by Hastings [54]. The latter is useful

in cases where the conditional distributions of some (or all) of the components in

x = (x1, . . . , xK)′ are not standard. Considering the target distribution f (x) on the

sample space X , the basic idea is to create a Markov chain with some transition kernel

P , with invariant distribution f (x). In addition, to simplify the strategy, the Markov

chain is restricted to be reversible (i.e to satisfy the detailed balanced condition), with

p
(
x(t−1), y

)
the transition probability as de�ned at the beginning of this section. Given

x(t−1), the state of the Markov chain at time t− 1, a two-step approach is used to con-

struct the transition kernel by specifying a symmetric proposal distribution with pdf

q
(
y | x(t−1)

)
= q

(
x(t−1) | y

)
and adjusting random draws from q

(
y | x(t−1)

)
using an

accept-reject rule. Note that throughout this chapter q (·) will be used to refer to a

proposal distribution, where the speci�c distribution used is dependent on the applica-

tion at hand. In many applications, the proposal distribution is chosen to be a uniform

distribution. The Metropolis algorithm is de�ned as follows:

Metropolis algorithm

1. Draw y from q
(
y | x(t−1)

)
;

2. Compute the acceptance ratio as α = α
(
x(t−1), y

)
= min

{
1, f(y)

f(x(t−1))

}
;

3. Set x(t) = y with probability α and set x(t) = x(t−1) with probability 1− α.

The acceptance ratio can intuitively be interpreted as follows: If the target density at

the proposed point y is greater than the target density in the point x(t−1), the current

state, in other words it is more likely to observe the proposed state, then the ratio
f(y)

f(x(t−1))
> 1, and the acceptance ratio will be set to α = 1. We therefore set x(t) = y

with probability 1, and use the proposed state as the next state. The algorithm above

was generalised by Hastings by allowing the proposal distributions to be asymmetric
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[54, 79]. In mathematical terms, the condition q
(
y | x(t−1)

)
= q

(
x(t−1) | y

)
is relaxed

to allow for q
(
y | x(t−1)

)
6= q

(
x(t−1) | y

)
:

Metropolis-Hastings (MH) algorithm

1. Draw y from q
(
y | x(t−1)

)
;

2. Compute the acceptance ratio as α = α
(
x(t−1), y

)
= min

{
1,

f(y)q(x(t−1)|y)
f(x(t−1))q(y|x(t−1))

}
=

min

{
1,

(
f(y)

q(y|x(t−1))/
f(x(t−1))
q(x(t−1)|y)

)}
;

3. Set x(t) = y with probability α and set x(t) = x(t−1) with probability 1− α.

Compared to the acceptance ratio for the Metropolis algorithm, and considering that

q
(
y | x(t−1)

)
= q

(
x(t−1) | y

)
, the acceptance ratio for the Metropolis algorithm can

therefore be expressed as α = min

{
1, f(y)

f(x(t−1))

}
= min

{
1,

f(y)q(x(t−1)|y)
f(x(t−1))q(y|x(t−1))

}
, it is

easy to see that the MH algorithm is de�ned in exactly the same manner. As explained

in [36], the MH algorithm can be seen as starting with a Markov chain q
(
y | x(t−1)

)
(the proposed jump distribution) and a move is accepted with probability

α
(
x(t−1), y

)
= min

{
1,

f (y) q
(
x(t−1) | y

)
f (x(t−1)) q (y | x(t−1))

}
,

so that the transition probability is given by p
(
x(t−1), y

)
= q

(
y | x(t−1)

)
α
(
x(t−1), y

)
.

As noted in [36], this transition probability satis�es the detailed balance condition.

Note that this statement is also valid for the Metropolis algorithm, since q
(
y | x(t−1)

)
=

q
(
x(t−1) | y

)
.

The Independence algorithm

In this case we draw y independently of the current state of the Markov chain , i.e.

q (y | xt) = q (y). In this case, the ratio in step 2 above becomes

α = α (xt, y) = min

{
1,
w (y)

w (xt)

}
= min {1, r (xt, y)} ,

with w (y) = f(y)
q(y)

and w (xt) = f(xt)
q(xt)

. The acceptance ratio again has the same for-

mulation as for the Metropolis and MH algorithms, with the di�erence being that the

proposal distributions have no conditioning, as they are drawn independently of the

current state, and therefore this acceptance ratio leads to a transition probability that

satis�es the detailed balance condition.

It can be seen that in all of the algorithms above the acceptance ratios involves

comparing the value of the target density at the proposed point to the value of the
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proposed density at the current point (with some variations for asymmetric proposals

and independent proposals), with the proposed values being accepted with probability

of 1 if the value at the proposed point is greater than the value of the target density

at the current point (i.e. if the proposed point is more likely).

4.3.3 Metropolis-Hastings-within-Gibbs algorithm (MHWG)

In certain cases, some (or all) of the components/conditional distributions used in the

Gibbs algorithm cannot be easily simulated. A compromised algorithm is suggested,

by replacing a step in the Gibbs algorithm where it is di�cult to simulate from the

conditional distribution fk (xk | x1, . . . , xk−1, xk+1, . . . , xK) with a single MH step for

each iteration [88, 87]. The algorithm has the following form:

For each iteration k = 1, . . . , K and given
(
x

(t)
1 , . . . , x

(t)
k−1, x

(t−1)
k+1 , . . . , x

(t−1)
K

)
, per-

form a single MH step as follows:

1. Draw yk from qk

(
xk | x(t)

1 , . . . , x
(t)
k−1, x

(t−1)
k+1 , . . . , x

(t−1)
K

)
;

2. Compute the acceptance ratio as r = A(yk)

A∗
(
x
(t−1)
k

) , with

A (yk) =
fk

(
yk|x

(t)
1 ,...,x

(t)
k−1,x

(t−1)
k+1 ,...,x

(t−1)
K

)
qk

(
yk|x

(t)
1 ,...,x

(t)
k−1,x

(t−1)
k ,x

(t−1)
k+1 ,...,x

(t−1)
K

) ,

A∗
(
x

(t−1)
k

)
=

fk

(
x
(t−1)
k |x(t)1 ,...,x

(t)
k−1,x

(t−1)
k+1 ,...,x

(t−1)
K

)
qk

(
x
(t−1)
k |x(t)1 ,...,x

(t)
k−1,yk,x

(t−1)
k+1 ,...,x

(t−1)
K

) ,

and α = α
(
x

(t−1)
k , yk

)
= min {1, r}. Note that in each of the ratios A (yk) and

A∗
(
x

(t−1)
k

)
, the kth component is not present in the conditional target density

(as we are conditioning on this component), and the proposal densities are con-

ditioned as follows: For yk the proposal is conditioned on

(a) all of the x
(t)
i for which the updated components are available, that is for

i = 1, . . . , k − 1,

(b) and on all of the x
(t−1)
j for which the updated components at state t are not

available, that is for j = k, k + 1, . . . , K.

For x
(t−1)
k the proposal is conditioned in the same manner as for yk, except for the

kth component, which is replaced by yk, the proposed value for the kth component,

since in this case an �updated� value for the kth component is available;

3. Set x
(t)
k = yk with probability α and set x

(t)
k = x

(t−1)
k with probability 1− α.
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Recall from Section 4.3.2 that the acceptance ratio for the MH algorithm is given by

the ratio α = min

{
1,

(
f(y)

q(y|x(t−1))/
f(x(t−1))
q(x(t−1)|y)

)}
. In the case of the MHWG algorithm,

the ratio is expressed in a similar manner, but the conditional target and proposal

distributions are used in stead, since these are the distributions of interest in this

algorithm. As with the MH algorithm this choice of α leads to a transition

probability p
(
x

(t−1)
k , yk

)
= q

(
yk | x(t−1)

k

)
× α

(
x

(t−1)
k , yk

)
.

4.3.4 The Monte Carlo Metropolis-Hastings (MCMH) algo-

rithm

When sampling from distributions with an intractable normalising constant, the ac-

ceptance ratio contains unknown constants. As mentioned in Section 4.1, in this study

the normalising constant is intractable due to the unknown AIPP parameters. Several

algorithms have been proposed to deal with this problem [77, 86, 89, 24, 14, 43]. In

this section we discuss a Monte Carlo version of the Metropolis-Hastings algorithm

presented by Liang (2013) [78].

Suppose we have a data set x generated from a distribution with likelihood function

f (x | θ) =
1

κ (θ)
g (x; θ) , x ∈ χ, θ ∈ Θ, (4.4)

where θ is the parameter and κ (θ) is the normalising constant that depends on the

unknown parameter θ. Further denote by π (θ) the prior density of θ, then the posterior

density is given by

π (θ | x) ∝ 1

κ (θ)
g (x; θ)π (θ) . (4.5)

In this instance, the MH algorithm described in Section 4.3.2 will have an unknown

ratio κ(θ∗)

κ(θ(t−1))
in the acceptance ratio α, with θ∗ the proposed value of θ and θ(t−1) the

current draw of θ. With the MCMH algorithm proposed by Liang in 2013 [78], the

unknown ratio κ(θ∗)

κ(θ(t−1))
is replaced by a Monte Carlo estimate at each iteration.

Suppose we want to sample from the distribution given in (4.5), the algorithm works

by iterating over the following steps:

1. Draw θ∗ from a proposal distribution q
(
θ∗ | θ(t−1)

)
;

2. Draw auxiliary samples y(t−1) =
{
y

(t−1)
1 , . . . , y

(t−1)
K

}
from f

(
y(t−1) | θ(t−1)

)
using

either an MCMC algorithm or an exact algorithm. These auxiliary samples are

simulated from the most recently updated likelihood function, and will be used

to estimate the normalising constant;

3. Compute the MCMH acceptance ratio
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(a) Estimate the normalising constant ratio R
(
θ∗, θ(t−1)

)
= κ(θ∗)

κ(θ(t−1))
by

R̂
(
θ(t−1), y(t−1), θ∗

)
=

1

K

K∑
k=1

g
(
y

(t−1)
k , θ∗

)
g
(
y

(t−1)
k , θ(t−1)

) .
Given the form of the likelihood function from which the auxiliary samples

were simulated as given in (4.4), the above estimate is intuitively the ratio

of the unknown normalising constant at the proposed state to the unknown

normalising constant at the current state.

(b) Calculate

r̂ = r̂
(
θ(t−1), y(t−1), θ∗

)
=

1

R̂ (θ(t−1), y(t−1), θ∗)

g (x, θ∗) π (θ∗) q
(
θ(t−1) | θ∗

)
g (x, θ(t−1)) π (θ(t−1)) q (θ∗ | θ(t−1))

(4.6)

=
1

�constant�

f̂ (θ∗) q
(
θ(t−1) | θ∗

)
f̂ (θ(t−1)) q (θ∗ | θ(t−1))

and estimate the acceptance ratio using α̃ = α
(
θ(t−1), y(t−1), θ∗

)
= min {1, r̂};

4. Set θ(t) = θ∗ with probability α̃ and set θ(t) = θ(t−1) with probability 1− α̃.

Note the similarity between the MH acceptance ratio α = min

{
1,

f(y)q(x(t−1)|y)
f(x(t−1))q(y|x(t−1))

}
and the MCMH acceptance ratio α̃ = min

{
1, 1

�constant�

f̂(θ∗|x)q(θ(t−1)|θ∗)
f̂(θ(t−1)|x)q(θ∗|θ(t−1))

}
. In the

latter, the �constant�, which is an estimate for κ(θ∗)

κ(θ(t−1))
can be distributed over both

f̂ (θ∗ | x) and f̂
(
θ(t−1) | x

)
, the proportional target distributions de�ned at the pro-

posed and current states in this case, and hence we have an acceptance probability

with the same form as that of the MH algorithm. The reader is referred to [78, 79] for

further discussion on the MCMH algorithm, including convergence results and varia-

tions to the algorithm.

4.3.5 Reversible-Jumps MCMC (RJ-MCMC)

In some statistical problems, the dimension of the unknown parameter(s) is not �xed.

There are many examples of such studies, where broadly the problem relates to the se-

lection between a set of models, with the parameter vector having a di�erent dimension

depending on the model chosen. Examples include, but are not limited to, Bayesian

choice between models with di�erent number of parameters, boundary detection, image

segmentation and object recognition using a marked point process [47, 3, 104, 96]. This

section provides a basic overview of the MCMC algorithm introduced by Green in 1995
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[47] that jumps between parameter subspaces of di�ering dimensionality, making the

algorithm very useful for tackling the above mentioned problem. Some preliminaries

needed for the algorithm are:

• Suppose we have to make a model selection out of a collection of candidate

models {Tk; k ∈ K}, where model Tk has a vector θk = {θ1, . . . , θnk
} of unknown

parameters, and nk the number of parameters needed to specify model Tk;

• Each Tk has its own parameter space Θk ⊆ Rnk ;

• We wish to �t the candidate model Tk to observed data y;

• The full Bayesian model can be written as f (k, θk | y) ∝ π (k) π (θk | k) p (y | k, θk),
where π (k) is the prior probability imposed on model Tk, π (θk | k) is the prior

speci�ed for the parameter θk and p (y | k, θk) is the sampling model for the ob-

served data y. Note that the sampling model is conditional on both k and θk;

• If we let x = (k, θk) and X k = K × Θk we can view the Markov Chain
{
x(t)
}
as

jumping between models changing over the space X = ∪k∈KXk;

• Let x(t−1) =
(
k(t−1), θ

(t−1)
k

)
denote the current state, and x∗ = (k∗, θ∗k) the pro-

posed state for x(t). Also denote the transition probability by p
(
x(t−1), x∗

)
.

The idea behind RJ-MCMC is to match dimensions with the resulting chain such that

f (k, θk | y) ∝ π (k) π (θk | k) p (y | k, θk) is preserved as the invariant distribution. In

other words, the chain must satisfy the detailed balance condition, as de�ned in (4.2):

f (k, θk | y) p
(
x(t−1), x∗

)
= f (y | k, θk) p

(
x∗, x(t−1)

)
.

An intuitive explanation of what the RJ-MCMC algorithm attempts to do is as

follows:

• We wish to be able to move between model choices of (potentially) di�erent

dimension;

• In order to do so, we must ensure that we are able to move from the current state

to the next state, and back again. We therefore require auxiliary random variables

generated from a proposed distribution that will not lead to slow convergence or

low acceptance probabilities. The s such variables are generated for the forward

move, with s∗ variables generated for the reverse move, with the speci�c condition

that the dimensions of the proposed state and the current state will be equal if

these auxiliary variables are added into the mix. That is s + nk(t−1) = s∗ + nk∗ ,

with nk(t−1) the number of parameters needed to specify model Tk(t−1) and nk∗ the

number of parameters needed to specify model Tk∗ , the proposed model;
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• The new state of the chain is then proposed using a bijection T ∗. Along with

the dimension matching properties of the auxiliary variables this proposal is re-

versible;

• The new state is accepted with probability α = min {1, r} ,with an adjustment

made to the ratio r to allow for the dimension matching condition and bijection.

The RJ-MCMC algorithm:

1. Generate model Tk∗ from the proposal distribution;

2. Generate s random variables u1, . . . , us ∼ ψk(t−1)→k∗ , where ψk(t−1)→k∗ is a known

proposed density, and the subscript k(t−1) → k∗ indicates moving from the current

state k(t−1) to the proposed state k∗. The subscript is required to di�erentiate

between the di�erent proposal distributions at the various update times, as the

proposal distributions may di�er in dimensionality. Note that there is no theo-

retical restriction on the form of the proposed density, but care has to be taken

that the choice of the proposed density does not lead to moves that cause a slow

conversion or lead to low acceptance probabilities [39]. The choice of ψk(t−1)→k∗

is therefore dependent on the application at hand, or may simply be chosen as

UNI (0, 1) distribution;

3. Construct the proposed new state θ∗k as (θ∗k, u
∗) = T ∗

(
θ

(t−1)
k , u

)
, where

(a) T ∗ (not related to Tk∗) denotes some deterministic bijection4. The choice

of T ∗ will dictate in which manner the parameters are updated in the RJ-

MCMC algorithm, and this `mapping' is often chosen to be some type of

move with a parameter update. The choice of bijection T ∗ is however depen-

dent on the application at hand; and in this chapter the choice is restricted to

swap, birth-death and split-merge moves. The moves used in this analysis,

i.e. choices for T ∗, are described in detail in Section 4.5.2,

(b) u∗ = (u1, . . . , us∗) are the s∗ random numbers from a known joint density

ψk∗→k(t−1) that are required for the reverse move from θ∗k to θ
(t−1)
k , using the

inverse function of T ∗,

(c) s and s∗ satisfy the dimension-matching condition s+ nk(t−1) = s∗ + nk∗ ,

(d) If nk(t−1) ≤ nk∗ then s
∗ = 0, and if nk(t−1) > nk∗ then s = 0;

4A bijection is a function that is both one-to-one and onto [4], in other words, if T ∗ is a bijection
de�ned on a set A and takes values in setB, then for each a ∈ A and b ∈ B, if a = b then T ∗ (a) = T ∗ (b)
(one-to-one [4]) and for any b ∈ B, there exists an a ∈ A such that b = T ∗ (a) (onto [4]) .
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4. Compute the RJ-MCMC acceptance ratio as

r =
f (k∗, θ∗k | y) q

(
k∗, k(t−1)

)
ψk∗→k(t−1) (u∗)

f
(
k(t−1), θ

(t−1)
k | y

)
q (k(t−1), k∗)ψk(t−1)→k∗ (u)

∣∣∣∣∣∣ ∂ (θ∗k, u
∗)

∂
(
θ

(t−1)
k , u

)
∣∣∣∣∣∣ ,

where

∣∣∣∣ ∂(θ∗k,u∗)
∂
(
θ
(t−1)
k ,u

)
∣∣∣∣ is the Jacobian of the transformation T ∗. Note that the Jaco-

bian can be reduced to 1 if T ∗ is chosen to be the identity transformation. This

occurs in instances where samples in the new space X k∗ are proposed directly,

for example a birth-death or split-merge move [79];

5. Set x(t) = x∗ = (k∗, θ∗k) with probability α = min {1, r} and set x(t) = x(t−1) with

probability 1 − α. Note the similarity between the RJ-MCMC acceptance ratio

and the MH acceptance ratio de�ned in Section 4.3.2, where an adjustment is

made to the acceptance ratio to allow for the dimension matching condition and

bijection. That is the addition of
ψ
k∗→k(t−1) (u∗)

ψ
k(t−1)→k∗ (u)

∣∣∣∣ ∂(θ∗k,u∗)
∂
(
θ
(t−1)
k ,u

)
∣∣∣∣ in the ratio r.

The RJ-MCMC algorithm is therefore a special case of the MH algorithm described in

Section 4.3.2, with the di�erence being that the proposal distribution includes auxiliary

variables to enable dimension matching.

4.4 Occlusion algorithm: Prior and Likelihood speci-

�cation

Recall from Section 4.1 that the procedure proposed in [70] can be described as a

multilevel procedure that can be used to classify occluded objects in an image. In the

following sections we elaborate on the steps given in Figures 4.1 and 4.2.

4.4.1 Object speci�cation

This section provides more information on step `Main 1', as described in Figure 4.1.

Before the complete prior distribution can be speci�ed, it is necessary to know how

the nanoparticles are treated in the procedure. Konomi et al. in 2013 [70], along the

same lines as [8, 104, 83], make use of objects with parametrised shapes to analyse the

image shapes. This is done by specifying

1. Shape template;

2. Shift, scale and rotation parameters, and;

3. Object multiplicity.
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A shape template, T , is used to model the object shape by using a set of parameters,

g0
T = {g0

T (1) , . . . , g0
T (q)} , where q is the number of parameters needed to specify the

object. The g0
T parameters are distinguished into random parameters gr, and constant

parameters gco. That is, g0
T = {gr, gco}. It is important to note that the parameters

are chosen in such a manner that the template will have an area equal to that of the

unit circle (π square units), since any template, once de�ned, can be shifted, scaled and

rotated and still belong to the same family of shapes. Konomi et al [70] also specify

landmarks l0 = {l0 (1) , . . . , l0 (M)}, as the M equally spaced boundary points of a

given template. For completeness, note that the superscript 0 in the notation is used

to indicate that the parameters of interest are related to the shape of the object only

- and not the shifted, rotated, scaled object. As noted in [70], these landmarks can be

determined if one knows the g0
T parameters, and is represented in polar coordinates as

l0 (k) = c0 + S0 (k)

[
cos (θ (k))

sin (θ (k))

]
, where S0 (k) is the distance of the kth landmark

from the center c0 and θ (k) is the rotation with respect to the baseline of the kth

landmark.

After the template is de�ned (i.e. the shape of the object is de�ned), the shift, scale

and rotation parameters need to be de�ned in order to represent the actual object. A

shape with shift c = (cx, cy), scale s and rotation θ is given by the landmarks

l = {l (1) , . . . , l (M)}, with each landmark having polar coordinates

l (k) = c+ c0 + sS0 (k)

[
cos (θ (k) + θ)

sin (θ (k) + θ)

]
.

For the purposes of the analysis in [70],M = 90 landmark points are used for each of the

shapes. That is, for each shape 90 boundary points are used to represent the shape in

the image. Note the similarity in this speci�cation to that of the unshifted, unscaled,

unrotated objects with landmarks l0 (k). As noted in [83], this speci�cation gives a

boundary outline of the object, represented by a piecewise linear path connecting the

M vertices. The use of landmarks to represent the shape of the object is a coding

choice - that is, the choice is made based on how the algorithm will be coded - and

for the purposes of the application in this chapter, the simulated shape rather than a

landmark representation is used to represent the shape in the image.

An image consists ofmultiple objects, each with a potentially di�erent shape. As

mentioned earlier, the number of objects are assumed unknown, and modelled through

a Markov Point Process (MPP). For the application at hand the process used is that of

the Area Interaction Process Prior (AIPP) as de�ned in [8] and [83]. This is discussed

in more detail in section 4.4.3.
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4.4.2 Templates used

Konomi et al. [70] consider a �xed number of di�erent shapes: circle, ellipse, square,

rectangle, triangle. This was done using knowledge gained from a prior study done by

Huitink et al. [57], where it was found that gold nanoparicles have the aforementioned

possible shapes [70]. As the focus of this study is restricted to gold nanoparticles, with

the additional advantage that the nanoscale images have been speci�cally prepared for

this study, the shapes used in the algorithm for the current study will be restricted to

that of circles and ellipses.

4.4.2.1 Template speci�cation for a circle

A circle is speci�ed by

(u− cx)2 + (v − cy)2 = s2,

where (cx, cy) = (0, 0) is the center and s = 1 is the radius. The constant parameters

for a circle is therefore given by g0 (1) = cx = 0; g0 (2) = cy = 0; g0 (3) = s = 1, that is

gco =
{
g0 (1) , g0 (2) , g0 (3)

}
= {0, 0, 1}

with no gr parameters, so that g0
T = {gr, gco} = {0, 0, 1}. For the landmarks we have

that l0 (k) = c0 + S0 (k)

[
cos (θ (k))

sin (θ (k))

]
=

[
0

0

]
+ 1 ×

[
cos (θ (k))

sin (θ (k))

]
. For θ (k) we

follow the same speci�cation as [83] and let θ (k) = 2π(k − 1)/n, for k = 1, . . . , 90.

4.4.2.2 Template speci�cation for an ellipse

An ellipse is speci�ed by[
1

E1

((u− cx) cos (θ)− (v − cy) sin (θ))

]2

+

[
1

E2

((u− cx) sin (θ)− (v − cy) cos (θ))

]2

= 1,

where (cx, cy) = (0, 0) is the center, θ = 0 is the object rotation, so that the major axis

is on the x−axis, E1 ∈ (1.12, 1.4) the largest distance and E2 = 1
E1

the shortest. The

range for E1, as noted in [70], is chosen speci�cally to distinguish the ellipse from the

circle templates, since values of E1 and E2 close to 1 imply that the ellipse is closely

related to a circle. The random speci�cation of E1 allow us to deform the pure shape

to allow for di�erently shaped ellipses to be speci�ed, with the threshold values and

E2 chosen such that the area of the ellipse is π [70]. The parameters for an ellipse is

therefore given by g0 (1) = cx = 0; g0 (2) = cy = 0; g0 (3) = E1 = gr; g0 (4) = E2. In
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other words

gco =
{
g0 (1) , g0 (2) , g0 (4)

}
= {0, 0, E2}

and

gr =
{
g0 (3)

}
= {E1} .

We therefore have that g0
T = {gr, gco} =

{
E1, 0, 0,

1
E1

}
. If a landmark representa-

tion is used, then l0 (k) = c0 +S0 (k)

[
cos (θ (k))

sin (θ (k))

]
=

[
0

0

]
+S0 (k) ·

[
cos (θ (k))

sin (θ (k))

]
.

The reader is referred to [71]5 for a detailed discussion on the other shape templates.

4.4.3 Area Interaction Process Prior (AIPP) speci�cation

In this section we discuss step `Main 2' as highlighted in Figure 4.1. Recall the de�nition

of a MPP and the AIPP from Section 4.2, where the location parameters in the MPP

is represented by c = {c1, . . . , cm}, with m the number of objects in the image. Note

that m should not be confused with M , the number of boundary points used for each

of the landmarks. These parameters, along with the points in the MPP representation

are then modelled using the AIPP [70]:

π (c,m | gr, s, θ, T, γ1, γ2) =
1

A∗
exp (−γ1m− γ2S (η)) =

1

A∗
exp (−γ1m) exp (−γ2S (η)) ,

with

• S (η) is the silhouette formed by taking the union of the objects in the speci�-

cation. That is, S (η) is the set of pixels in the image that are occupied by an

object;

• ηi = {ci, gri , si, θi, Ti} the collection of parameters that represents the ith object,

and η = {ηi}mi=1 = {ci, gri , si, θi, Ti}
m
i=1 = {c, gr, s, θ, T} the set of parameters for

all the objects. Note that ci represents the shift, gri the random parameters, si

the scale, θi the rotation and Ti the template for the ith object;

• γ = {γ1, γ2} a set of positive unknown parameters controlling the potential for

the presence of each object (γ1) and the overlap potential between neighboring

5This supplementary material was obtained online on 2015/01/27 at http://projecteuclid.org

http://projecteuclid.org/euclid.aoas/1372338462#supplemental
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objects (γ2) in the image [83]. Note that γ2 = 0 does not penalise overlapping,

with γ2 =∞ not allowing any overlapping;

• A∗ an unknown normalising constant that depends on all the parameters above,

that is

A∗ = A∗ (η,m, γ) = A∗ (c, gr, s, θ, T,m, γ1, γ2) .

In terms of the notation used in Section 4.2, where p (c) = αβn(c)γ|S(c)|, we have the

following:

• c = {c1, . . . , cm} is the object con�guration (object locations);

• α = 1
A∗

, the unknown normalising constant;

• β = e−γ1 , with γ1 the parameter controlling the presence of objects in the image;

• n (c) = m, with m the number of objects;

• γ = e−γ2 , with γ2 the parameter controlling the overlap between neigbouring

objects.

Note that the AIPP is de�ned conditional on gr, s, θ, T, γ1, γ2 (i.e. these parameters

are assumed to be known).

4.4.4 Likelihood speci�cation

As discussed in Chapter 3, the mean intensity of the background is greater than the

mean intensity of the region of pixels occupied by an object in the TEM image. Let µ =

(µ0, . . . , µm) be the mean vector and σ2 = σ2
m = (σ2

0, . . . , σ
2
m) the variance vector for

the background and objects intensity. In this representation µ0 is the mean background

intensity, and σ2
0 the variance of the intensities of the background pixels, with µi and

σ2
i , i = 1, . . . ,m, the mean pixel intensity and variance of the pixel intensities of the

region of pixels that make up the ith object. In addition, let

Θ =
{
η,m, µ, σ2

}
=
{
c, gr, s, θ, T,m, µ, σ2

}
,

the set of parameters of all m objects. The likelihood function of the observed val-

ues y = {xp, yp}Np=1, where N is the number of pixels in the image, given the object

parameters Θ is then speci�ed using an independent Gaussian model, with [70]

f(y|Θ, γ) ∝
N∏
p=1

exp

{
− 1

2φ(xp)
(yp − δ(xp))2

}
, where (4.7)

• xp is the pth pixel position, i.e. the image domain;
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• yp is the intensity of the pth pixel;

• δ(xp) is the mean intensity of the object that covers the neighbourhood of the

pth pixel;

• φ(xp) is the variance of the pixel intensities of the object that covers the neigh-

bourhood of the pth pixel.

In other words, if the pth pixel is covered by object i ∈ (1,m), where object i contains,

say, ni pixels, then δ (xp) = 1
ni

Σni
k=1yk, where yk, k = 1, . . . , ni are the intensities of the

ni pixels that make up the ith object. Similarly φ (xp) is the variance of the intensities

of the ni pixels that make up the ith object. If the pth pixel is not covered by any

object (in other words form part of the background pixels) then δ (xp) and φ (xp) is

the mean background intensity and the variance of the intensities of the background

pixels, respectively. When a pixel is covered by more than one object (in other words

covered by an occluded object), the minimum mean intensity of the objects is used for

δ (xp) with φ (xp) the corresponding variance of that object [70].

Also note that whenever an object in the image is updated, through either adding

or removing pixels from the object, the mean intensity and corresponding variance of

that object will change, and therefore so will the likelihood calculated using (4.7).

4.4.5 Hierarchical Prior Speci�cation

This section provides a discussion on step `Main 3' as given in Figure 4.1. The following

assumptions are made in the prior speci�cation:

A1: the mean and variance pairs (µi, σ
2
i ) of the background and the objects intensity

are assumed independent;

A2: all the object parameters η = {c, gr, s, θ, T}, except the location parameters (c),

are assumed independent from object to object;

A3: the scale (s), shift (c) , rotation (θ) and template (T ) parameters are assumed

independent of the other parameters {gr,m, µ, σ2};

A4: the random template parameters, gri , are assumed to be closely related to the

template Ti, since the gri are di�erent from template to template.

Given these assumptions, the prior is elicited hierarchically as follows:

π (Θ, γ) = π (Θ | γ) π (γ)

= π
(
µ, σ2, η,m | γ

)
π (γ)

= π
(
µ, σ2

)
π (η,m | γ)π (γ) ,
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since the mean and variance pairs do not depend on γ and µ,σ are independent from

η,m,

π (Θ, γ) = π
(
µ, σ2

)
π (c, gr, s, θ, T,m | γ) π (γ)

= π
(
µ, σ2

)
π (c,m | γ, gr, s, θ, T ) π (gr, s, θ, T ) π (γ) . (4.8)

Prior for the mean and variances: π (µ, σ2)

Based on the assumptions 1− 4 above, with an uninformative prior assigned, the prior

for the mean and variances of the background and the object intensities is given by

π
(
µ, σ2

)
=

m∏
i=0

π
(
µi, σ

2
i

)
∝

m∏
i=0

(
σ2
i

)−1

This is obtained as follows: For ease of reference, denote by θ∗ =

(
µ

σ2

)
, and assume

a naive Je�reys prior [60], given by

π
(
µ, σ2

)
= π (θ∗) =| I (θ∗) |

1
2

with Fisher information I (θ∗)i,j = −Eθ∗i,j

[
∂2 log{f (X|θ∗)}

∂θ∗i ∂θ
∗
j

]
. For a Gaussian Normal distri-

bution with both µ and σ2 unknown, we have that

I (θ∗) = −Eθ∗

(
− 1
σ2 − (X−µ)

(σ2)2

− (X−µ)

(σ2)2
1

2(σ2)2
− (X−µ)2

(σ2)3

)
=

(
1
σ2 0

0 1
2(σ2)2

)
,

since E (X− µ) = 0 and E (X− µ)2 = σ2. Therefore,

π
(
µ, σ2

)
= π (θ∗) =| I (θ∗) |

1
2 =

(
1

2 (σ2)3

) 1
2

∝ 1

σ2
.

Prior for the location and number of objects: π (c,m | γ, gr, s, θ, T )

Recall from Section 4.4.3 that

π (c,m | γ, gr, s, θ, T ) =
1

A∗
exp (−γ1m− γ2S (η)) =

1

A∗
π∗ (c,m | γ, gr, s, θ, T ) . (4.9)

For the model at hand, this conditioning is necessary for the parameters that specify

the objects in the object con�guration c = {c1, . . . , cm} , since we need to know the

AIPP parameters γ, the random object parameters for object deformation gr, the scale

parameters for each object s, the rotation of each object θ, and the template used for

each object T before the object con�guration can be modelled.
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Prior for the object parameters (excl. the location parameters): π (gr, s, θ, T )

Using assumptions A1 - A4 above,

π (gr, s, θ, T ) =
m∏
i=1

π (si) π (θi)π (gri | Ti) π (Ti) .

The scale parameters si are assigned a uniform prior proportional to the size of the

image, Smax (the number of pixels in the image), that is

π (si) ∼ UNI (0, Smax) .

Unlike in [70], where the rotation parameters θi are assigned a prior that favours values

close to 0 and π,

π (θi) ∼
{
| cos (θ) | +π−1

}
/3, (4.10)

with θ ∈ (0, π) , we assign an alternative prior, π (θi) ∼ UNI (0, π). The motivation

for this comes from the fact that the nanoparticles considered in this study are either

circles or ellipses, and we assume that information favouring certain rotation values of

an ellipse above others is not known beforehand (i.e. we assume that all rotations values

are equally likely), and logically, a rotation of a circle is an identity transformation.

The template number Ti is assigned a discrete uniform prior,

Ti ∼ Discrete UNI (1, Tmax) ,

where Tmax is the number of templates speci�ed. Those templates that contain at least

one random parameter (i.e. all the templates considered apart from the circle and

square) all have one basic characteristic, where the random parameter is constrained

to take values between (a, b). An altered location and scale beta distribution is therefore

assigned as prior for the random parameters,

π (gri ) =
1

BETA (α, β)

(gri − a)α (b− gri )
β−1

(b− a)α+β−1
,

with BETA (α, β) = Γ(α)Γ(β)
Γ(α+β)

= (α−1)!(β−1)!
(α+β−1)!

, and α and β chosen randomly from UNI (0, 1).

For the implementation in this chapter, since only circles and ellipses are considered

in the implementation (due to the way the nanoparticle samples were prepared), a

uniform prior is assigned when the object is an ellipse, π (gri ) ∼ UNI(1.12, 1.4). These

parameters are chosen based on the template speci�cation, as discussed in Section

4.4.2.2.
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Prior for γ = (γ1, γ2): π (γ)

For the object multiplicity and object overlap parameters, γ = (γ1, γ2) Konomi et al

[70] propose independent log-normal priors with parameters that determine a mean

close to 100 and large variance,

γ1 ∼ LN (α1, δ1) ,

γ2 ∼ LN (α2, δ2) .

A large variance is chosen in order to obtain a higher spread in the priors due

to lack of knowledge of the true parameter. As noted in [83], the quality of image

reconstructions is robust when using a wide range of values for γ1 and γ2. Due to this,

and since our application in the same manner as [70] apply this algorithm to TEM

images of gold nanoparticles, we use the same speci�cation for γ1 and γ2 in this study.

Note that we will use α1 = α2 = 4 and δ1 ∼ UNI (1, 1.5) and δ2 ∼ UNI (1, 1.5), since

these parameters determine a mean close to 100 with large variance for both priors.

4.5 Occlusion algorithm: Posterior distribution

Step `Main 4' as given in Figures 4.1 and 4.2 is described in this section. Recall from

(4.8) and (4.9) that

π (Θ, γ) = π
(
µ, σ2

)
π (c,m | γ, gr, s, θ, T ) π (gr, s, θ, T )π (γ)

=
1

A∗
π
(
µ, σ2

)
π∗ (c,m | γ, gr, s, θ, T ) π (gr, s, θ, T )π (γ) ,

and Θ = {η,m, µ, σ2} = {c, gr, s, θ, T,m, µ, σ2}, with η = {ηi}mi=1 = {ci, gri , si, θi, Ti}
m
i=1

= {c, gr, s, θ, T} the set of parameters for all the objects, m the number of objects,

{µ, σ2} the mean and variance vectors for the background and objects intensity and A∗

the unknown normalising constant that depends on all the parameters. The posterior

can therefore be represented as follows:

p (Θ, γ | y) ∝ π (Θ, γ) f (y | Θ, γ)

=
1

A∗
π
(
µ, σ2

)
π∗ (c,m | γ, gr, s, θ, T ) π (gr, s, θ, T ) π (γ) f (y | Θ, γ)

=
1

A∗
p∗
(
η, µ, σ2,m, γ | y

)
, (4.11)

with f (y | Θ, γ) as de�ned in (4.7). In this speci�cation, since the normalising constant

in unknown due to the dependency on the unknown object parameters (see Section 4.4.3

for more details), and also since it is infeasible to obtain an analytical expression for
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Figure 4.3: MCMC diagram as given in Figure 4.2, with the `MCMC Inner' steps
highlighted for clarity. As noted in Figure 4.2, these steps can be repeated multiple
times in a single iteration of the `MCMC Outer' steps, as these steps deal with the
updating of the object parameters.

the posterior, an MCMC approach is proposed to carry out the inference. The MCMC

approach suggested by [70] can be described as a 2−stage MH algorithm, containing

an inner and outer MH algorithm, as indicated in Figure 4.2. In the inner algorithm,

as highlighted in Figure 4.3, the parameters are sampled from p∗ (η, µ, σ2,m, γ | y),

and in the outer algorithm, as given in Figure 4.4, the unknown normalising constant

A∗ is accounted for. The algorithm used in the outer algorithm is the Monte Carlo

Metropolis-Hastings algorithm, with a combination of a Metropolis-Hastings-within-

Gibbs, RJ-MCMC and Metropolis-Hastings algorithm used for the inner algorithm.

This remainder of this section will be set out as follows:

• A high level description of the algorithm proposed by [70] is provided;
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Figure 4.4: MCMC diagram, with the `MCMC Outer' steps highlighted for clarity.
These steps deal with the updating of the unknown normalising constant, given the
updated parameters obtained in `MCMC Inner'.
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• A detailed discussion is provided for both the inner (where the parameters are

sampled) and outer algorithms (where the unknown normalising constant is ap-

proximated);

• Matlab R© code for implementation is provided in Appendix B.

For ease of reference the algorithm will be labeled as follows: Ai will be used to refer

to the ith step in the outer (MCMC) algorithm, and Bj to refer to the jth step in the

inner algorithm.

4.5.1 High level description of the algorithm

As indicated in Figure 4.3, the inner algorithm, used to sample all of the unknown

parameters, can be outlined as follows:

B1: Use a Metropolis-Hastings-within-Gibbs algorithm to sample the parameters µ∗,

(σ*)2 and η∗, excluding the template parameter T *;

B2: Use a RJ-MCMC algorithm with a swap move to sample the template parameter

T *;

B3: Use a RJ-MCMC algorithm with a birth-death and split-merge move to sample

m*;

B4: Use a Metropolis-Hastings algorithm to sample the parameter γ∗.

The outer algorithm (see Figure 4.4), are the same steps as speci�ed for the MCMH

algorithm described in Section 4.3.4, which can be summarised as follows:

1. A proposed value of the parameter(s) is drawn using a standard algorithm;

2. Auxiliary samples needed to estimate the normalising constant are drawn;

3. The unknown normalising constant ratio R̂ (step 3 (a) in Section 4.3.4) is esti-

mated;

4. The MH-rejection ratio r̂ is estimated, and the acceptance ratio α̃ (step 3 (b) in

Section 4.3.4) is computed;

5. The proposed value of the parameter(s) is either accepted or rejected, using α̃.

The outer algorithm is as follows:

A1: Given the current state Θ(t-1), γ(t-1), draw Θ*, γ* from q(·) = p*(·) using the steps

outlined in B1-B4, where p
*(·) is the pseudo-posterior distribution;
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A2: Given all the parameters, simulate auxiliary variables z 1,. . . zK from f(z; Θ*) .

Simulating the auxiliary variables simply requires us to sample from a normal

distribution with parameters de�ned at the proposed state of the algorithm. Re-

call from Section 4.3.4 that these auxiliary variables are used to estimate the

normalising constant;

A3: Estimate the normalising constant ratio as R̂ = 1
K

K∑
i=1

f(z; Θ*)

f(z; Θk )
;

A4: Estimate the MH-rejection ratio as r̂ = 1

R̂
. Note that the remainder of the

fraction in (4.6) cancels out since q(·) = p*(·);

A5: Accept Θ*, γ* with probability α̃ = min{1; r̂}.

4.5.2 Detailed description of the algorithm

This section provides a detailed discussion of the sampling steps in the algorithm out-

lined inB1−B4 above, or alternatively steps Inner 1 - Inner 4 as given in Figure 4.3. All

of these steps describe how to sample from the pseudo-posterior p∗ (η, µ, σ2,m, γ | y),

by alternating between draws from the conditional priors

• p∗ (µ, σ2, η | y,m, γ) (Steps B1 and B2)

• p∗ (m | y, µ, σ2, η, γ) (Step B3)

• p∗ (γ | y, µ, σ2, η,m) (Step B4)

B1 - Updating µ and σ:

The conditional distribution of p∗
(
µj, σ

2
j | ·
)
, with · denoting the remainder of the

parameters, is given by

p∗
(
µj, σ

2
j | ·
)
∝ π

(
µj, σ

2
j

)
f (y | Θ) .

A Metropolis-Hastings step is used to draw from the posterior, using

q
(
µj, σ

2
j

)
=

1

σ2
j

Nj

exp

(
− 1

2σ2
j

[
(Nj − 1) s2

j +N (ȳj. − µj)2]) ,
as proposal distribution, where

• s2
j = 1

Nj−1

∑Nj

i=1 (yi − ȳj),

• N j is the total number of pixels in the region of the proposed shape,

• ȳj. is the sample mean intensity of the jth object,
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• N is the total number of pixels in the image.

To draw from this proposal, samples are drawn sequentially from

• σ2
j | · ≡ Invχ2 (Nj − 1, σ2), with Invχ2 (·) denoting the Inverse Chi-Square distri-

bution, and then

• µj | σ2
j,· ≡ N

(
ȳj·,

σ2
j

Nj

)
.

An Inverse Chi-Square distribution is chosen as proposal for the unknown variance as

this distribution is commonly used as prior for a scale parameter such as unknown

variance for a Gaussian distribution [75, 12]. Konomi et al [70] also provides the

conditional distribution for the independent pixel case, i.e. when it is assumed that

objects in neighbouring pixels are independent of one another.

B1 - Updating η = {c, gr, s, θ, T} excluding T :

A Metropolis-Hastings step is used to draw proposals for the components of η =

{c, gr, s, θ, T} excluding T . The proposal distributions need to be well de�ned in order

for the chain to have good properties. Konomi et al [70] suggests making use of pre-

processing, and this is also the approach we follow here. Table 4.1 provides details on

the proposal distributions used in the MH step within the Gibbs algorithm.

B2 - Updating T :

With shape selection we are faced with the problem of choosing templates {Tk; k ∈ K},
where each template potentially has a di�erent number of parameters that characterise

the template. We therefore need to jump between di�erent sub-spaces when moving

from template to template, and as discussed in section 4.3.5 RJ-MCMC is useful in

problems with dimensionality matching, and is the algorithm that will be used to

sample the template Tj. As discussed in [70], the only parameter that will have di�erent

meaning from template to template is the random pure parameter gr. To make it

clear that the random pure parameters gr have di�erent meaning from template to

template, two variables are introduced: uTj = grTj , the random pure parameter of the

current template, and vTj = grTj the random pure parameter of the proposed template.

In addition we denote by

φ
T

(t−1)
j

=
{
c
T

(t−1)
j

, s
T

(t−1)
j

, θ
T

(t−1)
j

, T
(t−1)
j , u

T
(t−1)
j

}
the current state of the chain, and by

φT ∗j =
{
cT ∗j , sT ∗j , θT ∗j , T

∗
j , uT ∗j

}
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the proposed state. The reason for the introduction of the new notation is to make it

clear that the parameters are dependent on the template T ∗j .

The RJ-MCMC algorithm used to update the template is as follows:

1. Select model T ∗j with probability q
(
T

(t−1)
j | T ∗j

)
= π

(
T

(t−1)
j

)
;

2. If T ∗j 6= T
(t−1)
j , then v

T
(t−1)
j

is unknown. Therefore, generate v
T

(t−1)
j

from π
(
vTj
)
;

3. Consider the bijection{
cT ∗j , sT ∗j , θT ∗j , uT ∗j , vT ∗j

}
=
{
c
T

(t−1)
j

, s
T

(t−1)
j

, θ
T

(t−1)
j

, u
T

(t−1)
j

, v
T

(t−1)
j

}
;

4. Compute the MH ratio as

r =
p∗
(
cT ∗j , sT ∗j , θT ∗j , vT ∗j | y

)
π
(
T

(t−1)
j

)
π
(
uT ∗j

)
p∗
(
c
T

(t−1)
j

, s
T

(t−1)
j

, θ
T

(t−1)
j

, u
T

(t−1)
j
| y
)
π
(
T ∗j
)
π
(
vT ∗j

) |J | ,
where |J | is the Jacobian of the transformation T ∗. Note that the Jacobian is

reduced to 1 since the bijection is chosen to be the identity transformation;

5. Set φ
T

(t)
j

= φT ∗j with probability α = min {1, r} and set φ
T

(t)
j

= φ
T

(t−1)
j

with

probability 1− α.

B3 - Updating m:

To update the number of objects in the image, m, two types of update moves are

considered: birth-death and split-merge.

1. Birth-death: In the death step, a randomly chosen object is deleted, and in

contrast, in the birth step, an object with parameters generated from the priors

is added to the image;

2. Split-merge: Instead of generating a randomly chosen object as in the birth step,

the split move uses an existing object and splits it into two new objects. With

the merge move, two existing objects are merged into one.

Before a move is performed, we need to know which move will be proposed, and subse-

quently accepted/rejected. It is therefore required to specify probabilities of selecting

each of the moves. Denote by P (birth) , P (death) , P (split) , P (merge) the probabil-

ities of proposing a birth, death, split or merge move. For the algorithm proposed the

following probabilities are used:



CHAPTER 4. OBJECT CLASSIFICATION IN NANOIMAGES 101

P (birth) = P (death) = P (split) = P (merge) = 1/4, for m ≥ 2;

P (birth) = P (split) = P (death) = 1/3; P (merge) = 0, for m = 1;

P (birth) = 1; P (split) = P (death) = P (merge) = 0, for m = 0.

Birth-Death move:

The RJ-MCMC algorithm used in the birth step is as follows:

1. Given the current state φ(t−1) = {ηm, µm, σ2
m}, with ηm, µm, σ

2
m the current pa-

rameters for an image with m objects, select model �birth move� with probability

q (m→ (m+ 1)) = P (birth), m → (m+ 1) denoting a move from m to m + 1

objects;

2. Generate a new object ηm+1 with a randomly assigned center. In this step the

dimension of the parameters are increased by Qm+1 = dim
(
ηm+1, µm+1, σ

2
m+1

)
;

3. Sample all the parameters that describe the new object,
{
ηm+1, µm+1, σ

2
m+1

}
from

the prior distributions of the parameters and set φ∗ =
{
ηm+1, µm+1, σ

2
m+1, ηm, µm, σ

2
m

}
;

4. Compute the MH ratio as

rb =
p∗
(
ηm+1, µm+1, σ

2
m+1, ηm, µm, σ

2
m | y

)
q ((m+ 1)→ m)

p∗ (ηm, µm, σ2
m | y) π

(
ηm+1, µm+1, σ2

m+1

)
q (m→ (m+ 1))

|J | ,

where |J | = 1 is the Jacobian of the transformation, q (m→ (m+ 1)) is the birth

proposed probability, and q ((m+ 1)→ m) is the death proposed probability. As

noted by [70], the Jacobian is reduced to 1 for this the bijection where auxiliary

variables are introduced;

5. Set φ(t) = φ∗ with probability αb = min {1, rb} and set φ(t) = φ(t−1) with proba-

bility 1− αb.

The RJ-MCMC algorithm used in the death step is as follows:

1. Given the current state φ(t−1) = {ηm, µm, σ2
m}, with ηm, µm, σ

2
m the current pa-

rameters for an image withm objects, select model �death move� with probability

q ((m+ 1)→ m) = P (death);

2. Choose a random object ηj and remove it from the con�guration. In this step

the dimension of the parameters are decreased by Qj = dim
(
ηj, µj, σ

2
j

)
;

3. Set φ∗ = φ
(t−1)
−j where φ

(t−1)
−j is the current state with the parameters of object ηj

removed;
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4. Compute the MH ratio as

rd =
1

rb
,

to ensure that the detailed balance condition is met [70, 3];

5. Set φ(t) = φ∗ with probability αd = min {1, rd} and set φ(t) = φ(t−1) with proba-

bility 1− αd.

Split-Merge move:

For the split and merge steps, note the following:

• the algorithm is restricted to the case where only neighboring objects are split or

a single object is merged into two objects that are neighbours;

• when moving from one state to another, the proposed object must have equal

area as the existing;

• the Markov chain must be reversible, as given in (4.2).

The merge step is set out as follows:

• Suppose there are two objects with parameters given by
{
ηi, µi, σ

2
i , ηj, µj, σ

2
j

}
;

• We propose to move to a new object {ηh, µh, σ2
h} = {xh, yh, sh, θh, Th, grh, µh, σ2

h};

• The new objects are set up using:

� sh =
√
si + sj,

� (xh, yh) =
(
sixi+sjxj
si+sj

,
siyi+sjyj
si+sj

)
,

� {θh, Th, grh, µh, σ2
h} are from one of the parent objects, or at random. In

this text the choice is restricted to a random choice between one of the two

parent objects;

• In order to match the dimensions, auxiliary variables {u1, u2, u3, u4, u5, u6} are

introduced

� u1 =
√

(xj − xi)2 + (yj − yi)2, i.e. u1 expresses the

distance between the centers of the two objects,

� u2 = arctan

(
yj−yi√

(xj−xi)2+(yj−yi)2

)
, the angle created from the union of the

two (c1, c2),

� u3 =
s2i−s2j
s2i +s2j

,

� u4 = θ2,
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� u5 = T2,

� u6 = gr2;

• The MH-ratio is computed as

rm =
p∗
(
ηh, µh, σ

2
h, η−(i,j), µ−(i,j), σ

2
−(i,j) | y

)
q (1→ 2)

∏6
i=1 π (ui)

p∗
(
η(i,j), µ(i,j), σ2

(i,j), η−(i,j), µ−(i,j), σ2
−(i,j) | y

)
q (2→ 1)

|J | ,

where |J | = 1 is the Jacobian of the transformation, q (1→ 2) is the split pro-

posed probability, and q (2→ 1) is the merge proposed probability;

• The proposal is accepted with probability αm = min {1, rm} and rejected with

probability 1− αm.

The split step is set out as follows:

• A move from a single object {xh, yh, sh, θh, Th, grh, u1, u2, u3, u4, u5, u6} to two ob-

jects {x1, x2, y1, y2, s1, s2, θ1, θ2, T1, T2, g
r
1, g

r
2} is proposed;

• In order to facilitate this move, auxiliary proposal distributions as introduced for

u1 − u6:

� u1
2
∼ π (s) ∼ UNI (0, Smax) the prior for the scale parameter, with Smax the

number of pixels in the image,

� u2 ∼ π (θ) ∼ UNI (0, π) ,

� u3 ∼ UNI (−1, 1) ,

� u4 ∼ π (θ) ∼ UNI (0, π) ,

� u5 ∼ π (T ) ∼ Discrete UNI (1, Tmax), with Tmax the number of templates

speci�ed,

� u6 ∼ π (gr) ∼ UNI(1.12, 1.4);

• To make the move reversible the same transform is used as with the merge step;

• The MH-ratio is computed as rs = 1
rm

to ensure that the de

tailed balance condition is met [70, 3];

• The proposal is accepted with probability αs = min {1, rs} and rejected with

probability 1− αs.
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Figure 4.5: Example image for a simplistic case: 5 gold nanoparticles with manual
measurements

B4 - Updating γ :

A Metropolis-Hastings step is used to draw γ = (γ1, γ2) from p∗ (γ | y, µ, σ2, η,m), with

a random walk log-normal proposal, that is q
(
γ∗j , γ

(t−1)
j

)
≡ LN

(
α

(t−1)
j , δ

(t−1)
j

)
.

Once these steps have been used to update the object parameters, an MCMH algo-

rithm is used to estimate the unknown normalising constant. These steps are outlined

in Figure 4.3, with the steps for the inner algorithm (highlighted in red) as discussed

in Section 4.5.2.

4.6 A hypothetical example

Prior to providing the algorithm implementation details, a simplistic hypothetical ex-

ample is provided in this section in order to explain the algorithm for a simple case.

Consider the image provided in Figure 4.5. It is easily seen that the image contains 5

objects.

Assuming that the image-processing has already been performed, the algorithm will

determine the parameters as follows:

1. Using the output from the pre-processing as the starting state of Θ = {η,m, µ, σ2} =

{c, gr, s, θ, T,m, µ, σ2}, proceed as follows:
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(a) Start at Object 1, use the Metropolis-Hastings algorithm to sample µ1 and

σ2
1, as well as the acceptance probability, say α. Accept the proposed values

for µ and σ2 with probability α. If the proposal is accepted, the values of

µ1 and σ2
1 are updated at the same time, otherwise both values remain as

is;

(b) Staying with Object 1, update η1 = {c1, g
r
1, s1, θ1, T1} excluding T1 using the

Metropolis-Hastings algorithm, as well as the acceptance probability for each

individual parameter c1, g
r
1, s1, θ1. Calculate the overall acceptance proba-

bility for this step as the product of the individual acceptance probabilities,

say β. Accept the proposed values with probability β. If the proposal is

accepted, the values of η1 = {c1, g
r
1, s1, θ1, T1} excluding T1 are updated at

the same time, otherwise all values remain as is;

(c) Randomly select the model template to use. If the proposed template dif-

fers from the current one, the parameters needed to represent the object

are unknown. We therefore proceed to sample these parameters from the

proposed distributions. Compute the MH ratio as speci�ed, and accept the

proposal with the calculated acceptance probability and update the value

of T1;

(d) Update the value of γ1 = (γ1,1, γ1,2) using the Metropolis-Hastings algo-

rithm, as well as the acceptance probability, say δ. Accept the proposed

value for γ with probability δ;

(e) All parameter values for Object 1 have now been updated. Repeat steps

(a) to (d) for the remainder of the current number of objects (i.e. for the

remainder of the 5 objects);

(f) To update m, we �rst need to know which move type to use, that is, we

increase, decrease or keep m as is by either adding a random new object

(birth), deleting a random object (death), combining two random objects

(merge) or splitting a random object into two new object (split). This is

done by selecting the move type using the probabilities provided.

i. If a Birth move is selected, generate a random new object by sampling all

the object parameters, calculate the acceptance ratio as speci�ed, and

accept the proposed parameters with probability equal to the acceptance

ratio. If accepted, the object parameters are added to the sample and

the number of objects are updated;

ii. If a Death move is selected, randomly choose an object to delete, calcu-

late the acceptance ratio as speci�ed, and accept the proposed param-

eters with probability equal to the acceptance ratio. If accepted, the

object parameters are removed and the number of objects are updated;
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iii. If a Merge move is selected, randomly choose an object to merge, gen-

erate the merged object as speci�ed, calculate the acceptance ratio as

speci�ed, and accept the proposed parameters with probability equal to

the acceptance ratio. If accepted, the object parameters are removed

and replaced with the updated parameter values and the number of

objects are updated;

iv. If a Split move is selected, randomly choose an object to split, generate

the split object as speci�ed, calculate the acceptance ratio as speci�ed,

and accept the proposed parameters with probability equal to the ac-

ceptance ratio. If accepted, the object parameters are removed and

replaced with the updated parameter values and the number of objects

are updated;

(g) Now that the parameters for each of the current objects are updated, all

the proposed parameters for each of the objects are considered together in

a MCMH step. To do this, auxiliary variables are sampled from a normal

distribution with parameters de�ned at the proposed state, and the MH-

rejection ratio estimated as indicated. The full set of proposed parameters

at the current state is the accepted or rejected.

2. Using the updated values of Θ = {η,m, µ, σ2} = {c, gr, s, θ, T,m, µ, σ2} as the

new state, redo step 1;

3. Repeat for a speci�ed number of samples, including a burn-in sample. Discard

the burn-in sample values and estimate the �nal parameter values as the average

of the rest of the sample's values.

In the next section the full algorithm implementation details are provided, along with

coding considerations.

4.7 Algorithm implementation details

This section provides some considerations and recommendations for implementing this

algorithm in a suitably chosen coding language. In this study Matlab R© is chosen as

the coding language, due to, amongst others, the �exibility of being widely used and a

well-known language for scienti�c programming, as well as the capability of Matlab R©

to deal with both image processing, as illustrated in Chapter 2, as well as MCMC

sampling. Other coding languages were considered, but were however not used due to

certain shortcomings, such as the simplistic image processing capabilities in R, where

more advanced techniques were needed, and the lack of sample code for most of the
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MCMC algorithms in Python R©, where only basic MCMC algorithms were available.

The approach taken in implementing this algorithm can be outlined as follows:

• The image pre-processing steps, as discussed in Section 2.7, are coded as a stan-

dalone codeset, with the code provided in Section B.1;

• The inner and outer algorithm are coded as a standalone codeset, with the aim

of being able to call the simulation as a function. The code used is provided in

Section B.2.

In addition to the code examples, some additional comments are provided next, with

the aim of providing guidelines for coding this algorithm from scratch.

4.7.1 Coding considerations

Owing to the fact that the algorithm is very detailed and complex, a �rst time reader

might �nd (like myself) the task of coding this algorithm very daunting. The following

are some considerations that might be helpful when coding, and are all the things that

came up during my own journey of learning this algorithm:

• Instead of thinking of the bigger picture, and how it all �ts together, I found it

helpful to break up the components of the algorithm into easier to understand

blocks;

• It is encouraged that the authors and contributors of the papers being researched

be approached for help and guidance. Several times during this research project,

the feedback and input from the authors of [70] proved to be valuable beyond

words. The conversations guided me through the most intricate parts of the

algorithm, and provided a clear understanding of the authors' thought processes

when specifying the algorithm;

• Taking it one step at a time. By coding the algorithm from the inside out (from

the most detailed part of the algorithm up to the outermost element), I managed

to gain a deeper understanding of how the components �t together;

• Through a couple of detailed internet searches I was able to gather a multi-

tude of coding examples, used in various settings, with detailed explanations.

These examples were e�ective in guiding my understanding of the coding lan-

guage Matlab R©, a language that I had taught myself through trial and error, and

multiple internet searches;

• Probably one of the most important lessons learned while coding was to take

some time to understand the coding language structure. More speci�cally, once
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I had spent some time to understand how data structures are interpreted and

stored in the various Matlab R© packages, it became easier to code the algorithm

steps;

• When coding the MCMC steps, it is recommended that the steps be updated one

object at a time. Therefore, the steps need to be repeated for each of the object

in the image;

• The object parameters are de�ned for multiple object, therefore, when coding, it

should be kept in mind that each of the parameters represents a vector of values.

• Storage of simulated values should be carefully considered. The reader is re-

minded that multiple parameters are required to be stored at each iteration of

the algorithm. Further to this, that the number of values required to be stored at

each iteration may di�er, as the number of objects change. Therefore, su�cient

pre-allocated space should be made available prior to executing the code. In the

implementation, a null-valued matrix (for each parameter that needs to be sim-

ulated) is pre-allocated with su�cient space to store a large number of values at

each iteration.

• When testing the code for the �rst time, it's advisable to run the code in small

increments, ensuring that each step is working as it should. In addition, when

code has multiple iteration (for example a for-loop), rather manually enter the

loop counter/ iteration value to see if the code inside the loop is working correctly.

Appendix B contains the code sets used in the implementation of the occlusion algo-

rithm. The full code set is also available on GitHub by accessing the following link:

GitHub - Bayesian object classi�cation in nanoimages. As discussed in the summary of

this mini-dissertation, the aim here is not to improve on the existing algorithm, given

that the results obtained by Konomi et al [70] are very good. The implementation

here rather focusses on explaining the detail of the algorithm in a simpli�ed manner

to enable a wider audience to understand and replicate the algorithm. As discussed

in Chapter 1, there is great importance in having an automated occlusion algorithm

widely available, and by implementing Konomi et al 's algorithm using an open source

language, such as Matlab R©. Snippets of Matlab R© code that can be used to implement

this algorithm are discussed in Appendix B.

4.8 Algorithm implementation results

This section provides some of the simulation results from the algorithm implementation

as discussed in the previous sections.

https://github.com/ashaywood/Object_classification_in_nanoimages.git
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Figure 4.6: Simulation results: Number of simulated objects over time

4.8.1 Number of objects identi�ed

The number of objects simulated at each iteration (including the burn-in period of

500 samples) is shown in Figure 4.6, with the sample distribution given in Figure 4.7,

from which it can also be seen that the �nal number of simulated objects is m = 36.

When comparing these results to the initial parameter estimates from the image pre-

processing, it can be seen that the number of objects identi�ed increases from m = 24

to m = 36. From visual inspection of the image, it can be seen that there are a total of

m = 44. The reasons for the algorithm not identifying the remaining objects is discussed

in Section 4.9. Also note the increasing trend over time in Figure 4.6, showing that the

algorithm is successful in identifying more and more objects over time. The locations

of the identi�ed objects are plotted in Figure 4.8. The reader is reminded that all

parameters that make up the image, including the location, is simulated, and therefore

may not be the exact result from the original image. The simulation results for the

object parameters are given in the next section.

4.8.2 Parameter results

The simulated parameter values at each iteration for �ve (5) randomly selected objects

(including the burn-in period of 500 samples) are shown in Figures 4.9 to 4.12. As can

be seen from these �gures, there is consistent volatility for each of the parameters during

the burn-in period, after which the simulation results starts stabilising around the �nal

simulation values. It is observed from the images that all parameter results stabilise
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Figure 4.7: Simulation results: Sample distribution of number of simulated objects
over time

Figure 4.8: Simulation results: Final object locations of simulated objects
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Figure 4.9: Simulation results (5 randomly selected objects): Object mean (µ) over
time.

in close succession to one another. This is due to the structure of the algorithm (as

discussed in Section 4.5.2), where the in the inner algorithm the parameters results are

simulated and accepted/rejected at an individual level, with the full set of parameters

then accepted/rejected in the outer algorithm. Therefore, if an individual parameter

change is small in comparison to the overall change required to accept the full set

of proposed parameters, it is unlikely that the individual parameter change would be

accepted in the outer algorithm.

In Figure 4.9, the mean value, µ, for the �ve randomly selected objects is plotted

over time (number of simulations). Note the volatility observed in the image, as dis-

cussed in the preceding paragraph, as well as the stabilisation of parameter results in

close succession to one another.

Similar to Figure 4.9, Figure 4.10 shows the simulation results for the object vari-

ance, σ2, of the �ve randomly selected objects, plotted over time (number of sim-

ulations). Note the volatility observed in the image, as discussed in the preceding

paragraph, as well as the stabilisation of parameter results in close succession to one

another.

Figures 4.11 and 4.12, shows the simulation results for the rotation (θ) and object

template (T ), respectively, where T = 1 denotes an ellipse, and T = 2 a circle. Note

that the parameter values for the template for each of the random objects is given in

Table 4.2, to provide clarity on which object was assigned to which template.

The results from the simulation for two other images of gold nanoparticles are given

in Appendix B.
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Figure 4.10: Simulation results (5 randomly selected objects): Object variance (σ2)
over time.

Figure 4.11: Simulation results (5 randomly selected objects): Object rotation (θ) over
time.

Table 4.2: Simulation results: Template assigned to the randomly chosen objects

Object 1 2 3 4 5

Template 2 1 2 2 1
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Figure 4.12: Simulation results (5 randomly selected objects): Object template over
time

4.9 Discussion

In this chapter an in-depth review of some of the widely used MCMC techniques were

discussed, with the aim of making the occlusion algorithm, proposed by [70], easier to

follow and understand for the �rst time reader. In addition to the theoretical overview

of these techniques, a detailed breakdown of the components that make up the occlusion

algorithm is provided. Flow diagrams are also provided to aid in visualising the process

�ow in constructing this intricate and detailed algorithm. Code snippets are provided to

aid in replicating this algorithm in Matlab R©. The simulation results are provided, from

where it can be seen that the algorithm is successful in identifying additional object not

identi�ed during image pre-processing. However, some objects are still not identi�ed,

and this can be attributed to several possible reasons, including the limitation that

only circles and ellipses are considered as templates, initial parameter estimates, and

the possibility that the algorithm gets �stuck� in a low acceptance probability cycle,

which is discussed next.

Although the success of the algorithm is not in question, the expensive computing

time is [70]. Several options exist to tackle this problem, of which the most successful

is likely to be better acceptance probabilities. As discussed in [47, 14, 24, 39], the

acceptance probabilities in MH and RJ-MCMC updates are dependent on having well

de�ned proposals that mix well with the posterior distributions, or as in this case, the

pseudo-posterior distributions. In addition to this, not having well de�ned starting

states for the algorithm can have a detrimental impact on the convergence of the
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MCMC updates, as is the main reason for having the image pre-processing component

in the algorithm. Any improvements made to the image pre-processing can have a

signi�cant impact on the algorithm convergence time. This includes improvements

such as better initial classi�cation of objects, using more sophisticated segmentation

algorithms, leading to a better initial estimate for the number of objects in the image.

An almost certain improvement in �nal classi�cation can be obtained by including

further templates for the objects, such as the templates provided in [70].



Chapter 5

Conclusion and Recommendations

In this mini-dissertation the importance of having an automated object classi�cation

procedure for classifying nanoparticles in nanoscale images (or nanoimages) is dis-

cussed, and a detailed overview of such a procedure, proposed by [70] is provided, with

emphasis on applying the procedure to nanoimages of gold nanoparticles. The study

aims to address the common phenomenon that occurs during image capturing, namely

occlusion of objects in the image. This occlusion leads to some unwanted results dur-

ing the image analysis phase, making the use of a more sophisticated classi�cation

algorithm necessary. A necessary and detailed overview of the theoretical framework

required for this procedure is provided. In the process of investigating this procedure,

a simpli�ed approach to classifying occluded objects when dealing with homogeneously

shaped objects is introduced.

The techniques used in the algorithm involve a combination of several Bayesian tech-

niques to classify the objects in the nanoimage. Markov Chain Monte Carlo (MCMC)

sampling techniques are used to simulate the unknown posterior, with samplers ranging

from the Metropolis-Hastings and Reversable Jumps MCMC samplers to Monte Carlo

Metropolis Hastings samplers used in obtaining the simulated posterior. Since one of

the main objectives of this investigation is the processing of images, a discussion on

the most widely used image processing techniques is provided, with speci�c focus on

how these techniques are used to extract objects of interest from the image. A short

overview of nanotechnology and its applications is provided, along with a variability

study for the capturing of nanoimages using a Transmission Electron Microscope. This

variability study, which investigates the impact of varying imaging conditions on the

measurements obtained using TEM, according to our knowledge, is the �rst of its kind

to be reported in this level of detail, and provides very useful considerations when

performing a nanoscale study. Commercially-produced aqueous colloidal gold is used

for the investigation, where the average particle sizes are 10nm. Various microscope

conditions were tested in order to establish the in�uence � if any � of instrument oper-
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ation upon the variability of outputs, with three samples obtained for each condition,

and these were:

C1: Three magni�cation levels 500 000, 250 000 and 100 000.

C2: Five minute time delay The TEM was allowed a �ve minute stabilisation time

before the �rst measurement, and then another �ve minutes prior to each sub-

sequent measurement in the three repetitions. This setting aimed to reduce

hysteresis by allowing microscope lens currents �ve minutes to stabilise before

image recording in triplicate at each of the magni�cations used.

C3: Upwards magni�cation This condition tested the presence of hysteresis by imme-

diately recording three images in succession after the magni�cation was changed

from (a) 100 000 to 250 000, and (b) 100 000 to 500 000. (The time delay be-

tween magni�cation changes to image recording did not exceed 30 seconds in each

instance.)

C4: Down to 30 000 and up Magni�cation was reduced from 500 000 to 30 000 times

and back up to 500 000 before recording three images immediately. The large

change in magni�cation tested the presence of hysteresis, but in a more severe

manner than C3 above.

With the results indicating image measurements at varying magni�cation levels in

TEM causes variation in the measurements, the recommendation is made that mag-

ni�cation levels be carefully selected prior to obtaining samples using TEM. Given

that instrument calibration is done at low and intermediate magni�cation (less than

200 000), it is possible the variation observed originates from the extrapolation of this

relationship to higher magni�cations. Conducting an actual calibration at higher mag-

ni�cation (rather than using extrapolated values) would almost certainly address this

problem. Future studies will explore the accuracy and repeatability obtained when

using TEM in combination with image analysis software capable of performing thresh-

olding and automated measurements.

In addition to the theoretical overview of the MCMC techniques, a detailed break-

down of the components that make up the occlusion algorithm is provided. Some �ow

diagrams are also provided to aid in visualising the process �ow in constructing this in-

tricate and detailed algorithm. This detailed breakdown, along with the �ow diagrams

serve to further explain to the novice user the intricate details of the algorithm, while

at the same time making provision for a simpli�ed object shape recognition algorithm.

Code snippets are provided to aid in replicating this algorithm in Matlab R©. The sim-

ulation results are provided, from where it can be seen that the algorithm is successful
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in identifying additional objects not identi�ed during image pre-processing. The im-

plementation in this mini-dissertation is therefore not only successful in providing a

simpli�ed implementation for novice users, but (similar to the implementation in [70])

is also successful in increasing the classi�cation rate compared to the results obtained

using ImagePro R© software. However, some objects are still not identi�ed, and this can

be attributed to several possible reasons, including the limitation that only circles and

ellipses are considered as templates, initial parameter estimates, and the possibility

that the algorithm gets �stuck� in a low acceptance probability cycle.

Although the success of the algorithm is not in question, the expensive computing

time is [70]. Several options exist to tackle this problem, of which the most successful

is likely to be better acceptance probabilities. As discussed in [47, 14, 24, 39], the

acceptance probabilities in MH and RJ-MCMC updates are dependent on having well

de�ned proposals that mix well with the posterior distributions, or as in this case,

the pseudo-posterior distributions. In addition to this, not having well de�ned start-

ing states for the algorithm can have a detrimental impact on the convergence of the

MCMC updates, as is the main reason for having the image pre-processing compo-

nent in the algorithm. Any improvements made to the image pre-processing can have

a signi�cant impact on the algorithm convergence time. This includes improvements

such as better initial classi�cation of objects, using more sophisticated segmentation

algorithms, leading to a better initial estimate for the number of objects in the image.

An almost certain improvement in �nal classi�cation can be obtained by including

further templates for the objects, such as the templates provided in [70]. The conver-

gence rate of the algorithm is also of concern when needing a fast computing algorithm.

This can be addressed by improving the starting states of the algorithm (in other words

by improving the image pre-processing), or alternatively by improving the acceptance

probabilities. This can be done by de�ning proposal distributions that mix well with

the pseudo-posterior distribution.

In conclusion, we believe that the work provided in this mini-dissertation will be use-

ful in the analysis of nanoimages, given the improved object classi�cation, simpli�ed

approach for classi�cation of occluded, homogeneously shaped objects, detailed break-

down of the components that make up the occlusion algorithm, �ow diagrams to aid

in visualising the process �ow, and Matlab R© code provided in this mini-dissertation.
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Appendix A

Sample distributions: Particles 2-5

This appendix provides the remainder of the sample distributions for Particle 2 (given

in Figure A.1), Particle 3 (given in Figure A.2), Particle 4 (given in Figure A.3), and

Particle 5 (given in Figure A.4).
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Figure A.1: Sample distributions (Particle 2). This �gure shows the distribution of
the intensity values measured, split into the following categories: Repetition, Magni-
�cation and Other conditions. Repetition further splits the samples into the di�erent
repetitions, magni�cation into the di�erent magni�cation levels used and conditions
into the remainder of the sampling conditions. For each main group the distributions
are split between the di�erent levels, for example between repetitions 1, 2 and 3. Each
sub-graph shows on the x-axis the intensity values and on the y-axis the percentage of
observations within the range corrensponding to the x-axis value.
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Figure A.2: Sample distributions (Particle 3). This �gure shows the distribution of
the intensity values measured, split into the following categories: Repetition, Magni-
�cation and Other conditions. Repetition further splits the samples into the di�erent
repetitions, magni�cation into the di�erent magni�cation levels used and conditions
into the remainder of the sampling conditions. For each main group the distributions
are split between the di�erent levels, for example between repetitions 1, 2 and 3. Each
sub-graph shows on the x-axis the intensity values and on the y-axis the percentage of
observations within the range corrensponding to the x-axis value.
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Figure A.3: Sample distributions (Particle 4). This �gure shows the distribution of
the intensity values measured, split into the following categories: Repetition, Magni-
�cation and Other conditions. Repetition further splits the samples into the di�erent
repetitions, magni�cation into the di�erent magni�cation levels used and conditions
into the remainder of the sampling conditions. For each main group the distributions
are split between the di�erent levels, for example between repetitions 1, 2 and 3. Each
sub-graph shows on the x-axis the intensity values and on the y-axis the percentage of
observations within the range corrensponding to the x-axis value.
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Figure A.4: Sample distributions (Particle 5). This �gure shows the distribution of
the intensity values measured, split into the following categories: Repetition, Magni-
�cation and Other conditions. Repetition further splits the samples into the di�erent
repetitions, magni�cation into the di�erent magni�cation levels used and conditions
into the remainder of the sampling conditions. For each main group the distributions
are split between the di�erent levels, for example between repetitions 1, 2 and 3. Each
sub-graph shows on the x-axis the intensity values and on the y-axis the percentage of
observations within the range corrensponding to the x-axis value.



Appendix B

Python R© and Matlab R©

implementation code

This chapter provides snippets of code used in this mini-dissertation. The success of the

algorithm proposed by Konomi et al has already been proven in [70], and as such the

aim of this chapter is not to reproduce those results, but to rather provide some useful

code examples that can be used when implementing this algoirithm, such as Python R©

and Matlab R©. Throughout this chapter various Python R© packages are utilised, includ-

ing Numpy [117], a scienti�c computing package, which includes, amongst others, array

processing and image processing capabilities; Scipy [65], which is considered to be one

of the core packages for scienti�c computing, and provides many useful numerical rou-

tines; and Scikit-image [118], which contains several algortihms for image processing.

Useful documentation and examples for these packages can be found on the following

websites:

• Numpy: www.numpy.org;

• Scipy: www.scipy.org;

• Scikit-image scikit-image.org.

B.1 Image pre-processing code

This section provides highlights of the code used during to perform the image pre-

processing described in Section 2.7. The code used for image pre-processing is given in

Program Listing B.1.

Listing B.1: Image pre-processing: Python R© code.

import numpy as np

import cv2
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import matp lo t l i b . pyplot as p l t

import pymorph

from s c ipy import ndimage

from skimage . morphology import opening , e ros ion , d i l a t i o n

from s c ipy import misc

dna=misc . imread ( ' goldnp3 . png ' )

dna2=cv2 . imread ( ' goldnp3 . png ' )

#Using Gaussian f i l t e r on the image b e f o r e we t h r e s h o l d

med=ndimage . med ian_f i l t e r ( dna , 5 )

med=ndimage . g a u s s i a n_ f i l t e r (med , 5 )

#Threshold the image us ing Otsu ' s Threshold

_, T=

cv2 . th r e sho ld (med, 0 , 255 , cv2 .THRESH_BINARY+cv2 .THRESH_OTSU)

T=255−T

# Noise removal

ke rne l=pymorph . s ed i s k ( r=5,dim=2,metr ic=' euc l i d ean ' ,

f l a t=' t rue ' ,h=0) . astype (np . u int8 )

opening = cv2 . morphologyEx (T, cv2 .MORPH_OPEN, kerne l ,

i t e r a t i o n s = 2)

# Finding sure background area

sure_bg = cv2 . d i l a t e ( opening , kerne l , i t e r a t i o n s =3)

# Finding sure foreground area

dist_trans form =

cv2 . distanceTransform ( opening , cv2 . cv .CV_DIST_L2, 5 )

ret , sure_fg =

cv2 . th r e sho ld ( dist_transform , 0 . 7 ∗ dist_trans form .max( ) ,255 ,0 )

# Finding unknown reg ion

sure_fg = np . u int8 ( sure_fg )

unknown = cv2 . subt rac t ( sure_bg , sure_fg )

# Marker l a b e l l i n g
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from skimage import measure

markers = measure . l a b e l ( sure_fg )

# Add one to a l l l a b e l s so t ha t sure background i s not 0 , but

1

markers = markers+1

# Now, mark the reg ion o f unknown with zero

markers [ unknown==255] = 0

markers=markers . astype (np . in t32 )

nr_objects=np .max( markers )

print "Number o f  components : " , nr_objects

#Apply watershed

markers_old=np . copy ( markers )

cv2 . watershed ( dna2 , markers )

markers=markers . astype (np . in t32 )

dna2 [ markers == −1] = [ 2 5 5 , 0 , 0 ]

#Save the image

p l t . imshow (markers , cmap=' j e t ' , i n t e r p o l a t i o n=' nea r e s t ' )

p l t . ax i s ( ' o f f ' )

p l t . s a v e f i g ( ' goldnp3_markers_w . png ' ,

bbox_inches=' t i g h t ' , frameon=False )

Alternatively the Matlab R© code in Program Listing B.2 can be used to perform the

image processing. The image pre-processing done in Chapter 2 made use of this code.

Listing B.2: Image pre-processing: Matlab R© code.

% func t i on [ s i z e1 , parameters ] = image_pre_processing ( f )

%Threshold the image us ing Otsu ' s t h r e s h o l d l e v e l

fmed = med f i l t 2 ( f , [ 5 5 ] ) ;

f gaus s=imgau s s f i l t ( fmed , 5 ) ;

mmshow( fgaus s ) ;

% mmwrite ( fgauss , ' f i l e p a t h ' ) ;

l e v e l = graythresh ( f gaus s ) ;

f t h r e s h = mmthreshad ( f , 255∗ l e v e l ) ;

%Clean up the image :
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% Erosion , Opening and ob ta in the g rad i en t image in order

to l a b e l

f e r o = mmero( f t h r e s h ) ;

fopen=mmopen( f e r o ) ;

fopen=mmneg( fopen ) ;

mmshow( fopen ) ;

%mmwrite ( fopen , ' f i l e p a t h ' ) ;

f d i s t=mmdist ( fopen , mmsebox (5 ) ) ;

mmshow( f d i s t ) ;

% mmwrite ( f d i s t , ' f i l e p a t h ' ) ;

%fg rad = mmgradm( f d i s t ) ;

%mmshow( f g rad ) ;

f l a b e l=bwlabel ( f d i s t ) ;

%Find the 20 th p e r c e n t i l e and remove o b j e c t s sma l l e r t h a t t h i s

s=reg ionprops ( f d i s t , ' ba s i c ' ) ;

f s c a l e=reg ionprops ( f l a b e l , ' area ' ) ;

f s c a l e a r r a y=transpose ( double ( [ f s c a l e . Area ] ) ) ;

f qua r t=quan t i l e ( f s c a l e a r r a y , 0 . 0 5 ) ;

idx=find ( [ f s c a l e . Area]> fquar t ) ;

f 2=ismember ( f l a b e l , idx ) ;

imshow ( f2 ) ;

% mmwrite ( f2 , ' f i l e p a t h ' ) ;

%Perform Opening Top Hat to remove ho l e s and f u r t h e r no i se

% f3=mmopenth( f2 ) ;

% imshow ( f3 ) ;

% Labe l the image and ob ta in watershed

f l a b e l=bwlabel ( f 2 ) ;

g = mmcwatershed ( f2 , f l a b e l , mmsebox) ;

mmshow( f2 , g , f l a b e l ) ;

%For p l o t t i n g only , ob ta in the l i n e segments surrounding the

image

mmshow( f2 , g ) ;

h = mmintersec ( f2 ,mmneg( g ) ) ;

mmshow(h) ;
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%Removing the o b j e c t s on the edges

%i = mmedgeoff ( h ) ;

%mmshow( i ) ;

%j=mmgradm(h ) ;

%mmshow( f , j ) ;

%Show the l a b e l l e d image in co lour

f l a b e l=bwlabel ( f 2 ) ;

mmlblshow ( f l a b e l ) ;

rgb=labe l 2 r gb ( f l a b e l ) ;

figure , imshow ( rgb , ' Colormap ' , jet (255) ) ;

% mmwrite ( rgb , ' f i l e p a t h ' ) ;

% Find and p l o t the c en t r o i d s

f c e n t r o i d=reg ionprops ( f l a b e l , ' c en t r o id ' ) ;

f c e n t r o i d 2=cat (1 , f c e n t r o i d . Centroid ) ;

imshow ( rgb )

hold on

plot ( f c e n t r o i d 2 ( : , 1 ) , f c e n t r o i d 2 ( : , 2 ) , ' b lack ∗ ' )
hold o f f ;

% mmwrite ( rgb , ' f i l e p a t h ' ) ;

% Ca l cu l a t e the s t a r t i n g va l u e s f o r the paramters :

%Scale , s h i f t , r o t a t i on and mean i n t e n s i t y

f s c a l e=reg ionprops ( f l a b e l , ' area ' ) ;

f e c c e n t r i c=reg ionprops ( f l a b e l , ' e c c e n t r i c i t y ' ) ;

%fextrema=reg ionprops ( f l a b e l , ' extrema ' ) ;

fma jo rax i s=reg ionprops ( f l a b e l , ' ma jo rax i s l ength ' ) ;

fm inorax i s=reg ionprops ( f l a b e l , ' minorax i s l ength ' ) ;

f r o t a t i o n=reg ionprops ( f l a b e l , ' o r i e n t a t i o n ' ) ;

fmean=reg ionprops ( f l a b e l , f , ' MeanIntensity ' ) ;

f s c a l e 2=cat (1 , f s c a l e . Area ) ;

f r o t a t i o n 2=cat (1 , f r o t a t i o n . Or i enta t i on ) ;

f e c c e n t r i c 2=cat (1 , f e c c e n t r i c . E c c en t r i c i t y ) ;

fmean2=cat (1 , fmean . MeanIntensity ) ;

s i z e 1=s ize ( f s c a l e , 1 ) ; %Number o f i n i t i a l o b j e c t s
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% Assign a temp la te to each o b j e c t based on the e c c e n t r i c i t y

%(E1=1.2 => e=0.6)

f t emplate=zeros ( s i z e1 , 1 ) ;

for i =1: s i z e 1

i f f e c c e n t r i c 2 ( i ) <0.6

f t emplate ( i )=1;

% 0 ' s are e l l i p s e s and 1 ' s are c i r c l e s

end

end

% Obtain i n i t i a l parameter matrix , columns 2&3 are the x , y

coord ina t e s

parameters=[ f s c a l e 2 , f c en t ro id2 , f r o t a t i on2 , f template , fmean2 ] ;

B.2 Occlussion algorithm code

In this section detailed code sets are provided that describes the di�erent aspects of

the occlusion algortihm as discussed in Chapter 4. This set of code follows on from

that given in Program listing B.2. Note that the code in Program Listing B.2 already

obtains the mean, standard deviation and size (in number of pixels) for each of the

objects obtained during image processing. These values are used as input values into

the code that follows.

Since the proposal distributions will be used in di�erent steps during the algorithm,

the proposal distributions are de�ned as callable functions in Matlab R©.

Examples of this is given in Program Listing B.3.

Listing B.3: Occlussion algorithm Matlab R© code.

%Input MH WG s t ep s here

%Define proposa l s : (mu, sigma )

% q s i g=@(nu , x )

( ( ( 2 )^(−nu/2)/gamma(nu/2) )∗x^(−nu/2−1)∗exp (−1/(2∗x ) ) ) ;
q s i g=@ (nu , x ) chi2rnd (x ) ;

qmu=@(mu, sigma ) normrnd (mu, sigma ) ;

%Define proposa l s : ETA={c , g_r , s , the ta , T} EXCLUDING T

%Updating s c a l i n g paramter s : q=N( sj_prev , sigma_sj )

qs=@( sj_n_1 , sigma_sj ) normrnd ( sj_n_1 , sigma_sj ) ;

qs_X = @(X,mu, sigma ) normpdf (X,mu, sigma ) ;
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%Updating l o c a t i o n paramter c : q=N( cj_prev , sigma_cjI )

qc=@( cj , sigma_sj ) mvnrnd( cj , sigma_sj ) ;

qc_X = @(X,mu, sigma ) mvnpdf (X,mu, sigma ) ;

%Updating r o t a t i on paramter t h e t a : q=UNI(0 ,PI )

%q t h e t a=uni f rnd (0 , p i ) ;

qtheta_X=@(X) un i fpd f (X, 0 , pi ) ;

%Updating random pure paramter g_r : I f T=c i r c l e (2) : No ac t i on

requ i r ed

% I f T=e l i p s e (1) :

q=E1=UNI( 1 . 0 0 5 ; 1 . 8 )= (a , b )

g_r_X=@(X) un i fpd f (X, 1 . 0 0 5 , 1 . 8 ) ;

%Updating temp la te parameter T: T=DiscreteUNI (1 ,2)

q_T=@() unidrnd (2 ) ;

q_T_X=@(X) unidpdf (X, 2 ) ;

%Updating gamma: q=LogNormal ( alpha_i , de l t a_i ) ;

q_gamma=@(mu, sigma ) lognrnd (mu, sigma ) ;

q_gamma_X=@(X,mu, sigma ) lognpdf (X,mu, sigma ) ;

%I n i t i a l i s e sampling cons tan t s

% burn=500;

%Use s t r u c t

%I n i t i a l i s e sampler

s i z e 1=10∗ s i z e 0 ; %From image pre−proce s s ing
f s c a l e 3=transpose ( parameters ( : , 1 ) ) ; % Tranpose to 1 by m

(#o b j e c t s ) ( row , column )

fmean3=transpose ( parameters ( : , 6 ) ) ; % Tranpose to 1 by m

(#o b j e c t s )

f va r3=( t ranspose ( parameters ( : , 7 ) ) ) ; % Tranpose to 1 by m

(#o b j e c t s )

f l o c 3=transpose ( parameters ( : , 2 : 3 ) ) ; % Tranpose to 2 by m

(#o b j e c t s )

f t emplate3=transpose ( parameters ( : , 5 ) ) ; % Tranpose to 1 by m
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(#o b j e c t s ) ( row , column )

f r o t a t i o n 3=transpose ( parameters ( : , 4 ) ) ; % Tranpose to 1 by m

(#o b j e c t s )

f e c c e n t r i c 3=transpose ( parameters ( : , 8 ) ) ; %Transpose to 1 by m

s igmasqr=1;

nSamples=5000;

% I n i t i a l i s e a l l sample v e c t o r s :mu, sigma , s , c , T, the ta ,

g_r , gamma

% ( alpha , d e l t a ) , Nj , m

zz=s ize ( fmean3 , 2 ) ;

muSample=zeros ( nSamples , s i z e 1 ) ;

muSample ( 1 , 1 : zz )=fmean3 ( 1 , : ) ;

sigmaSample=zeros ( nSamples , s i z e 1 ) ;

sigmaSample ( 1 , 1 : zz )=fvar3 ( 1 , : ) ;

sSample=zeros ( nSamples , s i z e 1 ) ;

sSample ( 1 , 1 : zz )=f s c a l e 3 ( 1 , : ) ;

sigma_sj0=sSample ( 1 , : ) ;

c_xSample= zeros ( nSamples , s i z e 1 ) ;

c_xSample ( 1 , 1 : zz )=f l o c 3 ( 1 , : ) ;

c_ySample= zeros ( nSamples , s i z e 1 ) ;

c_ySample ( 1 , 1 : zz )=f l o c 3 ( 2 , : ) ;

% cSample=s t r u c t ( 'C' , f l o c 3 ) ;

% cj_sample=zeros (2 , s i z e 1 ) ;

TSample=ones ( nSamples , s i z e 1 ) ;

TSample ( 1 , 1 : zz )=ftemplate3 ( 1 , : ) ;

thetaSample=ones ( nSamples , s i z e 1 ) ;

thetaSample ( 1 , 1 : zz )=abs ( ( pi /180)∗ f r o t a t i o n 3 ( 1 , : ) ) ; %Convert

to rad ians

g_rSample=zeros ( nSamples , s i z e 1 ) ;

for i =1: zz

g_rSample (1 , i )=1/(1− f e c c e n t r i c 3 (1 , i ) ^2) ^(1/4) ;
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end

alpha1_sample=ones ( nSamples , 1 ) ;

alpha2_sample=ones ( nSamples , 1 ) ;

delta1_sample=ones ( nSamples , 1 ) ;

delta2_sample=ones ( nSamples , 1 ) ;

alpha1_sample (1 , 1 )=uni f rnd (3 , 5 ) ;

alpha2_sample (1 , 1 )=uni f rnd (3 , 5 ) ;

delta1_sample (1 , 1 )=uni f rnd ( 1 , 1 . 5 ) ;

delta2_sample (1 , 1 )=uni f rnd ( 1 , 1 . 5 ) ;

gamma_sample=ones ( nSamples , 2 ) ;

gamma_sample (1 , 1 )=q_gamma( alpha1_sample (1 , 1 ) , delta1_sample (1 , 1 ) ) ;

gamma_sample (1 , 2 )=q_gamma( alpha2_sample (1 , 1 ) , delta2_sample (1 , 1 ) ) ;

NjSample=zeros ( nSamples , s i z e 1 ) ;

NjSample ( 1 , 1 : zz )=f s c a l e 3 ( 1 , : ) ;

n=sum(NjSample ( 1 , : ) ) ;

t=1;

m_sample=ones ( nSamples , 1 ) ;

m_sample (1 , 1 )=s i z e 0 ;

m_updated_ind=0;

while t<nSamples+1;

i f m_updated_ind==1

t=t+1;

latest_m=m_sample ( t−1 ,1) ;
end

i f m_updated_ind==0 && t>1

latest_m=m_sample ( t−1 ,1) ;
end

i f t==1

t=t+1;

latest_m=s i z e 0 ;

end

i f latest_m>0
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for j =1: latest_m %For every o b j e c t a t time t

[ f_n , f_m]= s ize ( f ) ;

sMax=f_n∗f_m;

sum_f=0;

sum_f_star=0;

%Gibbs s t e p s

%B1 : Updating mu and sigma

s igmaStar=qs i g (NjSample ( t−1, j )−1,sigmaSample ( t−1, j ) ) ;
%Draw proposa l sigma from I/CHI2(Nj−1,sigma2 )

muStar=qmu(muSample ( t−1, j ) , s igmaStar / sSample ( t−1, j ) ) ;
%Draw proposa l mu from N( yj_bar , s igmaj /Nj )

%B1 : Updating ETA={c , g_r , s , the ta , T} EXCLUDING

T

%Updating s c a l i n g paramter s :

q=N( sj_prev , sigma_sj )

% , sigma_sj=1/10sj_0 , sj_0=es t imated s c a l e

f o r each o b j e c t

sSta r=qs ( sSample ( t−1, j ) , sigma_sj0 (1 , j ) /10) ;

%Updating l o c a t i o n paramter c : q=N( cj_prev ,

sigma_cjI )

x_std=std ( f l o c 3 ( : , 1 ) ) ^2;

y_std=std ( f l o c 3 ( : , 2 ) ) ^2;

sigma_cj0=[x_std , 0 ; 0 , y_std ] ;

%end1=s i z e ( cSample ) ;

l a t e s t_c=[c_xSample ( t−1, j ) ; c_ySample ( t−1, j ) ] ;
cStar=qc ( latest_c , sigma_cj0 /10) ;

%Updating r o t a t i on paramter t h e t a : q=UNI(0 ,PI )

the taStar=uni f rnd (0 , pi ) ;

%Updating random pure paramter g_r : I f T=c i r c l e :

SKIP

% I f T=e l i p s e :

q=E1=UNI(1 . 005 ; 1 .8 )

Tcurrent=TSample ( t−1, j ) ;
% 1 ' s are e l l i p s e s and 2 ' s are c i r c l e s
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i f Tcurrent==1

g_rStar=uni f rnd ( 1 . 0 0 5 , 1 . 8 ) ;

else

g_rStar=0;

end

%Ca l cu l a t e accpetance p r o b a b i l i t i e s

for f_i=1:f_n

for f_j=1:f_m

item1=1/(2∗ sigmaSample ( t−1, j ) ) ;
item2=f ( f_i , f_j ) ;

item3=muSample ( t−1, j ) ;
sum_f=sum_f+(item1 ∗( item2−item3 ) ) ;

i t em1star =1/(2∗ s igmaStar ) ;

i t em2star=f ( f_i , f_j ) ;

i t em3star=muStar ;

sum_f_star=sum_f_star + . . .

( i t em1sta r ∗( i tem2star−i t em3sta r ) ) ;

end

end

l og_l ike_curr=sum_f ;

log_l ike_hats=sum_f_star ;

% Steps f o r B1 Acceptance p r o b a b i l i t y ;

% Acceptance p r o b a b i l i t i e s f o r MU and SIGMA

s_j=sigmaSample (1 , j ) ;

item1=(1/sigmaSample ( t−1, j ) ) ;
item2=1/sSample ( t−1, j ) ;
item3=−1/(2∗sigmaSample ( t−1, j ) ) ;
item4=(sSample ( t−1, j )−1) ;
item5=muSample ( t−1, j )−mean(muSample ( 1 : t−1, j ) ) ;

qcurr=item1^item2 ∗ . . .
exp( item3 ∗ . . .
( item4∗ s_j+n∗( item5 ) ^2) ) ;

i t em1star=(1/ sigmaStar ) ;

i t em2star=1/sStar ;

i t em3star=−1/(2∗ s igmaStar ) ;

i t em4star=(sStar −1) ;
i t em5star=muStar−mean(muSample ( 1 : t−1, j ) ) ;
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qhats=i tem1star^ i t em2sta r ∗ . . .
exp( i t em3sta r ∗ . . .
( i t em4sta r ∗ s_j ∗( i t em5sta r ) ^2) ) ;

p i1=prod ( sigmaSample ( t−1 ,1: latest_m ) ) ;

p i2=sigmaSample ( t−1, j )∗ s igmaStar ;

pi_mu_sighats=1/( pi1 / pi2 ) ;

p i3=prod ( sigmaSample ( t−1 ,1: latest_m ) ) ;

pi_mu_sigcurr=1/( pi3 ) ;

i f qcurr==0

qcurr=normrnd (0 , 0 . 00005 ) ;

end

i f qhats==0

qhats=normrnd (0 , 0 . 00005 ) ;

end

i 1=qcurr ∗ log_l ike_hats ∗pi_mu_sighats ;

i 2=qhats∗ l og_l ike_curr ∗pi_mu_sigcurr ;

acceptance_B1=( i 1 / i 2 ) ;

%Acceptance p r o b a b i l i t i e s f o r Eta ex c l ud ing T

qhats_s=qs_X( sStar , sStar , sigma_sj0 (1 , j ) /10) ;

holder_s=un i fpd f ( sSample ( t−1 ,1: latest_m ) ,0 , sMax) ;

pi_s_hats=un i fpd f ( sStar , 0 , sMax) ∗ . . .
prod ( holder_s ) /holder_s ( j ) ;

qcurr_s=qs_X( sSample ( t−1, j ) , sSample ( t−1, j ) , . . .

sigma_sj0 (1 , j ) /10) ;

pi_s=prod ( holder_s ) ;

s_eta_hats=sqrt (sum( sSample ( t−1 ,1: latest_m ) ) − . . .

sSample ( t−1, j )+sStar ) ;

s_eta=sum( sSample ( t−1 ,1: latest_m ) ) ;

qhats_c=qc_X( cStar , cStar , sigma_cj0 /10) ;

chats1=−gamma_sample( t−1 ,1) ;
chats2=gamma_sample( t−1 ,2) ;
ch1=chats1 ∗ latest_m ;

ch2=chats2 ∗ s_eta_hats ;

pi_c_hats=exp( ch1−ch2 ) ;
qcurr_c=qc_X( latest_c , latest_c , sigma_cj0 /10) ;
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pi_c=exp(−gamma_sample( t−1 ,1) ∗ . . .
latest_m−gamma_sample( t−1 ,2)∗ s_eta ) ;

qhats_theta=qtheta_X( thetaStar ) ;

holder_theta = . . .

un i f pd f ( thetaSample ( t−1 ,1: latest_m ) ,0 , pi ) ;

pi_theta_hats=un i fpd f ( thetaStar , 0 , pi ) ∗ . . .
prod ( holder_theta ) / holder_theta ( j ) ;

qcurr_theta=qtheta_X( thetaSample ( t−1, j ) ) ;
pi_theta=prod ( holder_theta ) ;

i f g_rStar==0

qhats_gr=1;

else

qhats_gr=g_r_X( g_rStar ) ;

end

holder_gr=ones (1 , latest_m ) ;

for i= 1 : latest_m

i f g_rSample ( t−1, i ) <1.005 %(e<0.15)

holder_gr ( i )=1;

else

holder_gr ( i ) = . . .

un i f pd f ( g_rSample ( t−1, i ) , 1 . 0 0 5 , 1 . 8 ) ;

end

end

pi_gr_hats=un i fpd f ( g_rStar , 1 . 0 0 5 , 1 . 8 ) ∗ . . .
prod ( holder_gr ) /holder_gr ( j ) ;

qcurr_gr=g_r_X( g_rSample ( t−1, j ) ) ;
pi_gr=prod ( holder_gr ) ;

acceptance_s=(qcurr_s∗pi_s_hats/qhats_s∗pi_s ) ;

acceptance_c=(qcurr_c∗pi_c_hats/qhats_c∗pi_c ) ;

acceptance_theta = . . .

( qcurr_theta∗pi_theta_hats /qhats_theta∗pi_theta ) ;

acceptance_gr=(qcurr_gr∗pi_gr_hats/qhats_gr∗pi_gr ) ;

acceptance_al l = . . .

acceptance_s∗acceptance_c ∗ . . .
acceptance_theta∗acceptance_gr ;
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u_b1=uni f rnd (0 , 1 ) ;

u_b2=uni f rnd (0 , 1 ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Update paramters mu, sigma , e ta ( e x c l . T)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i f acceptance_B1 > u_b1

muSample ( t , j )=muStar ;

sigmaSample ( t , j )=sigmaStar ;

else

muSample ( t , j )=muSample ( t−1, j ) ;
sigmaSample ( t , j )=sigmaSample ( t−1, j ) ;

end

i f acceptance_al l >= u_b2

sSample ( t , j )=sStar ;

NjSample ( t , j )=sStar ;

c_xSample ( t , j )=cStar (1 ) ;

c_ySample ( t , j )=cStar (2 ) ;

thetaSample ( t , j )=thetaStar ;

g_rSample ( t , j )=g_rStar ;

else

sSample ( t , j )=sSample ( t−1, j ) ;
NjSample ( t , j )=NjSample ( t−1, j ) ;
c_xSample ( t , j )=c_xSample ( t−1, j ) ;
c_ySample ( t , j )=c_ySample ( t−1, j ) ;
thetaSample ( t , j )=thetaSample ( t−1, j ) ;
g_rSample ( t , j )=g_rSample ( t−1, j ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%B2 : Updating T

TStar=q_T( ) ;

i f TStar == TSample ( t−1, j )
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u_T=g_rSample ( t , j ) ;

v_T=u_T;

else

u_T=g_rSample ( t , j ) ;

i f TStar == 1

v_T=uni f rnd ( 1 . 0 0 5 , 1 . 8 ) ;

else

v_T=0;

end

end

i f v_T<1.005

pstar_THat=(pi_gr ) /holder_gr ( j ) ∗ . . .
1∗pi_s∗pi_c∗pi_theta ;

else

pstar_THat=(pi_gr ) /holder_gr ( j ) ∗ . . .
un i f pd f (v_T, 1 . 0 0 5 , 1 . 8 ) ∗pi_s ∗ . . .
pi_c∗pi_theta ;

end ;

i f u_T<1.005

pstar_Tcurr=(pi_gr ) /holder_gr ( j ) ∗1 ;
else

pstar_Tcurr=(pi_gr ) /holder_gr ( j ) ∗ . . .
un i f pd f (u_T, 1 . 0 0 5 , 1 . 8 ) ;

end ;

r_A=pstar_THat∗q_T_X(TSample ( t−1, j ) ) ∗ . . .
g_r_X(u_T) ;

r_B=pstar_Tcurr∗q_T_X(TStar )∗g_r_X(v_T) ;

acceptance_T=r_A/r_B;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Update T

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

u_T=uni f rnd (0 , 1 ) ;

i f acceptance_T >= u_T

TSample ( t , j )=TStar ;

else

TSample ( t , j )=TSample ( t−1, j ) ;
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end

%B4 : Updating Gamma=LN( alpha_i , de l t a_i ) wi th

% alpha_1=alpha_2=4 and de l t a_i ~ UNI(1 , 1 . 5 )

alpha1=uni f rnd (3 , 5 ) ;

alpha2=uni f rnd (3 , 5 ) ;

de l t a1=uni f rnd ( 1 , 1 . 5 ) ;

de l t a2=uni f rnd ( 1 , 1 . 5 ) ;

gamma1Star=q_gamma( alpha1 , de l t a1 ) ;

gamma2Star=q_gamma( alpha2 , de l t a2 ) ;

% Ca l cu l a t e acceptance p r o b a b i l i t y ;

qhats_gamma1= . . .

q_gamma_X(gamma1Star , alpha1 , de l t a1 ) ;

qhats_gamma2= . . .

q_gamma_X(gamma2Star , alpha2 , de l t a2 ) ;

qcurr_gamma1= . . .

q_gamma_X(gamma_sample ( t−1 ,1) , alpha1 , de l t a1 ) ;

qcurr_gamma2= . . .

q_gamma_X(gamma_sample ( t−1 ,2) , alpha2 , de l t a2 ) ;

pi_gamma= . . .

lognpdf (gamma_sample( t−1 ,1) , alpha1 , de l t a1 ) . . .

∗ l ognpdf (gamma_sample( t−1 ,2) , alpha2 , de l t a2 ) ;

pi_gamma_hats=lognpdf ( gamma1Star , alpha1 , de l t a1 ) ∗ . . .
l ognpdf ( gamma2Star , alpha2 , de l t a2 ) ;

acceptance_gamma1 = . . .

( qcurr_gamma1∗pi_gamma_hats/qhats_gamma1∗pi_gamma) ;

acceptance_gamma2 = . . .

( qcurr_gamma2∗pi_gamma_hats/qhats_gamma2∗pi_gamma) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Update gamma

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

u_gam1=uni f rnd (0 , 1 ) ;

u_gam2=uni f rnd (0 , 1 ) ;
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i f acceptance_gamma1 >= u_gam1

gamma_sample( t , 1 )=gamma1Star ;

else

gamma_sample( t , 1 )=gamma_sample ( t−1 ,1) ;
end

i f acceptance_gamma2 >= u_gam2

gamma_sample( t , 2 )=gamma2Star ;

else

gamma_sample( t , 2 )=gamma_sample ( t−1 ,2) ;
end

%END OF UPDATES B1 , B2 , B4

%( loop over number o f o b j e c t s ) ;

end

end

%B3 : Updating m;

%RJMCMC s t e p s

m_updated_ind=0;

[ f_n , f_m]= s ize ( f ) ;

%Determine move type ; b i r t h=1/death=2/ s p l i t =3/merge=4

i f latest_m>1 %p_birth=p_death=p_sp l i t=p_merge=0.25;

p_birth =0.25;

p_death=0.25;

p_sp l i t =0.25;

p_merge=0.25;

move=uni f rnd (0 , 1 ) ;

i f move<= p_birth

move_type=1;

end

i f ( p_birth<move)&&(move<=p_birth+p_death )

move_type=2;
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end

i f ( p_birth+p_death<move) &&.. .

(move<=p_birth+p_death+p_spl i t )

move_type=3;

end

i f p_birth+p_death+p_spl it<move

move_type=4;

end

end

i f latest_m==1

%p_birth=p_death=p_sp l i t =0.333333;p_merge=0.0;

p_birth =0.333333;

p_death=p_birth +0.333333;

p_sp l i t=p_death+0.333333;

p_merge=0.00;

move=uni f rnd (0 , 1 ) ;

i f move<= p_birth

move_type=1;

end

i f ( p_birth<move)&&(move<=p_death )

move_type=2;

end

i f p_spl it<move

move_type=3;

end

end

i f latest_m==0

%p_birth =1.0; p_death=p_sp l i t=p_merge=0;

move_type=1;

p_birth =1.00;

p_death=0.00;

p_sp l i t =0.00;

p_merge=0.00;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% BIRTH MOVE %%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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i f move_type==1 %BIRTH MOVE

%Get curren t s t a t e e ta=; mu, sigma

new_m=latest_m+1;

cur_mu=muSample ( t−1 ,1: latest_m ) ;

cur_sigma=sigmaSample ( t−1 ,1: latest_m ) ;

cur_s=sSample ( t−1 ,1: latest_m ) ;

%end1=s i z e ( cSample ) ;

cxx=c_xSample ( t−1 ,1: latest_m ) ;

cyy=c_ySample ( t−1 ,1: latest_m ) ;

l a t e s t_c=[cxx ; cyy ] ;

l a t e s t_the ta=thetaSample ( t−1 ,1: latest_m ) ;

l a t e s t_gr=g_rSample ( t−1 ,1: latest_m ) ;

latest_T=TSample ( t−1 ,1: latest_m ) ;

%Birth move

%Generate random ob j e c t

rn_sigma=qs i g (mean(NjSample ( t−1 ,1: latest_m ) ) . . .

−1,mean( sigmaSample ( t−1 ,1: latest_m ) ) ) ;

rn_mu=qmu(mean(muSample ( t−1 ,1: latest_m ) ) , rn_sigma ) ;

rn_s=qs (mean( sSample ( t−1 ,1: latest_m ) ) , . . .

mean( sigma_sj0 ( 1 , 1 : latest_m ) ) /10) ;

kk=unidrnd (new_m) ;

rn_c=qc ( l a t e s t_c ( : , kk ) , sigma_cj0 /10) ;

rn_theta=uni f rnd (0 , pi ) ;

rn_T=q_T( ) ;

rn_gr=uni f rnd ( 1 . 0 0 5 , 1 . 8 ) ;

%Ca l cu l a t e p s t a r (m+1 and m)

pi_mu_sigbirth =1/ . . .

(prod ( sigmaSample ( t−1 ,1: latest_m ) )∗rn_sigma ) ;

pi_mu_sigremain =1/ . . .

(prod ( sigmaSample ( t−1 ,1: latest_m ) ) ) ;

p i_sb i r th = . . .

prod ( un i f pd f ( sSample ( t−1 ,1: latest_m ) ,0 , sMax) ) . . .

∗ un i fpd f ( rn_s , 0 , sMax) ;

pi_sremain = . . .

prod ( un i f pd f ( sSample ( t−1 ,1: latest_m ) ,0 , sMax) ) ;

s_eta_birth=sum( sSample ( t−1 ,1: latest_m ) ) ;
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bb1=−gamma_sample( t−1 ,1)∗new_m;

bb2=gamma_sample( t−1 ,2)∗ s_eta_birth ;

p i_cbirth=exp( bb1−bb2 ) ;
pi_cremain=exp(−gamma_sample( t−1 ,1) ∗ . . .

latest_m−gamma_sample( t−1 ,2)∗ s_eta_birth ) ;

p i_thetab i r th = . . .

prod ( un i f pd f ( thetaSample ( t−1 ,1: latest_m ) ,0 , pi ) ) . . .

∗ un i fpd f ( rn_theta , 0 , pi ) ;

pi_thetaremain = . . .

prod ( un i f pd f ( thetaSample ( t−1 ,1: latest_m ) ,0 , pi ) ) ;

p i_grb i r th = . . .

prod ( un i f pd f ( g_rSample ( t−1 ,1: latest_m ) , 1 . 0 0 5 , 1 . 8 ) ) . . .

∗ un i fpd f ( rn_gr , 1 . 0 0 5 , 1 . 8 ) ;

pi_grremain = . . .

prod ( un i f pd f ( g_rSample ( t−1 ,1: latest_m ) , 1 . 0 0 5 , 1 . 8 ) ) ;

pi_Tbirth=prod ( unidpdf (TSample ( t−1 ,1: latest_m ) ,2) ) ∗ . . .
unidpdf (rn_T , 2 ) ;

pi_Tremain=prod ( unidpdf (TSample ( t−1 ,1: latest_m ) ,2) ) ;

%No l i k e l i h o o d needed as b i r t h and remain l i k e l i h o o d

cance l s out

pstar_birth=pi_mu_sigbirth∗ pi_sb i r th ∗pi_cbirth ∗ . . .
p i_thetab i r th ∗pi_grb i r th ∗pi_Tbirth ;

pstar_remain=pi_mu_sigremain∗pi_sremain ∗ . . .
pi_cremain∗pi_thetaremain∗pi_grremain∗pi_Tremain ;

p i_birth=(1/rn_sigma )∗ un i fpd f ( rn_s , 0 , sMax) ∗ . . .
exp(−gamma_sample( t−1 ,1)∗new_m− . . .

gamma_sample( t−1 ,2)∗ s_eta_birth ) . . .

∗ un i fpd f ( rn_theta , 0 , pi ) ∗ . . .
un i f pd f ( rn_gr , 1 . 0 0 5 , 1 . 8 ) ∗unidpdf (rn_T , 2 ) ;

Jacobian=1;

r_b1=(pstar_birth ∗p_death ) ;

r_b2=(pstar_remain∗pi_birth ∗p_birth ) ;

i f r_b2==0

r_b2=0.000001;

end

r_b=r_b1/r_b2∗Jacobian ;

i f r_b>1
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r_b=1;

end

%Update m

u_m=uni f rnd (0 , 1 ) ;

i f r_b < u_m

m_sample ( t , 1 )=new_m;

muSample ( t ,new_m)=rn_mu ;

sigmaSample ( t ,new_m)=rn_sigma ;

sSample ( t ,new_m)=rn_s ;

NjSample ( t ,new_m)=rn_s ;

c_xSample ( t ,new_m)=rn_c (1) ;

c_ySample ( t ,new_m)=rn_c (2) ;

thetaSample ( t ,new_m)=rn_theta ;

g_rSample ( t ,new_m)=rn_gr ;

TSample ( t ,new_m)=rn_T ;

m_updated_ind=1;

else

m_sample ( t , 1 )=m_sample ( t−1 ,1) ;
m_updated_ind=1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% DEATH MOVE %%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i f move_type==2 %DEATH MOVE

cur_mu=muSample ( t , 1 : latest_m ) ;

cur_sigma=sigmaSample ( t , 1 : latest_m ) ;

cur_s=sSample ( t , 1 : latest_m ) ;

%end1=s i z e ( cSample ) ;

l a t e s t_c=[c_xSample ( t , 1 : latest_m ) ; . . .

c_ySample ( t , 1 : latest_m ) ] ;

l a t e s t_the ta=thetaSample ( t , 1 : latest_m ) ;

l a t e s t_gr=g_rSample ( t , 1 : latest_m ) ;

latest_T=TSample ( t , 1 : latest_m ) ;

%Choose random ob j e c t to remove
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kk=unidrnd ( latest_m ) ;

%Death move

new_m=latest_m−1;
%Choose random ob j e c t

rn_sigma=cur_sigma (1 , kk ) ;

rn_mu=cur_mu(1 , kk ) ;

rn_s=cur_s (1 , kk ) ;

rn_c=la te s t_c ( : , kk ) ;

rn_theta=la t e s t_the ta (1 , kk ) ;

rn_T=latest_T (1 , kk ) ;

rn_gr=la t e s t_gr (1 , kk ) ;

pi_mu_sigdeath =1/ . . .

(prod ( sigmaSample ( t , 1 : latest_m ) ) /rn_sigma ) ;

pi_mu_sigremain=1/(prod ( sigmaSample ( t , 1 : latest_m ) ) ) ;

pi_sdeath = . . .

prod ( un i f pd f ( sSample ( t , 1 : latest_m ) ,0 , sMax) ) . . .

/ un i fpd f ( rn_s , 0 , sMax) ;

pi_sremain=prod ( un i f pd f ( sSample ( t , 1 : latest_m ) ,0 , sMax) ) ;

s_eta_death=sum( sSample ( t , 1 : latest_m ) ) ;

pi_cdeath=exp(−gamma_sample( t , 1 ) ∗ . . .
new_m−gamma_sample( t , 2 ) ∗s_eta_death ) ;

pi_cremain=exp(−gamma_sample( t , 1 ) ∗ latest_m − . . .

gamma_sample( t , 2 ) ∗s_eta_death ) ;

pi_thetadeath = . . .

prod ( un i f pd f ( thetaSample ( t , 1 : latest_m ) ,0 , pi ) ) / . . .

un i f pd f ( rn_theta , 0 , pi ) ;

pi_thetaremain = . . .

prod ( un i f pd f ( thetaSample ( t , 1 : latest_m ) ,0 , pi ) ) ;

pi_grdeath=prod ( un i f pd f ( g_rSample ( t , 1 : latest_m ) , . . .

1 . 0 0 5 , 1 . 8 ) ) / un i fpd f ( rn_gr , 1 . 0 0 5 , 1 . 8 ) ;

pi_grremain=prod ( un i f pd f ( g_rSample ( t , 1 : latest_m ) , . . .

1 . 0 0 5 , 1 . 8 ) ) ;

pi_Tdeath=prod ( unidpdf (TSample ( t , 1 : latest_m ) ,2) ) . . .

/ unidpdf (rn_T , 2 ) ;

pi_Tremain=prod ( unidpdf (TSample ( t , 1 : latest_m ) ,2) ) ;

%No l i k e l i h o o d needed as death and remain l i k e l i h o o d cance l s
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out

pstar_death=pi_mu_sigdeath∗pi_sdeath∗pi_cdeath ∗ . . .
p i_thetadeath∗pi_grdeath∗pi_Tdeath ;

pstar_remain=pi_mu_sigremain∗pi_sremain∗pi_cremain . . .

∗pi_thetaremain∗pi_grremain∗pi_Tremain ;

pi_death=(1/rn_sigma )∗ un i fpd f ( rn_s , 0 , sMax) ∗ . . .
exp(−gamma_sample( t , 1 ) ∗new_m− . . .

gamma_sample( t , 2 ) ∗s_eta_death ) . . .

∗ un i fpd f ( rn_theta , 0 , pi ) ∗ . . .
un i f pd f ( rn_gr , 1 . 0 0 5 , 1 . 8 ) ∗unidpdf (rn_T , 2 ) ;

Jacobian=1;

r_b1=(pstar_death∗p_death ) ;

r_b2=(pstar_remain∗pi_death∗p_death ) ;

i f r_b2==0

r_b2=0.000001;

end

r_b=r_b1/r_b2∗Jacobian ;

i f r_b==0

r_b=0.000001;

end

i f r_b>1

r_b=1;

end

r_d=1/r_b ;

%Update m

u_m=uni f rnd (0 , 1 ) ;

i f r_d < u_m

m_sample ( t , 1 )=new_m;

muSample ( t , kk :new_m)=muSample ( t , kk+1: latest_m ) ;

muSample ( t , latest_m )=0;

sigmaSample ( t , kk :new_m) = . . .

sigmaSample ( t , kk+1: latest_m ) ;

sigmaSample ( t , latest_m )=0;
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sSample ( t , kk :new_m)=sSample ( t , kk+1: latest_m ) ;

sSample ( t , latest_m )=0;

NjSample ( t , kk :new_m)=NjSample ( t , kk+1: latest_m ) ;

NjSample ( t , latest_m )=0;

c_xSample ( t , kk :new_m) = . . .

c_xSample ( t , kk+1: latest_m ) ;

c_xSample ( t , latest_m )=0;

c_ySample ( t , kk :new_m) = . . .

c_ySample ( t , kk+1: latest_m ) ;

c_ySample ( t , latest_m )=0;

g_rSample ( t , kk :new_m) = . . .

g_rSample ( t , kk+1: latest_m ) ;

g_rSample ( t , latest_m )=0;

thetaSample ( t , kk :new_m) = . . .

thetaSample ( t , kk+1: latest_m ) ;

thetaSample ( t , latest_m )=0;

TSample ( t , kk :new_m)=TSample ( t , kk+1: latest_m ) ;

TSample ( t , latest_m )=0;

m_updated_ind=1;

else

m_sample ( t , 1 )=m_sample ( t−1 ,1) ;
m_updated_ind=1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% MERGE MOVE %%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i f move_type==4 %MERGE MOVE

cur_mu=muSample ( t , 1 : latest_m ) ;
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cur_sigma=sigmaSample ( t , 1 : latest_m ) ;

cur_s=sSample ( t , 1 : latest_m ) ;

%end1=s i z e ( cSample ) ;

l a t e s t_c=[c_xSample ( t , 1 : latest_m ) ; . . .

c_ySample ( t , 1 : latest_m ) ] ;

l a t e s t_the ta=thetaSample ( t , 1 : latest_m ) ;

l a t e s t_gr=g_rSample ( t , 1 : latest_m ) ;

latest_T=TSample ( t , 1 : latest_m ) ;

%Choose random ob j e c t to merge

kk=unidrnd ( latest_m ) ;

%Merge move

new_m=latest_m−1;

%Generate merged o b j e c t

i f kk < latest_m

kk1=kk+1;

else

kk1=kk−1;
end

s i=cur_s (1 , kk ) ;

s j=cur_s (1 , kk1 ) ;

x i=la t e s t_c (1 , kk ) ;

x j=la t e s t_c (1 , kk1 ) ;

y i=la t e s t_c (2 , kk ) ;

y j=la t e s t_c (2 , kk1 ) ;

rn_s=sqrt ( s i+s j ) ;

rn_cx=( s i ∗ x i+s j ∗ xj ) /( s i+s j ) ;

rn_cy=( s i ∗ y i+s j ∗ yj ) /( s i+s j ) ;

rn_c=[rn_cx ; rn_cy ] ;

rn_kk=uni f rnd (0 , 1 ) ;

i f rn_kk<0.5

kk2=kk ;

else

kk2=kk1 ;
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end

rn_theta=la t e s t_the ta ( kk2 ) ;

rn_T=latest_T ( kk2 ) ;

rn_gr=la t e s t_gr ( kk2 ) ;

rn_sigma=cur_sigma ( kk2 ) ;

rn_mu=cur_mu( kk2 ) ;

u1=sqrt ( ( xi−xj )^2+(yi−yj ) ^2) ;
u2=atan ( ( yj−y i ) /( u1 ) ) ;
u3=( s i ^2− s j ^2) /( s i ^2+s j ^2) ;

u4=la t e s t_the ta ( kk1 ) ;

u5=latest_T ( kk1 ) ;

u6=la t e s t_gr ( kk1 ) ;

pi_mu_sigmerge=1/(prod ( sigmaSample ( t , 1 : latest_m ) ) . . .

∗rn_sigma /( sigmaSample ( t , kk )∗ sigmaSample ( t , kk1 ) ) ) ;

pi_mu_sigremain=1/(prod ( sigmaSample ( t , 1 : latest_m ) ) ) ;

pi_smerge=prod ( un i f pd f ( sSample ( t , 1 : latest_m ) ,0 , sMax) ) . . .

∗ un i fpd f ( rn_s , 0 , sMax) . . .

/( un i fpd f ( sSample ( t , kk ) ,0 , sMax) ∗ . . .
un i f pd f ( sSample ( t , kk1 ) ,0 , sMax) ) ;

pi_sremain=prod ( un i f pd f ( sSample ( t , 1 : latest_m ) ,0 , sMax) ) ;

s_eta_merge=sum( sSample ( t , 1 : latest_m ) ) ;

pi_cmerge=exp(−gamma_sample( t , 1 ) ∗ . . .
new_m−gamma_sample( t , 2 ) ∗s_eta_merge ) ;

pi_cremain=exp(−gamma_sample( t , 1 ) ∗ latest_m − . . .

gamma_sample( t , 2 ) ∗s_eta_merge ) ;

pi_thetamerge = . . .

prod ( un i f pd f ( thetaSample ( t , 1 : latest_m ) ,0 , pi ) ) . . .

∗ un i fpd f ( rn_theta , 0 , pi ) . . .

/( un i fpd f ( thetaSample ( t , kk ) ,0 , pi ) ∗ . . .
un i f pd f ( thetaSample ( t , kk1 ) ,0 , pi ) ) ;

pi_thetaremain=prod ( un i f pd f . . .

( thetaSample ( t , 1 : latest_m ) ,0 , pi ) ) ;

pi_grmerge=prod ( un i f pd f ( g_rSample ( t , 1 : latest_m ) . . .

, 1 . 0 0 5 , 1 . 8 ) )∗ un i fpd f ( rn_gr , 1 . 0 0 5 , 1 . 8 ) . . .

/( un i fpd f ( g_rSample ( t , kk ) , 1 . 0 0 5 , 1 . 8 ) ∗ . . .
un i f pd f ( g_rSample ( t , kk1 ) , 1 . 0 0 5 , 1 . 8 ) ) ;

pi_grremain=prod ( un i f pd f ( g_rSample ( t , 1 : latest_m ) . . .

, 1 . 0 0 5 , 1 . 8 ) ) ;
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pi_Tmerge=prod ( unidpdf (TSample ( t , 1 : latest_m ) ,2) ) . . .

∗unidpdf (rn_T , 2 ) . . .

/( unidpdf ( latest_T (kk ) ,2 ) ∗ . . .
unidpdf ( latest_T ( kk1 ) ,2 ) ) ;

pi_Tremain=prod ( unidpdf (TSample ( t , 1 : latest_m ) ,2) ) ;

%No l i k e l i h o o d needed as death and remain l i k e l i h o o d cance l s

out

pstar_merge=pi_mu_sigmerge∗pi_smerge∗pi_cmerge . . .

∗pi_thetamerge∗pi_grmerge∗pi_Tmerge ;

pstar_remain=pi_mu_sigremain∗pi_sremain ∗ . . .
pi_cremain∗pi_thetaremain∗pi_grremain∗pi_Tremain ;

pi_merge=un i fpd f (u1 , 0 , sMax) ∗ . . .
un i f pd f (u2 , 1 . 0 0 5 , 1 . 8 ) ∗ un i fpd f (u3 ,−1 ,1) . . .

∗ un i fpd f (u4 , 1 . 0 0 5 , 1 . 8 ) ∗unidpdf (u5 , 2 ) ∗ . . .
un i f pd f (u6 , 1 . 0 0 5 , 1 . 8 ) ;

Jacobian=1;

r_m1=(pstar_merge∗p_spl i t ∗pi_merge ) ;

r_m2=(pstar_remain∗p_merge ) ;

i f r_m2==0

r_m2=0.00001;

end

r_m=(r_m1/r_m2)∗Jacobian ;

i f r_m>1

r_m=1;

end

%Update m

u_m=uni f rnd (0 , 1 ) ;

i f r_m < u_m && kk<latest_m

m_sample ( t , 1 )=new_m;

muSample ( t , kk : latest_m−2) = . . .

muSample ( t , kk+2: latest_m ) ;

muSample ( t , latest_m−1)=rn_mu ;

muSample ( t , latest_m )=0;

sigmaSample ( t , kk : latest_m−2) = . . .
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sigmaSample ( t , kk+2: latest_m ) ;

sigmaSample ( t , latest_m−1)=rn_sigma ;

sigmaSample ( t , latest_m )=0;

sSample ( t , kk : latest_m−2) = . . .

sSample ( t , kk+2: latest_m ) ;

sSample ( t , latest_m−1)=rn_s ;

sSample ( t , latest_m )=0;

NjSample ( t , kk : latest_m−2) = . . .

NjSample ( t , kk+2: latest_m ) ;

NjSample ( t , latest_m−1)=rn_s ;

NjSample ( t , latest_m )=0;

c_xSample ( t , kk : latest_m−2) = . . .

c_xSample ( t , kk+2: latest_m ) ;

c_xSample ( t , latest_m−1)=rn_cx ;

c_xSample ( t , latest_m )=0;

c_ySample ( t , kk : latest_m−2) = . . .

c_ySample ( t , kk+2: latest_m ) ;

c_ySample ( t , latest_m−1)=rn_cy ;

c_ySample ( t , latest_m )=0;

g_rSample ( t , kk : latest_m−2) = . . .

g_rSample ( t , kk+2: latest_m ) ;

g_rSample ( t , latest_m−1)=rn_gr ;

g_rSample ( t , latest_m )=0;

thetaSample ( t , kk : latest_m−2) = . . .

thetaSample ( t , kk+2: latest_m ) ;

thetaSample ( t , latest_m−1)=rn_theta ;

thetaSample ( t , latest_m )=0;

TSample ( t , kk : latest_m−2) = . . .

TSample ( t , kk+2: latest_m ) ;

TSample ( t , latest_m−1)=rn_T ;

TSample ( t , latest_m )=0;

m_updated_ind=1;
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end

i f r_m < u_m && kk>=latest_m

m_sample ( t , 1 )=new_m;

muSample ( t , kk−1: latest_m−2) = . . .

muSample ( t , kk+1: latest_m ) ;

muSample ( t , latest_m−1)=rn_mu ;

muSample ( t , latest_m )=0;

sigmaSample ( t , kk−1: latest_m−2) = . . .

sigmaSample ( t , kk+1: latest_m ) ;

sigmaSample ( t , latest_m−1)=rn_sigma ;

sigmaSample ( t , latest_m )=0;

sSample ( t , kk−1: latest_m−2) = . . .

sSample ( t , kk+1: latest_m ) ;

sSample ( t , latest_m−1)=rn_s ;

sSample ( t , latest_m )=0;

NjSample ( t , kk−1: latest_m−2) = . . .

NjSample ( t , kk+1: latest_m ) ;

NjSample ( t , latest_m−1)=rn_s ;

NjSample ( t , latest_m )=0;

c_xSample ( t , kk−1: latest_m−2) = . . .

c_xSample ( t , kk+1: latest_m ) ;

c_xSample ( t , latest_m−1)=rn_cx ;

c_xSample ( t , latest_m )=0;

c_ySample ( t , kk−1: latest_m−2) = . . .

c_ySample ( t , kk+1: latest_m ) ;

c_ySample ( t , latest_m−1)=rn_cy ;

c_ySample ( t , latest_m )=0;

g_rSample ( t , kk−1: latest_m−2) = . . .

g_rSample ( t , kk+1: latest_m ) ;

g_rSample ( t , latest_m−1)=rn_gr ;

g_rSample ( t , latest_m )=0;
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thetaSample ( t , kk−1: latest_m−2) = . . .

thetaSample ( t , kk+1: latest_m ) ;

thetaSample ( t , latest_m−1)=rn_theta ;

thetaSample ( t , latest_m )=0;

TSample ( t , kk−1: latest_m−2) = . . .

TSample ( t , kk+1: latest_m ) ;

TSample ( t , latest_m−1)=rn_T ;

TSample ( t , latest_m )=0;

m_updated_ind=1;

end

i f r_m >= u_m

m_sample ( t , 1 )=m_sample ( t−1 ,1) ;
m_updated_ind=1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%% SPLIT MOVE %%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i f move_type==3 %SPLIT MOVE

cur_mu=muSample ( t , 1 : latest_m ) ;

cur_sigma=sigmaSample ( t , 1 : latest_m ) ;

cur_s=sSample ( t , 1 : latest_m ) ;

%end1=s i z e ( cSample ) ;

l a t e s t_c=[c_xSample ( t , 1 : latest_m ) ; . . .

c_ySample ( t , 1 : latest_m ) ] ;

l a t e s t_the ta=thetaSample ( t , 1 : latest_m ) ;

l a t e s t_gr=g_rSample ( t , 1 : latest_m ) ;

latest_T=TSample ( t , 1 : latest_m ) ;

%Choose random ob j e c t to SPLIT

kk=unidrnd ( latest_m ) ;

%Sp l i t move

new_m=latest_m+1;
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%Generate s p l i t o b j e c t

i f kk < latest_m

kk1=kk+1;

else

kk1=kk−1;
end

s i=cur_s (1 , kk ) ;

s j=cur_s (1 , kk1 ) ;

x i=la t e s t_c (1 , kk ) ;

x j=la t e s t_c (1 , kk1 ) ;

y i=la t e s t_c (2 , kk ) ;

y j=la t e s t_c (2 , kk1 ) ;

rn_s=sqrt ( s i+s j ) ;

rn_cx=( s i ∗ x i+s j ∗ xj ) /( s i+s j ) ;

rn_cy=( s i ∗ y i+s j ∗ yj ) /( s i+s j ) ;

rn_c=[rn_cx ; rn_cy ] ;

rn_kk=uni f rnd (0 , 1 ) ;

i f rn_kk<0.5

kk2=kk ;

else

kk2=kk1 ;

end

rn_theta=la t e s t_the ta ( kk2 ) ;

rn_T=latest_T ( kk2 ) ;

rn_gr=la t e s t_gr ( kk2 ) ;

rn_sigma=cur_sigma ( kk2 ) ;

rn_mu=cur_mu( kk2 ) ;

u1=sqrt ( ( xi−xj )^2+(yi−yj ) ^2) ;
u2=atan ( ( yj−y i ) /( u1 ) ) ;
u3=( s i ^2− s j ^2) /( s i ^2+s j ^2) ;

u4=la t e s t_the ta ( kk1 ) ;

u5=latest_T ( kk1 ) ;

u6=la t e s t_gr ( kk1 ) ;

pi_mu_sigmerge =1/ . . .

(prod ( sigmaSample ( t , 1 : latest_m ) ) ∗ . . .
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rn_sigma /( sigmaSample ( t , kk )∗ sigmaSample ( t , kk1 ) ) ) ;

pi_mu_sigremain=1/(prod ( sigmaSample ( t , 1 : latest_m ) ) ) ;

pi_smerge = . . .

prod ( un i f pd f ( sSample ( t , 1 : latest_m ) ,0 , sMax) ) . . .

∗ un i fpd f ( rn_s , 0 , sMax) /( un i fpd f ( sSample ( t , kk ) ,0 , sMax) . . .

∗ un i fpd f ( sSample ( t , kk1 ) ,0 , sMax) ) ;

pi_sremain=prod ( un i f pd f ( sSample ( t , 1 : latest_m ) ,0 , sMax) ) ;

s_eta_merge=sum( sSample ( t , 1 : latest_m ) ) ;

pi_cmerge=exp(−gamma_sample( t , 1 ) ∗ . . .
new_m−gamma_sample( t , 2 ) ∗s_eta_merge ) ;

pi_cremain=exp(−gamma_sample( t , 1 ) ∗ latest_m − . . .

gamma_sample( t , 2 ) ∗s_eta_merge ) ;

pi_thetamerge=prod ( un i f pd f ( thetaSample ( . . .

t , 1 : latest_m ) ,0 , pi ) )∗ un i fpd f ( rn_theta , 0 , pi ) . . .

/( un i fpd f ( thetaSample ( t , kk ) ,0 , pi ) ∗ . . .
un i f pd f ( thetaSample ( t , kk1 ) ,0 , pi ) ) ;

pi_thetaremain = . . .

prod ( un i f pd f ( thetaSample ( t , 1 : latest_m ) ,0 , pi ) ) ;

pi_grmerge=prod ( un i f pd f ( g_rSample ( t , 1 : latest_m ) . . .

, 1 . 0 0 5 , 1 . 8 ) )∗ un i fpd f ( rn_gr , 1 . 0 0 5 , 1 . 8 ) . . .

/( un i fpd f ( g_rSample ( t , kk ) , 1 . 0 0 5 , 1 . 8 ) ∗ . . .
un i f pd f ( g_rSample ( t , kk1 ) , 1 . 0 0 5 , 1 . 8 ) ) ;

pi_grremain=prod ( un i f pd f ( g_rSample ( . . .

t , 1 : latest_m ) , 1 . 0 0 5 , 1 . 8 ) ) ;

pi_Tmerge=prod ( unidpdf (TSample ( t , 1 : latest_m ) ,2) ) . . .

∗unidpdf (rn_T , 2 ) /( unidpdf ( latest_T (kk ) ,2 ) . . .

∗unidpdf ( latest_T ( kk1 ) ,2 ) ) ;

pi_Tremain=prod ( unidpdf (TSample ( t , 1 : latest_m ) ,2) ) ;

%No l i k e l i h o o d needed as death and remain l i k e l i h o o d cance l s

out

pstar_merge=pi_mu_sigmerge∗pi_smerge∗pi_cmerge ∗ . . .
pi_thetamerge∗pi_grmerge∗pi_Tmerge ;

pstar_remain=pi_mu_sigremain∗pi_sremain ∗ . . .
pi_cremain∗pi_thetaremain∗pi_grremain∗pi_Tremain ;

pi_merge=un i fpd f (u1 , 0 , sMax) ∗ . . .
un i f pd f (u2 , 1 . 0 0 5 , 1 . 8 ) ∗ un i fpd f (u3 ,−1 ,1) . . .

∗ un i fpd f (u4 , 1 . 0 0 5 , 1 . 8 ) ∗unidpdf (u5 , 2 ) ∗ . . .
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un i fpd f (u6 , 1 . 0 0 5 , 1 . 8 ) ;

Jacobian=1;

r_m1=(pstar_merge∗p_spl i t ∗pi_merge ) ;

r_m2=(pstar_remain∗p_merge ) ;

i f r_m2==0

r_m2=0.000001;

end

r_m=r_m1/r_m2∗Jacobian ;

i f r_m==0

r_m=0.000001;

end

i f r_m>1

r_m=1;

end

r_s=1/r_m;

i f r_s>1

r_s=1;

end

%Update m

u_m=uni f rnd (0 , 1 ) ;

i f r_s < u_m

m_sample ( t , 1 )=new_m;

muSample ( t , kk+1)=rn_mu ;

muSample ( t , kk+2:new_m) = . . .

muSample ( t , kk+1: latest_m ) ;

sigmaSample ( t , kk+1)=rn_sigma ;

sigmaSample ( t , kk+2:new_m) = . . .

sigmaSample ( t , kk+1: latest_m ) ;

sSample ( t , kk+1)=rn_s ;

sSample ( t , kk+2:new_m)=sSample ( t , kk+1: latest_m ) ;

NjSample ( t , kk+1)=rn_s ;

NjSample ( t , kk+2:new_m) = . . .

NjSample ( t , kk+1: latest_m ) ;
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c_xSample ( t , kk+1)=rn_cx ;

c_xSample ( t , kk+2:new_m) = . . .

c_xSample ( t , kk+1: latest_m ) ;

c_ySample ( t , kk+1)=rn_cy ;

c_ySample ( t , kk+2:new_m) = . . .

c_ySample ( t , kk+1: latest_m ) ;

g_rSample ( t , kk+1)=rn_gr ;

g_rSample ( t , kk+2:new_m) = . . .

g_rSample ( t , kk+1: latest_m ) ;

thetaSample ( t , kk+1)=rn_theta ;

thetaSample ( t , kk+2:new_m) = . . .

thetaSample ( t , kk+1: latest_m ) ;

TSample ( t , kk+1)=rn_T ;

TSample ( t , kk+2:new_m)=TSample ( t , kk+1: latest_m ) ;

m_updated_ind=1;

end

i f r_s >= u_m

m_sample ( t , 1 )=m_sample ( t−1 ,1) ;
m_updated_ind=1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%STEP A2: DRAW AUXILIARY VARIABLES FROM THE LIKELIHOOD

FUNCTION

K = m_sample ( t , 1 ) ∗8+2+1;

%parameters : mu, sigma , s , cx , cy , the ta ,

%g_r , T + gamma1 , gamma2 + m

mm=m_sample ( t , 1 ) ;
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latest_parms=[m_sample ( t , 1 ) , muSample ( t , 1 :mm) , . . .

sigmaSample ( t , 1 :mm) . . .

, sSample ( t , 1 :mm) , c_xSample ( t , 1 :mm) , c_ySample ( t , 1 :mm) . . .

, thetaSample ( t , 1 :mm) , g_rSample ( t , 1 :mm) ,TSample ( t , 1 :mm) . . .

, gamma_sample( t , 1 : 2 ) ] ;

auxil_parms=normrnd (mean(muSample ( t , 1 :mm) ) , . . .

mean( sigmaSample ( t , 1 :mm) ) ,1 ,K) ;

%STEP A3: COMPUTE MCMH ACCEPTANCE RATIO

f_zStar=normpdf ( auxil_parms ,mean(muSample ( t , 1 :mm) ) . . .

,mean( sigmaSample ( t , 1 :mm) ) ) ;

f_zCur=normpdf ( latest_parms ,mean(muSample ( t , 1 :mm) ) . . .

,mean( sigmaSample ( t , 1 :mm) ) ) ;

rat io_z=zeros (1 ,K) ;

for i= 1 : K

rat io_z (1 , i )=f_zStar (1 , i ) /f_zCur (1 , i ) ;

end

R_hat=(sum( ratio_z , 2 ) ) /K;

i f R_hat==0

R_hat=0.000001;

end

i f R_hat>1

R_hat=1;

end

r_hat=1/R_hat ;

%STEP A4: ACCEPT/REJECT PROPOSAL

u_z=uni f rnd (0 , 1 ) ;

i f r_hat < u_z

%Rejec t proposa l

m_sample ( t , : )=m_sample ( t −1 , : ) ;

muSample ( t , : )=muSample ( t −1 , : ) ;

sigmaSample ( t , : )=sigmaSample ( t −1 , : ) ;

sSample ( t , : )=sSample ( t −1 , : ) ;

c_xSample ( t , : )=c_xSample ( t −1 , : ) ;

c_ySample ( t , : )=c_ySample ( t −1 , : ) ;

thetaSample ( t , : )=thetaSample ( t −1 , : ) ;
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g_rSample ( t , : )=g_rSample ( t −1 , : ) ;

TSample ( t , : )=TSample ( t −1 , : ) ;

gamma_sample( t , : )=gamma_sample( t −1 , : ) ;

end

end

% Fina l parameters :

% nSamples=t ;

nSamples=t−1;
final_m0=m_sample ( 1 : nSamples , 1 ) ;

final_m=m_sample ( nSamples , 1 ) ;

final_mu=muSample ( 1 : nSamples , 1 : final_m ) ;

f ina l_s igma=sigmaSample ( 1 : nSamples , 1 : final_m ) ;

f i na l_s=sSample ( 1 : nSamples , 1 : final_m ) ;

f ina l_cx=c_xSample ( 1 : nSamples , 1 : final_m ) ;

f ina l_cy=c_ySample ( 1 : nSamples , 1 : final_m ) ;

f i na l_the ta=thetaSample ( 1 : nSamples , 1 : final_m ) ;

f i na l_gr=g_rSample ( 1 : nSamples , 1 : final_m ) ;

f inal_T=TSample ( 1 : nSamples , 1 : final_m ) ;

final_gamma=gamma_sample ( 1 : nSamples , : ) ;

% input e l l i p s e parameters

n=90;

theta_grid = zeros (1 , n ) ;

for k = 1 : n

theta_grid (k ) = 2 ∗pi ∗(k − 1) /n ;

end

phi = transpose ( f i na l_the ta ( nSamples , 1 : final_m ) ) ;

X0=transpose ( f ina l_cx ( nSamples , 1 : final_m ) ) ;

Y0=transpose ( f ina l_cy ( nSamples , 1 : final_m ) ) ;

S0=transpose ( f i na l_s ( nSamples , 1 : final_m ) ) ;

a=transpose ( f i na l_gr ( nSamples , 1 : final_m ) ) ;

b=zeros ( final_m , 1 ) ;
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shape_x_r=zeros ( final_m , n) ;

shape_y_r=zeros ( final_m , n) ;

for k=1: final_m

b(k )=1/ f i na l_gr (k ) ;

shape_x_r (k , : )= X0(k ) + a (k )∗cos ( theta_grid ) ;

shape_y_r (k , : )= Y0(k ) + b(k )∗ sin ( theta_grid ) ;

% the e l l i p s e in x and y coord ina t e s

R =[cos ( phi ( k ) ) sin ( phi ( k ) ) ;−sin ( phi ( k ) ) cos ( phi ( k ) ) ] ;

%Define a r o t a t i on matrix

%l e t ' s r o t a t e the e l l i p s e to some ang le p h i i

rotated_shape = R ∗ [ shape_x_r (k , : ) ; shape_y_r (k , : ) ] ;

plot ( rotated_shape ( 1 , : ) ,−1∗ rotated_shape ( 2 , : ) , ' . ' ) ;

hold on

end

hold o f f

plot ( final_m0 )

ylim ( [min( final_m0 )−5,max( final_m0 ) +5])

t i t l e ( 'Number o f  s imulated  ob j e c t s  over  time ' )

xlabel ( 'Number o f  s imu la t i on s ' )

ylabel ( 'Number o f  ob j e c t s ' )

kk=1

plot ( final_mu ( : , kk ) )

ylim ( [min( final_mu ( : , kk ) )−5,max( final_mu ( : , kk ) ) +5])

t i t l e ( [ ' Object  ' num2str( kk ) '  mean over  time ' ] )

xlabel ( 'Number o f  s imu la t i on s ' )

ylabel ( 'Mean value ' )

plot ( f ina l_s igma ( : , kk ) )

ylim ( [min( f ina l_s igma ( : , kk ) )−5,max( f ina l_s igma ( : , kk ) ) +5])

t i t l e ( [ ' Object  ' num2str( kk ) '  var i ance  over  time ' ] )

xlabel ( 'Number o f  s imu la t i on s ' )
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ylabel ( ' Variance  value ' )

plot ( f i na l_the ta ( : , kk ) )

ylim ( [min( f i na l_the ta ( : , kk ) )−5,max( f i na l_the ta ( : , kk ) ) +5])

t i t l e ( [ ' Object  ' num2str( kk ) '  r o t a t i on  over  time ' ] )

xlabel ( 'Number o f  s imu la t i on s ' )

ylabel ( ' Rotation  ( in  rad ians ) ' )

plot ( f inal_T ( : , kk ) )

ylim ( [min( f inal_T ( : , kk ) )−5,max( f inal_T ( : , kk ) ) +5])

t i t l e ( [ ' Object  ' num2str( kk ) '  template  over  time ' ] )

xlabel ( 'Number o f  s imu la t i on s ' )

ylabel ( ' Object  template ' )

legend ( ' 1 :  E l i p s e   2 :  C i r c l e ' )

• All the other MH steps are de�ned in the same manner as the MH updates used

in Algorithm B.2, using the information given in Section 4.5.2;

• The RJ-MCMC steps are coded in exactly the same manner as discussed in

Section 4.3.5;

• The combined MH and RJ-MCMC steps then form part of a single update in

the MHWG algorithm, or alternatively are all one step in the outer algorithm,

as discussed in Section 4.5.1;

• The updates are run until no signi�cant change in the parameters are observed,

with a burn-in of 500 samples.

B.3 Occlussion algorithm simulation results

In this section, the parameter results of an additional two images of gold nanoparticles

are given. The simulated object parameters at each iteration for 5 randomly selected

objects (including the burn-in period of 500 samples) is shown in the �gures below.
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Figure B.1: Simulation results: Image 2 - Number of simulated objects over time.

Figure B.2: Simulation results: Image 2 - Sample distribution for the number of simu-
lated objects. Note that m = 50 objects are identi�ed in the �nal result.
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Figure B.3: Simulation results: Image 2 - Mean (µ) value over time.

Figure B.4: Simulation results: Image 2 - Variance (σ2) over time.
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Figure B.5: Simulation results: Image 2 - Rotation (θ) over time.

Figure B.6: Simulation results: Image 2 - Template (T ) over time.
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Figure B.7: Simulation results: Image 3 - Number of simulated objects over time.

Figure B.8: Simulation results: Image 3 - Sample distribution for the number of simu-
lated objects. Note that m = 26 objects are identi�ed in the �nal result.
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Figure B.9: Simulation results: Image 3 - Mean (µ) over time.

Figure B.10: Simulation results: Image 3 - Variance (σ2) over time.
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Figure B.11: Simulation results: Image 3 - Rotation (θ) over time.

Figure B.12: Simulation results: Image 3 - Template (T ) assigned over time.
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