Eur J Nucl Med Mol Imaging (2017) 44:689-694
DOI 10.1007/s00259-016-3563-6

@ CrossMark

ORIGINAL ARTICLE

%3Ga-PSMA-HBED-CC PET imaging in breast

carcinoma patients

Mike Sathekge' - Thabo Lengana' - Moshe Modiselle' - Mariza Vorster' -
JanRijn Zeevaart' .« Alex Maes'? - Thomas Ebenhan' - Christophe Van de Wiele'~

Received: 12 July 2016 /Accepted: 21 October 2016 /Published online: 8 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

Background To report on imaging findings using **Ga-PSMA-
HBED-CC PET in a series of 19 breast carcinoma patients.
Methods **Ga-PSMA-HBED-CC PET imaging results ob-
tained were compared to routinely performed staging exami-
nations and analyzed as to lesion location and progesterone
receptor status.

Results Out of 81 tumor lesions identified, 84% were identified
on ®*Ga-PSMA-HBED-CC PET. **Ga-PSMA-HBED-CC
SUVmean values of distant metastases proved significantly
higher (mean, 6.86, SD, 5.68) when compared to those of pri-
mary or local recurrences (mean, 2.45, SD, 2.55, p=0.04) or
involved lymph nodes (mean, 3.18, SD, 1.79, p=0.011).
SUVmean values of progesterone receptor-positive lesions
proved not significantly different from progesterone receptor-
negative lesions. SUV values derived from FDG PET/CT, avail-
able in seven patients, and %8Ga-PSMA-HBED-CC PET/CT
imaging proved weakly correlated (»=0.407, p =0.015).
Conclusions °®Ga-PSMA-HBED-CC PET/CT imaging in
breast carcinoma confirms the reported considerable variation
of PSMA expression on human solid tumors using
immunohistochemistry.
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Introduction

Prostate-specific membrane antigen (PSMA) is an integral
membrane protein, mapped to chromosome 11q14, which
is over-expressed by a high number of prostate carcino-
mas; this expression is further increased in higher-grade
carcinomas, in metastatic disease, and in hormone refrac-
tory prostate carcinomas, making it an interesting target
for prostate carcinoma-specific imaging and therapy [1].
In this regard, the PSMA inhibitor Glu-NH-CO-NH-
Lys(Ahx)-HBED-CC was labeled with ®®Ga for positron
emission tomography (PET) and shown to be more accu-
rate for the detection of recurrent prostate carcinoma
when compared to '*F-choline PET and, in combination
with MRI, to be significantly more accurate for the detec-
tion of primary prostate carcinoma when compared to
PET/CT [2-4]. Aside from prostate carcinoma, PSMA
has also been reported to be selectively overexpressed in
the tumor-associated neovasculature of a wide variety of
solid tumors including breast carcinoma [5-8].

Sathekge et al. recently presented the first case of a patient
with metastatic breast cancer, in whom PET/CT using the Glu-
NH-CO-NH-Lys-(Ahx)-[**Ga(HBEDCC)] (°®Ga-PSMA) li-
gand detected bone and liver metastases with essentially sim-
ilar visual contrast to '"*F-FDG PET/CT [6]. In this study, we
built on these initial findings by reporting on imaging findings
using **Ga-PSMA-HBED-CC PET in a series of 19 breast
carcinoma patients.

Patients and methods
Nineteen women (mean age, 45 years, range, 25-66 years)

suffering from breast carcinoma were prospectively in-
cluded in this study, approved by the Institutional Ethics
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Committee, following written informed consent. **Ga-
PSMA-HBED-CC PET imaging was performed in nine
“de novo” diagnosed breast carcinoma patients, in five
patients presenting with a loco-regional recurrence of
breast carcinoma, and in a pre-treatment metastasized set-
ting in another five patients. Six patients were progester-
one receptor-positive and seven were progesterone recep-
tor-negative. In the remaining six patients, progesterone
receptor status was unknown. Seven of the 19 patients
included additionally underwent FDG PET/CT imaging
(three de novo patients, two loco-regional recurrent, and
two metastasized patients). Both ®*Ga-PSMA-HBED-CC
and FDG PET/CT imaging was performed from the top of
the pelvis to the skull following the injection of a body
weight-adjusted dose, ((body weight/10) + 1) x 37 MBq
for FDG PET imaging and 2 MBg/kg for **Ga-PSMA-
HBED-CC PET imaging. All *®Ga-PSMA-HBED-CC in-
jections contained 2 mmol PSMA ligand, resulting in a
median specific radioactivity of 66 GBg/umol [9]. In all
patients, available imaging data performed as part of the
staging or restaging procedure, including contrast-
enhanced CT imaging of the thoraco-abdominal region,
echography, bone scintigraphy, and, when available,
FDG-PET imaging (see also above, performed within
2 weeks from the **Ga-PSMA-HBED-CC PET examina-
tion and prior to any treatment initiation), were used as
gold standard to define the imaging potential of **Ga-
PSMA-HBED-CC PET imaging.

Statistical analysis

Differences in ®*Ga-PSMA-HBED-CC SUVmean values be-
tween different subgroups were assessed using Student’s ¢ test
or ANOVA with post hoc Bonferroni correction where appropri-
ate. Correlation analysis was performed using Pearson’s correla-
tion or Spearman-rank correlation analysis where appropriate.

Results

Overall, in the 19 patients studied, 81 tumor lesions were
identified: 13 primary tumors and/or local recurrences, 15
involving the lymph nodes, and 53 metastases (see Table 1
and Figs. 1 and 2). Out of these, six primary or recurrent
lesions, two lymph nodes, and five metastases proved nega-
tive on ®*Ga-PSMA-HBED-CC PET, yielding an overall de-
tection rate of 84% for **Ga-PSMA-HBED-CC PET.

%*Ga-PSMA-HBED-CC SUVmean values of distant me-
tastases proved significantly higher (mean, 6.86, SD, 5.68)
when compared to those of primary or local recurrences
(mean, 2.45, SD, 2.55, p=0.04) or involved lymph nodes
(mean, 3.18, SD, 1.79, p=0.011).

8Ga-PSMA-HBED-CC SUVmean values of progesterone
receptor-positive lesions (#, number of lesions = 31) proved
not significantly different from those obtained in progesterone
receptor-negative lesions (n=31), respectively 5.62 + 5.40
(mean/SD) versus 4.19 +2.63 (p =0.188).

Table 1 Patient characteristics

and PSMA imaging results Patientno. Age Carcinomatype  PRstatus  Clinical setting  Primary/local relapse LN~ M+

(Iesions identified on **Ga-

PSMA-HBED-CC PET/total 1 45 Ductal NA Primary 1/1 0/0  0/0

number derived from routine 2 45 NA NA M+ 0/0 0/0  5/5

examination procedures) 3 49  Ductal NA M+ 0/0 00  4/6
4 66 Lobular PR+ Primary 0/1 /1 0/0
5 40 NA NA Recurrence 0/1 /1 4/4
6 39 Ductal PR+ Recurrence 1/1 00  0/1
7 38 Ductal PR+ Recurrence 0/1 0/0  4/5
8 39 Ductal PR- Primary 0/1 0/0  0/1
9 25 Ductal PR- Primary 1/1 /1  0/0
10 62 Ductal PR- Recurrence 0/1 0/0  0/0
11 53 Lobular PR+ Primary 1/1 2/2  4/4
12 54 Neuroendocrine PR+ Primary 1/1 12 5/5

differentiation

13 42 Ductal PR+ Primary 1/1 /1 4/4
14 39 Ductal PR- Primary 1/1 12 23
15 57 Ductal NA Primary 0/1 0/0  0/0
16 40 Ductal NA M+ 0/0 2/2  4/4
17 31 Ductal PR- M+ 0/0 0/0 4/4
18 44 NA PR- Recurrence 0/0 2/2 5/5
19 56 Ductal PR- M+ 0/0 /1 22

NA not available, PR progesterone receptor, M+ metastasized
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Fig. 1 A 42-year-old female with metastatic breast carcinoma who
underwent **Ga-PSMA and '®F-FDG PET/CT. Axial, coronal, and
sagittal fused ®*Ga-PSMA PET/CT images demonstrated primary left

FDG PET/CT imaging performed in seven patients identi-
fied 35 lesions. Of the 35 FDG-positive lesions, six proved
PSMA-negative and FDG PET/CT was clearly more intense
than “*Ga-PSMA with regards to primary lesions (Fig. 1).
Inversely, one lesion identified on **Ga-PSMA-HBED-CC
PET proved FDG PET/CT-negative. In those patients that
underwent both examinations,’®Ga-PSMA values proved not
significantly different from those obtained using FDG [mean
4.58, SD, 3.94) versus 6.1 (SD, 2.82), p=0104].

Of interest, a weak but significant relationship was identi-
fied between SUV values derived from FDG PET/CT (mean,
6.1, SD, 2.82) and **Ga-PSMA-HBED-CC PET/CT imaging
(r=0.407, p=0.015).

Discussion

PSMA has been previously shown to be universally up-
regulated on tumor-associated vascular endothelial cells in
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breast cancer, axillary nodal and left pleural metastases (a). Avidity is
slightly intense on '*F-FDG PET/CT images (b). Maximum-intensity-
projection PET gives overview of all lesions (¢, d)

solid tumors and to participate in matrix degradation and fa-
cilitate integrin signaling and p21-activated kinase 1 (PAK-1)
activation leading to productive tumor invasion [10]. Since
PSMA is found in the neovasculature of many tumors, it is
thought to regulate angiogenesis, however, the precise mech-
anism by which PSMA exerts its effect is unknown [10, 11].
To this effect some groups suggest that PSMA plays a number
of roles in angiogenesis, some involving vascular endothelial
factor (VEGF), others not [11, 12]. In a study by Wernicke
et al. on breast carcinoma patients, tumor-associated vascula-
ture was shown to be PSMA-positive in 68 out of 92 primary
breast cancers (74%) and in 14 out of 14 of breast cancers
metastatic to the brain [7]. Likewise, in a study by Natsuko
et al., five breast cancer brain metastases showed PSMA ex-
pression on tumor blood vessels [8], and recently our manu-
script demonstrated intense uptake by **Ga-PSMA-HBED-CC
in metastatic breast cancer [6]. In line with these findings, out
of 81 tumor lesions identified, 84% were proven to be %8Ga-
PSMA PET-positive in the series that presented with distant
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Fig. 2 A 39-year-old woman with stage IV by “*Ga-PSMA PET/CT. a Maximum-intensity-projection PET demonstrated multiple osseous metastasis
and a primary right breast cancer. Axial, coronal, and sagittal fused PET/CT confirms all the lesions (b)

metastases displaying significantly higher **Ga-PSMA-
HBED-CC SUV values. Furthermore, **Ga-PSMA-HBED-
CC SUV values of tumor lesions were shown to vary signif-
icantly from one patient to another as well as from one lesion
to another within one patient. These findings concur with the
reported considerable variation of PSMA expression on hu-
man solid tumors using immunohistochemistry, thus further
supporting the fact that breast cancer is a heterogeneous
disease [13].

The hormonal receptor (estradiol receptor (ER)/progester-
one receptor (PR) status is a strong prognostic factor for breast
cancer. The progesterone receptor (PR) is an estrogen re-
sponse element that is transcribed after effective binding of
the estradiol-estradiol receptor (ER) complex to DNA in ER-
positive, estradiol-responsive breast cancers [14]. In the study
by Wernicke et al., patients with PR-negative tumors were
more likely to present with a more extensive PSMA staining
(PSMA-expression in > 50% of microvessels) when com-
pared to PR-positive tumors [7]. In our series presented, no
significant difference in °*Ga-PSMA SUV values between
PR-positive and PR-negative tumors could be identified.
However, in some patients under study, a considerable time
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interval existed between characterization of the PR-status on
the primary tumor and subsequent imaging, performed in a
metastasized setting. Accordingly, the tumor biology of some
of these tumors may have changed due to ongoing mutations
resulting in a loss of PR expression, thereby flawing the exis-
tence of a possible relationship between both variables.

Furthermore, there is increasing evidence of temporal and
spatial heterogeneity in breast cancer receptor overexpression.
Patients with negative test results at diagnosis can have posi-
tive test results later in the disease course and vice versa, a fact
that explains why biopsy of metastatic disease is a strong
recommendation of many clinical treatment guidelines [13].
Hence, heterogeneity in biomarker expression at metastatic
sites is only beginning to be recognized, with growing appre-
ciation for molecular imaging.

Since the use of "*F-FDG tumor uptake as a biomarker for
predicting a pathologic response to treatment has been ex-
plored in the preclinical and clinical settings, with conflicting
results [15], we also needed to demonstrate the role of '*F-
FDG in advanced disease. More so, limited evidence supports
the use of '®F-FDG PET to evaluate the extent of disease in
selected patients with recurrent or metastatic disease [16, 17].



Eur J Nucl Med Mol Imaging (2017) 44:689-694

693

Although our case demonstrated concordance of **Ga-
PSMA and '®F-FDG lesions [6], of interest, we identified a
weak but significant relationship between tumor metabolism
as assessed by FDG uptake and tumor angiogenesis assessed
by *®Ga-PSMA-HBED-CC PET imaging. This finding is in
line with a previous report by Grobes et al. in a series of 20
consecutive newly diagnosed breast carcinoma patients in
whom FDG uptake proved significantly associated with the
degree of angiogenesis assessed using immunohistochemistry
and CD105 staining [1, 18]. CD105 or endoglin is an acces-
sory receptor for transforming growth factor beta (TGF-beta)
of which the expression is up-regulated in actively proliferat-
ing endothelial cells. Most investigators, including Grobes
et al., have reported a correlation between tumor angiogenesis
and glucose metabolism [12, 19]. However, other studies
failed to demonstrate a significant correlation between angio-
genesis and FDG uptake. Avril et al. reported an inverse rela-
tionship between SUV and the number of microvessels in
breast cancer patients [20]. This could be one of the reasons
for the weak relationship between FDG uptake and “*Ga-
PSMA-HBED-CC PET imaging.

The robust expression of PSMA by breast cancer lesions as
evidenced using ®*Ga-PSMA-HBED-CC PET imaging in this
series and the absence of PSMA on normal vascular endothe-
lium as well as its limited expression on the luminal side of the
intestinal epithelium, which is not accessible via the vascula-
ture, makes PSMA an interesting potential target for
antiangiogenic therapy of breast carcinoma. More specifically,
PSMA-targeting therapeutic agents may selectively destroy
vessels perfusing tumor tissue and achieve high regional doses
of drugs to overcome tumor resistance while sparing normal
tissue, which typically lacks PSMA expression. In this regard,
both the anti-PSMA monoclonal antibody J591 and 177Lu-
PSMA-617 were shown to be well tolerated and to show con-
siderable clinical efficacy, respectively in patients suffering
from a variety of advanced solid tumors and prostate carcino-
ma [21, 22]. More recently, the results of a first-in human
phase I trial to determine the safety, pharmacokinetics, and
anti-tumor activity of BIND-014, a PSMA-targeting nanopar-
ticle containing docetaxel were reported [23]. BIND-014 was
shown to be generally well tolerated and clinical activity was
noted in multiple tumor types.

Folkman characterized angiogenesis as being fundamental
for tumor growth beyond 2 mm in 1971 [24]. Surprisingly,
there is still no validated predictive biomarker for the selection
of antiangiogenic therapy [25]. While angiogenesis is an im-
portant component in the progression of a number of diseases,
it is clear that all angiogenic processes are not regulated by the
same signals and are often distinct pathologies [26]. Hence
%8Ga-PSMA-HBED-CC PET imaging as performed in the
series presented may allow for selection of those patients most
likely to benefit from these PSMA-targeting treatment modal-
ities. Furthermore, it is not to be excluded that %8Ga-PSMA.-

HBED-CC PET imaging may also play a role in treatment
response monitoring and selection of those patients suffering
from breast carcinoma that may benefit from non-PSMA
targeting antiangiogenic treatment strategies either given as
monotherapy or in combination with chemotherapy, e.g.,
bevacizumab, aflibercept, integrin targeting antibodies, suni-
tinib, sorafenib, gamma-secretase inhibitors, angiopoietin in-
hibitors, and mTOR inhibitors [27].

The limitations of this study were the small number of
patients included and lack of assessment of HER2 status of
the metastatic lesions. This will be undertaken in a future large
study. Although our study did not assess targeting
antiangiogenic therapy for breast cancer; studies assessing
the potential of ®®Ga-PSAM-HBED-CC for predicting and
monitoring response to antiangiogenic treatment in patients
suffering from breast carcinoma could be helpful and thus
warranted. In conclusion, %8Ga-PSMA-HBED-CC PET/CT
imaging in breast carcinoma confirms the reported consider-
able variation of PSMA expression on human solid tumors
using immunohistochemistry.
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