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Abstract

Spectral methods have been actively developed in the last decades. The

main advantage of these methods is to yield exponential order of accu-

racy when the function is smooth. However, for discontinuous functions,

their accuracy deteriorates due to the Gibbs phenomenon. When func-

tions are contaminated with the Gibbs phenomenon, proper workarounds

can be applied to recover their accuracy. In this dissertation, we review the

spectral methods and their convergence remedies such as grid stretching,

discontinuity inclusion and domain decomposition methods in pricing op-

tions. The basic functions of Lévy processes models are also reviewed.

The main purpose of this dissertation is to show that high order of ac-

curacy can be recovered from spectral approximations. We explored and

designed numerical methods for solving PDEs and PIDEs that arise in fi-

nance. It is known that most standard numerical methods for solving fi-

nancial PDEs and PIDEs are reduced to low order accurate results due to

the discontinuity at strike prices in the initial condition.

Firstly the Black Scholes (BS) PDE was solved numerically. The computa-

tion of the PDE is done by using barycentric spectral methods. Three dif-

ferent payoffs call options are used as initial and boundaries conditions.

It appears that the grid stretching, the discontinuity inclusion and the do-

main decomposition methods provide efficient ways to remove Gibbs phe-

nomenon. On the other hand, these methods restore the high accuracy of

spectral methods in pricing financial options. The spectral domain de-

composition method appears to be the most accurate workaround when

we solve a BS PDE in this dissertation.

Secondly, a financial PIDE was discretized and solved by using a barycen-
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tric spectral domain decomposition method algorithm. The method is ap-

plied to two different options pricing problems under a class of infinite ac-

tivity Lévy models. The use of barycentric spectral domain decomposition

methods allows the computation of ODEs obtained from the discretization

of the PIDE. The ODEs are solved by exponential time integration scheme.

Several numerical tests for the pricing of European and butterfly options

are given to illustrate the efficiency and accuracy of this algorithm. We

also show that the option Greeks such as the Delta and Gamma sensitivity

measures are computed with no spurious oscillation. The methods pro-

duce accurate results.
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3.5 Application of Lévy processes in Finance . . . . . . . . . . . 53

3.5.1 Market driven by the real-world measure . . . . . . 54

3.5.2 Market driven by the risk-neutral measure . . . . . . 56
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Chapter 1

Introduction

This chapter introduces the concept of option pricing theory and gives

an overview of the objectives which has to be achieved in this thesis. A

content of the dissertation marked the end of this chapter.

1.1 Background

Transactions in the market are characterized by the process of buying and

selling. This is known as trading. To control this process, many studies

have been done in finance and economy. Mathematical finance in partic-

ular, gives a better understanding of markets and tries to quantify it by

using some mathematical techniques. The revolutionary paper of Black-

Scholes (1973) and Merton (1973) gave the ground of the market’s quan-

tification. The paper makes some modelling assumptions in finance. The

popular one (or delicate) is the one which states that the underlying asset
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market (e.g., stock, futures, commodity, currency, index) is perfectly elas-

tic so that the trading has no influence on its price. To have a fair possible

price of the underlying asset in the market, many financial institutes re-

sort to the modelling of its behaviour by looking for a stochastic process

that will closely fit its returns distribution. This practice does not usually

provide the origin of the important factors that affect the price of an asset

during certain trades. Therefore some endogenous mechanisms are found

to give better insight of how the market prices are formed (see the work

done in the thesis of [74]).

In the next sections we introduce the basic idea and concept of the op-

tion pricing, its concepts and numerical methodologies, and outline the

objectives of this thesis.

1.2 Option pricing theory

The field of Botany has been the catalyst of the option pricing. In 1828,

Robert Brown (1773-1858), a Scottish botanist observed in his laboratory

that plant pollen particles suspended in water have random motion [105].

This observation gave the young French employee of the financial insti-

tution, ‘La Bourse de Paris’, the idea of his doctoral research in option

pricing model. In Louis Bachelier’s (1870-1946) doctoral thesis (entitled

Théorie de la spéculation [6]), that he successfully defended at ‘La Sorbonne’

in March 29, 1900, he made assumptions that the stock prices were having

‘random walk’, which he referred to as the Brownian motion (or arithmetic

Brownian motion (ABM)). He proved that stock prices can be modelled

with a diffusion process or Brownian motion (BM). This revolutionary

2
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work was published in the French scientific journal, Annales Scientifiques

de l’École Normale Supérieure and was the origin of financial mathematics

[31]. Five years later, Albert Einstein produced a well celebrated work

of Brownian motions through the original study on ‘random walk’ [105].

This led to further studies made by Norbert Wiener (1894-1964) on BM in

the 1920’s.

To face the problem of ‘random walk’ of the stock prices, Kiyoshi Itô went

on to develop the stochastic calculus in 1944. His work gave a strong

ground of modelling stock prices successfully by using the BM and later

became an important tool for modern finance. But in 1965, the economist

Paul Samuelson re-introduced Bachelier’s work into the economic sciences

and advised that the Itô’s geometric Brownian motion (GBM) model was a

suitable model for stock price movements (see [135] and references within).

His approach gave the way to his student Robert C. Merton and other re-

searchers to develop various pricing formulas in finance. The famous one

is the Black, Scholes and Merton equation for pricing a European call and

put option. The formula was developed in 1973. It paved the way to the

surviving members (Scholes and Merton) to receive the Nobel Prize for

economics in 1997. This ground-breaking work introduced the concept of

a strong hedging strategy in the market.

1.3 Option pricing concepts and numerical meth-

ods

Financial practice is developed by the assumption of the statistical be-

haviour of the market. To have a perfect reproduction of its behaviour,

3
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we construct or produce mathematical models. These models are usually

represented by Partial Differential Equations (PDEs). The popularity of

options gives an importance of their studies. This attention is given by the

fact that:

1. Option are very attractive to investors, both for speculation and for hedg-

ing.

2. There is a systematic way to determine how much they are worth, hence

they can be bought and sold with some confidence.

From [33, 62, 112, 115], an option is defined as the right (but not the obliga-

tion) to buy or sell a risky asset at a specific price after or within a specific

time. It is a derivative contract between two parties, the writer and the

holder. The writer fixes the terms of the contract and sells the option. The

holder buys the option at the stock market by paying an option price. To

exercise this contract, rules are implemented in such a way that both par-

ties have balanced ‘rights’. For example, after maturity date T , the right

of the holder expires and for later times the option becomes worthless.

There are two types of option, the put and the call option. The put option

gives the holder the right to sell the underlying asset for an agreed price

K (strike price ) at the maturity time T . The call option gives the right to

the holder to buy the asset under the same conditions of the corresponding

put option. The holder has a choice of exercising or not the option at time

t = T by checking the current price, S = ST , of the underlying asset. In the

case of a call option, the holder can buy the asset at costs K exercising the

option or he can buy on the spot market for costs S. Hence the holder will

exercise only when S > K , which makes a profit of S −K per shares (with-
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out transaction costs). This refers us to the intrinsic value of the option

which is the value of the option at maturity. It is also called payoff. It is

received when the underlying asset is at its current level (when the option

expires) [115]. The payoff function is the value V (S,T ) of an option at the

expiration date T . A call option payoff is given by:

Vc (ST ,T ) = (ST −K)+ := max(ST −K,0) . (1.1)

Similarly for a put, the payoff at expiration will be given by

Vp (ST ,T ) = (K − ST )+ := max(K − ST ,0) . (1.2)

Figure 1.1 is the representation of a payoff for a European call and put op-

tions with K = 50. When the intrinsic value is positive, we say the option
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Figure 1.1: Payoff of a European call and put options. K = 50.

is in-the-money. The option is said to be out-of-the money, if there is no

intrinsic value and at-the-money, if the strike price is equal or closer to the

current asset level [62].

There are different styles or families of options. The mostly used

are European and American options. A European option can only be ex-

ercised at the expiration date T and a American option can be exercised
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at any time up to the expiration date T . Options that are European and

have a straightforward strike prices are often called vanilla options. Their

opponents are called exotic options. These options have more complex

contract details. For example, the Asian option has a payoff which de-

pends on the average of the underlying price over adjusted period, and

the barrier option has a value which depends on some combination of dif-

ferent assets price St by reaching the limited value of S during its life time

[62].

To calculate or estimate a fair value of an option we use mathe-

matical models. Under the assumption of GBM, the asset price is

dS(t)
S(t)

= µdt + σdW (t), (1.3)

where µ is the drift of the stock, σ is the volatility andW (t) is the standard

BM (Wiener process). The parameters µ and σ can be deterministic or

constant values. In this dissertation, we will use µ and σ as constant values

in all numerical applications.

Definition 1. [15] A standard Brownian ( or a standard Wiener process) is a

stochastic process {Wt}t≥0+ (that is, a family of random variableWt, indexed by

non-negative real numbers t), defined on a common probability space (Ω,F ,P)

with the following properties:

1. W0 = 0.

2. With probability 1, the function t→Wt is continuous in t.

3. The process {Wt}t≥0 has stationary, independent increments.

4. The increment Wt+s −Wt has the NORMAL (0, t) distribution.
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In the above definition, the term independent increments means

that for every choice of non-negative real numbers

0 ≤ s1 < t1 ≤ s2 < t2 ≤ ≤ sn < tn <∞,

the increment random variables

Wt1 −Ws1 ,Wt2 −Ws2 , ...,Wtn −Wsn ,

are jointly independent; the term stationary increments means that for

any 0 < s, t < ∞ the distribution of the increment Wt+sWs has the same

distribution as WtW0 =Wt.

Equation (1.3) leads to the following partial differential equation

(PDE) representing the standard Black-Scholes (BS) PDE [15],

1
2
σ2S2(t)

∂2V

∂S2 + rS(t)
∂V
∂S

+
∂V
∂t
− rV = 0. (1.4)

For a European option, its initial and boundary conditions are,
Vc(0, t) = 0 for all t ≥ 0,

Vc(S, t) = S as S→∞,

Vc(S,T ) = max(S −K,0) for all S ≥ 0,

(1.5)

and 
Vp(0, t) = Ke−rt for all t ≥ 0,

Vp(S,t) = 0 as S→∞,

Vp(S,T ) = max(K − S,0) for all S ≥ 0,

(1.6)

for respectively a European call and put. In (1.4) Π represents the call

or put option price and the equation is valid if S > 0, 0 ≤ t ≤ T . In both

equations (1.3) and (1.4), σ is one of the most important parameters. It

is a statistical measure of the market’s behaviour or the guarantee for the
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market to rise or fall within a period of time. It is usually measured by the

standard deviation from the expectation. A high value of the volatility in

the market means that prices change rapidly in a short period of time. This

leads to a higher option prices often called the price of risk, which arise to

a conclusion of “the higher the risk, the higher the return”. We illustrate this

theory in Table 1.1 by changing the values of σ . Considering an unchanged

current price (S), strike (K) and risk-free rate (r) to be 100,95 and 10%

respectively. Over a period of three months, we compute an European call

and put option price of Equation (1.4). All results are recorded in Table

1.1. We observe that an increase of σ leads to an increase of the European

call and put option price.

Volatility (σ ) in % Call price Put price

10 7.50 0.13

20 8.60 1.23

30 10.20 2.81

40 11.90 4.55

50 13.70 6.35

Table 1.1: BS European Put and Call option with different values of σ .

Pricing options is very important when we try to adjust or cali-

brate models in finance. The challenge usually occurs when we want to

price options that have different strike prices and dates of expiration at

the same period. Thus fast and accurate models are needed for financial

institutions. These models have become very important instruments for

derivative pricing and for managing risk that could default any compa-

nies to produce positive returns at the end of any financial transactions.
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In practice, analytical solutions can be difficult to find. Then to overcome

this difficulty, the use of numerical methods has been a better choice to

find solutions that will be accurate approximation to the analytical ones.

The commonly used pricing methods in the financial world are the bi-

nomial tree models, which has been extended to the trinomial tree model.

These two models are considered as lattice methods and were firstly used

by Parkinson in 1977, then Cox et al. proceeded with the method in 1979

(see [135] and references within). Phelim P. Boyle also proposed in 1977

an alternative method, The Monte Carlo method (MCM), which is also pop-

ular in finance. Paul Wilmott consider the method and its varieties to be

an excellent solver for high dimensional problems and path-dependent

options (see [135] and references within). It generates a massive number

of sample paths to estimate the value of the option. We can easily used

it but its computation is very expensive when we want to obtain a high

accuracy.

Other alternative methods are:

• The finite difference method which was first implemented in pricing

option by Brennan and Schwartz (see [135] and references within);

discretize simultaneously the stock price and the time line to give an

approximation of the price option in forms of discrete points.

• The partial-integro differential equation (PIDE) methods, which will

be a subject of one application in this dissertation, use numerical

schemes to solve partial-integro differential equations (PIDEs) di-

rectly.

• The Spectral method (SCM), which is reviewed in Chapter 2.
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• The numerical integration methods model the option price in a form

of discounted expected value of the payoff at maturity. These meth-

ods are very attractive due to the fact that they have a fast computa-

tional speed, particularly on the plain vanilla option.

A variety of other methods on pricing the option are found in many jour-

nals of finance and economics [14, 33, 58, 86].

1.4 Numerical approach of pricing options un-

der spectral methods

A function that has continuous derivatives up to some desired order over

some domain is said to be smooth. Smooth functions are often approxi-

mated by using Chebyshev polynomial interpolations since they provide

a strong and rapid convergence. However, Chebyshev interpolants are en-

able to produce a high accuracy for functions having discontinuities in

the domain of interest [101]. In the presence of such phenomena, the ac-

curacy of high order methods deteriorates. This is due to the well known

Gibbs phenomenon. The phenomenon became famous in 1898 when Al-

bert Michelson observed it through a mechanical graphing machine used

to compute and re-synthesize the Fourier series of a square wave. It is only

after the publication of J. Willard Gibbs’s paper that a detailed mathemat-

ical description of the phenomenon was given and named after Gibbs in

1906 [128].

Jump discontinuities produce pointwise convergence almost everywhere.

Hence, in this case there is no uniform convergence. The Gibbs phe-

10

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



nomenon states that, the pointwise convergence of an approximation of

discontinuous functions is at most first order [83, 108]. Since the Gibbs

phenomenon local effect is found in oscillations near the jumps, discon-

tinuous functions cannot have a uniform convergence. The same happen

when the Gibbs phenomenon effect is global. Although the error in this

case decay away from the jumps, the decay rate is only first order. Hence,

the rate of convergence over the whole domain will slow down in the ex-

istence of one or more discontinuities. To reduce the Gibbs phenomenon

on a piecewise smooth function, a projection of each smooth sub-interval

on another basis can be done. Then, these parts can be combine to one

another to restore the function on the whole interval [52].

Spectral methods are often perceived to be too sensitive and lack robust-

ness to allow the modelling of problems of realistic complexity which, by

their very nature, most often are non-smooth. It is well-known that op-

tion prices and their derivatives usually change dramatically near slope

discontinuities of the payoff functions, hence oscillations due to Gibbs

phenomena arise. The phenomenon affects the convergence and solution

of financial PDEs. This explains why the application of spectral methods

in the field of computational finance is still limited. Several workarounds

exist and are commonly used to suppress or avoid this phenomenon. The

use of these workarounds restores the exponential accuracy of these meth-

ods [108]. They include, filtering [127], Gegenbauer reconstruction [51],

grid stretching [12] and domain decomposition [95, 134] methods. The

method which is mostly accurate should have the exact location of all dis-

continuities. Recently, these workarounds have regained robustness and

have received considerable attention in the field of finance. This is due to

their effectiveness [102]. Among the suggested methods which reduce or
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eliminate the problem of jumps discontinuities, the spectral domain de-

composition method (SCDDM) appear to be the most efficient [108].

Option prices and their derivatives are modelled in a form of ordinary or

partial differential equations (ODEs or PDEs). These equations do not of-

ten have a closed form solutions. Hence their computations can only be

done by approximation. One of the methods to solve ODEs and PDEs in

finance is the SCDDM. To obtain an accurate approximation solution of

these equations, one has to solve the ODEs or PDEs under Lévy processes

model using the SCDDM. But the commonly used numerical method in fi-

nance is the fully implicit second-order accurate Crank-Nicolson method.

The method becomes computationally inefficient for large system of ODEs.

Such problems of ODEs can be solve by using the exponential integrators.

Some examples can be found in the publication of [71], where they used

ETI together with Galerkin methods for spatial discretization. Using the

ETI in their work, helped them to prove strong error estimates when a

general semi-linear stochastic equation is estimated. One can further con-

sult the publication of [118]. They discuss European, barrier and butter-

fly spread options for BS GBM model and Merton’s jump diffusion model

with constant coefficients. In their work, the ETI scheme was used to de-

velop a more stable integrator than the one commonly used in the Crank-

Nicolson method.

Time-stepping is the common practice for temporal integration of PIDE.

But Tangman et al. [118] applied an ETI scheme to solve the PIDE. The

scheme uses a ‘one step’ formula to tackle the time direction of PIDE

which eliminate the use of discretization in time. By combining the ETI

scheme with the SCM based on Chebyshev nodes for spatial discretization

to price different options [118], numerical results show that the applica-
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tion is exact in time and approximately achieves the fourth-order accu-

racy.

More applications of the ETI in finance can be found in the publication

of Pang and Sun [92]. The references within also provide an extension of

needed knowledge on the method in a financial point of view.

1.5 Overview of the objectives

The dissertation focuses on the study of pricing options under Lévy mod-

els using spectral methods. We will study the solution of PDE and PIDE

arising in finance as a consequence of the so-called Lévy processes applied

to the pricing of contingent claims using spectral methods. The aim of this

research is to explore and design numerical methods for solving financial

PDEs and PIDEs. Most standard numerical methods for solving PDEs and

PIDEs in finance are reduced to low order accuracy results. This is due

to the discontinuity at the strike price in the initial condition. We use the

Lévy processes model in the spectral methods to restore the accuracy of

the PIDE solutions.

1.6 Contents of the dissertation

In the second chapter, we present the spectral methods with their basic

properties and define SCDDM with examples. We give an historical devel-

opment of the spectral methods and we discuss about their foundations,

construction and implementation in mathematics. We close the chapter
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by reviewing the background of SCDDM and its basic definition. In the

third chapter, we present the Lévy processes models. A formulation of

the BS model is firstly presented. From this presentation its limitations

are pointed out. We then explain from a statistical point of view how the

hypothesis of log-normal returns defined by the BS model goes wrong in

describing market returns. Hence, the discussion about the importance of

the Lévy processes models in finance. To understand the benefit of using

the Lévy processes models in finance, we review some basic definitions of

these models and present their major mathematical properties. Therefore,

a description of the Lévy jump-diffusion processes, its application in fi-

nance, and some popular models used in finances is made. The last part

of the chapter is dedicated to the presentation of the PIDE approach under

Lévy models and the mode of its resolution. We then present, to close the

chapter, the calibration of an exponential Lévy models with a simulation

in finance.

The fourth and fifth chapters are the implementation of the spectral meth-

ods and Lévy process. The chapters outline the resolution of a PDE and

PIDE arising from a financial problem. The main purpose of the chap-

ter is to show that high order accuracy can be recovered from spectral

approximation contaminated with the Gibbs phenomenon when proper

workaround are applied. We then close the dissertation with chapter five

which is a general conclusion of this study.
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Chapter 2

Spectral methods approach

The complexity of some PDEs or ODEs and their initial boundary con-

dition in Finance, Mathematics, Physic, etc., has been a challenge of re-

searchers to find accurate solutions for these equations. Hence the use

of SCM to solve the problem of accuracy from each field of study. This

chapter introduces the spectral methods with their basic properties and

the definition of the SCDDM with examples.

2.1 Historical development of the method

The resolution of partial or differential equations has been an important

and attractive area of research in the field of Mathematics, Physics, Fi-

nance, etc. Therefore, methods have been developed to obtain accurate

results. One class of methods to get numerical solutions of these differ-

ent equations is spectral methods. Their popularities began in the 1970s
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through the work of Orszag [91]. Basic concepts of spectral methods, such

as interpolation and expansion were introduced long before the 1970s by

meteorologists [64]. The progress made in 1970s and 1980s on these meth-

ods gave the opportunity to other researchers to improve these methods.

For example, the symposium proceedings by Voigt, Gottlieb and Hussaini

[129] published in 1984, and the first edition of the book by Canuto, Hus-

saini, Quarteroni, and Zang [18] published in 1988 are one of the inno-

vation of the spectral methods. An overview of spectral methods intro-

duction can be found in the books written by Fornberg [44] and Trefethen

[123]. The application and the investigation of spectral methods in in-

terpolation and approximation theory [22, 36, 84], numerical integration

[34, 37, 117], special function theory [99], computational fluid dynamics,

etc., are important in the study of orthogonal polynomial sequences. They

are powerful tools to estimate functions that are difficult to compute and

form part of the essential elements of numerical integration and approx-

imation of solutions in differential, integral equations [130]. The spectral

methods domains are not very flexible, but their convergence are exponen-

tial when the solutions of the studied functions are smooth. In the case of

discontinuities like shocks or problems in complex geometries (problems

with coordinate singularities, discontinuous coefficients or solution), the

convergence of the method is spoiled and the technique cannot give accu-

rate results [72].

The difference between the spectral methods and the finite difference meth-

ods is that, the first one uses basis functions that are non-zero over the

whole domain, while second one uses basis functions that are non-zero

only on small sub-domains. In other words, spectral methods take on a

global approach while finite element methods use a local approach [19].
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The following study of the spectral methods basic properties demonstrates

its importance in the approximation of smooth functions solution.

2.2 Basic properties of spectral methods

2.2.1 Foundation of the method based on Gauss quadra-

tures

In [53], the mathematical foundation of spectral methods was introduced

by firstly explaining the basic function of an orthogonal projection. To

give an overview of an orthogonal projection, we consider an interval ∆ =

[xmin,xmax] and if we want to talk about basis, we shall first define a scalar

product on ∆. The scalar product of two functions h and l with respect to

the measure v can be defined as

v(h, l) =
∫
∆

h(x)l(x)v(x)dx, (2.1)

with v representing a positive function on ∆. By using equation (2.1), we

can find a set of orthogonal polynomials qn of degree n. The composition

of those polynomials up to a given degree N forms a set which represents

the basis QN [53]. A projection of any u function on ∆ can be obtained by

the use of the polynomials qn. Hence the projection of u is defined by

QNu =
N∑
n=0

knqn(x), (2.2)

where kn = (u,qn)
(qn,qn) represents the coefficients of the projections. The trun-

cation error is the difference between u and its projection. It approaches 0
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when N increases; i.e.

‖ u −Qnu ‖−→ 0, when N −→∞. (2.3)

Equation (2.3) is very interesting, but does not solve the problem of find-

ing k by computing integrals of the form
∫
∆
h(x)l(x)v(x)dx. Hence the use

of the Gauss quadratures is very important if one wants to determine the

value of u at many points. The following theorem from [53] illustrates the

importance of Gauss quadratures when we want to use the projections of

any functions.

Theorem 1. [53] There exist N +1 real positive vn and N +1 real xn in ∆ such

that:

∀ h ∈Q2N+ε,

∫
∆

h(x)v(x)dx =
N∑
n=0

h(xn)vn.

The weights are represented by vn and the collocations points by

xn . The choice of the exact degree will depend on the quadrature. The

usual choices are [53]:

• Gauss: ε = 1

• Gauss-Radau: ε = 0 and x0 = xmin

• Gauss-Labatto: ε = −1 and x0 = xmin and xN = xmax

The above mentioned quadratures are the most used and suitable for any

projection computation.

The application of the Gauss quadratures to approximate the coefficient

of the expansion produces the following result

αn =
1
β

N∑
j=0

u(xj)qn(xj)vj with βn =
N∑
j=0

q2
n(xj)vj . (2.4)
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This can’t be exact since kn , αn and to compute αn we only need to eval-

uate u at the N + 1 collocation points. Therefore, to interpolate u we need

to use the following polynomial

INu =
N∑
n=0

αnqn(x), (2.5)

and the difference between Inu and Qnu is called the aliasing error. Inu is

the spectral approximation of u and it is the only polynomial of degree N

that will match with u at every collocation point such that:

[Inu](xi) = u(xi) ∀i ≤N. (2.6)

A detailed application of (2.6) is done by [53]. On its page 1 to 3, the pub-

lication demonstrates the validity of Equation (2.6) on a given function

and its projection. Furthermore, it shows how the error decreases expo-

nentially when we compute the maximum difference between INu and u.

This demonstrates that the spectral methods have a very fast convergence

compared to other methods such as finite differences where the error only

follows a power-law in term of N. More details on how the Gauss quadra-

tures are implemented and constructed can be found in [135]. The choice

of quadrature is not the only factor that can be considered. To obtain an

accurate solution when using projection computation, one has to follow

the rules of choosing the basis functions.

2.2.2 Choice of basis functions

The simple rule to apply when comes to the choice of the basis functions

is that:
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• When the solution of the PDEs or ODEs is periodic, we use the

Fourier series.

• When the solution is not periodic and the domain is square or a cube,

we use the Chebyshev polynomials along each dimensions.

• When the domain is spherical, we use the spherical harmonics basis.

In this dissertation, we will use the SCM on non periodic functions such

as, the payoff of an option. The usual polynomials used in non periodic

problems are the Legendre and Chebyshev polynomials. One can consult

[53] on page 5 to see the basic properties of Legendre polynomial, since

it is not the objective of our study. We are interested in approximating

the payoff of some vanilla and exotic option by using the Chebyshev basis.

But the solution of these functions are not smooth, thus the interpolation

technique will be the suitable candidate to resolve our problem. How to

construct these interpolations?

2.2.3 Construction of the Chebyshev polynomials and its

interpolation

From [16], PN−1(x) is an interpolating expression to the functions f (x).

Usually PN−1(x) is an ordinary or trigonometric polynomial. Its N degrees

of freedom are determined by the requirement that the interpolants agree

with f (x) at each of a set of N interpolation points:

PNi (xi) = f (xi), i = 1,2, ...,N . (2.7)

The polynomial interpolation is defined as a method used before the cal-

culator era. The tables of mathematical functions were used to evaluate
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functions at certain given points. If the value of those points were not

listed on the table, then the interpolation method was applied. To achieve

that, a linear interpolation was done by drawing a straight line between

the two points in the table that contains the desired x. Therefore, the lin-

ear function at x was approximated by f (x), such that:

f (x) ≈ (x − x1)
(x0 − x1)

f (x0) +
(x − x0)
(x1 − x0)

f (x1). (2.8)

Equation (2.8) is known as linear interpolation. It can be defined as P1(x)

being that unique linear polynomial which satisfies the two interpolation

conditions

P1(x0) = f (x0), P1(x1) = f (x1). (2.9)

But to have the accuracy of the function using the linear interpolation, the

tabulated points must be very close to each other. This idea can be ex-

tended to higher order. An example will be the one of a parabola where

the approximation of f (x) is done by the quadratic polynomial P2(x) satis-

fying the three interpolation conditions [16]

P2(x0) = f (x0) ; P2(x1) = f (x1) ; P2(x2) = f (x2), (2.10)

such as

P2(x) ≡ C0(x)f (x0) +C1(x)f (x1) +C2(x)f (x2), (2.11)

where 
C0(x) = (x−x1)(x−x2)

(x0−x1)(x0−x2) ,

C1(x) = (x−x0)(x−x2)
(x1−x0)(x1−x2) ,

C2(x) = (x−x0)(x−x1)
(x2−x0)(x2−x1) .

(2.12)

Therefore, we can fit any N + 1 points by a polynomial of N th degree

PN (x) ≡
N∑
i=0

f (xi)Ci(x), (2.13)
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which is known as Lagrange interpolation function. In Equation (2.13),

the expressions Ci(x) defined by

Ci(x) =
N∏

j=0,j,i

x − xj
xi − xj

, (2.14)

are cardinal functions which are polynomials of degree N . The N factors

of (x − xj) insure that Ci(x) will vanished at all the interpolation points

except xi . The denominator forcesCi(x) to take the value 1 at interpolation

points x = xi . Therefore every factors in the product will be
(xi−xj )
(xi−xj )

= 1, at

that point. Furthermore, Equation (2.14) satisfy the conditions

Ci(xj) = δij , (2.15)

where the expression δij is known as the Kronecker δ-function which is a

function of two variables with positive integers such that

δij =

 0 if i , j,

1 if i = j.

This polynomial interpolation is the basic foundation of the Chebyshev

and Legendre polynomials. In Section 2 of [53], some basic properties of

the Chebyshev and Legendre polynomials are detailed. We will only focus

on the Chebyshev polynomials since they will be the ones applied in our

study.

The Chebyshev polynomials Tn are an orthogonal set on the interval [-1,

1] with respect to the weight w(x) = 1√
1−x2

, i.e we have,

∫ 1

−1

TnTm√
1− x2

dx =


0 if n ,m,

π if n =m = 0,
π
2 if n =m , 0.

(2.16)
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They can be computed by using the recurrence relation [107]
T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(2.17)

Figure 2.1 represents the five first polynomials computed from Equation

(2.17). The Chebyshev interpolation method is used to approximate the

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

x values

T
n(x

)

Figure 2.1: The first five Chebyshev polynomials, from T0 to T4. T0 is

represented by the point (0;1). T1 is the straight line. T2 is the red dotted

square function graph. T3 is the blue graph and T4 is the red graph with

circle points.

solutions of differential equation. This is done by a polynomial which in-

terpolates data uk at the Chebyshev points xk = cos(kπN ), k = 0,1,2, ....,N .

The data uk must be determined by the polynomial interpolants that sat-

isfy the differential equation exactly at the points xk . Depending on the

smoothness of the solution, the error will decline at different rate as N
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increases [121]. A general solution, u, of an unknown PDE will be rep-

resented by the global interpolation of the Chebyshev partial sum [107],

uN (x) =
N∑
n=0

anTn(x), (2.18)

where the discrete coefficients, an, are defined by

an =
2
N

1
cn

N∑
n=0

u(xj)Tn(xj)

cj
, (2.19)

with

cj =

 2 when j = 0,N ,

1 otherwise.

2.2.4 Computation of the discrete (expansion) coefficients

The choice of the tests functions and spectral basis allows to develop many

type of spectral solvers. To solve an in equation (2.18), we mostly use the

Tau methods, the collocation method and the Galerkin method. The Mem-

oir of Lanczos introduced the tau method [41], using Chebyshev polyno-

mials. This was connected to the solution of linear differential equation

which has polynomial coefficients. More details of this method are given

in [41]. The main idea of the Galerkin method is to expand the solution

in terms of a linear combination of polynomials that satisfy the bound-

ary conditions. In that method, the usual orthogonal polynomials can’t be

expanded. Hence we talk about the Galerkin basis which is often apply

when we want to solve a PDE. The book of [114] on the spectral meth-

ods, from page 6 to page 15, gives more properties and applications of the

Galerkin method.

24

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



We will apply the collocation or pseudo-spectral method in this disserta-

tion. The method does not use the spectral coefficients but works with

the values of the solution at the spacial grid points associated with the

basis functions, usually the Gaussian quadrature points. Those points are

called collocation points. Hence we talk about working with the solutions

in the physical space instead of the ones in spectral space. Refer to [114]

for more applications and analysis on the collocation method.

2.3 Representation of spectral and barycentric

methods

This section gives an introduction to a barycentric interpolation methods

used in this thesis. We first detail the interpolation process, then its differ-

entiation and its integral processes.

2.3.1 Interpolation process

We know that polynomial interpolants can be represented in Lagrange’s

form and Newton’s divided difference [2]. But the knowledge of repre-

senting the polynomial interpolation in the barycentric form was made by

Taylor [120].

The Section 2.1 of [69] gives more historical details on the barycentric in-

terpolation and refers readers to references that gives the reasons why it

took so long for its benefits to become known to the numerical analysis

community.
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Let consider an example of a rational function φ of type (N,N ) that in-

terpolates a function f at N + 1 distinct points x0,x1, ....,xN , assuming that

these points are ordered monotonically, in an interval [−1,1]. Firstly, we

recall the Lagrange form of φN (x) as

φN (x) =
N∑
j=0

f (xi)Lj(x), Lj(x) =
N∏

k=0,k,j

x − xk
xj − xk

, (2.20)

where the Lagrange polynomial Lj corresponding to the node xj has the

property

Lj(xk) =

 1, j = k,

0, otherwise.
(2.21)

Then we state the following theorem with proof to define the interpolation

of a rational function φ.

Theorem 2. [59] The barycentric form of the rational function φN is repre-

sented by

φ(x) =

N∑
k=0

vk
x − xk

f (xk)

N∑
k=0

vk
x − xk

, (2.22)

with v0,v1, ....,vN being non-zero numbers known as barycentric weights.

Proof. [59] A rational function of type (m,n) is written as a polynomial of

degree at most m divided by a polynomial of degree at most n. We can

represented φ as

φ(x) =
g(x)
p(x)

, (2.23)

where g and p are polynomials of degrees at mostN . The barycentric form

(2.22) is related to its representation in (2.23). We can show this relation

by letting the polynomials in (2.23) to be represented as g(xk) = gk and
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p(xk) = pk, with k = 0,1, ...,N . The interpolation property of φ implies that

gk = pkf (xk), pk , 0, k = 0,1, ....,N . The following equation represents g

and p as polynomial interpolants in Lagrange’s form,

φ(x) =

N∑
k=0

N∏
j=0,j,k

(x − xj)
(xk − xj)

pkf (xk)

N∑
k=0

N∏
j=0,j,k

(x − xj)
(xk − xj)

pk

. (2.24)

By rewriting the numerator and denominator of equation (2.24), with the

assumption that, x , xk, we obtain

φ(x) =

N∏
j=0

(x − xj)
N∑
k=0

N∏
j=0,j,k

pk
(xk − xj)

1
x − xk

f (xk)

N∏
j=0

(x − xj)
N∑
k=0

N∏
j=0,j,k

pk
(xk − xj)

1
x − xk

, (2.25)

and when we cancel the common factors in the numerator and denomina-

tor of equation (2.25), we obtain an expression of the form (2.22).

This can been also shown by using the following proof:

Proof. [12] We define `(x) the numerator of Lj in (2.20) as

`(x) =
1

x − xj

N∏
k=0

(x − xk). (2.26)

In addition, if we define the barycentric weight by

vk =
1

N∏
k=0,k,j

(xj − xk)

, k = 0 . . .N , (2.27)
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i.e., vj = 1/`′(xk), then Lj in (2.20) becomes

Lj(x) = `(x)
vk

x − xk
. (2.28)

Consequently, the Lagrange formula (2.20) becomes

φN (x) = `(x)
N∑
k=0

vk
x − xk

f(xk). (2.29)

The formula (2.29) can be written in a more elegant way. If we represent

the constant function f (x) = 1, we obtain

1 =
N∑
j=0

Lj(x) = `(x)
N∑
k=0

vk
x − xk

. (2.30)

Dividing (2.29) by (2.30), we get the barycentric formula for φN

φN (x) =

N∑
k=0

vk
x − xk

fxk

N∑
k=0

vk
x − xk

. (2.31)

The appearance in the numerator and denominator of the barycen-

tric weights ofφ in equation (2.22) allows one to multiply these weights by

an arbitrary non-zero constant without changing φ. Since these constants

have no effect on the interpolation property of φ, they can be chosen to

enforce additional constraints on φ.

The formula (2.22) discussed by Berrut and Trefethen [12] is the most used

form of Lagrange interpolation in practice. It admits O(N ) operations as

opposed to the formula (2.20) which requires O(N 2) [56, 132] additions

and multiplications for each evaluation ofφN (x). Hence, every time a node
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xj is modified or added, all Lagrange fundamental polynomials have to be

recalculated. There is a significant advantage of the spectral collocation

method based on the modified barycentric Lagrange interpolation. This is

due to the fact that after the transformation, the derivatives in the under-

lying differential equation do not have to be transformed correspondingly.

But in other spectral collocation methods, the transformation is usually

needed. More details regarding the convergence and stability properties

of the modified Lagrange formula are extensively discuss in [12, 59, 131].

2.3.2 Differentiation process in the barycentric interpola-

tion

The rational function φN in (2.30) can be differentiate by using nth order

differential matrix D(n). The matrix will have entries related to the differ-

ential of φ by

φ(n)(xj) =
N∑
k=0

dn

dxn


vk

x − xk
N∑
`=0

v`
x − x`



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=xj

f(xk), j = 0,1, .....,N ,

≡
N∑
k=0

D
(n)
jk f(xk), j = 0,1, .....,N .

The computation ofD(n) for random values of n has an importance in prac-

tical use of barycentric interpolation. This will allow to:

1. Compute the derivatives φ(n)(x0),φ(n)(x1), ....,φ(n)(xN ) by multiply-

ing D(n) to the function value’s vector provided that the values of
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f (x0), f (x1), ..., f (xN ) are known.

2. Compute the unknown function values f (x0), f (x1), ..., f (xN ) when

we know that φ satisfy nth order linear differential equation. The

process is done by solving a system of linear equations which has

coefficients matrix depending on D(n).

When φ is a polynomial interpolants, there is numerous formulae that

can be used to compute D(n) [7]. For the case where φ is a rational poly-

nomial function, the only available formulae are those for D(1) and D(2)

[11]. The computation of the first and second order differentiation matri-

ces associated with the barycentric interpolants φN represented by (2.30)

are matrices whose entries are related to the derivatives of φN . They are

obtained from Lemma 1.

Lemma 1. [11] Let `′j(xi) =D(1)
ij and `′′j (xi) =D(2)

ij , we have

D
(1)
ij =


λj /λi
xi − xj

if i , j,

−
N∑
i,j

D
(1)
ij , if i = j,

(2.32)

D
(2)
ij =


−2

λj /λi
xi − xj

 N∑
k=0,k,i

λk/λi
xi − xk

− 1
xi − xj

 if i , j,

−
N∑
i,j

D
(2)
ij , if i = j,

(2.33)

where i, j = 0,1, . . . ,N .

Proof. [11] Suppose that Lagrange form of a rational function φ is repre-
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sented by

φ(x) =
N∑
j=0

φj`j(x), (2.34)

then the first and the second order derivatives of u are given by

φ′(x) =
N∑
j=0

φj`
′
j(x), φ′′(x) =

N∑
j=0

φj`
′′
j (x). (2.35)

Also the barycentric formula of `j is

`j(x) =

wj
x − xj

N∑
k=0

wk
x − xk

. (2.36)

Multiplying both sides of (2.36) by x − xi and simplifying we get

`j(x)
N∑
k=0

wk
x − xi
x − xk

= wj
x − xi
x − xj

. (2.37)

Furthermore, we let

s(x) =
N∑
k=0

wk
x − xi
x − xk

, (2.38)

then the first and the second order differentiations of (2.37) yields the fol-

lowing equations

`′j(x)s(x) + `j(x)s′(x) = wj

(
x − xi
x − xj

)′
, (2.39)

and

`′′j (x)s(x) + 2`′j(x)s′(x) + `j(x)s′′(x) = wj

(
x − xi
x − xj

)′′
. (2.40)

To find the entries of the first and second differentiation matrices, we solve

(2.39) and (2.40) at x = xi . This gives

s(xi) = wi , s′(xi) =
N∑

k=0,k,i

wk/(xi − xk), s′′(xi) = −2
N∑

k=0,k,i

wk/(xi − xk)2. (2.41)
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When i , j:

`j(xi) = 0, `′j(xi) =
wj /wi
xi − xj , `

′′
j (xi) = −2

wj /wi
xi − xj

 N∑
k=0,k,i

wk/wi
xi − xk

− 1
xi − xj

 . (2.42)

When i = j:

`′j(xj) = −
N∑
i,j

`′j(xi), `
′′
j (xj) = −

N∑
i,j

`′′j (xi). (2.43)

2.3.3 Integration process in the barycentric interpolation

The discretization of the integral is realized by the barycentric quadrature

formula described below∫ b

a
u(x)dx =

∫ b

a
φN (x)dx =

∫ b

a

∑N
j=0

vj
x−xj fj∑N

j=0
vj
x−xj

dx =
N∑
j=0

ωjfj , (2.44)

where

ωj =
∫ b

a

vj
x−xj∑N
j=0

vj
x−xj

dx, (2.45)

is the integral of the jth Lagrange fundamental rational function. In this

dissertation, we consider Chebyshev-Gauss-Lobatto (CGL) points given by

zj = cos(πj/N ) and the weights vj defined by v0 = 1/2, vj = (−1)j for j =

1, . . . ,N − 1, and vN = (−1)N /2 (see [12]). The interpolation points xj are

obtained from the CGL points using the relation xj = 1
2(b − a)zj + 1

2(b +

a). The integrals (2.44) are then computed numerically with Clenshaw-

Curtis rules [24] to achieve the desired accuracy. The method is based

on a function that can be represented by its expansion in the Chebyshev

polynomials which produce an easily integrable series.
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In general, if f (x) is continuous and of bounded variation in (a,b), then it

can be expanded in the form

f (x) = F(t) =
1
2
a0 + a1β1(t) + a2β2(t) + ...., a ≤ x ≤ b, (2.46)

where

βr(t) = cos(r cos−1 t), t =
2x − (b+ a)
b − a

.

The integration of Equation (2.46) gives [23]

2
b − a

∫ x

−1
f (x)dx =

∫ t

−1
F(t)dt =

1
2
b0 + b1β1(t) + b2β2(t) + ...., (2.47)

with

br =
ar−1 − ar+1

2r
, r = 1,2,3, ....

We determine the value of b0 by using the lower limit of integration, there-

fore

b0 = 2b1 + 2b2 + 2b3 + 2b4 + .....

Hence Equation (2.47) becomes

2
b − a

∫ b

a
f (x)dx =

∫ 1

−1
F(t)dt =

1
2
b0 + b1 + b2 + ....

= 2(b1 + b3 + b5 + ....).

To compute the coefficients in Equation (2.46), one must first observe that

any polynomial of degree N in x can be written in the form

f (x) = F(t) =
1
2
a0 + a1β1(t) + a2β2(t) + ....+ψ, (2.48)

with

ψ = aN−1βN−1(t) +
1
2
aN+1βN+1(t).
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This leads to the expression

f (x) = F(t) =

 N∑
r=0


′′

arβr(t), −1 ≤ t ≤ 1. (2.49)

The expression
(∑N

r=0

)′′
denotes a finite sum whose first and last terms

have to be halved. Thus, the coefficients in Equation (2.48) are determined

by

ar =
2
N

 N∑
s=0


′′

Fs cos
πrs
N
,

where

Fs = F
(
cos

πs
N

)
.

This is due to the orthogonality of the cosine function with respect to the

point ts = cos πsN , defined by the equation

 N∑
r=0


′′

cos
πis
N

cos
πjs

N
=


0 if i , j,

N if i = j = 0 or N,
1
2N if i = j , 0 or N.

(2.50)

The next section is an example of a SCM (SCDDM) used to accurately ap-

proximate the solution of a PDE or ordinary differential equation (ODE).

2.4 Spectral domain decomposition method

Challenges arise when we want to approximate a function with a jump

discontinuity by using a high order spectral methods or finite difference.

More often, the jumps and derivatives at discontinuity points of a function

are known and the derivatives can be easily computed. Meanwhile, it is
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difficult to accurately approximate a jump discontinuity in a function or

its derivatives when we use a single polynomial. This is the case in option

pricing problems. To alleviate the problem of jump discontinuity in a

function, a use of some methods comes with a cost in accuracy near the

discontinuities or in the computational cost, or in the implementation of

the method. Nevertheless, a simple approach such as the SCDDM can be

used to recover the accuracy at discontinuity points [83].

2.4.1 Background and definition of the domain decompo-

sition method

PDEs are commonly solved by using basic approaches such as finite differ-

ence, finite elements and spectral methods. Among these methods, finite

difference method appears to be the easiest to code. Since the method

converges only algebraically, a large number of grid points and memory

are needed. The other two approaches expand the solution of PDEs in

basis functions. Meanwhile, the difference is that finite elements meth-

ods uses many sub-domains and expand the solution to low order in each

sub-domain. On the other hand, to obtain a solution of a PDE, spectral

methods use few sub-domains with high expansion orders compare to the

finite elements approach. The method offers a fast convergence and accu-

rate solution.

The work done by the German mathematician Hermann Schwarz (see

[134] and references within) has pioneered the Domain Decomposition

Method (DDM). It was first designed to solve PDEs on parallel comput-

ers. The method solves boundary value problems by dividing the interval
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into smaller boundaries called sub-domains and recapitulates the solution

between adjacent sub-domains. DDM offers several advantages in mathe-

matics as mention in [134]. Orszag [91] introduced the DDM in SCM. His

work produced the multi-domain SCM which consists of matching the so-

lution across different sub-domain. The application is often done when

the basis function is not continuous on the domain D [95]. DDM can be

defined as an interval D = [a,b] broken into M sub-domains such as

D1 = (x(0),x(1)),D2 = (x(1),x(2)), .....,DM = (x(M−1),x(M)),

with x(0) = a,x(M) = b. In general, D is covered by ND sub-domains as

D =
ND⋃
µ=1

Dµ, (2.51)

where each sub-domains has its own set of basis functions and expansion

coefficients

u(µ)(x) =

Nµ∑
k=0

ũ
(µ)
k φ

(µ)
k (x), x ∈ Dµ, µ = 1, .......ND. (2.52)

The notation u(µ) represents the approximation in the µth domain, and the

different sub-domains Dµ can touch or overlap each other. For example,

to solve a second order non-linear elliptic PDE or system of equation,

(N u)(x) = 0, x ∈ D, (2.53)

in some domain D ⊂R
d with boundary conditions

g(u)(x) = 0 x ∈ ∂D,

where N and d, respectively, denote the elliptic operator and mappings,

the matching conditions must be satisfy. Hence, each functions u(µ) de-

fined only on the single sub-domainDµ must fit together to form a smooth
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solution of (2.53) over the full domain D. For infinite resolution, the fol-

lowing conditions at the limit must hold [95]:

1. When two sub-domains, Dµ and Dν , touch each other on their in-

tersection surface, the function and its derivative must be smooth,

hence 
uµ(x) = uν(x),
∂uµ

∂n (x) = −∂uν∂n (x),

x ∈ ∂Dµ ∩∂Dν .

(2.54)

2. When two sub-domains, Dµ and Dν , overlap each other, the func-

tions u(µ) and u(ν) must be identical in Dµ∩Dν . Since the solution of

a PDE is unique, we must prove that, at boundary of the overlapping

domain,

u(µ)(x) = u(ν)(x), x ∈ ∂(Dµ ∩Dν). (2.55)

A description of this spectral method is given in the following section.

2.4.2 Implementation of the spectral domain decomposi-

tion method

For simplicity, we will take an example of one dimensional mappings done

by [16, 68] and compare it to the one done by [95]. One can consult [95] in

its Section 3.2 for the basic functions and mapping in higher order dimen-

sions when using the SCDDM. In one dimensional mapping, [16, 68] first

define the Chebyshev polynomials for X ∈ [−1,1] and in general, define

the differential equations on a different interval x ∈ [a,b]. Then, to use the
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Chebyshev polynomial, they introduced a mapping

X : [a,b]→ [−1,1], x→ X = X(x), (2.56)

which represents the mapping of the physical coordinate x onto the col-

location coordinate X. Under the mapping, the application of the chain

rule result in the transformation of the original PDE defined on [a,b] into

a new PDE, involving the Jacobian of the mapping, defined on [-1, 1]. As

an example, consider the differential equation

ε
∂2u

∂x2 + x
∂u
∂x

= −επ2 cos(πx)−π x sin(πx), x ∈ [a,b], ε = 10−5, (2.57)

with a = −1 and b = 1. The transformation (2.57) leads to,

X ′2
∂2u

∂X2 +X ′′
∂u
∂X

+XX ′
∂u
∂X

=M, X ∈ [−1,1], (2.58)

withM = −επ2 cos(πX)−πX sin(πX), X ′ = ∂X/∂x and X ′′ = ∂2X/∂x2. One

can expand u(X) in Chebyshev polynomials and compute the derivative

∂/∂X by using the recurrence relation of the spectral coefficient of the

derivative given in Equation (14) of Section 2.1 in [95]. Then proceed to

code Equation (2.58) in term of ∂u/∂X. But this approach is viewed by

[95] to have several disadvantages which he enumerates in his Section 3.1.

A different approach is then proposed by [95]. The method consists of

using the expansion of Chebyshev polynomials on X ∈ [−1,1] to obtain

the physical solution. They mapped X(x) as

u(x) =
N∑
k=0

ũkTK (X(x)), (2.59)

then computed ∂u(X)/∂X and ∂2u(X)/∂X2 by using the same recurrence

of Equation (14) Section 2.1 in [95]. However, they did not substitute
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∂u(X)/∂X and ∂2u(X)/∂X2 into Equation (2.58). They computed numeri-

cally
∂u(x)
∂x

= X ′
∂u(X)
∂X

, (2.60)

∂2u(x)
∂x2 = X ′2

∂2u(X)
∂X2 +X ′′

∂u(X)
∂X

, (2.61)

and then substituted these values into Equation (2.57). This translate to

the mapping of the collocation points to the physical coordinates

xi = X−1(Xi).

Figure 2.2 represents the errors between the numerical and the exact so-
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(b) spectral decomposition method

Figure 2.2: Graphic representation of the error between the numerical so-

lution and the exact solution.

lution of (2.57). It shows that, the error between the exact solution and

the SCM solution (Figure 2.2(a)) of (2.57) is less accurate than the one

in Figure 2.2(b) (errors between the numerical and the exact solution of

spectral decomposition method (SDM)) . This is described by the numbers

recorded in Table 2. One can see that, with the increase of the interpola-

tion points (N), we have a absolute accuracy of 1.6×10−15 forN = 80 when
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SDM is used to solve the differential equation. Meanwhile, SCM has a less

significant error value (1.2× 10−1) at the same interpolation point. There-

fore, SDM can be regarded as a best solver for PDEs or ODEs compare to

SCM. The efficiency of SDM is due to the fact that, when the domain is de-

N SCM Error SDM Error

10 1.2× 10−1 7.2× 10−1

20 6.5× 10−2 3.5× 10−3

40 9.9× 10−2 4.7× 10−9

80 1.2× 10−1 1.6× 10−15

Table 2.1: Comparison of the error between the numerical solution and

the exact solution for different N when using SCM or SDM.

composed into more sub-intervals we obtain a diagonal segments from the

matrix forms of (2.57). Figure 2.4.3 shows that a non decomposed domain

gives a non reduced matrix and the more we decomposed the domain in

many sub-intervals , the more we obtain a reduced matrix form of the PDE

or ODE. This approach allows one to easily compute the differential equa-

tion. Figure 2.4.4 represents the grid points used in each domain. In (a),

the line representing the grid points is thin compare to the one in (b) and

(c). This is due to the fact that in (a) there is less grid points used compare

to the one used in (b) and (c). Hence a better accuracy can be achieved

when more grid points are used in each domain.
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Figure 2.4.3: Matrix representation of a none decomposed domain and

two different decomposed domains.
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Figure 2.4.4: Grid points representation of different decomposed domains.

2.5 A summary of this chapter

Spectral methods have been actively developed in the last decades. The

main advantage of these methods is that they yield exponential order of

accuracy if the function is smooth enough. However, for discontinuous

functions, their accuracy deteriorates to low accuracy due to the Gibbs

phenomenon. To recover the high order accuracy from the spectral ap-

proximation contaminated with the Gibbs phenomenon, one can apply
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some workarounds such as SCDDM. SCDDM in general, does not produce

accurate results when it is directly used to solve an PDE. Hence we make

use of the Lévy models to obtain better results when we use the SCDDM

in the resolution of financial PDEs. In the next section we define and give

some examples of the Lévy processes models used in the field of finance.
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Chapter 3

Lévy processes models

Option pricing problems are often modelled by stochastic processes. Such

problems were initially introduced in financial institutions in the late 1960s.

The famous stochastic model for the equilibrium condition between the

expected return on the option, the expected return on the stock and the

risk-less interest rate is the celebrated BS equation which was discovered

by Black and Scholes in 1973 [14]. However, it is well known that con-

stant volatility BS model is not consistent with market prices. Therefore,

more general models for stochastic dynamics of the risky assets have been

developed. We can mention, stochastic volatility models [58, 63], deter-

ministic local volatility functions [25, 38], jump-diffusion models [73, 85],

Lévy models [81].

This chapter reviews the formulation of the BS equation and gives the

importance of the Lévy model in finance. Its also introduces the basic

definitions of the Lévy processes and describes its jump-diffusion.
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3.1 Formulation of the Black and Scholes model

In the model of BS [14], it is assumed that log-increments of the stock

prices are Gaussian (the prices follow a normal distribution). However

many classical methods have been introduced as an alternative to the BS

approach. One of the most important and efficient of such model is that

of the Lévy process model. This types of process have been fitting many

empirically observed properties of real world data much better than the

BS model.

Louis Bachelier in his work [6] proposed the following model to describe

the price, S, of an asset

St = S0 + σWt, (3.1)

where Wt is a BM. The model faced numerous difficulties, such includes

the failure to account for negative stock prices. Hence Paul Samuelson

in 1965 [106] suggested a model to overcome some of the imperfections

of Bachelier’s model. He proposed that log-prices of an asset follows a

BM. To also improve the trading methods, Black and Scholes proved from

Samuelson model that one can price a European call option. They used

some conditions which state firstly that no transaction costs or taxes and

trading takes place continuously in time. Secondly, borrowing and short

selling are allowed. Hence in the BS world, the stock price, S, follows a

GBM [14]

dSt = µStdt + σStdWt, (3.2)

where µ and σ are known constants and Wt is a standard BM. Equation

(3.2) is a stochastic differential equation which has a solution

St = S0e
(µ− 1

2σ
2)t+σWt . (3.3)
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Furthermore, Figure (3.1.1) represents a simple path of a GBM of an asset

with µ = 0.30 and σ = 0.20. The important argument in BS approach is the
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Figure 3.1.1: Simple path of a geometric Brownian motion of an asset

price.

construction of a risk-less portfolio which is represented by the BS PDE for

a call option:
∂C
∂t

+ rS
∂t
∂S

+
1
2
σ2S2∂

2C2

∂S2 = rC. (3.4)

The stochastic behaviour of the market has driven the attention of re-

searchers in mathematical finance to model it. Equation (3.4) is pow-

erful and simple to use when pricing stock option but fails when some

phenomenon such as volatility smile or skew arises. Hence, recently, a

multitude of models are available to alleviate the stochastic phenomenon.

Some of the most popular and still manageable models are the Lévy mod-

els. These models also play an important role in many field of science,

such as physics, economics, actuarial science, etc..

Many authors give an overview of the Lévy processes application in differ-

ent fields [9, 76, 77, 97]. One can refer to the introduction done by [93] in

his lecture notes and the references cited therein.
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In the next section, we review the basic definitions of the Lévy model and

outline its importance in finance.

3.2 Importance of the Lévy models in finance

The use of the Lévy processes in finance has been and still is advantageous

to describe the observed reality of financial markets. This observation is

done in a more accurate way compare to the models based on BM. During

the stock exchange processes, jumps and spikes are commonly observed

as the asset prices changes over time.
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Figure 3.2.1: Square of daily log returns prices of Standard and Poors

(S&P) 500 from 1981 to 2004.

Figure 3.2.1, which represents the square of daily log returns of

S&P from 01 January 1981 to 31 December 2004, shows a classical exam-

ple of spikes and jumps observed in stock exchange processes. Further-

more, the asset returns displays fat tails and skewness when represented

by the empirical distribution graph. Figure 3.2.2 is an example of a nor-
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Figure 3.2.2: Normal distribution simulation histograms with N =

100000.

mally distributed random values of x withN = 100000. Hence, if the asset

return empirical distribution graph has the same form with Figure 3.2.2,

then the return distribution can be accurately estimated . On Figure 3.2.3,
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Figure 3.2.3: Normal distribution simulation histograms with N = 1000.

with N = 1000, the random values of x are not normally distributed. The

right and left tails are not equally shaped. Therefore, if we have a return

empirical distribution graph with the same results as depicted in Figure
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3.2.3, the normality will not be respected and we will need to implement

models that will accurately fit the return distribution in order to estimate

the profit and loss distributions. Likewise, in the ‘risk-neutral ’ world,

the BS model theory is not respected, since the implied volatilities are

not constant across strike nor across maturities. Thus, to minimize the

risk in trading, a model is needed to capture the behaviour of the implied

volatility smiles in a accurate fashion. In the ‘real’ and ‘risk-neutral’ world

scenario that we mention above, Lévy processes is the appropriate method

to accurately and consistently report all these observations [93].

In all the following sections, the lecture notes of [93] will be the main

reference. One can also, for further reading consult [30, 39, 48, 49, 113].

3.3 Basic definition of Lévy processes

For a better understanding of the basic definition of Lévy processes, we

define some basic term such as σ -algebra, probability measure, a filtration,

an ‘usual conditions’ and càdlàg function.

Definition 2. An algebra F of subset Ω is called σ -algebra on Ω if for any

sequence (An)n∈N ∈ F , we have

∞⋃
n=1

An ∈ F .

Such a pair (Ω,F ) is called a measurable space.

Definition 3. A filtration (or information flow) on (Ω,F ,P) is an increasing

family of σ -algebra (F )t∈[0,T ]:

Fs ⊂ Ft ⊂ FT ⊂ F for 0 ≤ s < t ≤ T .
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Definition 4. LetΩ be a non-empty set, and let F be a σ -algebra of the subset

Ω. A probability measure P is a function that, to every set A ∈ F assigns a

number in [0,1], called probability of A and written P(A). We require

1. P(Ω) = 1 and

2. whenever A1,A1... is a sequence of disjoint sets in F , then

P

 ∞⋃
n=1

An

 =
∞∑
n=1

P (An) .

The triplet (Ω,F ,P) is called a probability space.

Definition 5. We say that a filtered probability space (Ω,F ,P,F), with F =

(F )t∈[0,T ], satisfies the ‘usual condition’ if :

1. F is P-complete.

2. F0 contain all P-null set of Ω. This means intuitively that we know

which events are possible and which are not.

3. F is right-continuous, i.e. Ft = Ft+ :=
⋃
s>t Fs.

Definition 6. A function f : [0,T ] → R
d is said to be càdlàg if it is right

continuous with left limits. If the process is càdlàg (left continuous), one should

be able to predict the value at t-‘see it coming’-knowing the value before t.

A stochastic process Xt with stationary independent increments

which is continuous in probability is called a Lévy process. More precisely,

the process can be define as follow:

Suppose (Ω, F ,F, P ) is a filtered probability space, with F = F T and the

filtration F = (F )t∈[0,T ] satisfies the usual conditions. Suppose T ∈ [0,∞]

denotes the time horizon which, in general, can be infinite.
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Definition 7. A càdlàg, adapted, real valued stochastic process X = (X)0≤t≤T

with X0 = 0 almost surely (a.s.) is called a Lévy process if the following condi-

tion are met:

(X1) : X has independent increments, i.e. Xt −Xs is independent of Fs for any

0 ≤ s < t ≤ T .

(X2) : X has stationary increments, i.e. for any 0 ≤ s, t ≤ T the distribution of

Xt+s −Xt does not depend on t.

(X3) : X is stochastically continuous, i.e for any 0 ≤ t ≤ T and ε > 0: lims→t P (|

Xt −Xs |> ε) = 0.

Among the Lévy processes, the deterministic process (linear drift)

appear to be the simplest process. While the BM is the only (non-deterministic)

Lévy process having continuous paths. Jumps of size one are Poisson pro-

cess and those of random size are compound Poisson process. The com-

pound Poisson and the Poisson processes are part of the class of Lévy pro-

cesses. We shall notice that the combination of compound Poisson and the

BM is a Lévy process and is often called a ‘jump-diffusion’ process [93].

To avoid confusion of terms, we will always refer the jump diffusion in

this dissertation as a ‘Lévy jump-diffusion’ process since there are jump-

diffusion processes which are not Lévy processes.

3.4 Description of the Lévy jump-diffusion pro-

cesses

This section reviews some basic definitions and theorem of the Lévy jump-

diffusion processes. Let X = (Xt)0≤t≤T be a jump-diffusion composed by
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the BM and a reduced compound Poisson process, modelled by the fol-

lowing stochastic differential equation (SDE)

Xt = αt + σWt +

 Nt∑
k=1

Gk − tλθ

 , (3.5)

where the parameters α ∈ R,σ ∈ R ≥ 0 and W = (Wt)0≤t≤T is the stan-

dard BM. W = (Wt)0≤t≤T represents the Poisson process with parame-

ter λ (E[Wt] = λt). G = (Gk)k≥1 is an independent and identically dis-

tributed sequence of random variables with probability distribution F and

E[G] = θ < ∞. Therefore, the distribution of jumps arriving is described

by F according to the theory of the Poisson process. Every randomness

sources are mutually independent [30, 39, 93].

Definition 8. A càdlàg stochastic process X = (X)t∈[0,T ] is a martingale rela-

tive to (P,Ft) if

1. X is Ft-adapted,

2. E[| Xt |] <∞ for any t ∈ [0,T ],

3. ∀ s < t, E[Xt | Fs] = Xs.

A BM is known to be a martingale from literatures, hence the

reduced Poisson process is also a martingale. So, X = (Xt)0≤t≤T is a mar-

tingale if and only if α = 0.

The property of the function Xt is

E[eiuXt ] = E

exp(iu(αt + σWt +
Nt∑
k=1

Gk − tλθ))

 ,
= exp[iuαt]E

exp(iuσWt)exp(iu(
Nt∑
k=1

Gk − tλθ))

 ,
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because all sources of randomness are independent, we get

E[eiuXt ] = exp[iuαt]E [exp(iuσWt)]E

exp(iu(
Nt∑
k=1

Gk − iutλθ))

 .
Theorem 3. [93] The characteristic function of Xt is represented by the fol-

lowing equation which is a special case of the Lévy-Khintchine formula

E[eiuXt ] = exp
[
t

(
iuα − u

2σ2

2
+
∫ ∞
−∞

(eiux − 1− iux)λF(x)
)]
. (3.6)

Proof. [93] If we consider

E[eiuσWt ] = e−
1
2σ

2u2t, Wt ∼Normal(0, t),

E[eiu
∑Nt
k=1Gk ] = eλt(E[eiuG−1]), Nt ∼ Poisson(λt),

we get

E[eiu
∑Nt
k=1Gk ] = exp[iuαt]exp

[
−1

2
u2σ2t

]
exp

[
λt(E[eiuG − 1]− iuE[G])

]
,

= exp[iuαt]exp
[
−1

2
u2σ2t

]
exp

[
λt(E[eiuG − 1− iuG])

]
,

since F is the distribution of G, then we get

E[eiu
∑Nt
k=1Gk ] = exp[iuαt]exp

[
−1

2
u2σ2t

]
exp

[
λt

∫ ∞
−∞

(eiux − 1− iux)F(x)
]
.

Now, since t is a common factor, we re-write the above equation to obtain

the desirable result.

More literatures and examples on the jump-diffusion are given

by Bertoin [13], Raible [98] and Sato [109]. One can also, refer to [93]

from page 8 to 16 Sections 4, 5, 6, and 7. These sections give more details

on the relation between the Lévy process and the infinity divisible distri-

bution, the analysis of jumps and Poisson random measures, the Lévy-Itô

decomposition and the Lévy measure, path and moment properties.
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Definition 9. The distribution of a real-valued random variable X is infinitely

divisible if for every n ∈N+, there exists a sequence of independent, identically

distributed variables (X1,X2, ....,Xn) such that X1 + X2 + .... + Xn has a same

distribution as X.

Definition 10. If the distribution of X is stable then the distribution is in-

finitely divisible.

There is an important link between the Lévy processes and in-

finitely divisible distribution. If (X(t))t≥0 is a Lévy process, therefore all

process values X(t) are infinitely divisible. More theorems, examples and

applications can be found in [93, 109] and references within to understand

their connection.

3.5 Application of Lévy processes in Finance

The Finance industry widely used BS model to price option. This is due

to the fact that many options can be priced explicitly. They also use ef-

ficient computational methods such as the MCM to price more compli-

cated derivatives and high number of options. The BS model in particular

has a poor model fit and some price obtained from the model has to be

adjusted to be realistic [112]. However, many model based on Lévy pro-

cesses, which has a very wide modelling freedom, can correct this poor

fitting [133].

In the following Subsections, we describe an asset price model driven by

a Lévy process under the real and risk-neutral measure.
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3.5.1 Market driven by the real-world measure

Two modelling approaches are used to price an option in the real world

measure. The first approach is based on the exponential Lévy process and

the second approach is based on the application of Itô’s formula. Under

the real world-measure, the following equation is used to model the asset

price process as the exponential of a Lévy process.

St = S0 exp(Xt), 0 ≤ t ≤ T , (3.7)

with, X being the Lévy process of an infinitely divisible distribution es-

timated from available data set of a particular asset. Therefore, the sta-

tionary and independent increments will be produced by the log-returns.

They will be distributed across time intervals of specific length. Clearly,

the process X carries its path properties over S, i.e., when X is a pure-

jump process then S will also be in the same process. This approach gives

an opportunity to record the price fluctuations of the asset at the micro

structure level, even in a daily time scale. Figure 3.5.1 is a simulation of a

simple path of Equation (3.7) with S0 = 50,T = 1, r = 0.05 and σ = 0.20.

The second approach is given by the application of Itô’s formula

which yields that S = (St)0≤t≤T is the solution of the SDE

dSt = St −
(
dXt +

c
2
dt +

∫
R

(ex − 1− x)µX(dt,dx)
)
. (3.8)

The solution S can also be specify when we replaced the BM in the BS SDE

by a Lévy process, i.e. via

dSt = St − dXt, (3.9)

which has a stochastic exponential solution

St = S0ξ(Xt). (3.10)
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Figure 3.5.1: Simple path of the exponential Lévy process of an asset price.

But this approach will not be favourable to the financial applications,

since a negative value can be produced by the asset price, unless we re-

strict jumps to be above −1 by taking the measure (ν) as sup(ν) ⊂ [−1,∞).

Also the approach does not give the distribution of the log-returns [93].

Since one approach is appropriate to study the distribution properties of

the price process and the other for probing the martingale properties.

Then the two models can be closely related or complementary to each

other [49]. In general, the market is regarded to be incomplete, because

the price process is driven by the Lévy process. The exception is made

when the market is driven by the Normal (BS model) and Poisson distri-

bution [93, 112, 133]. If we use a particular asset, such as moment deriva-

tives, variance swaps, then the market driven by the Lévy process can be

complete. There will exist a unique martingale measure; see [93] at page

31 for a given example.
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3.5.2 Market driven by the risk-neutral measure

In financial mathematics, a risk neutral measure is a probability measure

such that each share price is exactly equal to the discounted expectation of

the share price under this measure [112]. Hence to describe a price of an

asset under a risk neutral measure, we make the following two assump-

tions:

• The Lévy process X has first exponential moment, such that

E[eXt ] <∞.

• The Lévy process has finite first moment if and only if
∫
|x|≥1

| x |

ν(dx) <∞.

Then under the risk neutral measure (R̄), the asset price can be modelled

as an exponential Lévy process

St = S0 exp(Xt),

where X has the triplet (ᾱ, c̄, ν̄) and satisfies the above two mentioned as-

sumptions [112, 133]. The process X has the unique decomposition rep-

resented by

Xt = ᾱt +
√
c̄W̄t +

∫ t

0

∫
R

x(µX − ν̄X)(ds,dx)

where W̄t is a R̄-BM and ν̄X is the R̄-compensator of the jump measure µX

[93]. By making the assumption that R̄ is the risk neutral measure, then

the asset price will have a rate of return µ = r−δ and a martingale in a form

of the re-invested process (e(r−δ)tSt)0≤t≤T under R̄. The two parameters r
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and δ represent respectively, the risk free interest rate and the continuous

dividend yield of an asset. Hence the drift ᾱ has a form

ᾱ = r − δ − c̄
2
−
∫
R

(ex − 1− x)ν̄(dx),

where r ≥ 0 and δ ≥ 0. More details are given by Goll [49], Shoutens [112],

Papapantoleon [93] and Winkel [133].

3.6 Some popular models of Lévy processes used

in the mathematical finance

In this section, we review the most popular models used in mathematical

finance from the point of view of Lévy process. These models are tools to

solve different cases of financial problem.

• The BS model has been the most famous asset price model based

on the Lévy process. Its log-return is normally distributed with

mean µ and variance σ2. This is summarized as, Xt ∼ Normal (µ,σ2)

and density, fXt (x) = 1
σ
√

2π
exp

[
− (x−µ)2

2σ2

]
. Therefore, the characteris-

tic function is represented by, ϕXt (u) = exp
[
iµu − σ2u2

2

]
, i = 1, .....,n;

The first and second moments are E[Xt] = µ, Var[Xt] = σ2 and the

skewness of Xt is 1, the kurtosis is equal to 3. The canonical decom-

position of Xt is represented by, Xt = µt+σWt and the Lévy triplet is

(µ,σ2,0) [62].

• The Merton model has been the first to use a discontinuous price

process to model asset returns. The model is represented by the
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canonical decomposition,

Xt = µt + σWt +
Nt∑
k=1

Jk ,

with Jk ∼ Normal(µJ ,σ
2
J ), k = 1,2,3, ...., and the jump size of the dis-

tribution has density, fJ (x) = 1
σJ
√

2π
exp

[
− (x−µJ )2

2σ2
J

]
. Hence, the charac-

teristic function of Xt is

ϕXt (u) = exp
[
iµu − σ

2u2

2
+λ(eiµJu−σ

2
J u

2/2 − 1)
]
,

and the Lévy triplet is (µ,σ2,λfJ ) [49, 133].

• The Kou model is a jump-diffusion model that is similar to Merton’s

model. The difference is observed at the jump size which is double-

exponentially distributed (∼ Dbexp). Hence the canonical decom-

position of the driving process is

Xt = µt + σWt +
Nt∑
k=1

Jk ,

with Jk ∼ Dbexp(p,θ1,θ2), k = 1,2,3, ...., and the jump size has den-

sity

fJ (x) = pθ1e
θ1x1{x<0} + (1− p)θ2e

θ2x1{x>0}.

The characteristic function of X1 is represented by

ϕXt (u) = exp
[
iµu − σ

2u2

2
+λ

(
pθ1

θ1 − iu
−

(1− p)θ2

θ2 + iu
− 1

)]
,

and the Lévy triplet is (µ,σ2,λfJ ) [93].

• The Generalized Hyperbolic (GH) model has increments of time

length 1 which follow a GH distribution (∼ GH) with parameters
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α,β,δ,µ,λ, which indicate that Xt ∼ GH(α,β,δ,µ,λ). The density of

the GH model is defined as

fGH (x) = c(λ,α,β,δ)
(
δ2 + (x −µ)2

) (λ− 1
2 )

2
Γ ,

Where

Γ = Kλ− 1
2

(
α
√
δ2 + (x −µ)2

)
exp(β(x −µ)),

and

c(λ,α,β,δ) =
(α2 − β2)λ/2

√
2παλ−

1
2 Kλ

(
δ
√
α2 − β2

) .
In the density function fGH(x), Kλ represents the Bessel function of

the third kind with index λ (see [1] for more details), the parameter

α > 0 determines the shape, 0 ≤ |β| < α determines the skewness,

µ ∈ R the location and δ > 0 represents the scaling parameter. The

heaviness of the tail is affected by λ ∈R and this allows to go through

different subclasses such as the hyperbolic distribution (λ = 1) or the

normal inverse Gaussian (λ = 1
2 ).

The distribution of GH has the characteristic function

ϕGH(u) = eiuµ
(

α2 − β2

α2 − (β + iu)2

)λ
2 Kλ

(
δ
√
α2 − (β − iu)2

)
Kλ

(
δ
√
α2 − β2

) .

The canonical decomposition of the Lévy process driven by a GH

distribution is

Xt = tE[X1] +
∫ t

0

∫
R

x
(
µ− νGH

)
(ds,dx),

where the Lévy measure νGH has the form

νGH(dx) =
eβx

|x|

∫ ∞
0

exp(−
√

2y −α2|x|)
π2y(J2

|λ|(δ
√

2y) +Y 2
|λ|(δ

√
2y)

dy +λe−α|x|1{x≥0}

 ,
and Jλ,Yλ denote respectively the Bessel function of first and second

kind with index λ. The Lévy triplet of model is (E[X1],0,νGH) [93].
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• The Normal Inverse Gaussian (NIG) model is a particular case of

the GH model for λ = 1
2 . The density of the model is represented by

fNIG(x) =
α
π

exp
(
δ
√
α2 − β2 + β(x −µ)

) K1

(
αδ

√
1 + (x−µδ )2

)
√

1 + (x−µδ )2
.

The characteristic function of the model has the modified form

ϕNIG(u) = eiuµ
exp

(
δ
√
α2 − β2

)
exp

(
δ
√
α2 − (β + iu)2

) ,
while the canonical decomposition is

Xt = tE[X1] +
∫ t

0

∫
R

x
(
µ− νNIG

)
(ds,dx),

with the Lévy measure [93]

νNIG(dx) = eβx
αδ
π|x|

K1 (α|x|)dx.

• The Meixner process is constructed from the following assumption.

We letX = (Xt)0≤t≤T be a Meixner process with Law (H1|P ) = Meixner(α,β,δ),α >

0,−π < β < π,δ > 0, therefore the density of the model is

fMeixner(x) =

(
2cos β2

)2δ

2παΓ (2δ)
exp(

βx

α
)
∣∣∣∣∣Γ (δ+

ix
α

)∣∣∣∣∣2 ,
and the characteristic function of the model is

ϕXt (u) =

 cos β2
cosh αu−iβ

2


2δt

,

where t ∈ [0,T ]. The Meixner process is a pure jump Lévy process

with a measure represented by

νMeixner(dx) =
δexp

(
β
αx

)
x sinh

(
πx
α

)
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and the canonical decomposition represented by

Xt = tE[X1] +
∫ t

0

∫
R

x
(
µX − νMeixner

)
(ds,dx).

The Lévy triplet of the model is (E[X1],0,νMeixner) [49, 112].

• The Carr, German, Madan, and Yor (CGMY)

Lévy process is closely related to stable processes when additional

exponential factors are involved. In close forms, its density is not

known [93]. The characteristic function Xt, t ∈ [0,T ] is represented

by

ϕXt (u) = exp
(
tCΓ (−Y)[(M− iu)Y + (G + iu)Y −MY −GY]

)
,

and the Lévy measure of the process is represented by

νCGMY(dx) = C
e−Mx

x1+Y 1{1<0}dx+ C
eGx

|x|1+Y 1{1<0}dx,

with C > 0,G > 0,M > 0, and Y < 2. The canonical decomposition of

the process has the representation

Xt = tE[X1] +
∫ t

0

∫
R

x
(
µX − νCGMY

)
(ds,dx),

while the Lévy triplet of the model is (E[X1,0,νCGMY) [93].

61

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4

Application and review of a Lévy

model in a PIDE and its other

resolution modes

Option problems under jump models [73] can be modelled by means of

PIDEs. Due to inherent complexity in the modelling equations, one can

rarely find closed-form analytical solutions to these models, and therefore

one has to resort to numerical methods.

This chapter investigate the resolution of a PIDE under Lévy model and

review other resolution modes.
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4.1 Partial Integro-differential Equations approach

The above sections describe the Lévy processes under the expected value

approach. Here, we consider the class of exponential Lévy model where

St = ert+Xt represents the risk-neutral of the underlying asset. The param-

eter Xt is a time-homogeneous jump-diffusion process. In this thesis we

will apply this approach to determine the solutions of the PIDE.

4.1.1 Exponential Lévy models

In finance, one of the main purpose of exponential Lévy models is to price

and hedge options. We assume that, r ≥ 0 is a known constant riskless

interest rate constant and S0 > 0, the initial value. These models represent

the price of a stock as the exponential of a Lévy process:

St = S0e
rt+Xt , 0 ≤ t ≤ T , (4.1)

where X is the Lévy process with characteristic triplet (σ2,Π̃, γ̃) under

measure P and satisfies some integrability condition. Under the assump-

tion of no-arbitrage, the existence of an equivalent martingale measure Q

to P must hold and EQ[eXt ] = ert, t ≥ 0, provided that X has the character-

istic triplet (σ2,Π,γ). This translates that the expected return on stock S

must be the same as that from the money account. Hence

σ2

2
+γ +

∫
R

(ex − 1− x1{|x|≤1})Π(dx) = r (4.2)

which is derived from the Lévy-Khintchine formula [28].

A multitude of different exponential Lévy models is accounted in the fi-

nancial modelling literature. The reason of this diversity of choices is

63

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



based on the incomplete market observed in model with jumps. This gives

a variety of choosing the equivalent martingale measure. The following

definition amount to achieve the change of measure.

Definition 11. LetX be a Lévy process on the probability space (Ω,F ,P).Then

the Esscher transform is any change of P by the process Xt and a constant θ to

an equivalent probability measure Q such that

dQ
dP

∣∣∣∣∣Ft =
exp(θXt)

E[exp(θXt)]
. (4.3)

When the existence of Definition 11 holds, then

γ = γ̃ +θσ2 +
∫ 1

−1
x(eθ − 1)Π(dx),

and Π(dx) = eθxΠ̃(dx) should exist. This process is known as the Esscher

transform of martingale measure and more about this transforms are de-

tailed in [47].

4.1.2 Partial integro-differential equations for option prices

Let consider the value of a European option, V (t,S), with the underly-

ing asset St and terminal payoff Ψ . From the risk-adjusted measure (risk-

neutral probability) Q, we obtain

V (t,S) = e−r(T−t)EQ[Ψ (St)|St = S] = e−r(T−t)EQ[Ψ (SeXT−t )]. (4.4)

Introducing the change of variables x = lnS and τ = T − t, and by defining

u(τ,x) = V (t,S) = e−rτEQ[Ψ (ex+Xτ )], we obtain a PIDE by differentiating

u(τ,x) with respect to τ . The PIDE equation is written in a form of

∂u
∂τ

= Lu(x). (4.5)
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The operator L represents the infinitesimal generator of a Lévy process. it

is defined as follows:

Proposition 1. [28][Infinitesimal generator of a Lévy process] Let (X)t≥0

be a Lévy process on R with characteristic triplet (σ2,Π,γ). Then the infinites-

imal generator of X is defined for any f ∈ C2
0(R) as

Lf (x) =
1
2
σ2∂

2f

∂x2 (x) +γ
∂f

∂x
(x) +J ′, (4.6)

where J ′ =
∫
R

(
f (x+ y)− f (x)− y ∂f∂x (x)1{|y|≤1}

)
Π(dy) and C2

0(R) is the set of

twice continuously differentiable functions, vanishing at infinity.

By further applying condition (4.2) in Equation (4.5), we obtain

the following PIDE:

∂u
∂τ

=
σ2

2
∂2u

∂x2 (τ,x) + (r − σ
2

2
)
∂u
∂x

(τ,x)− ru(τ,x) + J̃, (4.7)

where

J̃ =
∫
R

(
u(τ,x+ y)−u(τ,x)− (ey − 1)

∂u
∂x

(τ,x)
)
Π(dy).

The use of another change of variable, such as S = ex and t = T − τ will

transform equation (4.7) to a similar equation for V (t,S), as follow:

∂V
∂t

+ rS
∂V
∂S

+
σ2S2

2
∂2V

∂S2 − rV (t,S) + J̃ = 0, (4.8)

with J̃ =
∫
R

(
V (t,Sey)−V (t,S)− S(ey − 1)∂V∂S (t,S)

)
Π(dy).

Under the BS model, the Lévy process J̃ is equal to 0, therefore, Equation

(4.8) will be reduced to the BS PDE. But under a finite variation Lévy pro-

cess, the second partial derivative term vanishes and the partial derivative

term in the integral can be taken out. Hence, Equation (4.8) become a first

order PIDE:

∂V
∂t

+ (r + %)S
∂V
∂S
− rV +

∫
R

[V (t,Sey)−V (t,S)]Π(dy) = 0, (4.9)
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with % =
∫

(1 − ey)Π(dy). This PIDE can be solve by using the exponential

time integration method.

4.2 Exponential time integration methods

4.2.1 Background and motivation

As we mention in the introduction of this dissertation, most models in

finance are represented by PDEs. Many financial problems are modelled

under a form of these equations. The BS is the most important PDE in

financial problems. It is a time dependent PDE with one space variable

denoted by S and one time variable denoted by t. To solve time-dependent

PDE numerically, one can discretize it in space by leaving the time variable

continuous. This spatial discretization results to a system of ODEs. The

conversion from PDEs to ODEs can be done by spectral, finite element,

finite difference approaches [55]. The following example illustrates how to

convert a PDE to a ODE by using a semi-discrete finite difference method.

We consider the following heat equation

ut = cuxx, 0 ≤ x ≤ 1, t ≥ 0,

with initial condition

u(0,x) = g(x), 0 ≤ x ≤ 1,

and boundary conditions

u(t,0) = 0, u(t,1) = 0, t ≥ 0.
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By defining the spatial mesh points to be

xi = i∆x, i = 0,1, .....,n+ 1,

with ∆x = 1
(n+1) . We then replace the derivative uxx by the finite difference

approximation

uxx(t,xi) ≈
u(t,xi+1)− 2u(t,xi) +u(t,xi−1)

(∆x)2 ,

to obtain a system of ODEs

y
′
i(t) =

c

(∆x)2 (yi+1(t)− 2yi(t) + yi−1(t)), i = 1,2, ...,n,

and yi(t) ≈ u(t,xi). From the boundary conditions, y0(t) and yn+1(t) are

identically zero, and from the initial conditions y0 = g(xi), i = 1,2, ...,n.

The semi-discrete system of ODEs can be written in the matrix form

y
′
=

c

(∆x)2



−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 −2


y = Ay.

The matrix A is a Jacobian matrix with eigenvalues between (∆x)2 and 0.

This makes the ODE to be very stiff when the spatial mesh ∆x becomes

small [55]. When a problem or equation cannot be solve by using a ex-

plicit method, then it is called stiff. Therefore, to obtain an accurate solu-

tion of the above stiff ODEs we can use numerical method called ETI or

exponential time difference (ETD) [66].
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4.2.2 Historical background of the method

The introduction of the ETI as a suitable method to solve problems or

equations with stiffness as been made back in the 1960’s [80]. An his-

torical overview made by [66] details the origin of this class of methods

for efficiently solving large stiff problems. The references of the histori-

cal makers of this method will not be given since one can found all these

references quoted in [66]. In its summary [66] mentions that the origin

of the ETI method is found in the work of Hersch [57]. Hersch proved

that, generally the numerical solution of differential equations never pro-

duce an exact solution even when we use an analytical approach of simple

elementary methods. Then Certaine [21] used the variation of constants

formula and the algebraical approximation of the non-linearity to develop

the first multi-step ETD. The approach then became the beginning of a

class of ETI which evaluate exactly the corresponding exponential by us-

ing the Jacobian approximation. The explicit exponential Adams methods

was then developed through the same idea by Nørsett [90]. Through out

the 60’S, 70’S and 90’s the implementation and the development of the

method was improved by other researchers such as Lawson [79], Edwards

et al. [40], Hochbruck, Lubich, and Selhofer [60], Munthe-Kaas [87] and

Krogstad [75].

Currently, to accurately solve large stiff problems, the use of methods

such as ETI has been actively considered. But its application had been

regarded to be computationally unattractive when the methods emerged.

The non attraction was due to the fact that the method produced exponen-

tial functions with large matrices which could not be solved without an

advanced computational programs. It was then considered to be a highly
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costly method [80]. By using the Krylov projection techniques to accu-

rately solve the exponential matrices in their works, [94] and [126] gave

other researchers a way to development a number of ETI for general stiff

systems. However, this did not make the method to be widely used. ETI

still remain to be improved when its application is used for large scale

problems compare to the Newton-Krylov implicit integrators [80].

4.2.3 Construction of the exponential time integrators

The simple definition of ETI is given by [66] as, a method to solve differential

equation which calculates the exponential or related function of the Jacobian.

For a general view of an exponential integrator, we take a look on the

derivation of the exponential Euler method.

Let consider equation of the form

u
′
(t) = F(t,u(t)), u(0) = u0. (4.10)

Using the linearisation of (4.10) at time t by J = −DF(t,u(t)) as the Jacobian

of F, with respect to u at t, and setting k(t,u(t)) = F(t,u(t)) + Ju(t) as the

remainder, we obtain the following semi-linear problem

u
′
(t) + Ju(t) = k(t,u(t)), u(0) = u0. (4.11)

The linear equation, u
′
(t) + Ju(t) = 0, can be solved explicitly by

u(t) = e−tJu0,

and applying the variation of constant formula, leads to the solution at

time t represented by

u(t) = e−tJu0 +
∫ t

0
e−(t−θ)Jk(θ,u(θ))dθ. (4.12)
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For simplicity, we approximate the non-linear function k over the interval

[0, t], by its value at the point (0,u0). Then we solve the rest of the integral

explicitly by using the ETD or the exponential propagation iterative (EPI)

methods.

4.2.4 Approach used to solve the exponential integral

For more clarity and generality, we can add the term cu to the right of

equation (4.10), and multiply it through out by the integrating factor e−ct,

with c been a constant. We then integrate the equation over a single time

step from t = tn to t = tn+1 = tn + h and obtain

u(tn+1) = u(tn)ech + ech
∫ h

0
e−cτF(u(tn + τ), tn + τ)dτ. (4.13)

Therefore, to solve the integral in (4.13) we use the multi-steps ETD meth-

ods or ETD Runge-Kutta methods. We let u(tn) = un and Fn = F(un, tn). To

simply approximate the integral in (4.13), we consider F as a constant,

F = Fn +O(h), between t = tn and t = tn+1 to obtain the ETD1

un+1 = une
ch +

Fn(ech − 1)
c

, (4.14)

with a local truncation error h2Ḟ/2. The application of (4.14) is mainly

done in the field of computational electrodynamics [32]. In numerical

analysis field, we assume that F is constant over tn ≤ t ≤ tn+1 and use the

higher approximation

F = Fn +
τ(Fn −Fn−1)
h+O(h2)

, (4.15)

to obtain the numerical ETD2

un+1 = une
ch +

Fn((1 + hc)ech − 1− 2hc)
hc2 +

Fn−1(−ech + 1 + hc)
hc2 , (4.16)
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with a local truncation 5h3F̈/12. When c→ 0, (4.16) becomes the second-

order Adams-Bashforth methods and when |c| is large we obtain the first

two terms of the basis of the non-linear Galerkin methods. For more com-

prehension on the practical and arbitrary order application of (4.16) one

can refer to Section 2 in [32]. Solving the integral by using the multi-steps

ETD can be inconvenient due to the availability of only one variable at ini-

tial condition. Since the exponential time differencing method of Runge-

Kutta (ETDRK) has a smaller error constant and it is more stable than the

multi-step methods, it can be used to avoid the problem faced in the use

of multi-step methods. In this thesis, we will only give the second, third

and forth order expressions of the ETDRK. One can consult [32] and the

cited references for more details.

We first consider ETD1 as

an = une
ch +

Fn(ech − 1)
c

.

Then the approximation

F = F(un, tn) + (t − tn)(F(an, tn + h)−F(un, tn))/h+O(h2),

is used on the interval tn ≤ t ≤ tn+1 and substituted into (4.13) to obtain

the second order of ETDRK (ETDRK2)

un+1 = an +
(F(an, tn + h)−Fn)(ech − 1− hc)

hc2 , (4.17)

with a truncation error per step of −h3F̈/12. This truncation error is smaller

by a factor of 5 than that of ETD2. To obtain the third order ETDRK

scheme, we use the same procedure that produced (4.17) [65]. Hence, ET-

DRK3 is given by

an = une
ch/2 +

(ech/2 − 1)F(un, tn)
c

,
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bn = une
ch +

(ech − 1)(2F(an, tn + h/2)−F(un, tn))
c

,

un+1 = une
ch +

ε1 + ε2 + ε3

h2c3 , (4.18)

with

ε1 = F(un, tn)(−4− hc+ ech(4− 3hc+ h2c2)),

ε2 = 4F(an, tn + h/2)(2 + hc+ ech(−2 + hc)),

and

ε3 = F(bn, tn + h)(−4− 3hc − h2c2 + ech(4− hc)).

The values of u are approximated by an and bn at respectively, tn+h/2 and

tn + h. The equation (4.18) represents the quadrature formula of (4.13)

derived using the points tn, tn + h/2 and tn + h from the quadratic inter-

polation [32]. Once again, we obtain fourth-order of ETDRK (ETDRK4)

from the standard fourth order Runge-Kutta [65] by adding and changing

some parameters. The process leads to the following expressions

an = une
ch/2 +

(ech/2 − 1)F(un, tn)
c

,

bn = une
ch/2 +

(ech/2 − 1)F(an, tn + h/2)
c

,

dn = ane
ch/2 +

(ech/2 − 1)(2F(bn, tn + h/2)−F(un, tn))
c

,

and

un+1 = une
ch +

υ1 +υ2 +υ3

h2c3 , (4.19)

with

υ1 = F(un, tn)(−4− hc+ ech(4− 3hc+ h2c2)),

υ2 = 2(F(an, tn + h/2) +F(bn, tn + h/2))(2 + hc+ ech(−2 + hc)),

υ3 = F(dn, tn + h)(−4− 3hc − h2c2 + ech(4− hc)).
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All the steps used above are not the only way to solve the exponential

integral. Hence we propose in the next Section an alternative method to

complete the computation of such integral.

4.2.5 Alternative method to solve the exponential integral

A good choice of a time integrating scheme leads to a better resolution

of stiff systems of non-linear differential equations. Then, the choice of

the right methods, explicit or implicit, to solve stiff ODEs is sometimes

challenging. Generally the implicit scheme is viewed as the better tool to

use when solving (4.10) [32]. Cox gives a summary about the scheme on

its Section 2.4, and reveals that the method has better stability properties

than the explicit scheme. The disadvantage is that the method takes larger

time steps which leads to more computation at each time iteration. Mean-

while, explicit schemes takes lower amount of computation per time step

which is a limitation to the requirements of stability [122].

For efficient computation of stiff system over long time intervals, Tokman

introduces a new class of exponential propagation techniques called EPI.

In this dissertation, a summary of the scheme is given and one can consult

[122] for more comprehension.

Tokman uses (4.10) and the same single time step used above this Section

to construct the EPI. He found the integral form of the solution to (4.10)

to be

u(tn + hn) = un + (eBnhn − I)B−1
n Fn +

∫ tn+hn

tn

eBn(tn+hn−t)R(u(t))dt, (4.20)

where

un = u(tn) ∈RN is the solution of (4.10) at tn,
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Fn = F(un) ∈RN is the right-hand side of (4.10) computed at tn,

Bn = DF(un)
Du ∈RN×N and R(u(t)) = F(u(t)) − Fn − Bn(u(t)) − un ∈ R

N is

the non-linear remainder resulting from the expansion of F(u) around un.

The two last terms of (4.20) are computed by using a multiplication of

large N ×N matrix and a vector in R
N . Tokman addresses the issue of this

product in its Section 3.1 by using the Krylov subspace projections.

The construction of a time integrator is conditioned by the appropriate

choice of a quadrature in order to evaluate the integral in (4.20). We either

decide to use the polynomial approximation to the function R(u(t)) or the

all integrand eBn(tn+hn−t)R(u(t)) [80, 122]. Choosing the first option leads to

the construction of a multi-step type or Runge-Kutta-type scheme where

the use of Krylov projection is required to approximate

gk(Bnhn)∇kR(u(tn)) = (−1)k
∫ 1

0
eBnhn(1−s)

(−s
k

)
ds∇kR(u(t)),

or

φk(Bnhn)δkR(u(t)) =
∫ 1

0
eBnhn(1−s)

(γs
k

)
ds∆kR(u(t)),

with k = 1,2, ...,γ and γ representing the number of nodes used for the

interpolation of the polynomial. The variable t has been replaced by s

such that t = tn + shn, and ( sk ) = s(s − 1)....(s − k + 1)/k! being the binomial

coefficient. The Newton backward-and-forward-difference operators are

respectively represented by ∇k and ∆k. Taking the second option, which

has a low convergence rate than the first choice, leads to the application

of Arnoldi iteration (see Section 3.1 of [122]) to estimate the all integrand

term in (4.20). For better convergence, we will focus on the multi-step and

Runge-Kutta-type schemes.

Multi-step type exponential propagation methods are constructed by us-

ing quadrature on equally spaced nodes to solve the integral in (4.20). The
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process is to first discretize the time interval ti = t0 + ih, then over each in-

terval [tn, tn + h] we estimate R(u(t)) by using an interpolating polynomial

with nodes γ and tn, tn−1...., tn − (γ − 1). If t = tn + sh,0 < s < 1,Ri = R(u(ti))

and ∇k is the kth Newton backwards difference operator, the integral in

(4.20) can be estimated as∫ tn+hn

tn

eBn(tn+hn−t)R(u(t))dt ≈ h

∫ 1

0
eBnh(1−s)


γ−1∑
k=0

(−1)k
(−s
k

)
∇kRn

ds
= h

γ−1∑
k=0

(−1)k
(∫ 1

0
eBnh(1−s)

(−s
k

))
ds∇kRn.

To obtain the multi-step type exponential propagation scheme of order

O(hγ ), we must have

u(tn + hn) = un + (eBnhn − I)B−1
n Fn +Θ, (4.21)

where

Θ = h
γ−1∑
k=0

(−1)k
(∫ 1

0
eBnh(1−s)

(−s
k

))
ds∇kRn,

or

u(tn + hn) = un + (eBnhn − I)B−1
n Fn + h

γ−1∑
k=0

(−1)kgk(Bnh)∇kRn, (4.22)

with

gk(z) =
∫ 1

0
ez(1−s)

(−s
k

)
ds.

This scheme is very expensive when comes to the design of an adaptive

method but has a simple derivation. The high cost of the implementation

of an adaptive method is due to the fact that the solutions at previous time

iterations must be re-computed when we change the time step size h. The

cheaper way to obtain an adaptive time step method is to use the Runge-

Kutta-type schemes [80, 122].

75

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Following the above procedure, we start with the approximation of R(u(t))

in order to construct the Runge-Kutta EPI methods. This is done by using

the interval [tn, tn+h] and an interpolating polynomial defined on γ which

has an equal spaced nodes tn, tn+ h
γ , tn+ 2h

γ , ...., tn+ (γ−1)h
γ . The process results

to

R(u(t)) = R(u(tn + sh)) ≈ Rn +
γ−1∑
k=0

(t − tn)...(t − tn+ k−1
γ

)

k!( hγ )k
∆kRn,

= Rn +
γ−1∑
k=0

(γs
k

)
∆kRn,

where 0 ≤ s ≤ 1 and Rn = R(u(tn)). When we combine this formula with

Equation (4.20), we obtain

u(tn + h) = un + h
eBnh − I
Bnh

Fn + h
γ−1∑
k=0

(∫ 1

0
eBnh(1−s)

(γs
k

)
ds

)
∆kRn. (4.23)

Equation (4.23) represents the general expression of Runge-Kutta EPI (RKEPI)

methods. When we consider

gγk(z) =
∫ 1

0
ez(1−s)

(γs
k

)
ds,

we can derive a two-stage RKEPI scheme as

r1 = un + a11gγ0

(
Bn
h
γ

)
h
γ
Fn, (4.24)

un+1 = un + gγ0(Bnh)hFn + b1gγ1(Bnh)hR(r1). (4.25)

The same procedure is done to obtain the general formula of the third and

fourth order RKEPI methods. The formulation is expressed as

r1 = un + a11gγ0

(
Bn
h
γ

)
h
γ
Fn, (4.26)
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r2 = un + a21gγ0

(
Bn

2h
γ

)
2h
γ
Fn + a22gγ1

(
Bn

2h
γ

)
2h
γ
Rr1 , (4.27)

 un+1 = un + gγ0(Bnh)hFn + b1gγ1(Bnh)hR(r1)

+ b2gγ2(Bnh)h(−2R(r1) +R(r2)),
(4.28)

with Rn = R(un) = 0. More details are given by [80, 122] on how to obtain

individual formulas of RKEPI order 3, 4 and more.

4.2.6 General solution of ETD

After applying various methods to compute the integral in (4.12), the ex-

ponential Euler method (4.12) is transformed to

u1 = e−hJu0 + hφ1(−hJ)k(0,u0), (4.29)

where φ1(z) = ez−1
z is an analytic function. Its evaluation is a very impor-

tant step when we use the EDT. The function is generally express as

φ`(z) =
1

(` − 1)!

∫ 1

0
e(1−θ)zθ`−1dθ, ` = 1,2, ....

One can represents some values of this function when ` = 1,2,3 and z > 0.

These are

φ1(z) =
ez − 1
z

,

φ2(z) =
ez − z − 1

z2 ,

φ2(z) =
ez − z2/2− z − 1

z3 .

When φ0(z) = ez, the function obey the recurrence

φ`+1(z) =
φ`(z)− 1

`!

z
, ` = 0,1, ...,
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and when z = 0, the function is

φ`(0) =
1
`!
.

We can encounter some numericals issues when we evaluate this function.

To overcome these difficulties, some possible approaches are made avail-

able. For small z, we use Taylor series and direct formula for non-small z

[32]. Other approaches are the use of Krylov subspace approximation [60]

and the contour integral method which works well for a suitable chosen

radius of contour [67].

The idea behind exponential integrators is to split the differential equa-

tion into two part. One part must be linear, which can be computed ex-

actly, and the second part must be non-linear, which need to be computed

numerically. The computation of the non-linear part follows the same

approach used above to obtain the implicit exponential Euler method or

implicit ETD method. This will be represented by

u1 = e−hJu0 + hφ1(−hJ)k(t1,u1). (4.30)

To compute these methods, we have to calculate the exponential or a re-

lated function of an operator or matrix together with the computation of

a vector [66, 122].
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4.3 Calibration of exponential Lévy models

4.3.1 An overview of calibration in finance

According to the general definition, calibration is the process of deter-

mining the relationship between the readings obtained by a measuring

instrument or system and the applicable units of some defined system of

measurement. The method have been applied for the last 5,000 years, ac-

cording to the records uncovered by archaeologists [136]. The method is

used in finance by tuning the parameters of a financial model to fit market

data. The parameters of financial models describe the state of the economy

or relate to the financial quantities. They can for example be associated to

the volatility of a given market or reveal the state of the interest rate at a

certain period of financial transactions. All fitting are not absolutely accu-

rate. We may have for instance to perfectly fit the prices of bonds and end

up with the volatility of the parameter in the formula being much greater

than what it was supposed to be [3]. To avoid such abnormality, [3] devel-

oped an approach by using consistency hints in order to obtain plausible

results. The technique is a valuable tool for complex models which have

more parameters that can be used in the fit. Although fitting market data

is the main propose of calibration in finance, it can also be used to help a

specific application, such as relative-value trading, to predict the level of

the current market value [3].
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4.3.2 An example of calibration in a Lévy model

The example of calibration that can illustrate our study will be the one of

exponential Lévy models. The process has been used in recent years to

price and hedge options [116]. Let assume that the price of a stock has an

initial value S0 > 0 and a known interest rate r ≥ 0. Therefore, the price of

this stock will be represented by

St = S0e
rt+Xt , t ≥ 0, (4.31)

where (Xt)t≥0 is a Lévy process of characteristic triplet (σ2,ν,γ). From

(4.31), the jumps price process and the appropriate modelled returns rep-

resented by heavy tails will be taken into account. Its application in deriva-

tive pricing, for example, can be done by using the Lévy triplet (σ2,ν,γ)

under the risk neutral measure from the available data [116]. By using

the characteristics estimation of the available data, we are applying the

method called calibration. Usually, to obtain an accurate calibration, we

encounter two types of errors, the deviation from and within the model.

These errors can be corrected respectively by using the non-parametric

models and assessing the means of confidence intervals.

The following example illustrates what we can encounter by using a Lévy

model.

We consider the call option prices for Russell 2000 index (RUT) on 04/03/2008

as listed from the market watch website (www.marketwatch.com). The

call option prices has 140 day to maturity. We then apply one of the pop-

ular Lévy model used in financial mathematics to calibrate the call op-

tions of RUT. Figure 4.3.1 represents the market and model prices for all

strikes and maturities. The figure is obtain by using the Matlab codes in

Appendix (Calibration of call option and the CGMY model prices). We
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observe that the model does not fit completely the market prices. It is dif-

ficult to say if a model works better than other. One can test it by using

other Lévy models and compare their fittings on the market prices. In

general, we can have a model which works better on a dataset and worse

on another. The next subsections explain how to avoid errors when we

apply calibration by using Lévy models.
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Figure 4.3.1: RUT call option and CGMY model prices on 04/03/2008

with C = 0.026,G = 0.0765,M = 7.55,Y = 1.3.

4.3.3 Given problem and theoretical solutions

An example of calibration in exponential Lévy models will be to consider

the following problem proposed by [29].

Given prices of call options C∗0(Ti ,Ki), i ∈ I at t = 0, construct a Lévy

process X such that the discounted asset price (Ste−rt) = expXt is a martin-

gale and the call option prices C∗0(Ti ,Ki) observed at t = 0 are given by their
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discounted risk neutral expectations:

C∗0(Ti ,Ki) = e(−rTi )E[(S(Ti)−Ki)+|S0] = e(−rT )χ, ∀i ∈ I, (4.32)

and χ = E[(S0 exp(rTi +XTi )−Ki)
+].

Under the risk neutral probability Q, the price of an option is determine as a

discounted expectation of its terminal payoff. Hence, the value of call option,

by stationary and independence of increments of Xt, can be computed as :

C(t,S;T = t + τ,K) = e(−rτ)E[(ST −K)+|St = S]

e(−rτ)E[(Serτ+Xτ −K)+] = Ke−rτE(ex+Xτ − 1)+.

Taking the log forward moneyless variable

x = ln
( S
K

)
+ rτ,

the option price can be express through g(τ,x) = erτC(t,S;T = t+τ,K)/K , and

be simply in the form:

g(τ,x) = E[(ex+Xτ − 1)+] =
∫
ρ(t,dy)(ex+y − 1)+. (4.33)

The variation of the call option prices will only depends on the initial level of

the underlying and the Lévy triplet (σ,ν,γ(σ,ν)).

The aim of the calibration will be to identify the Lévy measure ν

and the volatility σ from the available data of call option prices. The pro-

cess requires that one must know the call option prices for one maturity

and all the strikes price. Then, the volatility and the Lévy measure can be

determine by following these steps:

1. Use the Breeden-Litzenberg formula, qT (κ) = e−κ{C ′′ (κ)−C ′ (κ)} and

κ = lnK being the log strike, to compute the risk-neutral distribution

of the log price in option prices.
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2. Take the Fourier transform of qT to determine the characteristic func-

tion (4.2) of the stock price.

3. Conclude by finding ν and σ from the characteristic function. The

operation is easy to compute when we use the compound Poisson

case. The reason behind is the fact that the bounded third term in

the exponent of (4.2). This applies that:

σ = lim
g→∞
−

2lnφT (g)
T g2 , γ = lim

g→∞

1
T lnφT (g) + 1

2σ
2g2

g
.

Therefore, the Lévy measure ν will be determine by Fourier inver-

sion.

The precise knowledge of a call option prices for all strikes prices and a

single maturity, allows one to determine all parameters in the exponen-

tial Lévy model and option prices of other maturities. This implies that,

no further information on other maturities can be given by their data but

only a contradiction on the previous maturity. Hence, the above enumer-

ated process cannot have an application in practice. To justify the non

application of the enumerated process in a practical problem, [29] and

reference within give three reasons. One, call prices can have an infinite

number of strike prices, which make the first and third enumerated point

being extrapolated and the data interpolation being under-determined.

Secondly, knowing the option prices for all strikes and maturities does

not guarantee that the data generating process will be within the expo-

nential Lévy class. Hence the proposed problem will not have a solution

due to its equality constraints. Lastly, the presence of observational errors

in the market data will make the derivatives in the first enumerated point

to generate more errors which will make the computation more difficult.
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In a view of all these reasons, the above given problem must be converted

to an approximation problem.

4.3.4 Application of calibration to practical problem

To avoid errors observed in the given theoretical problem when we apply

calibration using Lévy models. Research has been done to obtain accu-

rate practical solution. This resulted to the work done in [10] and [4], for

example, where they used minimization of the in-sample quadratic pric-

ing error. The process is generally known as the non-linear least squares

application. It is express as:

(σ,ν) = arg inf
σ,ν

N∑
i=1

ωi |Cσ,ν(t = 0,S0,Ti ,Ki)−C∗0(Ti ,Ki)|2, (4.34)

where C∗0(Ti ,Ki) represents the call option price at t = 0. To obtain an

optimal numerical solution of (4.34), the application of a gradient-based

method is frequently used [4, 10]. Differently to (4.32), (4.34) can pro-

duce some solution since the minimization functional is non-convex. The

location by a gradient descent of minimum may not be possible. This is

due to the finite number of calibration constraints which is represented by

the option prices. Hence the reproduction of call prices in equal precision

may be obtain from many Lévy triplets. This will make the error land-

scape to have flat regions which produce the low sensitivity of the error

on the model parameters variation. In conclusion, the numerical starting

point of the minimization algorithm and the input prices are very sensitive

to the calibrated Lévy measure [29]. To have more details on the mention

sensitivity of the calibrated Lévy measure, one can refer to the examples

made by [29] in his Subsection 3.1. A regulation method was introduced
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by [42] to alleviate the sensitivity problem which affect the uniqueness

and stability of the solution. The method uses a penalization term to ob-

tain a unique and stable solution. It is express by the following equation:

(σ ∗,ν∗) = arg inf
σ,ν

N∑
i=1

ωi |Cσ,ν(t = 0,S0,Ti ,Ki)−C∗0(Ti ,Ki)|2 +B, (4.35)

where B = αF(σ,ν). The term F is the measure of closeness of the model Q

to a prior model Q0. It must be correctly chosen to make (4.35) well-posed

[29].

The next Section is an application of the mentioned methods (spectral and

ETD method) and model (Lévy model). We resume the application by

presenting three different ways to approximate the spatial domain in the

representation of discontinuous functions with polynomials:

1. a direct collocation method represented at the Chebyshev quadra-

ture points;

2. a grid stretching (mesh refinement) in the neighbourhood of the dis-

continuities and;

3. a spatial discretization into elements placing the discontinuities at

the edge of the elements of the domain.

Then we solve the PDE used to price vanilla option strategies for three

different payoff functions; a European call option, a bull spread option

and the butterfly strategy. In order to solve the PDE, a domain decompo-

sition is used to discretize in space, and transform the original problem

to an ODE. Finally we use a Krylov projection algorithm to numerically

approximate the analytical solution of the ODE.
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Chapter 5

Alleviating Gibbs phenomenon

in pricing options under the

spectral methods

In this chapter, we review some SCM convergence remedies including grid

stretching (SCGSM), discontinuity inclusion (SCDIM) and SCDDM meth-

ods in pricing options. We first perform barycentric interpolations on

European vanilla, bull spread and butterfly option payoffs, solve numer-

ically the BS PDE with the proposed workarounds of barycentric spec-

tral methods and then perform numerical comparisons. Spectral methods

have been actively developed in the last decades. The main advantage of

these methods is to yield exponential order accuracy when the function

is smooth. However, for discontinuous functions, their accuracy deterio-

rates due to the Gibbs phenomenon. The main purpose of this Section is

to show that high order accuracy can be recovered from spectral approxi-
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mation contaminated with the Gibbs phenomenon if proper workarounds

are applied.

5.1 Problem descriptions and applications

Let consider the BS PDE in Chapter 1, Section 1.3 such as,

1
2
σ2S2(t)

∂2V

∂S2 + rS(t)
∂V
∂S

+
∂V
∂t
− rV = 0, (5.1)

where V represents the call or put option price, with certain final payoff

at maturity and (5.1) is valid if S > 0, 0 ≤ t ≤ T . The general boundary

values condition of (5.1) are
V (S,0) = V0,

V (0, t) = f (t) for all t ≥ 0,

V (S, t) = g(t). S→∞,

(5.2)

where f (t) = 0 for a call, f (t) = Ke−rt for a put and g(t) = S for both a

call and put. The initial and boundary condition determine the type of

financial option in consideration. The payoff function of a European call

options has one discontinuity in the first derivative and is given by

f (S) = max(S −K,0), (5.3)

where S is the stock price and K is the strike price.

A bull spread is a neutral strategy that is a combination of two

call options. There are two strike prices (two discontinuities in the first

derivative of the payoff) involved in the payoff function of a bull spread
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option. The payoff function of a bull spread call option is given by

g(S) = max(S −K1,0)−max(S −K2,0), K1 < K2. (5.4)

where S is the stock price and K1 and K2 are strike prices.

A butterfly spread is a neutral strategy that has a combination of

a bull spread and a bear spread. It is a limited profit, limited risk options

strategy. There are three strike prices (three discontinuities) involved in a

butterfly spread and it can be constructed using calls or puts. The payoff

function of butterfly spread call options is expressed as h(S) = max(S −K1,0)− 2max(S −K2,0) + max(S −K3,0),

K2 = (K1 +K3)/2,
(5.5)

where S is the stock price K1, K2 and K3 are three distinct strike prices

such that 0 < K1 < K2 < K3. Figure 5.1.1 shows the payoffs of European

call, bull spread call and butterfly spread options. For all tests that will

be performed in this section, the parameters are chosen such that, K = 50

for the European call, K1 = 40, K2 = 60 for a bull spread call, and K1 = 30,

K2 = 50, K3 = 70 for a butterfly call options.

5.2 Numerical interpolations and applications

In practice, we are often confronted with situations where only limited

amount of data is accessible and it is necessary to estimate values between

two consecutive given data points. We can construct new points between

known data points by interpolation or smoothing techniques. In finance,

as only a finite set of securities are traded in financial markets, it is very
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Figure 5.1.1: Payoff of an European call, bull spread call, and a butterfly

call options. Left: K = 50. Middle: K1 = 40 and K2 = 60. Right: K1 = 30,

K2 = 50 and K3 = 70.

important to construct a sensible curve or surface from discrete observable

quantities using interpolation methods.

In this section, we describe spectral methods used to interpolate

the payoffs of European call, bull spread call and butterfly spread options.

These include reviews spectral collocation, grid stretching, discontinuity

inclusion and domain decomposition interpolations in barycentric form.

To show the efficiency of the present methods in comparison with

the exact solution we report maximum error which is defined by

L∞ = ||u −U ||∞ = max
16i6N

|u(xi)−U (xi)|, (5.6)

where u and U represent the exact and approximate solutions of a payoff

with different values of N , respectively. We refer by error the absolute

value of the difference between the exact and the numerical solution.
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5.2.1 Spectral barycentric interpolation

The review done by [96] on the Lagrange interpolation and the Barycentric

formula shows the importance of the discretization in space with spectral

methods. At first, a polynomial uN (x) is considered to be found among

the vector space of all polynomials of degree N such that uN (xj) = uj with

j = 0, .....,N . The result can be written in Lagrange form as ([78])

uN (x) =
N∑
j=0

ujγj(x), γj =
N∏

k=0,k,j

x − xk
xj − xk

, (5.7)

with Lagrange polynomial γj corresponding to the node xj having the

property

γj(xk) =

 1 when j = k,

0 otherwise.
. (5.8)

The disadvantages of (5.7) are

1. The evaluation of each uN (x) needs an O(N 2) additions and multiplica-

tions.

2. The addition of a new pair of data (xN+1,uN+1) leads to a completely

new computation.

3. The presence of inaccurate solution in the numerical computation is

certain.

It is for that reason the modifications of (5.7) is required to over-

comes those disadvantages. Hence, Berrut and Trefethen [12] modified

(5.7) such that uN (x) can be computed in O(N ) operation. This yields the

barycentric formula uN (x) as

uN (x) =

∑N
j=0

ωj
x−xj uj∑N

j=0
ωj
x−xj

. (5.9)
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where w0,w1, . . . ,wN are called barycentric weights. For every set of points

{xk}, there is a unique set of barycentric weights {wk}. In this paper we

only consider the Chebyshev points xk = cos(kπN ), k = 0,1,2, ....,N ., with

a set of barycentric weight w0 = c/2, wk = (−1)kc,k = 1, . . . ,N − 1, and

wN = (−1)N c/2 for some non-zero constant c [8]. More details are given

in [12] to obtain (5.9).

Barycentric interpolation method is used to approximate the solutions of

differential equation by a polynomial which interpolates data uk = u(xk)

at the Chebyshev points xk = cos(kπN ), k = 0,1,2, ....,N . The data uk must

be determined by the polynomial interpolants that satisfy the differential

equation exactly at the points xk . Depending of the smoothness of the so-

lution, the error will decline at different rate as N increases [121].

To represent the payoff of an European call, bull spread call and a butter-

fly call option in the Chebyshev interpolation form, we transformed the

Chebyshev domain [−1,1] to a physical domain [Smin,Smax]. We use, with-

out loss of generality, S = 1
2(Smax − Smin)x + 1

2(Smax + Smin), where x is the

Chebyshev point. The graphs on Figure 5.2.1 are obtained for Smin = 0,

Smax = 100 and N = 200. The error between the original payoff and the ap-

proximated Chebyshev interpolated payoff of the three call options is sig-

nificantly lower away from the jump discontinuities points (K,K1,K2,K3)

while it is very high at discontinuity points. This confirm the problem of

accuracy at these discontinuity points. To solve the problem of low accu-

racy at those points, one can use methods such that, the grid stretching,

the discontinuity inclusion or the domain decomposition methods.
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Figure 5.2.1: Corresponding error between the numerical payoff and the

Chebyshev interpolated payoff of an European call, bull spread call and a

butterfly call options with N = 200.

5.2.2 Grid stretching

In the most common barycentric pseudo-spectral methods, the interpo-

lation points in the interval [−1,1] are the Chebyshev collocation points

yk , k = 0, . . . ,N . The Chebyshev points are clustered near the boundaries

of [−1,1]. However, we need to accumulate these points in the vicinity of

the region of rapid change. One way to do this is to use adaptive grids

via coordinate transformations. In Pindza et.al [96], it is reported that to

overcome the problem of discontinuity and differentiability in the payoff

conditions at strike prices, the use of a grid refinement is one of the best

tool to retain a satisfactory accuracy of the spectral method applied on

those payoffs. The local grid refinement are known to improve the accu-

racy of numerical methods. In this paper, we use the conformal map g

given in Pindza et.al [96] by

x = g(y) = β +
1
α

sinh
[
λ̄(y −µ)

]
, (5.10)
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where

λ̄ =
γ + δ

2
, µ =

γ − δ
γ + δ

, (5.11)

with

γ = sinh−1[α(1 + β)], δ = sinh−1[α(1− β)], (5.12)

where α and β determine the location and the magnitude of the region of

rapid change, respectively. The conformal map g is constructed from

y = g−1(x) = µ+
1
λ̄

sinh−1[α(x − δ)]. (5.13)

A significant advantage of the rational collocation method based

on rational interpolation in barycentric form is that tedious transforma-

tions using the chain rule to approximate the derivatives of uN (x) are not

required as it is usual in other spectral collocation methods.

The method shows a significant improvement of the approxi-

mation away and at the discontinuity points. From 5.2.2, the error be-

tween the numerical payoff and the Chebyshev interpolated payoff is rep-

resented in blue. Meanwhile, the function vλ,θN (S) in red represents the

error between the numerical payoff and the interpolated payoff with the

use of a grid stretching. As represented in Figure 5.2.2, the grid stretching

method (SCGM) recovers the approximation very well at all levels. In all

the three cases, the error obtained using the SCGM is of magnitude 10−14

as opposed to the error obtained using a naive spectral collocation method

with order of magnitude 10−2.
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(b) Bull spread call option
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(c) Butterfly call option

Figure 5.2.2: Corresponding error between the original payoff and the in-

terpolated payoff with the use of a grid stretching method with N = 200

and α = 108.

5.2.3 Discontinuity inclusion

More often the computation of certain problems with jumps discontinu-

ity involving piecewise analytic functions can be performed easily. Mean-

while, it is difficult to accurately approximate these functions with a single

polynomial. A higher order of accuracy can be achieved by modifying the

spatial discretization. One alternative is to use a spectral discretization

based on discontinuity inclusion approach. Suppose the domain D = [a,b]

is broken into M sub-domains D1 = (x(0),x(1)),D2 = (x(1),x(2)), .....,DM =

(x(M−1),x(M)) where x(0) = a and x(M) = b. The domain D is covered by M

sub-domains asD =
⋃M
µ=1Dµ. The collocation points x(n)

j onDn are defined

by

x
(n)
k =


x(n)−x(n−1)

2 cos
(
kπ
N

)
+ x(n)+x(n−1)

2 ,0 6 k 6N, n = 1,
x(n)−x(n−1)

2 cos
(
kπ
N

)
+ x(n)+x(n−1)

2 ,1 6 k 6N, 2 6 n 6M.
(5.14)
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The approximation of u uses the formula (5.9) where the barycentric weights

{wk} are evaluated numerically. This strategy will cluster grid nodes not

only at the boundaries located at Smin and Smax but also at the singularity

which is located at the strike price for European options. Such strategy is

necessary to reduce the error caused by the non-smooth kink in the pay-

off function of most options. Note that this methodology is different from

the domain decomposition method in a sense that the continuation con-

dition is not needed here. In addition all the matrices are full matrices,

whereas in the case of the domain decomposition method the matrices are

bloc diagonal matrices.

The approximation of the different call options is also improved

from the discontinuity points when we use the grid stretching method, but

the method does not give an absolute accuracy of the solution. From 5.2.3,

the error between the numerical payoff and the Chebyshev interpolated

payoff is represented in blue. In the other hand, the function pN (S) in red

represents the error between the numerical payoff and the interpolated

payoff with the use of the discontinuity inclusion. Figure 5.2.3 shows the

superiority of this method over the use of the Chebyshev interpolation

method. The method is 104 more accurate than the original Chebyshev

method.
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(b) Bull spread call option
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(c) Butterfly call option

Figure 5.2.3: Corresponding error between the original payoff and the in-

terpolated payoff with the use of the discontinuity inclusion method with

N = 200.

5.2.4 Interpolation with the domain decomposition

From Section 2.4, we apply the domain decomposition approach on the

different call options and obtain the results shown in Figure 5.2.4. In

5.2.4, the error between the numerical payoff and the Chebyshev inter-

polated payoff is represented in blue. Meanwhile, in red we have the error

between the numerical payoff and the interpolated payoff with the use of

the domain decomposition method.
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(c) Butterfly call option

Figure 5.2.4: Corresponding error when using the domain decomposition

method on European call (µ = 3, D1 = 0,D2 = 50,D3 = 100), bull spread

call (µ = 4, D1 = 0,D2 = 40,D3 = 60,D4 = 100), and butterfly spread call

(µ = 5, D1 = 0,D2 = 30,D3 = 50,D4 = 70,D5 = 100) options with N = 200.

We compare the result with the SCM and those obtained using

the SCDDM. The results are shown in Figure 5.2.4. Clearly, in all the cases

Figure 5.2.4 shows highly accurate results are obtained with the SCDDM

while poor accuracy is recorded with SCM. It is noted that forN = 200, the

magnitude of absolute error is 10−14 for SCDDM and 10−2 for SCM. The

SCDDM allows the removal of Gibbs phenomenon and restores spectral

accuracy for discontinuous problems.

We lastly investigate numerical convergence of the interpolation

methods used in this section. We vary the number of grid points and

recorded the maximal error. All the results are shown is Figure 5.2.5. It

can be observed that SCM has very poor convergence. Other methods de-

tain a very fast convergence as compared to the SCM. The SCDDM shows

the best convergence as the number of grid points is increased.

In the next section, we use these methods to numerically solve
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Figure 5.2.5: Numerical convergence of SCM, SCDIM,SCGSM and

SCDDM

the BS PDE.

5.3 Numerical discretization and application

In the next subsection, we show the space discretization of BS PDE by

means of domain decomposition methods. Note that the domain decom-

position method is a generalisation of other methods discussed in the

above subsections. The Black-Scholes model has turned out to be very

popular, but it is based on several crucial assumptions, such as no mar-

ket friction, constraints on stock holdings, constant drift and volatility.

Because empirical data shows that the log returns do not really behave ac-

cording to a normal distribution many other models have been developed.

Nonetheless, the Black-Scholes model serves as a good starting point. The

availability of closed form solutions makes it easy to verify results gener-

ated with numerical pricing methods.
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5.3.1 Barycentric spectral method

Suppose the domain K = [0,Smax] of (5.1) is broken into M sub-domains

K1 = (S(0),S(1)),K2 = (S(1),S(2)), .....,KM = (S(M−1),S(M)) where S(0) = 0 and

S(M) = Smax. On the interval K, the solution of (5.1) will be represented

by V and on its decomposed domain K̃n = [Sn−1,Sn] by Vn. All approxi-

mated solutions of K,K̃ will be respectively represented by V N and V N
n .

Meanwhile, the collocation points on Kn are denoted by S(n)
j ,0 6 j 6N,1 6

n 6 M, with N being a known integer. Hence we denote S(n)
j as S(n)

j =
S(n)−S(n−1)

2 cos
(
jπ
N

)
+ S(n)+S(n−1)

2 ,0 6 j 6N,1 6 n 6M.

A patching method for the (BS) equation is

∂V N1
∂t

∣∣∣∣∣
S=S1

j

+ 1
2σ

2S2 ∂
2V N1
∂S2

∣∣∣∣∣
S=S1

j

+ rS ∂V
N
1

∂S

∣∣∣∣∣
S=S1

j

− rV N
1

∣∣∣
S=S1

j
= 0

∂V N2
∂t

∣∣∣∣∣
S=S2

j

+ 1
2σ

2S2 ∂
2V N2
∂S2

∣∣∣∣∣
S=S2

j

+ rS ∂V
N
2

∂S

∣∣∣∣∣
S=S2

j

− rV N
2

∣∣∣
S=S2

j
= 0

...
∂V NM
∂t

∣∣∣∣∣
S=SMj

+ 1
2σ

2S2 ∂
2V NM
∂S2

∣∣∣∣∣
S=SMj

+ rS ∂V
N
M

∂S

∣∣∣∣∣
S=SMj

− rV N
M

∣∣∣
S=SMj

= 0,

(5.15)

with j = 0 :N and the boundary conditions

V N
n−1

(
S(n−1), t

)
= V N

n

(
S(n−1), t

)
, n = 2 :M,

∂V Nn−1
∂S

(
S(n−1), t

)
= ∂V Nn

∂S

(
S(n−1), t

)
, n = 2 :M,

V N
n−1(S(0), t) = f (t),

V N
n−1(S(M), t) = g(t).

To discretize Equation (5.15) in space, we replace
∂V Ni
∂S

∣∣∣∣∣
S=S ij

and
∂2V Ni
∂S2

∣∣∣∣∣
S=S ij

by the following pseudo-spectral approximations

∂V N
i

∂S

∣∣∣∣∣∣
S=S ij

=
2

S(i) − S(i−1)

N∑
p=0

D
(m)
jp

(
V N
i (S(i)

p , t)−V N
i (S(i)

j , t)
)
, (5.16)
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and

∂2V N
i

∂S2

∣∣∣∣∣∣
S=S ij

=
( 2
S(i) − S(i−1)

)2 N∑
p=0

D
(m)
jp

(
V N
i (S(i)

p , t)−V N
i (S(i)

j , t)
)
, (5.17)

with p = 1, ...,N −1 and D(m)
jp being the entries of the differentiation matrix

of order m = 1,2.

By setting UN
ip (t) = V N

i (S(i)
p , t),UN

1N (t) = f (t),UN
M0(t) = g(t) and substituting

(5.16), (5.17) into (5.15) we get

dUN
1j (t)

dt
+W1 = 0,

dUN
2j (t)

dt
+W2 = 0,

...

dUN
Mj(t)

dt
+WM = 0, (5.18)

where

W1 =
2σ2S2(

S(1) − S(0)
)2

N∑
p=0

D2
jp

(
UN

1p(t)−UN
1j (t)

)
+

2rS(
S(1) − S(0)

)2

N∑
p=0

Djp
(
UN

1p(t)−UN
1j (t)

)
− rUN

1j (t),

W2 =
2σ2S2(

S(2) − S(1)
)2

N∑
p=0

D2
jp

(
UN

2p(t)−UN
2j (t)

)
+

2rS(
S(2) − S(1)

)2

N∑
p=0

Djp
(
UN

2p(t)−UN
2j (t)

)
− rUN

2j (t)

...

WM = 2σ2S2
(
S(M) − S(M−1)

)−2
N∑
p=0

D2
jp

(
UN
Mp(t)−UN

Mj(t)
)

+ β,
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β = 2rS
(
S(M) − S(M−1)

)−2
N∑
p=0

Djp
(
UN
Mp(t)−UN

Mj(t)
)
− rUN

Mj(t),

and

UN
10(t) =UN

2N (t),

UN
20(t) =UN

3N (t),

...

UN
M−1,0(t) =UN

MN (t), (5.19)

UN
1N (t) = f (t), UN

M0(t) = g(t).

∂V N
1

∂S

(
S

(1)
0 , t

)
=
∂V N

2

∂S

(
S

(2)
N , t

)
,

∂V N
2

∂S

(
S

(2)
0 , t

)
=
∂V N

3

∂S

(
S

(3)
N , t

)
,

...

∂V N
M−1

∂S

(
S

(M−1)
0 , t

)
=
∂V N

M

∂S

(
S

(M)
N , t

)
. (5.20)

Equations (5.19) and (5.20) can be approximated by using (5.16) and (5.17)

as

( 2
S(1) − S(0)

) N∑
p=0

D
(m)
0p

(
UN

1p(t)−UN
10(t)

)
=

( 2
S(2) − S(1)

) N∑
p=0

D
(m)
Np

(
UN

2p(t)−UN
2N (t)

)
,

( 2
S(2) − S(2)

) N∑
p=0

D
(m)
0p

(
UN

2p(t)−UN
20(t)

)
=

( 2
S(3) − S(2)

) N∑
p=0

D
(m)
Np

(
UN

3p(t)−UN
3N (t)

)
,

...

( 2
S(M−1) − S(M−2)

) N∑
p=0

D
(m)
0p

(
UN
M−1,p(t)−UN

M−1,0(t)
)

= K, (5.21)
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with

K =
( 2
S(M) − S(M−1)

) N∑
p=0

D
(m)
Np

(
UN
Mp(t)−UN

MN (t)
)
.

Therefore Equation (5.18) and (5.21) can be rewrite as a system of differ-

ential algebric equations (DAEs) of the form

Y ′(t) = F(t,Y (t)),

Q1(t,Y (t)) = 0,

Q2(t,Y (t)) = 0,

Q3(t,Y (t)) = 0,

Y (0) = Y0,

(5.22)

with

Y (t) = [UN
10(t),UN

11(t), ...,UN
1N (t), ...,UN

M0(t),UN
M1(t), ...,UN

MN (t)]T ,

Y0 = [V0(S1
0 ),V0(S1

1 ), ...,V0(S1
N ), ...,V0(SM0 ),V0(SM1 ), ...,V0(SMN )]T ,

Y ′(t) = [UN ′
10 (t),UN ′

11 (t), ...,UN ′
1N (t), ...,UN ′

M0(t),UN ′
M1(t), ...,UN ′

MN (t)]T ,

F(t,Y (t)) = [Fij(t,Y (t))]{M×(N+1)}×{M×(N+1)},

Q1(t,Y (t)) = [Q11(t,Y (t)), ...,Q1,M−1(t,Y (t))],

Q2(t,Y (t)) = [Q21(t,Y (t)), ...,Q2,M−1(t,Y (t))],

Q3(t,Y (t)) = [Q31(t,Y (t)), ...,Q3,2(t,Y (t))],

and

Fij(t,Y (t)) = −Ω+ rUN
ij (t),

Ω =
2σ2S2(

S(i) − S(i−1)
)2

N∑
p=0

D2
jp

(
UN
ip (t)−UN

ij (t)
)
+

2rS(
S(1) − S(0)

)2

N∑
p=0

Djp
(
UN
ip (t)−UN

ij (t)
)
,

Q1,i(t,Y (t)) = [UN
i0 (t)−UN

i+1,N (t)],
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Q2,i(t,Y (t)) =
N∑
p=0

(α1,−α2),

α1 = 2
(
S(i) − S(i−1)

)−2
D0p

(
UN
ip (t)−UN

i0 (t)
)
,

α2 = 2
(
S(i+1) − S(i)

)−2
DNp

(
UN
i+1,p(t)−UN

i+1,N (t)
)
,

Q3,1(t,Y (t)) =UN
0N (t)− f (t), Q3,2(t,Y (t)) =UN

M0(t)− g(t).

The above discretization (5.22) leads to the semi-discrete linear system

Y ′ = AY + b(t), b(t) = ε1 + ε2e
−rt, (5.23)

where A is either a block dense diagonal matrix or a dense matrix depend-

ing on the number of domain in consideration. The parameters ε1 and ε2

are given by the boundary conditions.

5.3.2 Exponential time differencing schemes

Let consider Equation (5.23). Integrating the system of ODE (5.23) on the

interval [0,T ] leads to the scheme

Y (T ) = eAT Y (0) + eAT
∫ T

0
e−Atb(t)dt,

= eAT Y (0) +A−1
(
eAT − I

)
ε1 − (A− rI)−1P , (5.24)

where P =
(
eAT − e−rT I

)
ε2 and I is the identity matrix. Note that com-

putation of the price of European options using (5.24) requires forming

the matrix functions f1(A) = eAT , f2(A) = A−1
(
eAT − I

)
and f3(A) = (A −

rI)−1
(
eAT − e−rT I

)
. In order to overcome the numerical difficulties encoun-

tered in computing matrix functions, we employ the Krylov projection al-

gorithm [103]. The key idea behind this method, is to approximate the
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product of a matrix function ϕ(A) (A is a N ×N matrix) and a vector v

using projection of the matrix and the vector onto the Krylov subspace

Km(A,v) = span{v,Av, . . . ,Am−1v}. The orthonormal basis {v1,v2, . . . , vm} of

Km(A,v) is constructed using the modified Arnoldi iteration [5, 103] which

can be written in matrix form as

AVm = VmHm + h̄m+1,mvm+1e
T
m, (5.25)

where h̄m+1,m is an entry of the Hessenberg matrixHm, em = (0, . . . ,0,1,0, . . . ,0)T

is the unit vector with 1 as the mth coordinate,

{v1,v2, . . . , vm,vm+1} is an orthonormal basis of Km(A,b), Vm = [v1v2 . . .vm] ∈

R
N×m, and

Hm = V T
mAVm, (5.26)

is an upper Hessenberg matrix calculated as a side product of the iteration.

Matrix P = VmV T
m is a projector into Km(A,v), thus ϕ(A)v is approximated

as a projection

ϕ(A)b ≈ VmV T
mϕ(A)VmV

T
m b. (5.27)

Recalling (5.26) and observing that v1 = v/‖v‖2, we make the final approx-

imation through

ϕ(A)v ≈ ‖v‖2Vmϕ(Hm)e1. (5.28)

The advantage of this formulation is that Hm is a m×m matrix of smaller

size (m�N ) and thus it is much cheaper to evaluate ϕ(Hm) than ϕ(A).

5.3.3 Numerical results

We apply the spectral approximation methods to value Black Scholes PDE

(5.1) using the SCM, SCGSM, SCDIM and SCDDM. We use three different
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payoff, European call (5.29) and bull spread (5.30) and butterfly spread

(5.31) options. Hence, we have the following boundary values conditions

express as, for a European call option

V (0, t) = 0, and V (Smax, t) = Smax −Ke−rt, (5.29)

for a European bull spread call option,

V (0, t) = 0, and V (Smax, t) = Smax − (K2 −K1)e−rt, K1 < K2, (5.30)

and for a European butterfly spread call option

V (0, t) = 0, and V (Smax, t) = 0, K1 < K2 < K3. (5.31)

We solve the PDE (5.1) using the parameters r = 0.05, σ = 0.2, K = 50,
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(c) Butterfly call option

Figure 5.3.1: Solutions of the analytical, numerical and domain decompo-

sition of BS with N = 100, r = 0.05,T = 0.5,σ = 0.2,Smax = 200,Smin = 0 for

all payoff options, K = 50 for a payoff of a European call, K1 = 30,K2 = 70

for a payoff of a bull spread call and K1 = 30,K2 = 50,K3 = 70 for a payoff

of a butterfly call option.

Smin = 0, Smax = 4K for the European call option (5.29), r = 0.05, σ = 0.2,

K1 = 60, K2 = 80 Smin = 0, Smax = 4K1 for the European bull spread call

option (5.30), and r = 0.05, σ = 0.2, K1 = 90, K2 = (K1 +K3)/2, K3 = 110,
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(b) Bull spread call option
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Figure 5.3.2: Absolute difference error between the numerical and SCM,

SCDIM, SCGSM, SCDDM solutions of the BS. N = 150, r = 0.05,T =

0.5,σ = 0.2,Smax = 200,Smin = 0 for all options, K = 50 for European call,

K1 = 30,K2 = 70 for a bull spread call and K1 = 30,K2 = 50,K3 = 70 for a

butterfly call option.

Smin = 0, Smax = 4K1 for the European butterfly spread call option (5.31).

In all the cases, the number of grid points is chosen to be N = 100. We

display the numerical and analytical solutions for the above mentioned

payoff in Figure 5.3.1. From Figure 5.3.1, the blue line with stars repre-

sents the payoff’s analytical solution of BS. The red line with dots repre-

sents the payoff’s domain decomposition solution and the black line, the

payoff’s numerical solution of BS. Clearly, numerical solutions are in good

agreement with analytical ones. However, we only show numerical re-

sults obtained with the domain decomposition method for clarity sake.

Although numerical solutions are in good agreement with the analytical

solutions, we would like to investigate how close these solutions are. We

plot in Figure 5.3.2, the absolute difference between numerical and ana-

lytical solutions. To avoid a huge truncation error, we use Smax = 4K for

call options and Smax = 4K1 for bull and butterfly spread options. For the

SCGSM, an additional parameter, the grid stretching parameter, was cho-
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sen such that β = 104. It is observed that the SCDDM has the smallest

error of magnitude 10−11, followed by the SCGSM with the error of mag-

nitude 10−8, the SCDIM with the error of magnitude 10−5 and finally SCM

with the error of magnitude 10−2.
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(a) European call option
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(b) Bull spread call option
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Figure 5.3.3: Numerical convergence of SCM, SCDIM,SCGSM and

SCDDM with N = 150, r = 0.05,T = 0.5,σ = 0.2,Smax = 200,Smin = 0,α =

104 for all options, K = 50 for European call, K1 = 30,K2 = 70 for a bull

spread call and K1 = 30,K2 = 50,K3 = 70 for a butterfly call option.

In the last experiment, we investigate numerical convergence on

these methods. We record the values of the maximal error while varying

the number of grid points N . The results are shown in Figure 5.3.3. In all

the cases, one can observe that SCMDD detains the best convergence com-

pared to other methods. The convergence rate is exponential. The second

best convergence is achieved by SCGSM. This convergence depends on

the choice of the grid stretching parameter β. One can use this parameter

adaptively in order to achieve exponential convergence [96]. The SCDIM

is the third best performing method. This method only improves the con-

vergence of spectral method without achieving exponential convergence.

The SCM has a very bad convergence due Gibbs phenomenon at strike

prices. In the presence of such phenomena the accuracy of high order
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methods deteriorates [83, 108].
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Chapter 6

Barycentric spectral domain

decomposition methods for

valuing a class of infinite activity

Lévy models

In this chapter, we solve the semi-discrete equations obtained after the

approximation of a financial PIDE. A barycentric spectral domain decom-

position is used to solve these equations with an exponential time inte-

grator scheme. Several numerical tests for the pricing of European and

butterfly options are given to illustrate the efficiency and accuracy of this

algorithm. We also show that the option Greeks such as the Delta and

Gamma sensitivity measures are computed with no spurious oscillation.
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6.1 Introduction and objective

As mention in the introduction of chapter 3, the constant volatility BS

model is not consistent with market prices. Hence, the development of

more models for stochastic dynamics of the risky assets. We have for ex-

ample, the stochastic volatility models [58, 63], deterministic local volatil-

ity functions [25, 38], jump-diffusion models [73, 85], Lévy models [81]

and infinite Lévy models [43, 100].

Under jump models, option problems can be modelled by means of PIDEs.

Briani et al. [17] used the fully explicit schemes, although their approach

required very restrictive conditions for stability. Cont and Volchkova [28]

used implicit schemes to treat the differential part. The use of the Crank-

Nicolson time stepping for the PDE portion and evaluation of the convo-

lution integral term explicitly were tested by Tavella and Randall [119].

However, such an asymmetric treatment of PDE and integral part intro-

duces biases in the viscosity solution. More specifically, the second order

convergence is not achieved for long dated options. d’Halluin et al. [54]

employed the Crank-Nicolson scheme with the Rannacher time smooth-

ing to the PIDE. They used a fixed point iterative procedure as the system

solver and obtained second order convergence even for long dated options.

In recent years, pure jump Lévy processes of infinite activity that

governs stock market returns has been empirically and theoretically stud-

ied. The most successful process has been the pure Lévy process based

on Brownian subordination. These models perfectly fit the market fi-

nancial data, capture the excess kurtosis and skewness arising from the

risk-neutral distribution returns. They are also analytically tractable. The

work done by [20] generalizes the VG model to the Carr, German, Madan
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and Yor (CGMY) model. The model has a jump component which follows

dynamics that can represent either finite activity or infinite activity of in-

finite variation. They also demonstrated that a diffusion component is not

needed if the jump process belongs to infinite activity or finite variation.

In this dissertation, we propose a study of a barycentric spectral domain

decomposition methods algorithm for solving partial integro-differential

equation (PIDE) models related to European and butterfly option pricing

problems under a class of infinite activity Lévy models. The method is

based on the barycentric spectral domain decomposition methods, that

allows the implementation of the boundary conditions in an efficient way.

The semi-discrete equations obtained after approximation of the spatial

derivatives, using barycentric spectral domain decomposition methods

are solved, using an exponential time integration (ETI) scheme. Further-

more, various numerical results for the pricing of European and butterfly

options are also given to illustrate the efficiency and accuracy of this al-

gorithm. We show that the option Greeks such as the Delta and Gamma

sensitivity measures are efficiently computed to high accuracy.

6.2 The jump-diffusion model

We assume an arbitrage-free market model with a single risky asset with

price process {St}t∈[0,T ] following an exponential Lévy model of the form

St = S0e
Xt , (6.1)
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on the filtered probability space (Ω,F , {Ft}t∈[0,T ],P) where the Lévy pro-

cess {Xt}t∈[0,T ] has dynamics given by

Xt =
(
µ− σ

2

2
− δ

)
t + σWt +

Nt∑
k=1

Yk . (6.2)

The jump process is represented by Jt =
∑Nt
k=1Yk with {Nt}t∈[0,T ] denoting

a Poisson process with intensity λ > 0 and {Yk}k≥1 which are independent

observations from a jump size variable Y .

Let consider V (S, t) be the option value with the underlying asset

St and T be the time to maturity. Under the equivalent risk neutral mea-

sure Q ∼ P, the asset price {St}t ∈ [0,T ] has the form (6.1), where Xt is now

given by Equation (6.2), the value for a European option with strike price

K is its discounted expected payoff

V (S,t) = e−r(T−t)EQ [Ψ (ST )|St = S] , (6.3)

where Ψ (ST ) is the payoff function. The value of a contingent claim V (S, t)

on the underlying asset S then solves the PIDE given by

Vt +LV (S, t) = 0, (S,t) ∈R+ × (0,T ], (6.4)

where the operator L is defined as LV (S,t) = σ2

2 S
2VSS + (r − q)SVS − rV

+
∫ +∞
−∞ f (y)[V (Sey , t)−V (S,t)− S(ey − 1)VS(S,t)]dy.

(6.5)

The function f (y) is the Lévy density function given in Table 6.1. The

boundary and the initial conditions make the difference between Ameri-

can and European style options as well as between put and call and other

types of options.
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For European vanilla call options, the initial and the boundary conditions

are given by 
V (S,0) = max(S −K,0),

V (0, t) = 0,

V (S,t) = Se−qt −Ke−rt, as S→∞.

(6.6)

where K is the strike price.

A butterfly spread is a neutral strategy that has a combination of a bull

spread and a bear spread. It is a limited profit, limited risk options strat-

egy. There are three strike prices (discontinuities) involved in a butter-

fly spread and it can be constructed using calls or puts. The initial and

boundary conditions of butterfly spread options is expressed as
V (S,0) = max(S −K1,0)− 2max(S −K2,0) + max(S −K3,0),

V (0, t) = 0,

V (S,t) = 0.

(6.7)

where S is the stock price K1, K2 and K3 are three distinct strike prices

such that 0 < K1 < K2 < K3, with K2 = (K1 + K3)/2. In the KoBoL model

Model Lévy density function

KoBol f (y) = C−e
−G|y|

|y|1+Y 1y<0 + C+e
−M |y|

|y|1+Y 1y>0

Meixner f (y) = Ae−ay

y sinh(by)

GH process f (y) = eβy

|y|

(∫∞
0

e−
√

2ζ+α2 |y|

π2ζ
(
J2
|λ|(δ
√

2ζ)+Y 2
|λ|(δ
√

2ζ)
)dζ + max(0,λ)e−α|y|

)
Table 6.1: Density functions for Lévy Processes

[20], singularities are observed in the kernel of integration. This model is

known as the Carr, German, Madan and Yor (CGMY) [20] when the pa-

rameters are set to be C− = C+ = C > 0, G > 0,M > 0 and Y ∈ [0,2). The
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parameter C indicates the overall level of activity. The parameters G and

M are the measures depicting the skewness of the Lévy density such that

G = M yields a symmetric distribution. When choosing G ,M this leads

to skewed distributions. The parameter Y describes the fine structure of

the stochastic process. At Y = −1, the KoBoL model leads to a special case

of Kou’s double exponential model [43]. Furthermore, for Y = 0, we ob-

tain the variance Gamma process. In a case of Y ∈ (0,1), infinite activity

models with finite variation are obtained and in a case of Y ∈ [1,2], infi-

nite activity models with infinite variation are depicted. There exist other

singular kernel of integration Lévy processes. Meanwhile, the hyperbolic

and generalized hyperbolic (GH) are used to obtain better estimation for

the stock returns [112]. Here, the functions Jν(·) and Yν(·) are the Bessel

functions of first and second kind, respectively. The Meixner process was

introduced in 1998, it is used when the environment is changing stochas-

tically over the time showing a reliable valuation for some indices such as

Nikkei 225 [82, 111].

6.3 Numerical interpolations and applications

In practice, we are often confronted with situations where only limited

amount of data is accessible and it is necessary to estimate values between

two consecutive given data points. We can construct new points between

known data points by interpolation or smoothing techniques. In finance,

as only a finite set of securities are traded in financial markets, it is very

important to construct a sensible curve or surface from discrete observable

quantities using interpolation methods.
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In this section, one has to consult Chapter 2, Section 2.3 to review the

concept of interpolation and differentiation matrix in barycentric spectral

method framework. For the domain decomposition, section 2.4 has to be

consulted. We only highlight the concept of quadrature rule in barycentric

spectral method.

6.3.1 Spectral barycentric quadrature

Let consider the Equation (2.47) in Chapter 2, Section 2.3.3. There are two

different ways to compute it:

• Firstly, one can use the direct rational quadrature. The technique

consists of applying existing quadrature rules such as GaussLegen-

dre or Clenshaw-Curtis [35, 124], which are known to perfectly ap-

proximate the integrals in (2.45).

• Secondly, we can apply the indirect rational quadrature. This may

produce the integral I =
∫ b
a
u(x)dx through the solution of an ordi-

nary differential equation, see e.g. [70].

The Clenshaw-Curtis quadrature formula has the following convergence

property.

Theorem 4 ([35, 124]). Let f an analytic function in [−1,1] and analytically

continuable with |f (z)| < M in the closed ellipse Eρ. The error in IN (f ), the

Clenshaw-Curtis quadrature of degree N to I(f ), will decay geometrically with

the bound

|I − IN | ≤
64M

15(ρ2 − 1)(ρN−1 − ρ−(N−1))
, N ≥ 3 odd. (6.8)
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In other words,

|I − IN | = O(ρ−N ). (6.9)

Proof. See [35].

The main advantage with the Clenshaw-Curtis quadrature rule is that its

weights and nodes can be computed efficiently via a fast Fourier transform

(FFT) in only (O(N lnN )) operations.

In this dissertation, we restrict ourselves to the patching methods. The

calculation of the integral part can be estimated in multi-domains as fol-

lows ∫
D
u(x)dx =

∫
⋃M
µ=1Dµ

u(ν)(x)dx =
M∑
ν=1

∫
Dν
u(ν)(x)dx

≈

M∑
ν=1

∫
Dν
p

(ν)
N (x)dx,=

M∑
ν=1

∫
Dν

∑N
j=0

ω
(ν)
j

x−xj u
(ν)
j∑N

j=0
ω

(nu)
j

x−xj

dx

=
M∑
ν=1

N∑
j=0

λ
(ν)
j u

(ν)
j . (6.10)

In the next section we discretize the PIDE (6.4) by means of spectral do-

main decomposition methods.

6.4 Numerical simulations

Let us begin this section by transforming the PIDE (6.4) into a simpler

one. Since the kernel of the integral in (6.4) presents a singularity at y = 0,

a useful technique is to split the real line, for an arbitrary small parameter

ε > 0, into two regions Ω1 = [−ε,ε] and Ω2 = R\Ω1 (the complementary
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set of Ω1 in the real line). The integral on Ω1 is replaced by a suitable

coefficient in the diffusion term of the differential part of (6.4) obtained

by Taylor expansion of V (Sey , τ) about S, see [26, 27].

This coefficient depending on ε is a convergent integral and takes the form

σ̆2(ε) =
∫ ε

−ε
f (y)(ey − 1)2dy = ε

∫ 1

−1
f (εφ)(eεφ − 1)2dφ, −1 6 ε 6 1. (6.11)

Letting τ = T − t, the resulting approximating PIDE from (6.4) is given by

∂V
∂τ

=
σ̂2

2
S2∂

2V

∂S2 + (r − q −γ(ε))S
∂V
∂S
− (r +χ(ε))V +

∫
Ω2

f (y)V (Sey , τ)dy,

(6.12)

where

σ̂2 = σ2 + σ̆2(ε), γ(ε) =
∫
Ω2

f (y)(ey − 1)dy, χ(ε) =
∫
Ω2

f (y)dy. (6.13)

The approximation of σ̆2 in (6.11) is evaluated using the Clenshaw-Curtis

quadrature and it is given by

σ̆2(ε) ≈ ε
N∑
k=1

λkf (εφk)(e
εφk − 1)2, (6.14)

where φk = cos
(
kπ
N

)
, and λk, k = 0,1,2, ....,N , are the Chebyshev-Gauss-

Lobatto (CGL) nodes and the Clenshaw-Curtis weights [46, 123], respec-

tively. The improper integrals χ(ε) and γ(ε) in (6.13) are approximated

using the shifted Laguerre-Gauss quadrature [45]. Under consideration of

the change of variables η = −y − ε for y < 0 and η = y − ε for y > 0, the

expressions χ(ε) and γ(ε) have the following forms

χ(ε) =
∫ ∞

0
(f (−η − ε) + f (η + ε))dη ≈

N∑
k=1

λ̄kF(ηk , ε), (6.15)
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and

γ(ε) =
∫ ∞

0
[f (−η − ε)(e−(η+ε) − 1) + f (η + ε)(eη+ε − 1)]dη

≈
N∑
k=1

λ̄kG(ηk , ε), (6.16)

where

F(η,ε) = eη(f (−η − ε) + f (η + ε)),

G(η,ε) = eη
(
f (−η − ε)(e−(η+ε) − 1) + f (η + ε)(eη+ε − 1)

)
.

Here ηk are the roots of the Laguerre polynomial LN (η) of degree N de-

fined by

LN (η) =
eη

N !
dN

ηN

(
ηN e−η

)
, (6.17)

and the weights λ̄k , k = 1,2, . . .N , are determined as in [45] by

λ̄k =
1

ηk
(
L′N (ηk)

)2 =
ηk

(N + 1)2 (LN+1(ηk))
2 . (6.18)

6.4.1 Discretization of the PIDE on a single domain

We transform the PIDE (6.12) into a constant coefficient PIDE using the

transformation S = Kex and u(x,τ) = V (S, t). One obtains

uτ −Lu(x,τ) = 0, (x,τ) ∈R× (0,T ], (6.19)

where

Lu(x,τ) =
1
2
σ̂2uxx +

(
r − q − 1

2
σ̂2 −γ(ε)

)
ux − (r +χ(ε))u

+
∫
Ω2

u(x+ y,τ)f (y)dy, (6.20)

118

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



We define the numerical domain by D = [yM , ym]. The discretized version

of (6.20) is given by

u̇ = Au + Ju + ζ(τ), (6.21)

where u = [u1,u2, . . . ,uN ], A = 1
2 σ̂

2D2 +
(
r − q − 1

2 σ̂
2 −γ(ε)

)
D1− (r +χ(ε))D0.

The notations D2 and D1 are matrices with entries defined in Lemma 1

and D0 is the identity matrix. J and ζ are defined in (6.25) and (6.26),

respectively.

For the sake of convenience in the numerical treatment we rewrite the

integral part of (6.19) as follows

J =
∫
Ω2

u(x+ y,τ)f (y)dy =
∫ +∞

−∞
u(x+ y,τ)f̂ (y)dy

=
∫
D
u(x,τ)f̂ (y − x)dy + k, (6.22)

where

k =
∫
R\D

u(y,τ)f̂ (y − x)dy

and

f̂ (y) =

 f (y), y ∈Ω2,

0, y ∈Ω1.
(6.23)

We use the Clenshaw-Curtis quadrature rule to compute the first integral

over the interval [ym, yM] to obtain∫ yM

ym

u(x,τ)f̂ (y − x)dy =
1
2

(yM − ym)
∫ 1

−1
f̂ (y − x)u(x,τ)dφ,

≈ 1
2

(yM − ym)
N∑
k=0

λk f̂ (xk − xj)u(xk , τ),

= Ju(τ), (6.24)

where u = [u0,u1, . . . ,uN ]T and J is a (N + 1)× (N + 1) matrix with entries(
Jjk

)
06j,k6N

=
1
2

(yM − ym)
(
λk f̂ (xk − xj)

)
06j,k6N

. (6.25)
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Let gL(x,τ) and gR(x,τ) be the left and right boundary conditions of the

PIDE (6.19). Therefore, the second integral over R \ [ym, yM] is approxi-

mated using the shifted Laguerre-Gauss quadrature [45] under consider-

ation of the change of variables η = −y + ym for y < ym and η = y + yM for

y > yM . This leads to

ζ(x,τ) =
∫ ym

−∞
gL(x,τ)f̂ (y − x)dy +

∫ ∞
yM

gR(x,τ)f̂ (y − x)dy,

= −
∫ ∞
−ym

gL(x,τ)f̂ (y − x)dy +
∫ ∞
yM

gR(x,τ)f̂ (y − x)dy,

= −
∫ ∞
−ym

gL(x,τ)f̂ (−y − x)dy +
∫ ∞
yM

gR(x,τ)f̂ (y − x)dy,

=
∫ ∞

0
gL(x,τ)f̂ (η − ym − x)dη +

∫ ∞
0
gR(x,τ)f̂ (η + yM − x)dη,

≈ gL(x,τ)
N∑
k=0

λ̄ke
ηk f̂ (ηk − ym − x) +J , (6.26)

where

J = gR(x,τ)
N∑
k=0

λ̄ke
ηk f̂ (ηk + yM − x).

6.4.2 Discretization of the PIDE on multi sub-domains

On each sub-domain Dν , the PIDE can be written as

u
(ν)
τ =A(ν)u +B(ν)u + ζ(ν)(τ), ν = 1,2, . . . ,M, (6.27)

where

A(ν)u =
1
2
σ̂2u

(ν)
xx +

(
r − q − 1

2
σ̂2 −γ(ε)

)
u

(ν)
x − (r +χ(ε))u(ν), (6.28)

B(ν)u =
∫
Dν
u(ν)(x,τ)f̂ (y − x)dy, (6.29)
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and

ζ(ν)(τ) =
∫
R\D

u(ν)(y,τ)f̂ (y − x)dy. (6.30)

Next, we discretize the PIDE (6.19) in the numerical domainD = [xmin,xmax]

by the means of the spectral domain decomposition method described in

Section 2.4 . To this end, we divide the domain D into M sub-domains

such that

D =
M⋃
µ=1

Dµ. (6.31)

The discretized version of (6.27) is given by

u̇(ν) = A(ν)u(ν) + J (ν)u(ν) + ζ(ν), ν = 1,2, . . . ,M, (6.32)

where

u(ν) = [u(ν)
1 ,u

(ν)
2 , . . . ,u

(ν)
Nν

],

A(ν)u(ν) =
1
2
σ̂2u(ν)D

(ν)
2 +

(
r − q − 1

2
σ̂2 −γ(ε)

)
D

(ν)
1 u(ν)

− (r +χ(ε))D(ν)
0 u(ν), (6.33)

J (ν)u(ν) =
[(
Jij

)
1≤i,j≤Nν

]
u(ν), J

(ν)
ij = λ(ν)

j f̂ (ν)(xi − xj), (6.34)

and I (ν)u = ζ(τ) which incorporates the boundary conditions. Letting Lν =

Aν +Bν + I , Equation (6.32) becomes

u̇(ν) = L(ν)u(ν) + ζ(ν)(τ). (6.35)

The solution on the whole domain D is given by

u̇ = Lu + ζ(τ), (6.36)
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where

L =


L(1)

. . .

L(M)

 , u =


u(1)

...

u(M)

 , u(ν) =


u(ν)

1
...

u(ν)
Nν

 , ν = 1,2, . . .M.

(6.37)

Note that when two sub-domainsDν andDν+1, touch each other, we apply

the continuation conditions of the form
u(ν)(x)

∣∣∣
x=x(ν)

Nν

= u(ν+1)(x)
∣∣∣
x=x(ν+1)

1

∂u(ν)

∂x (x)
∣∣∣∣
x=x(ν)

Nν

= ∂u(ν+1)

∂x (x)
∣∣∣∣
x=x(ν+1)

1

. (6.38)

These last equations are reduced to ODEs when the boundary conditions

of a call or put option are imposed in each sub-domains. The obtain ODEs

are solved by using ETD scheme.

6.4.3 Exponential time differencing schemes

We consider to solve the system of ODEs (6.36)

u′ = Lu + b(t), u0 = u(0), (6.39)

where L is either a block dense diagonal matrix or a dense matrix depend-

ing on the number of domain in consideration, using exponential time

differencing methods.

Exponential time differencing (ETD) schemes are known as an alternative

to implicit methods for solving stiff systems of ODEs [67, 104, 110]. These

methods rely on the a fast and stable computation of ϕ-functions

ϕ0(z) = ez, ϕj(z) =
1

(j − 1)!

∫ 1

0
e(1−θ)zθj−1dθ, j ≥ 0, (6.40)
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i.e., functions of the form (ez−1)/z. The computation of these functions de-

pends significantly on the structure and the range of eigenvalues of the lin-

ear operator and the dimensionality of the semi-discretized PDE. Unfortu-

nately, for spectral methods the linear part have eigenvalues approaching

zero, which leads to complications in the computation of the coefficients.

Saad [104], and Hochbruck and Lubich [61] introduced Krylov methods

to compute ϕ-functions. Kassam and Trefethen [67] used Cauchy integral

representation on a circle for a stable computation of ϕ-functions. Other

evaluations of exponential and related ϕ-matrix functions follow the idea

of Schmelzer and Trefethen [110]. This method is based on computing op-

timal rational approximations to the matrix functions on the negative real

axis using the Carathéodory-Fejér procedure [125], closely.

The system of ODE (6.39) can be integrated explicitly on the in-

terval [0 T ] to give

Y (T ) = eLT Y (0) + eLT
∫ T

0
e−Ltb(t)dt. (6.41)

The following lemma provides the background for the times stepping pro-

cedure for the evaluation of (6.41).

Lemma 2. ([89]) The solution of the non-autonomous linear initial value

problem

u′ = Lu +
p−1∑
j=0

τ j

j!
bj+1, uτ0

= u0, (6.42)

has the solution

u(τ0 + h) = ϕ(hL)u0 +
p−1∑
j=0

j∑
`=0

τ
j−`
0

(j − `)!
h`+1ϕ`+1(hL)bj+1. (6.43)
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The proof of the above lemma can be found in Niesen and Wright [89].

The computation of the matrix functions ϕ is obtained by means of the

Krylov projection algorithm [89].

6.5 Numerical results

In this section, we numerically solve the PIDE discretized in Section 5.4

. Two options are used to compare the accuracy of the KoBoL, Meixner

and GH models on the financial PIDE. We refer as Example 1, the case of

European call options and as Example 2, the case of butterfly call options.

Example 1. We consider a European call option with K = 50,T = 0.5, r =

0.05,q = 0,σ = 0.2, ε = 0.1,xmin = −3 and xmax = 1. The parametersK,T ,r,q,σ

respectively represent the strike price, the time of maturation, the inter-

est rate, the dividend and the volatility of the option. The parameters for

Lévy models used in this example are given in Table 6.2. Next, we dis-

cretize the PIDE (6.19) in the numerical domain D = [xmin,xmax] by the

means of the spectral domain decomposition method described in Section

2.4, 5.41 and 5.4.2 such that

D =D1 ∪D2 ∪D3 ∪D4, (6.44)

where D1 = [xmin,−ε], D2 = [−ε,0], D3 = [0, ε] and D4 = [ε,xmax]. Note that

the domain D is divided into four sub-domains. In Figure 6.5.1, we show

the representation of the spectral differentiation matrices of the spectral

method.

Figure 6.5.1(a) represents the case of naive applications of the

spectral method in one domain, Figure 6.5.1(b) depicts the matrix rep-
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Model Parameters

CGMY C− = 0.3, C+ = 0.1 G = 15, M = 25 and Y = 20.

Meixner A = 15, a = −1.5 and b = 50.

GH α = 4, β = −3.2, δ = 1.4775 and λ = −3

Table 6.2: The parameters for Lévy models used in both examples.
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(a) 1 domain
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(c) 6 sub-domains

Figure 6.5.1: Spectral domain decomposition method matrix structures.

resentation in the case of European call options with four sub-domains,

while Figure 6.5.1(c) illustrates the case of butterfly spread options with

six sub-domains. Note that the domain decomposition reduces the num-

ber of unknowns and the computational time in solving the linear system

(6.39). Figure 6.5.2 represents numerical solutions of European call op-

tions and their Greeks (∆ = ∂V
∂S and Γ = ∂2V

∂S2 ) under KoBoL, Meixner and

GH Lévy models. The Greeks measure the sensitivity of the option value

with respect to the variations in the asset price and the parameters associ-
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(a) European call
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Figure 6.5.2: Numerical valuation of European call options for the KoBoL,

Meixner and GH model with their Greeks for N = 25,K = 50.

ated with the model [119]. In practice, accurate approximations to Greeks

are needed for hedging purposes.

We report the accuracy of our numerical scheme by means of ab-

solute error AE = |UBenchmark −UNumerical | where UBenchmark and UNumerical

represents the benchmark solution computed with N = 150 (the number

of grid points in each sub-domain) and the numerical solution, respec-

tively. Table 6.3 shows the benchmark solution values at S = {40,50,60}

for different Lévy models. We vary the number of grid points N and com-

pute the absolute errors (AE) for each Lévy model. Table 6.4 represents

all the computed AE values for each Lévy model with different values of

N and S.

We observe a very rapid decrease of the AE as the number of grid

pointsN increases. Note that the approximations of order 10−4, 10−5, 10−7

and 10−10 in Table 6.4 are in general difficult to attain with standard finite

difference, finite element and finite volume methods.

Example 2. In this subsection, we investigate the performance of our

proposed method for valuing European butterfly options under Lévy mod-
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Model S

40 50 60

KoBoL 0.2210443864 3.3785900783 11.3681462140

Meixner 1.3420365535 5.4934725848 12.7780678851

GH processes 0.3237597911 3.8485639686 11.9164490861

Table 6.3: The benchmark European call option values under Lévy pro-

cesses with different values of S and N = 150.

els at the strike prices K1 = 40, K2 = 50 and K3 = 60 using the parameters

presented in Table 6.2 and in Example 1. In this particular case, we need

to divide the domain at five different points, three different strike prices

(K1, K2 and K3), and at two singularities (−ε and ε) present in the kernel

of the integral (6.23). Figure 6.5.3 represents numerical solutions of Euro-

pean butterfly call options and their Greeks (∆ = ∂V
∂S and Γ = ∂2V

∂S2 ) under

KoBoL, Meixner and GH Lévy models. Table 6.5 shows the benchmark

0 20 40 60 80 100 120 140
−2

0

2

4

6

8

10

S

V

 

 

Payoff
KoBol
Meixner
GH

(a) European butterfly call
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(b) Delta
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Figure 6.5.3: Numerical valuation of European butterfly call options for

the KoBoL, Meixner and GH model with N = 16,K1 = 40,K2 = 50,K3 = 60.

prices of butterfly call options. Table 6.6 depicts the AE between bench-
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S 40 50 60

N AE AE AE

10 1.15e−4 1.28e−4 1.35e−4

KoBoL 15 1.23e−5 1.73e−5 1.45e−5

20 2.75e−7 2.13e−7 2.34e−7

25 3.33e−10 3.15e−10 3.24e−10

10 2.12e−4 2.45e−4 2.35e−4

Meixner 15 2.78e−5 2.65e−5 2.67e−5

20 3.40e−7 3.23e−7 3.14e−7

25 4.77e−10 4.65e−10 4.33e−10

10 3.33e−4 3.29e−4 3.17e−4

GH processes 15 4.55e−5 4.370e−5 4.14e−5

20 5.14e−7 5.21e−7 5.14e−7

25 7.11e−10 7.25e−10 7.33e−10

Table 6.4: Absolute errors (AE) of the benchmark and the European call

option apply to the KoBoL, Meixner and GH processes models with differ-

ent values of N and S.

mark prices and numerical solutions of each model with different values

of N and S. We observe a very rapid convergence in the case of Euro-

pean butterfly spread option which has five regions of singularity. Our

approach allows a high resolution of grids around the strike prices K1, K2

and K3, and at two singularities −ε and ε present in the kernel of the in-

tegral (6.23). Once again, we obtain approximations of order 10−4, 10−5,

10−7 and 10−10 in Table 6.6. They are in general difficult to attain with

standard finite difference, finite element and finite volume methods.
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Model S

40 50 60

KoBoL 2.2845953002 4.6814621409 2.1592689295

Meixner 2.2689295039 3.7101827676 2.3159268929

GH processes 2.3942558746 4.2898172323 1.7989556135

Table 6.5: The benchmark values of the European butterfly call option

values under Lévy processes with different values of S and N = 100.
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S 40 50 60

N AE AE AE

07 1.88e−4 1.76e−4 1.76e−4

KoBoL 10 1.45e−5 1.81e−5 1.71e−5

13 2.91e−7 2.33e−7 2.25e−7

16 3.72e−10 3.34e−10 3.81e−10

07 2.45e−4 3.32e−4 3.22e−4

Meixner 10 2.72e−5 2.75e−5 2.46e−5

13 3.54e−7 3.28e−7 3.69e−7

16 5.68e−10 5.55e−10 5.88e−10

07 3.12e−4 3.02e−4 3.45e−4

GH processes 10 5.51e−5 6.1e−5 5.92e−5

15 7.11e−7 7.25e−7 7.33e−7

20 8.25e−10 9.12e−10 9.23e−10

Table 6.6: Absolute errors (AE) between the benchmark and European

butterfly call options under KoBoL, Meixner and GH processes models

with different values of N and S.
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Chapter 7

Conclusion

The verification of the numerical methods applied in this dissertation was

achieved by using numerical experiments and comparisons. A number

of techniques to remove Gibbs phenomenon encountered in interpolating

non-smooth functions with spectral methods were proposed. Numerical

tests performed on different payoffs options has shown that the spectral

workarounds provide an efficient way to remove Gibbs phenomenon. In

the case of SCDDM, the exponential convergence was achieved in pric-

ing financial options. Hence, when representing a discontinuous function

with polynomials at the Chebyshev points, a domain decomposition in el-

ements, placing the points of discontinuity at the edge of elements, is the

method with the smallest truncation error. Likewise, when solving the

BS PDE using the domain decomposition and a Krylov projection, the ex-

ponential convergence of the approximate solution to the exact solution

is only retained if the discontinuities in the initial condition are placed

at the edge of elements. Furthermore, a spectral domain decomposition
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method for pricing call options for a class of infinite activity Lévy models,

including KoBoL, Meixner and GH models was presented. The method

is coupled with the exponential time integrator (6.41) to approximate a

system of ordinary differential equations (6.39). The method produce ac-

curate results in both examples and the computation of the Greeks was

free of spurious oscillations. All approximations used in this dissertation

alleviate the problem encountered in getting accurate solutions of finan-

cial PDEs and PIDEs.

For future research one can reference our approach to solve multi-asset

Lévy models problem.
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Chapter 8

Appendix

In this chapter, we provides the main Matlab codes used to represent the

simulations and the application of the spectral methods and Lévy models

on pricing option.

8.1 The first five Chebyshev polynomials

1 %The f i r s t f i v e Chebyshev polynomials

2 x = −1:1 ;

3 T 0 = 1 ;

4 T 1 = x ;

5 T 2 = 2*x ˆ2 −1;

6 T 3 = 4*xˆ3−3*x ;

7 T 4 = 8*xˆ4−8*x ˆ2+1;

8 plot ( x , T 0 , x , T 1 , x , T 2 , x , T 3 , x , T 4 )
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8.2 Brownian motion simple path

1 %funct ion Brownian Motion (mu, sigma )

2 mu = 0 . 2 0 ;

3 sigma = 0 . 1 5 ;

4 T = 1 ;

5 N = 5000;

6 h = T/N; t = ( 0 : h : T) ;

7 X( 1 ) = 0 ;

8 for i =1:N

9 X( i +1) = X( i ) + mu*h + sigma * s q r t ( h ) * randn ;

10 end

11 plot ( t , X) ;

8.3 Calibration of call option and the CGMY model

prices

1 %funct ion CGMYcalibration

2 %c l e a r ;

3 %format compact ;

4 %D e f i n i t i o n of the globa l v a r i a b l e

5 global ma s t r i k e t S 0 s i z e S s i z e T l s t r i k e

pmarchenorm r q a N . . .

6 eta b lambda alpha0 u x T B pma sma tma maturg s t r i k e g

A

7 %matrix of the p r i c e s of european c a l l opt ions
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8 ma = [ 147.80 0 0 172.4 0 199.5 0 ; 99.45 0 111.8 130.2

0 0 0 ;

9 75.9 0 90.3 0 0 0 170.0 ; 53.5 0 69.9 91.0 0 124.3

152.8 ; 3 3 . 0 . . .

10 42.6 50.6 73.1 91.1 107.3 136.8 . . .

11 ; 1 5 . 8 26.2 34.3 57.05 74.8 91.3 1 2 1 . 2 ; 11.1 0 28.5 0 0

0 0 ;

12 5.4 13.3 20.7 42 59.9 76.3 1 0 6 . 1 ; . . .

13 1.0 5.3 11.05 29.4 46.6 62.5 9 2 . 4 ; 0.25 1.6 4.65 19.3

34.9 0 7 9 . 3 . . .

14 ; 0 .15 0.575 1.675 11.6 25.0 39.0 6 7 . 2 ;

15 0.1 0.25 0.65 6.4 17.1 29.5 5 6 . 1 ; 0 0 0.35 3.275 11.0

21.7 4 6 . 1 ; . . .

16 0 0 0.3 0.725 3.8 10.25 29.5 ; 0 0 0 0.275 1 4.1 1 7 . 4 ;

. . .

17 0 0 0 0 0 0.85 9 . 3 5 ; 0 0 0 0 0 0.55 4 . 5 ; 0 0 0 0 0 0 2 ] ;

18 %S t r i k e s

19 s t r i k e= [ 1100 1150 1175 1200 1225 1250 1260 1275 1300

1325 1350 . . .

20 1375 1400 1450 1500 1550 1600 1650] ;

21 %Maturity of the considered options

22 T = [0.023904 0.10757 0.19522 0.4502 0.6932 0.9442

1 . 4 5 8 1 7 ] ;

23 % Market pr i ce of the r i s k y underlying a time 0

24 S 0= 1243.73;

25 % parameters of the model

26 %r i s k f r e e r a t e
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27 r =0.05;

28 %dividends

29 %q=0.0165;

30 %prel iminary c a l c u l u s ( normed by S 0 )

31 s i z e S=length ( s t r i k e ) ;

32 s i z e T=length (T) ;

33 %log− s t r i k e normalize

34 l s t r i k e = log ( s t r i k e / S 0 ) ;

35 %normalized matrix of p r i c e s

36 pmarchenorm=ma’ / S 0 ;

37 %i n t e g r a t i o n grid − log s t r i k e grid

38 %sommecarre = [ ] ;

39 a = 600*2; % i n t e g r a t i o n between 0

40 %and a for the inverse Fourier transform

41 N = 4096*2; % number of s t r i k e pour for FFT

42 A=zeros ( s ize T ,N) ; B=zeros ( s ize T , s i z e S ) ;

43 eta = a/N; % i n t e g r a t i o n grid

44 b = pi / eta ; % l i m i t s of the log− s t r i k e (−b ,+b )

45 lambda = 2*pi /a ; % step of the log s t r i k e

46 % Carr and Madan parmater ( to avoid i n t e g r a t i o n

problem in 0)

47 alpha0 = 0 . 7 5 ;

48 %alpha0 =1.25;

49 % i n t e g r a t i o n grid

50 u = ( 0 :N−1) * eta ;

51 % log s t r i k e grid

52 x = −b + ( 0 :N−1) * lambda ;
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53 %i n i t i a l i z a t i o n of the C,G,M, Y parameters

54 v0 =[0.026 0.0765 7.55 1 . 3 ] ;

55 %Act ivate the fol lowing l i n e s may improve p r e c i s i o n

for the minima search

56 %options=optimset ( L a r g e S c a l e , o n ,

d i s p l a y , i t e r , T o l F u n , 1 e−8 ,

T o l X , 1 e−8) ;

57 %search for the minima . The two v e c t o r s represen ts the

range of the search

58 sigma m=fmincon ( @sommecarre , v0 , [ ] , [ ] , [ ] , [ ] , [ 0 0 0

0 ] , [ 1 5 15 15 1 5 ] ) ;

59 %root mean square e r r o r

60 sc=sommecarre ( sigma m ) ; Az=zeros ( s ize T , s i z e S ) ;

61 nboptions=sum(sum( not (Az==pmarchenorm ) ) ) ;

62 roomsq=S 0 * s q r t ( sc / nboptions ) ;

63 maturg = [ ] ; s t r i k e g = [ ] ; marcheg = [ ] ; c a l c u l g = [ ] ;

64 for compteur8 =1: s i z e S

65 for compteur7 =1: s i z e T

66 i f ma( compteur8 , compteur7 ) ˜=0

67 s t r i k e g =[ s t r i k e g , s t r i k e ( compteur8 ) ] ;

68 marcheg=[ marcheg , ma( compteur8 , compteur7 ) ] ;

69 c a l c u l g =[ c a l c u l g , S 0 *B( compteur7 , compteur8 ) ] ;

70 maturg=[maturg , T( compteur7 ) ] ;

71 end ;

72 end ;

73 end ;

74 plot ( s t r i k e g , marcheg , ’ o ’ , s t r i k e g , ca lculg , ’+ ’ ) ;
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75 x l a b e l ( ’ S t r i k e ’ , ’ FontSize ’ ,12) ;

76 y l a b e l ( ’ Pr i ce ( $ ) ’ , ’ FontSize ’ ,12) ;

77 bbb = [ ] ; s i zegg=s i z e ( s t r i k e g ) ;

78 %for compteur9 =1: s izegg ( 2 )

79 % pma=marcheg ( compteur9 ) ; tma=maturg ( compteur9 ) ; sma=

s t r i k e g ( compteur9 ) ;

80 % aaa=fzero (@bsm, 0 . 2 ) ;

81 %bbb=[bbb aaa ] ;

82 %end ;

83 %model implied v o l a t i l i t y sur face ;

84 ccc = [ ] ;

85 for compteur9 =1: s izegg ( 2 )

86 pma=c a l c u l g ( compteur9 ) ; tma=maturg ( compteur9 ) ; sma=

s t r i k e g ( compteur9 ) ;

87 aaa=fzero (@bsm, 0 . 2 ) ;

88 ccc =[ ccc aaa ] ;

89 end ;

8.4 Major codes used in Chapter 4

1 %S p e c t r a l Methods and workarounds

2 %clear , home , c l o s e a l l

3 %kind = ’ european cal l ’ ;

4 %

5 kind= ’ b u l l s p r e a d c a l l ’ ;

6 %kind = ’ b u t t e r f l y s p r e a d c a l l ’ ;
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7 switch kind

8 case ’ european cal l ’

9 % N =100;E=50; a =0;b=100;

10 % h=@( x ) 0* ( x<=E ) + 1 . * ( E<x ) ;% d i g i t a l options

11 % xel = [ a , E , b ] ; % any ordered vector of length M+1

w i l l give the same r e s u l t

12 % xnh = 200; % i n t e r p o l a t i o n vector , determines

number of C−rows

13

14 N =200;xE=0; a =0;b=100;E=50;

15 h=@( x ) max( x−E , 0 ) ;% d i g i t a l options

16 xe l = [ a , E , b ] ; % any ordered vector of length M+1

w i l l give the same r e s u l t

17 xnh = 298; % i n t e r p o l a t i o n vector , determines number

of C−rows

18

19 % choose between Chebyshev ( 0 ) and Legendre ( 1 ) points

20 x f l a g = 0 ;

21 % how to compute d e r i v a t i v e s at i n t e r n a l element

boundaries ( mortars ) .

22 % This i s usual ly i r r e l e v a n t − mortar BCs take

precedence .

23 % DFLAG=0 mimics the e f f e c t of mortar BCs .

24 dflag = 1 ;

25 mflag = 1 ;

26
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27 [ x , xp , C,D, D2,m,MM] = pcheb (N, xel , xnh , xf lag , dflag , mflag

) ;

28 %[ x , xx , C, ˜ , D2,m,M] = pcheb (N, xel , nh ) ;

29 %A=C ’ ;

30 %A(m, : ) = 0 ; A = A + MM;

31 f = h ( x ) ;

32 fp = h ( xp ) ;

33 ud=C* f ;

34 % ud = interp1 ( x , f , xp , ’ spl ine ’ ) ;

35 %up = barychebeval (w, x , f , xp ) ;

36 %uc= barychebeval (w, y , f , xp ) ;

37 f i g u r e ( 1 )

38 %up = fi l terChebyshev ( ak , xp , f i l t e r C h o i c e , f i l t e r O r d e r ) ;

39 plot ( xp , fp , ’ r ’ , xp , ud , ’ g ’ )

40 x l a b e l ’ S ’ , y l a b e l ’ f ( S ) ’ ;

41 f i g u r e ( 2 ) ;

42 semilogy ( xp , abs ( fp − ud ) , ’ r ’ ) ; hold on

43 x l a b e l ’ S ’ , y l a b e l ’ log | e r r o r | ’

44 case ’ b u l l s p r e a d c a l l ’

45 N =200; a =0;b=100;Q=20;E1=40;E2=60;

46 h=@( x ) max( x−E1 , 0 ) − max( x−E2 , 0 ) ;% Suppershare Option

47 xe l = [ a , E1 , E2 , b ] ; % any ordered vector of length M+1

w i l l give the same r e s u l t

48 xnh = 298; % i n t e r p o l a t i o n vector , determines number

of C−rows

49 % choose between Chebyshev ( 0 ) and Legendre ( 1 ) points

50 x f l a g = 0 ;
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51 % how to compute d e r i v a t i v e s at i n t e r n a l element

boundaries ( mortars ) .

52 % This i s usual ly i r r e l e v a n t − mortar BCs take

precedence .

53 % DFLAG=0 mimics the e f f e c t of mortar BCs .

54 dflag = 1 ;

55 mflag = 0 ;

56

57 [ x , xp , C,D, D2,m,MM] = pcheb (N, xel , xnh , xf lag , dflag , mflag

) ;

58 f = h ( x ) ;

59 fp = h ( xp ) ;

60 ud=C* f ;

61 f i g u r e ( 1 )

62 %up = fi l terChebyshev ( ak , xp , f i l t e r C h o i c e , f i l t e r O r d e r ) ;

63 plot ( xp , fp , ’ r ’ , xp , ud , ’ b ’ )

64 x l a b e l ’ S ’ , y l a b e l ’ f ( S ) ’ ;

65 f i g u r e ( 2 ) ;

66 semilogy ( xp , abs ( fp − ud ) , ’ r ’ ) ; hold on

67 x l a b e l ’ S ’ , y l a b e l ’ log | e r r o r | ’

68 case ’ b u t t e r f l y s p r e a d c a l l ’

69 N =200;E1=30;E3=70; a =0;b=100;E2=(E1+E3 ) / 2 ;

70 %h= @( x ) max( x−xE1 , 0 ) −2*max( x−xE2 , 0 ) + max( x−xE3 , 0 ) ;%

b u t t e r f l y spread options

71 h= @( x ) max( x−E1 , 0 ) −2*max( x−E2 , 0 ) + max( x−E3 , 0 ) ;%

b u t t e r f l y spread options
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72 xe l = [ a , E1 , E2 , E3 , b ] ; % any ordered vector of length

M+1 w i l l give the same r e s u l t

73 xnh = 298; % i n t e r p o l a t i o n vector , determines number

of C−rows

74 % choose between Chebyshev ( 0 ) and Legendre ( 1 ) points

75 x f l a g = 0 ;

76 % how to compute d e r i v a t i v e s at i n t e r n a l element

boundaries ( mortars ) .

77 % This i s usual ly i r r e l e v a n t − mortar BCs take

precedence .

78 % DFLAG=0 mimics the e f f e c t of mortar BCs .

79 dflag = 1 ;

80 mflag = 0 ;

81

82 [ x , xp , C,D, D2,m,MM] = pcheb (N, xel , xnh , xf lag , dflag , mflag

) ;

83 f = h ( x ) ;

84 fp = h ( xp ) ;

85 ud=C* f ;

86 f i g u r e ( 1 )

87 %up = fi l terChebyshev ( ak , xp , f i l t e r C h o i c e , f i l t e r O r d e r ) ;

88 plot ( xp , fp , ’ r ’ , xp , ud , ’ b ’ )

89 x l a b e l ’ S ’ , y l a b e l ’ f ( S ) ’ ;

90 f i g u r e ( 2 ) ;

91 semilogy ( xp , abs ( fp − ud ) , ’ r ’ ) ; hold on

92 x l a b e l ’ S ’ , y l a b e l ’ log | e r r o r | ’

93 end
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94 c l e a r a l l

95 %for T=[0.5 1 2]

96 % NN1= [ ] ;NN= [ ] ;NN2= [ ] ;MM= [ ] ;

97 % for n = 5 : 1 : 5 0 ;

98 % NN=[NN N] ;

99 %MM=[MM M] ;

100 n=20;

101 K1=90;K3=110;K2=(K1+K3) / 2 ; r = 0 . 0 5 ; T = 0 . 5 ;

102 sigma = 0 . 2 ; d e l t a = 0 . 0 ; Smax = 2*K1 ; Smin =0;

103 ws = ( −1) . ˆ ( 0 : n−1) ’ . * [ 0 . 5 ; ones ( n−2 ,1) ; 0 . 5 ] ;

104 xs = −cos ( ( 0 : n−1) ’* pi / ( n−1) ) ;

105 %dom=[0 K1/2 K1 K2 3*K2/2 Smax ] ;

106 dom=[0 K1 K2 K3 Smax ] ;

107 %dom=[0 K 1.5*K 2*K 2.5*K 3*K ] ;

108 m=length (dom) ;

109 A=s p a l l o c ( n * (m−1) ,n * (m−1) ,100*n * (m−1) ) ; xx = [ ] ;

110 M=eye ( n * (m−1) ,n * (m−1) ) ;

111 for k=1:m−1

112 pdom=[dom( k ) ,dom( k+1) ] ; l =(pdom( 2 )−pdom( 1 ) ) / 2 ;med=(pdom

( 2 ) +pdom( 1 ) ) / 2 ;

113 x=l * xs+med ; xx =[ xx ; x ] ; I = eye ( length ( x ) ) ;

114 [D1 ( : , : , k ) ,D2 ( : , : , k ) ] = barychebdif f ( ws , x ) ;

115 AA=1/2*sigma ˆ2* diag ( x . ˆ 2 ) *D2 ( : , : , k ) +( r−d e l t a ) * diag ( x ) *

D1 ( : , : , k )−r * I ;

116 E=zeros (m−1) ; E ( k , k ) =1;

117 BB=kron (E ,AA) ;

118 A=A+BB ;
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119 %EE=zeros (m−1 ,1) ; EE( k ) =1;b=b+kron (EE , bb ) ;

120 end

121 for k=1:m−2

122 A( k*n , ( k−1) *n+1:k*n ) =[ zeros ( 1 , n−1) 1 ] ;

123 A( k*n , k*n +1: ( k+1) *n ) =[−1 zeros ( 1 , n−1) ] ;

124 %A( k*n , ( k−1) *n+1:k*n ) =1/2*A( k*n , ( k−1) *n+1:k*n ) ;

125 %A( k*n , k*n +1: ( k+1) *n ) =3/2*A( k*n+1 ,k*n +1: ( k+1) *n ) ;

126 A( k*n+1 ,(k−1) *n+1:k*n )=D1( end , : , k ) ;

127 A( k*n+1 ,k*n +1: ( k+1) *n )=−D1( 1 , : , k+1) ;

128 M( k*n , ( k−1) *n+1:k*n ) =[ zeros ( 1 , n−1) 0 ] ;

129 M( k*n , k*n +1: ( k+1) *n ) =[ zeros ( 1 , n−1) 0 ] ;

130 M( k*n+1 ,(k−1) *n+1:k*n ) =[ zeros ( 1 , n−1) 0 ] ;

131 M( k*n+1 ,k*n +1: ( k+1) *n ) =[ zeros ( 1 , n−1) 0 ] ;

132 end

133 i =2: length ( xx ) −1; I I = eye ( length ( xx ) ) ;

134 N=length ( xx ) ;%NN=[NN N] ;

135 %AA( 1 , : ) =[1 zeros ( 1 , n * (m−1) −1) ] ; A( end , : ) =[ zeros ( 1 , n * (m

−1) −1) −1] ;

136 AA=[ I I ( 1 , : ) ;A( i , : ) ;− I I ( end , : ) ] ;

137 M( 1 , 1 ) =0; M( end , end ) =0;

138 y0=max( xx−K1 , 0 ) − 2*max( xx−K2 , 0 ) + max( xx−K3 , 0 ) ;%

b u t t e r f l y spread options

139 mm=10ˆ3;h=T/mm; t =0:h : T ;

140 b=@( t ) 0* I I ( : , end ) ;

141 [ y , yy ]= i v p s o l v e r a l e x ( t , y0 ,M,AA, b ) ;

142 %[ y , yy]= i v p s o l v e r c n ( t , y0 ,M,AA, b ) ;

143 Y=b l a c k s c h o l e s c a l l ( xx , K1 , T , r , delta , sigma ) − . . .
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144 2* b l a c k s c h o l e s c a l l ( xx , K2 , T , r , delta , sigma ) + . . .

145 b l a c k s c h o l e s c a l l ( xx , K3 , T , r , delta , sigma ) ;%a n a l y t i c

s o l u t i o n of Euopean c a l l

146 %nL2=norm (Y−y ) ;

147 %nMax=max( abs (Y−y ) ) ;

148 %NN1=[NN1 nL2 ] ;

149 %NN2=[NN2 nMax ] ;

150 %−−−−−−−−−−−−−−−−−−−−−−−plot f igures

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

151 f i g u r e ( 1 ) ; p lo t ( xx , y0 , xx , y , ’ r .− ’ , xx , Y) ;

152 %f i g u r e ( 2 ) ; semilogy ( xx , abs (Y−y ) , ’ b . − ’ ) ; hold on

153 % c l e a r D1 D2

154 % end

155 % f i g u r e ( 6 ) ; semilogy (NN,NN2, ’ r . − ’ ) ; hold on

8.5 Major codes used in Chapter 5

1 c l e a r a l l

2 time=cputime ; t i c ;

3 NN1= [ ] ;NN= [ ] ;NN2= [ ] ;MM= [ ] ; e laps = [ ] ;

4 %kind = ’KoBol ’ ;

5 %kind = ’Meixner ’ ;

6 kind= ’GH’ ;

7 Cplus =0 .1 ; Cminus =0 .3 ;G=25;Mk=15;Y=20;% KoBol

parameters

8 Am=4; a =−2.5;b=20;% Meixner parameters
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9 alpha =4; beta =−3.2; d e l t a =0.4775; lambda=−3; % GH process

parameters

10 nl =10;% degree of Laguerre polynomial

11 ncc =50;% number of i n t e g r a t i o n points in Clenshaw−

Curt is quadrature

12 n=25; % number of gr id points in each subdomain

13 sigma =0.2 ; q =0.00; r =0.05;K1=40;K3=60;K2=(K1+K3) / 2 ;T

=0.5 ; %PIDE parameters

14 xmin=−3;xmax=1; eps i lon =0.1 ;% d i s c r e t i s a t i o n domain

15 gammaLL=gammaL( kind , epsi lon , Cplus , Cminus ,G,Mk, Y ,Am, a , b

, alpha , beta , delta , lambda , nl ) ;

16 xiL=xi ( kind , epsi lon , Cplus , Cminus ,G,Mk, Y ,Am, a , b , alpha ,

beta , delta , lambda , nl ) ;

17 sigma h=sigma hat ( kind , epsi lon , Cplus , Cminus ,G,Mk, Y ,Am,

a , b , alpha , beta , delta , lambda , nl , ncc ) ;

18 sigma hatL=sigma ˆ2+ sigma h ;

19 ws = ( −1) . ˆ ( 0 : n−1) ’ . * [ 0 . 5 ; ones ( n−2 ,1) ; 0 . 5 ] ;

20 xs = −cos ( ( 0 : n−1) ’* pi / ( n−1) ) ;

21 %=====subdomains======================

22 d1=min ( log (K1/K2) ,− eps i lon ) ; d2=max( log (K1/K2) ,− eps i lon

) ;

23 d3=min ( log (K3/K2) , eps i lon ) ; d4=max( log (K3/K2) , eps i lon ) ;

24 dom=[xmin d1 d2 0 d3 d4 xmax ] ;

25 %dom=[xmin log (K1/K2) 0 log (K3/K2) xmax ] ;

26 m=length (dom) ;

27 %========Matrices==========

146

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



28 A=s p a l l o c ( n * (m−1) ,n * (m−1) ,100*n * (m−1) ) ; J J =s p a l l o c ( n * (m

−1) ,n * (m−1) ,100*n * (m−1) ) ; xx = [ ] ;ww= [ ] ;

29 M=eye ( n * (m−1) ,n * (m−1) ) ;

30 for k=1:m−1

31 pdom=[dom( k ) ,dom( k+1) ] ; l =(pdom( 2 )−pdom( 1 ) ) / 2 ;med=(pdom

( 2 ) +pdom( 1 ) ) / 2 ;

32 x=l * xs+med ; xx =[ xx ; x ] ; I = eye ( length ( x ) ) ;ww=[ww; ws ] ;

33 [D1 ( : , : , k ) ,D2 ( : , : , k ) ] = barychebdif f ( ws , x ) ;

34 J ( : , : , k )=i n t e g r a l m a t r i x I F ( kind , epsi lon , xx ( 1 ) , xx ( end )

, Cplus , Cminus ,G,Mk, Y ,Am, a , b , alpha , beta , delta , lambda

, nl , n ) ;

35 % J I ( : , : ) =i n t e g r a l m a t r i x I F ( kind , epsi lon , xx ( 1 ) , xx ( end

) , Cplus , Cminus ,G,Mk, Y ,Am, a , b , alpha , beta , delta ,

lambda , nl , n ) ;

36 AA=1/2* sigma hatL *D2 ( : , : , k ) +( r−q−1/2* sigma hatL−

gammaLL) *D1 ( : , : , k ) −( r+xiL ) * I+J ( : , : , k ) ;

37 %AA=1/2* sigma hatL *D2 ( : , : , k ) +( r−q−1/2* sigma hatL−

gammaLL) *D1 ( : , : , k ) −( r+xiL ) * I ;

38 E=zeros (m−1) ; E ( k , k ) =1;

39 BB=kron (E ,AA) ;

40 %J J J =kron (E , J I ) ;

41 A=A+BB ;%J J = J J + J J J ;

42 %EE=zeros (m−1 ,1) ; EE( k ) =1;b=b+kron (EE , bb ) ;

43 end

44 for k=1:m−2

45 A( k*n , ( k−1) *n+1:k*n ) =[ zeros ( 1 , n−1) 1 ] ;

46 A( k*n , k*n +1: ( k+1) *n ) =[−1 zeros ( 1 , n−1) ] ;
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47 %A( k*n , ( k−1) *n+1:k*n ) =1/2*A( k*n , ( k−1) *n+1:k*n ) ;

48 %A( k*n , k*n +1: ( k+1) *n ) =3/2*A( k*n+1 ,k*n +1: ( k+1) *n ) ;

49 A( k*n+1 ,(k−1) *n+1:k*n )=D1( end , : , k ) ;

50 A( k*n+1 ,k*n +1: ( k+1) *n )=−D1( 1 , : , k+1) ;

51 M( k*n , ( k−1) *n+1:k*n ) =[ zeros ( 1 , n−1) 0 ] ;

52 M( k*n , k*n +1: ( k+1) *n ) =[ zeros ( 1 , n−1) 0 ] ;

53 M( k*n+1 ,(k−1) *n+1:k*n ) =[ zeros ( 1 , n−1) 0 ] ;

54 M( k*n+1 ,k*n +1: ( k+1) *n ) =[ zeros ( 1 , n−1) 0 ] ;

55 end

56 %c l e a r n

57 i =2: length ( xx ) −1; I I = eye ( length ( xx ) ) ;

58 N=length ( xx ) ;NN=[NN N] ;

59 %AA( 1 , : ) =[1 zeros ( 1 , n * (m−1) −1) ] ; A( end , : ) =[ zeros ( 1 , n * (m

−1) −1) −1] ;

60 AA=[ I I ( 1 , : ) ;A( i , : ) ;− I I ( end , : ) ] ;

61 M( 1 , 1 ) =0; M( end , end ) =0;

62 y0 = max(K2*exp ( xx )−K1 , 0 ) −2*max(K2*exp ( xx )−K2 , 0 ) +max(

K2*exp ( xx )−K3 , 0 ) ;

63 mm=5*10ˆ2;h=T/mm; t =0:h : T ;%time stepping s i z e

64 %bb=@( t ) ( (K*exp ( xmax−q* t )−K*exp(− r * t ) ) * I I ( : , end ) + M*

e l l european ( kind , xx , t , K, q , r , epsi lon , xmax , Cplus ,

Cminus ,G,M, Y ,A, a , b , alpha , beta , delta , lambda , nl ) ) ;

65 bb=@( t ) ( 0 ) * I I ( : , end ) ;

66 %[ y , yy]= i v p s o l v e r a l e x ( t , y0 ,M,AA, bb ) ;

67 [ y , yy ]= i v p s o l v e r c n ( t , y0 ,M,AA, bb ) ;

68 %Y=b l a c k s c h o l e s c a l l ( xx , K, T , r , delta , sigma ) ;% a n a l y t i c

s o l u t i o n of Euopean c a l l
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69 % [ l , u]= lu (M−h*AA) ; % LU decomposition

70 % y = max( xx−K, 0 ) ;

71 %nL2=norm (Y−y ) ;

72 %nMax=max( abs (Y−y ) ) ;

73 %NN1=[NN1 nL2 ] ;

74 %NN2=[NN2 nMax ] ;

75 % e=cputime−time ;

76 % elaps =[ e laps e ] ;

77 %e=toc ;

78 %elaps =[ e laps e ] ;

79 % for i t =2: length ( tau ) % timestepping

80 % b=(Smax−K*exp(− r * tau ( i t ) ) ) * I I ( : , end ) ;

81 % w=u\ ( l \ (AA*y+b ) ) ;

82 % y=y+h*w;

83 nn=length ( xx ) ;

84 WW=(−1) . ˆ ( 0 : nn−1) ’ . * [ 0 . 5 ; ones ( nn−2 ,1) ; 0 . 5 ] ;

85 S=K2*exp ( xx ) ;

86 SS=[40 50 6 0 ] ’ ;

87 U25= barychebeval (ww, S , y , SS ) ;

88 %V5=interp1 ( S , y , SS , ’ spl ine ’ ) ;

89 f i g u r e ( 1 ) ; p lo t ( S , y0 , ’ b.− ’ , S , y , ’ g .− ’ ) ; hold on

90 %f i g u r e ( 1 ) ; p lot ( xx , y0 , xx , y , ’ r . − ’ , xx , Y) ;

91 %f i g u r e ( 5 ) ; semilogy ( xx , abs (Y−y ) , ’ r . − ’ ) ; hold on

92 %c l e a r D1 D2

93 %end

94 %f i g u r e ( 6 ) ; semilogy (NN,NN2, ’ b . − ’ ) ; hold on

95 %f i g u r e ( 7 ) ; semilogy ( elaps ,NN2, ’ r . − ’ ) ; hold on
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96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

97 % d i f f e r e n t i a t i o n matrix

98 % S0 I n i t i a l a s s e t pr i ce

99 % E S t r i k e Pr ice

100 % r I n t e r e s t r a t e

101 % T Time to maturity of option

102 % sigma V o l a t i l i t y of underlying a s s e t

103 % d e l t a Continuous dividend y i e l d

104 % Smax Maximum stock pr ice

105 % Smin Minimum stock pr ice

106 % M Number of points in time grid to use

107 % N Number of points in a s s e t pr i c e gr id to

use

108 % t = values of time at which s o l u t i o n i s obtained (

time nodes )

109 % V = matrix of s o l u t i o n s : V( : , j ) i s U( S ) at t = t ( j )

110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

111 %t i c

112 %for T=[0.5 1 2]

113 %NN1= [ ] ;NN= [ ] ;NN2= [ ] ;MM= [ ] ;

114 %for N=20:10:300;

115 % NN=[NN N] ;

116 %MM=[MM M] ;

117 K = 50; r = 0 . 0 5 ; T = 0 . 5 ;

118 sigma = 0 . 2 ; d e l t a = 0 . 0 0 ; Smax = 4*K; Smin =0;N =50;

119 % −−− Compute mesh spacing and time step

120 L=Smax−Smin ;
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121 %−−−−−−−−−−−−

122 kind= ’ sc ’ ;

123 eps i lon =10ˆ4;

124 del =1/(Smax−Smin ) * ( 2 *K−(Smax−Smin ) ) ;

125 %[ x , D1, D2]= g e t d i f f m a t r i x ( ’ tee ’ ,N, epsi lon , del ) ;

126 [w, x , D1, D2]= d i f f m a t r i x ( kind ,N, epsi lon , del ) ;

127 %x=l e g s l b (N) ; D1= l e g s l b d i f f (N, x ) ; D2=D1ˆ 2 ;

128 j =2: length ( x ) −1;

129 S =0.5* (Smax−Smin ) *x + 0 . 5 * ( Smax+Smin ) ;

130 % % −−−−−−−−−−−−−−−−−−−−− I n i t i a l condit ions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

131 V0=max( S ( j )−K, 0 ) ;%payoff c a l l opt ions

132 u1=max( S−K, 0 ) ;%c a l l

133 % %%−−−−−−−−−−−−−−−−−−−−−−S p e c t r a l Space

D i s c r e t i z a t i o n −−−−−−−−−−−−−−−−−−

134 I=eye ( length ( x ) ) ;

135 P=diag ( 0 . 5 * sigma ˆ 2 * ( 2 / L ) ˆ2* S . ˆ 2 ) ;

136 Q=diag ( ( r−d e l t a ) * (2/L ) *S ) ;

137 B=P*D2 + Q*D1 − r * I ;

138 %−−−−−−−−−−−−−−−−−−−−−−− c a l l boundary condit ions

−−−−−−−−−−−−−−−−−−−−

139 A=B( j , j ) ; b=B( j , end ) ; I I =I ( j , j ) ;

140 %%−−−−−−−−−−−−−−−−−−−−−−−−−demo2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

141 F=@( t , u ) B*u + b * ( Smax*exp(− d e l t a * t )−E*exp(− r * t ) ) ;%

c a l l
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142 f=@( t , u ) B2*u + b * ( Smax*exp(− d e l t a * t )−E*exp(− r * t ) ) ;%

c a l l

143 %=========================================

144 epsi lon1=Smax*b ; epsi lon2=K*b ; ExpA = expm(A*T) ;

145 H = (A\ (ExpA− I I ) ) * epsi lon1 − ( (A+r * I I ) \ (ExpA− I I *exp(− r

*T) ) ) * epsi lon2 ;

146 V = ExpA*V0 + H;

147 %%−−−−−−−−−−−IMEX time i n t e g r a t i o n −−−−−−−−

148 U=[0 ;u ; bc (T , delta , r , Smax , E ) ] ;

149 SS=E ;

150 V8=interp1 ( S ,U, SS , ’ s p l i n e ’ ) ;

151 Y=b l a c k s c h o l e s c a l l ( S , K, T , r , delta , sigma ) ;%a n a l y t i c

s o l u t i o n of Euopean c a l l

152 YE=interp1 ( S , Y , SS , ’ s p l i n e ’ ) ;

153 %r8=abs (V8−YE) / abs (YE) ;

154 %f i g u r e ( 1 ) ; p lot ( S ( j ) ,Y , ’ r − ’ , S ( j ) ,u , ’ b . ’ , S ( j ) , u0 , ’ k− ’ , S

( j ) , −10 , ’k . ’ ) ; hold on

155 %f i g u r e ( 1 ) ; p lot ( S ( j ) ,u , ’ b . − ’ , S ( j ) , u0 , ’ g . − ’ ) ; hold on

156 %f i g u r e ( 2 ) ; semilogy ( S ( j ) , abs (Y−u ) , ’ r − ’ ) ; hold on

157 %nL2=norm (Y−u ) / s q r t ( length (Y) ) ;

158 %nMax=max( abs (Y−u ) ) ;

159 %DELTA=(2/Smax ) *D1*U; GAMMA=(2/Smax ) ˆ2*D2*U;

160 %subplot ( 2 , 2 , 1 ) ;

161 f i g u r e ( 1 ) ; p lo t ( S ( j ) ,V0 , ’b− ’ , S ( j ) ,Y( j ) , ’ go− ’ , S ( j ) ,V, ’ r

.− ’ ) ; gr id on ; hold on

162 %subplot ( 2 , 2 , 2 ) ;

163 f i g u r e ( 2 ) ; p lo t ( S ( j ) ,DELTA( j ) , ’ b+− ’ ) ; gr id on
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164 subplot ( 2 , 2 , 3 ) ;

165 f i g u r e ( 3 ) ; p lo t ( S ( j ) ,GAMMA( j ) , ’ b+− ’ ) ; gr id on

166 subplot ( 2 , 2 , 4 ) ;

167 f i g u r e ( 5 ) ; semilogy ( S ( j ) , abs (V−Y( j ) ) , ’ b+− ’ ) ; gr id on ;

hold on

168 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

169 %nL24=norm (Y−U) / s q r t ( length (Y) ) ;

170 %nMax4=max( abs (Y−U) ) ;

171 %NN1=[NN1 nL2 ] ;

172 %NN2=[NN2 nMax ] ;

173 %DELTA=D1*u ( : , end ) /E ; GAMMA= D2*u ( : , end ) /E ˆ 2 ;

174 %end

175 %f i g u r e ( 1 ) ; semilogy (NN,NN2, ’ r . − ’ ) ; hold on

176 %[X Y]= meshgrid ( t , S ( j ) ) ;

177 %mesh (X, Y , u ) ; colormap (1 e−6*[1 1 1 ] ) ;

178 %end

179 %f i g u r e ( 1 ) ; semilogy (NN,NN2, ’ c . − ’ ) ; hold on
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[109] K. Sato, Lévy Processes and infinitely divisible distribution, Cambridge

University Press, Cambridge, UK, 1999.

165

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



[110] T. Schmelzer and L. N. Trefethen, Evaluating Matrix Functions for

Exponential Integrators via Carathéodory-Fejér Approximation and

Contour Integrals, Electronic Transactions on Numerical Analysis 29,

1-18, 2007.

[111] W. Schoutens and J.L. Teugels, Lévy processes, polynomials and
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els, Theory Probab. Appl., 49, 261-274, 2005.

[114] J. Shen, T. Tang, L.L. Wang, Spectral methods: Algorithms, Analysis

and Applications, Springer Series in Computational Mathematics 41,

2011.

[115] R. Seydel, Tools for computational finance, Springer Verlag, 2009.
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