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Abstract

In this work we deduce the types of phonons that take part in scattering electrons from

the Brillouin zone (BZ) edge of germanium at the critical point L−3 to the BZ centre at

high symmetry point Γ+
25. Ge semiconductor has the diamond structure and is a member

of the O7
hspace group. The scattering of electrons by phonons in Ge and other similar

crystals is a phenomenon that is of critical importance in comprehending the mobility of

charge carriers and other signi�cant transport phenomena. Further understanding of the

electron-phonon scattering process in Ge and other similar crystals is pertinent because

of the possibility of opening new ground in terms of improving the perfomance and

e�ciency of modern electronic devices made from these semiconductors. Commencing

from the Kronecker product
(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3 , we use group

theoretical techniques to compute Clebsch-Gordan coe�cients (CGCs) that are utilised

to interpret the scattering of electrons from the critical symmetry point L−3 to the critical

symmetry point Γ+
25within the valence band of Ge. We found out that when electrons are

scattered by phonons from the BZ edge of Ge, at point L−3 to the BZ centre, point Γ+
25,

both the longitudinal acoustic (LO) and transverse optical (TO) phonons are present but

it is only the TO phonons that participate in this sacttering process. The longitudinal

optical (LO) phonons are non-existent in these types of transitions in Ge bands. Our

theoretical results are consistent with the experimentally obtained phonon dispersion

curves for Ge.
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Chapter 1

Introduction

The main objective of this work is to determine the types of phonons that are involved

in scattering electrons from the Brillouin zone1 (BZ) edge of germanium (Ge), at high

symmetry point L−3 , to the BZ centre- high symmetry point Γ+
25. Electron-phonon

interaction is a primary source of scattering in nano-devices. The transport properties

of Ge based nano-devices and other similar conductors depends on the electron-phonon

interactions[1].

We use Clebsch-Gordan coe�cients (CGCs) to deduce the types of phonons that

take part in this electron-phonon scattering phenomenon. In this work the CGCs that

are used to comprehend and interpret this scattering phenomenon are explicitly derived.

Electrons can be scattered by phonons from one energy band to another or within

the same energy band- that is inter-band and intra-band scattering respectively. An

energy band is a spectrum of energy levels that form a continuous range of energy values

available for charge carriers. Phonons are ionic motions or quanta of lattice vibrations.

The calculated CGCs in this work are used to interpret the intra-band scattering of

electrons by phonons in the valence band of Ge from the critical point L−3 to the high

symmetry point Γ+
25. The CGCs or coupling constants are also utilised to determine the

allowed or forbidden phonon transitions within the valence band of Ge.

1The concept of the BZ and symmetry considerations are dealt with in chapter 2.

12
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CHAPTER 1. INTRODUCTION 13

The use of Clebsch-Gordan coe�cients is a powerful group theoretical technique that

is widely used to explain theories for a number of phenomena. Among other processes,

Clebsch-Gordan coe�cients can be used in the derivation of elements of tensors for Bril-

louin scattering, description and derivation of �morphic induced� Raman scattering[2].

Coupling constants are also utilised in the diagonalisation of phonon dynamical ma-

trices, the description of Gunn e�ect and the construction of the Hamiltonian matrix

elements[3].

This work is also in the form of an incremental improvement in comprehending radia-

tive transitions as well as inter-valley and intra-valley scattering phenomena in Ge2 using

apt selection rules[4]. Selection rules or transition rules govern the transition of charge

carriers from an initial quantum mechanical state to another in crystals. The transition

rules are of fundamental importance as they are a pre-requisite in the computation of

coupling coe�cients for crystals[5].

The coupling constants are of utmost importance as they are related to elements

of scattering tensors which enable one to comprehend the scattering phenomena in

crystals[6]. The scattering processes in crystals have a signi�cant bearing on the mobil-

ity of charge carriers and other transport phenomena. A number of investigations on Ge

and other similar crystals are focusing on obtaining apt conditions that can be used to

obtain maximum carrier mobility in order to increase the perfomance and e�ciency of

Ge devices. Further understanding of the transport phenomena in Ge and other similar

crystals is pertinent as it can lead to an even wider application of these semiconductors

especially in the making of opto-electronic devices and modern electronic components.

Ge semiconductor is a member of the O7
h space group3- diamond structure. The

space group of a crystal gives all the possible symmetry properties of the crystal.4. The

Ge point group is the cubic group Oh. The O7
h space group has 48 by 48 symmetry

elements.

2Inter-valley and intra-valley scattering phenomena are explored in Chapter 3
3O7

h is the Schon�ies notation. The space group number is 227 and the full international notation is
F41/d3̄2/m.

4In three dimensions there are 230 space groups and 32 crystallographic point groups
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CHAPTER 1. INTRODUCTION 14

Applying group theoretical knowledge of the O7
h space group to Ge semiconductor,

we analyse the �rst Brillouin zone of this crystal as well as its electronic band structure

in chapter 2. This is of fundamental importance as the optical and electrical properties

of any crystal hinges on the structure of the BZ and the energy bands of the crystal.

The layout of the rest of this dissertation is as follows- we explore the phenomenon of

electron-phonon scattering in Ge and the group theoretical techniques applied to this

process in chapter 3. In chapter 4 we discuss selection rules for Ge before the derivation

of CGCs in chapter 5. We will then present the calculated CGCs that are used to

understand the scattering process of electrons by phonons from the BZ edge at point L−3

to the BZ centre at high symmetry point Γ+
25. The last two chapters of this dissertation

are the discussion of results and conclusion respectively. This will then be followed by

the appendices section.
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Chapter 2

Symmetry and energy band

structure of Ge

In this chapter we analyze symmetry transformation before we brie�y delve into the

fundamental concept of groups. We discuss the concept of the Brillouin zone and the

electronic band structure of Ge. In order to understand the properties of a given crystal,

we have to comprehend the BZ of the crystal and the electronic energy bands as they

have a strong bearing on the the optical and electrical properties of the material.

2.1 Symmetry transformation

We de�ne a symmetry transformation as an operation on a crystal or part of a crystal

that leaves the crystal unchanged. The crystal is exactly the same as it was before the

operation was carried out [7]. Some fundamental symmetry operations that leaves a

crystal in the same positions as before are:

i. Cn- denotes rotation of a crystal about a given axis through a speci�ed angle, 2π
n :

If we repeat this application the symmetry transformation will be denoted by Cpn where

p, z are integers. For instance C2
3 , means rotation by 2π

3 and this transformation is done

two times;

ii. E- is the identity symmetry transformation: Following the procedure above n

15
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 16

successive rotations about a given axis through the angle 2π
n yields the identity operation

E = Cnn ;

iii. i- is the inversion symmetry transformation: For this transformation we have

i(x, y, z)→ (−x,−y,−z) and the crystal appears as it was before even after an inversion

through an origin called the centre of inversion;

iv. σ-denotes re�ection: we can have a mirror re�ection in a given plane, for instance,

σh and σv stands for re�ection in the horizontal and vertical plane respectively;

v. t-is translation or parallel displacement of the crystal : for this transformation we

assume that the crystal lattice is in�nite.

All symmetry transformations of a �nite solid crystal must leave at least one point

of the crystal �xed or unchanged. The �xed point does not move during the symmetry

operation. If many symmetry operations can be done with respect to this point, we refer

this point as a critical symmetry point or high symmetry point. Likewise the axis of

highest symmetry of a crystal or molecule is called the principal axis. A three-fold axis,

for example, implies that there are three symmetry operations about that axis under

consideration. Some crystals do not have a principal axis.

Crystals have symmetry because they are formed from a unit cell called the primitive

cell in a direct lattice. The primitive cell of the reciprocal lattice- the Brillouin zone (BZ)-

is of paramount importance when using symmetry to study crystal properties because

it forms the whole lattice structure by symmetry transformations. Within and around

the BZ we have fundamental symmetry operations that can be used to comprehend

the physical behaviour of crystals in di�erent directions- anisotropy [7]. Symmetry

operations form groups when they act on a set of given members. In the next section

we brie�y explore the concept of groups.

2.2 Group (G)

A group is a set of members that have a common law of operation that can be applied

on all the group members such that four fundamental axioms of associativity, closure,
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 17

identity and inverse hold. Associativity implies that the outcome of a series of operations

on given group members is the same even if we change the grouping of the elements as

long as we keep the order of the elements constant. For instance, if g, h, k ∈ G we have

g∗(h∗k) = (g∗h)∗k, where ∗ denotes the group operation such as a symmetry operation.

Closure in a group means that the product of any two members of the group must give

an outcome of a member that is already in the group, that is g ∗ h ∈ G. In every group

there must be an element that does not change anything when it operates on any given

group member. This symmetry element is the identity and it is of critical importance in

comprehending some group theoretical concepts. Therefore, for each member of a group,

g ∈ G, we have g ∗E = E ∗ g = g, where E denotes the identity element. Every element

in a given group has an inverse that reverses or undoes the work of each member. For

an element g, we have an inverse g−1, which satis�es g ∗ g−1 = g−1 ∗ g = E. A given

set of members together with their law of operation is a group if all the four axioms

are true. A complete table of composition for all the group members forms a group

table or multiplication table which is crucial in understanding the properties of group

members. In this work, our crystal of interest- Ge- belongs to the point group Oh and

space group O7
h. The space group of a crystal gives all the possible symmetry properties

of the crystal. Fundamental to understanding the properties of a given crystal lies in

comprehending the symmetry properties of the Brillouin zone of the given crystal.

2.3 The Brillouin zone

Any space group is made up of an invariant sub-group of primitive translations that are

of the form

{ε | Rn}

and

Rn = n1~t1 + n2~t2 + n3~t3 (2.1)
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 18

where n1 ,n2 and n3 are integers and n denotes the collection of the three integers;

~t1, ~t2 and ~t3 are the basic primitive translation that are linearly independent.

The collection of the entire points that are generated by the vectors Rn is referred to

as the crystal lattice. The primitive translations can be given in the form hereby stated

{ε | Rn} = e(i
~k.Rn) (2.2)

where

~k = k1
~b1 + k2

~b2 + k3
~b3 (2.3)

~b1, ~b2 and ~b3 are the primitive vectors;

~k is a vector that forms or generates irreducible representations of the pure transla-

tions group.

The crystal space that is spanned by the vectors ~b1, ~b2 and ~b3 is called the reciprocal

space. The smallest repeating space or unit cell of the reciprocal space is called the

Brillouin zone[8]. In reciprocal space a solid crystal structure is composed of these

fundamental identical periodic regions- the Brillouin zones. Apt transformations of the

Brillouin zone forms the entire crystal structure. Some of the symmetry transformations

that are of critical importance are translation operations, re�ections, rotations and a

combination of these. The BZ is invariant under these symmetry operations of the

space group of the crystal under consideration.

The concepts that are true throughout the entire BZ are also true for the entire

crystal structure. The BZ comprises high symmetry points and lines which are critical in

comprehending the processes that happen in a semiconductor. Figure 2.1 is an example

of the �rst BZ of the body-centred cubic lattice showing high symmetry points and lines

[8]. In this work we have considered the �rst BZ because it is simple yet has all the

relevant physical information required to comprehend scattering processes in a given

crystal.

The point Γ is the origin or centre of the Brillouin zone as depicted by �gure 2.1.
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 19

Figure 2.1: The �rst Brillouin zone of the body-centred cubic lattice crystal structure
showing the high symmetry lines and points [8]
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 20

The irreducible representations of the entire space group O7
h are the irreducible repre-

sentations of the group of transformations at point Γ, that is GkΓ [8] . The symbols ∆,

Λ and Σ represent or shows the lines within the BZ. The line Σ is a bisector of the angle

between the kx and ky axes. The points K,W,X,U and L are situated on the surface of

the BZ. The high symmetry points and lines have di�erent but equivalent labelling as

shown by table C.1 in appendix C[9][10][11]. We use coordinates as depicted by table

D.1 in appendix D[11], to indicate the positions of these critical points on the BZ.

After constructing the Brillouin zone, we can have a k-vector that is in or on the

surface of the BZ. If the k-vector is allowed to move in the interior and surface of the BZ

by symmetry transformation, we get a sub-group of operations of the space group which

leaves the k-vector unchanged or send it into one di�ering by a primitive translation

of the reciprocal lattice. The speci�cation of the irreducible representations of the sub-

group, for instance GkL- the sub-group at point L, completely gives the irreducible

representations of the entire group GkΓ [8].

2.4 Energy band structure of Ge

An isolated atom has a number of energy states available for charge carriers. In a

crystal, we have many atoms that are close together so that a large number of energy

levels exist for charge carriers. We de�ne an energy band as a range of energy states

that can be occupied by charge carriers. Two energy bands that are important are the

valence and conduction bands because they play a signi�cant role in the mobility of

charge carriers in a material. The valence band is the highest occupied energy band in

a material at absolute zero temperature. The conduction band is the next band above

the valence band which has a range of energy states that charge carriers can occupy. In

the conduction band, charge carriers are freely mobile and are capable of producing a

current. The valence band is separated from the conduction band by an energy gap or

forbidden gap where there are no energy levels available for electrons.

An energy band that is completely �lled or empty band cannot have an electric cur-
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 21

rent. The conduction of electric current in a material is due to the motion of electrons

and holes in the conduction and valence bands. An insulator is a large band gap ma-

terial which has no electrons or holes available for the conduction of electric current.

An intrinsic semi-conductor behaves like an insulator at absolute zero temperature. We

can thus de�ne a semiconductor as a small band gap insulator at absolute zero. At this

temperature the conduction band is empty whereas the valence band is completely �lled

hence there is no possibility of having current �ow. If the temperature of a semiconduc-

tor is increased, electrons undergo transition from the valence band to the conduction

band. This creates a partially �lled conduction band that contains thermally excited

electrons available for conduction. The transition of electrons from the valence band to

the conduction band creates vacant orbitals or holes in the valence band. The holes also

contribute to the conduction of electricity. Therefore the total contribution to electrical

conductivity is due to the presence of both electrons and holes in the conduction and

valence bands respectively. In metals, the valence and conduction bands overlap, hence

they are very good conductors of heat and electricity.

Ge is an indirect band gap crystal material as shown by �gure 2.2[12]. An indirect

band gap semiconductor is one in which the conduction band edge and the valence band

edge occur at di�erent locations and directions in reciprocal space. The conduction band

edge of Ge is along the 〈111〉 direction. The minimum in the conduction band of Ge

is located at the point L(π2 )〈111〉 on the BZ boundary. The symmetry of this critical

minimum is L+
1 .

The conduction band edge comprises four degenerate pairs of L-valleys along the

〈111〉 direction[13]. The four degenerate valleys have wave vectors whose directions are

〈111〉, 〈1̄11〉, 〈11̄1〉 and 〈111̄〉 as depicted by �gure 2.3[14]. The valence band edge is at

the zone centre at point Γ 〈000〉 and has symmetry of Γ+
25.

Ge crystal structure is a lattice that has two atoms in a given unit cell. The atoms are

positioned at (0, 0, 0) and
(

1
4 ,

1
4 ,

1
4

)
in the unit cell (a = 5, 6575A). This semiconductor

belongs to the diamond crystal structure which is composed of two identical face-centred
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CHAPTER 2. SYMMETRY AND ENERGY BAND STRUCTURE OF GE 22

Figure 2.2: The energy band structure of Ge showing the critical symmetry points [12]

cubic lattices which are interpenetrating[14]. At absolute zero temperature, the valence

band of Ge is separated from the conduction band by an energy gap of approximately

0.67eV. The energy gap, Eg, which gives us the forbidden states changes with tempera-

ture. As illustrated by �gure 2.2 , for Ge and other similar crystals, two bands converge

at the valence band edge at the BZ centre. These bands are referred to as the heavy-

and light-hole bands.

Charge carriers such as electrons can undergo transitions from one high symmetry

point to another in the electronic energy bands of Ge as a result of interactions with

quasi-particles such as photons and phonons. We discuss electron-phonon scattering

phenomena in Ge semiconductor in the next chapter of this dissertation.
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Figure 2.3: The (11̄0)plane of the germanium reciprocal lattice [14]
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Chapter 3

Scattering in Ge

A number of investigations on Ge and other similar crystals are focusing on obtaining apt

conditions that can give rise to an improvement in carrier mobility in order to increase

the perfomance and e�ciency of Ge devices. The model of carrier transport developed

for Ge in order to comprehend the transport phenomena in this semi-conductor is the

intra-valley and inter-valley scattering between its four energy minima. In this chapter

we would like to brie�y explore intra-valley and inter-valley scattering in Ge and the

scattering of electrons and holes by phonons.

3.1 Intra-valley and inter-valley scattering

We de�ne scattering as the transition of charge carriers from an initial quantum me-

chanical state to another as a result of their interaction with di�erent excitations such as

photons, phonons, other carriers, impurities, surfaces, inter-surfaces, defects and also be-

cause of the presence of pressure gradient, temperature gradient , electrical �eld gradient

and other �eld gradients within a solid crystal[13].

Scattering is divided into two classes, which are intra-valley1 and inter-valley scat-

tering. Intra-valley is the scattering of carriers within the same valley or between valleys

that belong to the same star. Star is a collection of valleys that have the same number

1The term valley refers to energy minimum

24
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CHAPTER 3. SCATTERING IN GE 25

of carriers and energy and hence are considered to be equivalent. Inter-valley scattering

is the transition of carriers from one energy valley to another valley that do not belong

to the same star in k-space. Inter-valley scattering is classi�ed into g- and f-scattering

processes that are outlined in the next sub-section.

3.1.1 g- and f-scattering

For g-scattering, carriers are scattered from an initial valley to another on the opposite

side of the same axis as shown by �gure 3.1[15]. The g-process is denoted by qg and

for this phenomenon the two valleys have the same orientation. During the f-scattering

process, carriers are scattered the �rst valley to another one that has a di�erent orien-

tation. The f-scattering phenomenon is denoted by qf as illustrated by �gure 3.1. If the

electron valley lies in the same BZ after the scattering process, then such a process is

called a normal process. In contrast if the electron valley lies in an adjacent BZ after

scattering phenomenon, then the process is called umklapp[13]. Figure 3.2 depicts two

adjacent Brillouin zones that can be used to describe a normal or an umklapp process.

Germanium semiconductor is composed of four energy valleys as illustrated by �gure

3.3 [16]. The scattering processes in germanium encompass the transition of charge car-

riers between the four energy valleys. All possible electron-phonon scattering processes

and other transport phenomena in Ge depends on what transpires in these constant

energy valleys.

3.2 Group theoretical techniques applied to scattering

The states of particles or quasi-particles that are involved in the scattering phenomena

are represented by wave functions or state vectors in a Hilbert space. The wave func-

tions contains the possible measurable information of the system under consideration.

Some of the physically measurable observables carried by the wave functions includes

the displacement, frequency, energy, momentum and the wavevectors of the particles

participating in the scattering processes. Utilising symmetry principles, the wave func-
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Figure 3.1: Diagram to illustrate g- and f-scattering phenomena in a (110) plane [15].

Figure 3.2: Two adjacent Brillouin zones that can be used to illustrate normal and
umklapp scattering processes [13].
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CHAPTER 3. SCATTERING IN GE 27

Figure 3.3: The four degenerate L- valleys of Ge [16].

tions are given in a form such that they have transformation properties of the crystal

space group under considerations. Such wave functions are said to be symmetrized.

The states of particles and quasi-particles involved in scattering phenomena are

represented by irreducible representations of the crystal space group of the semiconductor

under considerations. Quasi-particles such as phonons do not have spin. We utilise

single-valued irreducible representations (SV irreps) to represent the di�erent states

of such quasi-particles. If spin is considered, for example for electrons, the quantum

mechanical states of particles of that nature is denoted by mathematical objects called

spinors. Spinors are also referred to as double-valued irreducible representations.

During scattering phenomena, the interaction of the particles, for instance electrons

and phonons, is represented by Kronecker products (KPs). Inter-valley and intra-valley

scattering processes in Ge and other semiconductors are described by using appropriate

Kronecker products. The KPs derived from high symmetry points aptly connects the
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CHAPTER 3. SCATTERING IN GE 28

valence band edge and the conduction band edge of the BZ under consideration. Lax and

Hop�eld[17] pointed out that scattering of electrons from the top of the valence band to

the bottom of the conduction band, as depicted in Ge are apt examples of phenomena

in which various paramount points of the BZ are intertwined by a perturbation.

For Ge, the high symmetry points on the BZ that among others are of critical impor-

tance in describing the scattering processes are Γ,L,∆ and X. The energy, momentum

and wavevectors of the particles or quasi-particles are conserved during scattering phe-

nomena. The conservation of these physical quantities that are of critical importance is

represented by the wavevector selection rules (WVSRs).

3.3 Scattering of electrons by phonons

The displacement of atoms in the unit cell from their positions of rest will give rise

to vibrations or elastic waves that propagate throughout the crystal. These ionic mo-

tions or lattice vibrations are called phonons. There are four kinds of phonons, that

is transverse acoustic (TA), longitudinal acoustic (LA), transverse optical (TO) and

longitudinal optical (LO). The four types of phonons interact di�erently with electrons

and holes during the process of scattering. Scattering of electrons by phonons from the

Brillouin zone edge to the zone centre encompass a change in crystal momentum from

the initial momentum ~q 6= 0 to ~q = 0. This crystal momentum must be conserved. In

order for this to happen, the electrons can either emit or absorb a phonon that has a

crystal momentum of wave vector ~q. The phonon spectrum of Ge has four branches in

the direction of the conduction band edge. Therefore we have four phonons of di�erent

energies that have the apt crystal momentum[18].

3.3.1 Intra-band scattering by phonon emission

We consider an electron of e�ective mass m∗ , initial energy Ei and wave vector
−→
k .

The electron is positioned in a periodic parabolic band and is scattered by a phonon

within the same band- intraband scattering. The electron undergoes a transition to
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another quantum mechanical state of energy Ef and wave vector
−→
k′ . Let us consider

a case whereby this phenomenon involves the emission of an acoustic phonon that has

energy Ep and wave vector −→q . Since the crystal lattice is periodic , the total energy and

wave vectors of the particles or quasi-particles participating in the scattering process are

conserved[13]. The energies and wave vectors of the electron and phonon are given by

equations (3.1) and (3.2), that is

final energy of electron −initial energy of electron = energy of emitted phonon;

final electron wave vector −initial electron wave vector = wave vector of emitted

phonon, i.e

Ef − Ei = Ep (3.1)

−→
k′ −

−→
k = −→q (3.2)

If the acoustic phonon if of small wave vector −→q , the energy of the phonon is linked

to the wave vector by equation (3.3)

Ep = ~vs−→q (3.3)

where vs is the phonon velocity which is considered to be isotropic[13]. The permitted

or possible values of the phonon wave vector are obtained by combining equations (3.1),

(3.2) and (3.3) to get equation (3.4)

(
~2

2m∗

)(
k2− | ~k − ~q |2

)
= ~vs−→q (3.4)

If we compute the values that q can take, we deduce that the permissable values of q

are entwined between a minimum, qmin, and a maximum, qmax.
2 In the next sub-section

we now consider intra-band scattering by phonon absorption.

2The scattering of electrons by emission of an acoustic phonon is considered to be elastic.
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3.3.2 Intra-band scattering by phonon absoption

We consider a normal scattering phenomenon where an electron undergoes a transition

from an initial state ~k to a �nal quantum mechanical state ~k′ as a result of the absorption

of a phonon that has wave vector ~q[19]. If we assume that crystal momentum remains

constant and the initial and �nal electron states are found within the same spherical

parabolic band, the phonon absorption depends on equation (3.5)

k′2 = k2 + q2 + 2kqcosθ (3.5)

where θ is the angle between initial the wave vector ~k and the �nal wave vector ~k′

~2k′2

2m∗
= ~2k2

2m∗ + ~ω (3.6)

thus we have

cosθ = − q

2k
+
m∗ω

~kq
(3.7)

Now if we let

f (q) = − q

2k
+
m∗ω

~kq
(3.8)

we have the function

f (q) = cosθ (3.9)

The principles of conservation of energy and momentum imposes the restriction -

16 f (q) 61 on equation (3.9). For absorption of acoustic phonons, for instance, we

have ω = νsq and ~k = m∗ν thus we get equation (3.10)

f (q) =
−q
2k

+
νs
ν

(3.10)

For a particular case where ν > νs, the minimum value taken by q is 0 and the

maximum value of q is given by f (q) = −1[19]. Therefore for phonon absorption, the

allowed values of q also lie between a minimum and a maximum.
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3.3.3 Born-Oppenheimer electron-phonon interaction

We use the Born-Oppenheimer3 approximation to describe the scattering phenomena

that happens when charge carriers undergo a transition from an initial quantum me-

chanical state to another as a result of their interactions with phonons or lattice vibra-

tions. For the Born-Oppenheimer approximation to hold, we assume that electrons can

respond instantaneously to the lattice vibrations. The ions are regarded as being sta-

tionary when compared to the electronic motion. In contrast the ions cannot follow the

motion of the electrons. They are considered to be in�uenced by a time-averaged adi-

abatic electronic potential. In this approximation, we assume that the electrons follow

the ionic motion adiabatically[13].

Utilising this approximation we decompose the Hamiltonian of a crystal into three

fundamental terms, that is

H = Hions(~Rj) +He(~ri, ~Rjo) +He−ion(~ri, δ ~Rj) (3.11)

where Hions(~Rj) describes the atomic displacements under the e�ect of ionic potentials

as well as the time�averaged adiabatic electronic potentials;

He(~ri, ~Rjo) is a term that describes the electrons when the ions are assumed to be

�xed in their equilibrium positions ~Rjo;

He−ion(~ri, δ ~Rj) represents the electron-phonon interaction which brings about a

change in the electronic energy because of the displacement of the ions from their posi-

tions of rest.

Electron-phonon interactions which give rise to inter-valley and intra-valley scatter-

ing can induce changes in the electronic band energy. Phonons or atomic displacements

can shift the electronic energies at various points in the Brillouin zone. Charge carriers,

for example electrons can interact with zone-center phonons and zone-edge phonons and

are continuously scattered within an energy valley or from one energy valley to another-

3 The Born -Oppenheimer approximation for electron-phonon interaction is sometimes known as the
adiabatic approximation[13].
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inter-valley scattering. Understanding of the inter-valley scattering phenomenon re-

quires the computation of the inter-valley electron-phonon Hamiltonian as described in

the next section.

3.3.4 Inter-valley electron-phonon Hamiltonian

For inter-valley electron-phonon interactions, the inter-valley electron-phonon Hamilto-

nian is given by

Hiν = ~eb~q.
δHe

δR
u (3.12)

where ~e is the phonon polarization vector;

u is the amplitude;

~q is the wave vector of the phonon;

b is the branch number.

Since scattering gives rise to the transition of a carrier from one quantum mechanical

state to another, the inter-valley electron-phonon Hamiltonian can be given in terms of

its matrix elements between the initial and �nal electronic states as depicted by equation

(3.13)

DijH =
〈
ni,~ki |Hiv|nj ,~kj

〉
(3.13)

where Dij is the inter-valley deformation potential;

i and j denote respectively the initial and �nal valleys in the scattering;

n is the electronic band index;

~k is the wave vector.

The transition of charge carriers from an initial quantum state to another is subject

to certain constraints that can either allow or forbid such processes. These constraints

that permit certain transitions whilst rejecting or �ltering out other quantum mechanical

transitions are referred to as selection rules. The selection rules for inter- and intra-valley

scattering phenomena in Ge are dealt with in the chapter that follows.
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Chapter 4

Selection rules

In this chapter we explore group theoretical selection rules and wave-vector selection

rules. We will utilize the selection rules to determine if radiative transition of electrons

from the conduction band to the valence band of Ge is allowed. We also use a similar

technique to determine the possible intra-band phonon transitions in the valence and

conduction bands of Ge.

4.1 Selection rules

The transition of a charge carrier from an initial quantum mechanical state to a new

state is controlled by selection rules. Selection rules determine whether a transition is

possible or not. There are many mathematically possible transitions of charge carriers

from one quantum mechanical state to another. The selection rules �lter the transitions

that are physically permissable. Understanding of scattering processes in crystalline

solids requires the use or computation appropriate selection rules.

Lax and Hop�eld[17] pointed out that selection rules are derived from an integral of

the form ∫
Ψi
λ(k, r)Ψj

µ(k′, r)Ψm
v (k′′, r)∗dr (4.1)

where Ψi
λ(k, r) is a term that represents an initial charge carrier state which has symme-

33
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try transformations of the λth row of the irreducible representation i with wave-vector

k;

Ψj
µ(k′, r) represents the pertubation state of excitations such as photons, phonons

and others- these have symmetry transformations of the µth row of the irreducible rep-

resentation j with wave-vector k′;

Ψm
v (k′′, r) represents the �nal charge carrier state which depicts symmetry transfor-

mations of the νth row of the irreducible representation m with wave-vector k′′.

If a transition from an initial quantum mechanical state to another is permitted,

the integral gives a non-zero value as the outcome. In contrast if the transition is not

allowed, the integral vanishes or gives a zero. The method that is generally utilised

to obtain selection rules from equation (4.1) is to use the initial carrier state, the �nal

carrier state or the perturbation representation as a starting point for the construction

of a product representation. The product representation is then reduced into a sum of

irreps that are contained in the product as depicted by equation (4.2)

Di
λ �Dj

µ =
∑

Cij,mλµ,vD
m
v (4.2)

Where Cij,mλµ,v is a term that denotes the frequency of occurrence of the representation

Dm
v in the product Di

λ �Dj
µ.

Therefore the decomposition of products of the irreducible representations of crystal

group under consideration yields the frequency of occurrence of each irreducible repre-

sentation in the product[5, 20]. The selection rules are derived from the eigen-functions

of a perturbation, Ψj
µ , linking the initial and the �nal quantum mechanical states of a

system under consideration. The eigen-functions or wave functions are of the form

V ij,m
λµ,ν =

〈
Ψi
λ

∣∣Ψj
µ

∣∣Ψm
v

〉
(4.3)

where Ψi
λ and Ψm

ν are the eigen-functions or wave functions representing the initial and

the �nal quantum states of the particles or quasi-particles participating in the transition
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processes.

The corresponding irreps are Di
λ,D

j
µ and Dm

ν . Using symmetry operators of the

O7
h space group on the wave functions and the perturbation function, Ψj

µ, we get the

Kronecker product between any two of the three irreps Di
λ, D

j
µ and Dm

ν . The KP1

represents the interaction between the particles or the quasi-particles involved in the

transition process. The transition between two states is allowed if the product represen-

tation is decomposed into direct sum of irreps that contains the identity representation

or the third representation not in the product. Consider the KP

Di
λ ⊗Dj

µ = Dm
ν +Dn

τ (4.4)

The transition is allowed if the product of Di
λ or D

j
µ with the outcome, Dm

υ +Dn
τ , yields

a result that contains the identity representation.

4.2 The wave vector selection rules for Ge

The wave vector selection rules (WVSRs) represent the fundamental principles of energy

and momentum conservation in a crystal lattice. Consider for example, a charge carrier

in an initial quantum mechanical state k. The charge undergoes a transition to a new

state k
′
due to interaction with say a phonon in a state k′′. Crystal momentum is

conserved and the momentum conservation principle is expressed in the form depicted

by equation (4.5)

k′′ = k + k
′

(4.5)

As given by Kunert et al [4] the WVSRs for the intra-valley scattering processes in

Ge for the four equivalent L-valleys in accordance with the form above, are

1kL + 1kL = kΓ (4.6)

1 The possible KP for the 230 space groups have been tabulated by Cracknell, Davis, Miller and
Love[10].
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2kL + 2kL = kΓ (4.7)

3kL + 3kL = kΓ (4.8)

4kL + 4kL = kΓ (4.9)

The four equivalent minima at the critical point L are obtained from the star of the

wave vector kL = π
a (1, 1, 1) of the sub-group at this high symmetry point. We use GkL

to represent the sub-group at the L point[4]. The collection of equivalent valleys at this

critical symmetry point in Ge is denoted by ∗kL where

∗kL = EkL, C2xkL, C2ykL, C2zkL (4.10)

C2xkL =
π

a
(−1, 0, 0)

C2ykL =
π

a
(0,−1, 0)

C2zkL =
π

a
(0, 0,−1)

The symmetry operators of the O7
h space group transforms the wave vector kL =

π
a (1, 1, 1) into the other equivalent valleys. Using CDML notation, some of these symme-

try operators are E(1),C2x(2), C2y(3), C2z(4) and C−31(5), C+
31(9)[10]. For the inter-valley

scattering processes that encompass the L and X valleys in Ge, the WVSRs involve the

four L-valleys and the three X-valleys[4]. The WVSRs are represented by equations

(4.11) , (4.12) , (4.13) , 4.14 , (4.15) and (4.16).

1kL + 3kL = kX (4.11)

2kL + 4kL = kX (4.12)
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1kL + 2kL = 5kX (4.13)

4kL + 3kL = 5kX (4.14)

1kL + 4kL = 9kX (4.15)

2kL + 3kL = 9kX (4.16)

The symmetric KPs that have to come into play in order to interpret the scattering

phenomena between di�erent valleys belonging to the same star in Ge, are: [Γ2′ ](2) ;

[L1′ ](2) ; [∆1](2)[17]. Alternatively, this is given by [Γ2−](2) ; [L1+](2) ; [∆1](2)[10]

4.3 Selection rules for optical and intra-band phonon tran-

sitions in Ge

There is no direct link between the conduction band edge and the valence band edge of

Ge hence a direct transition that conserves the k-vector does not connect the valence

band maximum point to the bottom edge of the conduction band. The likely channels

of transitions of electron carriers from the conduction band to the valence band are of

two forms[17]- case 1 and case 2 as depicted by �gure 4.1 and �gure 4.2 respectively.

Case I:

An electron could be scattered by a phonon �rst from L+
1 to Ã−2 (intra-

band scattering of an electron through phonon participation in the

conduction band of Ge) and then undergo another transition radiatively

from Ã
−
2 (CB) to Ã+

25 (VB).
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When an electron gets scattered by a phonon from the high symmetry point L+
1 to

the high symmetry point Γ−2 within the conduction band of Ge as depicted by �gure

4.1, this interaction is aptly represented by the Kronecker product hereby stated[17]

L+
1 � Γ−2 = L−2 (4.17)

When an electron drops radiatively from Ã
−
2 (CB) to Ã+

25 (VB) after being scattered by

a phonon from L+
1 to Ã−2 the Kronecker product for this radiative transition is

Ã
+
25 � Ã

−
15 = Ã

−
2 + Ã

−
12 + Ã

−
25 + Ã

−
15 (4.18)

The KP Ã
+
25� Ã

−
15 contains Ã−2 , therefore group theoretically we can conclude that

the radiative drop is allowed[17].

Case 2:

An electron could undergo a vertical transition or drop radiatively from

the conduction band at high symmetry point L+
1 to the corresponding

high symmetry point L−3 in the valence band. The electron can then

be scattered by a phonon from the Brillouin zone edge at point L−3 to

the BZ centre at high symmetry point Ã+
25 - intra-band scattering of an

electron through phonon participation in the valence band of Ge.

When an electron drops radiatively from L+
1 (CB) to L−3 (VB) at the Brillouin zone

edge, as shown by �gure 4.2, the eigen-functions that govern the selection rule are of the

form

〈
ΨCB
i Ôplight ΨV B

f

〉
(4.19)
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Figure 4.1: CASE 1:The intra-band scattering of an electron by a phonon within the
conduction band of Ge from the high symmetry point L+

1 to Γ−2 followed by a radiative
drop from the conduction band to the valence band- high symmetry point Γ+

25.
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Figure 4.2: CASE 2: Vertical radiative transition of an electron from L+
1 (CB) to L−3

(VB) followed by the intra-band scattering of the electron through phonon participation
in the VB of Ge

The corresponding selection rule is

L−3 ⊗ Ã
−
15 = L+

1 + L+
2 + 2L+

3 (4.20)

The product representation L−3 ⊗ L
−
15 contains L+

1 which is the identity representation,

therefore group theory permits the radiative part of the transition. The symmetry

representation Ã
−
15 denotes the symmetry of light which undergoes transformation like

an ordinary vector (x, y, z). This vertical transition is only accompanied by a change in

energy since the k-vector is preserved- it remains constant.
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For the intra-band electron transition via phonons in the valence band of Ge, an

electron is scattered by a phonon from high symmetry point L−3 at the BZ edge to the

BZ centre- point Ã+
25. This transition involves a change in the k-vector and energetic

phonons take part since there is a change in the direction of the charge carriers under

consideration.

This electron-phonon interaction is denoted by the quantum representation below:

〈
Ψe−

L−3
Ôphonon Ψe−

Γ+
25

〉
(4.21)

Group theoretically the interaction is represented by the Kronecker product hereby

stated: (
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3 (4.22)

The representations L−1 , L−2 and L−3 on the right side of the KP denotes the phonon

symmetry representations anticipated to take part in the valence intra-band phonon

transition of electrons in Ge. The phonons represented by the high symmetry points L−1 ,

L−2 and L−3 are allowed to take part in this transition if quantum mechanical selection

rules derived from the initial electron state, �nal electron state and the perturbation

representation (phonon representation), yields an identity representation or the third

representation not initially in the product.

The quantum mechanical selection rules that have to be investigated are:

〈
Ψ
electron
L−3

Ôphonon
L−1

Ψ

electron

Γ+
25

〉
(4.23)

〈
Ψ
electron
L−3

Ôphonon
L−2

Ψ

electron

Γ+
25

〉
(4.24)

〈
Ψ
electron
L−3

Ôphonon
L−3

Ψ

electron

Γ+
25

〉
(4.25)

This is investigated by way of the Clebsch-Gordan coe�cients or coupling constants

which will be derived in the subsequent chapter.
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Chapter 5

Computation of Clebsch-Gordan

Coe�cients

In this chapter we explore the fundamental concepts of Clebsch-Gordan coe�cients and

the unitary matrix. We commence from the description of the coupling constants before

we analyse their utilization in comprehending scattering processes in crystals. This

is then followed by a section on the construction of group representations before we

delve into a step by step computation of the coupling constants. The derived coupling

constants are used to interpret the intra-band scattering of electrons by phonons from

the Brillouin zone edge at high symmetry point L−3 to the zone centre at the critical

point Γ+
25 within the valence band of Ge.

5.1 Description of Clebsch-Gordan coe�cients

The coupling constants are of utmost importance as they are entwined to elements

of scattering tensors which enable one to comprehend the scattering phenomena in

crystals[6]. The scattering processes in crystals have a signi�cant bearing on the mobil-

ity of carriers and other transport phenomena. Clebsch-Gordan Coe�cients are sets of

numbers that are used to transform the outer product or tensor product or Kronecker

product of two irreducible representations of a group G into a form that is suitable

42
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CHAPTER 5. COMPUTATION OF CLEBSCH-GORDAN COEFFICIENTS 43

for process interpretation. 1. The outer product representation is carried by a tensor

product space and this can be reduced under the group G. The reduction of the outer

product of representations into irreps of G requires a basis transformation of the tensor

product spaces.2

The basis transformation is accomplished by way of using the unitary matrix. The

unitary matrix U is made up of orthonormal bases of Hilbert spaces or tensor product

spaces. The transformation from one orthonormal basis to another is done using the

unitary matrix[21]. A possible change of basis vectors is thus done by the unitary matrix

which preserves orthonormality and this simpli�es calculations.

CGCs can therefore be de�ned as elements of the unitary matrix-U, that decomposes

the Kronecker product of two irreducible representations into a sum of blocks of irrps

contained in the Kronecker product D{
∗k}l � D{

∗k′}l′ . The unitary matrix transforms

the irreps into a completely reduced form by way of the operation given by equation

(5.1)

U−1D{
∗k}l �D{

∗k′}l′U =
∑
l′′

Cll′ l
′′D{

∗k′′}l′′ (5.1)

Where D is the representation of a given wavevector,

U is the unitary matrix that transforms the KP of two irreps into a fully decomposed

form;

∗k,∗ k′,∗ k′′ are the stars3 of the wavevectors k , k′ and k′′ respectively.

The unitary matrix or CGCs matrix gives basis functions of irrps (l′′) permitted by

symmetry in terms of product wave functions l⊗l′ . The unitary matrix also diagonalizes

any KP of two irrps l⊗l′ and transfoms the irrps l′′ to the diagonal block form matrix[21].

CGCs can also be explained as coe�cients entwined between basis functions of the irreps

contained in the KP and the basis functions of the product of the of the two irreps.

1We de�ne a group as a set of symmetry elements that has a law of combination which is applicable
to all the group elements in such a way that four fundamental axioms- associativity, identity, inverse
and closure hold.

2Reduction of a representation is the process of producing a number of representations that are
smaller in terms of dimensions from those that have higher dimensions

3A star is a collection of valleys that have an equal number of charge carriers and have the same
energy hence they are equivalent.
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The irreps denotes the states of the particles that take part in a scattering process[6] .

Mathematically, the above concepts are given by the equation (5.2)

Ψ
k′′
σ′′ l
′′γ

a′′ =
∑
σa

∑
σ′a′

(
klk′l′|k′′l′′γ
σaσ′a′|σ′′a′′

)
φkσla φ

k′σl
′

a′ (5.2)

The matrix elements of the Clebsch-Gordan coe�cients are given by equation (5.3)

(
klk′l′|k′′l′′γ
σaσ′a′|σ′′a′′

)
= Uσlσ

′l′;σ′′l′′γ
aa′;a′′ (5.3)

Where a, a
′
are the matrix elements of the KP l � l

′
,

a′′ are the matrix elements of the representation l′′, contained in the product l � l
′

k, k
′
and k′′ are the wavevectors of the particles participating in the scattering pro-

cesses.

5.2 Clebsch-Gordan coe�cients in scattering

Birman and Berenson[6] showed the use of CGCs to comprehend scattering processes.They

described the phenomenon of light scattering brought about by quasi-particles such as

phonons in a crystal lattice. They utilised coupling constants to interpret this phe-

nomenon. They considered photons incident on a solid crystal and polarised in the

direction β . If the scattered photons are polarised in a di�erent direction ,α, then the

intensity of the scattered light is given by equation (5.4)

I = C | ε2αPαβε1β |2 (5.4)

where C is a constant,

ε2α refers to the Cartesian components of the scattered light whereby α= 1,2,3,

ε1β refers to the Cartesian components of the incident radiation whereby β= 1,2,3,

Pαβ is a scattering tensor and it relates the incident radiation to the outgoing scat-

tered radiation.
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In line with equation (5.4), the intensity for a �rst order one excitation process is

given by equation (5.5)

I ′ = C ′ | ε2αP (1)
αβ (jσ) ε1β |2 (5.5)

where jσ denotes the symmetry of the excitation under consideration.

The excitations under consideration can be phonons, magnons, polaritons and so

on. For scattering of light by phonons, jσ represents the symmetry of the phonons for

the �rst order phenomenon. Likewise, if we consider a second order or two excitation

phenomenon, the intensity will be given by equation (5.6)

I ′′ = C ′′ | ε2αP (2)
αβ

(
jσ; j′σ′

)
ε1β |2 (5.6)

The terms jσ; j′σ′ shows that we are dealing with a second order or two excita-

tion process and they represent the symmetry of the excitations under consideration.

In order to comprehend the scattering phenomena, Birman and Berenson[6] put into

consideration the symmetry of the crystal and the transformations of various elements

in the lattice structure. These two important aspects of the scattering phenomena are

dealt with in the sub-section that follows.

5.2.1 Crystal symmetry considerations

The symmetry of the space group to which the crystal lattice belongs is of critical

importance in describing the scattering process. The transformation of any symmetry

element in the given space group, G, is described by equation (5.7)

S =
(
Φs | ~ts

)
(5.7)

where S denotes a symmetry element in the crystal space group G;

Φs is a rotation transformation which is orthogonal;

~ts represents a translation symmetry in the lattice.
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If the rotation, Φs, is considered to be an orthogal matrix where S−1
λµ = Sλµ, we have

the following transformations

~r
s−→ ~r′s = Φs~rs (5.8)

rµ
s−→ r′µ =

∑
λ

Sµλrλ (5.9)

ε̂j
s−→ ε̂′j (5.10)

Qjσ
s−→ Qj

′
σ =

∑
τ

D(j) (S)τσ Q
j
τ (5.11)

Pαβ

(
~R
)

s−→ P ′αβ

(
~R
)

=
∑
λµ

SαλSβµPλµ

(
S−1 ~R

)
(5.12)

where ~r is a polar vector which transforms like the polarization vector ε̂j ;

ε̂ is a unit polarization vector;

Qjσ denotes the normal coordinates of the crystal lattice;

~R denotes the displacement of ions from their equilibrium positions as a result of the

scattering process and is given by ~R = ~R0 + ~u;

~u is a displacement vector.

5.2.2 Link between Clebsch-Gordan coe�cients and scattering tensors

The scattering tensor term, Pαβ , can be given in the form of Taylor expansion as shown

by equation (5.13),

Pαβ

(
~R
)

= P
(0)
αβ

(
~R0
)

+
∑
jσ

P
(1)
αβ

(
~R0;jσ

)
Qjσ +

∑
jj′

∑
σσ′

P
(2)
αβ

(
~R0;jσ; j′σ′

)
QjσQ

j′

σ′ + ...

(5.13)

The terms linear inQjσ yields a one phonon scattering process while the bilinear terms
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QjσQ
j′

σ′ gives a two phonon scattering process. Pαβ = Pβα since the scattering tensor

used to describe phonons is symmetric and because of crystal symmetry Pαβ = P ′αβ .

The operators in equation (5.13) transform as a second-rank Cartesian tensors and are

given by equations (5.14) and equations (5.15) and (5.16) in the �rst and second order

respectively.

Pαβ

(
~R
)

=
∑
λµ

SαλSβµPλµ

(
S−1 ~R

)
(5.14)

P
(1)
αβ (jσ) =

∑
λµ

SαλSβµ
∑
τ

D(j)
(
S−1

)
τσ
P

(1)
λµ (jτ) =

∑
λµ

∑
τ

SαµSβµD
(j) (S)∗στ (jτ)

(5.15)

P
(2)
αβ

(
jσ; j′σ′

)
=
∑
λµ

∑
ττ ′

SαλSβµD
(j) (S)∗στ (jτ)D(j) (S)∗σ′τ ′ × P

(2)
λµ

(
jτ ; j′τ ′

)
(5.16)

Birman and Berenson[6] utilised these equations as a basis for the derivation of

scattering tensor elements. After manipulating these equations, they came up with a

crucial link between Clebsch-Gordan coe�cients and elements of scattering tensors. For

instance, for the �rst order phenomenon the relationship is given by equation (5.17).

P
(1)
αβ (jσ) =

∑
λµτ

UαβjσU
−1
jτλµP

(1)
λµ (jτ)

1

lj
(5.17)

where lj represents the dimension of the irreducible representation D(j);

U is the Clebsch-Gordan coe�cients matrix.

Therefore, the elements of the �rst order scattering tensor are actually Clebsch-

Gordan coe�cients multiplied by a consant. Moreover Birman and Berenson[6] further

proved that elements of the second-order scattering tensor are bilinear sums of Clebsch-

Gordan coe�cients. In order to comprehend sacttering processes, the computation of
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the Clebsch-Gordan coe�cients is therefore of paramount importance as they are utilised

in interpreting scattering processes. We hereby compute the coupling constants in the

section that follows.

5.3 Derivation of Clebsch-Gordan coe�cients

In order to derive Clebsch-Gordan coe�cients the initial stage is the construction of

group representations for the space group under consideration. In this case we need the

irreducible representations for O7
h space group. The derivation of the matrix representa-

tions for the particles or quasi-particles participating in the scattering process requires

the following:

� Symmetry elements of the group under consideration � the symmetry elements

and the group are analogous to vectors in a linear vector space;

� Generators or augumenters for the derivation of all the group members - the gen-

erators are analogous to the basis vectors that span a vector space;

� The BZ of the O7
h space group that shows the critical symmetry points and lines;

� The electronic band structure of the crystal of interest- in this case it is Ge;

� The multiplication table of the O7
h space group as it shows explicitly the structure

of the group by showing all the possible products of the elements of the O7
h space

group and

� Standard matrices.

The initial stage in the construction of representations is to commence from a set of

linearly independent functions or basis. We then apply an operator ÔR to each of the

elements g of the O7
h space group. This process yields a set of n functions Ψ1,Ψ2 . . .Ψn.

If the operator ÔR now acts on these functions or basis, the outcome can be given as a

linear combination of the same n functions[22], that is
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ÔRψν =

n∑
µ=1

ΨµDµν(R) (5.18)

where υ = 1, ..., n.

The matrix representation that corresponds to the elementR isD(R). From equation

(5.18) and from the equation ÔSR = ÔSÔR we have

ÔSRψν = ÔSÔRψν = ÔS

n∑
µ=1

ΨµDµν(R) (5.19)

=

n∑
µ,σ=1

ΨσDσµ(S)Dµν(R)

=

n∑
σ=1

Ψσ

 n∑
µ=1

Dσµ(S)Dµν(R)


but

ÔSRψν =

n∑
σ=1

ΨσDσµ(SR) (5.20)

so

Dµν (SR) =
n∑
σ=1

Dσµ(S)Dµν(R) (5.21)

therefore

D(SR) = D(S)D(R) (5.22)

A given representation changes its form if we make a di�erent choice of basis, but it is

still the same. Two representations that are equivalent may di�er because of the choice

of basis functions used to express them even though their basic nature is similar. This

is where the unitary matrix becomes extremely important. Changing from one basis to

another alternates a matrix from R to R′. This is the same as a linear transformation

Y = Ax. This linear transformation is given by equation (5.23)

R
′

= A′RA (5.23)
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where R
′
and R are similar in nature.

The symmetry transformation given by R
′

= A′RA is a similarity transformation.

The diagonal sum or trace or character of a matrix becomes of paramount importance

because it is invariant under a similarity transformation. A set of basis functions could

be given in terms of x, y, z in space. The basis vectors could also be given in terms of

the x, y and z unit vectors. The outcome of a group operation, ÔR, when it operates on

a set of basis vectors or alternatively basis functions is a vector or a function which can

be expressed as an apt linear combination of the basis vectors or functions . Therefore

the group must show invariance under the group symmetry operations.

A group symmetry operation changes basis functions given in terms of (x, y, z) into

new functions (x
′
, y
′
, z
′
) which are a linear combination of the original functions. The

symmetry transformation can be given in various ways that are suitable to the phe-

nomenon and the group representations under consideration. For instance we can have

representations of 3 × 3 matrices acting on a 3-dimensional column vectors. The use

of matrix representations are commonly used to denote group representations because

non-commutative multiplication is possible and this represents system interaction.

Consider the basis (x, y, z) undergoing a transformation to (x
′
, y
′
, z
′
) after being

acted upon by group members g = E,C+
6 , C

+
3 , C

−
3 , C2, . . ., where g is a symmetry ele-

ment of the O7
h space group. The matrix representation D(g) can be 1×1, 2Ö2, 3Ö3 etc

according to the degeneracy of the irreps of the group or sub-group under consideration.

The matrix representation, for instance- for the identity representation, E , can be given

in the form depicted by equation 5.24

E :

x
′ → x

y
′ → y

z
′ → z


x
′

y
′

z
′

 =


1 0 0

0 1 0

0 0 1




x

y

z

 (5.24)

Likewise the matrix representation for the element C+
6 is given by
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C+
6 : ϕ =

2π

6
= 60◦ :

x
′ → x+ y

y
′ → −x

z
′ → z


x
′

y
′

z
′

 =


1 1 0

−1 0 0

0 0 1




x

y

z

 (5.25)

Therefore if we consider a basis ψi, i = 1, . . . , n, where ψi = {ψ1, ψ2, ψ3, ...} . We

operate on the basis by the symmetry elements of the O7
h space group so that it is used

to generate all the possible matrix representations of the states of particles or quasi-

particles participating in the scattering processes at a given high symmetry point on the

BZ. Dji represents the n ×m matrices that can be decomposed or reduced into irreps

of smaller dimensions.

The irreducible representations are of paramount importance as they give important

information about the system under consideration. Irreducible representations can be

viewed as the `atoms' or building blocks of group representations . A representation of

a given dimension is said to be reducible if it can be given as a sum of representations

of smaller dimensions that cannot be decomposed to a lower form. For instance, the

representationD
(3×3)
(g) in equation (5.26)can be decomposed to irreps of lower dimensions.

D
(3×3)
(g) = D

(1×1)
(g) ⊕D(2×2)

(g) (5.26)

5.4 Scheme for diagonal and non-diagonal matrix elements

After the derivation of all the matrix representations for the high symmetry points L

and Γ we need schemes for diagonal and non-diagonal matrix elements. Consider an

electron scattered by a phonon from the Brillouin zone edge, at high symmetry L−3 , to

the zone centre, critical point Γ+
25. This electron- phonon interaction in the valence band

of Ge is represented by the Kronecker product hereby stated:

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3
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When deriving Clebsch-Gordan coe�cients we take the KP that encompass three high

symmetry points, for instance from the KP above we have:

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim (5.27)

The product of a 2-dimensional matrix, 3-dimensional matrix and a 1-dimensional matrix

gives a 6-dimensional matrix, that is;

 a11 a12

a21 a22

×

b11 b12 b13

b21 b22 b23

b31 b32 b33

× c11

=



a11b11c11 a11b12c11 a11b13c11 a12b11c11 a12b12c11 a12b13c11

a11b21c11 a11b22c11 a11b23c11 a12b21c11 a12b22c11 a12b23c11

a11b31c11 a11b32c11 a11b33c11 a12b31c11 a12b32c11 a12b33c11

a21b11c11 a21b12c11 a21b13c11 a22b11c11 a22b12c11 a22b13c11

a21b21c11 a21b22c11 a21b23c11 a22b21c11 a22b22c11 a22b23c11

a21b31c11 a21b32c11 a21b33c11 a22b31c11 a22b32c11 a22b33c11


(5.28)

Using the dimensions and positions of the matrix elements we construct schemes for

diagonal and non-diagonal elements of the matrices as depicted by tables 5.1, 5.2, 5.3,

5.4, 5.5, 5.6 and 5.7.
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Table 5.1: Clebsch-Gordan coe�cients scheme for diagonal matrix elements

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Diagonal
Matrix
Elements

11
22

11
22
33

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Diagonal
Elements

11
11
11
22
22
22

11
22
33
11
22
33

11
11
11
11
11
11
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Table 5.2: Clebsch-Gordan coe�cients scheme for the �rst non-diagonal matrix elements
derived from the diagonal elements 11 11 11

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Non− diagonal

Matrix
Elements

11
21

11
21
31

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Non− diagonal
Elements

11
11
11
21
21
21

11
21
31
11
21
31

11
11
11
11
11
11
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Table 5.3: Clebsch-Gordan coe�cients scheme for the second non-diagonal matrix ele-
ments derived from the diagonal elements 11 22 11.

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Non− diagonal

Matrix
Elements

11
21

12
22
32

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Non− diagonal
Elements

11
11
11
21
21
21

12
22
32
12
22
32

11
11
11
11
11
11
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Table 5.4: Clebsch-Gordan coe�cients scheme for third non-diagonal matrix elements
derived from the diagonal elements 11 33 11.

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Non− diagonal

Matrix
Elements

11
21

13
23
33

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Non− diagonal
Elements

11
11
11
21
21
21

13
23
33
13
23
33

11
11
11
11
11
11
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Table 5.5: Clebsch-Gordan coe�cients scheme for fourth non-diagonal matrix elements
derived from the diagonal elements 22 11 11.

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Non− diagonal

Matrix
Elements

12
22

11
21
31

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Non− diagonal
Elements

12
12
12
22
22
22

11
21
31
11
21
31

11
11
11
11
11
11
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Table 5.6: Clebsch-Gordan coe�cients scheme for the �fth non-diagonal matrix elements
derived from the diagonal elements 22 22 11.

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Non− diagonal

Matrix
Elements

12
22

12
22
32

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Non− diagonal
Elements

12
12
12
22
22
22

12
22
32
12
22
32

11
11
11
11
11
11
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Table 5.7: Clebsch-Gordan coe�cients scheme for the sixth non-diagonal matrix ele-
ments derived from the diagonal elements 22 33 11.

Primary
Kronecker
Product

(
L−3
)e−initial ⊗ (Ã+

25

)e−final = L−1 + L−2 + 2L−3

Secondary
Kronecker
Product

(
L−3
)2−dim ⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim
High

Symmetry
Points
Under

Consideration

L−3 Ã
+
25 L−2

Dimension 2− dim 3− dim 1− dim
Non− diagonal

Matrix
Elements

12
22

13
23
33

11

Possible
Combinations

of
Matrix
Elements
Derived
from
the

Non− diagonal
Elements

12
12
12
22
22
22

13
23
33
13
23
33

11
11
11
11
11
11
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In order to use the schemes shown by tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 we need

the matrix representations for the high symmetry points L and Γ. From the secondary

Kronecker product under consideration-
(
L−3
)2−dim⊗ (Ã+

25

)3−dim 3 (L−2 )1−dim, the crit-
ical symmetry points that are of interest are L−3 , Ã

+
25 and L−2 . The matrix irreducible

representations for these high symmetry points are as as depicted by table 5.8. The

group GkΓ at point Γ has 48 symmetry elements. The sub-group at point L- GkL has

12 symmetry elements indicated in table 5.8. Using Lagrange's theorem we have

[
GkΓ

]
= n×

[
GkL

]
(5.29)

where
[
GkΓ

]
refers to the number of elements in the group, GkΓ ;

n is an integer and[
GkL

]
is the number of elements in the subgroup GkL .

Using the theory of coset decomposition, the number of cosets at point L is given

by:

Number of cosets =
Number of elements in the group GkΓ

Number of elements in the subgroup GkL

(5.30)

=

[
GkΓ

]
[GkL ]

=
48

12

= 4

This points to the concept of degeneracy at high symmetry point L. Therefore we

have four splittings at the Brillouin zone edge at point L. The matrix representations
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Table 5.8: Matrix representations for L−3 , Γ
+
25 and L−2 for Ge, O7

h space group, for the
symmetry elements 1,5,9,13,17 and 21.

High
Symmetry
Points

O7
h

Symmetry
Elements

1 5 9 13 17 21

L−3
1 0
0 1

ω∗ 0
0 ω∗

ω 0
0 ω∗

0 −1
−1 0

0 −ω∗
−ω 0

0 −ω
−ω∗ 0

Ã
+
25

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

L−2 1 1 1 −1 −1 −1

Table 5.9: Matrix representations for L−3 , Γ
+
25 and L−2 for Ge, O7

h space group for the
symmetry elements 25,29,33,37,41 and 45

High
Symmetry
Points

O7
h

Symmetry
Elements

25 29 33 37 41 45

L−3
−1 0
0 −1

−ω∗ 0
0 −ω

−ω 0
0 −ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

Ã
+
25

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

L−2 −1 −1 −1 1 1 1

for all the symmetry elements of L−3 are 2× 2 matrices because L−3 is two-dimensional.

For Ã+
25 we use 3× 3 matrices because this critical symmetry point is three-dimensional.

The same principle is applied to L−2 which is a one-dimensional high symmetry point.

Using the mathematical theory for the computation of coupling constants [23][24]

we determine elements of the unitary matrix or the Clebsch-Gordan coe�cients matrix

using the equation (5.31)

U|a|a′|a′′.U
∗
|ā0|ā′0|ā′′0

=
dim− dkl′′

[GkL ]

∑
x∈G

d
kl=
−→
k
L−3 (ϕx | τx)aā0d

kl′=
−→
k

Γ+
25 (ϕx | τx)a′ā′0d

kl′′=
−→
k
L−2 (ϕx | τx)∗a′′ā′′0

(5.31)

where U is the Clebsch-Gordan coe�cients matrix;
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U∗ is the complex conjugate of the Clebsch-Gordan coe�cients matrix;

a, a′ and a′′ refers to the matrix elements of the irreducible representations l, l′ and

l′′ and these irreps corresponds to the high symmetry points L−3 ,Γ+
25 and L−2 ;

dim− dkl′′ refers to the dimensions of L−2 which is 1 in this case;

[GkL ] is the order of the group GkL which is 12 in our case;

kl =
−→
k L−3

; kl′ =
−→
k Γ+

25
and kl′′ =

−→
k L−2

refers to the wave vectors (momenta ~k) of

the particles or quasi-particles involved in the scattering process- electrons and phonons

in our case;

aā0, a
′ā′0 and a′′ā′′0 gives the positions of the diagonal and non-diagonal matrix

elements, for L−3 ,Γ
+
25 and L−2 as shown by table 5.10

Utilising equation (5.31) we hereby present an example of a table that can be used

for the derivation of the coupling constants derived from the non-diagonal elements

generated from the diagonal elements 22 33 11.
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Table 5.10: Example of table of derivation of coupling constants for Ge, space group O7
h,

derived from the non-diagonal matrix elements generated from the diagonal elements 22
33 11 for symmetry elements 1,5,9,13,17,21 and 25.

Matrix
Elements
Positions

O7
h

Symmetry
Elements

L−3 Γ+
25 L−2

aā0 a′ā′0 a′′ā′′0
1 5 9 13 17 21 25

12 13 11 1
12{[1.0.1

∗] +[..]+ [..]+ [..]+ [..]+ [..]+ [..]+

12 23 11 1
12{[1.0.1

∗] +[..]+ [..]+ [..]+ [..]+ [..]+ [..]+

12 33 11 1
12{[0.1.1

∗] +[..]+ [..]+ [..]+ [..]+ [..]+ [..]+

22 13 11 1
12{[1.0.1

∗] +[..]+ [..]+ [..]+ [..]+ [..]+ [..]+

22 23 11 1
12{[1.0.1

∗] +[..]+ [..]+ [..]+ [..]+ [..]+ [..]+

22 33 11 1
12{[1.1.1

∗] +[..]+ [..]+ [..]+ [..]+ [..]+ [..]+
(a) Example of table of derivation of coupling constants for Ge, space group O7

h, derived from the
non-diagonal matrix elements generated from the diagonal elements 22 33 11 for symmetry elements
29,33,37,41 and 45.

Matrix
Elements
Positions

O7
h

Symmetry
Elements

U2

L−3 Γ+
25 L−2

aā0 a′ā′0 a′′ā′′0
29 33 37 41 45

12 13 11 +[0.0.− 1∗] +[..]+ [..]+ [..]+ [ω.0.1∗]} =ω∗

6

12 23 11 +[0.1.− 1∗] +[..]+ [..]+ [..]+ [ω.0.1∗]} =1
6

12 33 11 +[0.0.− 1∗] +[..]+ [..]+ [..]+ [ω.1.1∗]} =ω
6

22 13 11 +[−ω.0.− 1∗] +[..]+ [..]+ [..]+ [0.0.1∗]} =ω
6

22 23 11 +[−ω.1.− 1∗] +[..]+ [..]+ [..]+ [0.0.1∗]} =ω
6

22 33 11 +[−ω.0.− 1∗] +[..]+ [..]+ [..]+ [0.1.1∗]} =1
6
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Using the calculated values of the square of the elements of the U-matrix as depicted

in the table 5.10a, we hereby present the Clebsch-Gordan coe�cients for the blocks

U111, U121, U131, U211, U221 and U231.

|U2

12 13 11
| = ω∗

6
=⇒ U

12 13 11
= ±

√
ω∗

6
(5.32)

|U2

12 23 11
| = 1

6
=⇒ U

12 23 11
= ±

√
1

6
(5.33)

|U2

12 33 11
| = ω

6
=⇒ U

12 33 11
= ±

√
ω

6
(5.34)

|U2

22 13 11
| = ω∗

6
=⇒ U

22 13 11
= ±

√
ω∗

6
(5.35)

|U2

22 23 11
| = ω

6
=⇒ U

22 23 11
= ±

√
ω

6
(5.36)

|U2

22 33 11
| = 1

6
=⇒ U

22 33 11
= ±

√
1

6
(5.37)

The six di�erent blocks and their respective Clebsch-Gordan coe�cients are:

U111 = ±
√
ω∗

6

U121 = ±
√

1

6

U131 = ±
√
ω

6

U211 = ±
√
ω∗

6
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U221 = ±
√
ω

6

U231 = ±
√

1

6

The same procedure was done for all the non-diagonal elements that yielded the

coupling constants shown in tables 6.1, 6.2, 6.3 and 6.4.
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Chapter 6

Results and Discussion

In this chapter we present the derived Clebsch-Gordan coe�cients that are utilised in the

interpretation of the electron-phonon scattering process within the valence band of Ge.

We use the calculated coupling constants and the experimental evidence to comprehend

the phenomenon that happens when electrons are scattered by phonons from the Brilloun

zone edge, at the critical point L−3 , to the zone centre at high symmetry point-Γ+
25.

6.1 Results

We hereby present the calculated Clebsch-Gordan coe�cients in tabular form for clarity

purpose. For the secondary Kronecker products L−3 ⊗Ã
+
25 3 L

−
2 and L

−
3 ⊗Ã

+
25 3 L

−
1 , the

blocks under consideration are U111,U121,U131,U211,U221 and U231. We derived these

coupling constants from six di�erent types of non-diagonal matrix elements. The last

columns of table 6.1 and table 6.2 shows the outcomes of the summation of the U -matrix

and its complex conjugate U∗. This yielded a 0 for the two respective cases. Tables 6.3

and 6.4 shows the calculated Clebsch-Gordan coe�cients for the secondary Kronecker

product L−3 ⊗Ã
+
25 3 L

−
3 . The coupling constants are derived from twelve di�erent types

of non-diagonal matrix elements. In this case the blocks under consideration are of two

types, that is U111, U121, U131, U211, U221, U231 and U112, U122, U132, U212, U222, U232. The

summation of the U - matrix and its complex conjugate U∗yielded a 0 and a 1 for some

66
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Table 6.1: Clebsch-Gordan coe�cients for the Kronecker product L−3 ⊗Γ
+
25 3 L

−
2 for Ge,

O7
h space group.

Clebsch− Gordan
Coefficients from
Non− diagonal Elements

Block 1st 2nd 3rd 4th 5th 6th
∑
UU∗

U111

√
1
6

√
ω
6

√
ω∗

6

√
1
6

√
ω∗

6

√
ω
6 0

U121

√
ω
6

√
ω∗

6

√
1
6

√
ω
6

√
1
6

√
ω∗

6 0

U131

√
ω∗

6

√
1
6

√
ω
6

√
ω∗

6

√
ω
6

√
1
6 0

U211

√
1
6

√
ω
6

√
ω∗

6

√
1
6

√
ω∗

6

√
ω
6 0

U221

√
ω∗

6

√
1
6

√
ω
6

√
ω∗

6

√
ω
6

√
1
6 0

U231

√
ω
6

√
ω∗

6

√
1
6

√
ω
6

√
1
6

√
ω∗

6 0

blocks as depicted in tables 6.3 and 6.4.
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Table 6.2: Clebsch-Gordan coe�cients for the Kronecker product L−3 ⊗Γ
+
25 3 L

−
1 for Ge,

O7
h space group.

Clebsch− Gordan
Coefficients from
Non− diagonal Elements

Block 1st 2nd 3rd 4th 5th 6th
∑
UU∗

U111 i
√

1
6 i

√
ω
6 i

√
ω∗

6

√
1
6

√
ω∗

6

√
ω
6 0

U121 i
√

ω
6 i

√
ω∗

6 i
√

1
6

√
ω
6

√
1
6

√
ω∗

6 0

U131 i
√

ω∗

6 i
√

1
6 i

√
ω
6

√
ω∗

6

√
ω
6

√
1
6 0

U211

√
1
6

√
ω
6

√
ω∗

6 i
√

1
6 i

√
ω∗

6 i
√

ω
6 0

U221

√
ω∗

6

√
1
6

√
ω
6 i

√
ω∗

6 i
√

ω
6 i

√
1
6 0

U231

√
ω
6

√
ω∗

6

√
1
6 i

√
ω
6 i

√
1
6 i

√
ω∗

6 0

Table 6.3: Clebsch-Gordan coe�cients for the Kronecker product L−3 ⊗Γ
+
25 3 L

−
3 for Ge,

O7
h space group [blocks U111,U121,U131,U211,U221 and U231]

Block 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
∑
UU∗

U111
1√
3

0 1√
3

0 1√
3

0 0 1√
3

0 1√
3

0 1√
3

1

U121
1√
3

0 1√
3

0 1√
3

0 0 1√
3

0 1√
3

0 1√
3

1

U131
1√
3

0 1√
3

0 1√
3

0 0 1√
3

0 1√
3

0 1√
3

1

U211 0 1√
3

0
√

ω
3 0

√
ω∗

3
1√
3

0
√

ω∗

3 0
√

ω
3 0 0

U221 0
√

ω
3 0

√
ω∗

3 0 1√
3

√
ω
3 0 1√

3
0

√
ω∗

3 0 0

U231 0
√

ω∗

3 0 1√
3

0
√

ω
3

√
ω∗

3 0
√

ω
3 0 1√

3
0 0

Table 6.4: Clebsch-Gordan coe�cients for the Kronecker product L−3 ⊗Γ
+
25 3 L

−
3 for Ge,

O7
h space group [blocks U112,U122,U132,U212,U222 and U232]

Block 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
∑
UU∗

U112 0 1√
3

0
√

ω
3 0

√
ω∗

3
1√
3

0
√

ω∗

3 0
√

ω
3 0 0

U122 0
√

ω∗

3 0 1√
3

0
√

ω
3

√
ω∗

3 0
√

ω
3 0 1√

3
0 0

U132 0
√

ω
3 0

√
ω∗

3 0 1√
3

√
ω
3 0 1√

3
0

√
ω∗

3 0 0

U212
1√
3

0 1√
3

0 1√
3

0 0 1√
3

0 1√
3

0 1√
3

1

U222
1√
3

0 1√
3

0 1√
3

0 0 1√
3

0 1√
3

0 1√
3

1

U232
1√
3

0 1√
3

0 1√
3

0 0 1√
3

0 1√
3

0 1√
3

1
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6.2 Discussion of results

The dynamics of a quasi-particle or a particle is explained using the wave function- ψ.

The wave function has the possible information of the system that can be measured.

The wave function cannot be measured directly because it is a true complex function.

In order to get a real value we have to measure its intensity which is given by

ψ(~r, t)ψ(~r, t)∗ = |ψ(~r, t)|2 (6.1)

This intensity is a measure of the particle's presence in a space under considerations.

The likelihood of �nding the particle is directly proportional to |ψ(r, t) |2[25]. If we

are certain that the particle is de�nitely in a given space, we normalise the intensity,

|ψ(~r, t) | 2, so that integration perfomed over all space yields a unity, that is

∫ +∞

−∞
[ψ(~r, t)ψ(~r, t)∗] = 1 (6.2)

The above equation represents the probability of �nding the system under consideration

at a particular position and time. Group theoretically, we can use the U-matrix or

Clebsch-Gordan coe�cients matrix to derive the same information. Our results shows

that the summation of the U -matrix and its complex conjugate U∗ either gives a zero

or a one, ie

∑
UU∗ = |U |2 = 1 (6.3)

∑
UU∗ = |U |2 = 0 (6.4)

For the Kronecker product L−3 � Γ+
25 3 L−1 , the summation of the product of the

U -matrix and its complex conjugate, U∗, gives a zero for all the blocks. This implies

that the type of phonon represented by L
−
1 is not allowed to take part in that transition.

Group theoretically, this means that the phonon type denoted by L
−
1 is not contained
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in the product representation L−3 � Γ+
25 .

Likewise, for the Kronecker product L−3 � Γ+
25 3 L

−
2 , the summation of the product

of the U -matrix and its complex conjugate U∗, yields a zero for all the blocks. Therefore

according to my calculations L−2 is not contained in the product L−3 �Γ+
25 . This means

that the phonon represented by L−2 does not take part in the transition.

However, for the Kronecker product L−3 � Γ+
25 3 L

−
3 , the summation of the product

of the U -matrix and its complex conjugate, U∗, yields a one for some blocks, that is∑
UU∗ = |U |2 = 1 Therefore, the phonon type represented by L−3 is allowed to take

part in this transition. The calculated Clebsch-Gordan coe�cients belongs to two types

of blocks, i.e U111, U121, U131, U211, U221, U231 and U112, U122, U132, U212, U222, U232. This

depicts degeneracy at the high symmetry point L−3 , hence we have the L
−
3 symmetry of

two kinds and this is consistent with the Kronecker product
(
L−3
)e−initial ⊗ (Ã+

25

)e−final =

L−1 +L−2 + 2L−3 . The experimentally obtained phonon dispersion curve of Ge[14] shows

the types of phonons allowed to take part in the transition of carriers in the valence and

conduction bands of Ge.

The vibration spectrum of Ge as depicted by �gure 6.1 taken from [3], shows that

L−2 represents the LA phonon, L−3 represents the TO phonon and L−1 symmetry is

completely absent. According to Lax and Hop�eld[17], in the valence band the electron-

phonon transition is represented by the Kronecker product hereby stated,

L−3 ⊗ Ã
+
25 = L−1 + L−2 + 2L−3

which implies that

L−3 ⊗ Γ+
25 = none+ LA+ 2TO (6.5)

However my calculations shows that for the electron-phonon transition from L−3 to Γ+
25 ,

the LA phonon doesn't take part although it is present in some transitions in the valence

band of Ge. It is only the TO phonons that take part in this transition. Therefore the

Kronecker product has to be modi�ed to equation (6.6), ie
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Figure 6.1: The vibration spectrum for Ge [14].
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L−3 ⊗ Ã
+
25 = L−1 + L−2 + 2L−3

which implies that

L−3 ⊗ Ã
+
25 = none+ none+ 2TO (6.6)

Analysis of the phonon dispersion curves obtained by Brockhouse and Iyengar[14] shows

that our theoretical results are consistent with the experimental outcome which shows

that it is only the transverse optical phonons that participate in the scattering of elec-

trons from the Brillouin zone edge at point L−3 to the zone centre at point Ã+
25. The

phonon dipersion curve as depicted by �gure 6.1 is in good agreement with our theo-

retical outcome as shown by equation (6.6). We have therefore modi�ed equation (6.5)

which is given as such in the article by Lax and Hop�eld[17].
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Chapter 7

Conclusion

Using group theoretical techniques, we have calculated Clebsch-Gordan coe�cients that

are used to interpret the scattering of electrons by phonons from the Brillouin zone edge

of germanium
(
O7
h

)
at the high symmetry point L−3 to the zone centre at high symmetry

point Γ+
25. Using the computed coupling constants we also found out that when electrons

are scattered by phonons from the Brillouin zone edge at high symmetry point L−3 to the

zone centre at point Γ+
25 within the valence band of Ge, both the LA and TO phonons

are present but only the TO phonons participate in the scattering process. The LO

phonons are completely absent for these types of transitions in the valence band of Ge.

Our �ndings are consistent with the vibration spectrum for Ge experimentally obtained

by Brockhouse and Iyenger[14].

We explicitly showed that the Clebsch-Gordan coe�cients are computed from the

non-diagonal matrix elements. It is therefore the non-diagonal matrix elements that

carry the essential information. We have also deduced that the summation of the product

of the U -matrix and its complex conjugate, U∗, either gives a 0 or a 1 for di�erent blocks

under consideration, i.e ∑
UU∗ = |U |2 = 1

or ∑
UU∗ = |U |2 = 0
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CHAPTER 7. CONCLUSION 74

Table 7.1: Types of phonons and symmetry assignments for scattering of electrons from
L−3 to Γ+

25 in the valence band of Ge for the Kronecker product L
−
3 ⊗Ã

+
25 = L−1 +L−2 +2L−3

Phonon
Type

Sym
Assign

Presence in
Ge V B

Partcipation in scattering
of electrons from
L−3 to Γ

+
25

in Ge V B

∑
UU∗

TO L−3
√ √

1
for
some
blocks

LA L−2
√

×

0
for
all

blocks

LO L−1 × ×

0
for
all

blocks

We have interpreted this to mean that the perturbation factor is either allowed to take

part in the transition or forbidden. In our case the pertubation factor are the phonons.

Table 7.1 is a summary of our group theoretical outcomes.

Our results can be applicable to similar semiconductors such as silicon. As outlined

in the introductory chapter of this dissertation we can conclude that the objectives of

this work have been met.

7.1 Future work

The possibility of using Clebsch-Gordan coe�cients to describe scattering processes in

doped crystals is an area that may be of interest. Moreover the possibility of utilising

Clebsch-Gordan coe�cients to determine the strength of electron-phonon scattering in

various channel directions in the Brillouin zone of germanium and similar crystals is an

area that still needs to be explored. The role played by electron-phonon scattering in

the physics of quantum dots, nano-structures and the �eld of lasers provide interesting

ground for future work.
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Appendix A

Irreps at the L-point for O7
h space

group

The group GkL is a subgroup of the group GkΓ . The high symmetry points at L are

L1±, L2±, L3±, L4±, L5± and L6± .At the high symmetry point L we have 12 symmetry

elements, that is 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41 and 45. In order to generate

the matrix representations for all the symmetry elements at point L we use generators

or augumenters. The generators at L are the symmetry elements 9, 13 and 37. For

instance, using the O7
h multiplication table as shown in appendix E we can generate the

matrix representations for the symmetry elements 5 and 17 by 9×9 = 5 and 13×9 = 17

respectively. Using the O7
h combination table, all the matrix irreducible representations

at the L point are generated.
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APPENDIX A. IRREPS AT THE L-POINT FOR O7
H SPACE GROUP 76

Table A.1: Irreducible representations for the high symmetry point L, O7
h space group,

for symmetry elements 1,5,9,13,17 and 21.

L Identity 9× 9 = 5 Gen Gen 13× 9 = 17 9× 13 = 69( ¯21)

Sym
Ele

1 5 9 13 17 21

L+
1 1 1 1 1 1 1

L−1 1 1 1 1 1 1

L+
2 1 1 1 −1 −1 −1

L−2 1 1 1 −1 −1 −1

L+
3

1 0
0 1

ω∗ 0
0 ω

ω 0
0 ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

L−3
1 0
0 1

ω∗ 0
0 ω

ω 0
0 ω∗

0 −1
−1 0

0 −ω∗
−ω 0

0 −ω
−ω∗ 0

L+
4 1 1 −1 i −i i

L−4 1 1 −1 i −i i

L+
5 1 1 −1 −i i −i

L−5 1 1 −1 −i i −i

L+
6

1 0
0 1

ω 0
0 ω∗

−ω∗ 0
0 −ω

0 1
−1 0

0 −ω
ω∗ 0

0 ω∗

−ω 0

L−6
1 0
0 1

ω 0
0 ω∗

−ω∗ 0
0 −ω

0 −1
1 0

0 ω
−ω∗ 0

0 −ω∗
ω 0

(a) Irreducible representations for the high symmetry point L, O7
h space group, for symmetry elements

25,29,33,37,41 and 45.

L 5× 33 = 73 37× 21 = 77 21× 37 = 33 Gen 37× 9 = 41 37× 5

Sym
Ele

25 29 33 37 41 45

L+
1 1 1 1 1 1 1

L−1 −1 −1 −1 −1 −1 −1

L+
2 1 1 1 −1 −1 −1

L−2 −1 −1 −1 1 1 1

L+
3

1 0
0 1

ω∗ 0
0 ω

ω 0
0 ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

L−3
−1 0
0 −1

−ω∗ 0
0 −ω

−ω 0
0 −ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

L+
4 1 1 −1 i −i i

L−4 −1 −1 1 −i i −i
L+

5 1 1 −1 −i i −i
L−5 −1 −1 1 i -i i

L+
6

1 0
0 1

ω 0
0 ω∗

−ω∗ 0
0 −ω

0 1
−1 0

0 −ω
ω∗ 0

0 ω∗

−ω 0

L−6
−1 0
0 −1

−ω 0
0 −ω∗

ω∗ 0
0 ω

0 1
−1 0

0 −ω
ω∗ 0

0 ω∗

−ω 0
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Appendix B

Irreps at Γ-point for O7
h space group

The group of symmetry elements at the Γ-point, GkΓ is the main group in the �rst Bril-

louin zone of the O7
h space group. At this high symmetry point we have 48 symmetry

elements. The generators or augumenters in a group as shown by table B.1 act like basis

vectors in a vector space. The basis vectors span a vector space and generate all the

vector space elements. The generators span a group and generate all the representa-

tions for the group elements. At the Γ-point the critical symmetry points that we are

considering are Γ1±, Γ2±, Γ3±, Γ4± and Γ5±.
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APPENDIX B. IRREPS AT Γ-POINT FOR O7
H SPACE GROUP 78

Table B.1: Irreducible representations at the Brillioun zone centre- Γ-point, for O7
h space

group for symmetry elements 1,5,9,13,17 and 21

Γ Ident 9× 9 = 5 Gen 37× 25 = 13 13× 9 = 17 9× 13 = 2̄1
1 5 9 13 17 21

Γ+
1 1 1 1 1 1 1

Γ−1 1 1 1 1 1 1

Γ+
2 1 1 1 −1 −1 −1

Γ−2 1 1 1 −1 −1 −1

Γ+
3

1 0
0 1

ω∗ 0
0 ω

ω 0
0 ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

Γ−3
1 0
0 1

ω∗ 0
0 ω

ω 0
0 ω∗

0 −1
−1 0

0 −ω∗
−ω 0

0 −ω
−ω∗ 0

Γ+
4

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

−1 0 0
0 0 −1
0 −1 0

0 0 −1
0 −1 0
−1 0 0

0 −1 0
−1 0 0
0 0 −1

Γ−4

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

−1 0 0
0 0 −1
0 −1 0

0 0 −1
0 −1 0
−1 0 0

0 −1 0
−1 0 0
0 0 −1

Γ+
5

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

Γ−5

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

(a) Irreducible representations at the Brilloun zone centre- Γ-point, for O7
h space group for symmetry elements

25,29,33,37,41 and 45.

25 37× 21 = 29 21× 37 = 33 Gen 37× 9 = 41 37× 5 = 45

25 29 33 37 41 45

1 1 1 1 1 1

−1 −1 -1 −1 −1 −1

1 1 1 −1 −1 −1

−1 −1 −1 1 1 1

I
ω∗ 0
0 ω

ω 0
0 ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

−I −ω∗ 0
0 −ω

−ω 0
0 −ω∗

0 1
1 0

0 ω∗

ω 0
0 ω
ω∗ 0

I
0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

−

 1 0 0
0 0 1
0 1 0

 -

 0 0 1
0 1 0
1 0 0

 -

 0 1 0
1 0 0
0 0 1


−I −

 0 1 0
0 0 1
1 0 0

 −

 0 0 1
1 0 0
0 1 0

 1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

I
0 1 0
0 0 1
1 0 0

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 1 0

0 0 1
0 1 0
1 0 0

0 1 0
1 0 0
0 0 1

−I −

 0 1 0
0 0 1
1 0 0

 −

 0 0 1
1 0 0
0 1 0

 −

 1 0 0
0 0 1
0 1 0

 -

 0 0 1
0 1 0
1 0 0

 −

 0 1 0
1 0 0
0 0 1


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Appendix C

Irreps labeling at the BZ centre for

O7
h group

The labelling of the critical symmetry points varies even though we are dealing with the

same high symmetry points on a given Brillouin zone. We hereby present the equivalent

labelling of irreducible representations at the Brillouin zone centre at point Γ as depicted

by table C.1[9],[10],[11].
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APPENDIX C. IRREPS LABELING AT THE BZ CENTRE FOR O7
H GROUP 80

Table C.1: Equivalent labeling of irreducible representations at high symmetry point Γ,
for O7

h space group [9, 10, 11]

CDML Miller, Love Zak, Casher Kovalev BC Elliot BSW

Γ1+ GM1+ 1 T2005τ1 A1g Γ+ Γ1

Γ2+ GM2+ 2 T2005τ2 A2g Γ2+ Γ2

Γ3+ GM3+ 3 T2005τ3 Eg Γ12+ Γ12

Γ4+ GM4+ 5 T2005τ5 T1g Γ15+ Γ15′

Γ5+ GM5+ 4 T2005τ4 T2g Γ25+ Γ25′

Γ1− GM1- 6 T2005τ6 A1u Γ1− Γ1′

Γ2− GM2- 7 T2005τ7 A2u Γ2− Γ2′

Γ3− GM3- 8 T2005τ8 Eu Γ12− Γ12′

Γ4− GM4- 10 T2005τ10 T1u Γ15− Γ15

Γ5− GM5- 9 T2005τ9 T2u Γ25− Γ25

Γ6+ GM6+ 1̄ P205π2 Ē1g Γ6+ _

Γ7+ GM7+ 2̄ P205π1 Ē2g Γ7+ _

Γ8+ GM8+ 3̄ P205π3 F̄g Γ8+ _

Γ6− GM6- 4̄ P205π4 Ē1u Γ6− _

Γ7− GM7- 5̄ P205π5 Ē2u Γ7− _

Γ8− GM8- 6̄ P205π6 F̄u Γ8− _
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Appendix D

BZ points and coordinates for O7
h

space group

The critical symmetry points have coordinates that we use to locate their positions on

the Brillouin zone. Table D.1 shows the coordinates for the high symmetry points and

lines for the �rst Brillouin zone of the O7
h space group[11].
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APPENDIX D. BZ POINTS AND COORDINATES FOR O7
H SPACE GROUP 82

Table D.1: Lines, high symmetry points and their coordinates and single valued irre-
ducible representations for O7

h space group [11].

Points and Lines Cordinates Single-valued Irreducible representations

Γ (0, 0, 0) Γ1±,2±,3±,4±,5±
X

(
1
2 , 0,

1
2

)
X1,2,3,4 (2)R−Reps

L
(

1
2 ,

1
2 ,

1
2

)
L1±,2± (1),L3± (2)R−Reps

W
(

1
2 ,

1
4 ,

3
4

)
W1,2 (2)C −Reps

∆ (α, 0, α) ∆1,2,3,4 (1) ,∆5 (2)C −Reps
Λ (α, α, α) Λ1,2 (1) , Λ3 (2)R−Reps
Σ (α, α, 2α) Σ1,2,3,4 (1)C −Reps
Q

(
1
2 ,

1
4 + α, 3

4 + α
)

Q1,2 (1)R−Reps
S

(
1
2 + α, 2α, 1

2 + α
)

S1,2,3,4 (1)R−Reps
A (α,−α+ β, β) A1,2 (1)C −Reps

Z = V
(

1
2 , α,

1
2 + α

)
Z1 = V1 (2)R−Reps
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Appendix E

Multiplication table for O7
h space

group

The germanium space group has 48 by 48 symmetry elements. The possible combina-

tions of all the elements give us a huge multiplication table. In order to simplify this

multiplication table we have divided it into 16 components that have to be arranged

correctly when using the O7
h combination table. The scheme below gives the correct

arrangement of the 16 components of the O7
h, multiplication table.
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APPENDIX E. MULTIPLICATION TABLE FOR O7
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Table E.1: Scheme for the arrangement of the 16 components of the multiplication table
for O7

h space group

O7
h

Sym
Elem

1, 2, 3, 4, 5.......... ............................. ............................ .........,93, 94, 95, 96

1
2
3
4
5
.
.
.
.
.

Component No 1 Component No 2 Component No 3 Component No 4

.

.

.

.

.

.

.

.

.

.

Component No 5 Component No 6 Component No 7 Component No 8

.

.

.

.

.

.

.

.

.

.

Component No 9 Component No 10 Component No 11 Component No 12

.

.

.

.

.
92
93
94
95
96

Component No 13 Component No 14 Component No 15 Component No 16
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Table E.2: 1st component of the O7
h multiplication table
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Table E.3: 2nd component of the O7
h multiplication table
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Table E.4: 3rd component of the O7
h multiplication table
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Table E.5: 4th component of the O7
h multiplication table
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Table E.6: 5th component of the O7
h multiplication table
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Table E.7: 6th component of the O7
h multiplication table
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Table E.8: 7th component of the O7
h multiplication table
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Table E.9: 8th component of the O7
h multiplication table
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Table E.10: 9th component of the O7
h multiplication table
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Table E.11: 10th component of the O7
h multiplication table
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Table E.12: 11th component of the O7
h multiplication table
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Table E.13: 12th component of the O7
h multiplication table
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Table E.14: 13th component of the O7
h multiplication table
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Table E.15: 14th component of the O7
h multiplication table
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Table E.16: 15th component of the O7
h multiplication table
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Table E.17: 16th component of the O7
h multiplication table
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