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Abstract

Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by

Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in

molecular research are hindered by the lack of a high-throughput transient transformation

system in this non-model plant. In this study, a proof-of-concept is demonstrated by the suc-

cessful application of Agrobacterium rhizogenes-mediated plant transformation to produce

composite avocado plants. Two ex vitro strategies were assessed on two avocado geno-

types (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were

scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long

incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a ster-

ile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated

with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant trans-

formation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence

protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without root-

ing hormone (Dip ’N’ Grow) application. The treated shoot regions were air-layered with ster-

ile moist cocopeat to induce root formation. Results showed that hormone application

significantly increased root induction, while Agrobacterium-only treatments resulted in very

few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no

significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root trans-

formants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with

~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS-

and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total

roots/treatment/avocado genotype. The average number of transgenic roots on the com-

posite plants was less than one per plant in all treatments. PCR and Southern analysis fur-

ther confirmed the transgenic nature of the roots expressing the screenable marker genes.

Transgenic roots showed hyper-branching compared to the wild-type roots but this had no

impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-

days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:

ARqua1 combination was the best ex vitro approach in producing composite avocado

plants. The approach followed in this proof-of-concept study needs further optimisation
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involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root

transformation efficiencies, which would then serve as an effective high-throughput tool in

the functional screening of host and pathogen genes to improve our understanding of the

avocado-P. cinnamomi interaction.

Introduction

Avocado (Persea americana (Mill.)) is a major tropical fruit along with mango, pineapple and

papaya, accounting for approximately two-thirds of the world tropical fruit production. In

2014, global avocado production was estimated to be 5.02 million tons of which South Africa

contributed 107176 tons [1]. Avocado production is of economic importance to South Africa,

as 65845 tons of avocados with a total value of R978 million was exported in 2014 [2]. In addi-

tion to consumption, avocado is also processed for oil and guacamole and used in the cosmet-

ics industry due to high nutritional content. The most important biotic constraint in avocado

production in South Africa is Phytophthora Root Rot (PRR) caused by the oomycete Phy-
tophthora cinnamomi Rands, a pathogen with a broad host range of over 3500 plant species

and found in all major avocado producing areas in the world [3,4]. PRR affects trees of all ages,

including those in nurseries and acts through the destruction of the feeder roots [5,6]. The

incidence of PRR across the world has been reported to vary, but can be as high as 90%, leading

to wipe out of orchards or significantly limiting fruit production [7]. At present, PRR can only

be managed by an integrated approach that includes the use of tolerant rootstocks and orchard

management such as mulching and controlled irrigation [7]. In addition, chemical control in

the form of phosphite spray or trunk injections has extensively been used to control PRR [8].

Avocado is heterogeneous with a prolonged juvenile period and the lack of a published

genome sequence has hindered the application of conventional breeding of avocado for PRR

resistance [9]. Hence, selection by screening thousands of seedlings for tolerance to P. cinna-
momi has been the only way to identify promising plant material. Less than 1% of the progeny

of a PRR-resistant parent has been shown to inherit the resistance trait, therefore, clonal prop-

agation of tolerant rootstocks remains the only choice for sustainable production [10].

Functional analysis of P. cinnamomi pathogenicity factors and avocado defense machinery

is an important research objective, in order to identify potential molecular targets for positive

exploitation in marker-assisted avocado rootstock selection and improvement programmes.

However, the luxury of genetic resources available in model plants is lacking in avocado. The

application of reverse genetic tools such as Targeting Induced Local Lesions in Genomes and

genome editing for high-throughput functional studies in the present system are not feasible,

due to the inherent problems associated with the tools, as well as the host, as mentioned earlier.

In addition, a successful transformation protocol for the pathogen—P. cinnamomi has to date

not been published.

Plant transformation tools are critical in the functional analysis of genes. Simple transfor-

mation tools such as a floral-dip method, vacuum infiltration and syringe infiltration of Agro-
bacterium tumefaciens, commonly employed in model plants such as Arabidopsis thaliana and

Nicotiana benthamiana are not easily adapted to non-model woody plants such as avocado.

Though A. tumefaciens-based plant transformation and regeneration protocols have been pre-

viously reported in avocado [9,11–14], it is not amenable to high-throughput whole plant tran-

sient transformation studies for the systemic dissection of the defense pathways. Further, the

available transformation protocols employ plant tissue culture which requires sterile condi-

tions necessitating specialized infrastructure and training [15].

Ex vitro composite avocado plants
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A. rhizogenes, a Gram-negative soil bacterium from the family Rhizobiaceae was identified

as the reason behind the hairy-root disease [16]. Since then, the bacterium has been shown to

induce adventitious roots in over 450 plant species [17]. The hairy-roots are characterized by

plagiotropism, high lateral branching and their ability to grow and proliferate in hormone-free

media. The manifestations have been shown to be due to the transfer of Ri (root inducing)-

plasmid T-DNA containing the rol (root loci) genes into the plant cells. A combination of rol
genes A, B and C was shown to be sufficient for root induction in plants [18]. Initially, A. rhizo-
genes was exploited in secondary metabolite production via the establishment of hairy-root

cultures. As the bacterium was also shown to be useful in the transfer of foreign genes into

plants, it has been employed in gene and promoter analysis, generation of stable transgenic

plants, root biology and root-biotic interaction studies [17,19]. The major limitations of the

hairy root cultures were their restriction to tissue culture bottles and lack of a whole plant sys-

tem for studying the effect of abiotic and biotic interactions at the systemic level. To partially

mitigate the above-mentioned drawbacks Hansen and his co-workers came up with the con-

cept of A. rhizogenes-mediated ‘composite plants’ a chimera of wild-type shoots bearing a mix

of transgenic and non-transgenic roots [20]. However, it was still an in vitro approach. A novel

ex vitro method was devised by [21] to produce composite plants which provided a simple,

cost-effective whole-plant system for the functional analysis under non-axenic conditions. The

tool has been demonstrated to be applicable in a number of transformation recalcitrant dicoty-

ledonous plants. The system is amenable to not just gene overexpression studies but also to

RNAi-based gene silencing studies facilitating host-induced gene silencing. With this back-

ground the present study aimed to generate a whole plant transformation tool in avocado

using an ex vitro approach for potential down-stream application in the functional genetic dis-

section of the avocado-PRR interaction in future. A proof-of-concept is demonstrated by the

successful application of A. rhizogenes-mediated plant transformation to produce composite

avocado plants.

Materials and methods

Plant material and P. cinnamomi isolate

Avocado seeds of A0.74 and Itzamna were obtained from Westfalia Technological Services,

Tzaneen, Limpopo, South Africa. P. cinnamomi isolate GKB4 used in avocado infection exper-

iments was obtained from the culture collection of the Avocado Research Programme, For-

estry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South

Africa.

Bacterial strains and plasmid vectors

Bacterial strains. A. rhizogenes strains- K599 [22] and ARqua1 were kindly provided by

Prof. Bettina Hause (Department of Cell and Metabolic Biology, Leibniz Institute of Plant Bio-

chemistry, Weinberg 3, 06120 Halle (Saale), Germany).

Plasmid vectors. pRedRootII containing a DsRED1 marker [23] (DsRed1- red fluores-

cence protein) (kindly provided by Dr. Erik Limpens, Department of Plant Sciences, Labora-

tory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1,

Wageningen 6708 PB, The Netherlands), pBYR2e1-GFP containing a GFP (- green fluores-

cence protein) marker (kindly provided by Dr. Hugh Mason, Biodesign Institute, School of

Life Sciences, Arizona State University, Tempe, Arizona, USA) and pBINUbiGUSint contain-

ing a GUS (- β-glucuronidase) marker (a kind gift from Prof. Fernando Pliego Alfaro, Depart-

ment of Plant Biology, University of Malaga, Spain).

Ex vitro composite avocado plants
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Generation of composite avocado plants

Preparation of A. rhizogenes for avocado transformation. The A. rhizogenes strains-

K599 and ARqua1 were electroporated individually with the plasmid vectors pRedRootII,

pBYR2e1-GFP and pBINUbiGUSint using the Eppendorf Eporator1 (Eppendorf, Hamburg,

Germany) according to the manufacturer’s instructions. Single bacterial colonies containing

the individual plasmids were grown separately in 1 L Erlenmeyer flasks containing 200 mL

Luria Bertani (LB) broth amended with appropriate antibiotic combinations: 50 mg/L kana-

mycin for the vectors, and in addition, 100 mg/L streptomycin for ARqua1 strain. Flasks were

incubated at 28˚C, 180 rpm overnight. The bacterial cells were pelleted by centrifugation at

3000 rpm for 10 min at 4˚C. Pellets were washed thrice with 1/4x strength Murashige and

Skoog Basal Media (MSBM), pH 5.2 to remove traces of the antibiotics, resuspended in the

same medium containing 100 μM acetosyringone to A600nm 1.0 and left undisturbed in the

dark for 3 h at room temperature.

Growth of avocado plants for agroinfection. Avocado seeds were surface sterilized by

immersion in a solution containing 0.5% (v/v) sodium hypochlorite, 10 drops/L Tween 20,

0.01% (w/v) ascorbic acid and 0.2% (w/v) citric acid for 15 min. The seeds were subsequently

rinsed with sterile distilled water thrice for 15 min each. Seeds were planted in 8 L bags filled

with sterile soil:bark (1:1) mixture. One set of the seeds were incubated in the dark for 8 weeks

at 25˚C to induce etiolation. A second set were grown for 20 weeks under 16 h light/8 h dark

in a phytotron at 25˚C.

Plant treatments. Strategy-1: The 8-week-old etiolated seedlings with uniform stem

thickness were scarred six times with a sterile hacksaw blade (Harden blades 12 x ½” x 24T) at

the base of the shoot on opposite surfaces (Fig 1A).

Strategy-2: One-inch-long incisions were made at the shoot base of 20-week-old plants

(with uniform stem thickness) grown under 16 h light/8 h dark conditions with a sterile surgi-

cal blade to remove the cortical tissue (Fig 1B).

The scarred/wounded shoot surfaces were immediately subjected to treatments as detailed

in Table 1, using separate paint brushes. The treated shoot regions were covered with a 175

mL foam cup filled with sterile moist cocopeat (Fig 1C and 1D). Plants were maintained

under 16 h light/8 h dark in a phytotron at 25˚C and the root induction was monitored weekly

taking care not to disturb the rooting process. In both approaches three biological replicates of

three plants each were employed.

Evaluation of plant transformation

Detection of GFP and DsRED1 fluorescence in roots. Six weeks post-treatment the

plant roots were screened for the expression of GFP and DsRED1 using DFP-1™ Dual Fluores-

cent Protein Flashlight (NIGHTSEA, Bedford, MA, USA). GFP and DsRED1 were visualised

with royal blue (excitation 440–460 nm, emission 500 nm long-pass) and green (excitation

510–540 nm, emission 600 nm long-pass) flashlights, respectively. Adobe Photoshop 5.5 was

used to process the images.

Confocal fluorescence microscopy of roots. Roots were also observed under the confocal

laser scanning fluorescence microscope- Zeiss LSM 510 META (Carl-Zeiss, Jena, Germany).

For GFP/DsRED1 imaging laser excitation of 488 nm/505-550 nm emission band-pass and

laser excitation of 543 nm/560 nm emission long-pass were used, respectively. The images

were captured using the AxioCam (Carl-Zeiss) attached to the microscope and processed as

described above.

GUS activity staining of roots. The indigogenic GUS activity staining was carried out

according to the method of [24] with modifications. Putative transformed root sections were

Ex vitro composite avocado plants
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incubated in 100 mM sodium phosphate buffer (pH 7.0) containing 10 mM EDTA (pH 8.0),

0.1% (v/v) Triton-X100, 1 mM X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid,

cyclo- hexylammonium salt), 1 mM K4Fe(CN)6 and 1 mM K3Fe(CN)6 for 24 h at 37˚C, in the

dark. The roots were subsequently washed with distilled water and observed under SteREO

Discovery.V12 stereomicroscope (Carl-Zeiss) fitted with AxioCam ICc5 (Carl-Zeiss) to cap-

ture images.

Molecular confirmation of transgenic roots

Treatment of roots with antibiotics to eliminate Agrobacterium. Individual putative

transformed roots were treated with 1/4x MSBM, pH 5.2 fortified with 200 mg/L cefotaxime

and 200 mg/L carbenicillin for 2 h at 200 rpm and 25˚C. Subsequently, root sections were sub-

cultured for 4 weeks, at weekly intervals, in 1/4x MSBM, pH 5.2 with 100 mg/L cefotaxime and

Fig 1. Generation of ex vitro composite avocado plants by air-layering. Strategy-1: 8-week-old etiolated

seedlings scarred six times with a sterile hacksaw blade at the base of the shoot on opposite surfaces (A);

Strategy-2: One-inch-long incisions were made at the shoot base of 20-week-old plants with a sterile surgical

blade to remove the cortical tissue (B); Scarred/wounded shoot surfaces covered with a 175 mL foam cup

filled with sterile moist cocopeat post various treatments as listed in Table 1 (C, D).

https://doi.org/10.1371/journal.pone.0185896.g001
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100 mg/L carbenicillin. Further, the root sections were sub-cultured for 1 week in 1/4x MSBM,

pH 5.2 without antibiotics to assess the presence of persistent bacteria.

Root DNA isolation. Total DNA was isolated from the homogenized individual roots

(500 mg) with extraction buffer containing 100 mM Tris-HCl pH 8.0, 25 mM EDTA, 2 M

NaCl, 2% (w/v) CTAB (Cetyltrimethylammonium bromide), 2% (w/v) polyvinylpyrrolidone

K30, 500 mg/L spermidine, 2% (v/v) 2-mercaptoethanol and 5% (w/v) polyvinylpolypyrroli-

done [25]. The extractions were incubated at 65˚C for 30 min, and chloroform extracted at a

1:1 ratio. DNA was precipitated from the supernatant with isopropanol and treated with 2 U

RNase A (Qiagen, Valencia, CA, USA) followed by additional chloroform extraction and pre-

cipitation steps as mentioned above. DNA was quantified with a NanoDrop1 ND-1000 spec-

trophotometer (Nanodrop Technologies Inc., Montchanin, DE, USA) and stored at –20˚C

until further use.

PCR analysis. PCR analysis of the root DNA for dsred1, gus (uidA), gfp, rolB and virC
genes was carried out to assess the successful transformation of the roots. PCR reactions were

carried out in 20 μL reaction volumes containing 2.0 μl of 10× PCR reaction buffer, 200 μM of

each dNTP, 30 ng DNA as template and 200 nM each of the forward and reverse primers spe-

cific for dsred1, gus, gfp, rolB and virC (Table 2). The amplification was carried out using 1 U

FastStart™ Taq DNA Polymerase (Roche Diagnostics GmBH) under the following conditions:

initial denaturation at 94˚C for 4 min followed by 30 cycles of denaturation at 94˚C for 45 s,

annealing at 60˚C for 1 min and extension at 72˚C for 1 min with a final extension of 7 min at

72˚C. The amplified products were visualized on a 1.5% agarose gel stained with GelRed (Bio-

tium Inc., Hayward, CA, USA) using the Gel Doc™ EZ Imager (Gel Doc™ EZ Gel Documenta-

tion System, Bio-Rad Laboratories, Hercules, CA, USA). Amplifications were performed in a

Veriti™ 96-Well Thermocycler (Applied Biosystems, Singapore).

Southern blot analysis. DNA (5 μg each) isolated from two individual A0.74 roots each

positive for GFP and GUS expression was digested with HindIII (Thermo Fisher Scientific)

individually and electrophoretically separated on a 0.8% agarose gel. The DNA was transferred

Table 1. Treatments assessed in the generation of ex vitro composite avocado plants.

Treatment ID Shoot Applications

DGMS 1% Dip-Gel™ in 1/4x MSBM, pH 5.2

H Dip’N Grow liquid rooting concentrate diluted 1:5 with 1/4x MSBM, pH 5.2

ARK DGMS + Agrobacterium rhizogenes K599

ARQ DGMS + A. rhizogenes ARqua1

H + ARK H application followed by ARK treatment

H + ARQ H application followed by ARQ treatment

ARK-RRII DGMS + A. rhizogenes K599 (+pRedRootII)

ARK-GFP DGMS + A. rhizogenes K599 (+pBYR2e1-GFP)

ARK-GUS DGMS + A. rhizogenes K599 (+pBINUbiGUSint)

H + ARK-RRII H application followed by ARK-RRII treatment

H + ARK-GFP H application followed by ARK-GFP treatment

H + ARK-GUS H application followed by ARK-GUS treatment

ARQ-RRII DGMS + A. rhizogenes ARqua1 (+pRedRootII)

ARQ-GFP DGMS + A. rhizogenes ARqua1 (+pBYR2e1-GFP)

ARQ-GUS DGMS + A. rhizogenes ARqua1 (+pBINUbiGUSint)

H + ARQ-RRII H application followed by ARQ-RRII treatment

H + ARQ-GFP H application followed by ARQ-GFP treatment

H + ARQ-GUS H application followed by ARQ-GUS treatment

https://doi.org/10.1371/journal.pone.0185896.t001
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to a positively charged nylon membrane (Roche Dignostics GmbH) as per the manufacturer’s

instructions. As hybridization probes, HindIII restriction fragments of pBYR2e1-GFP and

pBINUbiGUSint plasmids were random-prime labelled separately using a DIG High Prime

DNA Labeling and Detection Starter kit II (Roche Dignostics GmbH). Pre-hybridization,

hybridization, and chemiluminescent detection were performed as described previously [26].

Hybridization was carried out at 60˚C.

Comparison of the infection of transgenic and wild-type avocado roots by

P. cinnamomi

Preparation of P. cinnamomi zoospore suspension. P. cinnamomi isolate GKB4 was

grown on 5% V8 agar plates [27] for 4 days. Mycelial blocks (5 x 5 mm) from the actively grow-

ing regions of the plates were sub-cultured on petri plates (10 blocks per petri plate) containing

25 mL of 2% V8 broth for 3 days at 25˚C. The broth was discarded and the mycelia were rinsed

thrice with sterile distilled water. To induce sporangia formation plates were further incubated

for 3 days at 25˚C under ultraviolet light in 25 mL of Whatman 1-mm-filtered stream water

per plate. The plates were cold shocked by incubating at 4˚C for 1 h. Once adequate mature

sporangia were observed plates were incubated at 25˚C for 1 h to stimulate zoospore release.

The zoospore suspension was decanted, diluted to 5x104 zoospores/mL and used for root

inoculations.

Root inoculation and harvesting. Avocado A0.74 roots expressing GFP and non-trans-

formed A0.74 roots, three each, were surface serilized in a solution containing 0.5% (v/v)

sodium hypochlorite, 10 drops/L Tween 20, 0.01% (w/v) ascorbic acid and 0.2% (w/v) citric

acid for 10 min. The roots were subsequently rinsed with sterile distilled water thrice for 10

min each. Roots were inoculated by submerging them in a petri plate containing 25 mL zoo-

spore suspension (5×104 zoospores/mL). Roots mock-inoculated by submersion in sterile

water served as the negative control. Roots were incubated for 3 h at 25˚C followed by incuba-

tion in tissue culture bottles containing 25 mL sterile 1/4x MSBM, pH 5.8 for 7 days at 25˚C,

Table 2. Primers used in the study.

Gene Primer ID Nucleotide Sequence (5’-3’) Expected Amplicon Size (in bp)

PCR confirmation of root transformants

dsred1 dsred1F GAGCGCGTGATGAACTTCGAG 319

dsred1R CCAGCTTGGAGTCCACGTAG

gus gusF ACTGAACTGGCAGACTATCC 588

gusR TAAGGGTAATGCGAGGTACG

gfp gfpF AAGGGCGAGGAGCTGTTCAC 344

gfpR TCGCCCTCGAACTTCACCTC

rolB rolB-F TCTCACTCCAGCATGGAGCC 616

rolB-R TATCCCGAGGGCATTTTTGGTG

virC virCF ATCATTTGTAGCGACT 730

virCR AGCTCAAACCTGCTTC

Pathogen load determination in roots

LPV3 LPV3-for GTGCAGACTGTCGATGTG 450

LPV3-rev GAACCACAACAGGCACGT

LPV3N-for GTCACGACCATGTTGTTG 77

LPV3N-rev GAGGTGAAGGCTGTTGAG

Actin Actin-for GTATTCATTCACCACTACTG 77

Actin-rev AGTCAAGAGCCACATAAG

https://doi.org/10.1371/journal.pone.0185896.t002
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30 rpm. Roots were washed in sterile distilled water, observed for root rot symptoms and pho-

tographed with the DSC-W320-14.1MP-Digital-Camera (Sony, Tokyo, Japan). Adobe Photo-

shop 5.5 was used in the electronic processing of the images. Root material was then harvested,

snap-frozen in liquid nitrogen and stored at -80˚C until DNA extraction.

DNA extractions from mycelia and roots. DNA from P. cinnamomi mycelia was isolated

by using PrepMan Ultra Reagent (Applied Biosystems, Carlsbad, CA, USA). Mycelia was

added (100 mg) to a 1.5-mL Eppendorf tube containing 100 μl PrepMan Ultra Sample Prepa-

ration Reagent (Thermo Fisher Scientific) and DNA was extracted according to the manufac-

turer’s instructions. DNA from infected and uninfected avocado root material (50 mg of the

root tissue from the root tip) was extracted in the same manner. DNA concentrations were

determined using the NanoDrop1 ND-1000 spectrophotometer.

Determination of pathogen load. The pathogen load was determined according to the

method developed by [27]. Standard curves for avocado (100 ng to 160 pg uninfected A0.74

root DNA) and P. cinnamomi (20 ng to 32 pg mycelial DNA) were prepared separately using

Actin (for plants) and LPV3N (for pathogen) primer pairs, respectively. The amounts of plant

and P. cinnamomi DNA present within samples were quantified using one-step and nested

qPCR approach, respectively. The amounts of plant and pathogen DNA in the samples were

deduced from the standard curves.

LPV3 outer PCR. PCR reactions were carried out in 20 μL reaction volumes with 50 ng

root DNA as template (or different concentrations of mycelial DNA in case of standard curve

preparation) with primers specific for the LPV3 gene [28] (Table 2). The reaction mix con-

tained 2.0 μl of 10× PCR reaction buffer, 200 μM of each dNTP, 200 nM each of forward and

reverse gene specific primers and 1 U FastStart™ Taq DNA Polymerase (Roche Dignostics

GmbH). The following cycle conditions were used: initial denaturation at 95˚C for 5 min fol-

lowed by 15 cycles of denaturation at 95˚C for 30 s, annealing at 55˚C for 30 s and extension at

72˚C for 30 s with a final extension of 10 min at 72˚C. Amplifications were carried out in an

Veriti™ 96-Well Thermocycler (Applied Biosystems).

Quantitative PCR (qPCR). qPCR was performed using the Bio-Rad1 CFX 96 instrument

(Bio-Rad, Hercules, CA, USA).

LPV3 nested qPCR. PCR reactions were carried out in 20 μL reaction volumes with 2 μl of

the outer LPV3 PCR product (generated in the first step either from root DNA or mycelial

DNA for the standard curve) as the template with 250 nM each of the forward and reverse

LPV3N primers (Table 2). The amplification was carried out using 1x Sensimix SYBR No-

ROX (Bioline Ltd, London, UK). PCR cycling conditions for LPV3N were initial denaturation

at 95˚C for 10 min followed by 40 cycles, each consisting of denaturation at 95˚C for 5 s,

annealing at 60˚C for 5 s, and primer extension at 72˚C for 5 s.

Actin qPCR. PCR reactions were carried out in 20 μL reaction volumes with 20 ng root

sample DNA as template (or different concentrations of uninfected root DNA in case of stan-

dard curve preparation) with 250 nM each of the forward and reverse Actin primers (Table 2).

The amplification was carried out using 1x Sensimix SYBR No-ROX (Bioline Ltd.). PCR

cycling conditions for Actin were initial denaturation at 95˚C for 10 min followed by 40 cycles,

each consisting of denaturation at 95˚C for 15 s, annealing at 60˚C for 15 s, and primer exten-

sion at 72˚C for 15 s.

No template controls with water instead of the root DNA were included in the experiment.

Three technical replicates were conducted for each sample. Melting curves were acquired at

the end of the PCR run over the range of 65 to 95˚C, increasing the temperature stepwise by

0.5˚C every 5 s to confirm that individual qPCR signals corresponded to a single homogenous

amplicon. The amplified products were visualized on a 2% agarose gel stained with GelRed
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(Biotium Inc) using the GelDoc™ EZ Gel Documentation System (Bio-Rad Laboratories, Her-

cules, CA, USA).

Re-isolation of P. cinnamomi from infected roots. Small root sections from 7-day-old

infected roots were surface sterilized in ethanol, rinsed in sterile distilled water and plated onto

NARPH Phytophthora selective medium [29] and incubated in darkness at 24˚C. The plates

were observed for typical rosette growth pattern of P. cinnamomi. Further, DNA was isolated

from the mycelia as mentioned above and molecular confirmation was carried out by PCR

amplification of LPV3 [28].

Statistical analysis

Linear regression analysis was performed on Actin and LPV3 standard curves (Microsoft1

Excel). Root induction and transformation efficiency data were subjected to ANOVA and

Tukey’s HSD analyses (RStudio1). Pathogen load determination involved Mann Whitney

Wilcoxon Test (Statistics Online Computational Resource software package).

Results

Generation of composite avocado plants

Induction of adventitious rooting ex vitro in avocado using A. rhizogenes strains and

rooting hormone application. Greenhouse-grown 8-week-old Itzamna and A0.74 avocado

plants, etiolated and 20-week-old non-etiolated, were evaluated for their ability to induce the

formation of adventitious roots by ex vitro strategies. Two A. rhizogenes strains- K599 and

ARqua1, and rooting hormone treatments, individually and in combinations, were assessed

(Table 1). Root emergence was first observed in both avocado genotypes at 3 weeks post air-

layering in hormone (H) and H+ARQ (-/+ plasmids)-treated plants. The H application was

the best treatment for root induction. The Agrobacterium treatments on their own resulted in

very few roots. Of the Agrobacterium treatments alone, ARqua1 was consistent in root induc-

tion in both avocado genotypes, across strategies. A marked difference in root vigour was

observed between the two root-induction strategies, with Strategy-2 producing roots of greater

thickness (Fig 2). A higher root branching was observed in H+ARQ (-/+ plasmids) treatment

over the rest.

Considering the average number of roots induced per treatment, A0.74 showed>2-fold

roots over Itzamna upon H treatment (Fig 3). The combination treatment of H+ARK599

(/ARqua1) (-/+ plasmids) showed no significant difference in the root-induction capacity over

the H-only treatment. Interestingly, only in A0.74, did the H+ARK treatment (-/+plasmids)

show significantly fewer roots compared to H-only treatment, irrespective of the strategy used.

A. rhizogenes-mediated root transformation in avocado. A. rhizogenes is known to

induce adventitious roots, some of which are co-transformed with the gene-of-interest as well as

roots lacking this gene [23]. The application of H enhances rooting capacity in avocado (personal

communication, Dr. Stefan Kӧhne, Westfalia Technical Services, Tzaneen, Limpopo, South

Africa) and is used commonly in commercial nurseries to generate clonal avocado plants. Hence,

the Agrobacterium-only and in combination with H was employed with the intention of achiev-

ing higher root transformation efficiencies. Transformation events were monitored by using the

binary vectors: pRedRootII, pBYR2e1-GFP and pBINUbiGUSint which express the fluorescent

proteins- DsRed1, GFP and GUS enzyme, respectively which can be tracked by histochemical

staining. Roots were assessed 6 weeks post air-layering of plants. Transformation efficiency per

treatment/avocado genotype was defined as the percentage of experimental plants which resulted

in at least one DsRED1/GFP/GUS expressing root. Only the ARqua1 (+plasmid) treatment of

A0.74 resulted in root transformants, with H+ARqua1 transformed with pBINUbiGUSint being
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the most effective treatment, as the percentage of composite plants produced was ~17 and 25%,

through strategies 1 and 2, respectively (Table 3). The GFP expression was observed uniformly

along the entire length of the roots, whereas, the GUS activity was restricted to the actively grow-

ing root tips (Figs 4 and 5). The weak background levels of green fluorescence observed in the

control roots under the confocal microscope could easily be distinguished from the strong GFP

fluorescence in roots transformed with pBYR2e1-GFP. None of the plants treated with the

Fig 2. Representative images of the roots induced ex vitro in avocado plants by various treatments as detailed in

Table 1.

https://doi.org/10.1371/journal.pone.0185896.g002

Fig 3. Average number of roots induced ex vitro in avocado plants by various treatments as detailed in Table 1.

The study involved three biological replicates of three plants each per treatment. Bars indicate mean ± SE. Means

designated with the same letter are not significantly different according to Tukey’s HSD test at P<0.05.

https://doi.org/10.1371/journal.pone.0185896.g003
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Agrobacterium containing pRedRootII resulted in any root transformants. The GUS and GFP

expressing roots accounted for�4 and ~12%, respectively, of the total root population per treat-

ment per avocado genotype. However, the average number of transgenic roots on the composite

plants was<1 per plant in all treatments.

Strategy-1: The 8-week-old etiolated seedlings were scarred six times with a sterile hacksaw

blade at the base of the shoot on opposite surfaces. Strategy-2: One-inch-long incisions were

Table 3. Transformation efficiencies of the two strategies employed in the generation of ex vitro composite avocado plants.

Treatment Strategy Avocado genotype % of composite plants % of transformed roots Average no. of transformed roots per plant

ARQ-GFP 2 A0.74 8.3 ± 0.3b 11.9 ± 1.7a 0.4 ± 0.4ab

H+ARQ-GUS 1 16.7 ± 0.3ab 0.9 ± 0.3b 0.2 ± 0.1b

2 25 ± 0.6a 3.6 ± 1.1ab 0.8 ± 0.5a

https://doi.org/10.1371/journal.pone.0185896.t003

Fig 4. GFP fluorescence expression in roots of composite A0.74 avocado plants induced by Strategy-

2. Root visualization using DFP-1™Dual Fluorescent Protein Flashlight (NIGHTSEA, Bedford, MA, USA)

(upper panel), Bar = 1 cm; roots under Zeiss LSM 510 META confocal laser scanning fluorescence microscope

(Carl-Zeiss, Jena, Germany) (lower panel). (A, C)- H+ARQ and (B, D)- H+ARQ-GFP, Bar = 50 μm.

https://doi.org/10.1371/journal.pone.0185896.g004
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made at the shoot base of 20-week-old plants grown under normal 16 h/8 h light/dark condi-

tions with a sterile surgical blade to remove the cortical tissue. The scarred/wounded shoot

surfaces were immediately subject to treatments as detailed in Table 1, using separate paint

brushes. The treated shoot regions were covered with a 175 mL foam cup filled with sterile

moist cocopeat. Plants were maintained under 16 h light/8 h dark in a phytotron at 25˚C and

the root induction was monitored regularly. In both approaches 3 biological replicates of 3

plants each were used. Data represents Means ± SE. Means designated with the same letter are

not significantly different according to Tukey’s HSD test at P< 0.05.

Molecular confirmation of root transformation in avocado

Root sections were cultured in antibiotic-containing media to eliminate the agrobacteria popu-

lating the transformed roots. Genomic DNA was isolated from these roots and PCR using

appropriate gene-specific primers (Table 2) confirmed successful root transformation. The

roots showing GFP fluorescence or GUS activity produced PCR products of their respective

genes as expected. In addition, the same roots were also positive for the rolB gene indicating

co-transformation of T-DNAs from Ri-plasmid. The lack of virC amplification in the same

root DNA samples ruled out the presence of the screenable marker gene in the roots due to

bacterial contamination and thus established the transgenic nature of the roots (Fig 6). Control

wild-type plants tested negative for all of the above genes. Further, Southern blot analysis was

performed to prove that the GUS and GFP expression observed in composite roots was due to

stable integration and not transient expression of the T-DNAs carrying the respective genes.

Fig 5. GUS activity staining in ex vitro roots induced in composite A0.74 avocado plants. The roots

were visualized under SteREO Discovery.V12 stereomicroscope (Carl-Zeiss, Jena, Germany) fitted with

AxioCam ICc5 (Carl-Zeiss, Jena, Germany). Upper panel represents the roots of Strategy-1 and the lower

panel shows the roots of Strategy-2. (A, C)- H+ARQ controls and (B, D)- H+ARQ-GUS. Bar = 500 μm.

https://doi.org/10.1371/journal.pone.0185896.g005
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The HindIII restriction fragments of pBYR2e1-GFP and pBINUbiGUSint plasmids which con-

tained the gfp and gus (uidA-int) genes, respectively, random-prime labelled with digoxigenin

(DIG)-dUTP served as probes. These labelled gfp and gus gene probes were expected to iden-

tify 4438 bp and 4364 bp DNA fragments from the HindIII digested corresponding avocado

root transformants, respectively. The Southern blot results involving two roots each expressing

GFP and GUS confirmed the stable integration of the respective marker genes into the A. rhi-
zogenes induced root genome (Fig 7). The wild-type A0.74 root DNA expectedly showed no

reaction to the probes.

Comparison of the infection of transgenic and wild-type avocado roots by

P. cinnamomi

To determine if the transgenic roots from composite plants are amenable to P. cinnamomi
infection the GFP-expressing roots and A0.74 wild-type control roots were infected with path-

ogen zoospores. Both transformed and wild-type A0.74 roots developed root rot symptoms

Fig 6. PCR confirmation of transgenic nature of the antibiotic-treated ex vitro roots induced in

composite A0.74 avocado plants. The image shows agarose gel electrophoresis of PCR-amplified products

of: (A) gfp and virC. Lanes 1–5 represent individual root samples expressing GFP from Strategy-2; (B) gus

and virC. Lanes 1–2 represent individual root samples expressing GUS from Strategy-1 and Lanes 3–11

represent individual root samples expressing GUS from Strategy-2; (C) rolB. Lanes 1–2 represent individual

root samples expressing GUS from Strategy-1, Lanes 3–11 represent individual root samples expressing

GUS from Strategy-2 and Lanes 12–16 represent individual root samples expressing GFP from Strategy-2.

M- GeneRuler 100 bp Plus DNA Ladder (Thermo Fischer Scientific) and + is the positive bacterial control.

https://doi.org/10.1371/journal.pone.0185896.g006
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typical of P. cinnamomi infection, with the mock-inoculated wild-type A0.74 roots remaining

healthy (Fig 8). Further, total genomic DNA was extracted from the above mentioned root

samples which contained both plant and pathogen DNA, to determine the pathogen load by

qPCR. The pathogen loads were very similar in both the transformed and wild-type A0.74

roots (Table 4). In addition, pathogen re-isolation from the infected root sections and its

molecular confirmation was successfully performed to prove Koch’s postulates.

Pathogen load was determined from infected root tissues (three roots per treatment) by

normalizing the LPV3N values with the corresponding Actin values for each individual sample.

Data presented in the table are the means ± SE and were analysed with the Statistics Online

Computational Resource software package using a Mann Whitney Wilcoxon Test (P< 0.001).

Fig 7. Southern blot analysis of transgenic avocado root DNA. HindIII digested DNA (5 μg each) from two

independent GUS/GFP expressing composite A0.74 roots were separated on 0.8% agarose gel, transferred onto a

positively charged nylon membrane and probed with HindIII restriction fragments of pBINUbiGUSint/pBYR2e1-GFP

random-prime labelled with digoxigenin-dUTP. The chemiluinescent signals captured onto an X-ray film has been

displayed. (A) GUS expressing composite A0.74 roots. Lanes: 1–500 pg of unlabelled probe fragment (hybridisation

control), 2- HindIII digested untransformed A0.74 root DNA (negative control), 3- HindIII digested A0.74 root-1 DNA

expressing GUS and 4- HindIII digested A0.74 root-2 DNA expressing GUS (B) GFP expressing composite A0.74 roots.

Lanes: 1- HindIII digested untransformed A0.74 root DNA (negative control), 2- HindIII digested A0.74 root-1 DNA

expressing GFP, 3- HindIII digested A0.74 root-2 DNA expressing GFP and 4–250 pg of unlabelled probe fragment

(hybridisation control).

https://doi.org/10.1371/journal.pone.0185896.g007
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No significant difference was observed in pathogen load between the infected A0.74 and

A0.74-GFP roots.

Discussion

Researchers rely on model organisms to understand the cellular and molecular aspects of life

[30], as they have short generation times and are easily pliable to genetic manipulation. How-

ever, model systems do not always account for all the interactions that non-model plants

encounter. Hence, to uncover specific responses encountered by non-model organisms in

their niche an efficient transformation tool is a prerequisite. The developmental biology of the

economically important fruit tree, avocado and its interaction with various abiotic and biotic

factors is not well understood. A draft genome of the avocado has been sequenced and assem-

bled but is not published. However, at least three genomes have been sequenced and are avail-

able for P. cinnamomi (JGI Genome Portal, USA), the major biotic factor affecting avocado

production in countries where the pathogen is present. However, a high-throughput whole

plant transformation tool for functional analysis of genes-of-interest remains a major limita-

tion for advances in avocado research. Currently, the available A. tumefaciens-based plant

transformation and regeneration protocols for avocado involves plant tissue culture necessitat-

ing specialized infrastructure and handling [9,11–14]. In addition, the development of stable

transgenic plants is expensive, time consuming and not adapted for high-throughput func-

tional screening of host and pathogen genes.

A. rhizogenes has been successfully employed in the composite plant generation of a num-

ber of woody plants such as poplar, coffee, grapevine and Eucalyptus camadulensis 31–34]; and

has been the only available option in the transformation of recalcitrant trees such as black

Fig 8. Root rot symptoms on A0.74 roots 7 days post Phytophthora cinnamomi infection. Roots were

inoculated by submerging them in a petri plate containing 25 mL zoospore suspension at a concentration of

5×104 zoospores/mL. (A) Mock-inoculated A0.74 roots submerged in sterile water (negative control); (B)

Wild-type A0.74 roots inoculated with P. cinnamomi zoospores; and (C) Transgenic A0.74 roots expressing

GFP inoculated with P. cinnamomi zoospores. The study involved three roots per treatment.

https://doi.org/10.1371/journal.pone.0185896.g008

Table 4. Phytophthora cinnamomi quantification in infected A0.74 avocado roots 7 days post

inoculation.

Sample Pathogen load

(ng P. cinnamomi DNA/100 ng A0.74 root DNA)

A0.74 uninfected roots 0

A0.74 infected roots 10.002 ± 0.18

A0.74-GFP infected roots 9.897 ± 0.04

https://doi.org/10.1371/journal.pone.0185896.t004
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locust and larch [35,36]. Composite plant generation through A. rhizogenes-mediated transfor-

mation has enabled researchers to carry out the functional analysis of genes through gene over-

expression, RNA interference-mediated gene silencing and promoter analysis [21,23,37–40].

Hence, the present research was undertaken to develop such a tool to transform avocado for

down-stream application in functional research.

Initially, composite plant generation was attempted according to the ex vitro protocol

described by [21], wherein, the in vitro regenerated shoots from avocado zygotic embryos, and

apical shoot cuttings from various avocado genotypes were employed as explants. Less than

10% in vitro regenerated shoots treated with A. rhizogenes strains- K599 and ARqua1 resulted

in root induction and no root co-transformation events were observed. Similar treatments of

young apical shoot cuttings resulted only in the tumor-like growth with no root induction (S1

Fig). In a study involving the clonal propagation of Dutch Elms it was reported that wounded

shoots treated with a combination of growth regulators and A. rhizogenes/A. tumefaciens-
ORF-11 (ORF- open reading frame) significantly improved the rooting over the individual

treatments [41]. In addition, the study also reported root transformation events. Thus, an

improvisation of this strategy was employed in the present study. The term ‘ex vitro composite’

in this manuscript is used in a generic sense to indicate the tissue culture-free approaches in

generating the adventitious roots in avocado and has nothing to do with the methodology of

[21]. The effect of two different A. rhizogenes strains- K599 and ARqua1 transformed with

screenable markers, individually and in combination with the rooting hormone, was assessed

for their efficiency in rooting and transformation on etiolated and non-etiolated avocado

plants (Itzamna and A0.74). Etiolated plants were considered in the study, as plants grown

under dark or low light have been shown to root better not just in avocado but also in other

plant systems [42,43]. The growth regulator application followed in the study was similar to

that used in the commercial avocado nurseries at Westfalia Technical Services, Tzaneen, South

Africa. In the present study, the application of the hormone significantly resulted in the best

root induction, with the Agrobacterium treatments on their own resulting in very few roots.

This is consistent with the fact that application of rooting hormone exogenously speeds-up the

process of antioxidant enzyme synthesis, reduces the rooting time, and thus promotes root for-

mation [44]. The combination treatment of H+ARK599/ARqua1 (-/+ plasmids) showed no

significant difference in the root-induction capacity over the H-only treatment. This was

unlike what was reported in the case of Dutch Elm [41] which could be due to the differences

in the plant systems, the Agrobacterium strains and the nature and quantity of rooting hor-

mones employed. ARqua1 is an agropine strain with rol genes A, B, C and D, and also auxin

coding genes. Strain K599, cucumopine type on the other hand has only rol genes A, B and C

[17,45]. This difference between the strains in addition to their differential interaction with the

plant in the presence of the rooting hormone and the differences in age of the plants could

explain the differential root vigour observed between the two strategies employed in our study.

A. rhizogenes strains used in plant transformation have been shown to respond differentially to

exogenous hormone treatments [46]. The roots induced in avocado did not show the typical

hairy root phenotype. However, higher root branching observed in H+ARQ (-/+ plasmids)

treatment over the rest could be due to the perturbations in the hormonal physiology, espe-

cially the auxin sensitivity of A. rhizogenes-induced roots [18]. Hyperbranching and plagiotro-

phy of the roots have been reported earlier from other plant systems transformed with A.

rhizogenes [21,47]. The morphology of roots induced by A. rhizogenes have been reported to be

variable depending upon the host:rhizobia combination. Both hairy roots (eg. Casuarina
gluaca, E. camadulensis) and normal roots (eg. potato) have been observed in different plant

systems [34,48,49]. The rol genes are known to induce and regulate root formation by interfer-

ing with the plant hormonal physiology [17,50]. The auxin levels are critical in rooting [51].
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The interplay between the exogenously applied rooting hormone and strain K599 might have

led to an imbalance in the auxin levels in A0.74 avocado rootsock leading to the observed

lower number of roots compared to H-only treatment. Further, the known presence of addi-

tional ORFs on the Ri-plasmid T-DNA whose function is not well characterized could also

influence the above phenotypes.

Numerous studies have reported A. rhizogenes K599 to be hyper-virulent and induce root-

ing in a wide range of dicotyledonous and monocotyledonous plants [17,45]. However,

ARqua1 was the better of the two bacterial strains in root induction as well as transformation

in the present study. ARqua1(+plasmid):A0.74 was the only successful combination that

resulted in root transformants, with H+ARqua1(+pBINUbiGUSint) being the most effective

treatment. The host:Agrobacterium interaction is complex and is not fully understood. Certain

combinations of host genotypes and bacterial strains have been reported to be more efficient

in rooting and transformation in other plant systems as well [49]. In addition, interactions

between the genetic background of the Agrobacterium, binary vectors, acetosyringone concen-

trations and pH have been shown to have an impact on avocado transformation efficiencies

[12]. Highest transformation efficiencies were achieved in A0.74 upon H+ARqua1(+-

pBINUbiGUSint) infection. Both transgenic and non-transformed adventitious roots have

been reported to be induced by A. rhizogenes in recalcitrant woody species [41,52]. In the pres-

ent study, the percentage of transformed roots was low, varying from ~1–12% of the total root

population for the different treatments and the average number of transgenic roots on the

composite plants was <1 per plant in all treatments. In an earlier study which assessed the effi-

ciency of composite plant production from 14 plant species, the generation time for the trans-

genic roots was found to be dependent on the host plant which varied from 24 to 67 days for

Nicotiana tabacum and Petunia hybrida, respectively. Most plant species produced transgenic

roots with an average time of about 6 weeks consistent with our results [21]. The transforma-

tion efficiencies varied from 56% in Medicago truncatula to 100% in N. tabacum and P.

hybrida, which was higher than that reported for avocado in the present study. The percentage

of the transgenic roots varied from 19% (N. benthamiana) to 58% (N. tabacum) and the aver-

age number of transgenic roots on ex vitro composite plants ranged from 1 (M. truncatula) to

~10 per explant (N. tabacum). Most of the plants used in the study showed four or less roots

per explant. In another study carried out in potato using four different cultivars and eight dif-

ferent A. rhizogenes strains the transformation efficiencies were found to be dependent on the

cultivar:strain combinations with a range of 0–100% [49]. The cucumopine and mannopine

strains were found to be less efficient than the agropine strains in inducing transgenic roots.

This is in line with the present study where the agropine strain was the only successful avocado

transformer. However, further multiple strains of the different opine producers need to be

tested against different avocado genotypes before any definite conclusions can be drawn.

In woody tree species such as poplar, coffee and eucalyptus composite plants were gener-

ated in vitro using different explants. Stems of different poplar clones infected with A. rhizo-
genes R1000 resulted in transformation efficiencies of 17–92% [31]. Coffee embryos showed

transformation efficiencies of 70% with 35% roots being transgenic [32]. In eucalyptus, the

transformation efficiencies of 36% and 4.1% with ~1 and ~0.5 roots per plant were recorded

with seedling explants and in vitro grown plantlets, respectively [34]. The lower transformation

efficiencies in the present study compared to the above studies could be due to the differences

in age and nature of the explants in addition to the bacterial strains and the infection condi-

tions. The present study successfully explored the possibility of generation of composite plants

ex vitro, which has been achieved. However, an extensive large scale follow-up study employ-

ing more avocado genotypes, rhizobial strains, infection conditions need to be optimized to
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achieve higher transformation efficiencies to be able to carry out high-throughput functional

gene characterization studies.

A. rhizogenes transformed with binary vectors- pRedRootII, pBYR2e1-GFP and pBINUbi-

GUSint which express the fluorescent proteins- DsRed1, GFP and GUS enzyme, respectively,

were used to monitor the root transformation. Unlike in other plant tissues such as leaves and

stems [53], the low auto-fluorescence observed in the roots did not interfere with the identifi-

cation of the transgenic roots, which displayed strong GFP expression. The restricted GUS

activity spots to the actively growing root tips and not the whole root could be due to the poor

diffusion of the substrate into the root interior. Though DsRed1 expressing vectors have been

used successfully in avocado [13], no transformants were observed here which could have

been due to insertion of the T-DNA harbouring dsred1 in a transcriptionally inactive region of

the chromatin (few randomly chosen roots from pRedRootII-treated plants however turned

negative for dsred1) or the Arabidopsis Pubq10 promoter may not be functional in avocado.

However, the sunflower polyubiquitin promoter has been successfully used in avocado trans-

formation [14].

The GFP and GUS expression in the roots could not have been of bacterial origin due to

leaky expression, as their encoding genes contain introns which cannot be processed by pro-

karyotes. Still, molecular confirmation of the transgenic nature of the roots was achieved by

antibiotic treatment of the roots followed by successful amplification of the screenable marker

(gfp and gus) and rolB genes, and the lack of amplification of virC. The virC gene is one of the

multiple vir or virulence genes present on the Ri or Ti plasmids which encode enzymes aiding

in the transfer and integration of the T-DNA into the plant cells without itself getting inte-

grated [19]. In A. rhizogenes-induced hairy roots virC or virD genes have been used earlier to

confirm the transgenic nature of the roots by establishing the absence of Agrobacterium con-

tamination in the hairy roots [54,55]. Further, Southern blot analysis results involving two

roots each expressing GFP and GUS confirmed the stable integration of the respective marker

genes into the A. rhizogenes-induced root genome.

The ultimate aim of generating composite avocado plants, in our case, is to study the under-

lying molecular interaction between the transgenic plant and the root pathogen P. cinnamomi.
It is critical to ensure that the transgenic roots are similar to wild-type roots at both the mor-

phological and physiological levels before taking up further interaction studies, as A. rhizo-
genes-induced roots have been shown to have altered phenotypes [49]. Only GFP-expressing

transgenic roots were employed in the pathogen infection studies as the GUS-transgenic roots

were subjected to destructive histochemical analysis. Though the transgenic avocado roots did

show some hyper-branching their response to the infection by P. cinnamomi was very similar

to the non-transformed roots of the same avocado genotype. A. rhizogenes-derived roots from

various host plants have earlier been used in understanding their interaction with bacteria,

fungi, oomycetes, nematodes and parasitic plants 21, 55–61]. Altered physiology of M. trunca-
tula hairy roots was shown to have no impact on its interaction with the fungus Glomus intrar-
adices [62]. Further, hormonal profiling of the transgenic and wild-type avocado roots need to

be carried out in order to detect any differences in their physiology, and further determine the

impact of such differences on the host-pathogen interaction at the molecular level.

Conclusions

For the first time the research presented in this study has provided a proof-of-concept compos-

ite plant system for avocado which is relatively easy, quick and cost-effective compared to the

in vitro transformation approaches. Strategy-2 involving A0.74:ARqua1 combination was

found to be the best approach in producing composite avocado plants. Further, studies need to
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be carried out to assess its adaptability in the generation of composite plants in multiple avo-

cado genotypes for its deployment in high-throughput genetic analysis to study not just the

biotic and abiotic factors afflicting avocado, but to also investigate the root developmental

biology.

Supporting information

S1 Fig. Representative image showing the composite plant generation attempted in avo-

cado according to the ex vitro protocol described by [21]. (A) Root induction observed when

in vitro regenerated shoots from avocado zygotic embryos used as explant. (B) Tumor-like

growth with no root induction observed with young apical shoot cuttings as explants.

(TIF)
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Writing – original draft: S. Ashok Prabhu, Noëlani van den Berg.
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