
SA Journal of Industrial Engineering Nov 2006 Vol 17(2): 109-125

FLEXIBLE SOFTWARE RELIABILITY GROWTH MODELS

P.K. Kapur1*, A. Gupta1, V.S.S. Yadavalli2 and S.J. Claasen2

1Department of Operational Research

University of Delhi, India
pkkapur1@bol.net.in

2Department of Industrial and Systems Engineering

University of Pretoria, South Africa
sarma.yadavalli@up.ac.za, schalk.claasen@up.ac.za

ABSTRACT

Numerous Software Reliability Growth Models (SRGMs) have been discussed in the
literature. These models are used to predict fault content and reliability of software. It
has been observed that the relationship between testing time and the corresponding
number of faults removed is either exponential or S-shaped, or a mix of the two.
Another important class of SRGMs, known as flexible SRGMs, can depict both
exponential and S-shaped growth curves. The paper introduces a new concept of
power logistic learning function that proves to be very flexible, in the sense that it
represents various curve types – exponential, Rayleigh, Weibull or simple logistic.
The flexible nature of the power logistic function gives the flexible SRGM a higher
degree of accuracy and wider applicability.

OPSOMMING

Verskeie voorbeelde van Betroubaarheidsgroeimodelle vir programmatuur word in
die literatuur beskryf. Die modelle word gebruik vir die voorspelling van foutinhoud
en programmatuurbetroubaarheid. Daar word waargeneem dat die verband tussen
toetstyd en die resulterende foutverwydering eksponensiaal of S-vormig of ‘n
kombinasie daarvan is. Aanpasbare modelle insluitende diskrete ekwivalente word
ook behandel. Die publikasie ontleed vervolgens algemene plooibare maglogistieke
leerkromme met wye toepasbaarheid wat slaan op eksponensiële, Rayleigh-,
Weilbull- en logistieke funksies. Die plooibaarheid van die model waarborg
akkuraatheid en wye toepasbaarheid met die verlangde gehalte van voorspelbaarheid.

*This work was carried out during the visit of Prof Kapur to the Department of Industrial & Systems
Engineering, University of Pretoria.

 110

1. INTRODUCTION

Due to the incredible growth in information technology and science, computers and
computer-based systems have invaded every sphere of human activity – for example,
nuclear research, telecommunications, space research programmes, aviation,
transportation, banking, education, and health-care. With the world of information
technology changing at a staggering rate, not to mention the proliferation of the
Internet, more and more systems are being automated, resulting in an increase in
people’s dependence on computers.

Although this technology revolution has made our lives better, concern for safety and
security has never been greater. There are numerous instances where failures of
computer-controlled systems have led to colossal loss of human lives and money.
With the increased complexity of product design, short development cycles, higher
customer demands for quality, and the highly destructive consequences of software
failures, a major responsibility lies with those who are active in the areas of software
debugging, testing and verification. Moreover, competition in the software market is
intense, and as a result of the applications involved, purchasers look for quality and
reliability in software. The nature and complexity of software requirements has
drastically changed over the last few decades, and users worldwide have become
much more demanding in terms of cost and quality.

Computer-based systems typically consist of hardware and software. Quality
hardware can now be produced at a reasonable cost, but the same cannot be said of
software. Software development consists of a sequence of activities where perfection
is yet to be achieved. Thus there is every possibility that faults are
introduced and remain in software. These faults can lead to failures that have
catastrophic results. So great emphasis is placed on avoiding the introduction of
faults during software development and removing latent faults before the product is
released for use. The only way to verify and validate the software is by testing.
Software testing involves running the software and checking for unexpected behavior
in the software output. During the testing phase, test cases that simulate the user
environment are run on the software. Any departure from specifications or
requirements is called a failure, and immediately an effort is made to remove the
cause of that failure (the fault). A successful test can be considered to be one that
reveals the presence of latent faults. Therefore, software should be thoroughly tested
to expose as many software faults as possible. The testing phase is an extremely
important feature of the software development life cycle (SDLC), in which about
50% of the developmental resources are consumed. Therefore, testing software by
executing all its statements and paths (even just once) is not practically possible for a
large-scale software system. A compromise testing approach is used, which involves
dividing the software into blocks and executing each block at least once. Potentially
troublesome combinations of blocks are executed many times. However, testing
techniques can be categorized into two main groups:

1. Top-down testing involves starting the test at the sub-system level. Then, the

modules that comprise the sub-system are tested. The procedure is recursively

 111

repeated until the test reaches the lowest level software component (function,
object).

2. Bottom-up testing involves reversing the previous process.

Each test technique has its merits and demerits. Choosing the testing approach
mainly depends on the software development technique. Software testing is a
destructive process, since it aims at forcing the software to behave abnormally under
some conditions. For this reason, software programmers subconsciously avoid
bringing their product into this stage. Therefore, it is preferable that an independent
team tests the software. This test method is called independent validation and
verification (IVV), which means that the testing team is functionally independent of
the development team, and tests the software from the user’s point of view. This
method is also called the black box method. The process of locating faults and
designing the procedures to remove them is called the debugging process. The
process of fault removal (repair) involves rewriting the code if the fault is due to
coding and design error, or changing the requirements (which requires major repair).
The chronology of failure occurrence and fault removals can be utilized to provide an
estimate of the software reliability and the level of fault content. In the light of this,
there is a need to develop a tool that can utilize this information to help software
engineers and managers to monitor the process of testing. The software reliability
model (SRM) is a tool that can be used to evaluate software quantitatively, develop
test status and schedule status, and monitor the changes in reliability performance.

Numerous Software Reliability Growth Models (SRGMs), which report the number
of failures (faults identified/removed), have been discussed in the literature [7, 10,
13]. These models are used to predict the fault content and reliability of the software.
It has been observed that the relationship between the testing time and the
corresponding number of faults removed is either exponential [4] or S-shaped [17],
or a mix of the two. Another important class of SRGMs, known as flexible SRGMs,
exists: depending upon parameter values, these depict both exponential and S-shaped
growth curves [7]. In these models the role of the learning process during the testing
phase is taken into account, which comes from the experience gained in software
testing.

In this paper, section 2 discusses three existing flexible SRGMs developed by Obha
[12], Bittanti et al [2], and Kapur and Garg [6]; section 3 discusses their discrete
equivalents. Two other discrete equivalents of the Kapur and Garg [6] model are also
included: these exist in the literature due to Innoue [19] and Satoh [15]. They are
subsequently shown to be equivalent to a discrete equivalent of Kapur and Garg [6]
that is mathematically and computationally much simpler. The derivation of
continuous SRGMs from the equivalent discrete model has also been shown. The
interesting part of the paper begins in section 4, with the introduction of a new
concept of a power logistic learning function, which proves to be very flexible in the
sense that it represents various curve types – exponential, Rayleigh, Weibull or
simple logistic. In the same section the concept of generalized SRGMs is taken
further by defining the software fault detection rate as the convex combination of the
power logistic and Weibull functions. From the numerical illustrations, it is seen that

 112

the newly defined class of generalized SRGMs yields considerably improved results,
with a better predictability resulting from a lower MSE and higher coefficient of
variation.

2. FLEXIBLE SRGMS

2.1 Inflection S-shaped SRGM Ohba [12]

This model has been developed under the assumption that the more that errors are
detected, the more undetected errors become detectable.

())()()(tmatbtm
dt
d

−=

where)()(tbtb ϕ=

and
a
tmrrt)()1()(−+=ϕ

The solution of the above differential equation with the initial condition m(t = 0) = 0
is:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
+

−
=

−

−

bt

bt

e
r

r
eatm 11

1)((1)

where r, ()10 ≤≤ r , is a proportion of independent errors and is the inflection
parameter. The model becomes exponential when r = 1 and takes the logistic form
when r = 0. It implies that initially r is almost zero, but as faults are detected and
removed it approaches unity. Here)(tϕ reflects the gradual increase in testing effort
and the skill gained by the testers as the testing progresses.

2.2 Flexible SRGM Bittanti et al [2]

This model is based on the following differential equation:

())()()(tmamktm
dt
d

−=

where
a
tmkkkmk ifi
)()()(−+=

Here ki and kf are initial and final values of the fault exposure coefficient. If ki = kf ,
then it reduces to the exponential model. If kf >> ki ; the failure growth curve takes S-

 113

shape. If kf is very small compared to ki and is almost equal to zero, the failure
growth curve becomes flat at the end.

The solution of the equation with initial condition m(t = 0) = 0 is :

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
+

−
=

−

−

tk

i

if

tk

f

f

e
k

kk
eatm

1

1)((2)

For different values of kf and ki, it describes different growth curves.

2.3 SRGM for an error removal phenomenon Kapur and Garg [6]

This model is based upon the assumption that the detection of errors also results in
detection of some of the remaining errors without these errors causing any failure.

The differential equation for this model is given by:

() ())()()()(tma
a
tmqtmaptm −⎥⎦
⎤

⎢⎣
⎡+−=

The solution is:

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

−
=

+−

+−

tqp

tqp

e
p
q
eatm

)(

)(

1

1)((3)

where

 p : Failure occurrence rate.
 q : Fault removal rate of additional removed faults.

This model was developed to account for some additional faults being detected
without their causing failure. Here it may be observed that if q = 0, then on each
failure, only the error causing the failure is removed and it corresponds to the
exponential model. The failure growth curve defined by the above model is S-shaped
whose nature depends on q/p.

2.4 One-stage equivalent model for (1), (2) & (3)

All three models – Ohba [12], Bittanti [2], and Kapur and Garg [6] – can be written
in general form (one-stage process):

 114

dt
d

m(t) = b(t) (a – m(t))

with b(t) = bte
b

−+ β1

Upon solving we get:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

= −

−

tb

tb

e
eatm
β1

1)((4)

By giving different forms to b and β, the above three models can be derived.

Here, in the alternate formulation, it may be observed that the fault detection rate for
the above specified models is a logistic function, and b(t) → b as t→ ∞ . Here β is
the learning factor, and it represents the skills and experience gained by the testers
during testing. If β = 0, then b(t) = b, i.e. constant.

3. DISCRETE SRGMS

NHPP-based SRGMs described above are continuous time models that use the
execution time (i.e., CPU time) or calendar time. The other group contains models,
that use the test cases as a unit of fault removal period. Such models are called
discrete time models, since the unit of software fault removal period is countable. A
test case can be a single computer test run executed in an hour, day, week or even
month. Therefore, it includes the computer test run and length of time spent to
inspect the software source code visually. A large number of models have been
developed in the first group, while fewer are in the second group owing to the
difficulties caused by their mathematical complexity.

Nevertheless, the utility of discrete SRGMs cannot be underestimated. As the
software failure data sets are discrete, these models often provide a better fit than
their continuous time counterparts. Therefore, in spite of the difficulties caused by
mathematical complexity, discrete models are proposed regularly [7, 18].

Therefore we develop flexible discrete SRGMs on the lines of the abovementioned
continuous time SRGMs, using a probability generating function (PGF). Two other
forms of the model are also given, and it can be shown that the three forms are
equivalent. It is further shown how a continuous time SRGM can be derived from the
discrete model. Since most of the software failure data sets are discrete, therefore, it
is suggested that discrete SRGMs should be used.

3.1 Discrete time flexible SRGM for error removal [6]

Most of the software reliability growth models assume that the fault removal
phenomenon also describes the failure phenomenon. This may not always be true.
The test team can remove some faults in the software without these faults causing

 115

any failure, although this may involve some additional effort. A fault that is removed
consequent to a failure is known as a leading fault. While removing the leading
faults, some other faults are removed that might have caused future failures. These
are known as dependent faults.

The difference equation under the above assumptions for the SRGM is given by:

() [] [])()1()()(1 nmanm

a
qnmapnmnm

−++−=
−+

δ

where δ is a constant time interval.

The solution can be obtained as follows (using PGF):

())()1()()1()1(1 nmnm
a
qpanmpnmq +−+−=+− δδδδ

Now by multiplying both sides nz and sum over n from 0 to ∞ , we get:

())()1()()1()1(1
0000

nmnmz
a
qzpanmzpnmzq

n

n

n

n

n

n

n

n +−+−=+− ∑∑∑∑
∞

=

∞

=

∞

=

∞

=

δδδδ

Denote)()(
0

zPnmz
n

n =∑
∞

=

 and solving we get:

[][]...)2()1()1()1(2 ++−−− mzzmzpq δδ

...))3()2()2()1((

........)(

32

32

++−

+++=

mmzmmz
a
q

zzzpa
δ
δ

Comparing the coefficients of zn, by mathematical induction we get:

()() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−+

+−−
=

n

n

qp
p
q

qp
anm

δ

δ

11

))(1(1
)((5)

Here as anmn →∞→)(, .

The above discrete SRGM is equivalent to the continuous time SRGM of Kapur and
Garg [6] when 0→δ .

Define δnt =

as 0→δ

 116

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−+

+−−
n

n

qp
p
q

qp
a

)(11

))(1(1

δ

δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−
→

+−

+−

tqp

tqp

e
p
q
ea

)(

)(

1

1

3.2 Other discrete SRGMs

Various other discrete SRGMs have been reported in the literature corresponding to
the continuous model. One is developed by Yamada and Inoue [19]. It is based on
the discrete Riccati equation.

It is given by

())1().(
2

)1()()()1(
++⎥⎦

⎤
⎢⎣
⎡ ++

−+=
−+ nmnm

a
qnmnmpqpanmnm

δ

 The exact solution of the above difference equation is given by:

()

()

()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +−

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ +−

−

=

n

n

qp

qp

p
q

qp

qp

a

nm

δ

δ

δ

δ

2
11

2
11

1

)(
2
11

2
11

1

)(

 (6)

Similarly, using the Satoh [15] approach, another discrete equivalent of a continuous
model (3) can be obtained.

() ()

()
⎥
⎦

⎤
⎢
⎣

⎡
−+−⎟

⎠
⎞

⎜
⎝
⎛ −++

+⎥⎦
⎤

⎢⎣
⎡ −++
−=

−−+

)1().1(
2

)1(1
2

)1()1(
2

11

nmnmnmnma
a
qnmnmap

nmnm
δ

The exact solution as given by Satoh is:

()
()
()
() ⎥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
+−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
+−

−
=

2

2

1
11

1
11

)(n

n

qp
qp

p
q

qp
qp

anm

δ
δ

δ
δ

 (7)

Again, it can be shown that as 0→δ , m(n) given by (6) and (7) converge to the
corresponding continuous SRGM given by (3).

 117

3.3 Equivalence of discrete SRGMs given by equation (5), (6) and (7)

Consider (7)

()
()
()
() ⎥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
+−

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
+−

−
=

2

2

1
11

1
11

)(n

n

qp
qp

p
q

qp
qp

anm

δ
δ

δ
δ

Here 1 q)(p 0 <+< δ .
Using nx−≈1x)-(1 n , we get:

()

()

()

() ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+−
+

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+−
−

= n

n

qp

qp

p
q

qp

qp

anm

2
1

2
1

1

2
1

2
1

1

)(

δ

δ

δ

δ

which is the same as equation (6).

In the above equation we can use the following expansion:

()

()

n

qp

qp

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+−

2
1

2
1

δ

δ
 =

nn

qpqp
−

⎥⎦
⎤

⎢⎣
⎡ ++⎥⎦

⎤
⎢⎣
⎡ +−)(

2
1)(

2
1 δδ

 ≈
n

qpqp ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−⎟
⎠
⎞

⎜
⎝
⎛ +−)(

2
1)(

2
1 δδ

 ≈ []nqp)(1 +−δ (8)
Since 0<δ(p+q)<1,

1))(
2

1(−++ qpδ ≈)(
2

1 qp +−
δ

Using (8), equation (6) can be written as:

() ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−+

+−−
=

n

n

qp
p
q

qp
anm

)(11

))(1(1
)(

δ

δ

 118

It is the same as equation (5).

A discrete equivalent to (3) given by (5) has been observed to be easier and faster to
compute, compared with (6) and (7).

4. A NEW CLASS OF GENERALIZED KAPUR AND GARG MODEL

4.1 Generalized Model-1

An interesting variation of a continuous time SRGM developed by Kapur and Garg
[6] is now presented: it adds extra flexibility and wider scope to the already flexible
model.

Consider the case when the failure growth phenomenon also depends upon the
testing time, in addition to the number of faults remaining in the software, as well as
the number of faults already identified [6]. Based on these assumptions, the
differential equation for fault identification / removal can be written as:

)(ma
a
mqpt

dt
dm k −⎟

⎠
⎞

⎜
⎝
⎛ += (9)

Here 0≥k . It can be easily seen that if k = 0 it is same as the differential equation for
SRGM developed by Kapur and Garg [6].

Solving it with the initial condition)0(m = 0 we get:

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−
=

+

+

+−

+

+

+−

1

1
)(

1

1
)(

1

1)(

k

kt
qp

k

kt
qp

e
p
q

eatm (10)

The solution obtained is capable of capturing different types of variations shown by
the curve of)(tm , depending upon different values of k. It can be easily shown that
if k = 0 and q = 0 the model simply takes the exponential form, and if k = 0 and q ≠ 0
it reduces to Kapur and Garg [6].

4.2 Alternate formulation for generalized model-1

4.2.1 Alternate formulation –1

The number of failures during testing is dependent upon the number of instructions
executed. Here the number of instructions executed is a function of testing time.

Using these assumptions, the failure removal phenomenon can be expressed as:

 119

dt
de

de
dm

dt
dm

=

Define:

)(ma
a
mqp

de
dm

−⎟
⎠
⎞

⎜
⎝
⎛ +=

Let the number of instructions executed be a power function of testing time:

kt
dt
de

=

By combining the above two factors, we can write:

)(ma
a
mqpt

dt
dm k −⎟

⎠
⎞

⎜
⎝
⎛ +=

which is the same as (9).

4.2.2 Alternate formulation–2

Another alternate formulation for SRGM given by (10) is described, which will
allow definition of a new type of logistic function.

Consider:

)(

1 1

1 ma

e

tb
dt
dm

k
b

k

kt
−

+

=

+
−

+

β

 (11)

Solving it with the initial condition)0(m = 0, we get the same result as in (9).

Here
1

1

1

)(

+

+

−
+

=

k

kt
b

k

e

tb
tb

β

 can be termed a power logistic rate which reduces to the

ordinary logistic rate if k = 0.

4.3 Generalized model-2

The basic levels of testing are ‘white-box’ testing and ‘black-box’ testing. White-box
testing is performed to find faults that lie within the internal structure of the software.
It requires the tester to have a detailed knowledge of the internal structure. The main

 120

objective of white-box testing is to ensure that test cases execute every path
throughout the code. The importance of white-box testing is expressed in terms of
test or code coverage metrics, which measure the fraction of code executed by test
cases.

Black-box testing is carried out to judge how well software meets the user’s
requirements.

Testing coverage is defined as the extent or degree to which software is executed by
the test cases. During testing, if few bugs are encountered, it does not necessarily
indicate that the coding is of a high quality; on the contrary, it implies the poor
design of test cases. To ensure better testing, testing coverage analysis is used to
assess the quality of test cases. Testing coverage is actually a structural testing
technique in which software performance is judged with respect to the specification
of the source code. The basic testing coverage measures are:

[1] Statement coverage: It is defined as the proportion of lines executed in the

program. If it is assumed that the faults are uniformly distributed throughout
the code, then the percentage of executable statements covered shows the
percentage of faults discovered.

[2] Decision / condition coverage: This measure indicates whether Boolean
expressions tested in control structures evaluated to both true and false.

[3] Path coverage: This measure shows the percentage of all possible paths
existing in the code exercised by the test cases.

[4] Function coverage: This measure indicates the proportion of functions/
procedures influenced by the testing.

Testing coverage provides an important criterion for the optimal release policy,
based on available testing resources and the importance of risk-free and safe
operations of the software on implementation. Therefore, safety-critical systems have
a high coverage objective.

A software reliability growth model that incorporates the concept of testing coverage
in the model building is now presented. The concept of convex combination of two
different types of functions to represent the testing coverage function is used. This
approach helps to capture various types of coverage function simultaneously,
depending on the various possible values of the parameters. The goodness of the fit
has been tried on two real software failure datasets. The results obtained are fairly
accurate, and show considerable improvement and a better fit.

Let c(t) define the proportion of the software executed by the test cases. So, 1 - c(t)
defines the proportion of the code which is yet to be covered by the test cases. Then,
the first order derivative of c(t) , denoted by c’(t), represents the testing coverage

rate. The ratio of the two – i.e.
)(1

)('
tc

tc
−

 – will be taken as measure of the fault

detection rate.

 121

Let
))1)(1(exp(1)(−−−−−=

btu ektktc γλ (12)

Here 10 ≤≤k and 0,,, >γλ bu
where u and b are the shape parameters

γλ , are the scale parameters.

Using (12)

btbu etbktuk
tc

tc γγλ 11)1(
)(1

)(' −− −+=
−

 (13)

Consider the model having the fault detection rates as defined above
in (13) respectively:

dt
d

m(t) = ()(t)m-a
)(1

)('
tc

tc
−

 (14)

It can be seen that failure intensity not only depends on the number of remaining
faults in the software, but also on the ratio of the rate at which the remaining faults
are covered and the present proportion of uncovered faults.

Using the fault detection rate as defined in (13), we get:

dt
d

m(t) = ()(t)m-a))1((11 btbu etbktuk γγλ −− −+ (15)

Using the initial condition 0)0(=m , we get:

[]))1)(1(exp(1

)(

−−−−−

=
btu ektka

tm
γλ

 (16)

where m(t) → a as t → ∞.

If k=1 it is the same as the Weibull model developed by Yamada.[20].

5. MODEL VALIDATION

To check the accuracy of the generalized SRGM-1 given by (10) with power logistic
and generalized SRGM-2 given by (16) with convex combination of two different
types of function with respect to flexible SRGM of type (4), parameter estimation on
real software failure datasets has been done.

 122

Data Set-I (DS-I):

The data was obtained from Musa et al [9]. The software was a real time command
and control system which was tested for 92 days (21 weeks). The delivered object
instructions were 21,700 involving 9 programmers; 136 faults were removed during
testing.

The estimation results are given in Table 1.

Data Set – II (DS-II):

The data are cited from Brooks and Motley [3]. The fault data set is for a radar
system of size 124 KLOC (kilo lines of code) tested for 35 months, in which 1301
faults were identified.

The estimation results are given in Table-2.

Models under comparison Data Set Parameter
estimation Flexible

Model
Generalized

SRGM-1
Generalized

SRGM-2
a 168 140 142
b .33242 .00403 .0105
β 193.55 8.073 -
k - 1.7103 .000025
λ - - .0595
u - - 4.81

DS-I

γ - - .162
R2 .99310 .99738 .99745 Comparison

Criterion MSE 16.354 6.21 6.037
Table 1: Estimation results for DS-I

Models Under Comparison Data Set Parameter

Estimation Flexible
Model

Generalized
SRGM-1

Generalized
SRGM-2

a 1331 1322 1305
b .20059 .1234 .423
β 20.16 11.15 -
k - .1678 .0029
λ - - .177
u - - 2.594

DS-II

γ - - .0262
R2 .99904 .99911 .99909 Comparison

Criterion MSE 204 190.35 193.86
Table 2: Estimation results for DS-II

 123

5.1 Goodness of fit curves for the proposed generalized SRGMs

Goodness of Fit for Generalized SRGM-1 (DS-I)

0

50

100

150

1 4 7 10 13 16 19

C
um

ul
at

iv
e

Fa
ul

ts

Actual Values
Estimated Values

Figure 1: Cumulative faults vs time for SRGM-1(DS-I)

Goodness of Fit For Generalized SRGM-2 (DS-I)

0

50

100

150

1 3 5 7 9 11 13 15 17 19 21C
um

ul
at

iv
e

Fa
ul

ts

Actual Values
Estimated Values

Figure 2: Cumulative faults vs time for SRGM-2(DS-I)

Goodness of Fit For Generalized SRGM-1 (DS-II)

0

500

1000

1500

1 5 9 13 17 21 25 29 33

C
um

ul
at

iv
e

Fa
ul

ts

Actual Values

Estimated Values

Figure 3: Cumulative faults vs time for SRGM-1 (DS-II)

 124

Goodness of Fit For Generalized SRGM-2 (DS-II)

0

500

1000

1500

1 4 7 10 13 16 19 22 25 28 31 34C
um

ul
at

iv
e

Fa
ul

ts

Actual Values
Estimated Values

Figure 4: Cumulative faults vs time for SRGM-2 (DS-II)

It has been observed that the generalized SRGM-1 and 2 given by (10) and (16) has
always provided results that are the same as or better than the flexible SRGM of type
(4). This is due to the flexibility given to the model by the presence of the ‘k’ factor.
The increased accuracy achieved shows the ability of the model to capture different
types of failure datasets – e.g. exponential, S-shaped Rayleigh or Weibull types, etc.

6. CONCLUSION

Software reliability engineering is rapidly emerging as an important field of study in
the area of information technology. Mathematical models play a significant role in its
growth. These models provide quantitative tools to assess the reliability of the
developers’ software. In this paper, an important class of SRGMs, known as ‘flexible
SRGMs’, has been assessed. New dimensions have been added to the flexible
modelling by introducing the concept of the ‘k’ factor and convex combination,
which proves to be more flexible and yields a better predictability and higher degree
of accuracy.

The usability of this newly introduced concept is not limited to these SRGMs. It can
be extended to improve the results of any SRGM, whether exponential, S-shaped or
of any other type – for example, multi-stage models or SRGMs related to distributed
environment.

7. ACKNOWLEDGEMENT

This research work was initiated while Prof. P.K. Kapur was visiting researcher at
the Department of Industrial and Systems Engineering, University of Pretoria, South
Africa.

8. REFERENCES

[1] Bass FM. 1969 “A new product growth model for consumer durables”.

Management Science; 15(5): pp 215-224.
[2] Bittanti S, Bolzern P, Pedrotti E, Scattolini R. 1988. “A flexible modelling

approach for software reliability growth”. Software Reliability Modelling and

 125

Identification. G. Goos and J. Harmanis (eds), Springer Verlag, Berlin, pp 101-
140.

[3] Brooks WD, Motley RW. 1980. “Analysis of discrete software reliability
models – Technical Report (RADC-TR-80-84)”. New York: Rome Air
Development Center.

[4] Goel AL, Okumoto K. 1979. “Time dependent error detection rate model for
software reliability and other performance measures”. IEEE Transactions on
Reliability, R-28(3): pp 206-211.

[5] Jelinski Z, Moranda PB. 1972. “Software reliability research”, in Freiberger
W, (ed.) Statistical Computer Performance Evaluation, New York: Academic
Press: pp 465-497.

[6] Kapur PK, Garg RB. 1992. “A software reliability growth model for an error
removal phenomenon”. Software Engineering Journal, 7: pp 291-294.

[7] Kapur PK, Garg RB, Kumar S. 1999. Contributions to hardware and
software reliability. Singapore, World Scientific Publishing Co. Ltd.

[8] Kapur PK, Shatnawi O and Singh O. 2002. “Discrete imperfect software
reliability growth models under imperfect debugging environment”, in: Rajaram NJ
and Verma AK (eds), Proceedings of the International Conference on Multimedia
and Design; Arena Multimedia & IIT: Mumbai, Vol (II): pp. 114-29.

[9] Musa JD. 1979. “Validity of execution time theory of software reliability”.
IEEE Transactions on Reliability, R-28: pp 181-191.

[10] Musa JD, 1999. Software Reliability Engineering, McGraw-Hill.
[11] Musa JD, Iannino A, Okumoto K. 1987.Software reliability: Measurement,

Prediction, Applications. New York: Mc Graw Hill.
[12] Ohba M. 1984. “Software reliability analysis models”. IBM Journal of

Research and Development; 28: pp 428-443.
[13] Pham H. 2000. Software Reliability. Springer-Verlag Singapore Pvt. Ltd.
[14] R. Hirota, 1979. “Nonlinear partial difference equation v. nonlinear equations

reducible to linear equations”. Journal of the Physical Society of Japan, 46, pp
312-319.

[15] Satoh D, 2001. “A discrete bass model and its parameter estimation”. Journal
of Operations Research Society of Japan, 44(1): pp 1-18.

[16] Xie M. 1991. Software reliability modeling. World Scientific.
[17] Yamada S, Ohba M., Osaki S. 1983. “S-shaped software reliability growth

modelling for software error detection”. IEEE Trans. On Reliability, R-32(5):
pp 475-484.

[18] Yamada S and Osaki S. 1985, “Discrete Software reliability growth models”.
Applied stochastic models and data analysis, Vol. 1: pp. 65-77.

[19] Yamada S, Inoue S and Yamamoto T. 2004. “Software Reliability Growth
Modeling Based on Testing-coverage”. To appear in International Journal of
Quality, Reliability and Safety Engineering.

[20] Yamada, S., J. Hishitani and S. Osaki , 1993. “Software Reliability Growth
Model with Weibull testing effort: A model and application”. IEEE Trans. on
Reliability, R-42, pp 100-105.

