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ABSTRACT 

 
Numerous Software Reliability Growth Models (SRGMs) have been discussed in the 
literature. These models are used to predict fault content and reliability of software. It 
has been observed that the relationship between testing time and the corresponding 
number of faults removed is either exponential or S-shaped, or a mix of the two. 
Another important class of SRGMs, known as flexible SRGMs, can depict both 
exponential and S-shaped growth curves. The paper introduces a new concept of 
power logistic learning function that proves to be very flexible, in the sense that it 
represents various curve types – exponential, Rayleigh, Weibull or simple logistic. 
The flexible nature of the power logistic function gives the flexible SRGM a higher 
degree of accuracy and wider applicability.     

 
OPSOMMING 

 
Verskeie voorbeelde van Betroubaarheidsgroeimodelle vir programmatuur word in 
die literatuur beskryf.  Die modelle word gebruik vir die voorspelling van foutinhoud 
en programmatuurbetroubaarheid. Daar word waargeneem dat die verband tussen 
toetstyd en die resulterende foutverwydering eksponensiaal of S-vormig of ‘n 
kombinasie daarvan is. Aanpasbare modelle insluitende diskrete ekwivalente word 
ook behandel. Die publikasie ontleed vervolgens algemene plooibare maglogistieke   
leerkromme met wye toepasbaarheid wat slaan op eksponensiële, Rayleigh-, 
Weilbull- en logistieke funksies. Die plooibaarheid van die model waarborg 
akkuraatheid en wye toepasbaarheid met die verlangde gehalte van voorspelbaarheid. 
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1.  INTRODUCTION 
 
Due to the incredible growth in information technology and science, computers and 
computer-based systems have invaded every sphere of human activity – for example, 
nuclear research, telecommunications, space research programmes, aviation, 
transportation, banking, education, and health-care. With the world of information 
technology changing at a staggering rate, not to mention the proliferation of the 
Internet, more and more systems are being automated, resulting in an increase in 
people’s dependence on computers.  
 
Although this technology revolution has made our lives better, concern for safety and 
security has never been greater. There are numerous instances where failures of 
computer-controlled systems have led to colossal loss of human lives and money. 
With the increased complexity of product design, short development cycles, higher 
customer demands for quality, and the highly destructive consequences of software 
failures, a major responsibility lies with those who are active in the areas of software 
debugging, testing and verification. Moreover, competition in the software market is 
intense, and as a result of the applications involved, purchasers look for quality and 
reliability in software. The nature and complexity of software requirements has 
drastically changed over the last few decades, and users worldwide have become 
much more demanding in terms of cost and quality.  
 
Computer-based systems typically consist of hardware and software. Quality 
hardware can now be produced at a reasonable cost, but the same cannot be said of 
software. Software development consists of a sequence of activities where perfection 
is yet to be achieved. Thus there is every possibility that faults are
introduced and remain in software. These faults can lead to failures that have 
catastrophic results. So great emphasis is placed on avoiding the introduction of 
faults during software development and removing latent faults before the product is 
released for use. The only way to verify and validate the software is by testing. 
Software testing involves running the software and checking for unexpected behavior 
in the software output. During the testing phase, test cases that simulate the user 
environment are run on the software. Any departure from specifications or 
requirements is called a failure, and immediately an effort is made to remove the 
cause of that failure (the fault). A successful test can be considered to be one that 
reveals the presence of latent faults. Therefore, software should be thoroughly tested 
to expose as many software faults as possible. The testing phase is an extremely 
important feature of the software development life cycle (SDLC), in which about 
50% of the developmental resources are consumed. Therefore, testing software by 
executing all its statements and paths (even just once) is not practically possible for a 
large-scale software system. A compromise testing approach is used, which involves 
dividing the software into blocks and executing each block at least once. Potentially 
troublesome combinations of blocks are executed many times. However, testing 
techniques can be categorized into two main groups: 
 
1. Top-down testing involves starting the test at the sub-system level. Then, the 

modules that comprise the sub-system are tested. The procedure is recursively 
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repeated until the test reaches the lowest level software component (function, 
object). 

 
2. Bottom-up testing involves reversing the previous process. 
 
Each test technique has its merits and demerits. Choosing the testing approach 
mainly depends on the software development technique. Software testing is a 
destructive process, since it aims at forcing the software to behave abnormally under 
some conditions. For this reason, software programmers subconsciously avoid 
bringing their product into this stage. Therefore, it is preferable that an independent 
team tests the software. This test method is called independent validation and 
verification (IVV), which means that the testing team is functionally independent of 
the development team, and tests the software from the user’s point of view. This 
method is also called the black box method. The process of locating faults and 
designing the procedures to remove them is called the debugging process. The 
process of fault removal (repair) involves rewriting the code if the fault is due to 
coding and design error, or changing the requirements (which requires major repair). 
The chronology of failure occurrence and fault removals can be utilized to provide an 
estimate of the software reliability and the level of fault content. In the light of this, 
there is a need to develop a tool that can utilize this information to help software 
engineers and managers to monitor the process of testing. The software reliability 
model (SRM) is a tool that can be used to evaluate software quantitatively, develop 
test status and schedule status, and monitor the changes in reliability performance.  
 
Numerous Software Reliability Growth Models (SRGMs), which report the number 
of failures (faults identified/removed), have been discussed in the literature [7, 10, 
13]. These models are used to predict the fault content and reliability of the software.  
It has been observed that the relationship between the testing time and the 
corresponding number of faults removed is either exponential [4] or S-shaped [17], 
or a mix of the two. Another important class of SRGMs, known as flexible SRGMs, 
exists: depending upon parameter values, these depict both exponential and S-shaped 
growth curves [7]. In these models the role of the learning process during the testing 
phase is taken into account, which comes from the experience gained in software 
testing. 
 
In this paper, section 2 discusses three existing flexible SRGMs developed by Obha 
[12], Bittanti et al [2], and Kapur and Garg [6]; section 3 discusses their discrete 
equivalents. Two other discrete equivalents of the Kapur and Garg [6] model are also 
included: these exist in the literature due to Innoue [19] and Satoh [15]. They are 
subsequently shown to be equivalent to a discrete equivalent of Kapur and Garg [6] 
that is mathematically and computationally much simpler. The derivation of 
continuous SRGMs from the equivalent discrete model has also been shown. The 
interesting part of the paper begins in section 4, with the introduction of a new 
concept of a power logistic learning function, which proves to be very flexible in the 
sense that it represents various curve types – exponential, Rayleigh, Weibull or 
simple logistic. In the same section the concept of generalized SRGMs is taken 
further by defining the software fault detection rate as the convex combination of the 
power logistic and Weibull functions. From the numerical illustrations, it is seen that 
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the newly defined class of generalized SRGMs yields considerably improved results, 
with a better predictability resulting from a lower MSE and higher coefficient of 
variation. 
 
2.  FLEXIBLE SRGMS 
 
2.1  Inflection S-shaped SRGM Ohba [12] 
 
This model has been developed under the assumption that the more that errors are 
detected, the more undetected errors become detectable.  
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where r, ( )10 ≤≤ r , is a proportion of independent errors and is the inflection 
parameter. The model becomes exponential when r = 1 and takes the logistic form 
when r = 0. It implies that initially r is almost zero, but as faults are detected and 
removed it approaches unity. Here )(tϕ reflects the gradual increase in testing effort 
and the skill gained by the testers as the testing progresses. 
 
2.2  Flexible SRGM Bittanti et al [2]  
 
This model is based on the following differential equation: 
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Here ki and   kf are initial and final values of the fault exposure coefficient. If ki  =  kf , 
then it reduces to the exponential model. If kf >> ki ; the failure growth curve takes S-
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shape. If kf is very small compared to ki and is almost equal to zero, the failure 
growth curve becomes flat at the end.  
 
The solution of the equation with initial condition m(t = 0) = 0 is : 
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For different values of kf and ki, it describes different growth curves. 
 
2.3  SRGM for an error removal phenomenon Kapur and Garg [6] 
 
This model is based upon the assumption that the detection of errors also results in 
detection of some of the remaining errors without these errors causing any failure.  
 
The differential equation for this model is given by: 
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where  
 
            p       : Failure occurrence rate.  
            q      : Fault removal rate of additional removed faults. 
 
This model was developed to account for some additional faults being detected 
without their causing failure. Here it may be observed that if q = 0, then on each 
failure, only the error causing the failure is removed and it corresponds to the 
exponential model. The failure growth curve defined by the above model is S-shaped 
whose nature depends on q/p. 
 
2.4  One-stage equivalent model for (1), (2) & (3) 
 
All three models – Ohba [12], Bittanti [2], and Kapur and Garg [6] – can be written 
in general form (one-stage process): 
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dt
d

m(t) = b(t)  (a – m(t)) 

with b(t) = bte
b

−+ β1
   

 
Upon solving we get: 
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By giving different forms to b and β, the above three models can be derived. 
 
Here, in the alternate formulation, it may be observed that the fault detection rate for 
the above specified models is a logistic function, and b(t) → b  as  t→ ∞ . Here β is 
the learning factor, and it represents the skills and experience gained by the testers 
during testing.  If β  = 0, then b(t) = b, i.e. constant. 
 
3.  DISCRETE SRGMS 
  
NHPP-based SRGMs described above are continuous time models that use the 
execution time (i.e., CPU time) or calendar time. The other group contains models, 
that use the test cases as a unit of fault removal period. Such models are called 
discrete time models, since the unit of software fault removal period is countable. A 
test case can be a single computer test run executed in an hour, day, week or even 
month. Therefore, it includes the computer test run and length of time spent to 
inspect the software source code visually. A large number of models have been 
developed in the first group, while fewer are in the second group owing to the 
difficulties caused by their mathematical complexity.  
 
Nevertheless, the utility of discrete SRGMs cannot be underestimated. As the 
software failure data sets are discrete, these models often provide a better fit than 
their continuous time counterparts. Therefore, in spite of the difficulties caused by 
mathematical complexity, discrete models are proposed regularly [7, 18]. 
 
Therefore we develop flexible discrete SRGMs on the lines of the abovementioned 
continuous time SRGMs, using a probability generating function (PGF). Two other 
forms of the model are also given, and it can be shown that the three forms are 
equivalent. It is further shown how a continuous time SRGM can be derived from the 
discrete model. Since most of the software failure data sets are discrete, therefore, it 
is suggested that discrete SRGMs should be used.  
 
3.1  Discrete time flexible SRGM for error removal [6]  
 
Most of the software reliability growth models assume that the fault removal 
phenomenon also describes the failure phenomenon. This may not always be true. 
The test team can remove some faults in the software without these faults causing 
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any failure, although this may involve some additional effort. A fault that is removed 
consequent to a failure is known as a leading fault. While removing the leading 
faults, some other faults are removed that might have caused future failures. These 
are known as dependent faults.  
 
The difference equation under the above assumptions for the SRGM is given by: 
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where δ  is a constant time interval. 
 
The solution can be obtained as follows (using PGF): 
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Comparing the coefficients of zn, by mathematical induction we get:  
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Here as anmn →∞→ )(, . 
 
The above discrete SRGM is equivalent to the continuous time SRGM of Kapur and 
Garg [6] when 0→δ . 
 
Define δnt =  
 
as  0→δ  



 116 

( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−+

+−−
n

n

qp
p
q

qp
a

)(11

))(1(1

δ

δ  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

−
→

+−

+−

tqp

tqp

e
p
q
ea

)(

)(

1

1  

 
3.2  Other discrete SRGMs 
 
Various other discrete SRGMs have been reported in the literature corresponding to 
the continuous model. One is developed by Yamada and Inoue [19]. It is based on 
the discrete Riccati equation. 
 
It is given by 
 

( ) )1().(
2

)1()()()1(
++⎥⎦

⎤
⎢⎣
⎡ ++

−+=
−+ nmnm

a
qnmnmpqpanmnm

δ  

 The exact solution of the above difference equation is given by: 
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Similarly, using the Satoh [15] approach, another discrete equivalent of a continuous 
model (3) can be obtained. 
 
( ) ( )

( )
⎥
⎦

⎤
⎢
⎣

⎡
−+−⎟

⎠
⎞

⎜
⎝
⎛ −++

+⎥⎦
⎤

⎢⎣
⎡ −++
−=

−−+

)1().1(
2

)1(1
2

)1()1(
2

11

nmnmnmnma
a
qnmnmap

nmnm
δ

 
The exact solution as given by Satoh is: 
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Again, it can be shown that as 0→δ , m(n) given by (6) and (7) converge to the 
corresponding continuous SRGM given by (3). 
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3.3  Equivalence of discrete SRGMs given by equation (5), (6) and (7) 
 
Consider (7)   
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Here  1 q)(p 0 <+< δ . 
Using  nx−≈1x)-(1 n  , we get: 
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which is the same as equation (6). 
 
In the above equation we can use the following expansion: 
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It is the same as equation (5). 
 
A discrete equivalent to (3) given by (5) has been observed to be easier and faster to 
compute, compared with (6) and (7). 
 
4.  A NEW CLASS OF GENERALIZED KAPUR AND GARG MODEL 
 
4.1  Generalized Model-1 
 
An interesting variation of a continuous time SRGM developed by Kapur and Garg 
[6] is now presented: it adds extra flexibility and wider scope to the already flexible 
model. 
 
Consider the case when the failure growth phenomenon also depends upon the 
testing time, in addition to the number of faults remaining in the software, as well as 
the number of faults already identified [6]. Based on these assumptions, the 
differential equation for fault identification / removal can be written as:  
 

)( ma
a
mqpt

dt
dm k −⎟

⎠
⎞

⎜
⎝
⎛ +=         (9) 

 
Here 0≥k . It can be easily seen that if k  = 0 it is same as the differential equation for 
SRGM developed by Kapur and Garg [6]. 
 
Solving it with the initial condition )0(m = 0 we get: 
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The solution obtained is capable of capturing different types of variations shown by 
the curve of )(tm , depending upon different values of k. It can be easily shown that 
if k = 0 and q = 0 the model simply takes the exponential form, and if k = 0 and q ≠ 0   
it reduces to Kapur and Garg [6]. 
 
4.2  Alternate formulation for generalized model-1 
 
4.2.1 Alternate formulation –1 
 
The number of failures during testing is dependent upon the number of instructions 
executed. Here the number of instructions executed is a function of testing time. 
 
Using these assumptions, the failure removal phenomenon can be expressed as: 
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Let the number of instructions executed be a power function of testing time: 
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By combining the above two factors, we can write: 
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which is the same as (9). 
 
4.2.2 Alternate formulation–2 
 
Another alternate formulation for SRGM given by (10) is described, which will 
allow definition of a new type of logistic function.  
 
Consider: 
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Solving it with the initial condition )0(m = 0, we get the same result as in (9). 
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 can be termed a power logistic rate which reduces to the 

ordinary logistic rate if k = 0.  
 
4.3  Generalized model-2 
 
The basic levels of testing are ‘white-box’ testing and ‘black-box’ testing. White-box 
testing is performed to find faults that lie within the internal structure of the software. 
It requires the tester to have a detailed knowledge of the internal structure. The main 
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objective of white-box testing is to ensure that test cases execute every path 
throughout the code. The importance of white-box testing is expressed in terms of 
test or code coverage metrics, which measure the fraction of code executed by test 
cases.  
 
Black-box testing is carried out to judge how well software meets the user’s 
requirements.  
 
Testing coverage is defined as the extent or degree to which software is executed by 
the test cases. During testing, if few bugs are encountered, it does not necessarily 
indicate that the coding is of a high quality; on the contrary, it implies the poor 
design of test cases. To ensure better testing, testing coverage analysis is used to 
assess the quality of test cases. Testing coverage is actually a structural testing 
technique in which software performance is judged with respect to the specification 
of the source code. The basic testing coverage measures are: 
 
[1] Statement coverage: It is defined as the proportion of lines executed in the 

program. If it is assumed that the faults are uniformly distributed throughout 
the code, then the percentage of executable statements covered shows the 
percentage of faults discovered. 

[2] Decision / condition coverage: This measure indicates whether Boolean 
expressions tested in control structures evaluated to both true and false. 

[3] Path coverage: This measure shows the percentage of all possible paths 
existing in the code exercised by the test cases. 

[4] Function coverage: This measure indicates the proportion of functions/ 
procedures influenced by the testing. 

Testing coverage provides an important criterion for the optimal release policy, 
based on available testing resources and the importance of risk-free and safe 
operations of the software on implementation. Therefore, safety-critical systems have 
a high coverage objective.  

A software reliability growth model that incorporates the concept of testing coverage 
in the model building is now presented. The concept of convex combination of two 
different types of functions to represent the testing coverage function is used. This 
approach helps to capture various types of coverage function simultaneously, 
depending on the various possible values of the parameters. The goodness of the fit 
has been tried on two real software failure datasets. The results obtained are fairly 
accurate, and show considerable improvement and a better fit. 

Let c(t) define the proportion of the software executed by the test cases. So, 1 - c(t) 
defines the proportion of the code which is yet to be covered by the test cases. Then, 
the first order derivative of c(t) , denoted by c’(t), represents the testing coverage 

rate. The ratio of the two – i.e. 
)(1

)('
tc

tc
−

 – will be taken as measure of the fault 

detection rate. 
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Let 
))1)(1(exp(1)( −−−−−=

btu ektktc γλ                        (12) 
   

Here  10 ≤≤k  and   0,,, >γλ bu  
where u and b are the shape parameters 

γλ , are the scale parameters. 
 

Using (12) 
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tc
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                 (13) 

 
Consider the model having the fault detection rates as defined above  
in (13) respectively: 
 

dt
d

m(t) = ( )(t)m-a
)(1

)('
tc

tc
−

                  (14) 

 
It can be seen that failure intensity not only depends on the number of remaining 
faults in the software, but also on the ratio of the rate at which the remaining faults 
are covered and the present proportion of uncovered faults.  
 
Using the fault detection rate as defined in (13), we get: 
 

dt
d

m(t)  = ( )(t)m-a))1(( 11 btbu etbktuk γγλ −− −+                (15) 

 
Using the initial condition 0)0( =m , we get: 

[ ]))1)(1(exp(1

)(

−−−−−

=
btu ektka

tm
γλ

            

    (16) 
 
where m(t) → a  as t  → ∞. 
 
If k=1 it is the same as the Weibull model developed by Yamada.[20]. 
 
5.  MODEL VALIDATION 
 
To check the accuracy of the generalized SRGM-1 given by (10) with power logistic 
and generalized SRGM-2 given by (16) with convex combination of two different 
types of function with respect to flexible SRGM of type (4), parameter estimation on 
real software failure datasets has been done.  
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Data Set-I (DS-I):  
 
The data was obtained from Musa et al [9]. The software was a real time command 
and control system which was tested for 92 days (21 weeks). The delivered object 
instructions were 21,700 involving 9 programmers; 136 faults were removed during 
testing.  
 
The estimation results are given in Table 1. 
 
Data Set – II (DS-II): 
 
The data are cited from Brooks and Motley [3]. The fault data set is for a radar 
system of size 124 KLOC (kilo lines of code) tested for 35 months, in which 1301 
faults were identified.  
 
The estimation results are given in Table-2. 
 

Models under comparison Data Set Parameter 
estimation Flexible  

Model 
Generalized 

SRGM-1 
Generalized 

SRGM-2 
a 168 140 142 
b .33242 .00403 .0105 
β  193.55 8.073 - 
k - 1.7103 .000025 
λ - - .0595 
u - - 4.81 

DS-I 

γ - - .162 
R2 .99310 .99738 .99745 Comparison 

Criterion MSE 16.354 6.21 6.037 
Table 1:  Estimation results for DS-I 

 
Models Under Comparison Data Set Parameter 

Estimation Flexible 
Model 

Generalized 
SRGM-1 

Generalized 
SRGM-2 

a 1331 1322 1305 
b .20059 .1234 .423 
β  20.16 11.15 - 
k - .1678 .0029 
λ - - .177 
u - - 2.594 

DS-II 

γ - - .0262 
R2 .99904 .99911 .99909 Comparison 

Criterion MSE 204 190.35 193.86 
Table 2:  Estimation results for DS-II 
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5.1  Goodness of fit curves for the proposed generalized SRGMs 
 

Goodness of Fit for Generalized SRGM-1 (DS-I)
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Figure 1:  Cumulative faults vs time for SRGM-1(DS-I) 
 

Goodness of Fit For Generalized SRGM-2 (DS-I)
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Figure 2:  Cumulative faults vs time for SRGM-2(DS-I) 
 

Goodness of Fit For Generalized SRGM-1 (DS-II)
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Figure 3:  Cumulative faults vs time for SRGM-1 (DS-II) 
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Goodness of Fit For Generalized SRGM-2 (DS-II)
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Figure 4:  Cumulative faults vs time for SRGM-2 (DS-II) 
 
It has been observed that the generalized SRGM-1 and 2 given by (10) and (16) has 
always provided results that are the same as or better than the flexible SRGM of type 
(4). This is due to the flexibility given to the model by the presence of the ‘k’ factor. 
The increased accuracy achieved shows the ability of the model to capture different 
types of failure datasets – e.g. exponential, S-shaped Rayleigh or Weibull types, etc. 
 
6.  CONCLUSION 
 
Software reliability engineering is rapidly emerging as an important field of study in 
the area of information technology. Mathematical models play a significant role in its 
growth. These models provide quantitative tools to assess the reliability of the 
developers’ software. In this paper, an important class of SRGMs, known as ‘flexible 
SRGMs’, has been assessed. New dimensions have been added to the flexible 
modelling by introducing the concept of the ‘k’ factor and convex combination, 
which proves to be more flexible and yields a better predictability and higher degree 
of accuracy. 
  
The usability of this newly introduced concept is not limited to these SRGMs. It can 
be extended to improve the results of any SRGM, whether exponential, S-shaped or 
of any other type – for example, multi-stage models or SRGMs related to distributed 
environment. 
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