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Executive Summary 

The process of forecasting is one that has been applied by many and has evolved significantly over 

the past several decades. In the foodservice industry, effective and profitable operation relies 

heavily on accurate and reliable sales forecasts. This project was conducted with the aim of 

determining if it is possible to develop a forecasting tool consisting of a model or selection of 

models capable of forecasting daily sales for different restaurants with similar operating 

environments which can subsequently be developed into an Expert System. This Expert System 

should replicate the expertise, comprehension, intuition, and intelligence of the forecast knowledge 

expert in the process of forecasting daily sales in the foodservice industry and can then be used by 

individuals who has limited or no experience/understanding of the process of forecasting. 

This document includes a background on the company for which the model will be developed. It 

also highlights the problem that were addressed by this project as well as the approach and scope 

that will were followed towards finding a solution to this problem. A literature review explaining 

the methodology and application of potential methods that were considered in the selection and 

development of the final model(s) are included. Data analysis were carried out on the data that 

were acquired and similarities and observations documented. Finally the appropriate methods were 

tested and evaluated against one another. 

The results obtained from this project indicated that it is indeed possible to develop a forecasting 

tool capable of forecasting daily sales for different restaurants with similar operating 

environments. It was also determined that an Expert System can be developed based on the results 

obtained. The methodology that the Expert System will follow in producing forecasts are also 

included in this document. 
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1 Introduction and Background 

1.1 The Company 

Copper Canyon Spur is a family restaurant franchise situated in Lambton Gardens, Johannesburg. 

The restaurant was opened in 2003 and has since then grown and expanded to cater for customers 

of every age, race, and ethnicity. The restaurant forms part of the Spur Group (Pty) Ltd which has 

505 outlets worldwide of which 318 are Spur Steak Ranches (Spurcorporation.com, 2016). The 

restaurant is open every day of the year and caters for various types of events such as birthday 

parties, year-end functions etc. Copper Canyon Spur has a gross revenue of approximately R1-

million per month. 

The restaurant changed ownership in August 2015 and is therefore currently still in the process of 

adapting to new management principles and methodologies. Although the new stakeholders have 

extensive experience in the restaurant franchise industry, this is the first time they are joining the 

Spur Group. New challenges will inevitably arise when entering a new environment and with it, 

new approaches, methods and solutions for overcoming these challenges will be developed. One 

of the challenges that has been identified is the forecasting of daily sales.  

1.2 Problem Statement 

As stated in section 1.1, one of the challenges faced by the company is daily sales forecasting. 

Currently, an Ad Hoc forecasting method is being used to predict future daily sales. This method 

has proven to be quite effective when used for forecasting daily sales of three other restaurants 

(which are all part of the same but different franchisor) but has shown a decrease in accuracy when 

it was applied at Copper Canyon Spur. This is due to the fact that applying this type of forecasting 

method requires experience and expertise in a particular restaurant franchise environment to be 

effective. 

The stakeholders expressed the need for a forecasting model that can be used to forecast daily sales 

not only for Copper Canyon Spur but also for other restaurants with a similar operating 

environment. This model can then later be developed into an expert system model that can be 

implemented at various other restaurants. When implemented into an expert system, the process 

of producing forecasts should be automated and produce forecasts to be used by individuals 

without experience in forecasting. 
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2 Project Aim 

The aim of this project will be to create an accurate and reliable forecasting model that can be used 

to forecast daily sales of different restaurants with similar operating environments. The model 

should be as user-friendly as possible and allow for continuous development and improvement 

even after the project has ended. The model should also be adaptable to allow for the future 

development of an expert system model which would replicate the expertise, comprehension, 

intuition, and intelligence of the forecast knowledge expert in the process of forecasting daily sales 

in the foodservice industry.  

3 Project Approach, Scope & Deliverables 

3.1 Approach & Scope 

The first part of the project entailed conducting a thorough, in-depth literature study of existing 

forecasting methods and approaches. Potential forecasting methods will be identified and the 

methodology behind the application of these methods will be explained. Related works will also 

be studied. 

A thorough analysis of the daily sales data gathered will then be conducted to get an understanding 

of the behavior and characteristics of the data and to aid in the process of deciding which 

forecasting methods should, and can be used. Based on the results obtained from the data analysis 

the different methods identified will then be applied and different forecasting models developed. 

These models will then be tested, evaluated and compared to determine which model/models 

should be used for application in an expert system. 
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4 Literature review and problem investigation 

4.1 Importance of Forecasting in the Foodservice Industry 

Planning is essential for proper and effective management, and forecasting is an important subset 

of the planning function (Choi, 1999). Rahmlow and Klimberg (2002) identified some of the most 

important decision areas as well as the impact that forecasting has on these areas within an 

organization, the results are displayed in Table 1. 

Table 4-1: Areas within the Organization Used by Forecasting (Rahmlow and Klimberg, 

2002) 

 

In the food retail industry, a major contributing factor to successful operation and optimal stock 

management is forecasting (Arunraj and Ahrens, 2015). Kokkinou (2013) states that, as restaurant 

operators deal with highly perishable products, overestimation of sales can lead to unnecessary 

labor costs and stock wastage. Underestimation of sales can lead to unsatisfactory customer service 

and loss of revenue due to stock-outs and insufficient labor capacity. An accurate and reliable 

forecasting method can reduce wastage of stock and labor, improve customer satisfaction and 

could ultimately lead to an increase in revenue. It will also provide restaurant operators with 

information that can be used towards better planning and decision making to ensure effective and 

profitable operation. 

  

Area % 

Budgeting 85 

Operations Decisions 67 

Financial Decisions 65 

Staffing 50 

Contingency Planning 47 

Investment Decisions 41 

New Product 39 

Ordering 31 
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4.2 Forecasting Methods 

Forecasting methods can be divided into two general categories: qualitative and quantitative 

forecasting methods. Qualitative forecasting methods are often applied when limited data is 

available or when time is insufficient. These forecasting methods usually rely on the judgment of 

experts within a certain field. They usually take less time to construct and can be relatively 

inexpensive and easy to understand. A major disadvantage of qualitative forecasting is that it can 

be largely opinionated and as a result be subjective. 

Quantitative forecasting methods rely on historical data to predict the future by finding trends and 

relationships in the historical data. Quantitative methods can further be classified into time series 

and causal methods. Time series methods are based on the assumption that past occurrences and 

behavior has some relevance in the future. They do not focus on what caused this behavior but 

rather assume that whatever caused this behavior will continue doing so in the future. Predictions 

are made by determining the impact of trends and seasonal factors on past data and extrapolating 

this behavior into the future. 

Causal methods investigate the impact of principal factors influencing the behavior of the historical 

data and analyses their effect on the variables under investigation. The relationship between a 

dependent and independent variable (or variables) are determined and used to create a forecast. 

Table 2 includes some examples of qualitative and quantitative forecasting methods. 

Table 4-2: List of Forecasting Techniques (Lawrence et al., 2009) 

 

In addition to this, combinations of these methods can also be used. These models are known as 

Hybrid Models. Hybrid Models are used to improve forecast accuracy by combining two or more 

forecasting methods with alternative capabilities to accommodate for the limitations that may be 

present when only one of the methods is used (Arunraj and Ahrens, 2015). 

Qualitative Methods Quantitative Methods 

 Time Series Methods Causal Methods 

Judgment Moving Average Regression 

Historical Analogy Exponential Smoothing Econometric 

Focus Group Trend Analysis Input-Output 

Market Research Decomposition Disaggregated 

Diffusion Advanced Time 

Series methods 

Neural nets 

Markovian Box-Jenkins 

(ARIMA) 
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4.3 Selecting Forecasting Methods 

4.3.1 Methodology 

Selecting the appropriate forecasting method(s) is a crucial part of the forecasting process. As 

made clear in the preceding section, a wide variety of methods is available, each with its own 

limitations and capabilities. Armstrong (2001) identified some key principles and factors to 

consider in the selection of appropriate forecasting methods. 

The principles are listed as follows: 

 Use forecasting methods that contain methodical and detailed steps that can be explained 

and replicated. 

 If sufficient data is available, use quantitative instead of qualitative methods. 

 If large changes in the forecasts can be expected, use causal methods instead of time-series 

methods. 

 Unless considerable proof is present that a complex method will improve forecasts, use 

simple forecasting methods. 

Some factors to consider during the decision process of selecting an appropriate method are: 

 Data availability: Is sufficient data available to study past behavior of the variable to be 

forecast? 

 Type of data: Is the data cross-sectional data (obtained at a single point in time) or time 

series data (obtained at regular intervals in time)? 

 Is sufficient knowledge available on the impact of principal factors influencing the 

behavior of the historical data? 

 Is sufficient domain knowledge available on the subject of the forecast? 

4.3.2 Application 

At least 10 years of daily sales data for Copper Canyon Spur has been acquired, along with daily 

sales data acquired from three other restaurants forming part of the same but different franchisor 

(i.e. not part of the Spur Corporation) varying between 4 - 8 years. It can, therefore, be concluded 

that sufficient time series data is available. 

At this point limited knowledge on the principal factors influencing the behavior of the historical 

data is available, but according to the literature, several factors do exist and should not necessarily 

be excluded from the study. An example of this is in a study conducted by Arunraj and Ahrens 

(2015), where they found that there are several factors influencing the daily sales of bananas that 

are worth investigating. Some of the factors are events, such as regular holidays, festivals and 

school vacations. It is also not clear if large changes in the data are likely to occur, but it may be 

safer to assume that they may, or may not, due to factors such as those mentioned above. 
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As the author has no experience and limited knowledge in the domain of forecasting daily sales in 

the foodservice industry, it can be concluded that insufficient domain knowledge is available. 

In consideration of the above-mentioned factors and principals, the potential methods to be used 

in this study are identified as time series (or extrapolation) methods as well as regression analysis. 

Combinations of these methods can also be considered given that substantial evidence exists that 

it will improve forecasts. 
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Note to the reader: 

The following sections (sections 4.4.1 - 4.6.3) are largely based on the textbook Forecasting: 

Principles and Practice by Hyndman and Athanasopoulos, (2013) to ensure that the notation used 

to describe the various forecasting methods that are included in this study remain consistent. 

Another contributing factor is the fact that throughout the textbook the authors explain how to 

apply these methods by using the statistical computing software package known as R, which is 

potentially the main computer package to be used in this project. Other sources may also be 

included and will be referenced appropriately. 

4.4 Exponential smoothing time series forecasting 

4.4.1 Time series components 

Before introducing the potential time series methods that may be used in this project, we need to 

define the basic patterns describing the behavior of the data. 

 A trend is present when there is a continuous increase or decrease in the data over a long 

period of time. It can either be linear or non-linear. 

 Seasonality is present when there are patterns that repeat at regular fixed intervals such as 

annual, monthly, or weekly intervals.  

Cyclic behavior is present when the data shows signs of increases and decreases but not at fixed 

intervals. It is usually observed over a period of at least 2 years.  

Figure 4-1 shows 4 time series with different or no combinations of trend, seasonality, and cyclic 

behavior. 

 The top left graph displays strong annual seasonality along with some cyclic behavior over 

a period of 6-10 years. 

 The top right graph displays no seasonality but a clear downward trend. 

 The bottom left graph displays strong seasonality along with an upward trend. 

 The bottom right graph displays no obvious trend, seasonality or cyclic behavior. 

(Hyndman and Athanasopoulos, 2013) 
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Figure 4-1: Four time series exhibiting different types of time series patterns  

(Hyndman and Athanasopoulos, 2013). 

4.4.2 Naïve and moving average methods 

The most basic form of forecasting is known as the naïve method. This forecasting method entails 

simply observing the last value of a time series and using this as a forecast for the next values of 

the series, given by: 

�̂�𝑡+1|𝑡 = 𝑦𝑡 

Where �̂�𝑡+1|𝑡 is the forecast for time 𝑡 + 1, at the end of time 𝑡. The forecast can be regarded as a 

weighted average with the entirety of the weight assigned to the last value of the series.  

An alternative to this method and one of the most widely used forecasting methods is the moving 

average method. This method produces forecasts by simply using the average of the last N values 

of a series, given by: 

�̂�𝑡+1|𝑡 =
1

𝑁
∑ 𝑦𝑖

𝑡

𝑖=𝑡−𝑁+1

 

Where N is a given parameter. This can be regarded as a weighted average with equal weights 

assigned to the last N observations (Hyndman and Athanasopoulos, 2013) (Winston, 2004). 
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4.4.3 Simple exponential smoothing 

A combination of the above-mentioned methods is known as simple exponential smoothing. This 

method generates forecasts by assigning exponentially decreasing weights to past observations 

with the most recent observation given the largest weight and the earliest observation the smallest, 

given by: 

�̂�𝑡+1|𝑡 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)2𝑦𝑡−2 + ⋯ 

With 𝛼 a smoothing parameter, 0 ≤ 𝛼 ≥ 1. This method can be used when there is no trend or 

seasonality present and the data fluctuates around a constant base level (Hyndman and 

Athanasopoulos, 2013), (Winston, 2004). 

4.4.4 Exponential smoothing with trend 

Holt (1957) expanded the simple exponential smoothing method to accommodate series where a 

trend is present. This method is known as Holt’s method. The method generates forecasts by 

combining two smoothing equations, one estimating the level (or base) of the data, and one 

estimating the trend: 

�̂�𝑡+ℎ|𝑡 = ℓ𝑡 + ℎ𝑏𝑡 

ℓ𝑡 = 𝛼 + (1 − 𝛼)(ℓ𝑡−1 + 𝑏𝑡−1) 

𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

Where �̂�𝑡+ℎ|𝑡 is the forecast for time 𝑡 + ℎ, (ℎ = 1,2,3, …) at the end of time 𝑡, ℓ𝑡 is an 

approximation of the base level of the series at time t, 𝑏𝑡 is an approximation of the trend of the 

series at time 𝑡, 𝛼 is a smoothing parameter for the base of the series, 0 ≤ 𝛼 ≥ 1 and 𝛽 is a 

smoothing parameter for the trend, 0 ≤ 𝛽 ≥ 1. To initialize the forecast we can choose ℓ0 = 𝑦1 

and 𝑏0 = 𝑦2 − 𝑦1 (Hyndman and Athanasopoulos, 2013). 

4.4.5 Exponential smoothing with trend and seasonality 

Holt’s method can further be expanded into a method that can be used with time series where trend 

and seasonality are present. This is known as the Holt-Winters method. This method uses a 

smoothing equation for the level component, another for the trend component, and a third one for 

the seasonal component. It can further be classified into additive and multiplicative Holt-Winters 

methods. When throughout the series seasonal patterns are relatively constant, the additive method 

produces better forecasts: 

�̂�𝑡+ℎ|𝑡 = ℓ𝑡 + ℎ𝑏𝑡 + 𝑠𝑡−𝑚+ℎ𝑚
+  

ℓ𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(ℓ𝑡−1 + 𝑏𝑡−1) 

𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

𝑠𝑡 = 𝛾(𝑦𝑡 − ℓ𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚 

We define 𝑚 as the period of seasonality, where for example 𝑚 = 12 for monthly data and 𝑚 = 4 

for quarterly data. We define ℓ𝑡, 𝑏𝑡, 𝛼, and 𝛽 the same as with Holt’s method. Additionally we 
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have 𝑠𝑡 which is an estimate of the seasonal component of the series with 𝛾 a smoothing 

parameter, 0 ≤ 𝛾 ≥ 1 − 𝛼. With ℎ𝑚
+ = ⌊(ℎ − 1) mod 𝑚⌋ + 1, we ensure that the approximations 

of the seasonal components come from the last year of the series. To initialize the forecast we can 

choose ℓ0 =
1

𝑚
(𝑦1 + ⋯ + 𝑦𝑚), 𝑏0 =

1

𝑚
[

𝑦𝑚+1−𝑦1

𝑚
+ ⋯ +

𝑦𝑚+𝑚−𝑦𝑚

𝑚
], 𝑠0 = 𝑦𝑚 − ℓ0, and  

𝑠−1 = 𝑦1 − ℓ0. 

When the seasonal patterns appear to change relative to the level of the series, the multiplicative 

method produces better forecasts: 

�̂�𝑡+ℎ|𝑡 = (ℓ𝑡 + ℎ𝑏𝑡)𝑠𝑡−𝑚+ℎ𝑚
+  

ℓ𝑡 = 𝛼
𝑦𝑡

𝑠𝑡−𝑚
+ (1 − 𝛼)(ℓ𝑡−1 + 𝑏𝑡−1) 

𝑏𝑡 = 𝛽(ℓ𝑡 − ℓ𝑡−1) + (1 − 𝛽)𝑏𝑡−1 

𝑠𝑡 = 𝛾
𝑦𝑡

(ℓ𝑡−1 + 𝑏𝑡−1)
+ (1 − 𝛾)𝑠𝑡−𝑚 

To initialize the forecast we can choose ℓ0 =
1

𝑚
(𝑦1 + ⋯ + 𝑦𝑚), 𝑏0 =

1

𝑚
[

𝑦𝑚+1−𝑦1

𝑚
+ ⋯ +

𝑦𝑚+𝑚−𝑦𝑚

𝑚
], 𝑠0 =

𝑦𝑚

ℓ0
, and 𝑠−1 =

𝑦1

ℓ0
. It should be noted that there are numerous methods of 

initializing a forecast each of which depend on the amount and type of data available. The 

initialization methods proposed here are only recommendations that could prove to be useful 

(Hyndman and Athanasopoulos, 2013). 
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4.5 ARIMA modelling 

Another method of time series forecasting is known as ARIMA modelling. While the focus of 

exponential smoothing methods is on the trend and seasonality of the time series, ARIMA 

modelling is based on finding autocorrelations in the series. 

4.5.1 Autocorrelation and ACF plots 

Autocorrelation is a method of determining linear relationships between lagged values of a series. 

A correlation coefficient 𝑟𝑘 with a lag length of 𝑘 = 1 will measure the relationship between 𝑦𝑡 

and 𝑦𝑡−1, 𝑟2 will measure the relationship between 𝑦𝑡 and 𝑦𝑡−2 and so forth, 𝑟𝑘 can be expressed 

as: 

𝑟𝑘 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘 − �̅�𝑇

𝑡=𝑘+1 )

∑ (𝑦𝑡 − �̅�)2𝑇
𝑡=1

 

With 𝑇 the length of the series. The correlation coefficient 𝑟𝑘 always lies between -1 and 1, where 

a positive value indicates a positive relationship and a negative value a negative relationship. 

Plotting the correlation coefficients normally forms the autocorrelation function (or ACF). Figure 

4-2 shows an example of an ACF plot. ACF plots are useful in identifying significant correlations 

between lagged values of a series. A positive spike indicates a positive correlation and a negative 

spike a negative correlation (Hyndman and Athanasopoulos, 2013). 

 

Figure 4-2: Autocorrelation function generated with RStudio. 

4.5.2 Stationary time series 

We define a stationary time series as a series with characteristics that does not depend on the time 

at which observations are made. Thus, a time series with seasonal or trend components are not 

stationary as the value of the series change in accordance to the time at which observations are 

made. A time plot of a stationary series will generally contain unpredictable patterns and indicate 

a relatively constant horizontal mean with the variance roughly constant throughout the plot. An 
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example of a stationary time series is a white noise series, displayed in Figure 4-3 with its resulting 

ACF plot displayed in Figure 4-4. 

 

Figure 4-3: Time plot of a random white noise series generated with RStudio. 

Each autocorrelation of a white noise series are expected to be near zero and 95% of the spikes are 

expected to be within ±2/√𝑇, with 𝑇 the length of the series, these bounds can be seen in Figure 

4-4 displayed by the blue dotted lines. When more than 5% of the spikes, or if one or more large 

spike lie outside these bounds, the series is likely not to be a white noise series. Time series that 

has no seasonal or trend components, but displays cyclic behavior, are also stationary as the length 

of the cycles are not fixed and therefore not observable over specific intervals.  

 

Figure 4-4: Autocorrelation function for the white noise series displayed in Figure 4-3. 

When studying the ACF plot of a non-stationary time series, we often see a large positive spike at 

lag 1 and a slow decrease in the autocorrelations towards zero, while for a stationary time series 

we usually observe a relatively quick drop in the autocorrelations. An example of this is the ACF 

plot of 5 years of daily sales for Copper Canyon Spur from January 2009 till December 2013 

displayed in Figure 4-5. This series is clearly non-stationary as the plot has a large positive value 
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at lag 1 (the x-axis starts by default at zero when plotting an ACF with R but the first 

autocorrelation is at lag 1) with a slow decrease in the autocorrelations towards zero on the positive 

side as well as on the negative side of the graph (Hyndman and Athanasopoulos, 2013). 

 

Figure 4-5: ACF plot of daily sales from 2009-2013 for Copper Canyon Spur. 

4.5.3 Differencing 

Differencing is a method that can be used to transform a time series by attempting to remove the 

seasonal and trend components from the series to make the series stationary. By calculating the 

differences between consecutive observations we can obtain a stable mean and eliminate changes 

in the level of the series (which accounts for trend and seasonality). The differenced series can 

then be expressed as: 

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1 

The series will then have 𝑇 − 1 values as we cannot calculate a difference 𝑦1
′  for the first value of 

the series.  In some cases, a second-order difference may be required to make the series stationary. 

We then calculate the differences between consecutive values of the first-order differenced series: 

𝑦𝑡
′′ = 𝑦′

𝑡
− 𝑦′

𝑡−1
 

= (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2) 

= 𝑦𝑡 − 2𝑦𝑡−1 + 𝑦𝑡−2 

Which will then contain 𝑇 − 2 values. Seasonal differencing is done by calculating the differences 

between observations and their corresponding observations during the previous season: 

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−𝑚 

With 𝑚 the number of seasons. For monthly data we will calculate the difference between 𝑦𝑡 and 

𝑦𝑡−12. Occasionally we may need to do a first difference as well as a seasonal difference to obtain 

a stationary series. We will obtain the same results if we start with either the first or the seasonal 

difference, but the literature suggests that for series with strong seasonal patterns, starting with the 
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seasonal difference may often lead to a stationary series and eliminate the need for an additional 

first difference (Hyndman and Athanasopoulos, 2013). 

4.5.4 Backshift notation 

The backward shift operator 𝐵 can be used when dealing with time series lags in order to simplify 

complex equations: 

𝐵𝑦𝑡 = 𝑦𝑡−1 

𝐵(𝐵𝑦𝑡) = 𝐵2𝑦𝑡 = 𝑦𝑡−2 

It can also be used for equations involving differencing: 

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1 = 𝑦𝑡 − 𝐵𝑦𝑡 = (1 − 𝐵)𝑦𝑡 

𝑦𝑡
′′ = (1 − 𝐵)2𝑦𝑡 

And (1 − 𝐵)𝑑𝑦𝑡 a 𝑑th order difference of a series (Hyndman and Athanasopoulos, 2013). 

4.5.5 Autoregressive models 

The term autoregression can be defined as a method of finding linear relationships between a 

variable and past values of the same variable. We can then forecast this variable using a linear 

combination of its past values which is known as autoregressive forecasting: 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑒𝑡 

With 𝑝 the order of the model which equals the number of past values included in the model, 𝑐 is 

a constant and 𝑒𝑡 is white noise. This is known as an AR(𝒑) model. Different values for the 

paramaters 𝜙1, … , 𝜙𝑝 results in different patterns in the time series. These paramaters are 

calculated with a computer package such as R. Forecasting with autoregressive models generally 

requires the time series to be stationary (Hyndman and Athanasopoulos, 2013). 

4.5.6 Moving average models 

A moving average model uses a linear combination of past forecast errors to produce forecasts: 

𝑦𝑡 = 𝑐 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 

With 𝑒𝑡 white noise. We refer to this as an MA(𝒒) model. Different values for the paramaters 

𝜃1, … , 𝜃𝑞 results in different patterns in the time series which are also calculated with a computer 

package (Hyndman and Athanasopoulos, 2013). 

4.5.7 Non-seasonal ARIMA models 

We obtain a non-seasonal ARIMA model by combining differencing, autoregression and a moving 

average model. ARIMA is an acronym for AutoRegressive Integrated Moving Average. This 

model can be given as: 
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𝑦′𝑡 =  𝑐 + 𝜙1𝑦′𝑡−1 + ⋯ + 𝜙𝑝𝑦′𝑡−𝑝 + 𝜃1𝑒𝑡−1 + ⋯ + 𝜃𝑞𝑒𝑡−𝑞 + 𝑒𝑡  

With 𝑦′𝑡 the differenced series that may have been differenced more than once. This is known as 

an ARIMA(𝒑, 𝒅, 𝒒) model, whith 𝑝 the order of the autorogressive part of the model, 𝑑 is the 

degree of first differencing of the series, and 𝑞 is the order of the moving average part of the model. 

By using backshift notation we can rewrite this equation as: 

(1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞)𝑒𝑡 

Selecting values for 𝑝, 𝑑, and 𝑞 can easily be done by use of a computer package. It can also be 

done manually, but requires experience and expertise in the field of ARIMA modelling. To 

estimate the paramaters 𝑐, 𝜙1, … , 𝜙𝑝, and 𝜃1, … , 𝜃𝑞 we use maximum likelyhood estimation (MLE) 

which is a method applied by a computer package that finds the paramaters that leads to the highest 

propability that the observed data comes from the selected model. This is similar to the method of 

least squares estimation discribed in section 4.6 (Hyndman and Athanasopoulos, 2013). 

4.5.8 Seasonal ARIMA models 

By adding additional seasonal terms to an ARIMA model we obtain a seasonal ARIMA model 

which can be used to forecast a wide range of seasonal time series, given by: 

ARIMA (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑚 

Where (𝑝, 𝑑, 𝑞) is the non-seasonal part of the model and (𝑃, 𝐷, 𝑄)𝑚 the seasonal part of the model. 

With 𝑚 the number of periods in a season. The seasonal part of the model contains similair terms 

than that of the non-seasonal part of the model, but they involve backshifts of the seasonal period. 

This is best described with backshift notation: 

𝜙𝑝(𝐵)Φ𝑃(𝐵𝑚)(1 − 𝐵)𝑑(1 − 𝐵𝑚)𝐷𝑦𝑡 = 𝑐 + 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑚)𝑒𝑡 

With the non-seasonal components: 

AR: 𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝 

MA: 𝜃𝑞(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝐵𝑞 

Non-seasonal difference: (1 − 𝐵)𝑑 

And the seasonal components: 

AR: Φ𝑃(𝐵𝑚) = 1 − Φ1𝐵𝑚 − ⋯ − Φ𝑃𝐵𝑃𝑚 

MA: Θ𝑄(𝐵𝑚) = 1 + Θ1𝐵𝑚 + ⋯ + Θ𝑄𝐵𝑄𝑚 

Seasonal difference: (1 − 𝐵𝑚)𝐷 

(Hyndman and Athanasopoulos, 2013) 
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4.6 Regression analysis 

4.6.1 Simple linear regression 

If we believe that the value of a variable (defined as the dependent variable) depends linearly on 

the value of another variable (defined as the independent variable) we can use simple linear 

regression to estimate this relationship: 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝜀 

Where 𝑦 is the dependent variable and 𝑥 the independent variable. The parameter 𝛽0 determines 

the intercept and parameter 𝛽1 the slope of the linear line 𝑦 = 𝛽0 + 𝛽1𝑥, 𝜀 is an error term 

indicating that the value of 𝑦 may not always fall on this line and captures the effect of anything 

other than 𝑥. The assumptions we make for 𝜀 is that the errors have a mean of zero, are not 

autocorrelated, and are not related to the predictor variable. We obtain estimates for 𝛽0 and 𝛽1, 

known as least squares estimates, by minimising the sum of the squared errors: 

∑ 𝜀𝑖
2 =

𝑁

𝑖=1

∑  (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2

𝑁

𝑖=1

 

Which leads to: 

�̂�1 =
∑ (𝑁

𝑖=1 𝑦𝑖 − �̅�)(𝑥𝑖 − �̅�)

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

 

�̂�0  = �̅� −  �̂�1�̅� 

With 𝑁 the total number of dependent variables or errors, �̅� the average of all the 𝑦 values, and �̅� 

the average of all the 𝑥 values, the estimated line �̅� = �̂�0 + �̂�1𝑥 is known as the regression line. 

Forecasts are obtained from �̂�𝑖 = �̂�0 + �̂�1𝑥𝑖, for 𝑖 = 1, … , 𝑁, (Hyndman and Athanasopoulos, 

2013). 

4.6.2 Non-linear relationships 

Often the dependent variable and independent variable are related in a non-linear fashion. The 

easiest way of estimating this relationship is by transforming the variables 𝑥 and 𝑦 so that they are 

linearly related and then estimating a regression line using the transformed variables (Hyndman 

and Athanasopoulos, 2013). 

4.6.3 Multiple regression 

We use multiple regression to estimate the relationship between a dependent variable and several 

independent variables. The relationship can be expressed as: 

𝑦𝑖 = 𝛽0 +  𝛽1𝑥1,𝑖 + 𝛽2𝑥2,𝑖 + ⋯ + 𝛽𝑘𝑥𝑘,𝑖 + 𝑒𝑖 

With 𝑦𝑖 the dependent variable to be forecast and 𝑥1,𝑖, … , 𝑥𝑘,𝑖 the 𝑘 predictor (or independent) 

variables. The predictor variables should all be numerical. The coefficients 𝛽1, … , 𝛽𝑘 determines 
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the impact that each predictor has on the independent variable after considering the impact of all 

other predictors. We make the same assumptions for the errors as with simple linear regression. 

We estimate the values of 𝛽1, … , 𝛽𝑘 by minimizing the sum of the squared errors as with simple 

linear regression: 

∑ 𝜀𝑖
2 =

𝑁

𝑖=1

∑  (𝑦𝑖 − 𝛽0 − 𝛽1𝑥1,𝑖 − ⋯ − 𝛽𝑘𝑥𝑘,𝑖)
2

𝑁

𝑖=1

 

This is usually done with a computer package such as R, Excel, or MATLAB. The least squares 

estimates �̂�1, … , �̂�𝑘 are then used to produce forecasts with: 

�̂�𝑖 = �̂�0 + �̂�1𝑥1,𝑖 + �̂�2𝑥2,𝑖 + ⋯ + �̂�𝑘𝑥𝑘,𝑖 

for 𝑖 = 1, … , 𝑁, (Hyndman and Athanasopoulos, 2013). 
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4.7 Related Works 

Arunraj and Ahrens (2015) did a study on daily sales of bananas in a food retail store in Germany. 

By creating a hybrid seasonal autoregressive integrated moving average and quantile regression 

forecasting model they found that there are several factors influencing the demand for the bananas 

that are worth investigating when forecasting in the food sales industry. Some of the factors are 

Events, such as regular holidays, festivals and school vacations. Weather, such as temperature and 

snow conditions. Seasonality, such as day of the week, day of the month, month of the year, season 

of the year and quarter of the year. Price, product characteristics, promotions, discounts and more. 

Many of these factors have also proven to have an effect on sales within the foodservice industry 

and are worth investigating. 

Lee and Kim (2015) did a study on Pizza sales forecasting in South Korea using big data Analysis. 

By using data crawling they investigated the effects of time, weather, news, economic indices, 

trends, sports events and past sales volume on the sales of pizza. They developed three forecasting 

models, one using the simple average method, another using big data in regression analysis and 

one using a multilayer perceptron method. The study found that forecasting accuracy can be 

improved significantly by using big data. 

Sanchez (1994) developed an expert system capable forecasting entrée items for three service lines 

at a university dining center. The system was able to improve forecasting accuracy by up to 20% 

and displayed the expertise and judgment of a forecasting knowledge expert at the disposal of any 

person who may not even be educated in the concepts of forecasting. 
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5 The Data 

Daily sales of three different restaurants were obtained for the development of the model. These 

restaurants include Copper Canyon Spur and three Wimpy restaurants situated in Roodepoort 

Johannesburg, Midrand Johannesburg and in Central Bloemfontein respectively. 

For all the restaurants four years of daily sales spanning over different time periods was used to 

develop the different forecasting models, with one year of daily sales used to validate the forecasts. 

Using 4 years of data to develop the models has proven to produce the most accurate forecasts for 

all four restaurants. This can be ascribed to the fact that the daily sales of the restaurants are 

extremely dynamic and the franchisors continuously update their menus and promotions, which 

has an effect on sales patterns. Other factors such as new restaurants and shops opening up nearby 

also has a significant effect on the sales of the restaurant and therefore the patterns and trends of 

more than five years in the past may not be as applicable when forecasting sales for the present. 

Alternatively using less than 4 years of data for development of the models decreased forecasting 

accuracy as this does not provide enough data for the models to adequately calculate trend and 

seasonal factors. 

Through consultation with the stakeholders, it was determined that sales forecasts for one year are 

sufficient as short term planning is the main focus for management. Forecasting accuracy also 

declines as forecasting horizons increase due to the fact that the forecasts may not accommodate 

changing trends from year to year. 

5.1 The Restaurants 

5.1.1 Copper Canyon Spur - CCS 

Copper Canyon Spur is open on all the days of the year and is situated in an Industrial area. Initially 

daily sales from January 2011 to December 2015 were used for developing and testing the different 

models as well as sales from January 2010 to December 2014 to verify certain findings that will 

be discussed in subsequent sections. At the beginning stages of this project, sales for 2016 were 

not yet available against which forecasts could be validated but the data has been acquired and 

forecasts were produced for the period from September 2015 to August 2016. In the subsequent 

sections, the daily sales from January 2011 to December 2015 will mainly be used to compare 

forecasting methods and results between the different restaurants. 

5.1.2 Wimpy Midrand - WM 

Wimpy Midrand is one of the few Wimpy restaurants with a drive-through section and is open on 

most days of the year but closed on certain public holidays such as Good Friday as well as 

Christmas and Boxing Day. Sales from August 2012 to July 2016 were used for the development 

and validation of the different models. 
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5.1.3 Wimpy Roodepoort - WR 

Wimpy Roodepoort is situated in a shopping mall and only closes on New-Years-Day, Christmas 

Day and Boxing Day. Sales from January 2010 to December 2014 were used for development and 

validation of models due to the fact that the restaurant changed ownership early 2015. 

5.1.4 Wimpy Bloemfontein - WB 

Wimpy Bloemfontein was situated in a shopping mall but has closed permanently in 2015. The 

restaurant was open from Mondays to Saturdays and closed on Sundays. In June 2012 the 

restaurant started opening on Sundays as well. Due to this change in the weekly business cycle, 

daily sales from June 2007 to May 2012 were used for development and testing because fitting the 

model over a period where sales patterns changed so drastically produced highly inaccurate results. 

This is also an opportunity to test whether the final model or combination of models will be able 

to forecast sales for a restaurant that is closed on certain days of the week. 
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5.2 Understanding the Data 

In his paper titled Lessons Learned and Challenges Encountered in Retail Sales Forecast, Song 

(2015) states that it is critical to understand multiple seasonalities in the data. As retail sales data 

often contain strong annual and weekly seasonalities with some cases including monthly as well 

as quarterly seasonalities. This is evident by examining the ACF plots for all four restaurants. 

 

Figure 5-1: ACF plot of Copper Canyon Spur sales data 

Figure 5-2: ACF plot of Wimpy Midrand sales data 
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Figure 5-3: ACF plot of Wimpy Roodepoort sales data 

The ACF plots are displayed for lag 1 to 365 as well as for lag 1 to 35 for all four restaurants. As 

can be seen in Figure 5-1, Figure 5-2, Figure 5-3, and Figure 5-4 there are significant spikes at 

lag 365, indicating an annual seasonality, as well as significant spikes at lag 7 and multiples 

thereof, indicating strong weekly seasonality. As will later be shown in Section 6.3 the data also 

contains a monthly seasonality, but the ACF plot fails to capture this due to the fact that all months 

do not contain the same number of days and the ACF cannot identify a correlation between a 

combination of 28, 30, and 31 lagged values. It is, therefore, essential that the potential model 

should be capable of incorporating multiple seasonalities in order to produce the most accurate 

and realistic forecasts.  

Figure 5-4: ACF of Wimpy Bloemfontein sales data 
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6 Testing the models 

By considering the findings in the previous section, it is clear that only the models identified thus 

far containing seasonal components should be used, which eliminates the Naïve, Moving Average, 

Simple Exponential Smoothing and Exponential Smoothing with Trend models. The remaining 

models will be tested and compared to determine which models can be used in developing the final 

model. All models will be fitted and tested with the statistical computational software R. 

6.1 Forecasting Accuracy 

The most commonly used method of evaluating forecast accuracy is the Mean Absolute Percentage 

Error (MAPE): 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(|
 𝑦𝑖 − 𝑦�̂�

𝑦𝑖
× 100|) 

With 𝑦𝑖 the ith observation (or actual value) and 𝑦�̂� the forecast of 𝑦𝑖. This method is useful in 

comparing forecasting accuracy of different models as it is expressed as a percentage of the 

average of all forecasting errors made by a specific model. The forecasting methods that will be 

tested in the subsequent functions will be evaluated by comparing their respective MAPE values. 
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6.2 Exponential Smoothing with Trend and Seasonality (Holt-Winters) 

The Seasonal Exponential Smoothing models are generally designed to handle short seasonal 

periods such as 12 for monthly data or 4 for quarterly data (Hyndman, 2016). The Holt-Winters 

model in R can only handle seasonal periods up to 24, which therefore eliminates the possibility 

of incorporating the Annual or Monthly seasonality into the model. This is due to the fact that the 

amount of parameters to be estimated for the initial seasonal states depends on the length of the 

seasonal period, for long seasonal periods, this becomes almost impossible. The weekly 

seasonality was therefore used when testing this model. The results are displayed in Table 6-1 

below. As can be seen by the results, this method does not produce consistently accurate results 

for all the restaurants but produces a surprisingly low MAPE for Wimpy Midrand. 

Table 6-1 Comparison of MAPE of the Holt-Winters model for all restaurants 

 CCS WM WR WB 

MAPE 41.76% 19.63% 28.89% 31.48% 

 

 

Figure 6-0 Wimpy Midrand Sales forecasts by Holt-Winters model 

When investigating the plot of forecasts against actual sales for Wimpy Midrand displayed by 

Figure 6-0, we see that the model captured the weekly seasonality quite accurately and that this 

appears to be the strongest seasonality in the model. It fails, however, to capture the annual and 

monthly seasonalities as can be seen by the period from 1/1/2016 to 1/2/2016 where the daily sales 

generally take a big dip and gradually increases. 

When investigating the plot of the Copper Canyon Spur forecasts displayed by Figure 6-1, we see 

that the model picked up a downward trend at the end of 2014 (possibly the same downward trend 

we see at the end of December 2015) which is actually part of the annual seasonal pattern and 
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which looks similar for all four restaurants, and forecasted all the sales for 2015 with a downward 

trend, eventually producing sales forecasts that are negative and which can realistically never 

occur. 

 

Figure 6-1 Copper Canyon Spur Sales forecasts by Holt-Winters model 

 

Figure 6-2 Copper Canyon Spur sales forecasts by Holt-Winters model with damped trend 

When the model was refitted with the trend damped, the MAPE showed a significant decrease 

from 41.76% to 27.32% and the plot displays a much more realistic forecast pattern as can be seen 

in Figure 6-2. Damping the trend also improved the MAPE for Wimpy Roodepoort from 28.89% 

to 23.94% but did not improve forecasting accuracy for Wimpy Midrand and Wimpy 

Bloemfontein. The updated table is displayed below. 

Table 6-2 MAPE of the Holt-Winters model with damped trend for CCS and WR 

 CCS WM WR WB 

MAPE 27.32% 19.63% 23.94% 31.48% 
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6.3 TBATS model 

After considering the results obtained from the preceding sections, it became clear that a model 

capable of incorporating multiple seasonalities is needed in order to produce accurate and reliable 

forecasts. Subsequently, the author researched possible methods that accommodate this important 

feature. One such method that was discovered after the literature review was conducted is an 

innovations state space model named TBATS. TBATS is a forecasting model developed by De 

Livera et al. (2012) capable of forecasting time series with complex seasonal patterns as well as 

multiple seasonalities. TBATS is an acronym for the most important characteristics of the model: 

Trigonometric Fourier representations, Box-Cox transformations, ARMA errors, Trend, and 

Seasonal components. 

It builds on the Holt-Winters model by including a Box-Cox transformation (which is a method of 

transforming the data to stabilize the variance), replacing the error term with an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 

process, and replacing the seasonal component of the model with a trigonometric representation 

based on Fourier series that incorporates multiple seasonalities. Because of the trigonometric 

functions, the model is capable of incorporating non-integer seasonalities. 

The model was fitted to the sales data for all four restaurants with the results displayed in Table 

6-3. To illustrate the effect that the multiple seasonalities have on the data, the model was first 

fitted with only a single seasonal period of 7 for the weekly seasonality, then with seasonal periods 

of 7 and 365.25 for the weekly and annual seasonalities respectively, and finally with seasonal 

periods of 7, 30.4375, and 365.25 for weekly, monthly, and annual seasonalities respectively. The 

values of 365.25 and 30.4375 are used to accommodate for leap years and varying days within 

different months. 

Table 6-3 MAPE of the TBATS model with different seasonal periods for all restaurants 

Seasonal period(s) CCS WM WR WB 

7 28.20% 17.69% 20.80% 30.79% 

7; 365.25 24.40% 14.29% 17.79% 26.45% 

7; 30.4375; 365.25 19.42% 14.07% 15.24% 23.33% 

 

As can be seen from the table, forecasting accuracy from the TBATS model for all four restaurants 

improved significantly as additional seasonalities are incorporated. This also shows that there is 

indeed a monthly seasonality present in the data as for Copper Canyon Spur, Wimpy Roodepoort, 

and Wimpy Bloemfontein the MAPE was lowered significantly with the addition of the monthly 

seasonality resulting in a 20.41%, 14.33%, and 11.8% improvement of their forecasting accuracies 

respectively. Even though the MAPE for Wimpy Midrand decreased only slightly with the addition 

of the monthly seasonal component resulting in a 1.54% improvement in forecasting accuracy, this 
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is still an indication that the monthly seasonality is present, albeit its effect may not be as strong 

as on the other restaurants. 

When we investigate the time plot of the forecasts for Wimpy Roodepoort by the TBATS model 

with weekly and annual seasonalities incorporated, displayed by Figure 6-3, we see how this 

model now captures not only the weekly seasonality of the data but also the annual seasonality as 

can be seen by the gradual wave-like fluctuations of the mean of the forecasts throughout the year. 

 

Figure 6-3 Forecast for Wimpy Roodepoort by TBATS model with weekly & annual 

seasonalities 

 

 

Figure 6-4 Forecast for Wimpy Roodepoort by TBATS model with weekly, monthly & 

annual seasonalities 
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When we investigate the plot of the forecasts for Wimpy Roodepoort by the TBATS model with 

weekly, monthly, and annual seasonalities incorporated, displayed by Figure 6-4, we see how the 

model now captures the weekly and annual seasonality, and additionally also the monthly 

seasonality that can be seen by the local maxima at the beginning and end of each month and the 

local minima near the middle of the month. The exception is during the December month where 

the sales start increasing from the start of the month to reach a local maximum near the middle of 

the month and then decrease towards the end of the month, but this is due to the annual seasonality 

and not the monthly seasonality, which makes logical sense, as middle December is the time when 

shopping malls and restaurants are the busiest during the year as most people are on holiday and/or 

doing pre-Christmas shopping. 

Figure 6-5 displays the observations that we made regarding the seasonality of the data quite 

clearly. This is a decomposition of the daily sales from January 2010 to December 2014 for Wimpy 

Roodepoort that was used to fit the model into its trend and seasonal components. At the top of 

the graph, we can see the observed data that was used to fit the model. The level component can 

be seen as a baseline for the trend, and the slope the change per unit time. Season1 is the weekly 

seasonality, Season2 is the monthly seasonality, and Season3 the annual seasonality. 

 

Figure 6-5 Decomposition of the trend and seasonal components of daily sales for Wimpy 

Roodepoort from Jan 2010 to Dec 2014 
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6.4 Multiple-Seasonal ARIMA model 

As is evidently clear from the preceding sections, fitting a model without incorporating the 

multiple seasonalities present in the data will not produce better forecasts than what we have 

already achieved by the TBATS model. Therefore a non-seasonal ARIMA will not be adequate.  

The design of seasonal ARIMA models faces the same problem as with the Seasonal Exponential 

Smoothing models mentioned in Section 6.2, they usually only accommodate seasonal periods up 

to 12. The ARIMA function in R can handle any seasonal period up to 350 but generally runs out 

of memory when the seasonal period is greater than 200, the reason for this is not yet clear to the 

developers of this function. Seasonal ARIMA models are based on seasonal differencing to find 

autocorrelations between a value and the previous value one seasonal period back. This poses a 

problem for annual seasonalities, as this means that we have to compare what happened today to 

what happened one year ago and there is no guarantee that the seasonal pattern is smooth, with 

leap years also posing a problem. With monthly seasonalities, the problem is the varying number 

of days within a month as discussed in Section 5.5. Additionally, seasonal ARIMA models can 

also not incorporate multiple seasonalities (Hyndman, 2016). 

Alternatively, a method of producing forecasts with ARIMA modelling containing multiple non-

integer seasonalities is to model the seasonal pattern by using Fourier terms. The resulting model 

will then be: 

𝑦𝑡 = 𝑎 + ∑[𝛼𝑘 sin (
2𝜋𝑘𝑡

𝑚
) + 𝛽𝑘 cos (

2𝜋𝑘𝑡

𝑚
)]

𝐾

𝑘=1

+ 𝑁𝑡 

Where 𝑁𝑡 is an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process, 𝑎 is a constant, 𝛼𝑘 and  𝛽𝑘 are smoothing parameters, 

and 𝐾 is the number of Fourier terms to include for each seasonal period = 𝑚. The value of 𝐾 can 

be chosen by minimizing the AIC of the model, which is known as Akaike’s Information Criterion, 

a measure of the likelyhood that the fitted model came from the data that was used in the fitting 

process. Small values of 𝐾 produces a more smooth seasonal pattern, whereas increasing the value 

of 𝐾 allows for more wiggly seasonal patterns. For all four restuarants a value 𝐾 = 3, 𝐾 = 10, 

and 𝐾 = 43 for the weekly, monthly, and annual seasonalities respectively proved to provide the 

lowest AIC value. The (𝑝, 𝑑, 𝑞) order of the 𝐴𝑅𝐼𝑀𝐴 function is also chosen by minimizing the 

AIC. 
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Table 6-4: MAPE of fitted multiple-seasonal ARIMA models and their orders for all 

restaurants 

 CCS WM WR WB 

𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒): (1,1,1) (0,1,4) (5,1,0) (0,1,3) 

MAPE 22.83% 13.71% 13.57% 21.66% 

 

After obtaining the correct order of the ARIMA models and optimal 𝐾 values for the seasonalities, 

the models was used to produce forecasts for all restaurants. The results are displayed in Table 

6-4. In comparing the MAPE of these models with the ones obtained for the fitted multiple-

seasonal TBATS models, we see an improvement of 2.56% for Wimpy Midrand, an improvement 

of 10.95% for Wimpy Roodepoort, and an improvement of 7.16% in forecasting accuracy for 

Wimpy Bloemfontein. For Copper Canyon Spur however, we see a deteriation of 14.93% in 

forecasting accuracy of the ARIMA model in comparison with the TBATS model. The possible 

reasons for these observations will be discussed in the subsequent section. 
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6.5 Multiple-Seasonal ARIMA versus Multiple-Seasonal TBATS models 

The fact that the multiple-seasonal ARIMA models (hereafter referred to as MS-ARIMA models) 

produced better forecasts than the multiple-seasonal TBATS models (hereafter referred to as MS-

TBATS models) for three out of the four restaurants could be due to various factors. The TBATS 

model is based on Exponential Smoothing models, and it is a well-known fact that some 

exponential smoothing methods and some ARIMA models are equivalent. There are however 

many ARIMA models with no Exponential Smoothing counterparts and vice versa. All the 

ARIMA orders used for the forecasts of the four restaurants has no Exponential Smoothing 

counterpart and this could  explain why the ARIMA models were better capable of handling the 

data whereas Exponential Smoothing methods might utilize a “second-best” option. Another 

reason may also be that some of the restaurants contain missing data for some days of the year. 

Because ARIMA models are capable of incorporating external regressor variables, the ARIMA 

function in R automatically detects the missing values as a dummy variable and then removes it’s 

effect from the data. The TBATS model does not allow for external regressors and these values 

had to be estimated or forecasted instead, which might not have been accurate enough and 

additionally affect the forecasts negatively. These values are however only a small fraction of the 

total amount of data, except for Wimpy Bloemfontein, which is closed on Sundays, when fitting 

the MS-TBATS model for this restaurant the values on Sundays were kept at zero, as it is a 

reoccurring value every seven days throughout the year and should, therefore, be incorporated into 

the weekly seasonality. 

 

Figure 6-6 Multiple-seasonal ARIMA and TBATS forecasts for Wimpy Roodepoort 

When comparing the forecasts of the MS-ARIMA(5,1,0) model with those of the MS-TBATS 

model for Wimpy Roodepoort displayed by Figure 6-6, we see that they are very similar, with 
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both capturing the multiple seasonalities present. The MS-ARIMA model does, however, fit the 

troughs and peaks due to the weekly seasonality better. 

 

Figure 6-7 Multiple-Seasonal ARIMA and TBATS forecasts for Copper Canyon Spur 

As can be seen in Figure 6-7, the MS-TBATS model captured the seasonal pattern of 2015 for 

Copper Canyon Spur more accurately than the MS-ARIMA model did. Table 6-5 displays the 

comparison of the MAPE produced by the MS-ARIMA model with that of the MS-TBATS model 

for forecasts over three periods, each a year in length, stretching over approximately three years 

from January 2014 to August 2016. We see how the MS-ARIMA model produces the most 

accurate forecasts for the period January 2014 to December 2014, but thereafter the forecasting 

accuracy of the MS-TBATS model starts outperforming that of the MS-ARIMA model for the 

subsequent periods. We also observe how forecasting accuracy deteriorates through these three 

periods for both models.  

Table 6-5 Comparison of the MAPE produced by the MS-ARIMA and MS-TBATS models 

for Copper Canyon Spur over three different periods 

Forecasted Period MS-ARIMA MS-TBATS 

Jan 2014 – Dec 2014 17.99% 18.39% 

Jan 2015 – Dec 2015 22.83% 19.42% 

Sep 2015 – Aug 2016 24.12% 22.74% 

 

The main advantage that MS-TBATS models have over MS-ARIMA models is that the seasonal 

patterns are allowed to change slowly over time, while for the MS-ARIMA models the seasonal 

patterns are required to remain constant. This is usually not an issue as seasonality generally 

remains remarkably constant. When we investigate the plots of daily sales of approximately four 

years from January 2013 until August 2016 for Copper Canyon Spur displayed by Figure 6-8, 

Figure 6-9, Figure 6-10, and Figure 6-11 on the next page, we can see that the seasonal pattern 

does change slightly from 2013 to 2014 with the variance slightly increasing and the data becoming 

more volatile. We can also observe changes in seasonal patterns from 2014 to 2015, as well as 

from 2015 to 2016. It may, therefore, be possible that the MS-TBATS model incorporated this 
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slight change in seasonality (observed during the later periods of the data used to fit the models) 

into the forecasts while the MS-ARIMA model kept the initial seasonal pattern (observed during 

the earlier periods of the data used to fit the models) constant in producing forecasts. Subsequently, 

the MS-TBATS model captured the most recent seasonal patterns more accurately than the MS-

ARIMA model did. 

 

Figure 6-8 Copper Canyon Spur daily sales for 2013 

 

Figure 6-9 Copper Canyon Spur daily sales for 2014 

 

Figure 6-10 Copper Canyon Spur daily sales for 2015 

 

Figure 6-11 Copper Canyon Spur daily sales for 2016 
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6.6 Multiple-Seasonal ARIMA model with External Regressors 

As can be seen in the plots of the forecasts produced in the previous sections, the models are now 

capable of capturing the trends and multiple seasonalities in the data, but there are still some 

outliers present that are not forecasted accurately. An example of this can be seen in Figure 6-10 

between 1/5/2015 and 1/6/2015 where there is a significant spike, producing a daily sales value of 

more than R120 000, the highest daily sales value recorded for the year. This spike can also be 

seen occurring in 2013, 2014, and 2016, displayed by Figure 6-8, Figure 6-9, and Figure 6-11, 

each time during the month of May. With further investigation, it was discovered that this spike 

occurred each year on Mother’s Day. Other events and public holidays also proved to have an 

effect on the data, such as Valentine’s Day, Human Rights Day, Youth Day, Reconciliation Day 

and more. 

The advantage of ARIMA models is that they can include external regressor variables and measure 

their effect on the data after the seasonal and trend components has been extracted and then forecast 

the combined effect of the variable along with the trend and seasonal components. This can be 

done by using a dummy variable that takes a value of one on certain days of the year and a value 

of zero on all other days of the year. The dummy variable takes the form of a vector that is the 

same length as the data being used to fit the model. Multiple dummy variables can also be 

combined into a Matrix with the multiple vectors of these variables arranged into rows and the 

columns of the matrix corresponding to the length of the data being used in fitting the model. 

This was done for all four restaurants. Only public holidays that occurs during weekdays were 

used as the public holidays falling on weekends did not prove to have an effect on the sales. For 

Copper Canyon Spur non-public holidays which are special events such as Mother’s Day, 

Valentine’s Day, and Father’s Day, were also used. Other events used for all the restaurants were 

Human Rights Day, Good Friday, Family Day, Freedom Day, Workers Day, Youth Day, Woman’s 

Day, Heritage Day, Reconciliation Day, Election Day (if there was an election day in the sales 

period used), as well as normal public holidays. Additionally for Copper Canyon Spur days before 

and after a public holiday also proved to have an effect on sales. Also included as external 

regressors for Wimpy Midrand and Wimpy Roodepoort is days where load shedding occurred, as 

this has proven to produce substantially lower sales on these specific days. This is of course with 

the assumption that information on load shedding schedules will be made available beforehand in 

order to incorporate this into the forecasts. School holidays were included only for Wimpy 

Roodepoort. 

Table 6-6: MAPE for MS-ARIMA and MS-ARIMAX forecasts for all restaurants 

 CCS WM WR WB 

MS-ARIMA 22.83% 13.71% 13.57% 21.66% 

MS-ARIMAX 21.17% 11.86% 11.38% 20.95% 
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The results from the forecasts produced with the Multiple-Seasonal ARIMA with External 

Regressors model (hereafter referred to as MS-ARIMAX model) are displayed in Table 6-6 along 

with the results from the MS-ARIMA model for comparison. 

 

Figure 6-12: MS-ARIMAX sales forecasts for Copper Canyon Spur 

 

 

Figure 6-13: MS-ARIMAX sales forecasts for Wimpy Midrand 

As can be seen from the results in Table 6-6, MS-ARIMAX models improved forecasting accuracy 

for Copper Canyon Spur by 7.27%, for Wimpy Midrand by 13.49%, for Wimpy Roodepoort by 

12.82% and for Wimpy Bloemfontein by 3.28% in comparison with the MS-ARIMA models. As 

can be seen in Figure 6-12, the MS-ARIMAX model now captures the effect of Valentine’s Day 

observed between 1/2/2015 and 1/3/2015 as well as the effect of Mother’s Day observed between 

1/5/2015 and 1/6/2015 for Copper Canyon Spur forecasts. In Figure 6-13 we see how the forecasts 

now incorporate the effect of load shedding observed between 1/3/2014 and 1/4/2014 as well as 

between 1/10/2014 and 1/11/2014 for Wimpy Midrand. 
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7 Selecting the best model/models 

We now compare the results obtained from the previous sections in order to determine which 

model or combination of models will be best suited to produce forecasts for restaurants with similar 

operating environments. The results are summarized in Table 7-1 

Table 7-1: Comparison of MAPE for all the models tested 

 CCS 

(2014) 

CCS 

(2015) 

CCS 

(2015-2016) 

WM WR WB 

Holt-Winters 29.47% 27.32% 43.48% 19.63% 23.94% 31.48% 

MS-TBATS 18.39% 19.42% 22.74% 14.07% 15.24% 23.33% 

MS-ARIMA 17.99% 22.83% 24.12% 13.71% 13.57% 21.66% 

MS-ARIMAX 16.01% 21.17% 21.76% 11.86% 11.38% 20.95% 

 

As can be seen in from the results displayed in the table, the MS-ARIMAX and MS-TBATS 

models are identified as the best models to be considered in the selection of models to be used by 

the Expert System. Evidently, the MS-ARIMAX model is the most accurate and reliable 

forecasting model as for five out of six cases it produced better forecasts than the MS-TBATS 

model with most of these substantially better than those of the MS-TBATS model (15.07%, 

25.33%, 10.2%, better forecasting accuracy for WM, WR, WB, respectively and 12.94% for CCS 

in 2014) whereas when the MS-TBATS model outperformed the MS-ARIMAX model it only 

improved forecasting accuracy by 8.27%. 

However, seeing as the MS-TBATS is still capable of outperforming the MS-ARIMAX model in 

some cases, even if it does not incorporate the factors of public holidays and special events, it 

would be wise to include this model in the final selection of models to be incorporated into the 

Expert System. The effects of public holidays are essential to be included in the forecasts of daily 

sales, because as we have seen for Copper Canyon Spur, if a model forecasts a value of 

approximately R60 000 for Mother’s Day and the resulting sales turns out to be more than double 

the forecasted value, this could be a very difficult situation for the restaurant which they would not 

at all be prepared for. To incorporate these days into the MS-TBATS forecasts, all the values for 

2015 where a Public Holiday factor was included in the MS-ARIMAX model where extracted and 

inserted on the same days for the MS-TBATS model, replacing these values of the MS-TBATS 

model. This lowered the MAPE of the forecasts from the original MS-TBATS model from 19.42% 

to 18.05%, a 7.05% improvement. The resulting forecasts can be seen in Figure 7-1. 
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Figure 7-1: MS-TBATS sales forecasts with MS-ARIMAX public holidays included 
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8 Proposed implementation  

As we have now identified the best models to be incorporated in the expert system as the MS-

ARIMA and MS-TBATS models we can now discuss how this will be implemented. The process 

flow displayed by Figure 8-1 on the next page illustrate the methodology and decision process 

that the Expert System will follow in order to produce the most accurate and reliable forecasts. 

Most of the functions that are included are already automated functions in software packages such 

as R and other forecasting tools and it will, therefore, be possible to automate the entire process. It 

should be noted that prior to entering data into the expert system, the data should first be inspected 

to ensure that it is up to the required standard. Long periods with missing values will affect the 

forecasts negatively and should, therefore, be estimated or forecasted with earlier data before it 

can be used in producing forecasts.  
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Fit the MS-ARIMAX model and 

produce forecasts: By incorporating the 

public holiday factors minimizing the 

MAPE. 

YES NO 

Incorporate special events into the 

MS-TBATS model: Extract the 

values from the MS-ARIMAX model 

and insert them into the MS-TBATS 

model. 

Fit the MS-ARIMAX model and 

produce forecasts: By incorporating the 

public holiday factors minimizing the 

MAPE. 

Produce forecasts for both the MS-ARIMA and MS-TBATS model: This would be to 

determine if the MS-TBATS model should be incorporated in the model, if the MS-ARIMA model 

outperforms the MS-TBATS model at this stage without incorporating any holiday factors, the MS-

TBATS cannot produce better forecasts than the MS-ARIMAX model. 

Compare MAPE of MS-

ARIMA and MS-TBATS 

models: Is the MAPE of the 

MS-ARIMA model lower than 

that of the MS-TBATS model? 

Determine which special events should be 

incorporated into the model: A matrix containing all 

potential public holidays and events dating back as far as 

necessary will be contained in the Expert System. Each event 

will be tested individually on the forecasts and only those 

improving the MAPE will be used. 

Determine the order of the MS-ARIMA model 

that minimizes the AIC value: there is already a 

very powerful automated function for this in R and in 

various other forecasting software products, so this 

would certainly be possible. 

Fit the MS-TBATS model: This is also an automated 

function in R and can therefore also be included in the 

Expert System. 

Figure 8-1 Process flow of the methodology that the Expert System will follow 
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9 Conclusion and Recommendations 

This project was started with the aim of determining if it would be possible to develop a forecasting 

tool capable of forecasting daily sales for different restaurants with similar operating 

environments. After considering all possible methods that were identified, eliminating methods 

based on the data analysis and testing the remaining methods, it can be concluded that it is indeed 

possible to develop a forecasting tool capable of producing accurate and reliable forecasts for 

different restaurants. Throughout the data analysis and model testing phases, we observed how the 

data for all four restaurants displayed remarkably similar traits in terms of seasonal patterns and 

how they reacted to the different methods that were tested. 

It should be noted that the forecasts produced are only as good as the data that are used. Forecasting 

accuracy depends on various factors and as can be seen from the results, equally accurate forecasts 

for all four restaurants are not possible. Forecasting accuracy for Copper Canyon Spur decreased 

significantly from 2014 to 2016. The main reason for this is due to the fact that the restaurant 

changed ownership in 2015, this should logically have an effect on sales patterns as different 

management principles and promotion strategies are now being used. Another factor is the fact 

that the previous owner held various events at the restaurant, such as birthday parties, corporate 

events, year-end functions etc. This has a substantial effect on sales for these specific days, causing 

sales patterns to become more volatile without an observable trend for these outliers. 

Unfortunately, no data were, however, available indicating on which days these events were as the 

previous owner did not keep a record of the dates of these events. If the data were, however, 

available, these days could be incorporated as external regressors just as with public holidays. It is 

therefore recommended that restaurant owners planning on using this system in the future keep a 

detailed record of all events and observations made that may seem to have an effect on sales, in 

order to incorporate this into future forecasts. 
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10 Appendices 

10.1 Appendix A: Signed Industry Sponsorship Form 
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