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Abstract The problem considered in this study is that of unrealistic ground motion estimates, which
arise in the Cornell-McGuire method when the seismic hazard curve is calculated for extremely low
annual probabilities of exceedance. This problem stems from using the normal distribution in the mod-
elling of the variability of the logarithm of ground motion parameters. In this study, the database of the
strong-motion seismograph networks of Japan was used to examine the distribution of the logarithm of
peak ground acceleration (PGA). The normal distribution and the generalised extreme value distribution
(GEVD) models were considered in the analysis, with the preferred model being selected based on sta-
tistical criteria. The results of the analysis demonstrated the superiority of the GEVD in the vast majority
of considered examples. The estimates of the shape parameter of the GEVD were negative in every con-
sidered example, indicating the presence of a finite upper bound of PGA. Therefore, the GEVD provides
a model that is more realistic for the scatter of the logarithm of PGA, and the application of this model
leads to a bounded seismic hazard curve.

Keywords Probabilistic seismic hazard analysis · Ground motion prediction equation · Ground motion
variability · Peak ground acceleration · Hazard curve

1 Introduction

Probabilistic seismic hazard analysis (PSHA) is an important field of modern seismology, related to the
effects of strong earthquakes and their consequences. The main purpose of PSHA is to estimate the design
ground motion that can be utilized in earthquake structural engineering to produce a structure that can
withstand a certain level of shaking without severe damage, and thus reduce the negative effects of strong
earthquakes, i.e. casualties and damage to infrastructure. Several PSHA methods exist (Cornell, 1968;
Milne and Davenport, 1969; Molchan et al., 1970; Veneziano et al., 1984; Kijko and Graham, 1998;
1999; Ebel and Kafka, 1999; Shumilina et al., 2000); however, the most widely applied method is the
Cornell-McGuire procedure (Cornell, 1968; 1971; McGuire, 1976; 1978). This method was formulated
by C.A.Cornell and L.Esteva (Bommer and Abrahamson, 2006; McGuire, 2008) and was supplemented
with computer programs developed by R.K.McGuire.

Although extensive further development has taken place since the Cornell-McGuire method was orig-
inally published, some controversial aspects remain in its mathematical apparatus. One of these is the
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limitlessness of the seismic hazard curves at very low annual probabilities of exceedance (APE). Perti-
nent examples of such a flaw in modern PSHA include seismic hazard studies that were performed for
the Yucca Mountain nuclear waste repository in the USA (Stepp et al., 2001) and the PEGASOS project
in Switzerland (Abrahamson et al., 2002). Both studies considered an extremely low APE (down to 10−8

and 10−7, respectively) and provided unrealistically high values of ground motion parameters (Stepp et
al., 2001; Corradini, 2003; Stamatakos, 2004; Klügel, 2005).

For very low APE, the hazard estimates are controlled by the tail of the distribution of the ground
motion residuals (Anderson and Brune, 1999; Abrahamson, 2000; Wang, 2011). In current practice, the
distribution of the residuals of the ground motion parameters is assumed to correspond to a log-normal
distribution and, therefore, the distribution of logarithmic residuals is modelled by a normal (Gaussian)
distribution. Since normal distribution is unlimited, the estimations of the ground motion parameters at
very low APE are unlimited as well.

The determination of the possible upper bounds of seismic ground motions has been discussed in
engineering seismology for a long time. The history of the development of this subject is discussed in
Bommer et al. (2004) and Strasser and Bommer (2009). The values that were suggested as possible
limits of ground motion parameters, such as peak ground acceleration (PGA) and peak ground velocity,
have been gradually increasing because of the accumulation of strong motion records and the consequent
increase of the observed maximum values of these parameters.

The Bayesian procedure for estimating the maximum value of a parameter of ground motion that
would occur at a given site within the specified time interval was proposed by Pisarenko and Lyubushin
(1997; 1999) and was applied by Lyubushin et al. (2002). This procedure utilizes the catalogue of seis-
mic events and the ground motion prediction equation (GMPE); it is applicable for any ground motion
parameter that may be estimated by using the GMPE (e.g., PGA, components of acceleration response
spectra, seismic intensity).

Kijko and Graham (1999) have proposed two approaches for estimating the maximum value of PGA
at a site of interest. The first approach suggests the straightforward estimation of PGA by using the appro-
priate GMPE, under assumption that the strongest possible earthquake (i.e., an earthquake with magnitude
M̂max, where M̂max is estimated by using one of the methods such as developed by Pisarenko et al., 1996;
Kijko, 2004; Kijko and Singh, 2011) occurred very close to the site (e.g., at a distance of 10 km). The sec-
ond approach utilises the distribution of logarithm of PGA at a site, derived by Kijko and Graham (1999).
The derived distribution of logarithm of PGA at a site is of the same type as the distribution of earth-
quake magnitude, obtained under the assumption of applicability of the Gutenberg-Richter recurrence
law (Gutenberg and Richter, 1944). The similarity of two distributions allows estimation of the maximum
possible PGA at a site by modifying the techniques developed for assessing the upper limit of earthquake
magnitude.

Some studies (e.g., Strasser et al., 2008) have sought a solution to the problem by truncation of
the distribution of ground motion residuals. However, such a procedure has no clear physical meaning;
moreover, to a certain extent it is arbitrary.

An example of such a study is that of Romeo and Prestininzi (2000), who proposed a truncation at
two standard deviations above the median of the distribution. On the other hand, Strasser et al. (2004)
indicated that the truncation should be performed at least at a level three standard deviations above the
median. Conversely, McGuire (1976) suggested that the distribution of residuals should be truncated at a
level six standard deviations above the median value, or truncation should be performed in such a way that
the ground motion amplitude at a site could not be greater than the value at the epicenter (McGuire, 1977).

Bommer and Abrahamson (2006) have indicated that truncation at a level above three standard devi-
ations has little effect on the hazard curves in the range of the return periods that are generally used in
engineering design. If the seismic activity of the region is not very high, this effect would remain small,
even for a return period of 104 years.
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Fig. 1: Effect of truncation of the distribution of residuals on the hazard estimates

An interesting discussion on the influence of truncating the distribution of ground motion residuals on
the results of PSHA can be found in Wu et al. (2011). These authors (Wu et al., 2011) concluded that the
number of standard deviations depends on the range of APE under consideration and it should gradually
increase with the decrease of the APE.

Hypothetical hazard curves, calculated by using the unbounded normal distribution, as well as the
normal distribution, truncated at levels of three, four, and five standard deviations above the median
value, are presented in Fig. 1

However, truncation of the distribution of the ground motion residuals potentially leads to an exclusion
of certain strong motions that have low probability of occurrence from the scope of analysis. Moreover,
it is exactly those particular strong motions that define the behavior of the seismic hazard curve at a
long return period. Therefore, from this perspective, the truncation of ground motion variability seems
doubtful.

On the other hand, some studies have focused on investigating the distribution of ground motion
variability. Accordingly, Lavallée and Archuleta (2005) have investigated the distribution of the abso-
lute values of PGA obtained from the strong motion records of the 1999 Chi-Chi earthquake and have
suggested to model it by the Lévy distribution. Dupuis and Flemming (2006) have indicated that the
distribution of residuals of PGA should theoretically correspond to the generalised extreme value distri-
bution (GEVD). Dupuis and Flemming (2006) have performed regression analysis under assumption of
the log-normal distribution of residuals, as well as under assumption of the residuals being distributed ac-
cording to the GEVD. The results demonstrated that a superior fit to the data and, in turn, more accurate
acceleration estimates are obtained under the latter assumption. Similar considerations were expressed
by Raschke (2013), who criticized the log-normal assumption and noted that the GEVD is the natural
distribution for residuals of maxima such as PGA.

Huyse et al. (2010) applied the peaks over threshold method to analyse both the raw PGA data and
the logarithmic residuals of PGA, and concluded that the generalised Pareto distribution (GPD), with
the negative shape parameter, provided a model that was more accurate for the tail fractions of both the
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studied datasets. Similar results were obtained by Pavlenko (2015), who found that the GEVD was a more
appropriate model for logarithmic residuals of PGA.

In the present study, the analysis of the statistical properties of ln(PGA) is continued. The analysis
is based on the data of the strong-motion seismograph networks of Japan (K-NET, KiK-net). Statistical
criteria are used to compare the performance of the normal distribution and the GEVD models. The results
indicate the superior performance of the GEVD in the vast majority of considered examples.

2 The Cornell-McGuire procedure

In PSHA, the seismic hazard is characterised by the probability P(y≥ a0,T ) = P(a0,T ) that the ground
motion parameter y will exceed the value a0 at a given site at least once during a specified period of time
T . It is usually assumed in PSHA studies that the sequence of major seismic events can be modelled by
the Poisson process (e.g. Anderson and Brune, 1999). This assumption allows the calculation of P(a0,T ):

P(a0,T ) = 1− e−λ (a0)T (1)

where λ (a0) = λ (y≥ a0) is the mean annual rate of exceedance of ground motion level a0 at the site.
For T = 1 year and for (λ (a0)� 1), Eq. (1) can be approximated as:

P(a0,T = 1) = 1− e−λ (a0) ∼= λ (a0) (2)

Equation (2) is an approximation of the APE and T = 1 year is neglected on the right hand side of (2);
therefore, both sides of this equation contain a dimensionless quantity (Wang, 2011). For a single seismic
source, λ (a0) can be calculated as:

λ (a0) = νP(y≥ a0) (3)

where ν is the annual rate of occurrence of earthquakes with magnitude greater than or equal to m0, which
is the lower threshold of magnitude of earthquakes capable of producing ground motions with y≥ a0 at a
site. The probability of exceedance P(y ≥ a0), given the occurrence of an earthquake, can be calculated
by using the total probability theorem:

P(y≥ a0) =
∫∫

P(y≥ a0|m,r) fM(m) fR(r)dmdr (4)

where fM(m) and fR(r) denote the probability density functions (PDFs) of magnitude and source to site
distance, respectively, and P(y ≥ a0|m,r) is the conditional probability that an earthquake of magnitude
m would cause ground motion y≥ a0 at distance r from the source.

The generalization of Eq. (3) for an instance of N seismic sources is straightforward, as the total
annual rate of exceedance is the sum of the rates of individual seismic sources:

λ (a0) =
N

∑
i=1

λi(a0) =
N

∑
i=1

νiP(y≥ a0) (5)

where subscript i indicates the i-th seismic source.
The substitution of Eq. (4) into Eq. (5) yields:

λ (a0) =
N

∑
i=1

νi

∫∫
P(y≥ a0|m,r) fMi(m) fRi(r)dmdr (6)

The variability of the ground motion was recognised as an important element of seismic hazard cal-
culations (Bender, 1984), and integration over the distribution of possible values of y was included in the
calculations (Cornell, 1971; McGuire, 1976).
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Fig. 2: Aleatory variability of ground motion

For a given combination of m and r, the GMPE allows estimation of the mean value of ln(y) and
its standard deviation. The scatter of observed values of ln(y) around the mean is taken into account by
considering the conditional probability distribution of ln(y) (Fig. 2). The standard assumption in cur-
rent practice is that for the given m and r, y has a log-normal distribution (e.g. Abrahamson, 1988), or,
equivalently, that ln(y) is normally distributed. Consequently, the conditional probability of exceedance
P(y≥ a0|m,r) is calculated by using the normal distribution:

P(y≥ a0|m,r) =
1√

2πσ

∞∫
a0

e−
(ln(u)−µ)2

2σ2 du = 1−Φ(z) (7)

where z = [ln(a0)− µ]/σ is the standardised normal random variable and Φ(z) is the standard normal
cumulative distribution function (CDF).

As the normal distribution has unbounded support, any value of ln(y) receives a non-zero probability
of being exceeded. Clearly, this is not appropriate, as the amount of energy released during an earthquake
is finite, and, therefore, the ground motion should be bounded. As a result, truncating the distribution at
some level above the median has become the standard practice. However, this practice has shortcomings,
as was discussed above. A model that is more appropriate for the distribution of ln(y) would account for
the finiteness of the ground motion induced by an earthquake of magnitude m at distance r.

3 Generalised extreme value distribution

The extreme value theory is devoted to the statistical analysis of rare events, and is used widely in various
fields of knowledge, such as hydrology, meteorology, structural engineering, and earth sciences. This
theory has a broad range of applications in the analyses of natural disasters (Pisarenko and Rodkin, 2010;
2014), and it is used in analysing the largest possible earthquakes (e.g. Epstein and Lomnitz, 1966; Kijko
and Sellevoll, 1981).

The general result in the extreme value theory, the Fisher-Tippett-Gnedenko theorem (Fisher and Tip-
pett, 1928; Gnedenko, 1943), postulates that a properly normalised maximum from a sample {Xn, n≥ 1}
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of independent identically distributed random variables, with distribution function F, can only converge
in distribution to one of the three possible limiting distributions. Specifically, assume a sequence of con-
stants an > 0, and bn ∈R (n≥ 1), such that a normalised sample maximum has a non-degenerate limiting
distribution:

lim
n→∞

Fn(anx+bn) = G(x) (8)

Then, G must be one of the following three extreme value distributions:

Gumbel (type I): Λ(x) = exp(−e−x), x ∈ R
Fréchet (type II): Φα(x) = exp(−x−α), x > 0, α > 0
Weibull (type III): Ψα(x) = exp(−(−x)α), x≤ 0, α > 0

Three extreme value distributions can be combined into a single generalised form by introducing the
shape parameter ξ so, that:

ξ =


0 corresponds to Λ(x)
α−1 > 0 corresponds to Φα(x)
−α−1 < 0 corresponds to Ψα(x)

The following form is the GEVD, also called the Jenkinson-von Mises representation:

Gξ (z) =

{
exp
(
−(1+ξ z)−1/ξ

)
, 1+ξ z > 0, ξ 6= 0

exp(−e−z) , z ∈ R, ξ = 0
(9)

where z = (x−µ)/σ , µ and σ are the location and scale parameters, respectively.
The distribution function F belongs to the domain of attraction of Gξ if (8) holds with G = Gξ . In

probability theory, heavy-tailed distributions are those probability distributions, whose tails tend to zero
slower than an exponential function. Conversely, the distributions whose tails tend to zero faster than an
exponential function are light-tailed distributions. The Gumbel domain of attraction D(G0) includes a
large variety of distributions, of which the tails can differ significantly; ranging from moderately heavy,
such as the log-normal distribution to very light, such as the normal distribution. The Fréchet domain of
attraction D(Gξ+) consists of the heavy-tailed distributions, of which the right tail behaves like a power
law. Such distributions include the Pareto, Cauchy, Student’s-t, and the Fréchet distributions. The Weibull
domain of attraction D(Gξ−) includes distributions with finite right endpoints (Fig. 3), for example, the
uniform and the beta distributions.

Suppose a is the horizontal acceleration induced by an earthquake with magnitude m at distance r from
the source. Let amax denote the upper limit of a, then the possible values of ln(a) would be bounded by
(−∞, ln(amax)], and the distribution of ln(a) would belong to the Weibull domain of attraction. As PGA
is a maximum of a, it would be reasonable to expect that the distribution of ln(PGA) would converge to
the Weibull extreme value distribution.

4 Applied procedure and data

The same procedure applied in Pavlenko (2015) was used in this study to examine the probability distribu-
tion of ln(PGA), with the normal distribution and the GEVD being considered as potential models in the
current analysis. The data of the strong-motion seismograph networks of Japan (www.kyoshin.bosai.go.jp)
were used in the study. The stations located on very dense soil (National Earthquake Hazards Reduction
Program [NEHRP] class C) were selected, and the records of events with focal depths from 10 to 20 km
and hypocentral distances from 46 to 54 km were used in the analysis. Some extension of the distance
range is inevitable to gain enough data for statistical analysis. It is believed that the data obtained are

http://www.kyoshin.bosai.go.jp
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Fig. 3: PDF of a distribution with the support bounded on the right

representative of the random scatter in ln(PGA) for the given m and r. The data were grouped into bins
according to magnitude, and the empirical distributions of ln(PGA) were modelled for the magnitude
bins that contained the bulk of the data.

Various parameters have been used in ground motion studies to describe the level of horizontal ac-
celeration, such as the square root of the sum of squares of two horizontal components (e.g. Kanno et
al., 2006), and the geometric mean of the two components (e.g. Zhao et al., 2006). In this study, these two
parameters are used for horizontal PGA, the first one is denoted PGASR (square root) and the second is
denoted PGAGM (geometric mean).

The PDFs of the normal distribution and the GEVD are given by:

φ(z) =
1√

2πσ
exp(−z2/2), z ∈ R (10)

g(z) =

{
exp
(
−(1+ξ z)−1/ξ

)
(1+ξ z)−1/ξ−1 , 1+ξ z > 0, ξ 6= 0

exp(−e−z− z) , z ∈ R, ξ = 0
(11)

The parameters of the normal distribution were estimated by the maximum likelihood method. The
basic principle of this method is that the parameter values, θ , that maximise the likelihood of obtaining the
given sample in a series of experiments should be taken as the most plausible estimates. In practice, this is
achieved by maximisation of the likelihood function L, or its natural logarithm `, called the log-likelihood
function:

`= ln(L) =
n

∑
i=1

ln[ f (xi|θ)] (12)

The details of the method for normal distribution are well known and therefore require no explana-
tion. The estimators for parameters µ and σ are the sample mean and the sample standard deviation. The
estimation of the parameters of the GEVD has its nuances; the support of Gξ depends on the unknown
values of the parameters µ , σ , and ξ . Furthermore, the applicability of the estimation methods depends
on the value of ξ . Various methods exist for estimating ξ , which could be applied in different circum-
stances. For instance, the well-known Hill estimator (1975) is applicable only for positive values of ξ ;
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the maximum likelihood estimator is valid for ξ > −0.5; the probability-weighted moment estimator
(Hosking et al., 1985) is valid for ξ < 1; and the Pickands estimator (1975) and the moment estimator
proposed by Dekkers et al. (1989) can be applied in the general instance (ξ ∈ R). Detailed reviews of
these estimation techniques can be found in Embrechts et al. (1997), Beirlant et al. (2004), and de Haan
and Ferreira (2006).

In the present study, the condition ξ > −0.5 was fulfilled for the analysed data and therefore the
maximum likelihood method could be applied. The log-likelihood function of the sample {Xn, n≥ 1} of
GEVD random variables for the instance ξ 6= 0 is given by:

`=−n ln(σ)−
(

1
ξ
+1
) n

∑
i=1

ln(1+ξ zi)−
n

∑
i=1

(1+ξ zi)
−1/ξ (13)

where zi = (Xi−µ)/σ .
Differentiating (13) with respect to µ , σ , and ξ , yields the following likelihood equations:

∑
n
i=1 ai bi = 0

∑
n
i=1 zi ai bi−n = 0

∑
n
i=1 zi ai bi +

1
ξ

∑
n
i=1 ln(ai)(bi−ξ ) = 0

(14)

where ai = (1+ξ zi)
−1, bi = 1+ξ − (1+ξ zi)

−1/ξ .
These equations have no explicit solution and therefore should be solved numerically. Iterative numer-

ical procedures were proposed for this purpose by, among others, Prescott and Walden (1980) and Hosk-
ing (1985). In the instance ξ >−0.5, the maximum likelihood method provides consistent, efficient, and
asymptotically normal estimators. The covariance matrix of vector θ̂ = (µ̂, σ̂ , ξ̂ ) can be obtained from
the inverse of the Fisher information matrix:

Ii j = −
(

∂ 2`

∂θi ∂θ j

)∣∣∣∣
θ=θ̂

(15)

The Kolmogorov-Smirnov test (Kolmogorov, 1933) was used to test for significant deviations between
the theoretical and the empirical distributions. The goodness of the fit of the models was compared by
using the Akaike information criterion (AIC) (Akaike, 1974):

AIC =−2ln(L)+2k (16)

where L is the maximum value of the likelihood function, and k is a number of parameters of probability
distribution. The AIC allows estimating the information loss as a result of using the particular model.
When a set of candidate models is considered, with AICi denoting the AIC value of the i-th model, and
AICmin denoting the minimum of those values, then, for the i-th model, the relative likelihood can be
calculated as follows:

L̃ = exp[(AICmin−AICi)/2] (17)

This quantity measures the relative probability of the i-th model to minimise the information loss.

5 Results and discussion

The histograms of ln(PGASR) and ln(PGAGM), with fitted normal distribution, and the GEVD are shown
in Figs. 4 and 5, and the relative likelihoods are listed in Table 1. The majority of histograms have a
similar shape, with a slightly elongated right tail. There is good agreement between the results obtained
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Fig. 4: Sample histograms of ln(PGASR). The PDFs of the normal distribution and the GEVD are shown
by the broken and the solid lines, respectively. Magnitude (M), sample size (N) and estimated value of ξ

are shown for each histogram

for ln(PGASR) and ln(PGAGM), and, relevant to both parameters, the normal distribution performed better
than the GEVD only in one instance out of twelve. Apparently, for this particular sample (M = 4.0)
convergence to the GEVD was slower than for other samples. Although there is no obvious trend, all the
estimates of ξ were negative, which confirms the convergence of data to the bounded Weibull extreme
value distribution. Similar results were obtained by Huyse et al. (2010) and Pavlenko (2015).

The applicability of the GEVD for peak ground motion parameters is supported by the extreme value
theory. The GEVD is a flexible distribution that can assume a variety of shapes and its shape parameter
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Fig. 5: The same as in Fig. 4 for ln(PGAGM)

ξ governs the decay of the tail of distribution. In instance ξ < 0, the support of the GEVD is bounded on
the right. The inverse distribution function of the GEVD is defined for a probability p ∈ [0, 1]:

Q(p) =
{

µ +σ{[− ln(p)]−ξ −1}/ξ , ξ 6= 0
µ−σ{ln[− ln(p)]}, ξ = 0

(18)

In instance ξ < 0, the right endpoint of the support is given by:

xF = Q(1) = µ− σ

ξ
(19)
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PGASR PGAGM
M L̃(Gξ ) L̃(Φ) L̃(Gξ ) L̃(Φ)

3.4 1.0 0.497 1.0 0.313
3.5 1.0 0.133 1.0 0.092
3.6 1.0 0.344 1.0 0.113
3.7 1.0 0.032 1.0 0.013
3.8 1.0 0.173 1.0 0.084
3.9 1.0 0.479 1.0 0.394
4.0 0.016 1.0 0.028 1.0
4.1 1.0 0.312 1.0 0.321
4.2 1.0 0.847 1.0 0.872
4.3 1.0 0.029 1.0 0.034
4.4 1.0 0.402 1.0 0.414
4.5 1.0 0.758 1.0 0.699

Table 1: Relative likelihoods of the GEVD (Gξ ) and the normal distribution (Φ)

The estimate of xF can be obtained by substituting the estimates of the parameters into Eq. (19).
Thereby, the GEVD allows accounting for the finiteness of the seismic ground motion, and provides
a rational way of estimating the maximum value of PGA for a specified earthquake scenario. This is
a viable alternative to the common practice of using the truncated normal distribution (e.g. Strasser et
al., 2008) for modelling the scatter of the logarithm of peak ground motion parameters.

6 Conclusion

In this study, the distribution of ln(PGA) was investigated by using the data of the strong-motion seismo-
graph networks of Japan. The normal distribution and the GEVD were used for modelling the empirical
distribution of ln(PGA). Two definitions of horizontal PGA were used, namely, the square root of the
sum of squares of two horizontal components and the geometric mean of the two horizontal components.
Similar results were obtained for both definitions, the GEVD provided a better fit than the normal distri-
bution in eleven out of twelve instances. The estimated values of the shape parameter of the GEVD were
negative in every instance, indicating that the support of the distribution is bounded on the right. There-
fore, the GEVD provides a more realistic model for the scatter of the ln(PGA), which allows accounting
for the finiteness of the ground motion induced by a specified earthquake scenario. The maximum value
of PGA can be estimated directly from the parameters of the GEVD. Correct modelling of the ground
motion parameters is important for realistic seismic hazard assessment and the studies on the statistical
properties of these parameters should therefore be continued.
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term of random series). Ann Math 44(3):423–453, doi:10.2307/1968974. http://www.jstor.org/stable/1968974
Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188
de Haan L, Ferreira A (2006) Extreme Value Theory: An Introduction. Springer Science and Business Media, LLC, New York
Hill BM (1975) A simple and general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174,

https://projecteuclid.org/euclid.aos/1176343247
Hosking JRM (1985) Algorithm AS 215: Maximum likelihood estimation of the parameters of the generalized extreme value

distribution. Appl Stat 34(3):301–310, doi:10.2307/2347483. http://www.jstor.org/stable/2347483
Hosking JRM, Wallis JR, Wood E (1985) Estimation of the generalized extreme-value distribution by the method of probability-

weighted moments. Technometrics 27(3):251–261, doi:10.2307/1269706. http://www.jstor.org/stable/1269706
Huyse L, Chen R, Stamatakos JA (2010) Application of Generalized Pareto Distribution to Constrain Uncertainty in Peak Ground

Accelerations. Bull Seismol Soc Am 100(1):87–101, doi:10.1785/0120080265
Kanno T, Narita A, Morikawa N, Fujiwara H, Fukushima Y (2006) A New Attenuation Relation for Strong Ground Motion in Japan

Based on Recorded Data. Bull Seismol Soc Am 96(3):879–897, doi:10.1785/0120050138
Kijko A (2004) Estimation of the Maximum Earthquake Magnitude, mmax. Pure Appl Geophys 161(8):1655–1681,

doi:10.1007/s00024-004-2531-4
Kijko A, Graham G (1998) Parametric-historic Procedure for Probabilistic Seismic Hazard Analysis. Part I: Estimation of Maximum

Regional Magnitude mmax. Pure Appl Geophys 152(3):413–442, doi:10.1007/s000240050161
Kijko A, Graham G (1999) “Parametric-historic” Procedure for Probabilistic Seismic Hazard Analysis. Part II: Assessment of

Seismic Hazard at Specified Site. Pure Appl Geophys 154(1):1–22, doi:10.1007/s000240050218
Kijko A, Sellevoll MA (1981) Triple exponential distribution, a modified model for the occurrence of large earthquakes. Bull

Seismol Soc Am 71(6):2097–2101
Kijko A, Singh M (2011) Statistical Tools for Maximum Possible Earthquake Magnitude Estimation. Acta Geophys Pol 59(4):674–

700, doi:10.2478/s11600-011-0012-6
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