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Abstract

Rotational speed or phase measurements are important in the rotating machine condition moni-

toring field. Rotating machines often operate in the presence of fluctuating rotational speeds and

its components generate signals which are periodical in the angle domain. Hence, it is essential

to perform order tracking when condition monitoring is performed under varying speed condi-

tions. Computed order tracking is performed with a measured tachometer signal and it requires

additional hardware to be installed on the machine, which may not be feasible nor practical.

This article presents a tacholess order tracking method which is capable of accurately estimating

the phase of a shaft of interest in the presence of large angular accelerations and noise. An

improved maxima tracking procedure is used with an angular-displacement Vold-Kalman filter

and the Hilbert transform to estimate the instantaneous phase of the shaft under consideration.

The estimated instantaneous phase is used to resample the vibration signal from the time to the

angle domain. The proposed tacholess order tracking technique is critically investigated on three

numerical and three experimental rotational speed profiles. The minimum and maximum phase

error obtained for the experimental data was 0.037697 and 0.05022 radians respectively, which

highlights the potential of the technique.
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1. Introduction

Rotating machines, such as gearboxes, operate under fluctuating operating conditions due to

inherent fluctuating characteristics, such as fluctuating wind speeds for wind turbines, that are

present during its operation. The resulting vibration signal, measured on a rotating machine,

is best represented in the angle domain, as opposed to the time domain, since the information

within the signal such as localised gear faults and gear mesh interactions are generated at specific

angular positions on the shaft [1].

The vibration signal is transformed from the time to the angle domain using order tracking

techniques, where the instantaneous phase of the shaft of interest is used to resample the vibra-

tion signal into equal angular increments. In computed order tracking, a tachometer signal is

measured simultaneously with the vibration signal by using a stationary probe and a reference,

such as an incremental shaft encoder or a shaft key, on the shaft of interest. This tachometer

signal contains the information pertaining to the instantaneous phase of the shaft, which is used

to perform order tracking on the vibration signal. The order tracking process has been success-

fully applied for gear fault detection [2, 3], misalignment fault diagnosis [4] and bearing fault

diagnosis [5].

Single pulse per revolution (PPR) tachometer signals, obtained from a shaft key and a prox-

imity probe, provide insufficient resolution to capture large angular accelerations. Incremental

shaft encoders, such as zebra tape and digital shaft encoders, provide much finer resolutions

to measure the large angular accelerations in the system [6]. However, incremental shaft en-

coders require large sampling frequencies to accurately estimate the zero crossing times [7, 8],

the procurement and installation of additional expensive instrumentation and equipment and the

storage of additional data [9, 10]. The shaft encoders are also in some cases impractical or even

impossible to install and are not durable in the harsh operating conditions [11, 12]. The vibration

transducer and the optical probe are located on different components and therefore the trans-

mission paths between the measurement equipment and the source of the vibration are different

[13]. This transmission path is frequency dependent and leads to phase distortion when per-

forming computed order tracking in varying speed conditions [13, 14]. Tacholess order tracking

approaches, which use the acceleration signal to obtain the instantaneous phase information, are

therefore actively investigated by the engineering community to circumvent the aforementioned
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limitations and problems when performing computed order tracking [4, 9, 10, 12, 15].

Bonnardot et al. [8] proposed using the acceleration signal to perform tacholess order tracking

in slightly varying rotational speed applications using narrow-band demodulation on one of the

gear mesh frequencies. Combet and Gelman [11] improved the procedure proposed by Bonnardot

et al. [8], by automating the harmonic selection process. Heyns et al. [16] used a clustering

procedure to track an instantaneous frequency component in the spectrogram of the vibration

signal. The IF estimate is low-pass filtered, since it contains noise due to the limited resolution

provided by the spectrogram. The filtered instantaneous frequency is used to resample the signal

for fault detection.

Urbanek et al. [10] and Zhao et al. [12] proposed tacholess order tracking procedures in

large varying speed conditions. Urbanek et al. [10] proposed performing maxima tracking on the

spectrogram of the vibration signal. The rough estimate of the instantaneous frequency, obtained

from the maxima tracking process, is used to order track the signal and filter out all components

except a single instantaneous frequency. This mono-component signal is reverse resampled to the

time domain. Zhao et al. [12] used the Chirplet transform to extract an instantaneous frequency

component and then the angular-velocity Vold-Kalman filter is applied to the signal to obtain

a mono-component signal. The Hilbert transform is used on the mono-component signal by

Urbanek et al. [10] and Zhao et al. [12] to extract the instantaneous phase of the signal over

time. This instantaneous phase provides a mapping from the time to the angle domain, which

is used to order track the vibration signal.

Qi et al. [4] used the ensemble empirical mode decomposition algorithm to obtain the mono-

component intrinsic mode functions of the signal, which are subsequently used to obtain the phase

information of the shaft of interest. He et al. [17] proposed using the discrete spectrum correction

technique to order track the vibration signal obtained from a wind turbine. Leclere et al. [9]

proposed a multi-order approach for instantaneous angular speed estimation. The spectrogram

is applied to the vibration signal, afterwhich a whitening procedure is applied to attenuate

structural resonances. The probability density function (pdf) within an expected operating

frequency range is estimated at each time step using multi order information, whereafter the pdf

is smoothed to calculate the instantaneous angular speed.

In this study, a tacholess order tracking method is proposed which is robust to large varying
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speed conditions and in the presence of noise. The estimated rotational speed is investigated

as well, because this information is invaluable for condition-based maintenance decision-making

purposes. The benefits of incorporating acceleration information into the process is highlighted,

which can possibly be used to develop multi-order approaches. The tacholess order tracking

technique is developed in section 2 and validated in section 3, whereafter conclusions are drawn

and recommendations are made in section 4.

2. Proposed tacholess order tracking methodology

The proposed tacholess order tracking method, illustrated in Figure 1, is very similar to

the methods proposed by Urbanek et al. [10] and Zhao et al. [12]. In the proposed tacholess

order tracking method, the maxima tracking algorithm is improved by incorporating acceleration

information into the maxima tracking process which renders it more robust in the presence of

angular acceleration and noise components. The angular-displacement Vold-Kalman filter is

investigated as opposed to the angular-velocity Vold-Kalman filter used by [12].

The rotational speed profile, fr versus time, and the acceleration signal, abbreviated by acc.,

are presented in (a) of Figure 1. The spectrogram of the vibration signal in (a), is presented in

(b). An instantaneous frequency (IF) component is tracked with the proposed maxima tracking

procedure to identify the relationship between the IF and time. The tracked IF component is

superimposed on the spectrogram in (c).

The tracked instantaneous frequency in (c) of Figure 1 is used as the centre frequency for

an angular-displacement Vold-Kalman filter (VKF), discussed in section 2.3. The VKF is a

bandpass filter with a time-varying centre frequency. The spectrogram of the filtered vibration

signal is shown in (d), where it can be seen that it is a mono-component signal only containing

the tracked IF. The phase of this mono-component signal is calculated from the Hilbert transform

and shown in (e). Note that the phase of the IF needs to be scaled to reflect the phase of the

shaft of interest. The phase of the shaft of interest, presented in (f), is used to order track the

vibration signal. The ordinate (or phase of the shaft) in Figure (f) is sampled with equal angle

lengths and then new time sampling points are determined from the instantaneous phase profile.

Each step of this process is discussed in more detail in the subsequent subsections.
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Nomenclature

β Envelope of signal of interest

A Weight matrix

Q Design matrix

∆fΓ Frequency resolution of spectrogram
[Hz]

∆fc Feasible bandwidth enforced by the
constraint [Hz]

∆t Sampling period [s]

∆tΓ Time resolution of spectrogram [s]

Γ Short-time Fourier transform

κ Cost function

λi Lagrangian multiplier of constraint i

L Lagrangian function

ν A sample from a Gaussian noise model

φa Analytical phase of the shaft [rad]

φr Estimated phase of the shaft [rad]

φIF Phase of instantaneous frequency [rad]

ρi Weight parameter of constraint i

σ Standard deviation

υ Window function

ε Non-homogeneity term

ζ Residual component of the data equa-
tion

a Weighting factor

Bw Relative bandwidth

cs Fundamental component w.r.t shaft
orders

e Phase error [rad]

eR Relative phase error

fb Bandwidth [Hz]

fc Centre of the constraint [Hz]

fF A polynomial model of the IF [Hz]

fs Sampling frequency [Hz]

fmax The IF estimated from maxima track-
ing [Hz]

fIF The actual, unknown IF [Hz]

fr Rotational speed of shaft [Hz]

H The Hilbert transform

j Imaginary unit

Lo Window overlap [number of samples]

Lw Window length [number of samples]

Lz Zero padding [number of samples]

Nm Number of data points used for linear
regression

Np Order of the polynomial

Nx Number of samples in x

p Probability density function

si Slack variable of constraint i

t Time [s]

wi Polynomial weight coefficient i

x The vibration signal

2.1. Time-frequency distribution

The time and frequency domain information in the vibration signal are investigated simulta-

neously in a time-frequency distribution so that the IF of interest can be estimated at each time

step. Urbanek et al. [10] used the spectrogram for maxima tracking and Zhao et al. [12] used

the spectrogram to estimate the chirp rate so that the Chirplet transform could be used to esti-
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Figure 1: Key steps in the proposed tacholess order tracking method: (a) The acceleration signal and the rotational
speed profile (fr) over time; (b) The spectrogram of the vibration signal; (c) The maxima tracked IF superimposed
on the spectrogram in (b); (d) The spectrogram of the Vold-Kalman filtered signal using the maxima tracked IF
in (c); (e) The phase of the IF; (f) The resampling process using the phase of the shaft.

mate the component of interest. Even though the spectrogram renders a limited time-frequency

resolution, it is used for maxima tracking in this article and motivated by:

• It does not contain any interference or cross-terms such as the Wigner-Ville distribution

[18].
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• Fewer hyperparameters need to be optimised than for the Chirplet transform, which re-

quires the chirp rate to be determined, and the continuous wavelet transform, which re-

quires the scales as well as the wavelet basis function to be determined.

• It is fairly computationally efficient compared to the Chirplet transform.

The short-time Fourier transform (STFT), performed on a continuous signal x(t) is in the form

of,

Γ(t, f) =

∫ ∞
−∞

x(τ)υ(τ − t) exp(−2πfjτ)dτ (1)

where a window function such as a Hamming window, is denoted by υ(t) and j =
√
−1. The

spectrogram is related to the STFT in Equation (1) with |Γ(t, f)|2. Equation (1) is easily

implemented for discrete signals, since the fast Fourier transform is repeatedly applied on each

windowed vibration signal segment to construct the discrete STFT and to obtain the discrete

spectrogram. The discrete spectrogram is described by the integer variables n and l in this paper

to obtain |Γ[n, l]|2, where t = n∆tΓ seconds and f = l∆fΓ hertz. The time between horizontally

adjacent windows in the spectrogram is denoted by ∆tΓ and the frequency between vertically

adjacent windows is denoted by ∆fΓ and they describe the time and frequency resolution of the

spectrogram, respectively.

A discrete signal evaluated at time increment n is denoted by x[n], where a continuous signal

or a function is denoted by x(t) in this article. The relationship between the discrete time

increment n and the continuous time t is,

t = n∆t (2)

where ∆t is the sampling period. Please note that all discrete indices, such as n in x[n] is in the

range of [0, Nx − 1], if the number of indices in x is Nx for example.

2.2. Proposed maxima tracking procedure

Maxima tracking is performed to find, isolate and track an IF, denoted by fIF,

fIF(t) = k · cs · fr(t) (3)
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in a time-frequency distribution. The IF is related to the rotating frequency or speed of the shaft,

denoted by fr(t), with the time-invariant factor k · cs. This indicates that it is the kth harmonic

of a component with a frequency of cs · fr(t), such as a gear mesh frequency or another shaft in

the system. This IF presents itself as a ridge or a local maximum in the discrete time-frequency

distribution, where the IF is estimated by solving a constrained optimisation problem in the

standard form of,

minimise
l

−|Γ[n, l]|2

subject to (l ·∆fΓ − fc[n])2 ≤ ∆f2
c

(4)

where fc denotes the centre of the constraint, which is the predicted value of the IF at time

increment n; ∆fc denotes the feasible bandwidth enforced by the constraint; and l · ∆fΓ is

the current frequency that is investigated in the spectrogram in Hertz. If maxima tracking is

performed as an unconstrained optimisation problem, different components will be tracked which

results in erroneous phase estimation and order tracking results. The solution of Equation (4)

at time increment n, denoted by fmax[n], is assumed to be related to the actual IF by,

fIF(n∆tΓ) ≈ fmax[n] (5)

where ∆tΓ is the time difference between horizontally adjacent window centres in the spectro-

gram. Note that the noise and the fixed time-frequency resolution can result in some differences

between the estimated IF fmax[n] and the actual IF fIF, which motivate the approximation used

in Equation (5). Urbanek et al. [10] centred the constraint in Equation (4) about the maxima

tracked frequency estimated at the previous time increment,

fc[n] = fmax[n− 1] (6)

with the frequency gradient i.e. acceleration information not taken into account. The feasible

region (represented by ∆fc) must be increased to accommodate the errors made by Equation (6)

when the rotating machine operates under large angular accelerations. However, if a large ∆fc

is used in the maxima tracking process, it is more susceptible to tracking incorrect frequency

components such as other harmonics and background noise which are present in the large feasible

region.
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Higher order frequency information needs to be incorporated into the maxima tracking pro-

cess to make it more robust to track the IF in the presence of large accelerations. The Taylor

series expansion of the IF in the signal about the previous time step,

fIF(t) = fIF(t−∆tΓ) + ∆tΓ
d

dt
fIF(t−∆tΓ) +

1

2
∆t2Γ

d2

dt2
fIF(t−∆tΓ) + . . . (7)

can be used to predict the value of the IF at the current time step, denoted by t = n∆tΓ, if all

of the derivatives of fIF are continuous. This prediction is used to centre the constraint,

fc[n] = fIF(n∆tΓ) (8)

used in Equation (4). Equation (6) can be obtained from Equation (7) and Equation (8) by

neglecting the higher order information i.e. no acceleration is present and by assuming Equation

(5) is valid. The problem with Equation (7) is that the gradients of the IF are unknown and

the estimated value of the IF at the previous time increment fmax[n − 1] is known instead of

the actual value fIF(t − ∆tΓ). The spectrogram contains discrete time steps and therefore the

gradients in Equation (7) can only be estimated by using finite difference schemes on the previous

IF estimates i.e. fmax[n− 1], fmax[n− 2] etc. The estimate of the IF contains noise due to ridge

smearing and background noise in the spectrogram, which makes finite difference schemes poor

approximations to the gradients in Equation (7).

A probabilistic approach is proposed in this article to infer the actual IF so that higher order

information can be incorporated into the maxima tracking process. It is assumed that the true

IF, fIF, is related to its representation in the spectrogram or its estimate from the spectrogram,

fmax, with,

fmax[n] = fIF(n∆tΓ) + ν (9)

where ν is a sample from a zero mean Gaussian with variance σ2, which represents the noise that

is attributed to ridge smearing and other noise components in the spectrogram. It is assumed

that the noise in the spectrogram is Gaussian distributed and therefore the estimated IF (or

maxima tracked frequency) and the true IF is related with the Gaussian probability density
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function p given by,

p
(
fmax[n] |fIF(n∆tΓ) , σ2

)
=

1√
2σ2π

exp

(
−(fmax[n]− fIF(n∆tΓ))2

2σ2

)
(10)

where the true IF, denoted by fIF, remains unknown. A model of the true IF, denoted by fF

and represented by a Np-order polynomial in the form of,

fF (t) = w0 + w1t
1 . . . wNpt

Np (11)

is used instead of the unknown IF fIF. Table 1 summarises the difference between the different

notations for the IF. The polynomial weights w = [w0, w1, . . . wNp ]T are estimated by performing

Table 1: The differences between fmax, fIF and fF .

fIF(t) Is the true, continuous IF that need to be estimated by the process.
fmax[n] Is the IF that is inferred at discrete time steps from the maxima tracking process.
fF (t) Is a model that captures the local gradient characteristics of the estimated IF.

maximum likelihood,

ŵ = argmax
w

n−1∏
i=n−Nm

p
(
fmax[i] |fF (i∆tΓ) , σ2

)
(12)

over the previous Nm time steps by assuming that the data are identically and independently

distributed. The resulting weights [19],

ŵ = (QTQ)−1QTfmax (13)

of the maximum likelihood solution are computed from the Nm× (Np + 1) design matrix Q and

the previous Nm estimates of the IF, denoted by a Nm × 1 vector fmax. The design matrix of

the Np-order polynomial, in the form of,

Q =



1 ∆tΓ · (n− 1) . . . (∆tΓ · (n− 1))Np

1 ∆tΓ · (n− 2) . . . (∆tΓ · (n− 2))Np

...
...

. . .
...

1 ∆tΓ · (n−Nm) . . . (∆tΓ · (n−Nm))Np


(14)
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and the vector of the previous Nm estimates of the IF,

fmax =



fmax[n− 1]

fmax[n− 2]

...

fmax[n−Nm]


(15)

are used in Equation (13) to obtain the weights used in Equation (11). The polynomial function

in Equation (11) satisfies the Taylor series expansion of the IF in Equation (7), which means

that if a first order polynomial function is used, then the assumption is made that the angular

acceleration is constant.

It is strongly suggested to use a first order polynomial to ensure that only a small number of

training points (Nm) are required to avoid overfitting, solving Equation (13) repeatedly remains

computationally efficient and that errors in the extrapolation process are minimised. The number

of training points are Nm = 5 in this article, which makes the first order approximation sensible

for ∆tΓ, which was in the range of [0.028, 0.05] seconds for all spectrograms in this article. By

using Equation (6), the IF estimate at the first time increment in the maxima tracking process

needs to be provided by the user. If the constraint in Equation (4) is centred by the prediction

made by Equation (11) from a first order polynomial, then the initial gradient needs to be

provided as well. To make this process easier, it is assumed that the initial gradient is zero, which

essentially results in Equation (6) to be used for the initial steps. This assumption is reasonable if

other frequency components are not in close proximity to the IF under consideration, otherwise

a rough estimate of the gradient can be provided as input if the aforementioned assumption

leads to incorrect results. In this study the first three estimates of the IF are obtained by using

Equation (4) with Equation (6) and thereafter Equation (11) can be used to estimate fc. The

initial estimate of the IF is obtained by inspecting the spectrogram and cs · k, in Equation (3)

and is estimated by roughly knowing the operating range of the machine or using a simple device

such as a hand-held tachometer.
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Since it is a constrained minimisation problem, the Lagrangian in the form of,

Ln(l,λ, s) = −|Γ[n, l]|2+λ1

(
(l∆fΓ − fmax[n])2 −∆f2

c1 + s2
1

)
+λ2

(
(l∆fΓ − fF (n∆tΓ))2 −∆f2

c2 + s2
2

) (16)

is minimised to find the frequency f = l∆fΓ that minimises the cost function −|Γ[n, l]|2 and

adheres to the constraints. The Lagrangian multiplier and slack variable associated with the ith

constraint are denoted by λi and si, respectively. Equation (16) can be minimised by solving a

set of linear or quadratic programming sub-problems, by solving a penalised unconstrained cost

function etc. [20]. The penalised unconstrained cost function in the form of,

κ(l,ρ, n) = −|Γ[n, l]|2 + ρ1 max
[
0, (l∆fΓ − fmax[n− 1])2 −∆f2

c1

]
+ ρ2 max

[
0, (l∆fΓ − fF (n∆tΓ))2 −∆f2

c2

] (17)

is minimised using a brute force approach, since the limited number of feasible solutions at each

time step, due to the discrete spectrogram, makes it easy to obtain a minimum. The bandwidth

describing the feasible region enforced by the two constraints are denoted by ∆fc1 and ∆fc2,

respectively. The parameters ρ1 and ρ2 must be chosen so that the cost function in Equation (17)

is dominated by the constraint terms if the constraints are violated. A procedure is proposed

in section 2.5 to choose the values of ρ1 and ρ2. In this paper the feasible bandwidths (∆fc1

and ∆fc2) in Equation (17) have the same value. The components of the vector ρ = [ρ1, ρ2], in

Equation (17), have the following values,

ρ1 =

 109 if n = 0, 1, 2

0 otherwise
(18)

and,

ρ2 =

 109 if n > 2

0 otherwise
(19)

where only one of the constraints are active at a time due to the choice of ρ. The estimate of
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the instantaneous frequency is obtained from,

fmax[n] = ∆fΓ · argmin
l

κ(l,ρ, n) (20)

where κ(l,ρ, n) is given by Equation (17). Note that the solution of Equation (17) is also

the solution of Equation (4) if both constraints are incorporated into Equation (4) similarly to

Equation (17). The maxima tracking process is illustrated in Figure 2. The method implemented

by Urbanek et al. [10] essentially uses ρ1 > 0, while ρ2 is always zero in Equation (17). In this

Find l which minimises Eq. (17)fmax[n− 1]

fF(n∆tΓ)

Spectrogram properties (|Γ[n, l]|2 for each l, ∆tΓ, ∆fΓ) and ρ, ∆fc1, ∆fc2

×

∆fΓ

fmax[n]
l

Figure 2: The maxima tracking process is illustrated in this Figure at time increment n and this is performed for
each time increment n. Note that for example if ρ1 in Equation (17) is zero, then fmax[n − 1] do not need to be
used in the process.

article the proposed maxima tracking algorithm is compared to the method by Urbanek et al.

[10] to highlight the benefits of including acceleration information into the maxima tracking

process.

2.3. The Vold-Kalman filter

The Vold-Kalman filter (VKF) is a bandpass filter with a varying centre frequency and

bandwidth. If the centre frequency of the constraint in Equation (4) is set equal to the estimated

IF, denoted by fmax, and the bandwidth is set sufficiently fine, then a mono-component signal,

denoted by xIF can be extracted from a multicomponent vibration signal x. Note that a discrete

signal is investigated in this section and therefore the whole signal is denoted by x i.e. a one-

dimensional vector over all time steps. The signal at increment n is denoted by x[n]. The

Vold-Kalman filter allows slight errors in the maxima tracking process and this is the reason why

a Vold-Kalman filter is used, instead of integrating the estimated maxima tracked frequency,

obtained from Equation (20).
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Two generations of the VKF exist, namely the angular-velocity (or first generation) and the

angular-displacement (or second generation) VKF. The angular-velocity VKF aims to estimate

the mono-component signal, while the angular-displacement VKF aims to estimate the envelope

of the mono-component signal with the supplied frequency content [21]. The signal containing

the IF that needs to be extracted, xIF[n] is related to the vibration signal x[n] in the data

equation of the VKF,

x[n] = xIF[n] + ζ[n], (21)

where ζ[n] represents the other sinusoidal components and the background noise at time t = n/fs.

The structural equation for the angular-velocity VKF,

xIF[n]− 2 cos(2πfIF[n]f−1
s )xIF[n+ 1] + xIF[n+ 2] = ε[n] (22)

and of the angular-displacement VKF,

β[n]− β[n+ 1] = ε[n] (23)

describes the characteristic of interest (either the signal component or its envelope) and ε[n]

is known as the non-homogeneity term at time increment n which represents the error in the

left-side of the structural equation. Equation (23) is for a one-pole angular-displacement filter,

where the structural equation for other poles are found in the paper by Tuma [21]. The envelope

β[n] is related to the signal of interest by,

xIF[n] = β[n] exp

(
2πj

fs

n∑
i=0

fIF[i]

)
(24)

where fs is the sampling frequency of the signal xIF, j =
√
−1 and the instantaneous frequency

fIF[i] is obtained from Equation (5) and by using the maxima tracking information. There are

three sets of unknowns in Equation (21), (22) and (23) namely ε, ζ and either β for the angular-

displacement VKF or xIF for the angular-velocity VKF. The dimensions of the aforementioned

vectors are Nx × 1, where Nx is the number of samples in the signal x. This results in an

underdetermined system of equations, which is solved by finding the characteristic of interest

(xIF or β) that simultaneously minimises ε and ζ. This is achieved by solving the multi-objective
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optimisation problem with the weighted sum method in the form of [21],

κ = a2εTε+ ζT ζ (25)

where a is the weighting factor of the Vold-Kalman filter and it describes the relative importance

of minimising εTε instead of ζT ζ. The weighting factor is given by [21],

a =

√ √
2− 1

2 (1− cos (2πfb/fs))
(26)

for a one-pole angular-displacement VKF filter, where fb is the bandwidth of the filter. A unique

weighting factor, found in Equation (26), can be applied at each time step, which provides more

flexibility to the VKF,

κ = εTATAε+ ζT ζ (27)

where the Nx×Nx weight matrix A is a diagonal matrix containing the local weight factors and

Nx is the number of samples in the signal x. The component at time increment n, denoted by

A[n, n], describes the importance of minimising εTε instead of ζT ζ at the time increment. The

choice of weighting factor at time increment n, denoted by A[n, n], determines the rise time as

well as the bandwidth of the filter and is very important to the success of the VKF [22]. The

angular-displacement VKF allows multiple components to be tracked, while the angular-velocity

VKF is constrained to a single component [21]. Due to the nature of the data and structural

equations, the optimal solution of the cost function, where the cost function is given by Equation

(27), can be obtained in closed form if only a single component is tracked [21].

Pan and Lin [22] found that the angular-displacement VKF is able to estimate the compo-

nent of interest accurately in the presence of crossing orders. It obtains a better rise time and

bandwidth combination than the angular-velocity VKF as well. The angular-displacement VKF

does not have any frequency nor slew rate limitations [23]. In the authors’ experience, it is found

that the one-pole angular-displacement filter is able to extract the component of interest using

a small relative bandwidth, given by,

Bw =
fb[n]

fIF[n]
(28)

without any numerical problems. A one-pole angular-displacement VKF used with a small
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relative bandwidth makes the phase error independent of the harmonic that is filtered i.e. k in

Equation (3), which reduces the number of hyperparameters that need to be optimised. Hence

a one-pole angular-displacement VKF is used in this study to obtain a mono-component signal

from the multicomponent vibration signal. If Bw is large, it means that relatively large maxima

tracking errors are accommodated in the process at the risk of other frequency components

being passed through the passband as well. The values of Bw are provided in section 3 for each

investigation.

2.4. Instantaneous phase estimation and resampling

The phase estimation process is presented in this section for continuous signals, however it

is easily extended to discrete signals obtained from the maxima tracking and the Vold-Kalman

filtering processes. The mono-component signal obtained from the VKF in the previous section,

denoted by xIF, is transformed with the Hilbert transform,

H (xIF(t)) =
1

π

∫ ∞
−∞

xIF(τ)
1

t− τ dτ (29)

and used to obtain the instantaneous phase of this signal,

φIF(t) = arctan

(
H(xIF(t))

xIF(t)

)
(30)

which is constrained to [−π, π] radians due to the arctangent function. This phase, obtained

from Equation (30), is unwrapped to obtain the cumulative phase of the estimated IF component

over time. The tracked IF component is related to the rotating shaft of interest with Equation

(3) if Equation (5) is valid. The aforementioned relationship is used to obtain the instantaneous

phase of the shaft,

φr(t) =
1

kcs
unwrap (φIF(t)) (31)

at time step t. The instantaneous phase of the shaft over time, obtained from Equation (31), is

used to resample the signal into equal angular increments as shown by (f) in Figure 1.

2.5. Guidelines for choosing parameters

The adjustable parameters in the proposed tacholess order tracking process are the
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• properties of the spectrogram namely, the window length (Lw), window overlap (Lo), win-

dow type and zero padding (Lz); where Lw, Lo and Lz are given in the number of samples

that is used.

• initial value of the estimated instantaneous frequency fmax and its relationship with the

rotational speed of the shaft cs · k.

• properties of the maxima tracking process such as Nm and Np.

• allowable bandwidth of the constraints of the maxima tracking process ∆fc and ρ.

• relative bandwidth, type and order of the Vold-Kalman filter.

Some guidelines are proposed in this section to select the unknown parameters. Please note that

the maxima tracking properties such as Nm and Np are discussed and motivated in section 2.2

while the Vold-Kalman properties are thoroughly discussed and motivated in section 2.3 and are

therefore not repeated in this section. The aforementioned parameters are summarised in section

3.2.3 for each investigated numerical and experimental case.

The time and frequency resolution of the spectrogram is related to the window length, window

overlap and zero padding by ∆tΓ ∝ Lw − Lo and ∆fΓ ∝ 1/(Lw + Lz), respectively. The

appropriate window length is problem dependent and should be chosen to have sufficient time

resolution to estimate varying rotational speeds without a significant loss in frequency resolution.

In this paper, typical window lengths of 0.1 − 0.5 seconds are investigated. Large window

overlaps are suggested (typically 50% − 90% of Lw) and zero padding of Lz = 2 · (2LLw − Lw)

where LLw = ceil(log2(Lw)) to ensure that relatively good time and frequency resolutions are

obtained. The ceiling function is denoted by ceil(). Rectangular windows are used in this paper

similar to [9], but other windows can be investigated if desired.

The initial value of fmax can be chosen by inspecting the spectrogram and looking for dom-

inant meshing components, while cs will be the number of teeth on the gear that is connected

to the shaft under consideration. The constant k can be estimated by approximately knowing

the speed of the shaft under consideration. Hand-held tachometers can for example be used

to obtain a rough estimate of the operating range of the shaft under consideration, which can

subsequently be used to estimate k.

17



The feasible bandwidth ∆fc indicates the allowable error when centring the constraint fc and

the appropriate characteristics are dependent on the harmonic that is tracked as well as the local

frequency and noise characteristics in the spectrogram. Hence, in many cases the appropriate

∆fc is chosen on a trail and error basis. Due to the fact that a first order polynomial is used, some

errors can be present in the prediction due to unpredictable changes in operating conditions and

therefore using ∆fc = 0 is unrealistic. It is suggested to start with ∆fc in the range of 5− 20Hz

for the datasets that are investigated.

The parameter ρ ensures that the constraint violation dominate the cost function in Equation

(17). Assume that if constraint i, governed by ρi, is violated by (q − 1)∆fc where q > 1, then

the objective function κ(l,ρ, n) > 0 for all integers l and n. This condition will guarantee that

fmax, obtained from the optimisation process, will be within the range [fc− q∆fc, fc + q∆fc] for

all time increments. The solution to this problem is ρi > |Γmax|2/
(
(q2 − 1)∆f2

c

)
where |Γmax|2

is the absolute maximum value of the spectrogram and q can for example be 1.0001 to simulate

a 0.01% constraint violation.

3. Validation

Three numerical and three experimental datasets are used to validate the proposed tacholess

order tracking method. The performance of the proposed maxima tracking algorithm is critically

compared to the performance of the maxima tracking method used by [10], where the latter is

used as a benchmark. After the maxima tracking process is completed, the same process (i.e.

the Vold-Kalman filter, Hilbert transform etc.) is followed for both maxima tracking algorithms.

The results from the benchmark maxima tracking algorithm is indicated by (a) and the proposed

method is indicated by (b) in all subsequent figures.

The vibration signal is order tracked using the estimated instantaneous phase and therefore

the performance of the tacholess order tracking method (or the maxima tracking algorithm) is

quantified using the estimated phase error. The phase error, in this study, is computed from,

e(t) = |φr(t)− φa(t)| (32)

where the cumulative analytical and estimated phase of the shaft, in radians, are denoted by φa
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and φr respectively. The maximum relative phase error is computed from,

eR =
max(e(t))

max(φa(t))
(33)

where max(φa(t)) denotes the maximum value of the analytical instantaneous phase for the time

interval and e(t) is calculated from Equation (32). The numerical data are considered first in

this section, whereafter the experimental data are presented. Note that the parameters that are

used in the tacholess order tracking process are summarised for the numerical and experimental

data in section 3.2.3.

3.1. Numerical data

Two rotational speed profiles are investigated on the numerical data. The first rotational

speed profile of the shaft of interest in Hertz,

fr,1(t) = 200t+ 50 (34)

has a constant angular acceleration of 400π [rad/s2] over 20 seconds. The second rotational speed

profile in Hertz,

fr,2(t) =
1

5
cos(0.1πt) +

1.25

π
(35)

has a varying angular acceleration. Note that the rotational speed in Equation (35) is very small,

but a gear mesh frequency of a simulated gearbox, given by fr,2 · 40 is introduced and tracked

on the spectrogram of the simulated signal, which has a significantly larger frequency gradient.

The first simulated vibration signal is in the form of,

x1(t) = sin

(
2π

∫ t

0
fr,1(τ)dτ

)
(36)

and contains a frequency component given by Equation (34). Note that the signal is a mono-

component signal and therefore the Hilbert transform can directly be applied. However, this

signal is investigated to evaluate the performance of the proposed method on a mono-component

dataset and then an additional component is incorporated in the second simulated vibration

signal.
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The second simulated vibration signal is in the form of,

x2(t) = sin

(
2π

∫ t

0
fr,1(τ)dτ

)
+ sin

(
2π103t

)
(37)

where it contains the rotational speed given in Equation (34) and an additional constant fre-

quency component. This rotational speed invariant component simulates noise generated by

resonance bands or by environmental effects. The effect of adding spurious components to the

signal is investigated by comparing the results of the maxima tracking algorithms on the signal

given by Equation (36) and Equation (37). The third and last simulated vibration signal is in

the form of,

x3(t) =
3∑

s=1

[
1.5 sin

(
2.0πs

∫ t

0
fr,2(τ)dτ

)
+ sin

(
80.0πs

∫ t

0
fr,2(τ)dτ

)]
+

0.5 sin (2π [1.65t+ 2.0] t) + 0.5 sin(80.0πt)

(38)

and contains a shaft component given by Equation (35) and its three harmonics, a gear mesh

frequency (40 · fr,2 Hz) and its three harmonics, a linear component and a constant frequency

component. The two latter frequency components are independent of the rotation speed and

complicates the maxima tracking task.

The ratio of the ∆fc to spectrogram frequency resolution, is selected as 16 for the first two

simulated signals and 2.73 for the last signal for the maxima tracking process. Note that it should

be significantly larger for the first two simulated signals due to the large frequency gradient. The

VKF relative bandwidth is selected to be 0.1 for the first two signals and 10−4 for the last signal.

Gaussian noise with a standard deviation of 1.0 is added to the first two signals and Gaussian

noise with a standard deviation of 2.5 is added to the last simulated signal.

The spectrogram of the signal given by Equation (36) is computed and the maxima tracking

algorithms are performed on the spectrogram, separately. The result of the benchmark and

the proposed maxima tracking procedures are superimposed on the spectrogram in Figure 3i

and indicated by (a) and (b), respectively. The angular-displacement VKF is applied to the

signal, whereafter the Hilbert transform is applied to calculate the phase of the component.

The phase error is calculated with Equation (32) and given in Figure 3ii. Both the maxima

tracking approaches resulted in very similar phase errors, with the proposed maxima tracking
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Figure 3: The result of the proposed tacholess order tracking method on the first simulated signal, given by
Equation (36). The maxima tracking results are superimposed on the spectrogram of the signal in Figure 3i with
the resulting phase errors, calculated from Equation (32), shown in Figure 3ii. The benchmark maxima tracking
algorithm is indicated as (a) in the figures and the proposed maxima tracking algorithm is indicated by (b).

method performing slightly better. Note that the phase error resulted from a constant frequency

error which results from the limited time-frequency resolution of the spectrogram and the large

frequency gradient. The constant frequency errors can be reduced by increasing the relative

relative bandwidth of the VKF. However care must be taken in multicomponent signals where

there is a risk of tracking another frequency component. Even though there is a linear phase

error, the final phase error is significantly smaller than the final instantaneous phase of 251324.899

radians which results in a maximum relative phase error, calculated by Equation (33), of 0.3849%

and 0.3724% for the benchmark and the proposed method, respectively.

The same process is followed for the second simulated vibration signal given in Equation

(37). The results from the two maxima tracking methods are superimposed on the spectrogram

of the vibration signal in Figure 4i. The signal contains two frequency components with equal

amplitudes, where the one frequency component is unrelated to the rotational speed of the shaft of

interest. The two components can only be distinguished from one another in the spectrogram by

evaluating the frequency gradient. The results in Figure 4i indicate that the benchmark method

follows the signal component with a gradient of zero, which is expected. In contrast, the proposed

method tracks the correct frequency component. The phase errors are compared in Figure 4ii,

which proves that the proposed method performs significantly better and it is significantly more

robust on a signal with spurious components. The performance of the proposed maxima tracking
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Figure 4: The result of the proposed method on the second simulated signal, given by Equation (37). The maxima
tracking results are superimposed on the spectrogram of the signal in Figure 4i with the resulting phase errors,
calculated from Equation (32), shown in Figure 4ii.

algorithm does not change significantly between signal 1 and signal 2 (i.e. the addition of a

spurious component), however the performance of the benchmark method is sensitive to the

addition of another component.

The last simulated signal, given in Equation (38), is investigated similarly to the previous

methods. The resulting maxima tracking results are superimposed in Figure 5i on the spectro-

gram and result in the phase errors given in Figure 5ii. A similar result is observed in Figure
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Figure 5: The result of the proposed method on the third simulated signal, given by Equation (38). The maxima
tracking results are superimposed on the spectrogram of the signal in Figure 5i with the resulting phase errors,
calculated from Equation (32), shown in Figure 5ii.

5 as in Figure 4. The benchmark maxima tracking algorithm is incapable of distinguishing be-

tween the constant frequency components and the IF that needs to be tracked in Figure 5i. The
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proposed maxima tracking algorithm tracks the correct IF for the whole duration of the signal.

This is reflected in the phase errors compared in Figure 5ii.

The performance of the two maxima tracking approaches is summarised in Table 2. The

roughly estimated signal-to-noise ratio in decibels (db),

SNRdb = 10 log 10

( ∑N−1
i=0

(
|ΓIF[i]|2

)2∑N−1
i=0 (|Γnoise[i]|2)2

)
(39)

is presented in the table as well, where |ΓIF[i]|2 is the magnitude of the spectrogram of the IF at

time step i and |Γnoise[i]|2 presents the amplitude of the noise around the IF in the spectrogram

at time step i. The local signal-to-noise ratio is presented to give the approximate conditions

in which the maxima tracking was performed in. The proposed maxima tracking algorithm,

Table 2: Summary of the maxima tracking results from the numerical signals. All the phase units are in radians,
except the maximum relative phase error.

Signal 1 Signal 2 Signal 3

Maximum phase completed 251324.899 251324.899 314.1593
Signal-to-noise ratio (db) 52.79 22.71 20.35
Benchmark method [10]:

RMS phase error 576.3152 54636.0666 1.4576
Maximum phase error 967.3627 141189.2577 5.3663
Maximum relative phase error (%) 0.38491 56.1780 1.70815

Proposed method:
RMS phase error 540.9771 459.872 0.039169
Maximum phase error 935.9197 829.7571 0.063935
Maximum relative phase error (%) 0.372394 0.330153 0.020351

in contrast to the benchmark algorithm, is able to track the correct frequency component in

the presence of other spurious components. The spurious noise components emulate resonance

bands which are excited due to the presence of damage and other noise components during

data acquisition, which is present when performing condition monitoring on rotating machines.

The quality of the order tracked vibration signal depends on the accuracy of the estimated

instantaneous phase and is investigated on the experimental data in the next section.

3.2. Experimental data

Three aspects of the proposed tacholess order tracking method is evaluated in this section:

The ability of the proposed tacholess order tracking method,

1. to estimate the instantaneous phase correctly;

23



2. to order track the vibration signal;

3. to estimate the rotational speed of the shaft of interest.

3.2.1. Experimental setup

The experimental setup in Figure 6 was designed by Stander and Heyns [24] and was refur-

bished to perform gear fatigue tests under fluctuating conditions. The electrical motor supplies

rotational energy to the system and the alternator, which is connected to a resistor bank, dis-

sipates the energy from the system by applying a counteracting load to the motor. A personal

computer is used to control the rotational speed and the load in the system. Three gearboxes

are present in this setup, with the gearbox that is monitored with accelerometers labelled as

the monitored gearbox. The input shaft of the monitored gearbox contains a zebra tape shaft

encoder, with 88 PPR, and an optical probe. The output of the monitored gearbox contains a

proximity probe that is triggered by the shaft key and produces 1 PPR.

Figure 6: Experimental setup

The axial vibration signal, obtained from the tri-axial accelerometer that is on the bearing

housing of the monitored gearbox, is used to extract the rotational information from. The axial

vibration signal is used because the helical gears cause strong axial excitations which result

in prominent meshing components in its vibration spectrum. The tachometer signals are both

sampled at 51.2kHz and the acceleration signal is sampled at a rate of 25.6kHz with an OROS

OR35 data acquisition device.

Three rotational speed profiles, shown in Figure 7, were applied to the system during which

vibration measurements and tachometer measurements were made. The unique rotational speed

profiles contained relatively large rotational speed fluctuations to validate the proposed method-

ology. The tachometer signal that is associated with the 88 PPR zebra tape shaft encoder,

geometrically compensated with the technique proposed by Diamond et al. [6], is used to com-

pute the rotational speeds in Figure 7 as well as the analytical phase of the experimental data.
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Figure 7: Experimental rotational speed profiles with Profile 1 indicated by (a), Profile 2 indicated by (b) and
Profile 3 indicated by (c) in this figure.

3.2.2. Maxima tracking and phase estimation results

The performance of the maxima tracking algorithms is evaluated on the experimental data in

this section, where a similar process to the numerical investigation is followed. The ∆fc is chosen

to be equal to 6.4 times the frequency resolution of the spectrogram and the relative bandwidth

of the VKF is 10−4 on all investigated cases. The spectrogram of the vibration signal associated

with the first rotational speed profile (see (a) in Figure 7) is superimposed with the results of the

two maxima tracking approaches in Figure 8i, where the benchmark and the proposed method

are indicated by (a) and (b), respectively. The gear mesh frequencies of the monitored gearbox
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Figure 8: The spectrogram of the vibration signal from the first experimental rotational speed profile is superim-
posed with the maxima tracking results in Figure 8i. The resulting phase estimation errors of the two results are
compared in Figure 8ii. Note that the benchmark maxima tracking method’s results are indicated by (a) and the
results from the proposed method are indicated by (b).

are tracked in Figure 8i, however it is immersed in noise induced by the resonance bands and
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other frequency components. This adversely affects the performance of the benchmark maxima

tracking algorithm in the regions with large frequency gradients as seen in Figure 8i. In contrast,

the proposed maxima tracking algorithm, is able to track the correct frequency component and

resulted in a significantly better phase estimate as shown in Figure 8ii. The large phase errors

associated with the benchmark method is attributed to the maxima tracking algorithm drifting

off from the true estimate.

The spectrogram of the vibration signal, associated with the second rotational speed profile

(see (b) in Figure 7), is shown in Figure 9i. The results from the maxima tracking processes

are superimposed in Figure 9i, where it is seen that both algorithms are able to track the

component of interest. The resulting phase errors of the two maxima tracking approaches used
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Figure 9: The spectrogram and the maxima tracked results are presented in Figure 9i with the resulting phase
errors for the benchmark and the proposed maxima tracking algorithms in Figure 9ii using the proposed tacholess
order tracking method. This is performed for the second experimental signal shown as (b) in Figure 7.

in the proposed tacholess order tracking method, presented in Figure 9ii, confirms both maxima

tracking algorithms performed well. Even though the benchmark maxima tracking algorithm

resulted in the maximum phase error, on average it performs slightly better.

The spectrogram of the last experimental vibration signal, associated with profile (c) in

Figure 7, is superimposed with the maxima tracking results of the two algorithms illustrated in

Figure 10i. The resulting phase errors are shown in Figure 10ii, where it can be seen that the

proposed maxima tracking method performs significantly better than the benchmark maxima

tracking algorithm.

The results of the three experimental profiles are summarised in Table 3. The signal-to-
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Figure 10: The spectrogram and the maxima tracked results are presented in Figure 10i with the resulting phase
errors for the benchmark and the proposed maxima tracking algorithms in Figure 10ii using the proposed tacholess
order tracking method. This is performed for the third experimental signal shown as (c) in Figure 7.

noise ratio is calculated with Equation (39) and is presented in table 3. The relative phase

Table 3: Summary of the maxima tracking results from the experimental rotational speed profiles. All the phase
units are in radians, except the maximum relative phase error which is in %.

Profile 1 Profile 2 Profile 3

Maximum phase completed 295.2322 439.753 439.7533
Signal-to-noise ratio (db) 19.35 20.49 18.04
Benchmark method by [10]:

RMS phase error 8.3951 0.030019 0.053025
Maximum phase error 16.8094 0.048112 0.069044
Maximum relative phase error (%) 5.6936 0.010941 0.015701

Proposed method
RMS phase error 0.016662 0.033053 0.037182
Maximum phase error 0.037697 0.04343 0.050224
Maximum relative phase error (%) 0.012768 0.009876 0.011421

error of the proposed tacholess order tracking method, calculated from Equation (33) for the

different experimental signals, is very small. The proposed maxima tracking algorithm results

in significant improvements in profile 1 and profile 3, and performs almost equally well with the

benchmark maxima tracking algorithm on profile 2.

3.2.3. Tacholess order tracking parameters

The parameters used in the tacholess order tracking process for the numerical and the exper-

imental datasets are presented in Table 4 with the caption describing the parameters.
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Table 4: The table contains the parameters that were used in the numerical (Num.) and experimental (Exp.)
analyses. The sampling frequency of the vibration signal fs; the window length, window overlap, zero padding and
window type that are used for the spectrogram; The number of data points Nm and the order of the polynomial Np

used in the maxima tracking process; cs and k which are used to calculate the instantaneous phase; ∆fc describes
the feasible region of the maxima tracking process; ρ is used in the maxima tracking optimisation process; Bw is
used in the Vold-Kalman filter.

Unit Num. 1 Num. 2 Num. 3 Exp. 1 Exp. 2 Exp. 3

fs Hz 10000 10000 1500 25000 25000 25000
Window length Samples 4000 4000 750 3500 5000 5000
Window overlap Samples 3600 3600 675 2800 4000 4000

Zero padding Samples 4192 4192 1298 4692 11384 11384
Window type - Rect. Rect. Rect. Rect. Rect. Rect.

Nm - 5 5 5 5 5 5
Np - 1 1 1 1 1 1
cs - 1 1 40 37 37 37
k - 1 1 3 7 5 5

∆fc Hz 20 20 2 20 10 10
ρ - 109 109 109 109 109 109

Bw - 0.1 0.1 0.0001 0.0001 0.0001 0.0001

3.2.4. Order tracking results

The instantaneous phase is used in the previous sections to quantify the performance of the

proposed tacholess order tracking method with respect to using the tachometer signal obtained

from the zebra tape shaft encoder and the optical probe. The instantaneous phase is used to

resample the vibration signal with a constant angular frequency as illustrated by (f) in Figure

1. In this section the spectrum of the order tracked signals, using the proposed tacholess order

tracking method and the tachometer signal from the zebra tape shaft encoder are compared.

The linear amplitude spectrum of the two approaches are compared in Figure 11 for the first

experimental profile (See (a) in Figure 7).
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Figure 11: The linear spectrum of the order tracked vibration signal using the two order tracking approaches.

The resulting spectrum using the tacholess and the tacho-based approaches, in Figure 11,
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are very similar. A more detailed view of the lower frequency spectrum is shown in Figure 12

for the same order tracked signal as used in Figure 11. The frequency components of the shafts
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Figure 12: The 0-10 order spectrum of the order tracked vibration signal using the two order tracking approaches.

and the gear mesh frequencies are easily identified in the spectrum with clear and distinct peaks.

The results in Figure 11 and in Figure 12, attest to the ability of the proposed method to order

track the measured vibration signal without using a tachometer.

3.2.5. Rotational speed estimation

The last aspect that is briefly investigated in this study is the ability of the proposed method

to estimate the rotational speed of the shaft of interest. The normalised maxima tracked fre-

quency, fmax/(cs · k), and the derivative of the Hilbert transform phase is superimposed with

the rotational speed calculated from the tachometer signal associated with the zebra tape shaft

encoder in Figure 13. It is evident from the results that the derivative of the instantaneous phase
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Figure 13: The rotational speed estimates of three approaches on the first experimental speed profile. The full
view is shown in (a), while a zoomed view is shown in (b).

of the shaft, obtained from the Hilbert transform, and the maxima tracked frequency performs

well in estimating the rotational speed of the shaft. The RMS error, obtained from the esti-
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mated rotational speed by fmax/(cs · k) is 0.0423rad/s. The RMS error of the rotational speed

obtained from the Hilbert transform is 0.0425rad/s, which is slightly higher than the fmax/(cs ·k)

estimate due to the end point effects of the Hilbert transform. The estimated rotational speed

does not contain diagnostic information similar to the zebra tape shaft encoder signal, however

it provides invaluable information as well. This information can assist with prognostics and the

maintenance task in general, since the number of cycles completed by the different components

in certain operating regimes can be estimated.

4. Conclusions and recommendations

The proposed tacholess order tracking method is validated on three numerical and three

experimental datasets. The instantaneous phase, which is used to resample the vibration signal

from the time to the angle domain, is accurately estimated with the proposed method on the six

datasets. The results also indicate that it is more robust to noise and other frequency components

than the benchmark maxima tracking algorithm. The low phase estimation errors result in very

good order tracking results, which is the main objective when applying this technique. It is

also possible to accurately estimate the mean rotational speed with the proposed tacholess order

tracking method, which can for example be used to support maintenance decisions and can be

used in the remaining useful life estimation process of the rotating machine components.

It is however suggested that the technique needs to be employed on datasets, obtained from

industrial environments so that it can fully be validated. It is recommended that techniques need

to be explored which can help to estimate a good initial value of the IF and the k ·cs term so that

the tacholess order tracking process can automatically be performed. The characteristics of the

angular-displacement Vold-Kalman filter can be investigated further as well to ensure that the

performance is optimal for a broad range of applications. Incorporating acceleration information

into the process can also be investigated with multi-order techniques in future investigations,

because it can lead to even more robust tacholess order tracking techniques.
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