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ABSTRACT

Assuming strong similarity between the transport of momen-
tum and heat is a common feature of most standard subgrid-
scale models used in Large-Eddy Simulations (LES) of turbulent
flow with heat transfer. In view of the limitation of this anal-
ogy to molecular Prandtl numbers near unity the present study
investigates the capability of different established model con-
cepts in predicting the subgrid-scale heat flux, when applied in
a priori LES of turbulent heated flow going well beyond this
parameter range, considering Prandtl numbers Pr = 1/10/20 at
Reynolds number Re; = 360. The test unveils the major deficits
of the constant-coefficent Smagorinsky approach due to the non-
universiality of the used model coefficients like the turbulent
subgrid-scale Prandtl number. Apart from the removal of this
basic shortcoming the dynamic Smagorinsky model is shown to
yield no substantially better predictions. The same holds true for
the computationally more elaborate non-linear extensions intro-
ducing a tensorial diffusivity. The scale-similarity based mixed
dynamic model proposed by [1] was proven to give in general
the most accurate description. Some discrepancy appeared in re-
gions with considerable net transfer of heat from the unresolved
into the smallest resolved scales observed for higher Prandtl
number. This suggests to include a sub-model for the presently
neglected cross-scale interaction into the formulation as path for
further improvement of this best evaluated approach.

INTRODUCTION

The increasingly strong discrepancy between the small scale
convective fluxes of momentum and heat associated with the
break-down of the Reynolds analogy at increasingly high molec-
ular Prandtl numbers still poses a great challenge to the mod-
elling of the unresolved subgrid-scale heat flux in Large-Eddy
simulation. Most modelling approaches, such as the widely used
Smagorinsky-type linear eddy-diffusivity models, their more ad-
vanced non-linear extensions, or scale-similarity based alterna-
tive models, have been thus far mainly evaluated for molecular
Prandtl numbers fairly close to unity. The present work puts the
focus on this issue. In the first step, several Direct Numerical
Simulations (DNS) of heated turbulent pipe flow are carried out

483

NOMENCLATURE
AT [-] Van Driest constant
a [m?/s] thermal diffusivity
ar [m?/s]  eddy diffusivity
Cg [-] Smagorinsky constant
Cw,Cn,Co,; [-] NLM model parameter
K.h [-] DT M model parameter
p [Pa] pressure
Pr [-] molecular Prandtl number
Prp [-] turbulent subgrid-scale Prandtl number
qj [mK/s]  subgrid-scale heat flux
0j [mK/s]  subgrid-scale heat flux on test-filter level
Re; [-] friction Reynolds number
Sij [s™ 1 1 strain-rate tensor
t [s] time
T K] temperature
Tij [s~1 subgrid-scale stress on test-filter level
u;j [m/s] velocity component
W [m/s] wall friction velocity
X; [m] coordinate in diretion i
Abbreviations
CSM  Constant coefficient Smagorinsky model

DNS Direct numerical simulation

DSM  Dynamic Smagorinsky model

DTM  Dynamic two-parameter model

LES Large eddy simulation

NLM  Non-linear tensorial viscosity/diffusivity model
SGS Sub-grid scale

Special characters

[-]

Kronecker Delta

<

AA  [m] grid/test-filter width
v [mz/s] kinematic viscosity
vr [m?/s] eddy viscosity

Q;; [s~1 rotation rate tensor
p [kg/m?]  density

Tij [m? / 2] subgrid-scale stress

Subscripts and Superscripts

)T scaled in wall coordiantes
)4 deviatoric part of tensor

) filtered representation

) unresolved contribution
> statistically averaged

ook

A

at wall friction Reynolds number Re; = 360 varying the Prandtl
number up to Pr = 20. The obtained instantaneous solutions are
further used in a priori tests of various simple as well as more ad-
vanced subgrid-scale models proposed in literature to investigate
their scope and limits und in the considered parameter range.
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FILTERED GOVERNING EQUATIONS

Assuming incompressible flow the spatially filtered conserva-
tion equations of mass, momentum and energy, which are solved
by Large-Eddy Simulation (LES), read
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where appropriate subgrid-scale models are needed to close the
unresolved stresses and heat fluxes,
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respectively. The present work particularly focuses the mod-
elling of the latter, which is therefore analyzed here in some
more detail. Adopting the classical decomposition introduced
by [2] for the subgrid-scale stress tensor, the subgrid-scale heat
flux defined in (5) can be decomposed into

q; = 5 +45 + - 6)
These three terms represent the heat flux analogue of the Leonard

stress, the cross-stress and the Reynolds stress tensor, respec-
tively, and they read

Ty = W T

qgj=ujT—u;T,

Leonard heat flux: q? =u; T—u; T (7
Cross heat flux: ¢ =, T +1i; T’—i’j?—u:jf (®)
Reynolds heat flux: ¢ = u/, 7" —u/, T’ ©)

As seen from their definition, the Leonard heat flux represents
the interaction between the resolved scale fluxes, the cross heat
flux the interaction between the smallest resolved and unresolved
scale fluxes, and the Reynolds heat flux denotes the interaction
between the unresolved scale fluxes. The majority of the subgrid-
scale models do not distinguish between these different types of
interaction, and simply model the subgrid-scale flux g; as total.
The following section gives a short overview of the subgrid-scale
models to be presently examined in a priori tests.

SUBGRID-SCALE MODELS
Boussinesq-type linear eddy/diffusivity concept

This most popular concept models the deviatoric components
of the subgrid-scale stresses and the heat fluxes analogously to
their diffusive counterparts as

T?j =Tij— #Tkk = —ZVTEU (10)
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respectively, introducing the eddy viscosity v and eddy diffu-
sivity ar as turbulent transport coefficients, which have to be de-
termined. The classical constant-coefficient Smagorinsky model
[3] computes the eddy viscosity and eddy diffusivity as
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respectively, where Cs is the Smagorinsky constant, A a
filter-width representative for the resolved grid-scale, |S| =
(28 Si j)l/ 2 is the norm of the resolved strain-rate tensor, and
Prr is the subgrid-scale Prandtl number. One major drawback of
this approach is due to the fact that the model coefficients are not
universal, but vary from case to case. For wall-bounded flows a
VanDriest-type wall-damping function [4] is mostly incorporated
in (12), such that the eddy viscosity, rewritten as

szagAf[y_ap(_§i>}ﬂq,

vanishes near solid walls, as the non-dimensional wall distance
yT goes to zero. The dynamic Smagorinsky model was pro-
posed by [5] in order to avoid the conceptual shortcomings of
the constant-coefficient approach. The dynamic procedure ap-
plies the Smagorinsky ansatz (12) to determine the unresolved
stresses and heat fluxes on the grid-filter level,t;; and ¢;, and on
a coarser “test-filter”-level, T;; and Q;, associated with a larger

vr = (CsA)?|S|, ar (12)

13)

filter width A > A. They can be related to each other introducing
the so-called Germano identities

— ~ o~

Tij—vij = wi wj — u; uj, (14)

Q-a=m5T~ as)
which depend only on resolved quantities, and are solved for the

model coefficients Cs and Prr upon substitution of the ansatzes
(10) and (11) together with (12).
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Non-linear tensorial viscosity/diffusivity models (NLM)

As seen from (10) and (11) the linear model concept in-
herently assumes that the principal axes of the subgrid-scale
stress tensor are aligned with the principal axes of the resolved
strain-rate tensor, T;; ~ S; j» and that the subgrid-scale heat flux
is aligned with the resolved temperature gradient, i.e., g; ~
dT /dx;, which is both physically not justified. This shortcom-
ing motivated to develop non-linear extensions of the classical
Boussinesqg-type linear concept in terms of tensor-polynomial
models as, e.g., proposed by [6]. They modelled the subgrid-
scale stresses and heat fluxes as

p— —_——— 72 — —— —_——
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where Q;; = (du;/dx; — Ju;/dx;) /2 represents the resolved ro-
tation rate tensor. The model coefficients Cg,Cy,Cy, as well as
Ceor and Cgp are again determined with a dynamic procedure
using the subgrid-scale stresses and fluxes obtained on a coarser
test-filter level.
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Scale-similarity concept

This concept originally proposed by [7] is based on the as-
sumption, that the dynamics of the smallest resolved eddies is
similar to that of the biggest unresolved eddies. It is often used in
combination with eddy viscosity/diffusivity models as suggested
by [8] to provide sufficiently high dissipation for the unresolved
scales. [1] adopted this mixed model approach and proposed the
following dynamic two-parameter model (DTM)

i — == Sij
=1 — ?"rkk = —2(CsA)?|S|S; + K <L;’} - ?’ ;g’k) (18)

with the Leonard tensor LY} = %; u; — i; u; representing the re-
solved part of the subgrid-scale stress. The subgrid-scale heat
flux vector is modelled as

CsA)?|S| oT
_ (CsA) ‘ ‘ o

: 1
PrT a)Cj qj ( 9)

q; =
with q? =u;T—-u; T representing the resolved part of the
subgrid-scale heat flux. The model coefficients Cs, K, Prr, and
h are obtained using a Germano-type dynamic procedure.

DIRECT NUMERICAL SIMULATIONS

Direct Numerical Simulations (DNS) were carried out to gen-
erate a fully resolved data base for further use in a priori LES.
The DNS considered three cases of turbulent pipe flow with con-
stant wall heat flux assuming always Re; = 360 and varying
Pr=1/10/20. The governing conservation equations, rewrit-
ten in cylindrical coordinates, were spatially dicretized with a
4™ order accurate Finite-Volume scheme and integrated in time
using a 2" order accurate Adams-Bashforth scheme. The com-
putational mesh contains 256 x 256 x 512 cells into the radial,
azimuthal and axial direction, respectively. It is clustered in the
radial direction, so that the minimum cell size near the wall is
Ayl =0.256, R"Ad = 4.418 and Az" = 3.516, and the max-
imum cell in radial direction is Ay, = 2.569. As such, the
applied spatial resolution is comparable to that in recent DNS
presented by [9], [10], and [11]. Periodic boundary conditions
are used for all dependent variables in the circumferential di-
rection ¢. No-slip and no-jump boundary conditions were pre-
scribed for the velocities and temperature at the wall of the pipe
at r/D = 0.5, respectively. Considering hydro-dynamically and
thermally fully developed flow periodic boundary conditions are
imposed for the velocities, pressure fluctuations, and the temper-
ature in the axial direction z* = z/L.

A PRIORI TESTS

In the present tests the a priori LES data were obtained by fil-
tering the DNS data using a top-hat filter, whose filter width rel-
ative to the DNS mesh size was A/Apys = 4. The test-filtering,
which is applied in the two homogeneous directions (azimuthal-
and axial-direction) in the dynanAlic procedures, uses a top-hat

filter with a relative filter-width A/Apys = 8, implying a LES-
grid-filter to test-filter ratio A/A = 2. Figures (1)-(2) show the

mean radial variations of the unresolved subgrid-scale contribu-
tions to the total turbulent radial normal and shear stress, and to
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Figure 1. Total and unresolved stresses: deviatoric normal ra-
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dial stress (t,’“) and shear stress component (T;)
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Figure 2. Total and unresolved heat flux: radial {g;") and axial
(gF) component

the total turbulent axial and radial heat flux, respectively, as ob-
tained with the presently applied relative LES-grid-filter setting,
always normalized with the corresponding wall fluxes t,, and g,
respectively. The unresolved stresses reach evidently at maxiu-
mum about 7% of the total values. The maximum unresolved
fraction of the total turbulent heat fluxes increases for increasing
Prandt]l number, going beyond 20%, as seen by the variation of
g7 relative to qu, for Pr = 20 in figure (2).
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Figure 3. Decomposition of the subgrid-scale fluxes {g;") and
(¢F) into Leonard, Cross, and Reynolds contributions for Pr = 1
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Figure 4. Decomposition of the subgrid-scale fluxes (g;")
and (qj) into Leonard, Cross, and Reynolds contributions for
Pr=20

Figures (3) and (4) show the radial variations of the mean con-
tribution of the Leonard, Cross, and Reynolds heat fluxes, as de-
fined in equation (6) to the total radial and axial subgrid-scale
heat fluxes for Pr = 1 and Pr = 20. The Leonard term makes
evidently up a major part of the total subgrid-scale fluxes, which
basically speaks in favor of the subgrid-scale models using such
a term in the context of the scale-similarity hypothesis. How-
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ever, the variations of the radial component of the cross term g, ¢
show a significant difference for the two Prandtl numbers. For
the high Prandtl number, Pr=20, the cross heat flux becomes neg-
ative in the region around y™ = 50. Together with the also nega-
tive Reynolds contribution g, ¥ this effectively reduces the total
subgrid-scale heat flux in this region. This kind of “back-scatter”
is not observed for the unity Prandtl-number case with Pr = 1,
where ¢, € always evidently remains positive over-compensating
the negative Reynolds terms, so that there is not net reduction of
the total subgrid-scale flux ¢;". This aspect will be of importance
for the predictions of the scale-similarity based DTM approach
discussed below.

MODEL EVALUATION AND DISCUSSION

The four subgrid-scale model concepts discussed above, (i)
the constant-coefficient Smagorinsky model (CSM), (ii) the dy-
namic Smagorinsky model (DSM), (iii) the non-linear tensiorial
viscosity/diffusivity model (NLM), and (iv) the scale-similarity
based dynamic two-parameter model (DTM), were evaluated in
a priori LES by substituting the grid-filtered DNS-data into the
corresponding model formulations. The obtained predictions are
always averaged in the homogeneous (azimuthal and axial) di-
rections and compared against the corresponding subgrid-scale
contributions as obtained from the grid-filtered non-linear fluxes
using the DNS data. For the constant-coefficient Smagorinsky
model (CSM) a standard parameter setting, Cs = 0.1, AT = 26,
and Prr = 0.5 was used. Figure (5) shows the predicted trace-
free axial component of the subgrid-scale stress tensor com-
pared against the filtered DNS-results denoted by the solid line.
Since the averages of the normal components of the resolved
strain rate tensor are zero in the considered fully developed pipe
flow configuration,i.e., (S;r) = (Sgo) = (Szz) = 0, both the lin-
ear eddy-viscosity models, CSM and DSM, are unable to predict
here any normal subgrid-scale stress components like T;’d. The
non-linear tensorial-viscosity based extension NLM evidently re-
moves this limitation. Due to the scale-similarity contribution in
equation (18) the DT M describes the normal stress component
most accurately, but still with some lack in amplitude around
yt =10.
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Figure 5. Predicted deviatoric axial subgrid-scale stress <1:Z+Zd>

compared against filtered DNS results
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Figure 6. Predicted subgrid-scale shear stress (t,.) compared
against filtered DNS results

Figure (6) shows the predictions for the averaged subgrid-
scale shear stress 11+3~ Among the viscosity based model the
simplest CSM approach is here interestingly the most accurate,
while the basically more sophisticated non-linear model (NLM)
give the poorest predictions. In contrast, DT M approach appears
to reproduce the DNS results in very close agreement over the
whole y"-range. Figures (7) and (8) show the predicted axial and
radial components of the subgrid-scale heat flux, respectively.
Analogously to the normal stresses, both linear diffusivity mod-
els, CSM and DSM, are unable to predict any azimuthal and axial
heat fluxes, as the averaged resolved gradients into these direc-
tions vanish, (07 /0@) = (9T /dz) = 0. Again the DTM shows
the best agreement with the DNS results, although it produces to
low maximum values for the axial component ¢ near the wall,
and this deviation increases with increasing molecular Prandtl
number. On the other hand, the near wall maximum of the ra-
dial component g is predicted very well by the DT M approach.
With increasing molecular Prandtl number a notable deviation
appears in the inner region beyond the near wall maximum. The
observed overprediction can be attributed to the fact that the cross
flux term is not accounted for using only the scale-similarity
based modified Leonard term. The considerable net reduction
of the total subgrid-scale heat flux due to the negativity of the
cross term as well as the Reynolds term observed for Pr = 20
in figure (4) is therefore not reflected by the DT M approach. In
contrast, the non-linear model (NLM) evidently reflects such a
back-scattering effect reducing (g,") in this y™-region, however
quantitatively way too strong. The predicted negativity of the to-
tal subgrid-scale radial heat flux, {g;") < 0, which would imply
a net back-scatter of convective heat from the subgrid-scales into
the resolved scales, is not supported by the filtered DNS-data. In
comparison to the linear diffusivity models the non-linear tenso-
rial extension still enables the (NLM) approach to reproduce at
least some part of the axial component of the subgrid scale flux
fairly well, as seen from figure (7).

Figure (9) shows the variations of the subgrid-scale turbulent
Prandtl number as obtained from the dynamic Smagorinky model
(DSM). Tt evidently increases towards the wall going farther
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Figure 7. Predicted subgrid-scale axial heat flux (¢f) com-
pared against filtered DNS results

beyond unity for increasing molecular Prandtl number. This is
basically the same tendency, as observed for the counterpart in-
troduced in the purely statistical RANS-type wall models (see,
e.g.,[12]). In the context of RANS the eddy viscosity and eddy
diffusivity related by this number represent the complete turbu-
lent motion and not only the unresolved subgrid-scales as in LES.
It is further seen that the standard assumption Prr = 0.5 used by
the constant coefficient Smagorinsky model (CSM) holds true
only for Pr = 1 in the core region beyond y*© ~ 100, where
the turbulence becomes isotropic. For the higher molecular
Prandtl numbers Prr evidently requires a higher setting also in
the isotropic inner region.

CONCLUSIONS

The present unveils clearly the deficits of the popular constant-
coefficient Smagorinsky-type approach mainly due to the ob-
served significant dependence of the subgrid-scale Prandtl num-
ber on the molecular Prandtl number. The Germano-type dy-
namic Smagorinsky model is shown to capture this dependence
reasonably well, but it does not substantially improve the predic-
tions of the radial subgid-scale heat flux near the wall as com-
pared to the wall-dampened constant-coefficient version. Unlike
the linear Smagorinsky-type models the mathematically elabo-
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Figure 8. Predicted subgrid-scale radial heat flux (g;") com-
pared against filtered DNS results
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Figure 9. Turbulent subgrid-scale Prandtl number dynamically
obtained by the DSM

rate non-linear extension proposed by [6] is shown to be able
to predict also the axial component, it produces less accurate
predictions for the radial component though. In contrast, com-
bining the dynamic Smagorinsky model with the concept of
scale-similarity as proposed in the dynamic two parameter model
(DTM) by [1] is proven as the most accurate approach. The
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subgrid-scale contribution of the Leonard term, which is com-
puted from the smallest resolved turbulent fluctuations under the
assumption of scale similarity, appears to capture fairly accu-
rate most part of all components of the subgrid-scale stresses
and heat fluxes in the core flow region as well as near the wall
at all considered molecular Prandtl numbers. Some limitations
still appeared with increasing molecular Prandtl number, where
the cross term locally drops considerably below zero, effectively
reducing the net radial subgrid scale heat flux. Considering
presently only the Leonard term the DTM approach should there-
fore be further developed by including an appropriate submodel
for the cross-scale interactions between the resolved and unre-
solved fluxes to improve its predictive capability for high Prandtl
number flow.
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