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ABSTRACT       
      Buoyancy-driven magneto hydrodynamic flow in a 

liquid-metal filled cylindrical enclosure is investigated by 

numerical simulations, the finite volume method was applied 

to solve the mass, momentum and energy equations. The 

numerical result obtained shows the disappearance of the 

vortex break down under the effect of an axial temperature 

gradient between the bottom heated and the top cooled of 

cylinder. In the case of the natural convection with and 

without magnetic field for fluid with low Prandtl number, 

the instability appears in the form of regular oscillations for 

high values of the critical Grashof number, corresponding to 

the Hartmann numbers. These oscillations are produced by 

the multicellular mode of the flow. Diagrams of stability 

show the dependence of the critical Grashof number and 

critical frequency with the increase of the Hartmann number. 

we note that, the action of the magnetic field has a 

stabilizing effect on the flow. 
 
NOMENCLATURE 

Ar [-] aspect ratio 
B [T] intensity of magnetic field 

Br [T] radial magnetic field 

Bz [T] axial magnetic field 
Fr  dimensionless frequency pressure 

g [m2/s] gravitational acceleration 

Gr  Grashof number 
H [m] height of the cylinder 

Nu  average Nusselt number 

Cp  specific heat at constant pressure of liquid 
FEMr  dimensionless Lorentz force in the r-direction 

FEMz  dimensionless Lorentz force in z-direction 

P  dimensionless pressure 
Pr  Prandtl number 

R [m] radius of the cylinder 

r, z  gravitational acceleration 
T  temperature  

u, v  dimensionless radial and axial velocity  

α  thermal diffusivity  
β  thermal expansion coefficient  

δ  orientation of the magnetic field 

θ  dimensionless temperature 
ρ  density of the fluid 

σ  electric conductivity 

τ  dimensionless time 
υ  kinematic viscosity 

Subscripts 

c cold  
cr critical value  

h hot 

 

 

max maximum value 

 

 

INTRODUCTION 
       The natural convection heat transfer in cylindrical is an 

important research topic due to its wide application in 

engineering problems, such applications are found in energy 

conversion, storage and transmission systems, Examples of 

using annulus geometry include electrical cooling, solar 

energy collector, nuclear reactor design. A significant 

number of experimental and theoretical works have been 

carried out in the past decades in an attempt to understand 

heat transfer flow in a cavity. A comprehensive review of 

natural convection in cylindrical cavities has been 

documented in the literature. Among the very first 

investigations. For instance, in crystal growth processes 

from melts, it has been reported by [1] that larger transports 

rated are obtained by tilting the ampoule. Motivated by this, 

[2] have carried out a numerical and experimental 

investigation on threedimensional buoyancy-driven flows in 

a tilted cylinder (ampoule) with axial heating. [3] have found 

that the strength of the magnetic field is one of the important 

factors in determining the quality of the crystal. This is 

related to the fact that during a crystal growth process, some 

turbulence in the natural convection currents occurs. This 

can be suppressed by the application of a magnetic field. [4] 

studied numerically the effect of an external magnetic field 

with different magnitudes and orientations in a rectangular 

cavity. Stability diagrams for the dependence of the critical 

Grashof number on the Hartmann number were obtained by 

the authors. 

They showed that a vertical magnetic field provides a 

strongest stabilizing effect, and also that the multiplicity of 

steady states is suppressed by the electromagnetic effect. [5] 

studied the effect of a magnetic field orientation on fluid 

flow and heat transfer during solidification from a melt in a 

cubic enclosure. They have shown a strong dependence 

between the interface shape and the intensity and orientation 

of magnetic field and the strongest stabilization of the flow 

field and heat transfer are shown when the magnetic field is 

oriented vertically (γ = 90°). 

Recently, [6] presented the MHD mixed convection 

oscillatory flow over a vertical surface in a porous medium 

with chemical reaction and thermal radiation. They analysed 

the influence of a first-order homogeneous chemical 

reaction, heat source and Soret effects are analyzed. They 

conclude that, the velocity decreases with increasing the 

Prandtl number, and magnetic field parameter whereas 

reverse trend is seen with increasing the heat generation 

parameter, radiation parameter, porous parameter, Soret 
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number, thermal and solutal Grashof numbers. The 

temperature decreases as the values of Prandtl number 

increase and reverse trend is seen by increasing the values of 

the thermal radiation parameter, heat source parameter. The 

concentration decreases as the values of the chemical 

reaction parameter and Schmidt number whereas 

concentration increases with increase the value of Soret 

number.  

   Therefore, the objective of the present contribution is to 

study the effect of magnetic field orientation on the 

oscillatory natural convection. The study was carried out in 

oscillatory state, for different orientations (δ = 0 at  90°, Ha 

≤ 50). The critical Grashof number Grcr and corresponding 

critical frequency Frcr and Hartmann numbers/different 

orientations are determined in each case and discussed.  

 
GEOMETRY AND MATHEMATICAL MODEL 
    The geometry considered is a cylindrical enclosure (Fig.1) 

of radius R and height H, thus with an aspect ratio Ar = H/R 

= 4. The enclosure filled completely with a molten metal, 

have a Prandtl number equal Pr = 0.015. The horizontal 

walls of the enclosure are maintained at different 

temperatures, the bottom wall is maintained at the hot 

temperature Th while the top wall maintained at the cold 

temperature Tc (Th >Tc). The side wall is supposed 

adiabatic. The flow is subjected to the action of an external 

uniform magnetic field with different orientations. 

Electrically, the walls of the cylindrical enclosure are 

insulated. The induced magnetic field is negligible because 

the magnetic Reynolds number Rem is much smaller than 

unity [7]. By neglecting the dissipation and Joule heating, 

and using R, υ/R, R2/υ, ρ (υR) 2 and (Th-Tc) as typical scales 

for lengths, velocities, time, pressure and temperature, 

respectively. The dimensionless governing equations for the 

conservation of mass, momentum, and energy with the 

Boussinesq approximation, together with appropriate initial 

and boundary conditions in the cylindrical coordinates 

system (r, z), are written in dimensionless form, as follows:  

Continuity equation 
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Z-Momentum equation 
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Energy equation 

    











































2

21

Pr.Re

11

ZR
R

RR
V

Z
UR

RR








  

(4)  

In Eqs. (2) and (3), FEMr and FEMz represent the Lorentz 

forces components in the r and z directions respectively [8], 

u and v are the dimensionless velocity components in the 

radial and axial directions, P is the dimensionless pressure 

and θ is the dimensionless temperature. So, the resulting 

dimensionless numbers are: 

  
(a) Physical problem  

 

 
(b) Effect of grid size on the velocity axial variation V  with 

a Z  for  R=0.5 and R=0.6 

 

 
                                                       

(c) Computational domain (52 × 102) 

 

Fig. 1. Geometry and computational domain 

with boundary conditions. 

Grashof number  
2

3
.


CCH rTTBg

Gr


  Prandtl number 




Pr  and Hartmann number crBHa  , which 

indicate the ratio of the electromagnetic forces to the viscosity 

forces. The quantities g, β, ρ,   and   are the gravity 

acceleration, the thermal expansion coefficient, the density, the 

kinematic viscosity and the electric conductivity of the fluid, 

respectively. 
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The above equations are solved subject to the following initial 

and boundary conditions: 

The initial conditions, 

 at τ = 0, u = v = θ = 0                                                       (5a) 

The boundary conditions of the dimensionless quantities (u, v 

and θ)  

for τ > 0 are: 

- Along the bottom wall  

(z = 0, 0 ≤ r ≤ 1); u = v = 0, θ = 1                                     (5b) 

- Along the top wall  

(z = Ar; 0 ≤ r ≤ 1); u = v = 0, θ = 0                                   (5c) 

- Along the sidewall  

(0 ≤ z ≤ Ar; r = 1); u = v = 0, 0




R

                                (5d) 

- Along the symmetry axe (0 ≤ z ≤ Ar; r = 0); 
 
NUMERICAL METHOD 
   The governing equations (Eqs. (1)-(4)) with the associated 

boundary and initial conditions (Eqs. 5a-d) are solved using 

a finite volume method. Scalar quantities are stored at the 

center of control volume, whereas the vectorial quantities 

are stored on the faces of each volume. For the discretization 

of spatial terms, a second-order central difference scheme is 

used for the diffusion and convection terms of the 

mathematical model, and the SIMPLER Algorithm [9] is 

used to determine the pressure from continuity equation. The 

obtained algebraic equations are solved by the line-by-line 

tri-diagonal matrix algorithm (TDMA). The convergence is 

declared when the maximum relative change between two 

consecutive iteration levels fell below than 10-5. The 

increments Δr and Δz of the grid are not regular, they are 

chosen according to geometric progressions of ratio equal to 

1.05 [10], which permitted grid refinement near the walls, in 

the Hartmann layer where large velocity and temperature 

gradients exist, thus requiring a larger number of nodes in 

order to resolve the specific characteristics of the 

magnetohydrodynamic flow, also in order to reduce 

numerical errors.  

   The grid independency tests are presented in Fig 1 b which 

presented the variation the velocity with Z for different grid 

sizes. We can notice that the relative error between all grids 

is very low. We also see that the low relative error occurs 

between the two meshes 52 × 102 and80 × 160. So, the grid 

used has 52 × 102 nodes.  

  To allocate more confidence in our numerical results, we 

have established some comparisons with other experimental 

and numerical investigations available in the literature. 

Firstly, Fig. 2 A good agreement between the obtained and 

reported results was observed. and Secondly, Fig. 3 It is 

clear that the computed values can be seen to be in excellent 

agreement with the measurements. These comparisons 

validate our computer code by assigning the desired 

confidence to use. 

 

Effect of Magnetic Field Orientation on the 
Oscillatory Natural Convection (Ha ≠ 0) 
      In this section, we are interested in the oscillatory 

solution of the flow convection with different orientations of 

magnetic field (δ = 0°, 30°, 45° and 90°), the same results 

are obtained in the range 0 ≤ δ≤ 90°. 

 

 
Fig. 2. Comparison between our results and previous 

numerical/experimental studies. Distribution the radial and 

azimutal velocity for R=0.6 and R=0.7 with Re=1800 and 

H/rc=1 

 
Fig. 3. Comparison between our results and previous 

numerical/experimental studies. 

 

 

In general, the magnetic field suppresses the fluid motion 

and reduces the heat transfer rate. As the Hartmann number 

increases, the temperature gradients become less abrupt and 

the convection effect become less intense, resulting in 

smaller velocities. Thus, the increase of the magnetic field 

favours the conduction heat transfer. Our numerical 

simulations are presented for various values of the Hartmann 

number. 

To see the effect of magnetic field on the oscillatory flow 

regime, we applied the magnetic field in radial direction (δ = 

0° parallel to the cylinder axis). The Fig. 7, present the time 

dependent of the axial velocity component in one period, for 

Grashof number Gr = 2.1×106 and for various Hartmann 

numbers (Ha = 10, 20, 30, 40 and 50). It is clearly that the 

increase of Hartmann number (intensity of magnetic field), 

stabilize the oscillatory flow and reduce the magnitude of 

velocity [11]. The flow regime is oscillatory for Ha = 10, 

and stabilized to steady state flow when Ha > 10. This is 
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translates the ability of the magnetic field on the stability of 

convective flows, this reduction due to radial Lorentz force 

which slows the velocity of particles. 

In order to explain the nature of the flow oscillatory, we 

connect the temporal evolution of the dimensionless axial 

velocity v at point S8 during one period with evolution of 

the flow structure (streamline and temperature field) at 

various dimensionless times: τa, τb, τc, τd, τe and τf, for Grcr 

= 0.8×106, δ = 0° and Ha = 30 (Fig. 4). The flow field 

presents two cells. These cells dilate and narrow during the 

time (τa, τb, τc, τd, τe and τf). At time τa, the structure 

characterized by a small cell located in bottom of liquid and 

separated by another secondary recirculation cell (dashed 

lines) in top of enclosure with a negative mass flow. At 

times τb, τc, τd and τe the size of secondary recirculation 

cell change and narrowing gradually in the axial direction, 

after (at time τf) this cell dilate gradually. 

 

 
Fig. 4. Time evolution of the dimensionless axial velocity U 

in oscillatory flow at point S8, with streamlines at various 

dimensionless time: τa, τb, τc, τd, τe and τf, for Grcr = 9×106 

The magnetic field is applied in the radial direction (δ = 0° 

and Ha = 30). 

 

    We note that, the streamlines structure at the time τa is 

identical at the time τf, which means that the oscillatory flow 

is periodic. The temperature field is very significant in this 

case where the magnetic field is applied in radial direction (δ 

= 0°), and shows the existence and the predominance of the 

convective mode compared to the diffusive mode 

(deformation of the isotherms). Figures 5a-b In order to 

obtain the energy spectrum of oscillations, we have used the 

fast Fourier transform (FFT) of a number Nech of samples 

of the time variations of various dimensionless parameters. 

This transform, once multiplied by the half of its conjugate 

quantity, gives the power spectrum density (PSD) E(F) as a 

function of the oscillation frequencies (Fig. 5), defined by: F 

= k / (Nech×Δτ), where Δτ is the dimensionless time step 

and k = 1, 2 and Nech / 2. Energy has been normalized by 

N2ech. The dimensionless predominant frequencies are 

considered as those playing the main role in the flow 

oscillation there can exist several others frequencies which 

are multiples of the dominant one [12]  and Figure 6, show 

the magnetohydrodynamic stability diagram  (Frcr –Ha). We 

can see that the strong dependence between the onset of 

oscillatory flow (the critical Grashof number and 

corresponding frequency) and the orientation of magnetic 

field, where the strongest damping of the flow is obtained 

when the magnetic field is applied along the radial direction 

(δ = 0°). They found a better stabilization of the flow where 

the magnetic field applied in the radial direction. 

 
 

 

Fig. 5. Power spectrum of the dimensionless radial velocity 

component u, for Grcr = 0.8×106 and Grcr = 1.1×106  

respectivoly for Ha = 0. Frcr = 27.58, represent the 

dimensionless critical frequency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Magnetohydrodynamic stability diagram for different 

Hartmann number 
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Fig. 7. Effect of magnetic field on the time dependent U-

velocity component at monitoring point S7, for Gr = 2.1×106 

and Ha=0, 10 and 20 

CONCLUSION 
    The effect of magnetic field orientation on the oscillatory 

natural convection has been numerically studied. The 

obtained results have been compared with the available data 

(experimental/ numerical) from the literature and good 

agreement has been found. 

The main results are as follows:  

 Circulation and convection become stronger with increasing 

Grashof numbers but they are significantly suppressed by 

the presence of a strong magnetic field. 

A radial magnetic field, provides a strong stabilization of the 

flow field, where the high value of critical Grashof number 

is obtained for this case. 

The concordance of increasing the magnetic field intensity 

with respect to the critical frequency Fcr, except for case 

Ha=60. 

     The obtained results in this study may allow researchers 

and industrialists to know the oscillatory modes of 

conducting fluid enclose with and without magnetic field, 

and help them for the stabilization according to the available 

possibilities, in order to improve the quality of the 

semiconductors obtained during the crystal growth. 
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