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ABSTRACT 
The design of fins for heat transfer enhancement remains 

a topic of great interest in a number of engineering areas and 
applications, despite a broad and deep prior literature on the 
subject. Rapid prediction of the effects of convection, conduction 
and radiation is still an area of concern.  For hot-flow conditions, 
the fin is normally mounted in a cooled surface, leading to 
substantial axial conduction. Also, radiation plays a very 
important role in hot flow conditions. One can apply detailed 
computational methods for simultaneous convection, conduction 
and radiation heat transfer, but such approaches are not suitable 
for rapid, routine design studies. So, there is still a place for 
approximate analytic methods, and that is the subject of this 
paper. We have extended the traditional pin fin analysis to 
include a more realistic radiation treatment and also considered 
variable thermal conductivity, variable heat transfer coefficients 
over the tip and sides of the fin with variable area distribution, 
variable internal heat generation and then produced a MATLAB 
solution procedure for routine use by designers and analysts. 

 
INTRODUCTION 

The use of fins to enhance heat transfer is ubiquitous in 
industrial and consumer applications and even in nature,[1], [2]. 
So, the design and analysis of fins for heat transfer enhancement 
remains a topic of great interest, despite a broad and deep prior 
literature on the subject (e.g. [3], [4]). Prediction of the effects of 
convection, conduction and radiation remains an area of concern. 
For hot-flow conditions, the fin is normally mounted in a cooled 
surface, leading to substantial axial conduction. Also, radiation 
plays a very important role in hot conditions. One can apply 
detailed computational methods for simultaneous convection, 
conduction and radiation heat transfer. We have used ANSYS 
Fluent [5] for related studies, but such approaches are not 
suitable for rapid, routine design studies. So, there is still a place 
for approximate analytic methods, and that is the topic of this 
paper.  

Some useful, early analytical methods treated a so-
called “pin fin” (a straight or tapered rod projecting from a wall) 
with combined convection and conduction. Reference [3] 
provides a very thorough review of the literature. While useful, 
these treatments were quite restricted in a number of ways. 
Some, but not all, of the restrictions are covered in the so-called: 
Murray-Gardner-Kern Assumptions [3]: (1) The heat flow and 
temperature distribution are steady in time, (2) The fin material 
is homogeneous and isotropic, (3) There are no heat sources in 

the fin, (4) The heat flow to or from the fin surface is proportional 
to the temperature difference between the surface and the 
surrounding fluid, (5) The thermal conductivity of the fin is 
constant, (6) The heat transfer coefficient is the same over the fin 
surface,  (7) The temperature of the surrounding fluid is uniform, 
(8) The temperature of the base of the fin is uniform, (9) 
Temperature gradients normal to the surface may be neglected 
(1D assumption), (10) The heat transferred through the tip of the 
fin is negligible compared to that passing through the sides, (11) 
The joint between the fin and the prime surface offers no bond 
or contact resistance. One can add an additional common 
assumption: (12) Radiation is neglected, or radiation is treated 
without convection. 

NOMENCLATURE 
A(x) [m2]   area of fin 
d(x) [m]  diameter of fin 
G  [1/m2K4] =2/5(σεP/kA) 
h(x)         [W/m2K]   convection heat transfer coefficient 

on fin side 
htip           [W/m2K]  convection heat transfer coefficient 

on fin tip 
i               [-] node index 
k(T)         [W/mK]  thermal conductivity  
k0            [W/mK]  reference thermal conductivity  
k1             [W/mK2]  slope of linear thermal conductivity 
L  [m]  length of the fin 
m  [1/m]  =(hP/kA)1/2 

n  [-]  number of nodes 

P(x) [m]  perimeter of fin 
𝑞̇𝑞(x) [W/m3] internal heat generation 
Qb            [W/m2] base heat transfer 
T(x) [K]   temperature 
T0  [K]   reference temperature 
Tf  [K]  fluid temperature 
Tb  [K]  base temperature 
Tsurr          [K]  surroundings temperature 
x              [m]   base to tip coordinate  

       𝛥𝛥𝛥𝛥 [m]  discretized element length 
α  [-]  absorptivity  
σ             [WK4/m2] Stefan-Boltzmann constant  
ε  [-]  emissivity 
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Analyses of the pin fin for heat transfer enhancement 
have also been used to study total temperature probes where the 
fluid flow is directed towards the tip of the fin. That was the topic 
of some recent work of ours [6].  

It is very difficult to treat radiation from/to the fin 
within a purely analytical method. The only available solutions 
in the literature are limited to very restricted cases. Here, we have 
extended the pin fin analysis to include a more realistic radiation 
treatment and also considered variable thermal conductivity, 
variable heat transfer coefficients over the tip and sides of the fin 
with a varying cross-sectional fin area and then produced a 
MATLAB solution procedure for routine use by designers and 
analysts.  
 
DISCUSSION OF PRIOR ANALYSES 

Assuming 1D conduction along a fin and neglecting 
radiation, the analysis is simple, especially when one makes 
additional assumptions [3].  

The nonlinear ODE equation to be treated with radiation 
included can be written [7] 

 
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑘𝑘(𝑇𝑇)𝐴𝐴(𝑥𝑥) 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� = ℎ(𝑥𝑥)𝑃𝑃(𝑥𝑥)�𝑇𝑇(𝑥𝑥) − 𝑇𝑇𝑓𝑓� + 

                                   𝜎𝜎𝜎𝜎(𝑥𝑥)[𝜀𝜀𝑇𝑇4(𝑥𝑥) − 𝛼𝛼𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 ] + 𝐴𝐴(𝑥𝑥)𝑞̇𝑞(𝑥𝑥)     (1)
         
  
The term on the left-hand-side represents axial conduction, the 
first term on the right-hand-side represents convection, the 
second term on the right-hand-side represents radiation, and the 
third term on the right-hand-side allows for internal heat 
generation. 

Assuming, for the moment, a constant cross-section area 
(and hence perimeter), h and k constant, no internal heat 
generation and ε=α (grey bodies), the governing equation is [7]. 

 
𝑑𝑑2𝑇𝑇
𝑑𝑑𝑥𝑥2

=
ℎ𝑃𝑃
𝑘𝑘𝑘𝑘

�𝑇𝑇(𝑥𝑥) − 𝑇𝑇𝑓𝑓� +
𝜎𝜎𝜎𝜎𝜎𝜎
𝑘𝑘𝑘𝑘

[𝑇𝑇4(𝑥𝑥) − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 ]       (1a) 
             

The simplest cases neglect radiation, and the equation above 
reduces to a linear ODE with a well-known solution [3], but, 
the assumption of constant h is unrealistic. It is an easy matter 
to extend the solution to have htip ≠ h by modifying the 
boundary condition at x=L. The results are [6]: 

 
𝑇𝑇(𝐿𝐿) − 𝑇𝑇𝑓𝑓 

𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑓𝑓
=

1

cosh(𝑚𝑚𝑚𝑚) +
ℎ𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚 sinh (𝑚𝑚𝑚𝑚)

 

 

𝑄𝑄𝑏𝑏 = √ℎ𝑃𝑃𝑃𝑃𝑃𝑃�𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑓𝑓�
sinh(𝑚𝑚𝑚𝑚) + �

ℎ𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚� cosh(𝑚𝑚𝑚𝑚)

cosh(𝑚𝑚𝑚𝑚) + �
ℎ𝑡𝑡𝑡𝑡𝑡𝑡
𝑚𝑚𝑚𝑚� sinh(𝑚𝑚𝑚𝑚)

     (2) 

 
where Qb is the heat transfer at the base.     

Consider next prior treatments of the pin fin problem 
including radiation using eqn. (1a). The BC at x=L is now 

 

ℎ𝑡𝑡𝑡𝑡𝑡𝑡�𝑇𝑇(𝐿𝐿) − 𝑇𝑇𝑓𝑓� + 𝜎𝜎𝜎𝜎[𝑇𝑇(𝐿𝐿)4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 ] = −𝑘𝑘 �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝐿𝐿

    (3) 
 
Since eqn. (1a) is a non-linear ODE, analytical solutions are only 
obtained for limited cases. If Tsurr=Tf, multiply eqn (1a) by dT/dx 
and integrate once to get [7]: 
 

1
2

(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)2 =
ℎ𝑃𝑃
𝑘𝑘𝑘𝑘

�
1
2
𝑇𝑇2 − 𝑇𝑇𝑇𝑇𝑓𝑓� +

𝜎𝜎𝜎𝜎𝜎𝜎
𝑘𝑘𝑘𝑘

�
1
5
𝑇𝑇5 − 𝑇𝑇𝑇𝑇𝑓𝑓4� + 𝐶𝐶    (4) 

        
For the very restrictive case where Tf =0 and a very long fin so 
that both T(L) and (dT/dx)x=L→0, C=0 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ±�
2
5
𝜎𝜎𝜎𝜎𝜎𝜎
𝑘𝑘𝑘𝑘

𝑇𝑇5 +
ℎ𝑃𝑃
𝑘𝑘𝑘𝑘

𝑇𝑇2                         (5) 

One selects the appropriate sign for the expected behavior of 
dT/dx. For example, if T(x) is decreasing along the fin, the minus 
sign is appropriate. Using T(0)=Tb one can integrate to obtain: 
 

� 𝑑𝑑𝑑𝑑 = −�
𝑑𝑑𝑑𝑑

𝑇𝑇 �25 �
𝜎𝜎𝜎𝜎𝜎𝜎
𝑘𝑘𝑘𝑘 � 𝑇𝑇

3 + ℎ𝑃𝑃
𝑘𝑘𝑘𝑘�

𝑇𝑇

𝑇𝑇𝑏𝑏

𝑥𝑥

0
                (6) 

 
Further integration yields the closed form solution [7]: 
 

𝑥𝑥 =
1

3𝑚𝑚
�𝑙𝑙𝑙𝑙

�𝐺𝐺𝑇𝑇𝑏𝑏3 + 𝑚𝑚2 − 𝑚𝑚

�𝐺𝐺𝑇𝑇𝑏𝑏3 + 𝑚𝑚2 + 𝑚𝑚
− 𝑙𝑙𝑙𝑙

√𝐺𝐺𝑇𝑇3 + 𝑚𝑚2 −𝑚𝑚
√𝐺𝐺𝑇𝑇3 + 𝑚𝑚2 + 𝑚𝑚

�     (7) 

               
where G=2/5(σεP/kA). Even though this solution is only 
obtained following very limiting assumptions, it is still useful by 
displaying the key lumped parameters, G and m. 
 One can find interesting solutions for other restricted 
cases in the literature, all for htip=h or an insulated tip, 
(dT/dx)x=L→0. See for example Refs. [8] and [9]. Generally, 
numerical evaluation of complex integrals is required even for 
such restricted cases. 
 Cases with variable cross-section area, A(x), and variable 
heat transfer coefficient, h(x), (except for the simplest case of htip 
≠ h) are much more complicated. See Ref. [4] for a thorough 
exposition of available results. Reference [10] considered 
variable k(T) and simplified h(x) variations. There is much less 
work in the literature for cases with varying A(x) and h(x) in the 
presence of radiation. 

Based on the discussions above, we conclude that there is 
no suitable analytic solution for general application to the pin fin 
case. That conclusion lead to the work described in the following 
sections. 
 
NUMERICAL METHODS 

It is our goal to implement a numerical solution that 
generalizes the thermal behaviour of a 1-D conducting pin fin 
with radiation. This means allowing for variable heat transfer 
coefficient and area along the fin’s length, h(x) and A(x), as well 
as variable internal heat generation 𝑞̇𝑞(𝑥𝑥), respectively. For cases 
with large thermal gradients along the fin, model accuracy can 
be further improved by replacing the constant solid conductivity 
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assumption with a local temperature dependent conductivity, 
k(T). Thus, the governing differential equation takes the form: 
 
𝑑𝑑
𝑑𝑑𝑑𝑑

�𝑘𝑘(𝑇𝑇)𝐴𝐴(𝑥𝑥)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = ℎ(𝑥𝑥)𝑃𝑃(𝑥𝑥)�𝑇𝑇(𝑥𝑥) − 𝑇𝑇𝑓𝑓� 

+𝜀𝜀𝜀𝜀𝜀𝜀(𝑥𝑥)(𝑇𝑇(𝑥𝑥)4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 ) + 𝐴𝐴(𝑥𝑥)𝑞̇𝑞(𝑥𝑥)   (7)   
  
The pin fin problem further requires two boundary conditions. 
At 𝑥𝑥 = 0,𝑇𝑇(0)  = 𝑇𝑇𝑏𝑏  and at x = L: 
 

                        
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑥𝑥=𝐿𝐿

=
−ℎ𝑡𝑡𝑡𝑡𝑡𝑡
𝑘𝑘�𝑇𝑇(𝐿𝐿)�

�𝑇𝑇(𝐿𝐿) − 𝑇𝑇𝑓𝑓� 

  −
𝜀𝜀𝜀𝜀

𝑘𝑘�𝑇𝑇(𝐿𝐿)�
(𝑇𝑇(𝐿𝐿)4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 )                     (8) 

 
This is a “two-point boundary value problem” since the two 
required boundary conditions are applied at two values of the 
independent variable, x. There are three main ways to treat such 
problems [11]: Shooting, Finite Differences and Projections. In 
the Shooting method, one estimates the value of the slope at x = 
0, and then iterates the solutions until the desired boundary 
condition at the other point is matched. In the Finite Differences 
approach, a mesh is introduced over the domain, and derivatives 
in the ODE are replaced by finite differences. This leads to an 
algebraic system that may be solved to produce a discrete 
approximation to the problem. In the Projections method, the 
solution is approximated by simpler functions, e.g. polynomials, 
and the differential equation and boundary conditions are 
satisfied approximately. Collocation or finite element methods 
can furnish these approximations. We have selected an implicit 
Finite Differences approach. 
 The local first and second spatial derivatives of 
temperature and geometry are approximated using a second-
order accurate, 4-point centered-differencing scheme, derived to 
allow for non-uniform element lengths. Non-uniform gridding 
can help improve accuracy with a reduction in computational 
cost by allowing for finer grids near regions of large spatial 
gradients (thermal, geometric, or film coefficient) without the 
need to refine regions of small gradients where coarser grids are 
adequate. Since we wish to solve for the temperature at each 
node along the fin, the implicit Finite Difference method requires 
𝑛𝑛 equations for 𝑛𝑛 node temperatures. At nodes 𝑖𝑖 = 1 and 𝑖𝑖 = 𝑛𝑛, 
the two boundary conditions described above are applied 
(𝑥𝑥(𝑖𝑖 = 1) = 0 and 𝑥𝑥(𝑖𝑖 = 𝑛𝑛) = 𝐿𝐿). For each of the nodes 𝑖𝑖 =
2: (𝑛𝑛 − 1), the discrete form of eqn (7) is used. Due to the non-
linearity of the governing equation with radiation, an iterative 
approach is required to solve the system of equations. 
MATLAB’s fsolve function is built to solve such a system of 
non-linear equations. To use fsolve, one must provide an initial 
guess for the temperature solution along the length of the fin. 
While a good initial guess is not critical for convergence, it can 
reduce computational cost. A simple, yet effective initial guess 
for fsolve is a linear temperature profile along the length, where 
the base is equal to the known base temperature and the tip is 
equal to the surrounding fluid temperature.  
 Following evaluation of the temperature solution, we can 
compute fin performance.  It is common to represent the 

performance of a fin using the fin efficiency, 𝜂𝜂𝑓𝑓 , which is defined 
as the ratio of actual fin heat transfer rate, 𝑄𝑄𝑏𝑏 , to the idealized 
maximum amount of heat transfer through the base, 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚, 
assuming the fin is entirely at its specified base temperature [4]: 
 

𝜂𝜂𝑓𝑓 =
𝑄𝑄𝑏𝑏
𝑄𝑄max

                                            (9) 

 
The fin heat transfer rate can be determined by calculating the 
conduction heat transfer at the fin base using a numerically 
estimated temperature gradient from the temperature solution. 
To achieve a reasonable level of accuracy, a second-order 
accurate, 4-point forward-differencing scheme was used for the 
base temperature gradient. It is critical that we consider how the 
definition of fin efficency handles the addition of radiation heat 
transfer. If radiation affects the fin heat transfer rate (i.e. 𝜀𝜀 ≠ 0), 
it is logical to adjust the denominator of fin efficiency to include 
idealized radiation to the surroundings. Further generalizing fin 
efficiency to account for variable film coefficient and geometry, 
we get: 
 

𝜂𝜂𝑓𝑓 =
𝑄𝑄𝑏𝑏

�𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑓𝑓�∑ ℎ𝑖𝑖𝑃𝑃𝑖𝑖𝛥𝛥𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 + (𝑇𝑇𝑏𝑏4 − 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠4 )∑ 𝜎𝜎𝜎𝜎𝜎𝜎𝑖𝑖𝛥𝛥𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
 

(10) 
 
If radiation is negected, eqn (9) simplifies to the standard 
definition of fin efficiency for a conducting fin with convection.  

Due to truncation errors arising from necessarily 
neglecting high-order terms in the estimation of local 
derivatives, it is necessary to check the final temperature solution 
for grid independence. For solutions presented in this paper, a 
1000 node grid with a refinement bias towards the base (finest 
elements near fin base) produced converged results, although 
100 elements also produces adequate results with much reduced 
computational cost.   
 
Constant cross-section area fins with constant thermal 
conductivity, k, and heat transfer coefficient, h. 

There are a few limiting examples where exact 
solutions are available that can be used to validate our numerical 
method. Let us consider pin fins with constant cross-section area, 
A, and heat transfer coefficient, h, (except for the simplest case 
of htip ≠ h). The first has the solution in eqn. (2) where radiation 
is neglected. The second is the very restrictive radiation situation 
with the solution given here as eqn. (7). We selected a test case 
for a fin of a metal like stainless steel: d = 1.0 mm, L = 10 mm, 
k = 16 W/mK, ε =0 and 1.0, Tb= 300K, Tf= 1000K, Tsurr = 300K, 
h = 1000 W/m2K and htip/h = 1.0. 

Using eqn. (2) with the above test case conditions, one 
finds that Qb = -4.398W for this simulated fin with a cooled base 
in a high convection environment. The negative sign here 
indicates this is a heating fin since the surrounding fluid is 
warmer than the fin base. The result from the current numerical 
solution with ε=0 using 1000 nodes yields a fin heat transfer that 
matches the analytical value of -4.398W, as it should. The 
corresponding solution including radiation with ε =1.0 yields a 

13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

293



 

base heat transfer of -4.310W. Radiation reduces the magnitude 
of heat transfer through the base in this example. 

The second restricted case for which an exact solution 
exists (eqn. (7)) allows radiation, but requires assuming Tf = 
Tsurr= 0 and a very long fin so that both T(L) and (dT/dx)x=L→0. 
It is obvious that these are severe restrictions, but we can still use 
the predictions to compare with our numerical solution as a 
validation case. Radiation can be enhanced by choosing Tb= 
1500K and reducing convection with h = 50 W/m2K and an 
adiabatic tip (htip/h = 0). The temperature decay is also likely 
slower, so L was increased to 100 mm to better simulate the 
infinite length required for the analytic solution. The analytical 
solution in eq. (7) for this case gives x = 8.37 mm for T(x) = 
500K, and the numerical result agrees very well with that. Our 
numerical calculation further shows a base heat transfer Qb = 
3.354W. Neglecting radiation would lead to an error of more 
than 100K at that location. 
 
Constant cross-section area fins with variable heat transfer 
coefficients over the surface 

There has long been considerable interest in fin analyses 
that permit the heat transfer coefficient to vary along the length 
of the fin, h(x), because that is the situation in most practical 
applications. See for example Huang and Chen [12] and the 
extensive review of older work in Kraus [3]. 

Unfortunately, there is no simple, analytic solution with 
variable heat transfer coefficient even without radiation available 
that can be used to validate the current numerical procedure. We 
can, however, show predictions for a few cases and then compare 
the trends observed with those found in the literature with more 
elaborate analyses. The cases selected for these comparisons 
had: k = 16 W/mK, have = 500 W/m2K, htip = 0 (for better 
comparison with elaborate analysis from the literature, Huang 
and Chen [12]), L = 10 mm, d = 1.0 mm, Tf = 1000K, Tb = 300K, 
and Tsurr = 300K. 

 

 
Fig. 1. Numerical solution results for Validation Case no. 3: d = 
1.0 mm, L = 10 mm, k = 16 W/mK, ε = 0, Tb = 300K, Tf = 1000K, 
have = 500 W/m2K and htip/h = 0.0. h=constant (top/blue curve) 
and linear h(x) (bottom/red curve), both with have = 500 W/m2K. 
 

In Fig. 1, we show the current results for this case 
excluding radiation, but with both h=constant=have=500 W/m2K 
and also a linear h(x) starting from 0 at the fin base x/L=0 and 
having the same have = 500 W/m2K. A low value of the film 
coefficient near the base and a high value near the tip can be 
expected in practical situations. One can easily see that a varying 
h(x) has a large effect on the temperature distribution along the 
fin. Here, we found 𝜂𝜂𝑓𝑓 = 0.2849 for the constant h assumption 
and 0.1706 for the linear h(x). This behavior of a constant h 
assumption over-predicting 𝜂𝜂𝑓𝑓 is in agreement with the literature 
[12] for other assumed h(x) cases. We take this as at least partial 
validation of the current numerical method. 
 
Variable cross-section area fins with constant heat transfer 
coefficients over the surface 
 In many heat transfer applications, it is desirable to design 
a pin fin with a variable cross sectional area along its length, 
𝐴𝐴(𝑥𝑥). This may be motivated by several factors including the 
fin’s structural capabilities, volumetric constraints, or various 
heat transfer requirements.  
 For the case of constant heat transfer coefficient without 
radiation, several analytical solutions exist in the literature [4]. 
For validation of variable area incorporation into the current 
numerical method, we computed the temperature solution for a 
conical fin with a base diameter d = 1.0 mm, L = 10 mm, k = 16 
W/mK, ε = 0, Tb = 300K, Tf = 1000K, h = 1000 W/m2K and htip/h 
= 0.0. The analytical solution for the fin efficiency of a conical 
fin is: 
 

𝜂𝜂𝑓𝑓 =
2
𝑚𝑚𝑚𝑚

𝐼𝐼2(2𝑚𝑚𝑚𝑚)
𝐼𝐼1(2𝑚𝑚𝑚𝑚)

                                (11)  

Evaluation of the analytic fin efficiency (eqn (11)) for the input 
parameters described above yields 𝜂𝜂𝑓𝑓 = 0.3417. Our numerical 
calculations show excellent agreement, thus validating the 
numerical approach for variable area fins.  
 
 
EXAMPLES 
Constant cross-section area fins with constant heat 
transfer coefficient 
A designer is always interested in the effects of fin length, and 
we can investigate that with the tools developed here. Consider 
a range of cylindrical fins with length to diameter ratio, 𝐿𝐿/𝑑𝑑, 
ranging from 1.0 to 10.0 under the conditions presented in Fig. 
2, with diameter fixed at d = 1mm. To emphasize the impact of 
radiation, we used a side film coefficient of h = 500 W/m2K. 
Results for the fin base heat transfer for each fin length is given 
in Fig. 1. The influence of conduction to the cooled base reduces 
the fin temperature as the fin becomes shorter which increases 
the local heat transfer rate into the sides of the fin, but the smaller 
overall surface area drives total fin heat transfer down. Also, it 
can be observed that there is a point at which further increasing 
the fin length no longer improves heat transfer rate.  Lastly, it 
can be seen that the effects of radiation are diminished as the fin 
becomes shorter.  
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Fig. 2. Numerical solution results for: d = 1.0 mm, k = 16 W/mK, 
ε = 0 (top/blue curve) and ε = 1.0 (bottom/red curve), Tb = 300K, 
Tf =1000K, Tsurr = 300K, h = 500 W/m2K and htip/h = 0.0. 
 
Variable cross-section area fins with constant heat transfer 
coefficient over the surface 

Another interesting way to alter pin fin performance is to 
alter the fin shape. Changing the fin diameter as a function of the 
fin length allows the designer to control the behavior of the fin 
temperature profile. To investigate this effect, we can compare 
the temperature solution for three fins all with a base diameter d 
= 1mm and L = 10mm with differing profiles: cylindrical, 
conical, and convex parabolic. Setting Tb= 300K, Tf = 1000K, 
Tsurr = 300K, h = 100 W/m2K and htip/h = 0.0, we can compare 
the fins thermal response as a function of position as shown in 
Fig. 3. 
 

 
 

Fig. 3. Numerical solution results for varying fin profiles with: 
dbase = 1.0 mm, L = 10 mm, k = 16 W/mK, ε = 0 (solid curves) 
and ε = 1.0 (dotted curves), Tb = 300K, Tf =1000K, Tsurr  = 300K, 
h = 100 W/m2K and htip/h = 0.0. 
 
It is apparent that as the tip becomes more slender due to the 
profile shape definition, the tip temperature reaches closer to the 
surrounding fluid temperature (T(L) = 723K, 757K and 990K for 
the cylindrical, conical and parabolic fins respectively without 

radiation). By accounting for radiation to the cooler 
surroundings, the fin temperatures can be seen to drop as 
expected. Further investigation of the parabolic fin solution 
shows only a 2% discrepancy in the total fin heat transfer through 
the base when neglecting radiation (-0.585W w/ radiation and -
0.598W w/o), which in most cases is admittedly insignificant for 
low-order model predictions. However, more notable is a 203K 
reduction in temperature at the tip of the parabolic fin when 
compared with the solution without radiation. This tip 
temperature discrepancy would be easily overlooked if only heat 
transfer rates were investigated. Thus, a quick, yet accurate 
calculation the tip temperature can be valuable if fluid 
temperatures are near the melting point of the fin material.   
 
Variable cross-section area fins with variable heat transfer 
coefficient over the surface and temperature dependent 
thermal conductivity 
 An exhaustive literature review of 1-D pin fin solutions 
revealed very little consideration with regard to varying thermal 
conductivity based on local temperature. A constant thermal 
conductivity assumption can prove reasonably accurate if the 
temperature gradients along the fin are small. However, in cases 
where the fin base is significantly cooler than the surrounding 
fluid, large thermal gradients can exist along the fin’s length. In 
extreme cases, temperatures gradients can exist on the order of 
1000K per inch [14]. It is for these specific cases that relaxing 
the constant thermal conductivity assumption is beneficial.  
 Consider now a conical fin made with a material 
representative of iron. At 300K, iron has k ≈ 80 W/mK and at 
1000K, k ≈ 32.5 W/mK [13]. As a first major step towards 
temperature dependent thermal properties, let us assume that k 
varies in a locally linear manner with temperature as in eqn (12): 
 

𝑘𝑘(𝑇𝑇) = 𝑘𝑘0 + 𝑘𝑘1(𝑇𝑇 − 𝑇𝑇0)                       (12) 
 
For iron, we may approximate 𝑘𝑘(𝑇𝑇) as linear using 𝑘𝑘0 = 80 
W/mK at a reference temperature 𝑇𝑇0 = 300K and slope 𝑘𝑘1=       -
0.0679 W/mK2. To utilize the full generality of our numerical 
approach, we may apply a non-uniform film coefficient profile 
along the side of the fin, which varies linearly from h(x=0) = 0 
W/m2K to h(x=L) = 500 W/m2K, as well as compare solutions 
with and without radiation. Taking base diameter d = 1.0 mm, L 
= 10 mm, Tb = 300K, Tf  = 1000K, Tsurr = 1000K, we get the 
results shown in Fig. 4. Also shown is the solution if k is assumed 
constant at the average of the base and fluid temperatures. Note 
that in our previous examples, the surroundings were cooler than 
the fluid temperature resulting in radiation away from the fin. 
This example has surroundings that are equal to the fluid 
temperature resulting in radiation into the fin.  
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Fig. 4. Numerical solution results conical fin with: dbase = 1.0 
mm, L = 10 mm, k = 56.25 W/mK (blue curves) and k(T) = 30-
0.0679(T-300) W/mK (red curves), ε = 0 (solid curves) and ε = 
1.0 (dotted curves), Tb = 300K,Tf =1000K, Tsurr  = 1000K, h(x/L) 
= 500x/L W/m2K and htip/h = 0.0.  
 
Due to the large variability in profile temperatures, using 
conductivity with linear temperature dependence give a much 
better answer with minimal increase in computational cost. A fin 
heat transfer rate comparison between results including radiation 
shows a 25% reduction in magnitude when using k(T) compared 
to k = constant (-2.079W and -2.804W respectively). 
 

CONCLUSION 
In this work, we have greatly extended the classical pin fin 
analysis to now include a more general radiation treatment with 
variable convection heat transfer coefficient, h(x), area change, 
A(x) variable thermal conductivity, k(T), variable internal heat 
generation, 𝑞̇𝑞(𝑥𝑥), and then produced a user-friendly MATLAB 
solution procedure for routine use by designers and analysts. The 
method was validated by comparing results with available 
analytic solutions that are applicable for restricted cases.  

To illustrate the utility of the new analysis tool 
presented here, a few example cases were selected to study the 
influences of some key parameters. In particular, radiation on or 
off, fin length, fin shape, material choices, constant h versus 
variable h(x), and constant k versus variable k(T) were 
considered. The tool can be used to thoroughly study these items 
and any other combinations of parameters that describe the 
general problem. Of course, in order to use this new tool for 
specific applications, one needs simple methods to find values of 
htip and h and/or h(x).  

The MATLAB code will be posted at: 
http://www.aoe.vt.edu/research/onlinesoft.html/. 
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