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ABSTRACT 
The work covered in this paper had the objective of 

investigating key factors in single vane pump impeller blockage 
using both CFD and experimental analysis. Single vane 
centrifugal pumps can be found in wastewater applications, 
where suspended solids, fibers and other flexible material can 
build up on the pump impeller and cause blockage and failure. 
It is in the pump manufacturer’s interest to design blockage 
resistant components while still maintaining hydraulic 
efficiency. Testing was conducted on a large variety of 
centrifugal wastewater pumps at different operating points in a 
purpose built test rig with suitable test material. A pump which 
had varying blockage performance depending on operating 
point was chosen for further study with CFD. Transient 
simulations with the SA-DDES turbulence model were carried 
out with the same operating conditions as in the experimental 
analysis. CFD has been used to highlight flow features likely to 
lead to such blockage, while experiments provided some insight 
into the significance of certain key parameters. An analysis of 
the CFD results showed a significant correlation between pump 
blockage performance and radial velocity components within 
the fluid domain, specifically in the impeller region. Sensitivity 
to blockage was found to vary with the head required of the 
pump. This sensitivity was further explained when applying the 
hypothesis of the impact of velocity components on the 
likelihood of pump blockage. 

 
INTRODUCTION 

In recent decades there has been significant improvement in 
access to water sanitation [1]. With increasing global 
populations, the demand has never been higher for reliability in 
wastewater systems.  Wastewater pumps are integral 
components of wastewater systems, featuring in collection 
transportation and treatment processes and as a major 
contributor to system failures, they are a key concern for 
reliability [2]. A common cause of waste-water pump failure is 
related to soft blockage, where fibrous material catches on the 
impeller and builds up, leading to high motor current and 
thermal overload. Single vane impellers in both open and 
closed configurations allow for larger channel size and easier 
passage of larger solids. Framework agreements such as [3] 
insist on a minimum solids passage size for installations in their 
jurisdiction. Many waste-water pump manufacturers offer a 
single vane impeller in order to meet requirements regarding 
minimum solids passage and blockage performance.  

NOMENCLATURE 
 
ܳ Volumetric flow rate 
 Blockage index ܫܤ
  Impeller blade numberݖ
 Rag incidence ܫܴ
A Cross sectional area 
݈ length 
߱ Rotational speed 
 Head ܪ
 Pressure 
 Density ߩ
݃ Acceleration due to gravity 
 Elevation ݖ
 Velocity ݒ
 ା non dimensional cell wall distanceݕ
 
Subscripts & Superscripts 
 
 radial ݀ܽݎ
 tangential ݊ܽݐ
 Leading edge ܧܮ
 rotational ݐݎ
 
 
 
 
An example of a single vane pump hydraulic can be seen in 
Figure 1. Significant experimental research relating to impeller 
blockage has been carried out during hydraulic development of 
new products at Sulzer Pumps. While CFD has been commonly 
used in the design stage for hydraulic performance, recently 
experimental research has been increasingly supplemented by 
CFD in order to further understand how flow features affect 
impeller blockage. 
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5 can be seen in Figure 6. Plane 2 was chosen in order to 
analyse the flow at the pump inlet, while plane 3 was chosen to 
examine why no blockage was seen over this area of the pump.   

 
The CFD results were analysed in terms of the components 

of flow in the radial and tangential directions with respect to the 
axis of rotation of the impeller: 

௧ݒ = −
௭ݎ

ඥݎ௫
ଶ + ௭ݎ

ଶ ௫ܸ + ௭ܸ
௫ݎ

ඥݎ௫
ଶ + ௭ݎ

ଶ
 (2)

 

ௗݒ =
௫ݎ

ඥݎ௫
ଶ + ௭ݎ

ଶ ௫ܸ + ௭ܸ
௭ݎ

ඥݎ௫
ଶ + ௭ݎ

ଶ
 (3) 

 
This made it possible to compare the speed of rotation of 

the flow ݒ௧ with the circumferential velocity of the impeller 
leading edge ݒ.. while taking account of the radial flow. It can 
be assumed that ݒ௧ > ..ݒ  would increase the risk of 
blockage as the impeller can catch up with the rag. A higher 
velocity in the radial direction ݒௗ  however should have the 
opposite effect by helping to flush the rag from the inner part of 
the impeller. 

 

 
Figure 7  ݒௗ on Plane 4 at Q*=0.68(left) and Q*=1.11(right) 

 
An analysis ݒௗ  and ݒ௧  on the selected planes does 

provide some useful information. Comparing flow predicted at 
high and low pump flow rates over Plane 4 where blockage 
does occur (Figure 7,8), there appears to be a relationship 
between the ratio of radial to tangential planar velocity and the 
probability of blockage occurring. This is based on an analysis 
of the flow between the leading and trailing edge of the 
impeller. Figure 7 shows a much higher value of radial velocity 
at high flow rate compared to low flow rate. An area of high 
radial velocity can clearly be seen at the impeller leading edge 
where the relative flow incident angle ߚଵି  is higher, as 
described by Paresh [10]. This essentially means that as the 
flow rate changes the fluid incidence angle relative to the 
impeller leading edge also changes. Conversely, as Q* 

increases, tangential velocity decreases, [Figure 6-5]. This is in 
line with [11] and also the experimental results. One hypothesis 
for an inverse relationship between Q* and ݒ௧ is that there is 
less through-flow at low flow rates but very similar impeller 
rotational speed, causing a higher level of recirculation. As the 
fluid will remain for a longer time in the domain at low flow, 
there is a longer time for the impeller to impart energy on to the 
fluid. Also as separation on the pressure surface is less likely to 
happen at low flow rates [12], the fluid may be more likely to 
stay attached to the blade allowing more transfer of angular 
momentum. The higher levels of recirculating flow can only 
serve to increase the probability of blockage due to the fact that 
the impeller is exposed to the rag for a longer time while 
rotating with the impeller. This is particularly true if the trailing 
part of a longer rag is still within the leading edge region of the 
impeller, slowing its ejection into the outer part of the volute. 
The impeller leading edge is then more likely to catch up with 
the rag. 

 

 
Figure 8 Tangential Velocity on Plane 4 at Q*=0.68(left) 

and Q*=1.11(right) 
 
Figure 8 shows a much higher incidence of tangential 

velocity at low flow rate compared to high flow rate. Given that 
as the fluid is more inclined to recirculate the rag has a higher 
probability of impacting the leading edge and blocking the 
impeller. The low level of tangential velocity existing at the 
leading edge at Q*=1.11 where high radial velocity is present in 
Figure 6-3, makes it possible to infer that the flow is almost 
purely radial.  

 
What is notable, especially in the high flow condition, is 

the occurrence of two areas of high tangential velocity [Figure 
8]. The region of high ݒ௧  on the suction surface of the 
impeller is caused by the flow following the curvature of the 
impeller and the flow incident angle. The other area of high 
tangential velocity is caused by the impeller accelerating the 
fluid, due to centrifugal force, tangentially towards the volute 
outlet. Studying other positions of the impeller relative to the 
volute shows similar occurrences [Figure 9]. 
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It can be suggested that as ݒௗ  is the largest velocity 
component at high flow rates including when compared to the 
impeller rotational speed, the rag can move out of the way more 
quickly than the impeller can catch it [Figure 12 and Figure 
13]. Also if  ݒ௧ is greater than ݒ௧ then the impeller should 
never catch up with the rag. As this has not been observed over 
the entire course of testing it can be concluded that  ݒ௧ is not 
significant a factor for blockage performance as ݒௗ. 
 

CONCLUSION  
 
In this study a comparison of experimental and computational 
analyses has shown that most pumps perform better at resisting 
soft blockage at high flow rates compared to low flow rates. A 
new test rig was designed and a new test material was chosen in 
order to compare pumps of different sizes and at different 
design points. An analysis of factors which may contribute to 
blockage resulted in a dimensionless number which could in 
future be used to describe how probable the occurrence of 
pump blockage is with a view to informing future designs. 
Based on these results an observational analysis was performed 
with high speed photography at each flow rate with all test 
pumps to inform on the possible causes of soft blockages.  The 
CFD analysis was performed to attempt to describe the 
processes responsible for leading edge blockage, the most 
common type of blockage observed. The study focussed on a 
comparison of radial and tangential flow components over 5 
planes along the axis of the impeller. Results suggested that the 
higher radial velocity obtained at higher pump flow rates helps 
flush the rag as it flows from the inlet sum through the impeller 
radially, away from the leading edge before contact can occur. 
The higher tangential component observed at low flow rates 
also compound the risk of blockage by increasing the likelihood 
of the flow to carry the rag towards the leading edge. It was 
also suggested that impeller position in the volute can have an 
effect on blockage performance. This may not be significant in 
physical testing, as the average inlet velocity at Q*=1.11 is 
3.87݉ ⁄ݏ , compared with a leading edge velocity of 4.7݉ ⁄ݏ . 
By the time the rag has travel 40 mm through the inlet of the 
pump the impeller has already rotated by 90.4˚.  
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