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ABSTRACT

This article presents a computational model to simulate
the fluid interaction with moving flexible thin structures. The
model is based on a combination of three numerical approaches,
(1) a Lattice-Boltzmann solver for the flow equations, (ii) a
finite difference method to solve the solid equation, and (iii)
an Immersed Boundary Method (IBM) to model the coupling
between the fluid and the solid. The present IBM, based
on a direct-forcing approach, preserves the no-slip bound-
ary condition at the interface fluid-solid, and allows using
Cartesian uniform lattice encompassing both fluid and solid
domains. The flexible solid is modelled as an elastic structure.
The resulting governing equation involves thus tension and
bending forces as internal forces, the inertial and gravity forces
and finally the action of the fluid represented by the IBM forcing.

The method is first validated with reference to an academic
test case dealing with numerical simulations of a flapping flag
in a free stream. The model shows results in good agreement
with the published academic test case. The validation extends to
the free motion of rag in a water tunnel and a qualitative compari-
son is available against experimental data performed with Digital
Image Correlation (DIC). Finally, the present method is used to
simulate the behaviour of flexible rags in the presence of highly
rotating flows at high Reynolds number, as it is the case in stirred
tanks.

INTRODUCTION

The study of the interactions between fluids and flexible struc-
tures is relevant to a broad range of application areas (marine en-
gineering for energy harvesting, biological engineering for heart
valves, aeronautics for the strength of flaps in aircraft wings, etc).
In the field of waste water pumps, the understanding of the be-
havior of solid wastes, including rags or fibrous clumps, is of pri-
mordial importance. Achieving an optimal hydrodynamic design
often requires striking a balance between hydraulic efficiency
and anti-clogging performances. One way to reduce the risk of
clogging relies on widening the hydraulic passage in the pump,
i.e. the gap between the impeller and the volute. This however
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NOMENCLATURE

Particle distribution function
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Discrete lattice velocity
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Discrete lattice time
Lattice position
Lagrangian solid position
Body force

Gravity force

Slender solid thickness
Tension force

Bending rigidity

Tension coefficient
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Subscripts & Superscripts
Discrete Lattice directions
Lagrangian points

j 2D Lagrangian frame

s solid

/

o

k

i

f fluid

0 initial
intermediate field

* non dimensional variable

T Relative to tension

B Relative to bending

can rapidly deteriorate the pump efficiency and modify the pump
performance characteristics in general. The flexible solids typ-
ically found in waste water are of slender structures, and their
rate of accumulation is known to depend on the flow conditions,
so that the effectiveness of more subtle pump design changes are
difficult to assess without accurate computational tools capable
of capturing both solid and liquid phases. A complete review of
the recent investigations on the mechanism of flapping and bend-
ing has been done in [1] for slender 1D filament and 2D planar
structures.

From a computational point of view, the Immersed Bound-
ary Method (IBM) appears to be a good candidate for modeling
the coupling between fluid and thin flexible structures. The first
documented IBM was implemented by Peskin [2] to model the
interaction of the blood flow with an heart valve, modeled as a
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non-conforming elastic solid. Unlike body-fitted approaches like
arbitrary Lagrangian - Eulerian methods [3] for which the back-
ground grid adapts to the deforming solid, in the IBM the no-slip
condition at the interface fluid-solid is achieved through a mo-
mentum forcing. This property allows to handle moving flexible
structures on Cartesian grids, simplifying drastically the mesh-
ing stage and saving significantly the computational resources.
In the case of thin structures, the influence of the solid on the
fluid is smeared on the nearby nodes, thanks to Dirac delta func-
tions. The type of momentum forcing is what differentiate one
IBM from another.

IBMs have been used with both physical models, Navier-
Stokes and Lattice-Boltzmann, to simulate flexible structures in
fluids. In the Navier-Stokes context, the problem of a flapping
flag has been investigated with IBMs based on penalty [4] or di-
rect forcing [5,6] approaches. Akcabay [7] has used a penalty
based IBM to perform washing machine simulation. Similar in-
vestigations have been performed with both types of IBM in the
Lattice-Boltzmann context. Tian et al. [8] have developed an
IBM of a penalty type to study flapping filaments and fish swim-
ming. Favier et al. [9] and De Rosis et al. [10] for their part have
considered a direct forcing based IBM. Regarding the dynamic of
slender solids, most of the authors derived the governing equa-
tion from the variational derivative of the deformation energy.
This derivation involves a tension and a bending force for the in-
ternal forces. The resulting equation is commonly solved with a
Finite Difference Method (FDM) for sake of computational re-
sources, but other types of approach have been used as well for
the solid mechanics, as the Finite Element Methods (FEM) in De
Rosis et al. [10] for flexible insect wings or a coupled IBM -
Material Point Method (MPM) allowing large solid deformation
in Gilmanov & Acharya [11].

The model presented in this article has been implemented in
the open-source library Palabos. The details for the numerical
methods are presented before discussing three simulation cases.
The first case is a common benchmark found in the literature and
considers a flapping flag in a laminar flow. The next two cases
concern the transport and deformation of rags under realistic en-
gineering conditions with turbulent flow. The numerical results
obtained are compared against experimental data when available.

NUMERICAL FORMULATION

This section details the numerical procedure adopted for mod-
eling the behavior of thin flexible solids in fluids. Firstly, the fluid
equations are presented, according to the Lattice-Boltzmann
method. Secondly, the IBM used to account for the presence
of the structure in the fluid is defined, and finally the governing
equation for the flexible solid is formulated.

The fluid solver: Lattice-Boltzmann modeling

The Lattice-Boltzmann method (LBM) is a discrete model for
a fluid composed of particles, whose positions are restricted to
specific locations on a lattice grid, and velocities are restricted
to a finite set of vectors. In this study, the complete three-
dimensional lattice with twenty-seven vectors (D3Q27 model)

914

is used. The latter model, illustrated in Figure 1, has the velocity
vectors cy for o =0, ...,27. The discrete velocity are listed in Ta-
ble 1. The evolution of the particle distribution function f(x,?)
with the velocity cq, at the lattice node x and time ¢ reads:

fa(X+eqlr, 14+ Ar) — fo(x,1) = —%(fa(x,t) —fl(x,1)) (1)

where Ax is the lattice spacing, Ar is the time step during
which the particles travel one lattice spacing, and T is the re-
laxation time related to the fluid physical viscosity. The lo-
cal equilibrium distribution functions f*¢ are obtained from the
Maxwell-Boltzmann equilibrium distribution:

w3
2 ¢2

(x) = wupl1 +3%% IE)

N

where ¢; =1/ V/3 is the discrete speed of sound and ®y, are the
weight parameters listed in Table 1. The macroscopic variables
p and u of the flow are recovered from the following equations:

p=Y fu 3)
pu= Zf aCa )

Figure 1. Sketch of the D3Q27 model for a square grid lattice
with discrete velocities ¢, where o ranges from O to 27.

The Immersed Boundary Method

The IBM employed in this study is based on the Multi Direct
Forcing Method (MDFM) proposed by Wang et al. [12] in the
Navier-Stokes context. The MDFM has already been coupled
to a LBM by Suzuki & Inamuro [13] to study the interaction
of fluids with rigid bodies. In this model, the presence of an
immersed object in the fluid is accounted through a two-steps
approach.
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Co. O,

(0,0,0)
(£1,0,0),(0,%1,0),(0,0,+1)
(£1,+1,0), (£1,0,+1),(0,£1,+1)
(£1,+1,41)

8/27(a.=0)
2/27(a=1,...,6)
1/54(a=17,...,18)
1/216(ae=19,...,26)
Parameters of the D3Q27 discrete velocity model.

Table 1.

1. A particle distribution function field f(x,z + At) is evalu-
ated according to equation 1, without taking into account
the presence of the solid body.

2. This intermediate field f§ (x,# + At) is corrected by the body
force accounting for the solid:

foa(X,1 4+ Ar) = fi(x,1+ At) + 3Ax@gcog (X, + A1) (5)

where g is the body force representing the action of the
solid on the fluid. The body force allows to obtain a no-slip
boundary condition at the fluid-solid interface.

In order to evaluate the forcing term, a set of N Lagrangian
points X, is first considered to define the solid with Uy, the bound-
ary velocity at those points. After the first step of the IBM
scheme, an intermediate velocity field w'(x,z + At) can be ob-
tained from the field f (x,z + Ar) thanks to equations 1 and 4.
The Eulerian body force g(x,7 + Ar) defined at the lattice node is
then determined by the following iterative procedure:

1. Atiteration level /, interpolate the Eulerian body force from
the values on the nearby Lagrangian surface points.

2. Correct the velocity at the Eulerian nodes with the obtained
body force.

3. Interpolate the velocity at the boundary Lagrangian points.

4. Finally, correct the Lagrangian body force at the next itera-
tion with the difference between the fluid and the solid ve-
locities, and go to the next level.

To start the iterative process, the initial value of the La-
grangian body force is obtained by:

U, — u’(Xk,t —I—At)
At

go(Xk,l+At) = (6)

The interpolations from a Lagrangian to an Eulerian variable, and
vice-versa, are using the standard weighting function proposed
by Peskin [2]. It is important to note that only the nearby points
are used in the interpolations. A complete description of the al-
gorithm can be found in [13]. The authors have shown that [ =5
is enough to keep a no-slip condition on the boundary points.

The solid solver
The equation of motion of an elastic slender body is derived
in Lagrangian frame (s;, s;) using the variational derivative of
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the deformation energy [14]. The governing equation for a two-
dimensional solid, defined by the points Xy introduced previ-
ously, in a 3D flow reads:

?X & .0, X 092 22X
Apﬁ :i,;1[?ﬁ(cijgj)_m(7ijm)]+ApG_8pfg
@)

In Equation 7, 6;; = ¢;;(T;j — T19) and ;; = G;j(Bij —B?j), where
the terms T;; and B;; denotes for the stretching/shearing effect
and the bending/twisting effect respectively. G is the gravity and
g is the Lagrangian body force introduced in the previous section.
The term Ap denotes the density difference between the filament
and the surrounding fluid (which is null for neutrally buoyant
objects). This difference comes from Archimedes’ law for the
gravity term and from the internal mass effect for the inertial term
[13]. Finally, the thickness of the solid € appears in equation 7
from the transformation of the volume integral of the body force
to a surface integral over the solid [9].

A first order explicit Finite Difference scheme is used to dis-
cretized the motion equation of the slender solid. This type of
discretization requires small time step to avoid instability. The
resulting linear system is solved with an iterative biconjugate
gradient stabilized method (BiCGSTAB). Depending on the case,
two different type of boundary condition can be applied (for
i=12):

.. . 2
- a fixed condition with X = constant and %T)f = (0,0).

. R 3
- a free end condition with %T? =(0,0), %T? =(0,0),0;;=0

and Yij = 0.
For comparisons against the numerical benchmarking data,
the following non-dimensional parameters can be defined using

the flag length L and the free stream velocity U..: the non dimen-
sional time t* = 1L /U, the non dimensional length y* = y/L,

the Reynolds and Froud number Re = pf:f—;'L and Fr = gL/U..2,
the non dimensional tension coefficient and bending rigidity,

0" = A;;LUDO and * = ﬁ, and finally the non dimensional
mass ratio p* = 77
RESULTS AND DISCUSSION

The engineering problems investigated in this study are very
demanding in terms of computational resources because of (i)
the three dimensional natures of the cases and (ii) the impor-
tance of capturing the fluid structure interactions. A refinement
limit is quickly reached. Critically coarse grids have been found
to be unsuitable for accurate modeling of flow at immersed solid
boundaries. For these reasons, performing a grid convergence
analysis would require an extremely dense grid and would be-
come quickly impractical. The grids considered in the present
work are either based on refinement comparable to those found
in the literature or merely limited by computational power. For
instance, the 2 second of physical time computed for the trans-
port of a rag considered in Case 2 required more than 17 hours
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of calculations on 24 processors.

Case 1: Flapping flag

In the first case, a 2D flag is considered in a 3D flow, according
to the set-up of Huang & Sung [15]. The flag shape is square
with length L and initial position inclined at an angle 0.1 from
the streamwise plane. The size of the computational domain is
[-L,4L] x [-2L,2L] x [-L,L]. Both Eulerian and Lagrangian
grids are discretized uniformly with a step size of L/25 and L/50
respectively. Using a larger domain as in Huang & Sung [15]
was found to have a low influence on the flapping mechanism
of the flag. The flag is fixed (pinned) from one end and free
from the other ends so that the flapping under the effect of the
fluid flow will be perpendicular to the flow. The non-dimensional
parameters of the problem are listed in Table 2. The time step is
chosen the same for the fluid and the solid solvers.

2000 0 | 1 100 1-107% ] 3-107¢

Table 2. Non-dimensional parameters for Case 1: flapping
flag.

Fr

A flapping mechanism similar to the one observed by Huang
& Sung [15] is obtained with the current model. Figure 2 shows
for instance the vortical structures shedding from the flag. Their
hairpin-like geometry is in good agreement with [15]. The time
history of the transverse displacement for the mid-point of the
flag trailing edge is shown in Figure 3. The flag undergoes sus-
tained oscillations through the IBM coupling. Although the os-
cillations are consistent with those observed by Huang & Sung
[15], two differences can be noticed: (i) a few oscillations are
needed to reach a steady periodic flapping, underlying a delay
in the flag response, and (ii) the amplitude of the oscillations is
slightly overestimated. The different numerical approaches used
for the flow solver and the coupling mechanism can be expected
to impact the solid response due to the highly dynamic nature of
the motion. However the most probable cause for the differences
is the value of the tension coefficient which had to be reduced
by one order of magnitude in comparison to Huang & Sung [15]
because of stability issues in the solid solver.

Case 2: Rag release in a water tunnel

The release of a rag in a water tunnel is considered in this sec-
tion. DIC tests have been performed to allow solid response char-
acterisation and the experimental data are compared to the nu-
merical results of the present model. The rag is initially clamped
with a flagpole system, at the center of the water tunnel. Busi-
ness paper has been used as a rag material. Approximate values
of the rag elastic properties are available in Table 3, along with
the numerical parameters of the computation. The flow rate in
the water tunnel is about 9.1m3 /h.

The solid solver is showing an unstable behavior in the neu-
trally buoyant case, namely when the density difference becomes
too small. To overcome this issue, the density difference has been
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Figure 2. Iso-contours of the vorticity when the flag’s trailing
edge is near its lowest transverse position. Results obtained with
a larger domain (similar to Huang & Sung [15]).
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Figure 3. Time evolution of the transverse displacement at the
trailing edge center point of the flag.

artificially increased for the inertial term, while it is kept at the
physical value for the gravity term. A resolution of Ax = 2mm is
used for both the fluid and the solid grids. A Smagorinsky based
LES (Large Eddy Simulation) model is combined with the fluid
solver to model the effect of the subgrid scales in the flow.

Ap | ¢ g
21600 | 2.32 1 0.03 | 100 | 1-107° | 1-10~*

Table 3. Parameters for Case 2: Rag release.

Re Fr At

DIC measurements allow to quantify the displacement of the
rag in the three directions of space. Figure 4 shows the experi-
mental data for the transport and the deformation of the rag in the
Tunnel at two different times after the release. During the first
second, it appears that the rag is not moving much in the stream-
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(@)t =0.7s

(b)t=1.4s

Figure 4. Viewing of the transverse displacement of the rag in
the water tunnel, obtained by DIC.

wise direction, but it is being pushed upwards by a stream-jet
due to the shaft’s presence. The jet is visible in Figure 5, which
is showing the numerical results obtained with the current model.
Similarly, in the numerical simulation the rag is moving upward
due to the jet, before settling. One can note as well a similar
folding in the transverse direction. Although, the deformation
of the rag is comparable, significant differences can be seen be-
tween the experimental and the numerical results. The coupled
LB-IBM simulates a rag that is moving faster in the streamwise
direction and that settle slower than in reality. This difference in
the transport can be explained by the artificial increase of inertial
term, and needs to be quantify in future works.
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Figure 5. Snapshots of the rag at different times, with contour
of the velocity field in the background.

Case 3: Free motion of rags in mixer

In this last case, the influence of the tension and bending
forces on the 2D solid dynamics is investigated. Rags are put in
place in a cylindrical mixer of both height and diameter equal to
340mm. A 4 pitched blade impeller of radius 72mm centrally po-
sitioned in the tank is driving the mixing with an angular velocity
of 15,71rad/s. The resolution is chosen similar to the Case 2,
and Smagorinsky based LES model is used here as well for the
turbulence. Two simulations have been performed with different
values of the tension and bending coefficients. The numerical
and physical parameters for these 2 cases are listed in Table 4.

Case Re | Fr|Ap| ¢ ¢ At

Sim. 1 |5.10*| 0 | 10 | 100 | 1-107¢ | 1-10*
Sim.2 |510*| 0 |10| 1 |1-10%|1-107*

Table 4. Parameters for Case 3: Rag in mixer. The Reynolds
number is calculated using the impeller rotational speed.

The initial conditions for the simulation were based on a fluid
at rest with uniform static pressure distribution gravity being ne-
glected. 12.5 impeller revolutions are performed before intro-
ducing the rags. Two rags are introduced for each simulation.
The first one is centrally positioned 50mm below the impeller,
while the second one is placed 30mm below the tip of one of the
blade. The deformation of the rags is illustrated in Figure 6 for
both simulation cases. The rags initially below the center of the
impeller are slowly sucked by the rotation of the latter. On the
contrary the rags placed below the blade’s tip are firstly pushed
away from the center and toward the bottom, before rising again
on the side with the flow. The influence of the elastic force is
clearly visible on rags deformation. Low values for the tension
and the bending terms allow a more flexible behavior of the rags,
which exhibit significant folding in both longitudinal and latitu-
dinal directions.

CONCLUSION

In the present study, an IBM has been presented to model slen-
der flexible solids in fluids. The IBM is coupled to a Lattice-
Boltzmann method to solve the fluid governing equations. The
model allows for solid deformation thanks to the resolution of a
second-order partial differential equation describing the behav-
ior of 2D flexible solids. The solid equation involves the inertial
force, the gravity force, the internal forces namely the elastic
force, and finally the action of the fluid through the IB forcing
term. The overall model has been validated against a standard
benchmark for fluid-structure interaction problems and shows
a good agreement with results from previous IBM in literature.
The model has been secondly applied to engineering cases and
promising results were obtained. A high sensitivity to specific
parameters has been however highlighted for the solid solver.
High tension coefficient for instance, or low density difference,
can lead to an unstable behavior of the latter solver. The impor-
tance of these parameters needs to be addressed in future works,
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(@)t =0.0s

(b)t=0.1s

(©)t=0.2s

(d)t=0.8s

Figure 6. Snapshots of the rags at different times. The rags in
red are computed from Sim. 1 while the rags in blue are obtained
from the parameters of Sim. 2.

to perform realistic engineering simulation of rag in a neutrally
buoyant context, as it is the case for clogging problems in sewage
pumps.
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