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NOMENCLATURE 
A = Surface area (m2) 
c = Specific heat (kJ/kg.K); Blade chord length (m) 
I = Enthalpy  (J) 
L = Blade height (m) 
m = Mass flow rate   (kg/s) 
P = Power  (kJ/kg) 
p = Pressure (kPa) 
s = Blade pitch (m) 
T = Temperature   (K) 
V = Velocity (m/s) 

Greek symbol  
η = Efficiency 
α = flow outlet angle 
л = Pressure ratio 
ρ = Mass density (kg/m3) 
σ = Pressure loss coefficient 
ξ = Cooling air percentage 

superscript  
0 = Relative 
- = Mean 

subscripts  
a =air; fitting coefficient 
b = fitting coefficient 
c = Cooling air; 

CC =Combustion chamber 
f = Fuel 
g = Gas 

HC = High-pressure compressor 
i = Inlet 

HT = High-pressure turbine 
LC = Low-pressure compressor 
LT = Low-pressure turbine 

max = Maximum 
o = Outlet 

PT = Power turbine 
1,2,21, 3… = State points 
 

ABSTRACT 
A predicting model of cooling air percentage for turbine 

blades with respect to simple-cycle triple-shaft gas turbine plant 
considering the thermophysical properties of the air and the gas 

is established. The thermodynamic performance of the cycle is 
investigated. The calculation flow chart of the power output 
and the efficiency is exhibited, and the verification computation 
is performed based on the design performance data for ДН80Л-
type industrial gas turbine plant developed by Ukraine. The 
results indicate the model is reasonable and can predict the 
design performance of gas turbine cycle effectively. The 
maximum power output, the maximum efficiency and their 
corresponding cooling air percentages are obtained by 
optimizing the pressure ratio of the low-pressure compressor 
and the total pressure ratio, respectively. The results also 
indicate that the outlet temperature of combustor chamber or 
the inlet temperature of turbine affects the thermodynamic 
performance of the cycle evidently. 

 
INTRODUCTION 

One of the most effective technological innovations to 
enhance specific power output and efficiency of gas turbine 
cycle is to enhance outlet temperature of the combustion 
chamber or the inlet temperature of the turbine. To prevent the 
turbine blades from hot corrosion, part of compressed air in the 
compressor must be bled to cooling the front blade stages of the 
turbine [1, 2]. In general, the cooling air should be so sufficient 
that it will cool the blades effectively, but bleeding too much 
compressed air will decrease the mass flow rate of main 
working fluid in the later flow path and then decrease the power 
output and efficiency of the gas turbine cycle [3]. How to 
determine the optimal cooling air percentages with respect to 
different cooling measures is very difficult. To solve this 
problem, many scholars have performed lots of research work. 
Ref.[2] presented a predicting model of cooling air percentage 
without involving the thermodynamic modelling of gas turbine 
cycle. Based on Ref.[2], Horlock et al [4, 5] and Jordal [6] 
pursued further studies with considering ideal air as working 
fluid [4, 5], and estimating the cooling air percentage with 
convection cooling and air film cooling [6]. Yong and Wilcock 
[7, 8] studied the thermodynamic performance of single-shaft 
ideal gas turbine cycle by considering the air cooling and the 
specific heat ratio of the air changes with temperature only, and 
the established thermodynamic model couldn't reflect the real 
operation process as the mass flow rate ratio of the fuel and the 
air was taken as perfect. Refs.[9-11] built the thermodynamic 
model of gas turbine cycle with the help of ASPEN soft, and 
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