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ABSTRACT 

Electroporation, electropermeabilization or pulsed electric 

field treatment is the application of electric pulses of sufficient 

amplitude to target tissue, which entails not only 

permeabilization of cell membranes, but also heat generation 

and dissipation, i.e. ohmic heating. 

Noticeable rise in temperature has been observed in a 

number of electroporation applications. The temperature rise is 

a potential source of alteration of thermodynamic properties of 

tissue wherein mass transport is occurring. In example, 

transport parameters such as liquid viscosity and solute 

diffusivity are temperature-dependent, as they relate to 

thermodynamic processes. 

There is a need to evaluate whether the rate of mass 

transport is altered significantly by the elevated temperature in 

plant tissue electroporation. The goal is to advance the basic 

knowledge of the phenomenon, as well as to optimize further 

treatment protocols for industrial purposes. 

This work presents a theoretical study of thermal relations 

in tissue immediately following electroporation and begins with 

a hypothetical spatio-temporal distribution of temperature in a 

sample of plant tissue as calculated during the course of a 

simulated electroporation experiment. This step is followed by 

a mass transfer analysis, where two mathematical models of 

mass transport in electroporated tissue are used to study the 

impact of transiently elevated temperature to i) kinetics of 

diffusion of a test solute, and ii) kinetics of liquid redistribution 

in tissue and its flow to sample exterior caused by an externally 

applied pressure. 

The main result of the study is a detailed theoretical analysis 

on the potential influence of heat generated due to the 

application of electroporation on kinetics of mass transport in 

tissue. Preliminary theoretical findings of this mass transport 

study coupled to the heat transfer model indicate that, provided 

the initial temperature increase in tissue is within reasonable 

bounds and heat is rapidly conducted away from tissue (i.e. 

tissue is not thermally insulated), influence of the temperature 

rise to mass transport in treated tissue is negligible. 

 

INTRODUCTION 
An electric field of sufficient strength can cause an increase 

of conductivity and permeability of the cell membrane. This 

effect is known as electroporation and is attributed to creation 

of aqueous pathways in the membrane [1]. Electroporation is 

essentially the application of electric pulses of sufficient 

amplitude to cells or target tissue, with the purpose of achieving 

a permeabilized state of the cell’s lipid bilayer membrane. 

NOMENCLATURE 
 
c [mol/m3] Solute concentration 
cp [J/kg.K] Specific heat capacity 

p [Pa] Liquid pressure 

T [°C] Temperature 
kb [W/m.K] thermal conductivity (bulk) 

kp,ke [m2] hydraulic conductivity (pore, tissue extracellular space) 
l [m] Sample height 

hv [W/m.K] Volumetric heat transfer coefficient 

Rcell [m] Cell radius 
r [m] Radius (pore, solute) 

fc, fk [-] Convection / Permeability correction factors 
τ [-] Tortuosity of extracellular space 

t [s] Simulation time 

z [m] Cartesian axis direction along the primary axis of solute 

diffusion, heat exchange, or liquid flow 

dm [m] Membrane thickness 
Ds [m2/s] Solute species s diffusion coefficient 

fv [-] Tissue volume fraction 

fpor [-] Surface fraction of pores 
F [-] Cell volume fraction in tissue 

G [Pa] Compressibility modulus 

PE [Pa] Externally-applied pressure (liquid expression model) 
 

Special/Greek characters 

τ [-] Tortuosity of the extracellular space 
ε [-] Porosity  

η [Pa.s] Liquid viscosity (temperature model only) 
μ [Pa.s] Liquid viscosity (liquid pressure model only) 

κm [1/s] Transmembrane diffusive flow coefficient 

α [-] Dimensionless proportionality factor reflecting membrane 
hydraulic conductivity 

ρ [kg/m3] Density 
 

Subscripts 

b  Bulk (tissue) 
amb  Ambient or reference 

e  Extracellular  

i  Intracellular 
δ  Denoting differential temperature, calc. as T – Tamb 

0  Initial value 
m  Membrane 

p  Pore (except in cp) 

 

Recently, a model called the dual-porosity model was 

adapted for the field of electroporation research [2]–[4] 

13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

804



    

employing mass conservation and transport laws. The model 

enables coupling effects of electroporation to the membrane of 

individual cells with the resulting mass transport (and, by 

extension through analogy, transmembrane heat transfer and 

heat transfer in tissue). The model leans strongly upon firmly 

established approaches presented in previous works that are 

devoted to similar frequent problems in chemical engineering 

[5], [6]. These approaches in studying mass transport all benefit 

from a well-known mathematical analogy of heat and mass 

transfer, and consequently, the developed dual-porosity model 

is a special case of the classical LaLoThEq (Lack of Local 

Thermal Equilibrium) model for porous media [7]–[10], which 

has long been present in literature on heat transfer. An 

analytical solution has been found for the presented dual-

porosity model formulation, however, the model can (and 

should, through further development) easily be extended with 

additional dependencies to account for heterogeneities in tissue 

and temporal component of electroporation, and then solved 

numerically. 

Due to the finite resistance of biological tissue, 

electroporation unavoidably entails the flow of an electric 

current through the tissue. This current – through what is 

electrically an ohmic load – results in heat generation and 

dissipation, i.e. the effect of ohmic heating. This essentially 

means that thermal effects are inseparably associated with 

electroporation. Noticeable rises in temperature have been 

reported in a number of electroporation applications [11]–[13]. 

The temperature rise is a potential source of alteration of the 

thermodynamic properties of the material where mass transport 

is occurring. Parameters such as viscosity, diffusion rate 

coefficient, and the rate of chemical reactions and alterations 

are known to be strongly dependent on temperature, since they 

are fundamentally related to thermodynamic processes. 

This paper presents a theoretical study of mass transport in 

plant tissue that has been electroporated and also heated due to 

electroporation via ohmic heating. The tissue is modelled as 

thermally non-insulated, and rapid dissipation of the generated 

heat is supposed. We begin with the presentation of a suitable 

simplified formulation of the thermal conduction model in 

tissue, not accounting for its heterogeneous structure. The 

model thus simplified can be considered sufficiently detailed 

for studying mass transport whose rate has been altered by an 

augmented temperature in electroporated tissue. The given 

thermal model is then coupled, via the temperature-dependent 

mass transport parameters, to the previously developed mass 

transport models of diffusion and liquid flow during pressing, 

and results are presented in the form of a parametric study. Due 

to the coupling of the models, the coefficients of diffusion and 

viscosity that were previously taken to be constant in the mass 

transport models, are now arbitrary functions of time. 

Therefore, it is no longer possible to develop an analytical 

solution of the thermal model, and the solution must be 

obtained numerically instead. 

The work presented herein is entirely theoretical in nature, 

based on existing literature and extension of the work done 

previously in the field of mass transport modelling. Validation 

and evaluation of suitability of these mathematical formulations 

is a work in progress and considered out of scope of this paper.  

THE HEAT DISTRIBUTION MODEL 
In the mass transport study presented in continuation, we 

look at the effect of transiently elevated temperature on the rate 

of solute diffusion and liquid flow in electroporated tissue. In 

order to study this effect of elevated temperature, it is necessary 

to determine at the outset the spatio-temporal distribution of 

temperature in tissue. 

We suppose that tissue is homogeneously heated (a 

simplification) due to ohmic heating during electroporation, 

and we then observe (i.e. simulate) the gradual dissipation of 

the generated heat out of the sample block of tissue. For the 

purposes of this study, the tissue samples are all assumed to be 

cylindrical and of low height as compared to the diameter of the 

cylinder. This is necessary in order to simplify the three-

dimensional model of heat conduction to one dimension, as we 

are neglecting the heat flow radially and through the side of the 

cylinder, as the side area is much smaller as compared to the 

top and bottom surfaces. Figure 1 illustrates this particular 

geometry. 

 

Figure 1 The thermal model geometry – plane of symmetry 

and boundary conditions. The particular cylindrical geometry 

of the tissue sample is not significant, but has been used for this 

illustration for purposes of maintaining consistence with mass 

transport studies. For the presented schematic to be an adequate 

representation of the actual state, the sample and setup 

geometry has to favour thermal transfer along only one 

(principal) axis. 

 
For the geometry shown in Figure 1 and making one more 

simplification, i.e. assuming the tissue is homogeneous 

material, we can propose the following mathematical model – a 

PDE – for describing the temperature distribution in tissue 
2

2

b b b

p

T k T

t c z

 


 
 (1) 

with boundary and initial conditions 

amb/2b z h
T T


  (2) 

0

0b

z

T

z 





 (3) 

00b t
T T


  (4) 

where the plane of symmetry (z = 0) is located exactly in the 

middle of the tissue sample of height h at a distance of h/2 from 

either of the sample’s largest surfaces, at which the bulk of heat 
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exchange is taking place (see Figure 1). The index b stands for 

‘bulk’, since we have assumed the tissue is homogeneous 

material instead of composed of multiple phases or spaces (as is 

the case with mass transport models). In eq. 1–4, t is 

simulation/experiment time, z is the spatial coordinate along the 

primary axis of heat conduction, T is the temperature, ρ 

material density, cp is the tissue heat capacity, and kb is the bulk 

tissue thermal conductivity. All of the physical properties such 

as density, specific heat capacity and thermal conductivity of 

the model tissue (apple fruit tissue) used for the parametrical 

study in continuation can be obtained from literature. 

In order to simplify calculations and presentation of results, 

it is convenient to introduce new variables to observe only 

temperature differences in relation to the ambient temperature 

instead of working with absolute values, thus 

,b b ambT T T    (5) 

This necessitates some corrections to the boundary 

conditions, which now read 

, amb amb/2
0b z h

T T T 
    (6) 

,

0

0
b

z

T

z









 (7) 

and initial condition is henceforth equal to the temperature 

difference between the absolute and ambient temperature, 

, 0,00b b amb btt
T T T T 

    (8) 

In continuation, the introduced δ-notation is kept throughout 

for clarity and as a reminder; the reader should beware that 

since Tb was redefined by eq. 5, this same equation should be 

consulted in order to obtain an absolute value of temperature 

from its ‘δ’ counterpart. 

Introducing a short-hand variable α in place of the factor 

kb/ρcp, and opening any classical work on heat conduction or 

mass transfer in solids (e.g. Carslaw & Jaeger, Crank), it is 

trivial to arrive at an analytical solution of the model, obtaining 

a spatio-temporal dependence of temperature in tissue for all t 

and z, namely 

 
  2

0,
,

0

4 1 2 1 2 1
, cos exp

2 1

n
b b

b
pn

T kn n
T z t z t

n l l c




 





      
           

  (9) 

The temperature distribution obtained using eq. 9 can then 

be used to recalculate the spatial and temporal distribution of 

mass transport coefficients that are temperature dependent, 

which will be done in the parametric study in continuation. 

THE DIFFUSION PROBLEM 
This section presents the already reported on in detail and 

thoroughly discussed model of dual-porosity for the diffusion 

problem, the full account of which is given in [3], [4], however 

here the model is given in its numerical form. This form is 

necessary in order to facilitate coupling of the theoretical heat 

distribution model with the mass transport model via 

temperature-dependent coefficient of diffusion. The coupled 

model is then used for the theoretical evaluation of the 

influence of raised temperature in tissue to mass transport for 

various temperatures (i.e. in a parametric simulation study). 

The slightly rearranged fundamental equations of the 

dual-porosity model for the diffusion problem read 

   
    

2

, 2

, ,
, ,e e

s e v m i e

c z t c z t
D f c z t c z t

t z


 
  

 
  (10) 

 
    

,
, ,

i
m i e

c z t
c z t c z t

t



  


 (11) 

where κm here is the transmembrane diffusive flow coefficient. 

The appropriate boundary and initial conditions are 

/2
( ) 0e z l

c t


  (12) 

0

( )
0e

z

c t

z 





 (13) 

0( ,0)e ec z c  (14) 

0( ,0)i ic z c  (15) 

Strictly adhering to the governing physics behind eq. 10, if 

the diffusion coefficient Ds,e is not space-invariant, eq. 10 must 

be rewritten into 

 
 

 
    ,

, ,
, , ,

e e
s e v m i e

c z t c z t
D z t f c z t c z t

t z z


   
   

   
 (16) 

which complicates the numerical integration scheme used to 

calculate ce. 

Using the finite difference approximations of ∂c/∂t and 

∂c/∂z and the Crank-Nicolson approximation of the temporal 

derivative by an arithmetic mean of its finite difference 

representations at the j-th and the (j+1)-th node, it is relatively 

straightforward (and thus the details are omitted from 

presentation) to arrive at the finite difference scheme for the 

extracellular concentration 

( ) ( ) ( ) ( )
1 1 1, 1 1, 1 , 1 1, 1

( ) ( ) ( ) ( ) ( ) ( )
, , , ,1, 1,

4

4

e e e e
j j ji j i j i j i j

e e e e e i
i j j j i j j v m i j v m i ji j i j

r
c p c q c s c

r
c p c q c s c f tc f tc   

       

 

    
 

      
 

 (17) 

where 
( , ) ( , )
, 1,
s e s e

j i j i jp D D    (18) 

( , ) ( , ) ( , )
,1, 1,2

s e s e s e
j i ji j i jq D D D     (19) 

( , ) ( , )
, 1,
s e s e

j i j i js D D    (20) 

and similarly 
( , ) ( , )

1 , 1 1, 1
s e s e

j i j i jp D D      (21) 

( , ) ( , ) ( , )
1 1, 1 , 1 1, 12

s e s e s e
j i j i j i jq D D D         (22) 

( , ) ( , )
1 , 1 1, 1

s e s e
j i j i js D D      (23) 

This set of eqs. 17–23 can be written in matrix form with 

the appropriate initial and boundary conditions taken into the 

account. A similar finite differencing scheme can be written for 

the intracellular concentration, except that in this case due to 

absence of a spatial derivative from eq. 11, this scheme is 

reduced to a simple integration on time and does not necessitate 

the use of the Crank-Nicolson scheme. 

Eqs. 17–23 show that the diffusion coefficient must be 

known in all spatial and temporal nodes from the plane of 

independent variables (the z-t plane), and since the diffusion 
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coefficient is dependent on temperature, the following 

functional dependence must be known 

    ,e ,0 ,, ,c
s s b amb

f
D z t D T z t T


   (24) 

where fc is the convection correction factor and τe the 

extracellular matrix pathway tortuosity (temperature 

independent factors) – for details on these parameters, see [3] 

or [4]. Ds,0 is the diffusion coefficient of solute species ‘s’ in 

bulk water. 

According to the well-known Einstein-Stokes relation [14], 

the diffusion coefficient in bulk solvent can be (re)calculated 

from temperature given a known dependence of the solvent 

viscosity η on temperature 

 
   

0 0
6

kT T
D T C

r T T  
   (25) 

Rather than estimating the diffusion coefficient from solute 

effective dimensions etc. as demanded by eq. 25, the diffusion 

coefficient is normally given in form of tabulated data for 

various solutes at a given temperature. In example, sucrose at 

20 °C in water has the diffusion coefficient of about 4.5 10-10 

m2.s-1 [15]. This holds for 20 °C i.e. at 293 K, and the viscosity 

of water at this temperature is 1.002 10-3 Pa.s [16]. This permits 

the determination of constant C0 from eq. 25, which equals C0 = 

D0(293 K) ∙ η(293 K) / 293 K = 1.54 10-15 m2.Pa.K-1. This 

allows for an immediate recalculation of the diffusion 

coefficient, and several representative values are collected in 

Table 1 below. 

 
T (°C) 10 20 30 40 50 60 70 

Ds,0(T) 

(μm2.s-1) 
333.7 450.3 584.7 737.0 909.4 1100.5 1310.7 

η (μPa.s) 1306.9 1002.0 797.5 653.5 547.1 466.6 403.9 

Table 1 Values of the diffusion coefficient of sucrose in an 

aqueous solution for different temperatures. Recalculated using 

relation 25 and constant C0 = 1.54 10-15 m2.Pa.K-1. The 

corresponding values of viscosity are given alongside for 

reference, taken from [16]. 

 

From values in Table 1 one can calculate that from 10 °C to 

70 °C, the diffusion coefficient of sucrose in water increases 4-

fold. While this is less than an order of magnitude difference, 

the diffusion phenomenon is strongly dependent on 

temperature, since the rate of diffusion Ds,e is the most 

important parameter governing solute extraction kinetics in eq. 

16 if the cellular membranes have been permeabilized to a 

sufficient degree. The values given in Table 1 are used as initial 

temperatures and the corresponding diffusion coefficients in the 

parametric study presented in continuation, where the 

numerical approach to the dual-porosity model of solute 

diffusion as given in this subsection is used to calculate the B(t) 

(i.e. normalized Brix) dependence for various initial 

temperatures of tissue. 

Note that the parameter Ds,0 is also one of the multiplicative 

factors determining the transmembrane diffusive flow 

coefficient κm, according to eq. 15 given in [4]. Since this 

parameter is not subject to the spatial derivative, it is much 

easier to incorporate it into the numerical solution than is the 

term Ds,e, and we do not consider the issue further. 

In order to calculate D0(T), which is a spatio-temporal 

function, i.e. D0(T(z, t)), according to eq. 25 the temperature-

dependant viscosity η(T(z, t)) needs to be determined first. 

Tabulated data for viscosity such as given in Table 1 can be 

used in order to obtain a polynomial that can aid in obtaining a 

high fidelity estimate of viscosity for any temperature within 

the range of temperatures for which the polynomial fit was 

calculated. Using the MATLAB (MathWorks, Inc.) function 

polyval and the data in Table 1, one can obtain a fifth-degree 

polynomial in the form 

  5 4 3 2ˆ ˆ ˆ ˆ= -1.129 3.528 13.006 23.943 ...

ˆ ˆ83.598 265.818 654.000

T T T T T

T T

    

  
 (26) 

where T̂ is the scaled and centred temperature. Scaling and 

centring transformation improves the numerical properties of 

the polynomial and the fitting algorithm. For the above eq. 26, 

the transformed temperature that can be used to calculate an 

arbitrary viscosity of water in range of 10 °C to 70 °C is 

obtained according to the following formula 

313.0000ˆ
21.6025

T
T


  (27) 

An additional note on the use of the numerical solution eqs. 

17–23. Given a known temperature distribution in the 

extracellular space, which is equal to the general distribution of 

temperature in tissue since both the intra- and the extracellular 

temperatures were assumed not to differ significantly, this 

temperature distribution (as already given by eq. 9 and 

reproduced here for reference) is equal to 

 
  2

0,
,

0

4 1 2 1 2 1
, cos exp

2 1

n
b b

b
pn

T kn n
T z t z t

n l l c




 





      
           

  (28) 

which can be directly inserted into eq. 25 and then Ds,0 into eq. 

24 to obtain values for the diffusion coefficient Ds,e(z, t). These 

values can then immediately be further used in the numerical 

integration scheme eqs. 17–23. Note that in eqs. 24 and 28, the 

δ-notation reminds of the use of relative temperature 

differences in computations, in order to emphasize that for 

determining the diffusion coefficient, absolute values and not 

only relative differences in temperature are necessary. In 

example, for a Te0,δ of 15 °C, the diffusion coefficient that is 

sought is the coefficient calculated for the temperature of tissue 

equal to 35 °C, given the ambient temperature of 20 °C.  

THE PRESSING PROBLEM 
This section presents the already reported on in detail and 

thoroughly discussed model of dual-porosity for the pressing 

problem, the full account of which is given in [4], [17], 

however, here the model is given in its numerical form. This 

form is necessary in order to facilitate the coupling of the 

theoretical heat distribution model with the liquid flow model 

via temperature-dependent liquid viscosity. This is a 

prerequisite to theoretical evaluation of the influence of raised 

temperature in tissue to mass transport for various temperatures 

in the parametric simulation study that is to follow. 
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The slightly rearranged fundamental equations of the dual-

porosity model for the pressing problem read 

   
    

2
, ,

2

, ,
, ,

e e ee e
i e

k G Gp z t p z t
p z t p z t

t z

 

 

 
  

 
  (29) 

 
    ,,

, ,
ii

i e

Gp z t
p z t p z t

t






  


 (30) 

The appropriate boundary and initial conditions are 

0
( ) 0e z

p t


  (31) 

( )
0e

z l

p t

z 





 (32) 

0( ,0)e ep z p  (33) 

0( ,0)i ip z p  (34) 

Strictly adhering to the governing physics behind eq. 29, if 

the viscosity of liquid η is not space-invariant, eq. 29 must be 

rewritten into 

   
    , ,, ,

, ,
e e ee e

i e

k G Gp z t p z t
p z t p z t

t z z

 

 

  
   

   
 (35) 

Using exactly the same approach as with the diffusion 

problem, and introducing the following replacements for the 

sake of algebra 

,e ek G



  (36) 

,e
e

G



  (37) 

,i
i

G



  (38) 

we come to the following finite difference Crank-Nicolson 

scheme for extracellular liquid pressure 

( ) ( ) ( ) ( )
1 1 1, 1 1, 1 , 1 1, 1

( ) ( ) ( ) ( ) ( ) ( )
, , , ,1, 1,

4

4

e e e e
j j ji j i j i j i j

e e e e e i
i j j j i j j e i j e i ji j i j

r
p p p p

r
p p p p tp tp

  

      

       

 

    
 

      
 

 (39) 

where 

, 1,j i j i j      (40) 

1, , 1,2j i j i j i j        (41) 

, 1,j i j i j      (42) 

and similarly 

1 , 1 1, 1j i j i j        (43) 

1 1, 1 , 1 1, 12j i j i j i j            (44) 

1 , 1 1, 1j i j i j        (45) 

As in the case of the diffusion problem, the system of 

equations 39–45 can be written in matrix form with the 

appropriate initial and boundary conditions taken into the 

account. A similar finite differencing scheme can also be 

written for the intracellular liquid pressure, except that in this 

case due to absence of a spatial derivative from eq. 30, this 

scheme is reduced to a simple integration on time and does not 

necessitate the use of a numerical PDE solving scheme. 

Since the dependence of viscosity on temperature has been 

treated in full detail in the preceding section dedicated to the 

diffusion problem, we do not repeat it at this point. If 

temperature and therefore viscosity is known for all z, 

coefficients defined in eqs. 40–45 can be determined and the 

finite difference scheme applied successively for all t to 

determine the extra- and intracellular liquid pressure profiles. 

Integration and scaling to obtain the sample deformation from 

liquid pressure loss is thereafter a trivial matter, as already 

presented in detail in [4], [17]. 

THE PARAMETRIC SIMULATION STUDY  
Using the relation 9 or 28 presented in preceding sections, 

the thermal distribution in a tissue sample can be estimated for 

the entire duration of a diffusion or pressing experiment. In this 

parametric study, the time of observation is limited to the first 

few minutes of the experiment (in contrast to an hour in 

diffusion and/or pressing experiments). This is due to the 

rapidly dissipating thermal energy, assuming the tissue sample 

is heated (by the electric current of electroporation or 

otherwise) to a temperature above that of the ambient or that of 

the solution prior to the start of the mass transport 

experiment/simulation. This thermal energy is rather rapidly 

dissipated out of the sample tissue block and thus its effects 

cannot be examined at the same timescales as those of the much 

slower processes of mass transport. Such an initial temperature 

increase may however have an important role in mass transport 

processes immediately after the treatment, i.e. during the first 

few seconds to minutes. The following parametric study is an 

attempt at quantifying this influence. 

 
Parameter Value Source Parameter Value source 

l (m) 0.005 
previous 

experiment 
ρ (kg.m-3) 1000 water [18] 

F (-) 0.345 [4] (apple) 
cp 

(J.kg-1.K-1) 
4200 

water [18], 

[19] 

Rcell (μm) 100 [20] 
hv 

(W.m-3.K-1) 
- not used 

kb (W.m-1.K-1) 0.418 [19] κm* (s-1) - see [4] eq. 15 

tend (s) 240 arb. chosen Ti0,δ (K) var. arb. chosen 

fv (-) 0.527 F/(1-F) Te0,δ (K) var. arb. chosen 

dm (nm) 5 [3] fc (-) 2.5 [4] 

τe (-) π/2 [3] fpor (-) 10-6 [4] 

rs/rp (-) 0.80 [3], [4]    

Table 2 Parameters used for the parametric study with the 

dual-porosity model of solute diffusion in an electroporated 

sample of apple tissue. Note the lower cell volume fraction F 

due to electroporation. The simulated experiment is for tissue 

treated according to Protocol A, with 200 V applied to the 

electrodes. Full details can be found in [4]. *κm with units s-1 is 

not thermal conductivity, but the transmembrane diffusive flow 

coefficient as defined in [3], [4]. 

 

The model tissue used for the parametric study was that of 

apple fruit. For apple fruit tissue, tabulated data can be found in 
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literature [19], giving the bulk tissue thermal conductivity at 

room temperature of about 0.418 W.m-1.K-1. Other relevant 

parameters are evident upon inspection of Tables 2 and/or 3. 

Using the parameters collected in Table 2 that follow 

directly from findings presented in [3], [4], simulations using 

the numerical dual-porosity model for solute diffusion yield 

results shown in Figure 2a, calculated for a range of tissue 

temperatures between 10 °C and 70 °C. These simulated 

kinetics take into the account the reduced (for 10 °C) or 

increased (for all temperatures > 20 °C, absolute ambient 

temperature was fixed to 20 °C) diffusion coefficient in 

electroporated tissue. This increase/decrease is relative to the 

diffusion coefficient value at the temperature of the ambient, 

which was the value used in all previous works (i.e. 20 °C). 

Figure 2b on the other hand presents simulation results based 

on the variable viscosity depending on temperature as evaluated 

by eq. 28, and dual-porosity pressing model results were 

obtained using the numerical solution given by eqs. 39–45. The 

range of temperatures in this case was the same, while 

parameters are collected in Table 3. 

 
Parameter Value Source Parameter Value Source 

l (m) 0.005 
previous 

exp. 
ρ (kg.m-3) 1000 water [18] 

F (-) 0.345 

[4] 

(apple 

tissue) 

cp 

(J.kg-1.K-1) 
4200 

water [18], 

[19] 

Rcell (μm) 100 [20] 
hv 

(W.m-3.K-1) 
- not used 

kb 

(W.m-1.K-1) 
0.418 [19] κm (s-1) - 

see [4] eq. 

15 

tend (s) 240 
arb. 

chosen 
Ti0,δ (K) var. arb. chosen 

fv (-) 0.527 F/(1-F) Te0,δ (K) var. arb. chosen 

kp (m) 1.25 10-19 [17], [4] fk (-) 2.5 [4] 

μ (Pa.s) f(Te) 
function 

of Te 
fpor (-) 4.8 10-3 [4] 

Ge (Pa) 11.0 105 [4]    

Table 3 Parameters used for the parametric study with the dual-

porosity model of filtration-consolidation (pressing) accounting 

for variable tissue temperature. Note the lower cell volume 

fraction F due to electroporation. The simulated experiment is 

for tissue treated according to Protocol A, with 200 V applied 

to the electrodes. Full details can be found in [4]. *ke in m2 is 

the extracellular hydraulic permeability, not to be confused 

with kb in W.m-1.K-1, the thermal conductivity of bulk tissue. 

 

Examining the results in Figure 2a – the diffusion case – 

one could conclude that the increased or decreased temperature 

of the tissue does not have a substantial effect on the rate of 

diffusion. Nevertheless, it would be too early to dismiss the 

influence of a temperature increase based only on this particular 

simulated case. The temperature in the simulation drops rapidly 

due to the small sample thickness and the model representation 

of an infinitely powerful heat sink/source that is supposed to 

surround the sample (either liquid solution or electrodes). In 

case of pressing experiments where metal electrodes are in 

contact with the tissue sample at all times, this may be a valid 

approximation. However, in case of the liquid solution in the 

diffusion example, the finite thermal conductivity of water and 

its finite quantity cannot be neglected, especially since the 

tissue bulk thermal conductivity is only slightly below that of 

bulk water. 

 

 
Figure 2 The results of the parametric study for electroporated 

tissue with the dual-porosity models of solute diffusion (a) and 

pressing (b) illustrating the effect of temperature-dependent 

parameters of these models. 
 

The results in Figure 2b clearly demonstrate that initially, 

during the first four minutes of the simulated pressing 

experiment, the influence of temperature-dependent viscosity is 

substantial. However, the effect of decreased viscosity 

diminishes rather rapidly as temperature drops and viscosity 

increases, and the end result after four minutes is a discrepancy 

of only about 10-15 % as compared to ambient temperature, 
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even for the largest initial increase in temperature that was 

modelled. 

For reasons given above, an important change has to be 

introduced into the model to account for the finite thermal 

conductivity in the region exterior to the tissue sample(s). 

Reconsidering the boundary condition for z = l/2, instead of 

enforcing this boundary condition to 0, one can postulate that 

the thermal flux entering the interface is equal to the thermal 

flux exiting the interface (conservation of energy), and is 

proportional to the temperature difference between tissue and 

surrounding material (water). The proportionality constant hs 

(the tissue-environment heat transfer coefficient) relates this 

difference in temperatures with the resulting thermal flux, 

according to the heat exchange properties of the contact tissue-

environment. 

The boundary condition defined in-line above can be 

expressed mathematically as 

 
/2 /2

b amb
s b amb

z l z l

T T
h T T

z z  

 
   

 
 (46) 

and indicates that a positive difference Tb – Tamb, i.e. a higher 

tissue sample temperature as compared to that of the ambient, 

will lead to a negative thermal gradient along the normal vector 

to the sample surface and in direction of increasing z. The 

thermal gradient depends on the geometrical properties of the 

system, which is captured by the heat transfer coefficient hs. 

The use of eq. 46 is problematic however, if the surrounding 

medium is agitated, when there is no thermal gradient in the 

space outside of the tissue sample. This renders the derivative 

in eq. 46 identical to zero at z = l/2+, and the derivative 

(Neumann) boundary condition degenerates to the condition Tb 

= Tamb, which is the original Dirichlet boundary condition one 

was trying to avoid at the outset. 

The above dilemma can be easily resolved by ignoring the 

flux altogether and considering the energy balance instead. If 

one accounts for the finite thermal capacity of the sample-

surrounding medium, which is a valid assumption when the 

tissue/solution mass ratio is low (valid for laboratory and 

industrial-scale applications where just enough water is added 

to grated material to make it pumpable through the treatment 

chamber), the ambient temperature Tamb should also be allowed 

to increase due to heat leaving the tissue particles and heating 

the surrounding medium. This means the ambient temperature 

Tamb is now a function of time, however, this is not a problem, 

since the known thermal distribution in tissue enables precise 

calculation of the thermal energy dissipated from the sample 

that was used to heat the environment. One possible approach is 

thus to determine the total amount of thermal energy leaving 

the tissue sample by integration, and recalculating (for every 

time step) the resulting increase in ambient temperature due to 

this energy. In case the sample and medium density and thermal 

capacity are assumed identical, the ambient temperature is the 

following function of tissue temperature 

    00
,

lm
amb b b

r
T t T z t T dz

l
   (47) 

where rm is the solid-to-liquid mass ratio, the mass ratio of 

tissue to the surrounding medium, and l is the sample thickness 

(along z). Since in all of the analysis thus far, only half of the 

tissue sample was modelled due to symmetry, the integration 

boundary has to be corrected, and for hypothetical solid-to-

liquid ratio of 1:2 (see diffusion experiments [3]), the ambient 

temperature changes according to 

       
/2 /2

0 00 0

2 1
, ,

2

l l

amb b b b bT t T z t T dz T z t T dz
l l

      (48) 

 

Figure 3 The parametric study of solute diffusion. Without 

accounting for medium heating (or cooling) (a); and with the 

medium temperature (Tamb) re-calculated at every time step and 

diffusion coefficient modified accordingly (b). 

 

Note that temperatures in eqs. 47–48 should all be 

understood as relative and not absolute quantities (refer to the 

text accompanying eq. 5). Using the ambient temperature 

dependence eq. 48 into the account in the boundary condition, 

and simulating using the same system and range of 

temperatures as used to produce Figure 2a, one obtains results 

as shown in Figure 3b. Results from Figure 2a were reproduced 

here again as Figure 3a, but at the same scale along the ordinate 

axis for easier comparison. 
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In order to calculate results in Figure 3b, a numerical 

method of calculating the temperature profile in tissue was 

used. Note that this causes slight artefacts for small values of t 

if the timescale is divided into equidistant nodes. In this case, a 

more accurate solution with limited numerical artefacts would 

have been obtained by use of a logarithmic or otherwise non-

linear non-equidistant meshing along the temporal coordinate 

with finer gradation for small values of t. Work concerning this 

issue extending beyond the basic identification of the problem 

and illustration by simple simulation as just described, is at this 

point relegated to future work, and is therefore not further 

discussed within the scope of the present paper. 

The simulated extraction kinetics shown in Figure 3b 

indicate that in case the more realistic case is modelled where 

tissue heats (or cools) the medium, the rate of diffusion is more 

extensively altered as compared to the simulation study where 

the ambient (medium) is modelled as an ideal sink (or source) 

of heat. However, since the system of the tissue particles and 

surrounding medium is not thermally insulated (e.g. in a 

treatment chamber), the ambient/medium temperature will drop 

nonetheless and the effect of tissue initial temperature will 

diminish in time. Also note that only a very substantial increase 

in tissue initial temperature (e.g. by 30 °C to 60 °C – note that 

the given temperatures in the legend on Figure 2 or Figure 3 are 

absolute initial tissue temperatures) is needed to produce a 

noteworthy increase in the rate of diffusion. Indeed, such 

temperature increases are reasonably expected to occur in 

typical experiments or perhaps even industrial applications of 

pulsed electric field treatment. 

To illustrate by an example calculation, consider a resistive 

disk of tissue, 25 mm in diameter and 5 mm in height, with a 

resistance of 100 Ω. Its volume is approximately 2.5 cm3, and 

its weight equals about 2 g. If the average current of 5 A (at, 

say, 400 V electrode voltage) flows through the tissue sample 

during an electric pulse of 100 μs in duration, its maximum 

dissipative thermal power equals 2 kW. If a thousand such 

pulses are delivered in a single train with the repetition 

frequency of 1 kHz, this produces 200 J of thermal energy. If 

we take, for the specific heat capacity of tissue, the specific 

heat capacity of water, these 200 J result in an increase in 

temperature of the 2 g sample by 24 °C. 

CONCLUSIONS 
This paper examines the relation between tissue 

temperature, diffusion coefficient and viscosity in two 

parametric studies where temperature is varied and the effect 

simulated using the dual-porosity model and its calculated 

diffusion/expression kinetics. The effect of constantly raised 

temperature was already studied in a similar way in [3], and 

therefore, in this paper, the approach is taken a step further by 

considering the influence of temperature if heat is dissipated 

out of tissue during the diffusion stage as realistically expected. 

The main conclusion of this paper with relevance to 

electroporation of tissues is that, given moderate increases in 

tissue temperature and thermally non-insulated systems 

permitting sufficiently rapid cooling, the temperature increase 

itself via augmented diffusion coefficient and reduced viscosity 

will not have a noteworthy effect on the rate of mass transport. 

A more important effect to mass transport in the case of 

elevated temperature is probably the structural alteration of 

tissue due to synergistic effects between the increased 

temperature and electroporation, supposing that such effects do 

exist. We are basing this supposition on the observed 

temperature-dependent electrical characteristics of tissue (e.g. 

conductivity) and assuming that electroporation is delivered in 

a typical treatment protocol comprising a multitude of 

sequential electric pulses. This hypothesis however remains to 

be verified by a Multiphysics simulation. 

Our findings of the limited impact of elevated temperature 

to mass transport kinetics should not be misinterpreted by 

concluding that elevated temperature does not have a strong 

and direct effect on transport kinetics, but that in most practical 

cases, thermal dissipation due to electroporation will most 

likely not be sufficient to noticeably alter mass transport 

kinetics. This is simply because the electric current-generated 

heat dissipates too quickly, and the system returns to ambient 

temperature within seconds or minutes after the treatment.  
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