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General aspects of thermoelectric effects in spin valves consisting of two magnetic layers separated by a non-
magnetic spacing layer are considered, with the main focus on the spin Seebeck effects. The Seebeck and spin
Seebeck effects are considered in both current-in-plane and current-perpendicular-to-plane geometries. The corre-
sponding thermopower and spin thermopower in the macroscopic limit of electronic transport are also considered.
Physical origin of the spin effects is discussed in detail.
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1. Introduction

One can observe recently an increasing interest in ther-
moelectric properties of nanomaterials, which appears
due to the following two reasons. The first one is of
applied character and concerns expected applications of
thermoelectric phenomena for converting thermal energy
to electric energy at nanoscale [1, 2]. The second rea-
son is of both fundamental and applied characters and
concerns various spin related effects in thermoelectric-
ity, which were discovered in recent years. These ef-
fects can be considered as spin counterparts of already
well known thermoelectric phenomena related to electron
charge [3–6].

Conversion of thermal to electric energy is an essence
of the conventional Seebeck effect, where an electrical
voltage ∆V is crated by a temperature difference ∆T be-
tween the two ends of a system. This effect is described
quantitatively by the thermopower (or the Seebeck co-
efficient) S, defined as S = −∆V/∆T in the absence of
charge current flowing in the system, I = 0 (e.g. in an
open circuit system) [7]. Advantage of nanoscale systems
over bulk materials follows from the fact that thermo-
electric efficiency in nanoscale systems can be enhanced
owing to violation of the Wiedemann–Franz law due to
energy quantization and Coulomb correlations [8–13].

Magnetic materials with relatively long spin relaxation
time, when transport in the two spin channels can be
considered as independent, can exhibit additionally spin
thermoelectric properties [3–5, 14–16]. Similarly to the
conventional Seebeck effect, one can observe in these
materials the so-called spin Seebeck effect, which is de-
scribed by the corresponding spin thermopower or spin
Seebeck coefficient Ss. This effect consists in genera-
tion of a spin voltage ∆Vs by a temperature gradient,
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i.e. Ss = −∆Vs/∆T [5, 15]. The spin Seebeck effect re-
sults from interplay of charge and spin transport, and can
be important in various spintronic devices [4]. When the
spin relaxation processes are absent, a spin accumulation
builds up at the ends of a system with open boundary
conditions, which suppresses the spin current, similarly
as charge accumulation suppresses charge current. As a
result, there is an electrical voltage as well as spin volt-
age between the two ends of a system when these ends
have different temperatures. However, when spin relax-
ation is fast, there is no spin accumulation, even if spin
current is induced by a temperature gradient, and only
an electric voltage appears between the two ends of the
system. Interestingly, the electrical voltage in these two
limiting situations, i.e. with and without spin accumula-
tion (spin voltage), may be remarkably different due to
the interplay of the charge and spin transport and charge
and spin accumulations.

Thermoelectric phenomena are of practical use when
the thermoelectric efficiency described by the figure of
merit Z obeys the inequality ZT > 1, where T denotes
temperature. In the case of conventional thermoelectric-
ity, the thermoelectric efficiency is given by the relation
ZT = S2GT/κ [17], where G and κ stand for the electri-
cal and thermal conductance, respectively. Additionally,
to describe spin thermoelectricity in magnetic materials
one can introduce the spin figure of merit described by
ZsT = S2

s |Gs|T/κ, where Gs is the spin conductance de-
fined as Gs = G↑ −G↓, with Gσ (σ =↑, ↓) denoting elec-
trical conductance in the well-defined spin-σ channel [5].

In this paper we consider thermoelectric phenom-
ena in typical current-in-plane (CIP) and current-
perpendicular-to-plane (CPP) spin valves consisting of
two magnetic layers separated by a nonmagnetic spacing
layer. Such devices are known to exhibit giant magne-
toresistance (GMR) effect due to rotation of the films’
magnetic moments from parallel to antiparallel align-
ment, which occurs as a result of spin-dependent trans-
port. Our main interest, however, is in spin thermoelec-
tric effects which may occur in these devices.
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2. General aspects of thermoelectricity
in spin valves

Let us consider a typical spin valve consisting of two
magnetic layers separated by a thin nonmagnetic layer,
and assume that the magnetic moments of the layers are
oriented in their planes. Resistance of the system in the
CIP or CPP geometry depends then on the angle φ be-
tween magnetic moments of the two magnetic films [18–
23] and can be written approximately as

R(φ) = RP + ∆R sin2(φ/2), (1)
where RP is the resistance in the parallel magnetic con-
figuration (φ = 0), while ∆R is the difference in resis-
tances of antiparallel, RAP , and parallel configurations,
∆R = RAP −RP . Alternatively, one may write the cor-
responding conductance G(φ) as

G(φ) = GP −∆G sin2(φ/2), (2)
where GP is the conductance in the parallel configuration
and ∆G = GP − GAP . Usually, ∆R > 0, but in some
systems ∆R < 0 may also occur.

Let us assume the lateral size (total thickness) of the
spin valve in the CIP (CPP) geometry is longer than the
spin diffusion length, so the spin effects in thermoelec-
tricity are negligible. In metallic systems the Seebeck
coefficient S obeys the Mott formula [24, 25], i.e. S is
proportional to the temperature T and to the derivative
of the conductivity with respect to the chemical potential
µ. In our case we write this relation as

S = −π
2k2BT

3|e|
∂

∂ε
lnG

∣∣∣
ε=EF

, (3)

where kB is the Boltzmann constant, e is the electron
charge (e < 0), while the derivative of the corresponding
(CIP or CPP) conductance with respect to energy ε is
taken at the Fermi level ε = EF. Note that the ther-
mopower S vanishes when the conductance is constant
near the Fermi level.

Taking into account the above formula and Eq. (2),
one may write the thermopower S for arbitrary magnetic
configuration in the form

S(φ) = −π
2k2BT

3|e|
∂

∂ε
lnG(φ)

∣∣∣
ε=EF

= −π
2k2BT

3|e|
∂

∂ε
ln(GP −∆G sin2(φ/2))

∣∣∣
ε=EF

. (4)

In the collinear (i.e. parallel and antiparallel) configura-
tions, the above formula gives

SP (AP ) = −π
2k2BT

3|e|
∂

∂ε
lnGP (AP )

∣∣∣
ε=EF

. (5)

Thus, to find the thermopower S one needs to know how
the conductance depends on energy around the Fermi
level. In the case of spin valves, the conductance de-
pends on the materials used to fabricate the spin valve
structure and in general is a rather complex function of
the conductances of individual layers.

What follows from the above is that the thermopower
in spin valves depends on magnetic configuration, pro-
vided the GMR is nonzero. Thus, one may define the

magnetothermopower (MTP) as a difference in the ther-
mopowers in parallel and antiparallel configurations [15],
MTP = S(φ = 0)− S(φ = π), that is

MTP =
π2k2BT

3|e|
∂

∂ε
ln

(
GAP
GP

) ∣∣∣
ε=EF

. (6)

Note that generally the Fermi energy EF may depend on
magnetic configuration due to size effects, which for no-
tation simplicity is not indicated explicitly in the above
formula.

Consider now thermoelectric effects in the opposite
limit, i.e. when the corresponding length of the system
is smaller than the spin diffusion length, so transport
in one spin channel is independent of transport in the
second spin channel. For simplicity, we restrict further
considerations in this section to collinear, i.e. parallel
and antiparallel alignments of the magnetic moments of
the two ferromagnetic films. Total electrical conductance
in both configurations can be presented as a sum of the
individual conductances of the spin-↑ and spin-↓ channels

GP = GP↑ +GP↓ , (7)

GAP = GAP↑ +GAP↓ . (8)
In turn, the corresponding spin conductances are

GPs = GP↑ −GP↓ , (9)

GAPs = GAP↑ −GAP↓ . (10)

For each spin channel one can define the corresponding
thermopower:

Sσ = −δVσ
∆T

= −π
2k2BT

3|e|
∂

∂ε
lnGσ

∣∣∣
ε=EF

(11)

for σ =↑, ↓. Now, the voltages generated in the two spin
channels can be different. Thus, one can write this volt-
age as

Vσ = V + σ̄Vs, (12)
where σ̄ = +(−) for σ =↑ (↓). Following this, one may
introduce the conventional electrical thermopower as

S = S↑ + S↓, (13)
and spin thermopower as

Ss = S↑ − S↓. (14)
Accordingly, the electrical thermopower may be written
in the form

S = −π
2k2BT

3|e|
∂

∂ε
ln(G↑G↓)

∣∣∣
ε=EF

, (15)

while the spin thermopower as

Ss = −π
2k2BT

3|e|
∂

∂ε
ln
G↑

G↓

∣∣∣
ε=EF

. (16)

The above formulae are general, i.e. valid for arbitrary
spin valve and for both collinear configurations. First,
one can easily conclude that the electric thermopower S
given by Eq. (15) is different from that given by Eq. (5),
and this takes place in both parallel and antiparallel mag-
netic configurations. As mentioned in Introduction, this
difference appears as a result of spin accumulation at the
ends of the system. Second, assuming a symmetrical spin
valve, when both magnetic layers are equivalent, one has
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G↑ 6= G↓ in the parallel configuration, and consequently
also SP↑ 6= SP↓ . As a result, the corresponding spin ther-
mopower is generally nonzero, SPs 6= 0, i.e. thermal gra-
dient may cause not only an electric voltage V but also
a spin voltage Vs. In the antiparallel configuration, in
turn, G↑ = G↓ for a symmetrical spin valve, and thus
also SAP↑ = SAP↓ . The electrical thermopower SAP is
then nonzero, but the spin thermopower SAPs vanishes,
SAPs = 0. Note that when the spin valve is asymmetrical,
the spin thermopower may occur also in the antiparallel
configuration.

Similarly as in the absence of spin thermoelectricity,
one can define magnetothermopower:

MTP =
π2k2BT

3|e|
∂

∂ε
ln

(
GAP↑ GAP↓

GP↑ G
P
↓

)∣∣∣
ε=EF

. (17)

and spin magnetothermopower, MTPs, defined as the dif-
ference in spin thermopowers in the parallel and antipar-
allel configurations,

MTPs =
π2k2BT

3|e|
∂

∂ε
ln

(
GAP↑

GAP↓

GP↓
GP↑

)∣∣∣
ε=EF

. (18)

When the spin valve is symmetrical, one should put
GAP↑ = GAP↓ in the above formulae, so spin magnetother-
mopower is then determined only by the second term of
the logarithm argument.

3. CIP configuration: macroscopic limit

Consider now a spin valve in the CIP geometry and as-
sume the macroscopic limit. It is known that GMR effect
disappears in this limit, which corresponds to the situa-
tion when thickness of the spacing layer is larger than the
corresponding electron mean free path. We will consider
in this section only collinear alignment of the magnetic
moments of both magnetic layers. Assume first the case
when spin effects and spin accumulation in the magnetic
layers are absent due to spin-flip scattering. The in-plane
conductance can be then written as

G ∼= G1 +G2 +G0, (19)
where G1, G2 and G0 denote the conductances of the
two magnetic layers and of the nonmagnetic layer, re-
spectively. The corresponding thermopower is then

S = −π
2k2BT

3|e|
∂

∂ε
ln
(
G1 +G2 +G0

) ∣∣∣
ε=EF

. (20)

Note that the thermopower in the antiparallel configura-
tion is then the same as in the parallel one, so the mag-
netothermopower is equal to zero (similarly as GMR).

Assume now the spin accumulation and spin effects
play a role. The in-plane conductance GPσ in the spin
channel σ can be then written as

Gσ ∼= G1
σ +G2

σ +G0/2, (21)
for σ =↑ and σ =↓. Here, G1

σ and G2
σ denote the spin-

dependent conductances of the two magnetic layers in the
spin valve. Assuming the two spin channels as indepen-
dent, one can define the spin-dependent thermopower:

Sσ = −π
2k2BT

3|e|
∂

∂ε
ln
(
G1
σ +G2

σ +G0/2
) ∣∣∣
ε=EF

. (22)

As above, we can define the conventional electrical ther-
mopower

S = −π
2k2BT

3|e|
∂

∂ε
ln
( (
G1

↑ +G2
↑ +G0/2

)
×
(
G1

↓ +G2
↓ +G0/2

) )∣∣∣
ε=EF

, (23)

and spin thermopower as

Ss = −π
2k2BT

3|e|
∂

∂ε
ln

(
G1

↑ +G2
↑ +G0/2

G1
↓ +G2

↓ +G0/2

)∣∣∣
ε=EF

. (24)

When magnetic configuration is parallel, then in both
magnetic layers spin-↑ corresponds to majority (M)
electrons, while spin-↓ to spin minority (m) ones. The
conventional thermopower S can be then written as

SP = −π
2k2BT

3|e|
∂

∂ε
ln
( (
G1
M +G2

M +G0/2
)

×
(
G1
m +G2

m +G0/2
) )∣∣∣

ε=EF

, (25)

while the spin thermopower SPs takes the form

SPs = −π
2k2BT

3|e|
(26)

× ∂

∂ε
ln

(
G1
M +G2

M +G0/2

G1
m +G2

m +G0/2

) ∣∣∣
ε=EF

.

In the antiparallel configuration, in turn, ↑ and ↓ corre-
spond to M and m in the left (1) layer, and to m and M
in the right (2) magnetic layer. Thus, the conventional
thermopower takes the form

SAP = −π
2k2BT

3|e|
(27)

× ∂

∂ε
ln
( (
G1
M +G2

m +G0/2
)

×
(
G1
m +G2

M +G0/2
) )∣∣∣

ε=EF

,

while the spin thermopower is given by the formula

SAPs = −π
2k2BT

3|e|
(28)

× ∂

∂ε
ln

(
G1
M +G2

m +G0/2

G1
m +G2

M +G0/2

) ∣∣∣
ε=EF

.

When the spin valve is symmetrical, G1
M = G2

M and
G1
m = G2

m, the spin thermopower in the antiparallel con-
figuration vanishes, SAPs = 0.

One point requires some comments. In the macro-
scopic limit the electrical conductance is independent of
the magnetic configuration, i.e. the resistance in both
parallel and antiparallel configurations is the same, so
the GMR vanishes. Despite of this, when spin relaxation
in the magnetic layers is slow, one can observe spin ther-
mopower, which may be different in the two magnetic
configurations. Moreover, the conventional thermopow-
ers in both configurations are also different, and also dif-
fer from the thermopower in the absence of spin effects
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(see Eq. (18)), which follows from the spin accumula-
tion as already discussed in the previous section. To un-
derstand the difference in behavior of the resistance and
spin thermopower, one should mention that spin ther-
mopower also exists in a single magnetic slab when its
length is smaller than the spin diffusion length [4]. How-
ever, the contributions from both magnetic layers in spin
valve cancel each other in the antiparallel configuration.
This means that local spin currents flow between the two
magnetic layers, though the total spin current is equal to
zero.

Following the preceding section, one can introduce
the magnetothermopower MTP and spin magnetother-
mopower MTPs. The corresponding formulae can be
easily obtained from the formulae (25) to (28) and the
appropriate definitions, so we will not present them ex-
plicitly. Note, the magnetothermopower does not vanish.

4. CPP configuration: macroscopic limit

Consider now a spin valve in the CPP configuration,
and again assume the macroscopic limit. There is some
difference between the CPP and CIP configurations —
as GMR in the macroscopic limit disappears in the CIP
configuration, while it still remains quite substantial in
the CPP geometry. This difference follows from the role
of electrons which assure spin contact between both mag-
netic layers in the spin valve structure. In the case of CIP
geometry, such electrons travel roughly perpendicular to
the electric field, and thus do not contribute to current.
In the CPP case, in turn, such electrons propagate par-
allel to electric field, and therefore contribute to current.
This is the reason why the GMR disappears with the
spacer thickness faster in the CIP geometry than in the
CPP one, and in the latter case remains finite in the
macroscopic limit.

In the absence of spin effects, the effective conductance
of the spin valve in the CPP geometry may be written
in the macroscopic limit as,

G ∼=
(G1 +G2)G0 +G1G2

G1G2G0
. (29)

Thus, the corresponding thermopower takes the form

S = −π
2k2BT

3|e|
(30)

× ∂

∂ε
ln

(
(G1 +G2)G0 +G1G2

G1G2G0

) ∣∣∣
ε=EF

.

When the spin diffusion length is long, the spin accu-
mulation and spin effects may occur in the thermoelec-
tricity. In this limit, conductance in the spin-σ channel
may be written as

Gσ ∼=
(G1

σ +G2
σ)G0 + 2G1

σG
2
σ

G1
σG

2
σG

0
. (31)

Accordingly, the corresponding thermopower Sσ takes
the form

Sσ = −π
2k2BT

3|e|
(32)

× ∂

∂ε
ln

(
(G1

σ +G2
σ)G0 + 2G1

σG
2
σ

G1
σG

2
σG

0

) ∣∣∣
ε=EF

.

Thus, in the parallel magnetic configuration one finds

SP = −π
2k2BT

3|e|
(33)

× ∂

∂ε
ln

(
(G1

M +G2
M )G0 + 2G1

MG
2
M

G1
MG

2
MG

0

× (G1
m +G2

m)G0 + 2G1
mG

2
m

G1
mG

2
mG

0

) ∣∣∣
ε=EF

for the conventional thermopower, and

SPs = −π
2k2BT

3|e|
(34)

× ∂

∂ε
ln

(
(G1

M +G2
M )G0 + 2G1

MG
2
M

G1
MG

2
MG

0

× G1
mG

2
mG

0

(G1
m +G2

m)G0 + 2G1
mG

2
m

) ∣∣∣
ε=EF

for the spin thermopower.

In turn, in the antiparallel magnetic configuration we
find

SAP = −π
2k2BT

3|e|
(35)

× ∂

∂ε
ln

(
(G1

M +G2
m)G0 + 2G1

MG
2
m

G1
MG

2
mG

0

× (G1
m +G2

M )G0 + 2G1
mG

2
M

G1
mG

2
MG

0

) ∣∣∣
ε=EF

for the conventional thermopower, and

SAPs = −π
2k2BT

3|e|
(36)

× ∂

∂ε
ln

(
(G1

M +G2
m)G0 + 2G1

MG
2
m

G1
MG

2
mG

0

× G1
mG

2
MG

0

(G1
m +G2

M )G0 + 2G1
mG

2
M

) ∣∣∣
ε=EF

(36)

for the spin thermopower. As in the CIP case, when spin
relaxation is slow, one can observe spin thermopower,
which may be different in the two magnetic configura-
tions. Moreover, the conventional thermopowers in both
configurations are also different, and also differ from the
thermopower in the absence of spin effects (see Eq. (28)).
Again, when the spin valve is symmetrical, G1

M = G2
M

and G1
m = G2

m, the spin thermopower in the antiparal-
lel configuration vanishes, SAPs = 0. Similarly as in the
preceding section, one can introduce the magnetother-
mopower MTP and spin magnetothermopower MTPs,
and the corresponding formulae can be easily obtained
from the formulae (33) to (36) and the appropriate defi-
nitions, so we will not present them here explicitly.
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5. Conclusions

We have described general aspects of the conventional
and spin thermoelectric effects in metallic spin valves
consisting of two magnetic layers separated by a nonmag-
netic layer. Thermoelectric properties in the macroscopic
limit of electronic transport are also considered. We have
distinguished between situations of long and short spin
diffusion length. In the latter case the spin thermoelec-
tric effect vanishes, so one may observe only the conven-
tional Seebeck effect. In the former case, in turn, one can
observe both conventional and spin Seebeck effects.

Interestingly, the conventional thermopower (or equiv-
alently the Seebeck coefficient) in both limiting situation
may be different. This difference appears due to the ab-
sence of spin accumulation (spin voltage) when the spin
diffusion length is short. When the spin diffusion length
is long (of the order of or longer than the system length),
then both electrical voltage and spin voltage are gener-
ated in the system under open circuit boundary condi-
tions. However, when the spin valve is symmetric, i.e.
both magnetic films have equal parameters and thick-
ness, the spin thermopower in the antiparallel configura-
tion vanishes, while it appears only in the parallel con-
figuration.
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