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ABSTRACT 
A dynamic analysis is performed on a traditional helical fin; 

but, with fixed fin tip temperature, rather than adiabatic fin tip 

boundary condition.  A time dependent solution is provided.  The 

final version of the solution is presented in an analytical and 

closed form equation.  The problem is solved using Laplace 

transforms for partial differential equations.  The complete 

governing equation is extensively in the form of the Bessel 

function.  It is shown that the dynamic equation, when time 

reaches infinity, resolves to the steady state solution for the same 

problem.   

 

INTRODUCTION 
Traditionally, the helical fin is modelled using the adiabatic 

fin tip condition.  This work investigates the same problem but 

with fixed tip temperature condition.  The solution is derived 

from a microscopic and unsteady state energy balance.  

Differential equations, Laplace transforms, and dimensionless 

variables are all utilized in finding the solution.  

The fin is modelled and shown in Figures 1 and 2, along 

with all the required and defined physical parameters. 
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Figure 1  Top and side view of helical fin. 
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Figure 2  Physical dimensions of helical fin. 

 
NOMENCLATURE 
A  area 

cp  heat capacity 

e  Euler’s number, 2.7182 . . .  

h  convection heat transfer coefficient 

i  (-1)
0.5

 

J  Bessel function of the 1
st
 kind 

I  modified Bessel function of the 1
st
 kind 

K  modified Bessel function of the 2
nd

 kind 

k  thermal conductivity 

l  fin length, rf – rb 

q  heat transfer rate 

R  dimensionless radius, (r – rb)/(rf – rb) 

r  radial coordinate 

S  Laplace variable 

s  time 

T  temperature 

t  fin thickness 

y  R+λ 

z  axial coordinate 

α  thermal diffusivity, k/ϼ-cp 

αn  n
th

 pole of θ 

Δ  change 

η  fin efficiency 

Θ  dimensionless  temperature, (T - T∞)/(Tb - T∞) 

θ  defined in equation 5 

Λ
2
  2hl

2
/kt 

λ  rb/(rf – rb) 

π  pi, 3.1415 . . .  
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ρ  density 

τ  dimensionless time, αs/(rf - rb)
2
 

Subscripts 

a  arbitrary 

b  base 

c  cross sectional 

cond conduction 

conv convection 

f  fin tip 

max maximum 

s  surface 

∞  bulk air conditions 

 
ENERGY BALANCE 

An energy balance is performed on the fin shown in Figures 

1 and 2 in conjunction with equations 1 and 2. 

 

 
dr

dT
kAq ccond   (1) 

 

 ))((  TrThAq sconv  (2) 

 

The energy balance yields equation 3. 
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Equation 3 is then put into dimensionless terms: 
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Θ(y,0) = 1 

Θ(λ,τ) = 1 

Θ(1+λ,τ) = Θa 

 

where y = R + λ, and R ranges from 0 to 1. 

Equation 4 is then solved using Laplace transforms where 

the transform is defined in equation 5: 
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After applying the boundary conditions, the general solution 

for θ is obtained using the Bromwich integral, or otherwise 

known as Cauchy’s residue theorem: 
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RESULTS 
The solution to equation 4 is given in equations 7 and 8.  The 

steady state solution to equation 4 is given by equation 7, 

Carranza and Ospina [1].  Figure 3 is a plot of equation 7 utilizing 

an example problem (Example 1.3, physical dimensions and 

transport properties are borrowed) given by Kraus et al. [2]  For 

all cases in this work, Θa = 0, for simplicity.  Note that Λ
2
 is the 

Biot number. 
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Thus, the dynamic problem is simply equation 7 plus 

equation 8.  Equations 7 and 8 are determined from equation 6.  

Equations 7 and 8 are plotted in Figure 4. 
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where 

 

a = αn(R+λ)/λ 

b = αn(1+λ)/λ 

f1 = I0(ai)K0(αni)J0(αn) 

f2 = I0(αni)K0(ai)J0(αn) 

f3 = I0(bi)K0(αni)J0(αn) 

f4 = I0(αni)K0(αni)J0(b) 

f5 = I0(ai)K0(αni)J0(b) 

f6 = I0(bi)K0(ai)J0(αn) 

f7 = I1(bi)K0(αni)J0(αn) 

f8 = I0(ai)K1(bi)J0(αn) 

f9 = I1(αni)K0(αni)J0(b) 

f10 = I0(bi)K1(αni)J0(αn) 

 
Figure 3  Steady state solution of equation 4. 
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Figure 4  Dynamic solution of equations 7 and 8 
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