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NOMENCLATURE

D [m2/s] Diffusion coefficient
Deff [-] Effective dispersion coefficient
L [m] Channel length

m(n) [-] n-th order temporal local moments

m
(n)
out [-] n-th order average outlet moments

P∗ = (P−Pout)/(ρ f U
2) [-] Dimensionless pressure

Pout [atm] Outlet pressure
Peax =UL/D [-] Axial Peclet number
PeR =UR/D [-] Cross-sectional Peclet number
ReR = ρ f UR/µ [-] Reynolds number based on R
U [m/s] Average axial velocity
v∗

ζ
,v∗ρ [-] Dimensionless axial and radial velocities

r,z [m] Radial and axial coordinates

Special characters
α = L/R [-] Channel aspect ratio
η = lw/ls [-] Pillar length over gap length
γ [-] Slip length

ΓTA = (192(1+4γ)2)−1 [-] Taylor-Aris dispersion coefficient
φ [-] Dimensionless solute concentration
χ = R/ls [-] Channel radius over gap length

ρ f [Kg/m3] Fluid density

σ2
out [-] Variance of outlet chromatogram

τ = tU/L [-] Dimensionless time
ζ,ρ [-] Dimensionless axial and radial coordinates

ABSTRACT

The present work focuses on laminar dispersion of solutes in

finite-length patterned microtubes. Dispersion is strongly influ-

enced by axial flow variations caused by patterns of periodic pil-

lars and gaps in the flow direction. We focus on the Cassie Bax-

ter state where the gaps are filled with with air pockets and thus

free-slip boundary conditions apply at the liquid-air interface.

The analysis of dispersion in a finite-length microtube is ap-

proached by considering the temporal moments of solute con-

centration. With this approach it is possible to investigate the

dispersion properties at low and high Peclet numbers and there-

fore how the patterned structure of the microtube influences both

the Taylor-Aris and Convection-dominated dispersion regimes.

Numerical results for the velocity field and for the moment hi-

erarchy are obtained by means of Finite Element Method (Com-

sol 3.5).

INTRODUCTION

How hydrodynamic dispersion is affected by wall slip remains

to be fully understood. It was pointed out in many studies on

slip flow in microchannels or microcapillaries that wall slippage

would affect hydrodynamic dispersion [1]. The common think-

ing is that wall slip can reduce the cross-sectional velocity gradi-

ent, and therefore, will reduce the dispersion as well.

Dispersion is favourable in processes requiring enhanced mix-

ing. However, it is undesirable for analytical techniques which

require sharper resolution in terms of distinct peaks for con-

stituent components [2].

Dispersion occurs through combined effects of advection and

molecular diffusion. For a given diffusivity, dispersion depends

only on the flow characteristics. Due to different flow character-

istics, dispersion is sensitive to velocity profile, cross section of

the conduit [3; 4], secondary flows that can suppress the disper-

sion through an enhanced transverse diffusion[5].

In this paper we investigate how dispersion is affected by

axial flow variation caused by patterns of periodic pillars and

gaps in flow direction. Such patterns occur naturally in super-

hydrophobic surfaces and may result from wall asperities or be

fabricated purposefully in several microfluidic devices [6; 7].

Liquid placed over the pattern exists in two distinct limiting con-

figurations: Cassie-Baxter and Wenzel state. Both flow features,

i.e. slippage under Cassie state and recirculation/stagnant zones

in Wenzel state, can potentially influence the transverse diffusion

and dispersion.

We focus exclusively on the Cassie-Baxter state where the

gaps are filled with with air pockets and thus free-slip boundary

conditions apply at the liquid-air interface. The transition from a

no-slip to a free slip boundary conditions (and viceversa) along

the channel wall determines the presence of radial components of

the velocity field (by fluid incompressibility) that should be ac-

counted for in the solution, necessarily numerical, of the solute

transport equation.

The analysis of dispersion in a finite-length channel is ap-

proached by considering the temporal moments of solute con-

centration and specifically the local temporal moments and the
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average moments at the outlet of the flow channel[4]. With this

approach it is possible to investigate the dispersion properties at

low and high Peclet numbers.

Actually, for infinitely extended channels, i.e., whenever the

characteristic axial length-scale is arbitrarily larger than the

transverse linear size, Taylor-Aris theory [8] provides a com-

plete description of the dispersion properties (at least for fully

no-slip channels). However, whenever finite length channels are

considered, new dispersion features arise, associated with disper-

sion regimes that deviate from the Taylor-Aris predictions, the so

called convection-dominated dispersion regime [4]

We investigate how different dispersion regimes are influ-

enced by the patterned structure of the microchannel. In partic-

ular we investigate the role of different geometrical parameters,

namely α = L/R (channel aspect ratio, channel length L over

channel radius R), η = lw/ls (pillar length lw over gap length ls)

and χ = R/ls (channel radius over gap length), controlling the

structure of the laminar velocity flow field.

The effects of geometry are analyzed by varying η and χ in

the ranges η ∈ [0.1− 2] and χ ∈ [0.5− 2] (typical ranges as en-

countered over lotus leaves) according with a preliminary and

not conclusive work on dispersion in patterned microchannels

by Bhaumik et al. [9].

Numerical results for the velocity fields and for the moment

hierarchy are obtained by solving the Navier-Stokes equations

and the transport equation for local moments by means of Finite-

Element Method (Comsol 3.5). The incompressible Navier-

Stokes and convection-diffusion packages in stationary condi-

tions have been used. Lagrangian quadratic elements are chosen.

The linear solver adopted is UMFPACK, with relative tolerance

10−12. The number of finite triangular elements is ≃ 106 with

a non-uniform mesh. Smaller elements have been located close

to the boundaries between gaps and pillars (maximum element

size of 1×10−3). Adaptive mesh refinement i s adopted in order

to guarantee (i) convergence of the numerical scheme and (ii) an

accurate resolution of the boundary layer for local moments at

high PeR values.

STATEMENT OF THE PROBLEM

Let us consider a cylindrical capillary of length L and radius

R, aspect ratio α = L/R. The flow is assumed to be under steady

state with a parabolic inlet velocity profile. The presence of gaps

of length ls and pillars (length lw) determines (i) axial flow vari-

ations and (ii) the presence of the radial velocity component.

The channel is characterized by an inlet and a outlet no-slip

zones of length 2R ad by a periodic alternance of gaps (where slip

boundary conditions apply) and pillars (where no slip boundary

conditions apply), see Figure 1.
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Figure 1. Patterned microchannel with χ = 1, η = 1

By introducing the dimensionless quantities ζ= z/R, ρ= r/R,

v∗ = v/U , P∗ = (P−Pout)/(ρ fU
2), ReR = ρ fUR/µ, ∇̃ = R∇,

∇̃2 =R2∇2, U being the average velocity and Pout the outlet pres-

sure, the Navier-Stokes equation attains the form

∇̃ ·v∗ = 0 , v∗ · ∇̃v∗ =−∇̃P∗+
1

ReR

∇̃2v∗ (1)

to be solved with (1) no slip boundary conditions on pillars (v∗ =
0), (2) slip boundary conditions on gaps

v∗ ·n = 0 ,

(

−P∗I+
1

ReR

(∇̃v∗+(∇̃v∗)T )

)

·n = 0 (2)

(3) axial symmetry boundary condition at ρ = 0, (4) inlet

parabolic profile v∗(ζ = 0,ρ) = (v∗ζ,v
∗
ρ) = (2(1−ρ2),0) and (5)

outlet pressure P∗ = 0 at ζ = α.

Figure 2 shows the axial and radial velocity profiles for ReR =
10−2 (fixed value in all simulations) for χ = 1 and η = 2. It

can be observed that the alternance of slip and no slip boundary

conditions determines, by flow incompressibility, a significant

positive radial velocity component that pushes solute particles

close to the slip wall (at the entrance of the gap zone) and a sig-

nificant negative radial velocity component at the entrance of the

pillar zone that pushes solute particle away from the no-slip wall.

Axial flow variations, as well as radial secondary cross-flow are

responsible for a significant reduction of solute dispersion.

Figure 2. Axial v∗ζ (left) and radial v∗ρ (right) dimensionless

velocity profiles for a patterned microchannel, χ = 1, η = 2,

ReR = 10−2.

Dispersion properties in a patterned microchannel can be in-

vestigated by analyzing the space-time evolution of the non-

dimensional concentration of a solute impulsively injected into

the microchannel at time t = 0, i.e. φ(ζ = 0) = δ(t). An impul-
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sive injection means that the inlet concentration pulse duration

should be much smaller than the flow residence time L/U .

In chromatographic experiments, one measures the aver-

age outlet profile 〈φout〉(τ) at the outlet section 〈φout〉(τ) =∫ 1
0 φout(ρ,τ)2ρdρ, τ being the dimensionless time τ = tU/L (the

physical time rescaled with respect to the flow residence time)

and a compact quantitative description of 〈φout〉(τ) is provided

by its temporal moments m
(n)
out =

∫ ∞
0 τn〈φout〉(τ)dτ.

For n = 1, m
(1)
out corresponds to the dimensionless mean residence

time while the second order moment m
(2)
out quantifies solute dis-

persion.

Specifically the second order central moment σ2
out = m

(2)
out −

(m
(1)
out)

2 is the typical measure of dispersion in chromatography

and the effective dimensionless dispersion coefficient Deff can

be evaluated from σ2
out as σ2

out =
2

Peax
Deff where Peax =UL/D.

In a patterned microtube, the space-time evolution of the dimen-

sionless solute concentration obeys the following balance equa-

tion and boundary conditions (Danckwertz outlet boundary con-

dition is usually adopted for finite length-channels)

∂φ

∂τ
= −αv∗ · ∇̃φ+

α

PeR

∇̃2φ , PeR =
UR

D
=

Peax

α
(3)

φ|ζ=0 = δ(τ) ,
∂φ

∂ζ

∣

∣

∣

∣

ζ=α

= 0 ,
∂φ

∂ρ

∣

∣

∣

∣

ρ=0,1

= 0 (4)

However, instead of solving a time dependent PDE for solute

concentration φ, the analysis of dispersion can be equivalently

and more efficiently approached by considering spatial behaviour

of the temporal moments of φ and specifically the local moments

m(n)(ζ,ρ) and the average outlet moments m
(n)
out at the outlet (ζ =

α) of the flow channel.

m(n)(ζ,ρ) =
1

π

∫ ∞

0
τn φ(ζ,ρ,τ)dτ , m

(n)
out =

∫ 1

0
m(n)(α,ρ)2πρdρ

(5)

The local moment hierarchy satisfies the following system of

equations and boundary conditions

αv∗ · ∇̃m(0) =
α

PeR

∇̃2m(0) , m(0)(0,ρ)|= 1/π (6)

αv∗ · ∇̃m(n) =
α

PeR

∇̃2m(n)+nm(n−1) , m(n)(0,ρ) = 0 (7)

∂m(n)/∂ρ|ρ=0,1 = 0 , ∂m(n)/∂ζ|ζ=α = 0 (8)

For infinitely extended channels Taylor-Aris theory provides a

complete description of the dispersion properties. However,

whenever finite length channels are considered, new dispersion

features arise, associated with dispersion regimes that deviate

from the Taylor-Aris predictions for high values of PeR.
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Figure 3. σ2
out vs PeR/α for a fully noslip and a patterned mi-

crotube (χ = 1,η = 2) for two aspect ratios α = 53,101. Con-

tinuous black curves (a) correspond to Taylor-Aris dispersion

regime, Eq. (9). Black broken lines (b) correspond to the asymp-

totic scaling σ2
out ∼ (PeR/α)1/3 (convection-dominated disper-

sion regime).

NUMERICAL RESULTS ON PATTERNED MI-

CROCHANNELS

Figure 3 shows the behaviour of σ2
out vs PeR/α for a fully no-

slip finite-length channel (α = 53 and α = 101, long-thin chan-

nels) and the comparison with the Taylor-Aris prediction

σ2
out =

2

Peax
DTA

eff =
2

Peax
(1+4ΓTA Pe2

R) , ΓTA = 1/192. (9)

It can be observed that from PeR/α ≃ 10, the behavior of σ2
out

becomes practically independent of the aspect ratio α (as a con-

sequence of the fact that the effect of axial diffusion becomes

practically negligible) and the outlet variance starts to deviate

from the Taylor-Aris scaling (which is linear in PeR), while

for PeR/α > 103 a fully developed different dispersion regime

sets in [4; 5], associated with the asymptotic power-law scal-

ing σ2
out ∼ (PeR/α)1/3, characteristic of no-slip channels with

smooth cross-section, circular in this specific case.

In the latter parameter region, the effect of axial convection be-

comes predominant, and consequently this transport regime can

be referred to as the Convection-dominated dispersion regime.

The excellent agreement between numerical results and theoret-

ical behaviours in the whole range of PeR values supports the re-

liability of numerical simulations performed, at least in the fully

no-slip case.

A similar dispersion behavior is also observed for the variance

of the outlet concentration in a patterned microchannel with

χ = 1,η = 2. Also in this case we observe that the outlet variance

σ2
out exhibits a minimum and a then a linear behaviour (Taylor-

Aris dispersion regime for PeR/α < 10) and then a transition to-

wards the asymptotic 1/3 power-law convection-dominated scal-

ing behavior. The asymptotic scaling, for very large values of

PeR, is actually controlled by the fact that the capillary is charac-

terized by an outlet no-slip section of length 2R.

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

1239



Fugure 4 shows the sensitivity of numerical results to the num-

ber of finite elements NFE adopted in the numerical scheme. The

mesh adopted NFE ≥ 2×106 guarantees accuracy and reliability

of numerical results in the whole range of PeR values analyzed.

10
-2

10
-1

10
0

10
1

10
0

10
2

10
4

10
6

σ2
o
u
t

PeR

56x10
3
 elements

22x10
4
 elements

87x10
4
 elements

15x10
5
 elements

Figure 4. σ2
out vs PeR for a patterned microtube (χ = 1,η = 1,

α = 53) for increasing numbers of triangular elements adopted.

The global effect of the presence of gaps, and therefore of slip

boundary conditions, is to lower dispersion in the whole range

of PeR values analyzed. Figure 5 shows the behaviour of the ef-
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Figure 5. Deff vs PeR for a fully no-slip and for different pat-

terned microtubes. α = 53. Curve (a) represents the Taylor-Aris

behaviour, Eq.(9) for a no-slip channel. Curve (b) and its parallel

lines represent the asymptotic behaviour Deff ∼ Pe
(1+1/3)
R .

fective dispersion coefficient Deff = σ2
out Peax/2 as a function of

PeR for different patterned microtubes characterized by differ-

ent values of χ and η. It can be observed that, by decreasing

the values of η, i.e. by decreasing the total no-slip pillar length,

Deff decreases in the whole range of PeR values and the asymp-

totic convection dominated dispersion regime, characterized by a

power-law scaling Deff ∼ Pe
(1+1/3)
R settles down from lower val-

ues of PeR.

TAYLOR-ARIS DISPERSION REGIME, PeR < 100

By focusing on the Taylor-Aris dispersion regime PeR < 100,

in order to identify an equivalent slip-length, we compare the

numerical results for Deff for PeR < 100 with the Taylor-Aris
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Figure 6. Comparison between numerical data for Deff

(PeR < 100) and the best fit curves (black lines) Deff = 1 +
4ΓBF(χ,η)Pe2

R for different patterned microchannels.

dispersion coefficient in a microtube characterized an axial slip

velocity profile (uniform along the axial coordinate ζ)

v∗ζ(ρ,γ) =
2(1−ρ2 +2γ)

1+4γ
, v∗w(γ) = v∗ζ(1,γ) =

4γ

1+4γ
(10)

γ being the dimensionless slip length, for which the Taylor-Aris

effective dispersion coefficient attains the form [1]

Deff = 1+4ΓTAPe2
R , ΓTA =

1

192(1+4γ)2
=

(1− v∗w(γ))
2

192
(11)

thus recovering the classical value ΓTA = 1/192 for γ= 0 (no slip

flow).
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Figure 7. Comparison between best fit values ΓBF(χ,η) vs the

average axial wall velocity 〈v∗w〉 for different patterned micro-

tubes, α= 53 and the analytic expression ΓTA =(1−〈v∗w〉)
2/192.

Figure 6 shows the comparison between numerical results

Deff vs PeR < 100 and the best fit curves with Deff = 1 +
4ΓBF(χ,η)Pe2

R, supporting the idea that the patterned microtube,

in the Taylor-Aris dispersion regime, can be regarded as a micro-

tube with an axial slip velocity profile, each microtube, depend-

ing on the value of χ and η, characterized by a different value of
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ΓTA = ΓBF(χ,η).
Figure 7 shows the behaviour of the best fit values ΓBF(χ,η) vs

the average wall velocity 〈v∗w〉 =
1
α

∫ α
0 v∗ζ(ζ,ρ = 1)dζ for differ-

ent patterned microchannels characterized by different values of

χ and η and the excellent agreement with the theoretical predic-

tion Eq. (11) by simply replacing v∗w(γ) with 〈v∗w〉.
This implies that a patterned microchannel, characterized by

a given value of χ and η and therefore by a given and eas-

ily computed 〈v∗w〉 exhibits the same effective dispersion coef-

ficient, in the Taylor-Aris dispersion regime, as a fully slip mi-

crotube, of the same aspect ratio α and the same slip wall ve-

locity, i.e. v∗w(γ) = 〈v∗w〉 and therefore characterized a slip length

γ = 1
4
〈v∗w〉/(1−〈v∗w〉).

CONVECTION DOMINATED REGIME, PeR > 100

For higher values of PeR, in order to quantify the effective

decrease of the dispersion coefficient (with respect to the fully

no-slip case) due to the patterned structure of the microchannel,

we analyze the prefactor β of the asymptotic behavior Deff =

βPe
(1+1/3)
R evaluated from best fits of curves reported in Figures

3-5 and other numerical simulations not reported here for sake of

brevity. Also in this case, we characterize each microchannel in
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Figure 8. Prefactor β of the convection-dominated power-law

behaviour Deff = βPe
(1+1/3)
R for different patterned microchan-

nels and two different aspect ratios α = 53,101.

terms of its characteristic average wall velocity 〈v∗w〉.
Figure 8 shows the behaviour of β vs 〈v∗w〉 for different pat-

terned microchannels characterized by an inlet and a outlet no-

slip zones of length 2R, different values of χ, η and different

aspect ratios α = 53,101. It can be easily observed that the pref-

actor β, and therefore Deff, decreases exponentially with 〈v∗w〉
i.e. Deff = (1/6)α(1−1/3) exp(−5〈v∗w〉), with an heuristic ex-

ponent −5, while it increases with the aspect ratio α with a

power-law α(1−1/3) = α2/3 simply deriving from the fact that,

for PeR/α > 10 the curves σ2
out vs PeR/α become practically in-

dependent of the aspect ratio α, see Figure 3.

Moreover, in order to further pursue the analogy between pat-

terned and slip microtubes that we successfully verified in the

Taylor-Aris regime, we focused on two reference patterned mi-

crochannels, with the same aspect ratio α = 53, namely micro-

tube M1 with χ = 1 and η = 5 (very small average wall velocity

〈v∗w〉= 0.098 and few axial changes of the velocity field) and mi-

crotube M2 with χ = 1 and η = 0.2 (higher average wall veloc-

ity 〈v∗w〉 = 0.467 and very frequent axial changes of the velocity

field). Then, for each of the two reference microchannels M1 and

M2, we numerically computed the velocity field and the effective

dispersion coefficient (in the whole range of PeR values) of a mi-

crochannel characterized by an inlet and outlet no-slip zones of

length 2R and a central part of length α−4 with a uniform axial

slip velocity at the channel wall v∗ζ(ζ,1) = v∗s = 〈v∗w〉α/(α− 4)

in such a way to have a slip microchannel with the same average

wall velocity 〈v∗w〉 of the corresponding patterned microchannel.

Figure 9 shows the excellent agreement between Deff vs PeR for
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Figure 9. Deff vs PeR for the reference microchannels M1

and M2 and for the corresponding slip-equivalent microchannels

characterized by the same average wall velocity. Continuous

black lines represent the corresponding Taylor-Aris behaviour,

the same as reported in Figure 6.

the reference microchannels M1 and M2 and for the correspond-

ing slip-equivalent microchannels characterized by the same av-

erage wall velocity. The slip-equivalent microchannel exhibits

the same dispersion features as the patterned microchannel in

the whole range of PeR values: the same Taylor-Aris behavior

for PeR < 100 (in perfect agreement with what we observed in

the previous section), the same transitional behaviour at interme-

diate PeR values towards the asymptotic convection dominated

power-law scaling.

This can be better clarified by observing the spatial (axial) be-

haviour of the pointwise variance σ2
ζ(ζ)

σ2
ζ(ζ) =

∫ 1

0
m(2)(ζ,ρ)2πρdρ−

(∫ 1

0
m(1)(ζ,ρ)2πρdρ

)2

(12)

corresponding to σ2
out for ζ = α, i.e. at the outlet section.

Figures 10 A-B show the behaviour of σ2
ζ(ζ) for three increasing

values of PeR = 103,104,104 for the patterned (blue continuous

line) and for the slip-equivalent (red lines with dots) microtubes.

By focusing on the patterned microchannel, the spatial be-

haviour of σ2
ζ clearly shows how the variance increases along the

pillars, exhibits a sudden decrease at the pillar-gap interface and

a sudden increase at the gap-pillar transition zone. These spa-
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Figure 10. σ2
ζ(ζ) vs ζ for PeR = 103,104,104, α = 53. Com-

parison between patterned (blue lines) and slip-equivalent (red

dotted lines) microchannels M1 (χ = 1, η = 5 (TOP)) and M2

(χ = 1, η = 0.2 (BOTTOM)). Vertical broken lines highlight the

transition zones from gaps to pillars and viceversa.

tial oscillations, becoming more and more evident for increasing

values of PeR, are ”averaged out” by the spatial behaviour of σ2
ζ

for the corresponding slip-equivalent microchannel, still retain-

ing all the quantitative features of the corresponding patterned

microchannel.

Small differences in the dispersion behaviour between pat-

terned and slip-equivalent microchannels can be observed only

for very high values of PeR, namely for PeR > 105, and these

differences are more pronounced for microchannel M1 than M2.

This phenomenon can be easily explained by considering that, at

very high Peclet numbers, dispersion features are highly sensi-

tive to small differences in the velocity field in the proximity to

the outlet section.

By focusing on the last gap-pillar interface at ζ = α − 2, for

the patterned microchannel M1, the axial wall velocity v∗ζ(ζ,1)

jumps down from a maximum value v∗ζ(ζ,1) = 0.734 (in the cen-

ter of the last gap) to zero in the last outlet pillar. This jump is

significantly larger than the axial velocity jump from v∗s = 0.107

to 0 at the last gap-pillar interface, ζ = α − 2, for the corre-

sponding slip-equivalent microchannel. This explains why, the

pointwise variance σ2
ζ(ζ) for M1 exhibits a sudden and signifi-

cant increase at the gap-pillar interface ζ = α− 2, that is defi-

nitely more pronounced (at PeR = 105) than that observed for the

corresponding slip-equivalent microchannel, thus resulting in an

outlet variance (and therefore effective dispersion coefficient) for

M1 higher than the corresponding slip-equivalent microchannel.

For the patterned microchannel M2, the wall velocity jump

at ζ = α − 2 is ∆ = 0.743 for M2 and ∆ = 0.504 for the

slip-equivalent microchannel. Therefore the pointwise variance

σ2
ζ(ζ) exhibits a similar increase at ζ = α−2 for M2 and its slip-

equivalent microchannels, thus resulting in closer values of the

outlet variance and effective dispersion coefficient even for very

high Peclet values, Pe > 105.

CONCLUSIONS

We analyzed solute dispersion in a finite-length patterned

channel by considering the temporal moments of solute concen-

tration and specifically the local temporal moments and the aver-

age moments at the outlet of the flow channel. With this approach

it has been possible to investigate the dispersion properties at low

and high Peclet numbers.

We investigated both the Taylor-Aris and the convection dom-

inated dispersion regimes, by analyzing dispersion feature in the

wide range of cross-sectional Peclet values PeR ∈ [1−106].
We have shown and quantified how the patterned structure

of the microchannel and the alternance between slip and no-

slip boundary conditions, depending on geometrical parameters

χ and η, significantly affects (actually reduces) solute dispersion

in finite-length channels.

We have shown that, in the whole range of Peclet values, the

dispersion features of a patterned microchannel are equivalent to

the dispersion properties of a slip-equivalent microchannel ex-

hibiting the same wall average velocity.

This implies that two patterned microchannels, different in

gaps and pillars position and length, but characterized by the

same average wall velocity, exhibit the same dispersion features.
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