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ABSTRACT 

In the context of simulations of coupled thermal enclosures, 

we present here a sub-structuring technique adapted to a 

reduced modal formulation. This technique consists in splitting 

the geometry into different zones. A modal model is then 

applied to each zone, and the coupling of the resulting models 

is performed via a thermal contact resistance. This technique 

allows the consideration of physical thermal resistances 

between different components of the geometry, but also the 

making of fictitious cuts within a continuous domain, when its 

large size makes it difficult to obtain the global reduced model. 

Applied to the simulation of a component of a LNG carrier, the 

use of a sub-structured model with 200 modes allows almost 

immediate resolution (around 1 second) for a maximum 

difference near 1 K and an average difference of the order of 

0.2 K with respect to a conventional Lagrange finite elements 

model of shell type, which requires 40 times longer calculation. 

 

INTRODUCTION 
Natural gas transportation by LNG tankers represents 

around 30 % of the total amount of trade movements, which is 

330 billion m
3
. In order to decrease its volume, the gas is 

liquefied by lowering its temperature to -163°C. Throughout 

the crossing of oceans, this low temperature is maintained by 

containing the liquefied gas in insulated tanks. A LNG carrier is 

made of several tanks separated by mechanical retaining 

elements named cofferdams (See Fig. 1). Cofferdams are 

composed of several metallic enclosures and numerous 

stiffeners to reinforce the structure. 

 

Figure 1 : Schematic view of a LNG tanker 

 

Located between two tanks of LNG at -163°C, each 

cofferdam is equipped with a heating device to avoid that the 

temperature of the plates becomes too low. Indeed, below a 

critical temperature, steel becomes brittle, and the ship is in 

danger. 

A major problematic is the failure of the heating device. In 

order to take the necessary decisions, it is necessary to have a 

quick access to the prediction of the entire temperature field to 

locate the cold spots. 

Facing the gigantic size of LNG carriers, conventional 

computation methods as Lagrange finite elements are too costly 

in terms of computation time. To comply with the above 

specifications, the size of the model has to be reduced while 

maintaining an acceptable precision on the entire computation 

domain. 

Modal methods [1-2] have already shown their ability to 

face such problematics, but their counterpart is the costly 

obtainment of the modal base. To get around this difficulty, we 

propose here a sub-structuring modal method in which the 

structure is artificially split into several sub-structures coupled 

together by contact resistances, real or fictitious. 

NOMENCLATURE 
c [J.m-3.K-1] Thermal heat capacity 

e
 

[m] Wall thickness 

h [W.m-2.K-1] Heat exchange coefficient 
k [W.m-1.K-1] Thermal conductivity 

M [m] Space coordinates 

RTC [m2.K.W-1] Interfacial thermal resistance 
T [K] Temperature 

Vi(M) [K] Mode 

xi(t) [-] Modal amplitude 
zi [s-1] Eigenvalue 

 
Special characters 

ε [K] Difference between detailed and reduced models 

𝜀̅ [K] Average difference between models 

 [-] Domain 

 [-] Boundary 

𝜁 [J.m-2.K-1] Steklov number 

 

Subscripts 

d  domain 
ext  External boundary conditions 

int  Internal boundary conditions 

fc  Common border 
max  Maximum  

 

Superscripts 
(k)  Refers to sub-structure k 

   

GNL GNL GNLGNL

OCEAN

COFFERDAM

12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

1268

mailto:b.gaume@iut.univ-evry.fr


    

PHYSICAL MODEL 
The cooling of the cofferdam caused by the failure of the 

heating system is simulated over a period of 30,000 s. The 

initial condition is the nominal operating temperature. 

External boundary conditions 

A schematic view of a simplified cofferdam is given in Fig. 

2. It consists of Ne=20 enclosures, each containing 4 stiffeners. 

The heating system is composed of two steel pipes in which 

water circulates. The cofferdam walls and stiffeners are 

characterized by different thicknesses e (1 to 3 cm) and 

constant thermal characteristics (k = 45 W.m
-1

.K
-1

, c = 3.4 

MJ.m
-3

.K
-1

). The boundary conditions are those from the U.S. 

Coast Guard (U.S.A. federal agency imposing computing 

standards) : on the outer surfaces ext, the cofferdam is in 

contact with the atmosphere (hatm = 14 W.m
-2

.K
-1

, Tatm = 255 

K), sea (hsea = 120 W.m
-2

.K
-1

, Tsea = 273 K) and the insulated 

tank containing the LNG (hLNG = 0.2 W.m
-2

.K
-1

, TLNG = 110 K). 

These external thermal loads (atmosphere, sea, tubes and LNG) 

are globally noted hext and Text. Both pipes are initially at the 

heating temperature (brine at 65 °C). During the shutdown, 

these tubes are cooled by convective exchange with the 

surrounding enclosures through which they pass. 

 

Figure 2 : The cofferdam and its boundary conditions 

 

Internal boundary conditions 

As presented in Fig. 3, a convective heat exchange between 

the inner walls of each enclosure (including the walls of the 

tubes passing through it) and indoor air (whose temperature 
 e

intT  is unknown and depends on its surroundings) is made via 

a constant exchange coefficient (hint = 4 W.m
-2

.K
-1

). By 

neglecting the inertia of the air, a simple heat balance on each 

enclosure yields: 

   

 

e

int

e

int

e

int

T d

T (T )

d












     (1) 

 

Figure 3 : Boundary conditions of an enclosure 

MATHEMATICAL MODEL 
Shell hypothesis 

Given the thinness of the walls with respect to the other 

dimensions of the plates forming the cofferdam (several 

meters), the thermal gradient existing in the thickness is 

negligible: indeed the Biot number computed in the worst case 

(h = 120 W.m
-2

.K
-1

) is far less than 1. By setting (the local 

coordinates in the plane defined by the surface c, a shell 

model is obtained [3], defined by T(x, y, z) = T(
 

The sub-structuring method 

Let  be a closed domain delimited by a boundary . Cutting 

this domain in Nd sub-structures (k) reveals a number Nfc of 

common borders with two sub-structures 
 i

  and 
 j

  noted
 l
st . On these borders, a temperature jump condition related to 

a RTC contact resistance is applied, noted
 

   i j

i , j
T T T     

(see Fig. 4).  

 

 

Figure 4 : Initial domain and its sub-structuration

 

 

The variational formulation of the heat equation on the 

entire domain   is written as follows: 

A

B
adiabatic

hair

Tair

hsea

hLNG

TLNG

Tsea

inth

 3e

intT

exth extT

inth
 1e

intT

inth
 4e

intT

inth

 2e

intT

walls

pipes

 (1)  (2))1(

st

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ext
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int int
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T
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t

e
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R
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h T T f d
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






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







 



 



 


   



       

 
 
  
 

 
 
  
 

 
 
  
 

  

 

  

 

 

 

 

d

d

k

ext

N
k

ext ext

k 1

h T f d






 
 
  
 



 

(2) 

 
   k k

1f H  
  

 
 being test function of sub-structure

 k
  

The discretization of the problem (2) by Lagrange finite 

elements brings out the following matrix problem (referred 

hereafter as detailed model): 

 

 

 

     

 

     

st int ext

int int 0

st int int 0

CT K J H H T

H T T U

A J T H T T U

  (3) 

 

Matrix A gathers the terms of diffusion and convection for 

each sub-structure, while matrix Jst comes from the coupling 

between sub-structures via the contact resistance. Hint matrix 

corresponds to the convective term with the air inside each 

enclosure area. U0 is a vector representing the external known 

solicitations. The dimension N of Eq. (3) takes into account the 

temperature jump at the common borders. Denoting N
(k)

 the 

number of nodes for each sub-structure, 

 

1

dN
k

k

N N


       (4) 

 

Internal convection 

In Eq. (3) Tint is the vector containing the temperature of the 

air inside each enclosure. As stated above, these temperatures 

are unknown and depend on the temperature of the cofferdam. 

The discretization of Eq. (1) yields  

int cplT U T       (5) 

where UCPL is a matrix of dimension (Ne, N). In order to 

avoid the manipulation of the full matrix HCPL = HintUCPL, 

incompatible with the finite elements method, Eqs. (3) and (5) 

are solved iteratively. 

In the processed application, a sensitivity analysis showed 

that a mesh of 21,548 nodes in the cofferdam and 6600 nodes 

per pipe is required. The resolution of the transient problem 

over a period of 30,000 s, with variable time steps limited to 

100 s, is performed by a CPU time of 60 s. Figure 5 allows to 

visualize the cooling of the cofferdam and heating pipes for 

points A and B shown in Figure 1. The inertia due to the 

heating tubes keeps the temperature of the stiffeners to near 290 

K for about an hour, and therefore delays the risk of rupture. 

 

Figure 5 : Temporal evolution of the temperature on points A 

and B 

MODAL METHOD 
Principle 

In modal methods, the temperature field is searched as a 

weighted sum of elementary functions named modes: 

     
N

i i

i 0

T M ,t V M x t


     (6) 

Instead of searching for the modes on the whole domain, the 

idea is to divide the domain in Nd sub-structures, and to 

compute the modes for each sub-structure [4]. The temperature 

field will then be searching as  

 
 

 
 

 
dN N

k k

i i

k 0 i 0

T M ,t V M x t
 

   (7) 

where 𝑉𝑖
(𝑘)

 is a mode defined on sub-structure (k). This can 

be seen as computing Nd temperature "sub-fields". Obviously, 

the main difficulty is to link these "sub-fields".  

 

Base branch 

The first hurdle is the choice of the modes. A branch base 

for each body is chosen. This base is the solution of the 

following eigenvalue problem  
       k k k k2

i i iM , k V z cV      (8) 

       k k k k

i i iM , k V n z V         (9) 

where 
 k

iz  and 
 k

iV  are respectively the eigenvalues and 

eigenvectors of the branch base.  
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This base requires some comments. The first is the special 

and non-physical boundary condition (9). It is a third type 

boundary condition in which the heat exchange coefficient h 

(positive) is replaced by an eigenvalue (which is negative), 

whose value is different for each mode. The second concerns 

the parameter  , the Steklov number, which ensures the 

dimensional homogeneity of the boundary condition and 

prevents degeneration of the modal problem. 

This special boundary condition reveals two types of 

modes. The first type is constituted of modes quasi null on the 

boundary but not on the domain, and the second one of modes 

quasi null on the domain but not on the boundary. This second 

type of modes allows to link the temperature "sub-fields" on the 

interface. Examples of such modes are given in Fig. 6 for the 

sub-structure 
(1)

 defined in Fig. 4 

 

 

Figure 6 : Examples of branch modes for sub-structure 
(1)

 

defined in Fig. 4 

 

Reduction of branch basis using amalgam method 

The second hurdle is the reduction in itself. Indeed, the 

modal formulation only shifts the problem: instead of being 

temperature values at the nodes of a mesh, the unknowns are 

the amplitudes of the modes xi(t). The number of modes needed 

to approach correctly the solution needs to be reduced. This is 

done by the amalgam method [5]. In this method, the most 

influential eigenmodes are kept (they are called major 

eigenmodes), and the remaining eigenmodes (called minor) are 

added to them, weighted by a factor. This results in new 

amalgamated eigenmodes iV , which are a linear combination 

of eigenvectors of the original branch basis. 

rn

i i ,p i ,p

p 0

V V


        (10) 

The determination of factors 𝛼𝑖,𝑝 is performed by minimizing 

the deviation of energy between a reference model and the 

reduced model. 

From the different bases computed on each sub-structure the 

amalgam method enables to reduce each base corresponding to 

different sub-structures (k)
. This reduction technique produces 

for each sub-structure a reduced basis
   k k

i iz , V
 
 
 

. Let 
 k

iV be 

the extension of a vector extended by zero to the entire domain 

. Any temperature field on the entire domain can then be 

projected on the basis of reduced dimension
 dN
k

1

N N : 

   
 

1 1

1

k

dN N
k k

i i

k i

N

p p

p

T( M ,t ) x ( t ) V ( M )

x ( t ) V ( M )

 











   (11) 

AMPLITUDE EQUATION AND RESOLUTION OF SUB-
STRUCTURED REDUCED PROBLEM  

The resolution of the modal problem is carried out in an 

analogous manner to that used for a single body ([1] [2]). In Eq. 

(2), the temperature field T(M,t) is replaced by its projection in 

the reduced modal basis (Eq. (11)), and each test function f
 (k)

 is 

expressed as one of the basis vectors qV . 

As the amplitude equation reveals full matrices of reduced size, 

the expression of the temperature of the air inside each 

enclosure 
 e

intT  based on the walls temperature (Eq. (1)) is 

directly integrated into the heat equation (Eq. (2)), yielding: 

 

 

 

   
 

 

 

d
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d
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d e
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p 1 k 1
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p 1 k 1
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TCp 1 l 1
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int p q p

p 1 k 1 e 1

ext p q
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dx
ecV V d

dt

e k V V d x

e
V V d x

R

h V V d x

h V V d












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


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 

 
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



  

       

 
 
  
 

 
 
  
 

 

 

 

  



 

  

 

d

d e

k ,e k ,e

int int
k ,e

int

d

k

ext

NN

p

p 1 1

N NN

int q int p p

p 1 k 1 e 1 int

N

ext ext q

k 1

x

1
h V d h V d x

h d

h T V d

 





 






  



 
 
 
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 
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 
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
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(12) 
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After discretization, the relationship (12) can be expressed 

more compactly in matrix form, noting the matrix STRN ,N 
 

V  

defining the reduced base: 

 
d

dt
   
      



t t

st int ext cpl

t

0

X
V CV V K + J + H + H + H V X

V U

(13) 

RESULTS 
Results are presented in terms of computing time and 

average and maximum temperature deviations from the detailed 

model in Tables 1 and 3 for different domain separations, 

different boundary conditions and different reduction orders. 

Two configurations are tested. The first corresponds to the 

reference case used for the reduction process by amalgam ( = 

1), while in the second one all the exchange coefficients are 

increased by a factor  = 1.4. 

SUB STRUCTURATION FOR PHYSICAL THERMAL 
RESISTANCES  

Initially, the division into sub-structures follows the 

physical division, i.e. the cofferdam (ST1) and the two heating 

pipes (ST2 and ST3). The thermal resistance between the 

different sub-structures has a physical reality and is estimated 

to RTC = 1W
-1

.m
2
.K. Different modal simulations are carried out 

keeping 40 modes for each heating tube, and varying the 

number of modes for the cofferdam. The construction of the 

modal model (computation of the base and reduction), is 

performed offline and requires a calculation time of 1582 s. 

When the boundary conditions for the simulation match 

those used for reduction ( = 1) the difference between reduced 

and detailed models is already very low with only 120 modes 

(compared to 34,748 nodes of the initial mesh), with a 

maximum deviation of 0.7 K, an average deviation of 0.03 K, 

and a gain in term of computation time upper than 60, thus 

showing the effectiveness of the method for problems 

characterized by structures coupled by a thermal contact 

resistance. 
 

model order 

(ST1 ST2 ST3) 

1  4,1  

tCPU(s) max (K)
 

𝜀 ̅(K) tCPU(s) max (K)
 

𝜀 ̅(K) 

120 

(40 - 2×40) 
0.99 0.73 0.031 1.08 1.82 0.149 

140 

(60 - 2×40) 
1.17 0.40 0.021 1.25 1.23 0.135 

160 
(80 - 2×40) 

1.44 0.33 0.016 1.50 0.83 0.114 

200 

(120 - 2×40) 
2.15 0.18 0.010 2.23 0.82 0.089 

240 

(160 - 2×40) 
2.80 0.17 0.007 2.93 0.63 0.071 

Table 1: maximum and average absolute error for different 

reduction orders for 3 ST 

When the boundary conditions are different from those used 

during reduction ( = 1.4) performance degrades, and even with 

240 modes, the maximum deviation is greater than 0.5 K for a 

gain in computation time of 20. This deterioration has yet to be 

put into perspective, since even with a model with 120 degrees 

of freedom, the maximum deviation is less than 2 K and the 

average difference is less than the sensitivity of a 

thermocouple. 

SUB STRUCTURATION WITH FICTITIOUS THERMAL 
RESISTANCE 

In addition to the two pipes, the cofferdam has been 

artificially divided into 4 sub-structures shown in Figure 7 and 

coupled together by an artificial contact resistance. It is then 

checked if the method is able to reduce such a problem.  

 

Figure 7 : Virtual division of the cofferdam 

The first step is to find an optimal value for the fictitious 

thermal contact resistance. Indeed, an excessive value of the 

fictitious resistance biases results by introducing a too 

important non-physical temperature jump. On the other hand, 

due to the reduction of the modal base, impose a too low 

temperature jump at the interface induces a significant error in 

the calculation of the heat flux, and therefore significant 

temperature differences either in the interface, but also in the 

domain. A sensitivity analysis on the value of the RTC has been 

conducted for different orders of reduction. Results are 

presented in Table 2.  
 

Nb of 
modes 

240 (4×40- 2×40) 160 (4×20- 2×40) 120 (4×10- 2×40) 

RTC ( )K  max ( )K  ( )K  max ( )K  ( )K  max ( )K  

10-3 0.095 2.72 0.128 2.35 0.162 2.12 

2.10-4 0.076 0.96 0.119 1.06 0.158 2.06 

10-4 0.076 0.96 0.123 1.01 0.165 1.92 

5.10-5 0.078 0.97 0.128 0.97 0.176 1.70 

2.10-5 0.083 1.02 0.137 1.57 0.195 1.82 

10-5 0.088 1.07 0.144 2.37 0.212 2.09 

5.10-6 0.094 1.13 0.153 3.25 0.233 3.19 

10-6 0.116 1.73 0.183 5.47 0.353 6.61 

Table 2: Influence of the value of the fictitious contact 

resistance on the accuracy of the model 

It is first noted that, for a given reduction order, depending 

on the chosen criterion ( ( )K  or max ( )K ) the optimum value of 

the contact resistance is not the same. In addition, the optimum 

value for a given criterion changes depending on the order of 

reduction. However, we also note that there is a whole range 

(roughly 5.10
-5

<RTC<10
-4 

W
-1

.m
2
.K.) on which the change in 
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spreads is low, indicating that an order of magnitude is 

sufficient. The value RTC= 10
-4

 W
-1

.m
2
.K has been chosen. 

 
Reduced model 

order (ST11, 

ST12, ST13, ST14, 
ST2,ST3) 

1  4,1  

tCPU(s) max ( )K  ( )K  tCPU(s) max ( )K  ( )K  

120 

(4×10- 2×40) 
0.68 1.29 0.060 0.71 1.92 0.165 

140 
(4×15- 2×40) 

0.83 0.93 0.045 0.82 2.30 0.143 

160 

(4×20- 2×40) 
0.97 0.66 0.033 0.89 1.04 0.123 

200 
(4×30- 2×40) 

1.10 0.47 0.019 1.18 1.07 0.093 

240 

(4×40- 2×40) 
1.31 0.32 0.014 1.36 0.96 0.076 

Table 3: maximum and average absolute error for different 

reduction orders for 6 ST 

Figure 8 shows the time evolution of the difference between 

reduced and detailed model at points A and B (see Figure 2) for 

both divisions (physical and artificial) with 200 modes. It 

clearly appears that the error is larger for the first steps of 

simulation and tends to stabilize at a value less than 0.1K. 

When both divisions are compared following the number of 

modes, the second splitting seems less relevant, since for  = 1 

and 160 modes, for example, maximum and average deviations 

are about 2 times higher. This is easily explained: as each sub-

structure requires a minimum number of modes to reproduce a 

temperature field, increasing the number of sub-structures 

increases the total number of modes. 

 

Figure 8 : Temporal evolution of the deviation between 

detailed and reduced model 

However, when this comparison is made based on the 

computation time, the reduced model of order 160 of the 

artificial splitting must rather be compared to the reduced 

model of order 120 of the physical splitting, where the 

differences are of the same order of magnitude. This is also true 

in the case  = 1.4, for which a model with 3 subdomains and 

140 modes is simulated in a time equal to a model with 6 sub-

structures and 200 modes. The results in terms of precision are 

then substantially equal. 

This difference in computation time between models of the 

same order (and thus problems between matrices of the same 

size) reflects the structure of matrices and the employed 

resolution algorithm. The matrix resolution is achieved by 

BLAS and LAPACK libraries, which use a partition block 

matrices. The matrix structure of the sub-structured problem 

lends itself to this kind of partition since the sub-structuring 

naturally reveals zero blocks corresponding to sub-structures 

that are not coupled together. The major advantage of this new 

division comes from the computation time taken to build the 

modal model, since it is simpler and faster to solve Nd problems 

of dimension [N
(k) 

× N
(k)

] rather than one problem of dimension 

[N × N]. Thus, by cutting artificially the cofferdam, the 

computation time required for the construction of the model 

decreases from 1582 s to 418 s, which is almost a factor 4. 

CONCLUSION 
The first objective of this communication was the study of a 

sub-structured reduced model for a geometry made up of many 

thermal enclosures coupled together when the imperfect contact 

between different components reveals a temperature jump at 

the interface. We have shown the efficiency of this method, 

since for a different problem than the reference one, the 

maximum deviation from Lagrange finite element model is less 

than 1 K, while being 40 times faster. However the price is 

getting the initial basis on which is built the amalgamated basis. 

The second objective was to study the relevance of this 

technique for an artificial division of an initially continuous 

domain. Results are very satisfactory, since we find the same 

ratio precision - computation time, while dividing the time to 

create the reduced model by a factor 4. This study thus 

demonstrated the effectiveness of the sub-structured modal 

method, which could be extended to the cofferdam in all its 

geometrical complexity, and all of the ship's structure. 
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